Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots

Plant growth is severely affected by toxic concentrations of heavy metals. On characterizing the heavy metal-induced signalling pathways, the effects of cadmium (CdCl2) and copper (CuCl2) on MBP (myelin basic protein) kinase activities in Oryza sativa L. cv. TNG67 were analysed and it was found that...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental botany Vol. 58; no. 3; pp. 659 - 671
Main Authors Yeh, Chuan-Ming, Chien, Pei-Shan, Huang, Hao-Jen
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.02.2007
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plant growth is severely affected by toxic concentrations of heavy metals. On characterizing the heavy metal-induced signalling pathways, the effects of cadmium (CdCl2) and copper (CuCl2) on MBP (myelin basic protein) kinase activities in Oryza sativa L. cv. TNG67 were analysed and it was found that Cd2+-induced 42 kDa MBP kinase has the characteristics of a mitogen-activated protein (MAP) kinase. This study confirmed that the 42 kDa kinase-active band contains, at least, the activities of OsMPK3 and OsMPK6. Then, the heavy metal signal transduction pathways leading to MAP kinase activation in rice roots were examined. Pretreatment with sodium benzoate, a hydroxyl radical scavenger, attenuated Cd2+- or Cu2+-induced MAP kinase activation. The Cd2+-, but not Cu2+-, induced MAP kinase activities were suppressed by diphenylene iodonium (DPI), an NADPH oxidase inhibitor, and Cd2+ induced NADPH oxidase-like activities, suggesting that NADPH oxidases may be involved in Cd2+-induced MAP kinase activation. Using a Ca2+ indicator, it was demonstrated that Cd2+ and Cu2+ induce Ca2+ accumulation in rice roots. The Cd2+- and Cu2+-induced MAP kinase activation required the involvement of Ca2+-dependent protein kinase (CDPK) and phosphatidylinositol 3-kinase (PI3 kinase) as shown by the inhibitory effect of a CDPK antagonist, W7, and a PI3 kinase inhibitor, wortmannin, respectively. Furthermore, bongkrekic acid (BK), a mitochondrial permeability transition pore opening blocker, suppressed Cd2+-, but not Cu2+-, induced MAP kinase activation, indicating that Cd2+-induced MAP kinase activities are dependent on the functional state of mitochondria. Collectively, these findings imply that Cd2+ and Cu2+ may induce MAP kinase activation through distinct signalling pathways. Moreover, it was found that the 42 kDa MAP kinase activities are higher in Cd-tolerant cultivars than in Cd-sensitive cultivars. Therefore, the Cd-induced 42 kDa MAP kinase activation may confer Cd tolerance in rice plants.
AbstractList Plant growth is severely affected by toxic concentrations of heavy metals. On characterizing the heavy metal-induced signalling pathways, the effects of cadmium (CdCl2) and copper (CuCl2) on MBP (myelin basic protein) kinase activities in Oryza sativa L. cv. TNG67 were analysed and it was found that Cd2+-induced 42 kDa MBP kinase has the characteristics of a mitogen-activated protein (MAP) kinase. This study confirmed that the 42 kDa kinase-active band contains, at least, the activities of OsMPK3 and OsMPK6. Then, the heavy metal signal transduction pathways leading to MAP kinase activation in rice roots were examined. Pretreatment with sodium benzoate, a hydroxyl radical scavenger, attenuated Cd2+- or Cu2+-induced MAP kinase activation. The Cd2+-, but not Cu2+-, induced MAP kinase activities were suppressed by diphenylene iodonium (DPI), an NADPH oxidase inhibitor, and Cd2+ induced NADPH oxidase-like activities, suggesting that NADPH oxidases may be involved in Cd2+-induced MAP kinase activation. Using a Ca2+ indicator, it was demonstrated that Cd2+ and Cu2+ induce Ca2+ accumulation in rice roots. The Cd2+- and Cu2+-induced MAP kinase activation required the involvement of Ca2+-dependent protein kinase (CDPK) and phosphatidylinositol 3-kinase (PI3 kinase) as shown by the inhibitory effect of a CDPK antagonist, W7, and a PI3 kinase inhibitor, wortmannin, respectively. Furthermore, bongkrekic acid (BK), a mitochondrial permeability transition pore opening blocker, suppressed Cd2+-, but not Cu2+-, induced MAP kinase activation, indicating that Cd2+-induced MAP kinase activities are dependent on the functional state of mitochondria. Collectively, these findings imply that Cd2+ and Cu2+ may induce MAP kinase activation through distinct signalling pathways. Moreover, it was found that the 42 kDa MAP kinase activities are higher in Cd-tolerant cultivars than in Cd-sensitive cultivars. Therefore, the Cd-induced 42 kDa MAP kinase activation may confer Cd tolerance in rice plants.
Plant growth is severely affected by toxic concentrations of heavy metals. On characterizing the heavy metal-induced signalling pathways, the effects of cadmium (CdCl₂) and copper (CuCl₂) on MBP (myelin basic protein) kinase activities in Oryza sativa L. cv. TNG67 were analysed and it was found that Cd²⁺-induced 42 kDa MBP kinase has the characteristics of a mitogen-activated protein (MAP) kinase. This study confirmed that the 42 kDa kinase-active band contains, at least, the activities of OsMPK3 and OsMPK6. Then, the heavy metal signal transduction pathways leading to MAP kinase activation in rice roots were examined. Pretreatment with sodium benzoate, a hydroxyl radical scavenger, attenuated Cd²⁺- or Cu²⁺-induced MAP kinase activation. The Cd²⁺-, but not Cu²⁺-, induced MAP kinase activities were suppressed by diphenylene iodonium (DPI), an NADPH oxidase inhibitor, and Cd²⁺ induced NADPH oxidase-like activities, suggesting that NADPH oxidases may be involved in Cd²⁺-induced MAP kinase activation. Using a Ca²⁺ indicator, it was demonstrated that Cd²⁺ and Cu²⁺ induce Ca²⁺ accumulation in rice roots. The Cd²⁺- and Cu²⁺-induced MAP kinase activation required the involvement of Ca²⁺-dependent protein kinase (CDPK) and phosphatidylinositol 3-kinase (PI3 kinase) as shown by the inhibitory effect of a CDPK antagonist, W7, and a PI3 kinase inhibitor, wortmannin, respectively. Furthermore, bongkrekic acid (BK), a mitochondrial permeability transition pore opening blocker, suppressed Cd²⁺-, but not Cu²⁺-, induced MAP kinase activation, indicating that Cd²⁺-induced MAP kinase activities are dependent on the functional state of mitochondria. Collectively, these findings imply that Cd²⁺ and Cu²⁺ may induce MAP kinase activation through distinct signalling pathways. Moreover, it was found that the 42 kDa MAP kinase activities are higher in Cd-tolerant cultivars than in Cd-sensitive cultivars. Therefore, the Cd-induced 42 kDa MAP kinase activation may confer Cd tolerance in rice plants.
Plant growth is severely affected by toxic concentrations of heavy metals. On characterizing the heavy metal-induced signalling pathways, the effects of cadmium (CdCl2) and copper (CuCl2) on MBP (myelin basic protein) kinase activities in Oryza sativa L. cv. TNG67 were analysed and it was found that Cd2+-induced 42 kDa MBP kinase has the characteristics of a mitogen-activated protein (MAP) kinase. This study confirmed that the 42 kDa kinase-active band contains, at least, the activities of OsMPK3 and OsMPK6. Then, the heavy metal signal transduction pathways leading to MAP kinase activation in rice roots were examined. Pretreatment with sodium benzoate, a hydroxyl radical scavenger, attenuated Cd2+- or Cu2+-induced MAP kinase activation. The Cd2+-, but not Cu2+-, induced MAP kinase activities were suppressed by diphenylene iodonium (DPI), an NADPH oxidase inhibitor, and Cd2+ induced NADPH oxidase-like activities, suggesting that NADPH oxidases may be involved in Cd2+-induced MAP kinase activation. Using a Ca2+ indicator, it was demonstrated that Cd2+ and Cu2+ induce Ca2+ accumulation in rice roots. The Cd2+- and Cu2+-induced MAP kinase activation required the involvement of Ca2+-dependent protein kinase (CDPK) and phosphatidylinositol 3-kinase (PI3 kinase) as shown by the inhibitory effect of a CDPK antagonist, W7, and a PI3 kinase inhibitor, wortmannin, respectively. Furthermore, bongkrekic acid (BK), a mitochondrial permeability transition pore opening blocker, suppressed Cd2+-, but not Cu2+-, induced MAP kinase activation, indicating that Cd2+-induced MAP kinase activities are dependent on the functional state of mitochondria. Collectively, these findings imply that Cd2+ and Cu2+ may induce MAP kinase activation through distinct signalling pathways. Moreover, it was found that the 42 kDa MAP kinase activities are higher in Cd-tolerant cultivars than in Cd-sensitive cultivars. Therefore, the Cd-induced 42 kDa MAP kinase activation may confer Cd tolerance in rice plants.Plant growth is severely affected by toxic concentrations of heavy metals. On characterizing the heavy metal-induced signalling pathways, the effects of cadmium (CdCl2) and copper (CuCl2) on MBP (myelin basic protein) kinase activities in Oryza sativa L. cv. TNG67 were analysed and it was found that Cd2+-induced 42 kDa MBP kinase has the characteristics of a mitogen-activated protein (MAP) kinase. This study confirmed that the 42 kDa kinase-active band contains, at least, the activities of OsMPK3 and OsMPK6. Then, the heavy metal signal transduction pathways leading to MAP kinase activation in rice roots were examined. Pretreatment with sodium benzoate, a hydroxyl radical scavenger, attenuated Cd2+- or Cu2+-induced MAP kinase activation. The Cd2+-, but not Cu2+-, induced MAP kinase activities were suppressed by diphenylene iodonium (DPI), an NADPH oxidase inhibitor, and Cd2+ induced NADPH oxidase-like activities, suggesting that NADPH oxidases may be involved in Cd2+-induced MAP kinase activation. Using a Ca2+ indicator, it was demonstrated that Cd2+ and Cu2+ induce Ca2+ accumulation in rice roots. The Cd2+- and Cu2+-induced MAP kinase activation required the involvement of Ca2+-dependent protein kinase (CDPK) and phosphatidylinositol 3-kinase (PI3 kinase) as shown by the inhibitory effect of a CDPK antagonist, W7, and a PI3 kinase inhibitor, wortmannin, respectively. Furthermore, bongkrekic acid (BK), a mitochondrial permeability transition pore opening blocker, suppressed Cd2+-, but not Cu2+-, induced MAP kinase activation, indicating that Cd2+-induced MAP kinase activities are dependent on the functional state of mitochondria. Collectively, these findings imply that Cd2+ and Cu2+ may induce MAP kinase activation through distinct signalling pathways. Moreover, it was found that the 42 kDa MAP kinase activities are higher in Cd-tolerant cultivars than in Cd-sensitive cultivars. Therefore, the Cd-induced 42 kDa MAP kinase activation may confer Cd tolerance in rice plants.
Author Yeh, Chuan-Ming
Chien, Pei-Shan
Huang, Hao-Jen
Author_xml – sequence: 1
  givenname: Chuan-Ming
  surname: Yeh
  fullname: Yeh, Chuan-Ming
– sequence: 2
  givenname: Pei-Shan
  surname: Chien
  fullname: Chien, Pei-Shan
– sequence: 3
  givenname: Hao-Jen
  surname: Huang
  fullname: Huang, Hao-Jen
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18553682$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17259646$$D View this record in MEDLINE/PubMed
BookMark eNqF0t1rFDEQAPBFKvZaffFdDYI-CGcn37ePtX5UqFXUgvgSZrPZM9e9zZrsau-_N8eeFYroUyDzm2Eyk4NirwudK4r7FJ5TKPnR6qo6crFlAm4VMyoUzJngdK-YATA2h1Lq_eIgpRUASJDyTrFPNZOlEmpWLF_6NPjODiT5ZYdt67sl6XH49hM3iTQhEt_Vox186EhoyLvjD-TSd5gcwXz5ww_eJVJtiMV67cc1wa4mNvS92yaS6K0jMYQh3S1uN9gmd293HhYXr199Pjmdn71_8_bk-GxuJePDHAUXTjdCsgoWtKxqqYBWC2x05RBZUyGtS2tdKbhUJSrZWMW0UsJazdWi5ofF06luH8P30aXBrH2yrm2xc2FMRpXANID6LxSaKdBcZ_j4BlyFMeZRJcO4BCrpQmT0cIfGau1q00e_xrgxvwedwZMdwGSxbSJ21qc_biFl7p9lB5OzMaQUXWOsH3A7_iGibw0Fs925yTs3085zyrMbKddV_4Z3fYSx_7d7MLlVGkK8ltuQErLM8fkUz9_HXV3HMV4alacmzemXr0a-OD-Hj0oZnv2jyTcYDC5jfvvFJwaUA2ih80b4L1mh284
CODEN JEBOA6
CitedBy_id crossref_primary_10_3389_fpls_2014_00245
crossref_primary_10_1016_j_envexpbot_2011_11_016
crossref_primary_10_1007_s11557_015_1136_x
crossref_primary_10_2478_10004_1254_61_2010_2059
crossref_primary_10_1007_s10681_015_1580_3
crossref_primary_10_1007_s11103_011_9841_6
crossref_primary_10_3390_ijms25073592
crossref_primary_10_1007_s44246_023_00073_1
crossref_primary_10_1111_j_1399_3054_2012_01655_x
crossref_primary_10_4028_www_scientific_net_AMR_518_523_5539
crossref_primary_10_1080_15592324_2018_1460048
crossref_primary_10_3390_antiox11112099
crossref_primary_10_1016_j_tplants_2008_10_007
crossref_primary_10_7717_peerj_5191
crossref_primary_10_3390_ijms13067828
crossref_primary_10_1016_j_ecoenv_2018_12_084
crossref_primary_10_1016_j_biotechadv_2013_07_009
crossref_primary_10_1186_s12870_018_1613_x
crossref_primary_10_1007_s10126_010_9325_8
crossref_primary_10_1016_j_aquatox_2016_06_017
crossref_primary_10_1007_s12041_016_0710_6
crossref_primary_10_3390_ijms222112023
crossref_primary_10_1016_j_envexpbot_2012_04_003
crossref_primary_10_1016_j_scitotenv_2024_174013
crossref_primary_10_1093_jxb_ers366
crossref_primary_10_1016_j_abb_2010_11_006
crossref_primary_10_1016_j_envexpbot_2012_04_006
crossref_primary_10_1186_s12284_019_0340_8
crossref_primary_10_1007_s10534_012_9541_y
crossref_primary_10_1111_jpi_12314
crossref_primary_10_1007_s12374_019_0112_4
crossref_primary_10_3390_ijms20122960
crossref_primary_10_1007_s10646_020_02266_5
crossref_primary_10_1016_j_chemosphere_2007_04_073
crossref_primary_10_1016_j_ecoenv_2020_111887
crossref_primary_10_1016_j_plantsci_2015_02_005
crossref_primary_10_1016_j_ecoenv_2020_111761
crossref_primary_10_1111_ppl_12088
crossref_primary_10_3389_fpls_2023_1154571
crossref_primary_10_3390_agronomy6010014
crossref_primary_10_1016_j_jclepro_2020_125557
crossref_primary_10_1007_s13562_022_00776_3
crossref_primary_10_3390_ijms241310893
crossref_primary_10_35550_vbio2019_03_006
crossref_primary_10_1016_j_biocel_2015_02_015
crossref_primary_10_1016_j_chemosphere_2022_136466
crossref_primary_10_1124_pr_110_002980
crossref_primary_10_1155_2012_217037
crossref_primary_10_5586_asbp_8943
crossref_primary_10_1016_j_biotechadv_2016_07_003
crossref_primary_10_1007_s11105_022_01350_w
crossref_primary_10_1016_j_chemosphere_2007_11_031
crossref_primary_10_1016_j_chemosphere_2024_142937
crossref_primary_10_1111_j_1744_7909_2009_00868_x
crossref_primary_10_1007_s11738_012_1030_y
crossref_primary_10_1104_pp_15_00744
crossref_primary_10_3389_fpls_2016_01296
crossref_primary_10_1016_j_biotechadv_2011_12_002
crossref_primary_10_1155_2012_101465
crossref_primary_10_1186_s12864_019_5589_1
crossref_primary_10_1016_j_chemosphere_2020_129456
crossref_primary_10_3389_fpls_2018_00012
crossref_primary_10_1016_j_plantsci_2023_111754
crossref_primary_10_1016_j_jhazmat_2009_10_066
crossref_primary_10_1007_s11033_011_0897_9
crossref_primary_10_1111_pce_12056
crossref_primary_10_1071_FP07163
crossref_primary_10_1007_s11703_011_1072_8
crossref_primary_10_1016_j_plaphy_2020_08_038
crossref_primary_10_1007_s00203_022_02978_8
crossref_primary_10_1093_jxb_erq177
crossref_primary_10_1104_pp_112_194472
crossref_primary_10_3390_molecules24030556
crossref_primary_10_3390_plants7040089
crossref_primary_10_3389_fpls_2021_669096
crossref_primary_10_1002_etc_2610
crossref_primary_10_1016_j_plantsci_2014_07_002
crossref_primary_10_4161_psb_5_11_13020
crossref_primary_10_1016_j_plaphy_2009_01_005
crossref_primary_10_4161_psb_26664
crossref_primary_10_1007_s11103_012_9969_z
crossref_primary_10_1016_j_envexpbot_2011_12_017
crossref_primary_10_3389_fpls_2015_01120
crossref_primary_10_3390_ijms24054378
crossref_primary_10_1016_j_plaphy_2024_108962
crossref_primary_10_1016_j_plaphy_2024_109017
crossref_primary_10_1111_ppl_13004
crossref_primary_10_1016_j_pbi_2009_04_006
crossref_primary_10_1016_j_jhazmat_2010_02_014
crossref_primary_10_1016_j_ecoenv_2015_01_017
crossref_primary_10_1016_j_scitotenv_2021_151099
crossref_primary_10_1016_j_jplph_2010_07_010
crossref_primary_10_1016_j_jplph_2017_06_013
crossref_primary_10_1111_j_1365_3040_2012_02543_x
crossref_primary_10_1016_j_jplph_2015_04_007
crossref_primary_10_1016_j_bbrc_2019_06_116
crossref_primary_10_1007_s10534_023_00569_8
crossref_primary_10_3390_plants9121781
crossref_primary_10_1016_j_chemosphere_2008_11_023
crossref_primary_10_3389_fpls_2023_1305179
crossref_primary_10_1007_s10535_011_0015_9
crossref_primary_10_1007_s00299_011_1056_4
crossref_primary_10_1016_j_jplph_2013_06_019
crossref_primary_10_1016_j_envres_2021_111030
crossref_primary_10_1016_j_jplph_2024_154314
crossref_primary_10_3390_plants11081009
crossref_primary_10_5586_aa_172513
crossref_primary_10_1071_FP09073
crossref_primary_10_1007_s00344_019_09919_8
crossref_primary_10_1007_s12079_012_0173_3
crossref_primary_10_1093_jxb_erad081
crossref_primary_10_1021_acs_jafc_7b02950
ContentType Journal Article
Copyright Society for Experimental Biology 2007
The Author [2007]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org 2007
2007 INIST-CNRS
Copyright Oxford University Press(England) Feb 2007
Copyright_xml – notice: Society for Experimental Biology 2007
– notice: The Author [2007]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org 2007
– notice: 2007 INIST-CNRS
– notice: Copyright Oxford University Press(England) Feb 2007
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
8FD
FR3
K9.
P64
RC3
7S9
L.6
7X8
DOI 10.1093/jxb/erl240
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList


AGRICOLA
MEDLINE - Academic

Genetics Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1460-2431
EndPage 671
ExternalDocumentID 1221824071
17259646
18553682
10_1093_jxb_erl240
10.1093/jxb/erl240
24036459
ark_67375_HXZ_5BNN0R66_3
US201300747700
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
18M
1TH
29K
2WC
2~F
3O-
4.4
482
48X
53G
5GY
5VS
5WA
5WD
6.Y
70D
AABJS
AABMN
AAESY
AAIMJ
AAIYJ
AAJKP
AAJQQ
AAMDB
AAMVS
AANRK
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAWDT
AAXTN
ABBHK
ABEUO
ABIXL
ABJNI
ABLJU
ABNKS
ABPPZ
ABPTD
ABPTK
ABQLI
ABQTQ
ABSAR
ABSMQ
ABWST
ABXZS
ABZBJ
ACFRR
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPQN
ACPRK
ACUFI
ACUTJ
ADBBV
ADEIU
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADORX
ADQLU
ADRIX
ADRTK
ADULT
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AETEA
AEUPB
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIAGR
AIJHB
AIKOY
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
ARIXL
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZQFJ
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BYORX
C1A
CAG
CASEJ
CDBKE
COF
CS3
CXTWN
CZ4
D-I
DAKXR
DATOO
DFEDG
DFGAJ
DIK
DILTD
DPORF
DPPUQ
DU5
D~K
E3Z
EBS
ECGQY
EE~
EJD
ELUNK
ESX
F20
F5P
F9B
FBQ
FEDTE
FHSFR
FLUFQ
FOEOM
FQBLK
G8K
GAUVT
GJXCC
GX1
H5~
HAR
HVGLF
HW0
HZ~
H~9
IOX
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KAQDR
KBUDW
KC5
KOP
KQ8
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NEJ
NGC
NLBLG
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OBOKY
ODMLO
OHT
OJQWA
OJZSN
OK1
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SA0
TCN
TEORI
TLC
TN5
TR2
UHB
UKR
UPT
VH1
W8F
WH7
WOQ
X7H
XOL
YAYTL
YKOAZ
YQT
YSK
YXANX
YZZ
ZCG
ZKX
~02
~91
~KM
AAHBH
AARHZ
AAUAY
ABDFA
ABEJV
ABGNP
ABMNT
ABNGD
ABPQP
ABVGC
ABXSQ
ABXVV
ACHIC
ACUKT
ADNBA
ADQBN
AGORE
AGQPQ
AJBYB
AJNCP
AQVQM
ATGXG
BSCLL
H13
IPSME
JXSIZ
AASNB
ACMRT
ACZBC
ADACV
AFSHK
AGMDO
AAYXX
CITATION
ABDPE
ABIME
ABPIB
ABZEO
ACVCV
AEHUL
AHGBF
AJDVS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
Z5M
7QO
7QP
8FD
FR3
K9.
P64
RC3
7S9
L.6
7X8
ID FETCH-LOGICAL-c523t-a434e7f452b0819bd5601b8af7beaa2fba1d9cce943569a65fc627664cc7368d3
ISSN 0022-0957
IngestDate Fri Jul 11 01:11:38 EDT 2025
Fri Jul 11 11:08:36 EDT 2025
Mon Jun 30 10:47:10 EDT 2025
Wed Feb 19 01:45:10 EST 2025
Mon Jul 21 09:14:20 EDT 2025
Tue Jul 01 03:39:27 EDT 2025
Thu Apr 24 23:09:32 EDT 2025
Wed Aug 28 03:26:32 EDT 2024
Sun Aug 24 12:10:42 EDT 2025
Tue Aug 05 16:50:20 EDT 2025
Wed Dec 27 19:11:16 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Cadmium
copper
heavy metal
MAP kinase
rice
signal transduction
Signal transduction
Root
Enzyme
Mitogen-activated protein kinase
Heavy metal
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c523t-a434e7f452b0819bd5601b8af7beaa2fba1d9cce943569a65fc627664cc7368d3
Notes ark:/67375/HXZ-5BNN0R66-3
istex:F53DB690D29F5D500DE3453196A2F5D698D9D1B7
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://academic.oup.com/jxb/article-pdf/58/3/659/1488867/erl240.pdf
PMID 17259646
PQID 235015184
PQPubID 40603
PageCount 13
ParticipantIDs proquest_miscellaneous_69027006
proquest_miscellaneous_47260737
proquest_journals_235015184
pubmed_primary_17259646
pascalfrancis_primary_18553682
crossref_citationtrail_10_1093_jxb_erl240
crossref_primary_10_1093_jxb_erl240
oup_primary_10_1093_jxb_erl240
jstor_primary_24036459
istex_primary_ark_67375_HXZ_5BNN0R66_3
fao_agris_US201300747700
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-02-01
PublicationDateYYYYMMDD 2007-02-01
PublicationDate_xml – month: 02
  year: 2007
  text: 2007-02-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Journal of experimental botany
PublicationTitleAlternate J Exp Bot
PublicationYear 2007
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
SSID ssj0005055
Score 2.314064
Snippet Plant growth is severely affected by toxic concentrations of heavy metals. On characterizing the heavy metal-induced signalling pathways, the effects of...
SourceID proquest
pubmed
pascalfrancis
crossref
oup
jstor
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 659
SubjectTerms antagonists
Antibodies
Biological and medical sciences
Cadmium
Cadmium - pharmacology
Calcium
Calcium - metabolism
Calcium-Binding Proteins
Calcium-Binding Proteins - metabolism
Calcium-Binding Proteins - physiology
Cell physiology
Copper
Copper - pharmacology
Cultivars
drug effects
free radical scavengers
Fundamental and applied biological sciences. Psychology
Gels
heavy metal
Heavy metals
Heterotrimeric GTP-Binding Proteins
Heterotrimeric GTP-Binding Proteins - physiology
Hydroxyl radicals
MAP kinase
MAP Kinase Signaling System
MAP Kinase Signaling System - drug effects
metabolism
Metal concentrations
mitochondria
Mitochondria - physiology
mitogen-activated protein kinase
Mitogen-Activated Protein Kinase Kinases
Mitogen-Activated Protein Kinase Kinases - metabolism
Molecular and cellular biology
myelin proteins
NADP (coenzyme)
Oryza
Oryza - drug effects
Oryza - metabolism
Oryza sativa
Oxidases
Permeability
pharmacology
phosphatidylinositol 3-kinase
Phosphatidylinositol 3-Kinases
Phosphatidylinositol 3-Kinases - physiology
Phosphorylation
physiology
Plant growth
Plant Roots
Plant Roots - drug effects
Plant Roots - metabolism
Plants
Protein Kinases
Protein Kinases - metabolism
Protein Kinases - physiology
Protein Subunits
Protein Subunits - physiology
Reactive Oxygen Species
Reactive Oxygen Species - metabolism
Research Papers
Rice
Roots
Signal transduction
Sodium
sodium benzoate
toxicity
Title Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots
URI https://api.istex.fr/ark:/67375/HXZ-5BNN0R66-3/fulltext.pdf
https://www.jstor.org/stable/24036459
https://www.ncbi.nlm.nih.gov/pubmed/17259646
https://www.proquest.com/docview/235015184
https://www.proquest.com/docview/47260737
https://www.proquest.com/docview/69027006
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW6wQMSQnyNhUGxBEJCVVhmx07yuI1NZWwFsVaq9mLZTrKVbWnVtbDxW_ixXNtJ04ptAl6qKnFqNefkfjj3HiP0JmVJmKS58qlMEz-UeeArpXM_pTrcSHNIinKTKB50eLsX7vVZv9H4NVe1NJ2o9_rntX0l_4MqHANcTZfsPyA7-1E4AN8BX_gEhOHzrzD-YB7QQk9apgpDOnVts8XwD3llZRZakHA7dVhb6bL5pXU6KMBtWQWN71ZL1YSfWqbng-l52eI2GmVj2-UCJqQFcbWTeromgF3YHEANJ5VZsSuw7s3NyVQW_kHlHa0FHviHJ2BTtk8GdRNaWw79PWf_2nDF8cJSRFRVL1eJq2txnFs_K5u0TLBc7klSrW_UrQQQ4zmPmzkLHPLAJ2HpGkoTzeI5KtI5e8udnPgffsBpZH27VIYX4zPiJKEW5bY7n8Vub39fdHf63cWzLjsiRtze5LtL6A6BJMQm7B8_1QVEAWOVFr35E5X4bULXYeJ1N-1CuLOUyyEkQeb5vazqX6vGyvsjeQFPZe62U7k537FxT_chelDijTcd-x6hRlY8Rne3LNxP0HFFQVxTEFcUxAAUnlEQD3MMFMSOgrimIFZXuKQgBuywoyBciA0FsaXgU9Tb3elut_1y7w5fM0InvgxpmEV5yIgyQadKTeavYplHKpOS5EpupInWWQLhOk8kZ7nmJOI81DqiPE7pClouhkW2ijCjudI0zlSaGHU_IuOAMpmxBCaKiY489K66xUKXwvZmf5Uz4QosqAA4hIPDQ69nY0dOzuXaUauAlJDH4GdF75CYt_tmo4kogFNvLXyzq-X41NRGRky0-0eCbXU6wVfOBfXQisV3NtAIXxrlJg81AfBbZ28ucKEeGjMG94Z4aK0ihyit0YUgpkKAbcShh17NzoKrMO__ZJENpxcijAgHjx7dPIIngSlE4R565jhXzx0RlvCQP7917jV0r7YLL9DyZDzNXkLQPlFN--z8BuL57xs
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinct+signalling+pathways+for+induction+of+MAP+kinase+activities+by+cadmium+and+copper+in+rice+roots&rft.jtitle=Journal+of+experimental+botany&rft.au=Yeh%2C+Chuan-Ming&rft.au=Pei-Shan+Chien&rft.au=Hao-Jen%2C+Huang&rft.date=2007-02-01&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=0022-0957&rft.eissn=1460-2431&rft.volume=58&rft.issue=3&rft.spage=659&rft_id=info:doi/10.1093%2Fjxb%2Ferl240&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1221824071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon