Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots
Plant growth is severely affected by toxic concentrations of heavy metals. On characterizing the heavy metal-induced signalling pathways, the effects of cadmium (CdCl2) and copper (CuCl2) on MBP (myelin basic protein) kinase activities in Oryza sativa L. cv. TNG67 were analysed and it was found that...
Saved in:
Published in | Journal of experimental botany Vol. 58; no. 3; pp. 659 - 671 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.02.2007
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant growth is severely affected by toxic concentrations of heavy metals. On characterizing the heavy metal-induced signalling pathways, the effects of cadmium (CdCl2) and copper (CuCl2) on MBP (myelin basic protein) kinase activities in Oryza sativa L. cv. TNG67 were analysed and it was found that Cd2+-induced 42 kDa MBP kinase has the characteristics of a mitogen-activated protein (MAP) kinase. This study confirmed that the 42 kDa kinase-active band contains, at least, the activities of OsMPK3 and OsMPK6. Then, the heavy metal signal transduction pathways leading to MAP kinase activation in rice roots were examined. Pretreatment with sodium benzoate, a hydroxyl radical scavenger, attenuated Cd2+- or Cu2+-induced MAP kinase activation. The Cd2+-, but not Cu2+-, induced MAP kinase activities were suppressed by diphenylene iodonium (DPI), an NADPH oxidase inhibitor, and Cd2+ induced NADPH oxidase-like activities, suggesting that NADPH oxidases may be involved in Cd2+-induced MAP kinase activation. Using a Ca2+ indicator, it was demonstrated that Cd2+ and Cu2+ induce Ca2+ accumulation in rice roots. The Cd2+- and Cu2+-induced MAP kinase activation required the involvement of Ca2+-dependent protein kinase (CDPK) and phosphatidylinositol 3-kinase (PI3 kinase) as shown by the inhibitory effect of a CDPK antagonist, W7, and a PI3 kinase inhibitor, wortmannin, respectively. Furthermore, bongkrekic acid (BK), a mitochondrial permeability transition pore opening blocker, suppressed Cd2+-, but not Cu2+-, induced MAP kinase activation, indicating that Cd2+-induced MAP kinase activities are dependent on the functional state of mitochondria. Collectively, these findings imply that Cd2+ and Cu2+ may induce MAP kinase activation through distinct signalling pathways. Moreover, it was found that the 42 kDa MAP kinase activities are higher in Cd-tolerant cultivars than in Cd-sensitive cultivars. Therefore, the Cd-induced 42 kDa MAP kinase activation may confer Cd tolerance in rice plants. |
---|---|
AbstractList | Plant growth is severely affected by toxic concentrations of heavy metals. On characterizing the heavy metal-induced signalling pathways, the effects of cadmium (CdCl2) and copper (CuCl2) on MBP (myelin basic protein) kinase activities in Oryza sativa L. cv. TNG67 were analysed and it was found that Cd2+-induced 42 kDa MBP kinase has the characteristics of a mitogen-activated protein (MAP) kinase. This study confirmed that the 42 kDa kinase-active band contains, at least, the activities of OsMPK3 and OsMPK6. Then, the heavy metal signal transduction pathways leading to MAP kinase activation in rice roots were examined. Pretreatment with sodium benzoate, a hydroxyl radical scavenger, attenuated Cd2+- or Cu2+-induced MAP kinase activation. The Cd2+-, but not Cu2+-, induced MAP kinase activities were suppressed by diphenylene iodonium (DPI), an NADPH oxidase inhibitor, and Cd2+ induced NADPH oxidase-like activities, suggesting that NADPH oxidases may be involved in Cd2+-induced MAP kinase activation. Using a Ca2+ indicator, it was demonstrated that Cd2+ and Cu2+ induce Ca2+ accumulation in rice roots. The Cd2+- and Cu2+-induced MAP kinase activation required the involvement of Ca2+-dependent protein kinase (CDPK) and phosphatidylinositol 3-kinase (PI3 kinase) as shown by the inhibitory effect of a CDPK antagonist, W7, and a PI3 kinase inhibitor, wortmannin, respectively. Furthermore, bongkrekic acid (BK), a mitochondrial permeability transition pore opening blocker, suppressed Cd2+-, but not Cu2+-, induced MAP kinase activation, indicating that Cd2+-induced MAP kinase activities are dependent on the functional state of mitochondria. Collectively, these findings imply that Cd2+ and Cu2+ may induce MAP kinase activation through distinct signalling pathways. Moreover, it was found that the 42 kDa MAP kinase activities are higher in Cd-tolerant cultivars than in Cd-sensitive cultivars. Therefore, the Cd-induced 42 kDa MAP kinase activation may confer Cd tolerance in rice plants. Plant growth is severely affected by toxic concentrations of heavy metals. On characterizing the heavy metal-induced signalling pathways, the effects of cadmium (CdCl₂) and copper (CuCl₂) on MBP (myelin basic protein) kinase activities in Oryza sativa L. cv. TNG67 were analysed and it was found that Cd²⁺-induced 42 kDa MBP kinase has the characteristics of a mitogen-activated protein (MAP) kinase. This study confirmed that the 42 kDa kinase-active band contains, at least, the activities of OsMPK3 and OsMPK6. Then, the heavy metal signal transduction pathways leading to MAP kinase activation in rice roots were examined. Pretreatment with sodium benzoate, a hydroxyl radical scavenger, attenuated Cd²⁺- or Cu²⁺-induced MAP kinase activation. The Cd²⁺-, but not Cu²⁺-, induced MAP kinase activities were suppressed by diphenylene iodonium (DPI), an NADPH oxidase inhibitor, and Cd²⁺ induced NADPH oxidase-like activities, suggesting that NADPH oxidases may be involved in Cd²⁺-induced MAP kinase activation. Using a Ca²⁺ indicator, it was demonstrated that Cd²⁺ and Cu²⁺ induce Ca²⁺ accumulation in rice roots. The Cd²⁺- and Cu²⁺-induced MAP kinase activation required the involvement of Ca²⁺-dependent protein kinase (CDPK) and phosphatidylinositol 3-kinase (PI3 kinase) as shown by the inhibitory effect of a CDPK antagonist, W7, and a PI3 kinase inhibitor, wortmannin, respectively. Furthermore, bongkrekic acid (BK), a mitochondrial permeability transition pore opening blocker, suppressed Cd²⁺-, but not Cu²⁺-, induced MAP kinase activation, indicating that Cd²⁺-induced MAP kinase activities are dependent on the functional state of mitochondria. Collectively, these findings imply that Cd²⁺ and Cu²⁺ may induce MAP kinase activation through distinct signalling pathways. Moreover, it was found that the 42 kDa MAP kinase activities are higher in Cd-tolerant cultivars than in Cd-sensitive cultivars. Therefore, the Cd-induced 42 kDa MAP kinase activation may confer Cd tolerance in rice plants. Plant growth is severely affected by toxic concentrations of heavy metals. On characterizing the heavy metal-induced signalling pathways, the effects of cadmium (CdCl2) and copper (CuCl2) on MBP (myelin basic protein) kinase activities in Oryza sativa L. cv. TNG67 were analysed and it was found that Cd2+-induced 42 kDa MBP kinase has the characteristics of a mitogen-activated protein (MAP) kinase. This study confirmed that the 42 kDa kinase-active band contains, at least, the activities of OsMPK3 and OsMPK6. Then, the heavy metal signal transduction pathways leading to MAP kinase activation in rice roots were examined. Pretreatment with sodium benzoate, a hydroxyl radical scavenger, attenuated Cd2+- or Cu2+-induced MAP kinase activation. The Cd2+-, but not Cu2+-, induced MAP kinase activities were suppressed by diphenylene iodonium (DPI), an NADPH oxidase inhibitor, and Cd2+ induced NADPH oxidase-like activities, suggesting that NADPH oxidases may be involved in Cd2+-induced MAP kinase activation. Using a Ca2+ indicator, it was demonstrated that Cd2+ and Cu2+ induce Ca2+ accumulation in rice roots. The Cd2+- and Cu2+-induced MAP kinase activation required the involvement of Ca2+-dependent protein kinase (CDPK) and phosphatidylinositol 3-kinase (PI3 kinase) as shown by the inhibitory effect of a CDPK antagonist, W7, and a PI3 kinase inhibitor, wortmannin, respectively. Furthermore, bongkrekic acid (BK), a mitochondrial permeability transition pore opening blocker, suppressed Cd2+-, but not Cu2+-, induced MAP kinase activation, indicating that Cd2+-induced MAP kinase activities are dependent on the functional state of mitochondria. Collectively, these findings imply that Cd2+ and Cu2+ may induce MAP kinase activation through distinct signalling pathways. Moreover, it was found that the 42 kDa MAP kinase activities are higher in Cd-tolerant cultivars than in Cd-sensitive cultivars. Therefore, the Cd-induced 42 kDa MAP kinase activation may confer Cd tolerance in rice plants.Plant growth is severely affected by toxic concentrations of heavy metals. On characterizing the heavy metal-induced signalling pathways, the effects of cadmium (CdCl2) and copper (CuCl2) on MBP (myelin basic protein) kinase activities in Oryza sativa L. cv. TNG67 were analysed and it was found that Cd2+-induced 42 kDa MBP kinase has the characteristics of a mitogen-activated protein (MAP) kinase. This study confirmed that the 42 kDa kinase-active band contains, at least, the activities of OsMPK3 and OsMPK6. Then, the heavy metal signal transduction pathways leading to MAP kinase activation in rice roots were examined. Pretreatment with sodium benzoate, a hydroxyl radical scavenger, attenuated Cd2+- or Cu2+-induced MAP kinase activation. The Cd2+-, but not Cu2+-, induced MAP kinase activities were suppressed by diphenylene iodonium (DPI), an NADPH oxidase inhibitor, and Cd2+ induced NADPH oxidase-like activities, suggesting that NADPH oxidases may be involved in Cd2+-induced MAP kinase activation. Using a Ca2+ indicator, it was demonstrated that Cd2+ and Cu2+ induce Ca2+ accumulation in rice roots. The Cd2+- and Cu2+-induced MAP kinase activation required the involvement of Ca2+-dependent protein kinase (CDPK) and phosphatidylinositol 3-kinase (PI3 kinase) as shown by the inhibitory effect of a CDPK antagonist, W7, and a PI3 kinase inhibitor, wortmannin, respectively. Furthermore, bongkrekic acid (BK), a mitochondrial permeability transition pore opening blocker, suppressed Cd2+-, but not Cu2+-, induced MAP kinase activation, indicating that Cd2+-induced MAP kinase activities are dependent on the functional state of mitochondria. Collectively, these findings imply that Cd2+ and Cu2+ may induce MAP kinase activation through distinct signalling pathways. Moreover, it was found that the 42 kDa MAP kinase activities are higher in Cd-tolerant cultivars than in Cd-sensitive cultivars. Therefore, the Cd-induced 42 kDa MAP kinase activation may confer Cd tolerance in rice plants. |
Author | Yeh, Chuan-Ming Chien, Pei-Shan Huang, Hao-Jen |
Author_xml | – sequence: 1 givenname: Chuan-Ming surname: Yeh fullname: Yeh, Chuan-Ming – sequence: 2 givenname: Pei-Shan surname: Chien fullname: Chien, Pei-Shan – sequence: 3 givenname: Hao-Jen surname: Huang fullname: Huang, Hao-Jen |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18553682$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17259646$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0t1rFDEQAPBFKvZaffFdDYI-CGcn37ePtX5UqFXUgvgSZrPZM9e9zZrsau-_N8eeFYroUyDzm2Eyk4NirwudK4r7FJ5TKPnR6qo6crFlAm4VMyoUzJngdK-YATA2h1Lq_eIgpRUASJDyTrFPNZOlEmpWLF_6NPjODiT5ZYdt67sl6XH49hM3iTQhEt_Vox186EhoyLvjD-TSd5gcwXz5ww_eJVJtiMV67cc1wa4mNvS92yaS6K0jMYQh3S1uN9gmd293HhYXr199Pjmdn71_8_bk-GxuJePDHAUXTjdCsgoWtKxqqYBWC2x05RBZUyGtS2tdKbhUJSrZWMW0UsJazdWi5ofF06luH8P30aXBrH2yrm2xc2FMRpXANID6LxSaKdBcZ_j4BlyFMeZRJcO4BCrpQmT0cIfGau1q00e_xrgxvwedwZMdwGSxbSJ21qc_biFl7p9lB5OzMaQUXWOsH3A7_iGibw0Fs925yTs3085zyrMbKddV_4Z3fYSx_7d7MLlVGkK8ltuQErLM8fkUz9_HXV3HMV4alacmzemXr0a-OD-Hj0oZnv2jyTcYDC5jfvvFJwaUA2ih80b4L1mh284 |
CODEN | JEBOA6 |
CitedBy_id | crossref_primary_10_3389_fpls_2014_00245 crossref_primary_10_1016_j_envexpbot_2011_11_016 crossref_primary_10_1007_s11557_015_1136_x crossref_primary_10_2478_10004_1254_61_2010_2059 crossref_primary_10_1007_s10681_015_1580_3 crossref_primary_10_1007_s11103_011_9841_6 crossref_primary_10_3390_ijms25073592 crossref_primary_10_1007_s44246_023_00073_1 crossref_primary_10_1111_j_1399_3054_2012_01655_x crossref_primary_10_4028_www_scientific_net_AMR_518_523_5539 crossref_primary_10_1080_15592324_2018_1460048 crossref_primary_10_3390_antiox11112099 crossref_primary_10_1016_j_tplants_2008_10_007 crossref_primary_10_7717_peerj_5191 crossref_primary_10_3390_ijms13067828 crossref_primary_10_1016_j_ecoenv_2018_12_084 crossref_primary_10_1016_j_biotechadv_2013_07_009 crossref_primary_10_1186_s12870_018_1613_x crossref_primary_10_1007_s10126_010_9325_8 crossref_primary_10_1016_j_aquatox_2016_06_017 crossref_primary_10_1007_s12041_016_0710_6 crossref_primary_10_3390_ijms222112023 crossref_primary_10_1016_j_envexpbot_2012_04_003 crossref_primary_10_1016_j_scitotenv_2024_174013 crossref_primary_10_1093_jxb_ers366 crossref_primary_10_1016_j_abb_2010_11_006 crossref_primary_10_1016_j_envexpbot_2012_04_006 crossref_primary_10_1186_s12284_019_0340_8 crossref_primary_10_1007_s10534_012_9541_y crossref_primary_10_1111_jpi_12314 crossref_primary_10_1007_s12374_019_0112_4 crossref_primary_10_3390_ijms20122960 crossref_primary_10_1007_s10646_020_02266_5 crossref_primary_10_1016_j_chemosphere_2007_04_073 crossref_primary_10_1016_j_ecoenv_2020_111887 crossref_primary_10_1016_j_plantsci_2015_02_005 crossref_primary_10_1016_j_ecoenv_2020_111761 crossref_primary_10_1111_ppl_12088 crossref_primary_10_3389_fpls_2023_1154571 crossref_primary_10_3390_agronomy6010014 crossref_primary_10_1016_j_jclepro_2020_125557 crossref_primary_10_1007_s13562_022_00776_3 crossref_primary_10_3390_ijms241310893 crossref_primary_10_35550_vbio2019_03_006 crossref_primary_10_1016_j_biocel_2015_02_015 crossref_primary_10_1016_j_chemosphere_2022_136466 crossref_primary_10_1124_pr_110_002980 crossref_primary_10_1155_2012_217037 crossref_primary_10_5586_asbp_8943 crossref_primary_10_1016_j_biotechadv_2016_07_003 crossref_primary_10_1007_s11105_022_01350_w crossref_primary_10_1016_j_chemosphere_2007_11_031 crossref_primary_10_1016_j_chemosphere_2024_142937 crossref_primary_10_1111_j_1744_7909_2009_00868_x crossref_primary_10_1007_s11738_012_1030_y crossref_primary_10_1104_pp_15_00744 crossref_primary_10_3389_fpls_2016_01296 crossref_primary_10_1016_j_biotechadv_2011_12_002 crossref_primary_10_1155_2012_101465 crossref_primary_10_1186_s12864_019_5589_1 crossref_primary_10_1016_j_chemosphere_2020_129456 crossref_primary_10_3389_fpls_2018_00012 crossref_primary_10_1016_j_plantsci_2023_111754 crossref_primary_10_1016_j_jhazmat_2009_10_066 crossref_primary_10_1007_s11033_011_0897_9 crossref_primary_10_1111_pce_12056 crossref_primary_10_1071_FP07163 crossref_primary_10_1007_s11703_011_1072_8 crossref_primary_10_1016_j_plaphy_2020_08_038 crossref_primary_10_1007_s00203_022_02978_8 crossref_primary_10_1093_jxb_erq177 crossref_primary_10_1104_pp_112_194472 crossref_primary_10_3390_molecules24030556 crossref_primary_10_3390_plants7040089 crossref_primary_10_3389_fpls_2021_669096 crossref_primary_10_1002_etc_2610 crossref_primary_10_1016_j_plantsci_2014_07_002 crossref_primary_10_4161_psb_5_11_13020 crossref_primary_10_1016_j_plaphy_2009_01_005 crossref_primary_10_4161_psb_26664 crossref_primary_10_1007_s11103_012_9969_z crossref_primary_10_1016_j_envexpbot_2011_12_017 crossref_primary_10_3389_fpls_2015_01120 crossref_primary_10_3390_ijms24054378 crossref_primary_10_1016_j_plaphy_2024_108962 crossref_primary_10_1016_j_plaphy_2024_109017 crossref_primary_10_1111_ppl_13004 crossref_primary_10_1016_j_pbi_2009_04_006 crossref_primary_10_1016_j_jhazmat_2010_02_014 crossref_primary_10_1016_j_ecoenv_2015_01_017 crossref_primary_10_1016_j_scitotenv_2021_151099 crossref_primary_10_1016_j_jplph_2010_07_010 crossref_primary_10_1016_j_jplph_2017_06_013 crossref_primary_10_1111_j_1365_3040_2012_02543_x crossref_primary_10_1016_j_jplph_2015_04_007 crossref_primary_10_1016_j_bbrc_2019_06_116 crossref_primary_10_1007_s10534_023_00569_8 crossref_primary_10_3390_plants9121781 crossref_primary_10_1016_j_chemosphere_2008_11_023 crossref_primary_10_3389_fpls_2023_1305179 crossref_primary_10_1007_s10535_011_0015_9 crossref_primary_10_1007_s00299_011_1056_4 crossref_primary_10_1016_j_jplph_2013_06_019 crossref_primary_10_1016_j_envres_2021_111030 crossref_primary_10_1016_j_jplph_2024_154314 crossref_primary_10_3390_plants11081009 crossref_primary_10_5586_aa_172513 crossref_primary_10_1071_FP09073 crossref_primary_10_1007_s00344_019_09919_8 crossref_primary_10_1007_s12079_012_0173_3 crossref_primary_10_1093_jxb_erad081 crossref_primary_10_1021_acs_jafc_7b02950 |
ContentType | Journal Article |
Copyright | Society for Experimental Biology 2007 The Author [2007]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org 2007 2007 INIST-CNRS Copyright Oxford University Press(England) Feb 2007 |
Copyright_xml | – notice: Society for Experimental Biology 2007 – notice: The Author [2007]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org 2007 – notice: 2007 INIST-CNRS – notice: Copyright Oxford University Press(England) Feb 2007 |
DBID | FBQ BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7QP 8FD FR3 K9. P64 RC3 7S9 L.6 7X8 |
DOI | 10.1093/jxb/erl240 |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1460-2431 |
EndPage | 671 |
ExternalDocumentID | 1221824071 17259646 18553682 10_1093_jxb_erl240 10.1093/jxb/erl240 24036459 ark_67375_HXZ_5BNN0R66_3 US201300747700 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -E4 -~X .2P .I3 0R~ 18M 1TH 29K 2WC 2~F 3O- 4.4 482 48X 53G 5GY 5VS 5WA 5WD 6.Y 70D AABJS AABMN AAESY AAIMJ AAIYJ AAJKP AAJQQ AAMDB AAMVS AANRK AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAWDT AAXTN ABBHK ABEUO ABIXL ABJNI ABLJU ABNKS ABPPZ ABPTD ABPTK ABQLI ABQTQ ABSAR ABSMQ ABWST ABXZS ABZBJ ACFRR ACGFO ACGFS ACGOD ACIWK ACNCT ACPQN ACPRK ACUFI ACUTJ ADBBV ADEIU ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADOCK ADORX ADQLU ADRIX ADRTK ADULT ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEJOX AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AETEA AEUPB AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AFYAG AGINJ AGKEF AGKRT AGQXC AGSYK AHMBA AHXPO AI. AIAGR AIJHB AIKOY AJEEA AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO ARIXL ASAOO ASPBG ATDFG ATTQO AVWKF AXUDD AYOIW AZFZN AZQFJ BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC BYORX C1A CAG CASEJ CDBKE COF CS3 CXTWN CZ4 D-I DAKXR DATOO DFEDG DFGAJ DIK DILTD DPORF DPPUQ DU5 D~K E3Z EBS ECGQY EE~ EJD ELUNK ESX F20 F5P F9B FBQ FEDTE FHSFR FLUFQ FOEOM FQBLK G8K GAUVT GJXCC GX1 H5~ HAR HVGLF HW0 HZ~ H~9 IOX J21 JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST KAQDR KBUDW KC5 KOP KQ8 KSI KSN M-Z M49 MBTAY ML0 MVM N9A NEJ NGC NLBLG NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX OBOKY ODMLO OHT OJQWA OJZSN OK1 OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO SA0 TCN TEORI TLC TN5 TR2 UHB UKR UPT VH1 W8F WH7 WOQ X7H XOL YAYTL YKOAZ YQT YSK YXANX YZZ ZCG ZKX ~02 ~91 ~KM AAHBH AARHZ AAUAY ABDFA ABEJV ABGNP ABMNT ABNGD ABPQP ABVGC ABXSQ ABXVV ACHIC ACUKT ADNBA ADQBN AGORE AGQPQ AJBYB AJNCP AQVQM ATGXG BSCLL H13 IPSME JXSIZ AASNB ACMRT ACZBC ADACV AFSHK AGMDO AAYXX CITATION ABDPE ABIME ABPIB ABZEO ACVCV AEHUL AHGBF AJDVS IQODW CGR CUY CVF ECM EIF NPM Z5M 7QO 7QP 8FD FR3 K9. P64 RC3 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c523t-a434e7f452b0819bd5601b8af7beaa2fba1d9cce943569a65fc627664cc7368d3 |
ISSN | 0022-0957 |
IngestDate | Fri Jul 11 01:11:38 EDT 2025 Fri Jul 11 11:08:36 EDT 2025 Mon Jun 30 10:47:10 EDT 2025 Wed Feb 19 01:45:10 EST 2025 Mon Jul 21 09:14:20 EDT 2025 Tue Jul 01 03:39:27 EDT 2025 Thu Apr 24 23:09:32 EDT 2025 Wed Aug 28 03:26:32 EDT 2024 Sun Aug 24 12:10:42 EDT 2025 Tue Aug 05 16:50:20 EDT 2025 Wed Dec 27 19:11:16 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Cadmium copper heavy metal MAP kinase rice signal transduction Signal transduction Root Enzyme Mitogen-activated protein kinase Heavy metal |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c523t-a434e7f452b0819bd5601b8af7beaa2fba1d9cce943569a65fc627664cc7368d3 |
Notes | ark:/67375/HXZ-5BNN0R66-3 istex:F53DB690D29F5D500DE3453196A2F5D698D9D1B7 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://academic.oup.com/jxb/article-pdf/58/3/659/1488867/erl240.pdf |
PMID | 17259646 |
PQID | 235015184 |
PQPubID | 40603 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_69027006 proquest_miscellaneous_47260737 proquest_journals_235015184 pubmed_primary_17259646 pascalfrancis_primary_18553682 crossref_citationtrail_10_1093_jxb_erl240 crossref_primary_10_1093_jxb_erl240 oup_primary_10_1093_jxb_erl240 jstor_primary_24036459 istex_primary_ark_67375_HXZ_5BNN0R66_3 fao_agris_US201300747700 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-02-01 |
PublicationDateYYYYMMDD | 2007-02-01 |
PublicationDate_xml | – month: 02 year: 2007 text: 2007-02-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England |
PublicationTitle | Journal of experimental botany |
PublicationTitleAlternate | J Exp Bot |
PublicationYear | 2007 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
SSID | ssj0005055 |
Score | 2.314064 |
Snippet | Plant growth is severely affected by toxic concentrations of heavy metals. On characterizing the heavy metal-induced signalling pathways, the effects of... |
SourceID | proquest pubmed pascalfrancis crossref oup jstor istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 659 |
SubjectTerms | antagonists Antibodies Biological and medical sciences Cadmium Cadmium - pharmacology Calcium Calcium - metabolism Calcium-Binding Proteins Calcium-Binding Proteins - metabolism Calcium-Binding Proteins - physiology Cell physiology Copper Copper - pharmacology Cultivars drug effects free radical scavengers Fundamental and applied biological sciences. Psychology Gels heavy metal Heavy metals Heterotrimeric GTP-Binding Proteins Heterotrimeric GTP-Binding Proteins - physiology Hydroxyl radicals MAP kinase MAP Kinase Signaling System MAP Kinase Signaling System - drug effects metabolism Metal concentrations mitochondria Mitochondria - physiology mitogen-activated protein kinase Mitogen-Activated Protein Kinase Kinases Mitogen-Activated Protein Kinase Kinases - metabolism Molecular and cellular biology myelin proteins NADP (coenzyme) Oryza Oryza - drug effects Oryza - metabolism Oryza sativa Oxidases Permeability pharmacology phosphatidylinositol 3-kinase Phosphatidylinositol 3-Kinases Phosphatidylinositol 3-Kinases - physiology Phosphorylation physiology Plant growth Plant Roots Plant Roots - drug effects Plant Roots - metabolism Plants Protein Kinases Protein Kinases - metabolism Protein Kinases - physiology Protein Subunits Protein Subunits - physiology Reactive Oxygen Species Reactive Oxygen Species - metabolism Research Papers Rice Roots Signal transduction Sodium sodium benzoate toxicity |
Title | Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots |
URI | https://api.istex.fr/ark:/67375/HXZ-5BNN0R66-3/fulltext.pdf https://www.jstor.org/stable/24036459 https://www.ncbi.nlm.nih.gov/pubmed/17259646 https://www.proquest.com/docview/235015184 https://www.proquest.com/docview/47260737 https://www.proquest.com/docview/69027006 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW6wQMSQnyNhUGxBEJCVVhmx07yuI1NZWwFsVaq9mLZTrKVbWnVtbDxW_ixXNtJ04ptAl6qKnFqNefkfjj3HiP0JmVJmKS58qlMEz-UeeArpXM_pTrcSHNIinKTKB50eLsX7vVZv9H4NVe1NJ2o9_rntX0l_4MqHANcTZfsPyA7-1E4AN8BX_gEhOHzrzD-YB7QQk9apgpDOnVts8XwD3llZRZakHA7dVhb6bL5pXU6KMBtWQWN71ZL1YSfWqbng-l52eI2GmVj2-UCJqQFcbWTeromgF3YHEANJ5VZsSuw7s3NyVQW_kHlHa0FHviHJ2BTtk8GdRNaWw79PWf_2nDF8cJSRFRVL1eJq2txnFs_K5u0TLBc7klSrW_UrQQQ4zmPmzkLHPLAJ2HpGkoTzeI5KtI5e8udnPgffsBpZH27VIYX4zPiJKEW5bY7n8Vub39fdHf63cWzLjsiRtze5LtL6A6BJMQm7B8_1QVEAWOVFr35E5X4bULXYeJ1N-1CuLOUyyEkQeb5vazqX6vGyvsjeQFPZe62U7k537FxT_chelDijTcd-x6hRlY8Rne3LNxP0HFFQVxTEFcUxAAUnlEQD3MMFMSOgrimIFZXuKQgBuywoyBciA0FsaXgU9Tb3elut_1y7w5fM0InvgxpmEV5yIgyQadKTeavYplHKpOS5EpupInWWQLhOk8kZ7nmJOI81DqiPE7pClouhkW2ijCjudI0zlSaGHU_IuOAMpmxBCaKiY489K66xUKXwvZmf5Uz4QosqAA4hIPDQ69nY0dOzuXaUauAlJDH4GdF75CYt_tmo4kogFNvLXyzq-X41NRGRky0-0eCbXU6wVfOBfXQisV3NtAIXxrlJg81AfBbZ28ucKEeGjMG94Z4aK0ihyit0YUgpkKAbcShh17NzoKrMO__ZJENpxcijAgHjx7dPIIngSlE4R565jhXzx0RlvCQP7917jV0r7YLL9DyZDzNXkLQPlFN--z8BuL57xs |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinct+signalling+pathways+for+induction+of+MAP+kinase+activities+by+cadmium+and+copper+in+rice+roots&rft.jtitle=Journal+of+experimental+botany&rft.au=Yeh%2C+Chuan-Ming&rft.au=Pei-Shan+Chien&rft.au=Hao-Jen%2C+Huang&rft.date=2007-02-01&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=0022-0957&rft.eissn=1460-2431&rft.volume=58&rft.issue=3&rft.spage=659&rft_id=info:doi/10.1093%2Fjxb%2Ferl240&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1221824071 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon |