Hybrid fNIRS-EEG based classification of auditory and visual perception processes

For multimodal Human-Computer Interaction (HCI), it is very useful to identify the modalities on which the user is currently processing information. This would enable a system to select complementary output modalities to reduce the user's workload. In this paper, we develop a hybrid Brain-Compu...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 8; p. 373
Main Authors Putze, Felix, Hesslinger, Sebastian, Tse, Chun-Yu, Huang, YunYing, Herff, Christian, Guan, Cuntai, Schultz, Tanja
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 18.11.2014
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For multimodal Human-Computer Interaction (HCI), it is very useful to identify the modalities on which the user is currently processing information. This would enable a system to select complementary output modalities to reduce the user's workload. In this paper, we develop a hybrid Brain-Computer Interface (BCI) which uses Electroencephalography (EEG) and functional Near Infrared Spectroscopy (fNIRS) to discriminate and detect visual and auditory stimulus processing. We describe the experimental setup we used for collection of our data corpus with 12 subjects. On this data, we performed cross-validation evaluation, of which we report accuracy for different classification conditions. The results show that the subject-dependent systems achieved a classification accuracy of 97.8% for discriminating visual and auditory perception processes from each other and a classification accuracy of up to 94.8% for detecting modality-specific processes independently of other cognitive activity. The same classification conditions could also be discriminated in a subject-independent fashion with accuracy of up to 94.6 and 86.7%, respectively. We also look at the contributions of the two signal types and show that the fusion of classifiers using different features significantly increases accuracy.
AbstractList For multimodal Human-Computer Interaction (HCI), it is very useful to identify the modalities on which the user is currently processing information. This would enable a system to select complementary output modalities to reduce the user's workload. In this paper, we develop a hybrid Brain-Computer Interface (BCI) which uses Electroencephalography (EEG) and functional Near Infrared Spectroscopy (fNIRS) to discriminate and detect visual and auditory stimulus processing. We describe the experimental setup we used for collection of our data corpus with 12 subjects. We present cross validation evaluation results for different classification conditions. We show that our subject-dependent systems achieved a classification accuracy of 97.8% for discriminating visual and auditory perception processes from each other and a classification accuracy of up to 94.8% for detecting modality-specific processes independently of other cognitive activity. The same classification conditions could also be discriminated in a subject-independent fashion with accuracy of up to 94.6% and 86.7%, respectively. We also look at the contributions of the two signal types and show that the fusion of classifiers using different features significantly increases accuracy.
For multimodal Human-Computer Interaction (HCI), it is very useful to identify the modalities on which the user is currently processing information. This would enable a system to select complementary output modalities to reduce the user's workload. In this paper, we develop a hybrid Brain-Computer Interface (BCI) which uses Electroencephalography (EEG) and functional Near Infrared Spectroscopy (fNIRS) to discriminate and detect visual and auditory stimulus processing. We describe the experimental setup we used for collection of our data corpus with 12 subjects. On this data, we performed cross-validation evaluation, of which we report accuracy for different classification conditions. The results show that the subject-dependent systems achieved a classification accuracy of 97.8% for discriminating visual and auditory perception processes from each other and a classification accuracy of up to 94.8% for detecting modality-specific processes independently of other cognitive activity. The same classification conditions could also be discriminated in a subject-independent fashion with accuracy of up to 94.6 and 86.7%, respectively. We also look at the contributions of the two signal types and show that the fusion of classifiers using different features significantly increases accuracy.
For multimodal Human-Computer Interaction (HCI), it is very useful to identify the modalities on which the user is currently processing information. This would enable a system to select complementary output modalities to reduce the user's workload. In this paper, we develop a hybrid Brain-Computer Interface (BCI) which uses Electroencephalography (EEG) and functional Near Infrared Spectroscopy (fNIRS) to discriminate and detect visual and auditory stimulus processing. We describe the experimental setup we used for collection of our data corpus with 12 subjects. On this data, we performed cross-validation evaluation, of which we report accuracy for different classification conditions. The results show that the subject-dependent systems achieved a classification accuracy of 97.8% for discriminating visual and auditory perception processes from each other and a classification accuracy of up to 94.8% for detecting modality-specific processes independently of other cognitive activity. The same classification conditions could also be discriminated in a subject-independent fashion with accuracy of up to 94.6 and 86.7%, respectively. We also look at the contributions of the two signal types and show that the fusion of classifiers using different features significantly increases accuracy.For multimodal Human-Computer Interaction (HCI), it is very useful to identify the modalities on which the user is currently processing information. This would enable a system to select complementary output modalities to reduce the user's workload. In this paper, we develop a hybrid Brain-Computer Interface (BCI) which uses Electroencephalography (EEG) and functional Near Infrared Spectroscopy (fNIRS) to discriminate and detect visual and auditory stimulus processing. We describe the experimental setup we used for collection of our data corpus with 12 subjects. On this data, we performed cross-validation evaluation, of which we report accuracy for different classification conditions. The results show that the subject-dependent systems achieved a classification accuracy of 97.8% for discriminating visual and auditory perception processes from each other and a classification accuracy of up to 94.8% for detecting modality-specific processes independently of other cognitive activity. The same classification conditions could also be discriminated in a subject-independent fashion with accuracy of up to 94.6 and 86.7%, respectively. We also look at the contributions of the two signal types and show that the fusion of classifiers using different features significantly increases accuracy.
Author Schultz, Tanja
Tse, Chun-Yu
Putze, Felix
Herff, Christian
Guan, Cuntai
Hesslinger, Sebastian
Huang, YunYing
AuthorAffiliation 5 Institute for Infocomm Research (I2R), A STAR Singapore, Singapore
2 Department of Psychology, Center for Cognition and Brain Studies, The Chinese University of Hong Kong Hong Kong, China
3 Temasek Laboratories, National University of Singapore Singapore, Singapore
4 Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital Oxford, UK
1 Cognitive Systems Lab, Institute of Anthropomatics and Robotics, Karlsruhe Institute of Technology Karlsruhe, Germany
AuthorAffiliation_xml – name: 2 Department of Psychology, Center for Cognition and Brain Studies, The Chinese University of Hong Kong Hong Kong, China
– name: 5 Institute for Infocomm Research (I2R), A STAR Singapore, Singapore
– name: 4 Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital Oxford, UK
– name: 1 Cognitive Systems Lab, Institute of Anthropomatics and Robotics, Karlsruhe Institute of Technology Karlsruhe, Germany
– name: 3 Temasek Laboratories, National University of Singapore Singapore, Singapore
Author_xml – sequence: 1
  givenname: Felix
  surname: Putze
  fullname: Putze, Felix
– sequence: 2
  givenname: Sebastian
  surname: Hesslinger
  fullname: Hesslinger, Sebastian
– sequence: 3
  givenname: Chun-Yu
  surname: Tse
  fullname: Tse, Chun-Yu
– sequence: 4
  givenname: YunYing
  surname: Huang
  fullname: Huang, YunYing
– sequence: 5
  givenname: Christian
  surname: Herff
  fullname: Herff, Christian
– sequence: 6
  givenname: Cuntai
  surname: Guan
  fullname: Guan, Cuntai
– sequence: 7
  givenname: Tanja
  surname: Schultz
  fullname: Schultz, Tanja
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25477777$$D View this record in MEDLINE/PubMed
BookMark eNqNkktr3DAUhU1JaR7tvqti6CYbT6_1srUplDBNBkJLX9Cd0OMq1eCxXMkOzL-vZyYpSaBQbSSuzvm40j2nxVEfeyyK1zUsKG3lO9-HPi8I1GwBQBv6rDiphSAV4_Tn0YPzcXGa8xpAkJaRF8Ux4azZrZPiy9XWpOBK_2n19Vu1XF6WRmd0pe10zsEHq8cQ-zL6Uk8ujDFtS9278jbkSXflgMnisFcMKVrMGfPL4rnXXcZXd_tZ8ePj8vvFVXX9-XJ18eG6spzQsdIgHTpNkRnftF6AN9B4YLWpqeacgGFoACx12hDdCNZKBl5wySTKllB6VqwOXBf1Wg0pbHTaqqiD2hdiulE6jcF2qKgWUgBaAdYz3nBNHHppUBpwrXB2Zr0_sIbJbNBZ7Meku0fQxzd9-KVu4q1ihHLa8BlwfgdI8feEeVSbkC12ne4xTlnVghFBat7W_yGdgQIk7Khvn0jXcUr9_KuKUOAgRc3ZrHrzsPm_Xd8PeRaIg8CmmHNCr2wY93Od3xI6VYPapUnt06R2aVL7NM1GeGK8Z__T8gcb0s3Q
CitedBy_id crossref_primary_10_3389_fnhum_2016_00219
crossref_primary_10_1016_j_bspc_2016_09_010
crossref_primary_10_3389_fnins_2020_560878
crossref_primary_10_1111_tops_12669
crossref_primary_10_3389_fnbot_2017_00006
crossref_primary_10_1088_1741_2552_aa814b
crossref_primary_10_1371_journal_pone_0176674
crossref_primary_10_1080_26941899_2024_2426785
crossref_primary_10_1364_BOE_413666
crossref_primary_10_1145_3522579
crossref_primary_10_3389_fnbot_2022_823435
crossref_primary_10_1109_ACCESS_2022_3216407
crossref_primary_10_3389_fnhum_2017_00462
crossref_primary_10_1002_hbm_23849
crossref_primary_10_3389_fnhum_2018_00479
crossref_primary_10_3389_fnins_2018_00695
crossref_primary_10_3390_s20082362
crossref_primary_10_3389_fnhum_2017_00503
crossref_primary_10_1080_10255842_2024_2333924
crossref_primary_10_3390_s22155865
crossref_primary_10_1016_j_jneumeth_2019_03_018
crossref_primary_10_3389_fnhum_2023_1159378
crossref_primary_10_1038_s41597_022_01398_z
crossref_primary_10_3389_fnhum_2015_00617
crossref_primary_10_1109_TNSRE_2023_3306365
crossref_primary_10_3389_fnrgo_2024_1345507
crossref_primary_10_1088_1741_2552_ad1ac1
crossref_primary_10_1142_S1793545817500067
crossref_primary_10_3389_fnhum_2017_00437
crossref_primary_10_3389_fnhum_2017_00359
crossref_primary_10_1109_TCYB_2019_2939399
crossref_primary_10_3389_fnhum_2020_599802
crossref_primary_10_1088_1741_2552_ab456c
crossref_primary_10_3389_fnhum_2022_809293
crossref_primary_10_1109_TVCG_2021_3067693
crossref_primary_10_1109_TNSRE_2023_3281855
crossref_primary_10_1109_ACCESS_2022_3173629
crossref_primary_10_1088_1741_2552_aad46f
crossref_primary_10_1109_JBHI_2021_3133871
crossref_primary_10_1088_1741_2552_ab0b7f
crossref_primary_10_1080_10447318_2023_2266242
crossref_primary_10_1007_s10015_020_00592_9
crossref_primary_10_1038_sdata_2018_3
crossref_primary_10_1016_j_bspc_2021_102595
crossref_primary_10_3390_brainsci11111439
crossref_primary_10_1007_s12652_016_0424_x
crossref_primary_10_3934_mbe_2021344
crossref_primary_10_1016_j_jneumeth_2021_109262
crossref_primary_10_1155_2020_1838140
crossref_primary_10_3389_fnbot_2017_00035
crossref_primary_10_1364_BOE_7_003882
crossref_primary_10_1109_TNSRE_2022_3217344
crossref_primary_10_3389_fnins_2015_00193
crossref_primary_10_1109_JSEN_2024_3471699
crossref_primary_10_1109_TAFFC_2024_3414330
crossref_primary_10_1155_2017_1742862
crossref_primary_10_3389_fnbeh_2019_00226
crossref_primary_10_3390_bioengineering10050608
crossref_primary_10_1016_j_eswa_2022_119283
crossref_primary_10_1016_j_neunet_2023_08_031
crossref_primary_10_1109_JPROC_2015_2469106
crossref_primary_10_1063_5_0187070
crossref_primary_10_3389_fnhum_2020_613254
crossref_primary_10_3389_fnrgo_2022_934234
crossref_primary_10_3389_fnhum_2018_00246
crossref_primary_10_3390_e22020189
crossref_primary_10_1364_BOE_8_002583
crossref_primary_10_3389_fnhum_2019_00357
crossref_primary_10_3390_bioengineering11080821
crossref_primary_10_1364_BOE_516063
crossref_primary_10_3389_fpsyg_2017_00833
crossref_primary_10_1007_s10548_019_00740_w
crossref_primary_10_3389_fnhum_2018_00440
crossref_primary_10_3389_fnhum_2019_00393
Cites_doi 10.1145/2388676.2388686
10.1016/j.clinph.2011.11.082
10.1088/0967-3334/33/2/259
10.1109/ICASSP.2012.6288357
10.1016/j.intcom.2008.10.011
10.1007/978-3-642-16111-7_47
10.1142/S1793545808000224
10.1109/MC.2008.407
10.1016/j.neuroimage.2012.12.046
10.1088/1741-2560/9/4/045008
10.1007/s12369-011-0107-x
10.1002/hbm.20465
10.1111/1469-8986.00054
10.1177/1071181312561367
10.1088/0031-9155/49/14/N07
10.1016/j.neuroimage.2006.11.005
10.1016/j.biopsycho.2007.10.014
10.1016/S1388-2457(00)00386-2
10.3389/fnins.2013.00149
10.1016/j.jneumeth.2003.10.009
10.3389/fnhum.2013.00935
10.1109/IEMBS.2011.6091615
10.1016/j.neuroimage.2011.07.084
10.1145/2390256.2390285
10.1088/1741-2560/8/2/025005
10.1364/AO.48.00D280
10.1007/978-3-642-21852-1_22
10.1518/001872008X288394
10.1016/0013-4694(91)90040-B
10.1145/2110363.2110366
10.1145/1961189.1961199
10.1016/j.patrec.2013.07.003
10.1111/j.1469-8986.1995.tb02958.x
10.1364/AO.45.008142
10.3389/fnpro.2010.00003
ContentType Journal Article
Copyright 2014. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2014 Putze, Hesslinger, Tse, Huang, Herff, Guan and Schultz. 2014
Copyright_xml – notice: 2014. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2014 Putze, Hesslinger, Tse, Huang, Herff, Guan and Schultz. 2014
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7TK
5PM
DOA
DOI 10.3389/fnins.2014.00373
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
Open Access资源_DOAJ
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Publicly Available Content Database


PubMed
Neurosciences Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_3a6960ec60cf4575a2def9be9b0d86dc
PMC4235375
25477777
10_3389_fnins_2014_00373
Genre Journal Article
GeographicLocations New York
Singapore
GeographicLocations_xml – name: New York
– name: Singapore
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
C1A
NPM
PQGLB
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7TK
5PM
PUEGO
ID FETCH-LOGICAL-c523t-a09deda3e4bf78f60fb07f041b13a5520b4eb00c3dab2a7648940f65949e98233
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:10:23 EDT 2025
Thu Aug 21 18:21:41 EDT 2025
Fri Jul 11 00:52:16 EDT 2025
Fri Jul 11 01:47:08 EDT 2025
Fri Jul 25 11:45:13 EDT 2025
Mon Jul 21 05:55:58 EDT 2025
Tue Jul 01 01:01:10 EDT 2025
Thu Apr 24 22:59:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords fNIRS
EEG
brain-computer interface
visual and auditory perception
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-a09deda3e4bf78f60fb07f041b13a5520b4eb00c3dab2a7648940f65949e98233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Ricardo Chavarriaga, Ecole Polytechnique Fédérale de Lausanne, Switzerland; Clemens Brunner, Graz University of Technology, Austria; Jonas Brönstrup, Institute of Technology Berlin, Germany
Edited by: Thorsten O. Zander, Technical University of Berlin, Germany
This article was submitted to Neuroprosthetics, a section of the journal Frontiers in Neuroscience.
OpenAccessLink https://www.proquest.com/docview/2305096154?pq-origsite=%requestingapplication%
PMID 25477777
PQID 2305096154
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_3a6960ec60cf4575a2def9be9b0d86dc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4235375
proquest_miscellaneous_1642621581
proquest_miscellaneous_1637560905
proquest_journals_2305096154
pubmed_primary_25477777
crossref_citationtrail_10_3389_fnins_2014_00373
crossref_primary_10_3389_fnins_2014_00373
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-18
PublicationDateYYYYMMDD 2014-11-18
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-18
  day: 18
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2014
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Yang (B38) 2012
Coffey (B7) 2012; 56
Molavi (B24) 2012; 33
Huppert (B18) 2009; 48
Kothe (B22) 2011
Bunce (B4) 2011
Wolpaw (B37) 2012
Pfurtscheller (B26) 2010; 4
Fairclough (B11) 2009; 21
Schlogl (B29) 2008; 41
Wolf (B35) 2003; 40
Sitaram (B30) 2007; 34
Wickens (B34) 2008; 50
Leamy (B23) 2011
Sassaroli (B28) 2008; 01
Heger (B14) 2010
Heger (B15) 2011; 3
D'Mello (B10) 2012
Herff (B16) 2014; 7
Hirshfield (B17) 2009
Cao (B5) 2009
Zander (B39) 2011; 8
Brouwer (B3) 2012; 9
Gratton (B13) 1995; 32
Spüler (B31) 2012; 123
Wolpaw (B36) 1991; 78
Jung (B20) 2000; 111
Chang (B6) 2011; 2
Fazli (B12) 2012; 59
Dijksterhuis (B9) 2013; 7
Turk (B32) 2014; 36
Keitel (B21) 2012; 70
Whalen (B33) 2008; 29
Mueller-Putz (B25) 2008; 10
Ang (B2) 2012
Sassaroli (B27) 2004; 49
Allison (B1) 2008; 77
Joseph (B19) 2006; 45
Delorme (B8) 2004; 134
22255839 - Conf Proc IEEE Eng Med Biol Soc. 2011;2011:6547-51
11018488 - Clin Neurophysiol. 2000 Oct;111(10):1745-58
15357206 - Phys Med Biol. 2004 Jul 21;49(14):N255-7
14570160 - Psychophysiology. 2003 Jul;40(4):521-8
17894391 - Hum Brain Mapp. 2008 Nov;29(11):1288-301
22832068 - J Neural Eng. 2012 Aug;9(4):045008
17196832 - Neuroimage. 2007 Feb 15;34(4):1416-27
23287527 - Neuroimage. 2013 Apr 15;70:240-9
7784538 - Psychophysiology. 1995 May;32(3):292-9
18689052 - Hum Factors. 2008 Jun;50(3):449-55
21436512 - J Neural Eng. 2011 Apr;8(2):025005
22244309 - Clin Neurophysiol. 2012 Jul;123(7):1328-37
22273765 - Physiol Meas. 2012 Feb;33(2):259-70
15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21
17068557 - Appl Opt. 2006 Nov 1;45(31):8142-51
21840399 - Neuroimage. 2012 Jan 2;59(1):519-29
1707798 - Electroencephalogr Clin Neurophysiol. 1991 Mar;78(3):252-9
20582271 - Front Neurosci. 2010 Apr 21;4:30
23970851 - Front Neurosci. 2013 Aug 21;7:149
18093717 - Biol Psychol. 2008 Mar;77(3):277-83
24474913 - Front Hum Neurosci. 2014 Jan 16;7:935
19340120 - Appl Opt. 2009 Apr 1;48(10):D280-98
References_xml – start-page: 31
  volume-title: Proceedings of the 14th ACM International Conference on Multimodal Interaction
  year: 2012
  ident: B10
  article-title: Consistent but modest: a meta-analysis on unimodal and multimodal affect detection accuracies from 30 studies
  doi: 10.1145/2388676.2388686
– volume: 123
  start-page: 1328
  year: 2012
  ident: B31
  article-title: Online use of error-related potentials in healthy users and people with severe motor impairment increases performance of a p300-BCI
  publication-title: Clin. Neurophysiol
  doi: 10.1016/j.clinph.2011.11.082
– volume: 10
  start-page: 52
  year: 2008
  ident: B25
  article-title: Better than random: a closer look on BCI results
  publication-title: Int. J. Bioelectromagn
– volume: 33
  start-page: 259
  year: 2012
  ident: B24
  article-title: Wavelet-based motion artifact removal for functional near-infrared spectroscopy
  publication-title: Physiol. Meas
  doi: 10.1088/0967-3334/33/2/259
– start-page: 2233
  volume-title: Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on
  year: 2012
  ident: B2
  article-title: Extracting effective features from high density nirs-based BCI for assessing numerical cognition
  doi: 10.1109/ICASSP.2012.6288357
– volume: 21
  start-page: 133
  year: 2009
  ident: B11
  article-title: Fundamentals of physiological computing
  publication-title: Inter. Comput
  doi: 10.1016/j.intcom.2008.10.011
– start-page: 410
  volume-title: KI 2010: Advances in Artificial Intelligence
  year: 2010
  ident: B14
  article-title: Online workload recognition from eeg data during cognitive tests and human-machine interaction
  doi: 10.1007/978-3-642-16111-7_47
– volume: 01
  start-page: 227
  year: 2008
  ident: B28
  article-title: Discrimination of mental workload levels in human subjecs with functional near–infrared spectroscopy
  publication-title: J. Innov. Opt. Health Sci
  doi: 10.1142/S1793545808000224
– volume: 41
  start-page: 44
  year: 2008
  ident: B29
  article-title: Biosig: a free and open source software library for bci research
  publication-title: Computer
  doi: 10.1109/MC.2008.407
– volume: 70
  start-page: 240
  year: 2012
  ident: B21
  article-title: Early visual and auditory processing rely on modality-specific attentional resources
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.12.046
– start-page: 239
  volume-title: Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience, Number 5638 in Lecture Notes in Computer Science
  year: 2009
  ident: B17
  article-title: Combining electroencephalograph and functional near infrared spectroscopy to explore users mental workload
– volume: 9
  start-page: 045008
  year: 2012
  ident: B3
  article-title: Estimating workload using EEG spectral power and ERPs in the n-back task
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2560/9/4/045008
– start-page: 13
  volume-title: Foundations of Augmented Cognition. Directing the Future of Adaptive Systems, Number 6780 in Lecture Notes in Computer Science
  year: 2011
  ident: B4
  article-title: Implementation of fNIRS for monitoring levels of expertise and mental workload
– volume: 3
  start-page: 415
  year: 2011
  ident: B15
  article-title: An EEG adaptive information system for an empathic robot
  publication-title: Int. J. Soc. Robot
  doi: 10.1007/s12369-011-0107-x
– volume: 29
  start-page: 1288
  year: 2008
  ident: B33
  article-title: Validation of a method for coregistering scalp recording locations with 3d structural mr images
  publication-title: Hum. Brain Mapp
  doi: 10.1002/hbm.20465
– volume: 40
  start-page: 521
  year: 2003
  ident: B35
  article-title: Fast cerebral functional signal in the 100-ms range detected in the visual cortex by frequency-domain near-infrared spectrophotometry
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.00054
– volume: 56
  start-page: 1822
  year: 2012
  ident: B7
  article-title: Measuring workload using a combination of electroencephalography and near infrared spectroscopy
  publication-title: Proc. Hum. Fact. Ergonom. Soc. Ann. Meeting
  doi: 10.1177/1071181312561367
– volume: 49
  start-page: N255
  year: 2004
  ident: B27
  article-title: Comment on the modified BeerLambert law for scattering media
  publication-title: Phys. Med. Biol
  doi: 10.1088/0031-9155/49/14/N07
– volume: 34
  start-page: 1416
  year: 2007
  ident: B30
  article-title: Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain–computer interface
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.11.005
– volume: 77
  start-page: 277
  year: 2008
  ident: B1
  article-title: Workload assessment of computer gaming using a single-stimulus event-related potential paradigm
  publication-title: Biol. Psychol
  doi: 10.1016/j.biopsycho.2007.10.014
– volume: 111
  start-page: 1745
  year: 2000
  ident: B20
  article-title: Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects
  publication-title: Clin. Neurophysiol
  doi: 10.1016/S1388-2457(00)00386-2
– volume: 7
  issue: 149
  year: 2013
  ident: B9
  article-title: Classifying visuomotor workload in a driving simulator using subject specific spatial brain patterns
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2013.00149
– volume: 134
  start-page: 9
  year: 2004
  ident: B8
  article-title: EEGLAB: an open source toolbox for analysis of single-trial eeg dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 7
  issue: 935
  year: 2014
  ident: B16
  article-title: Mental workload during n-back taskquantified in the prefrontal cortex using fNIRS
  publication-title: Front. Hum. Neurosci
  doi: 10.3389/fnhum.2013.00935
– start-page: 6547
  volume-title: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE
  year: 2011
  ident: B22
  article-title: Estimation of task workload from eeg data: new and current tools and perspectives
  doi: 10.1109/IEMBS.2011.6091615
– volume: 59
  start-page: 519
  year: 2012
  ident: B12
  article-title: Enhanced performance by a hybrid NIRS–EEG brain computer interface
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.07.084
– start-page: 173
  volume-title: Proceedings of the 4th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI '12
  year: 2012
  ident: B38
  article-title: Exploring differences in the impact of auditory and visual demands on driver behavior
  doi: 10.1145/2390256.2390285
– volume: 8
  start-page: 025005
  year: 2011
  ident: B39
  article-title: Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2560/8/2/025005
– volume: 48
  start-page: D280
  year: 2009
  ident: B18
  article-title: Homer: a review of time-series analysis methods for near-infrared spectroscopy of the brain
  publication-title: Appl. Opt
  doi: 10.1364/AO.48.00D280
– start-page: 177
  volume-title: Foundations of Augmented Cognition. Directing the Future of Adaptive Systems
  year: 2011
  ident: B23
  article-title: Combining fNIRS and EEG to improve motor cortex activity classification during an imagined movement-based task
  doi: 10.1007/978-3-642-21852-1_22
– volume: 50
  start-page: 449
  year: 2008
  ident: B34
  article-title: Multiple resources and mental workload
  publication-title: Hum. Factors
  doi: 10.1518/001872008X288394
– volume: 78
  start-page: 252
  year: 1991
  ident: B36
  article-title: An eeg-based brain-computer interface for cursor control
  publication-title: Electroencephalogr. Clin. Neurophysiol
  doi: 10.1016/0013-4694(91)90040-B
– volume-title: Brain-Computer Interfaces: Principles and Practice
  year: 2012
  ident: B37
  doi: 10.1145/2110363.2110366
– volume: 2
  start-page: 27:1
  year: 2011
  ident: B6
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol
  doi: 10.1145/1961189.1961199
– start-page: 335
  volume-title: Proceedings of the 14th International Conference on Intelligent User Interfaces, IUI '09
  year: 2009
  ident: B5
  article-title: Modality effects on cognitive load and performance in high-load information presentation
– volume: 36
  start-page: 189
  year: 2014
  ident: B32
  article-title: Multimodal interaction: a review
  publication-title: Patt. Recogn. Lett
  doi: 10.1016/j.patrec.2013.07.003
– volume: 32
  start-page: 292
  year: 1995
  ident: B13
  article-title: Removing the heart from the brain: compensation for the pulse artifact in the photon migration signal
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1995.tb02958.x
– volume: 45
  start-page: 8142
  year: 2006
  ident: B19
  article-title: Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging
  publication-title: Appl. Opt
  doi: 10.1364/AO.45.008142
– volume: 4
  issue: 30
  year: 2010
  ident: B26
  article-title: The hybrid BCI
  publication-title: Front. Neurosci
  doi: 10.3389/fnpro.2010.00003
– reference: 1707798 - Electroencephalogr Clin Neurophysiol. 1991 Mar;78(3):252-9
– reference: 7784538 - Psychophysiology. 1995 May;32(3):292-9
– reference: 19340120 - Appl Opt. 2009 Apr 1;48(10):D280-98
– reference: 11018488 - Clin Neurophysiol. 2000 Oct;111(10):1745-58
– reference: 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21
– reference: 21436512 - J Neural Eng. 2011 Apr;8(2):025005
– reference: 22244309 - Clin Neurophysiol. 2012 Jul;123(7):1328-37
– reference: 22832068 - J Neural Eng. 2012 Aug;9(4):045008
– reference: 22273765 - Physiol Meas. 2012 Feb;33(2):259-70
– reference: 23970851 - Front Neurosci. 2013 Aug 21;7:149
– reference: 18689052 - Hum Factors. 2008 Jun;50(3):449-55
– reference: 21840399 - Neuroimage. 2012 Jan 2;59(1):519-29
– reference: 17894391 - Hum Brain Mapp. 2008 Nov;29(11):1288-301
– reference: 17068557 - Appl Opt. 2006 Nov 1;45(31):8142-51
– reference: 22255839 - Conf Proc IEEE Eng Med Biol Soc. 2011;2011:6547-51
– reference: 24474913 - Front Hum Neurosci. 2014 Jan 16;7:935
– reference: 17196832 - Neuroimage. 2007 Feb 15;34(4):1416-27
– reference: 14570160 - Psychophysiology. 2003 Jul;40(4):521-8
– reference: 23287527 - Neuroimage. 2013 Apr 15;70:240-9
– reference: 18093717 - Biol Psychol. 2008 Mar;77(3):277-83
– reference: 20582271 - Front Neurosci. 2010 Apr 21;4:30
– reference: 15357206 - Phys Med Biol. 2004 Jul 21;49(14):N255-7
SSID ssj0062842
Score 2.4011798
Snippet For multimodal Human-Computer Interaction (HCI), it is very useful to identify the modalities on which the user is currently processing information. This would...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 373
SubjectTerms Auditory perception
Brain
Brain research
Classification
Cognitive ability
Computer applications
EEG
Electroencephalography
fNIRS
HCI
Hearing
hybrid BCI
Implants
Information processing
Infrared spectroscopy
modality recognition
Neuroscience
Sensors
Sensory integration
Spectrum analysis
User interface
Visual perception
Visual stimuli
Workloads
SummonAdditionalLinks – databaseName: Open Access资源_DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15K2_ThNgkqlEIPZiVLlq1jEjbZ9hDoI5Cb0JMutN4lu1vYf98Z2WuypaSX-GjJSBqNNN9YM58Iec-sRSqfWFqfXCl5akvHpS8FHnq1PDYu5SjfKzW7lp9v6ps7V31hTFhPD9wLbiKsApAdvWI-ScAWtgoxaRe1Y6FVwePuCzZv50z1e7CCTbfqDyXBBdOT1M075ObmSJUtGrFnhDJX_78A5t9xkncMz8VT8mRAjPS07-kz8ih2z8nhaQfe8q8t_UBzDGf-OX5Ivsy2mIFF09Wnr9_K6fSSopUK1CNGxqCgPA90kajFbIzF7ZbaLtDf89UGmliOQS502ecPxNULcn0x_X4-K4dLE0oPPuW6tEyHGKyI0qWmTYolx5rEJHdc2LqumJN4XZAXwbrKNkq2WrKkai111G0lxEty0C26-JpQMHDO1Sk1IHDJQ8jkeEoDxqqthJKCTHZSNH5gFMeLLX4a8CxQ7ibL3aDcTZZ7QT6OXyx7No176p7hxIz1kAc7vwDtMIN2mP9pR0GOdtNqhsUJbYhMegPgsSDvxmJYVnhWYru42KwMwNQGwKBm9X11kM6f1y0vyKteU8begt_d4FOQZk-H9oazX9LNf2R6bwC4NTT-5iHG_5Y8Roli8iRvj8jB-nYTjwFFrd1JXjB_AAEKHbA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagvXBBQHksLchICImDFTvr9a5PqEUpgUMEhUq9rfyESLCb5oGUf8-Md7MiCCXH2JGdsT3zjWf8DSGvuTFI5ROYcdEyKWLFrJCO5Rj0qkQobUxZvjM1vZafboqb_sJt1adV7nRiUtS-dXhHPgKojEwlYPHfLW4ZVo3C6GpfQuMuOQYVXIHzdXwxmX2-2uliBco3xTsVvg0CcN4FKsEt06PYzBvk6xZIn52X-Z5hSvz9_wOd_-ZO_mWMLh-Q-z2KpOfdsj8kd0LziJycN-BB_9rSNzTldaYL8xPyZbrFV1k0zj5efWWTyQeKlstTh7gZE4XS2tA2UoMvNNrllprG09_z1QaGWAyJL3TRvSkIq8fk-nLy7f2U9YUUmAM_c80M1z54kwdpY1lFxaPlZeRSWJGbohhzK7GEkMu9sWNTKllpyaMqtNRBV-M8f0KOmrYJzwgFo2dtEWMZopbC-0SYpzTgrsJIaMnIaCfF2vUs41js4mcN3gbKvU5yr1HudZJ7Rt4Ov1h0DBsH-l7gwgz9kBs7fdEuv9f9Uatzo8AtC05xFyWgUTP2MFkbtOW-Ut5l5Gy3rHV_YGGMYXtl5NXQDEcN4yemCe1mVQN0LQEgal4c6oMU_6KoREaedjtlmC344iV-MlLu7aG9v7Pf0sx_JMpvAL0FDP788NRPyT2UFd4QieqMHK2Xm_ACMNPavuwPxh--Jhcc
  priority: 102
  providerName: ProQuest
Title Hybrid fNIRS-EEG based classification of auditory and visual perception processes
URI https://www.ncbi.nlm.nih.gov/pubmed/25477777
https://www.proquest.com/docview/2305096154
https://www.proquest.com/docview/1637560905
https://www.proquest.com/docview/1642621581
https://pubmed.ncbi.nlm.nih.gov/PMC4235375
https://doaj.org/article/3a6960ec60cf4575a2def9be9b0d86dc
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZg98IFAcsjsFRGQkgcwtqNYycHhHZRdwsSFSxU6s2yYxsqLUnpA9F_z4zTBoqqFT30ULtxMvZkvvHMfCbkOTMGqXx8aqpgU8FDkVouqjTDoFfBvbIhZvmO5HAs3k_yyZ_y6I0AF3tdOzxPajy_evXrx_oNKPxr9DjB3p6Eeloj8zZHIuxMZTfJIdglhWr6QXQxBQkv4hj7lFgnBEC9DVruvcKOkYpc_vsA6L95lH8ZpvM75PYGUdLTdgncJTd8fY8cndbgTX9f0xc05njGzfMj8mm4xgotGkbvLj-ng8EFRSvmaIUYGpOG4jzRJlCD1RrNfE1N7ejP6WIFQ8y6JBg6a-sL_OI-GZ8PvrwdpptDFdIKfM5laljpvDOZFzaoIkgWLFOBCW55ZvK8z6zA44SqzBnbN0qKohQsyLwUpS-LfpY9IAd1U_tHhIIBtDYPQflQCu5cJM-TJWCw3AhoScjJVoq62jCO48EXVxo8D5S7jnLXKHcd5Z6Ql90_Zi3bxjV9z3Biun7Ikx1_aOZf9UbtdGYkuGi-kqwKApCp6Tu4WetLy1whXZWQ4-206u3a0-CVISkOgMuEPOuaQe0wlmJq36wWGmCsArBYsvy6Pkj3z_OCJ-Rhu1K6uwW_XOEnIWpnDe08zm5LPf0W6b8BAOcw-OP_GPcJuYUCw9pJXhyTg-V85Z8CiFraHjk8G4w-XvbiJgR8X0x4L-rLbxINHvE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5V6QEuCFoeC6UYCZA4rLIP7-uAUAtpE1oiKK3U29Ze2xAJdkMeoPwpfiMz3ocahHJrjrEjO-PxzDeeF8ALTwgq5aNdURjpct-krvR54Ybk9Ep9nUhjo3zH8fCCf7iMLrfgT5sLQ2GVrUy0glpVBb2R9xEqU6US1Phvpz9d6hpF3tW2hUbNFid69RtNtvmb0Xs835dBcDQ4fzd0m64CboFG18IVXqa0EqHm0iSpiT0jvcR43Jd-KKIo8CSnfjpFqIQMRBLzNOOeiaOMZzpLA3oARZG_zUM0ZXqwfTgYfzprZX-Mwt76V2PKRUJjoHaMohmY9U05Kak-uE_lusMkXFOEtl_A_0Duv7Ga15Tf0V2406BWdlCz2T3Y0uUO7B6UaLH_WLFXzMaR2gf6Xfg8XFEWGDPj0dkXdzA4ZqQpFSsIp1NgkuUFVhkmKCOkmq2YKBX7NZkvcYlpF2jDpnUOg57fh4sbIfED6JVVqR8BQyUrZWRMok3GfaVsgb44Q5wXCY4jDvRbKuZFU9Wcmmt8z9G6Ibrnlu450T23dHfgdfeLaV3RY8PcQzqYbh7V4rZfVLOveXO181DEaAbqIvYKwxH9ikDhZqXOpKfSWBUO7LXHmjcCAtfo2NmB590wXm3y14hSV8t5jlA5QUCaedGmOdRSwI9S34GHNad0u0XbP6GPA8kaD639nfWRcvLNlhhHkB3h4o83b_0Z3BqefzzNT0fjkydwm-hGaZp-uge9xWypnyJeW8j95pIwuLrpe_kXmFRTpA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB6tuhLigoDlEVjASIDEIaqTOK8DQrtsS8uiallYaW_Bjm2oBEnpA9S_xq9jxkkqilBv22Ptyu54xvON5wXwjEtJpXyML0urfBHYzFeBKP2InF5ZYFJlXZTvJBldiHeX8eUe_O5yYSissrsT3UWt65LeyPsIlalSCWr8vm3DIs5Ohq9nP3zqIEWe1q6dRsMip2b9C823xavxCZ718zAcDj69GflthwG_RANs6Uuea6NlZISyaWYTbhVPLReBCiIZxyFXgnrrlJGWKpRpIrJccJvEuchNnoX0GIrX_36KVhHvwf7xYHJ23umBBC9-52tNKC8JDYPGSYomYd631bSiWuEBle6O0mhLKbreAf8DvP_Gbf6lCIc34UaLYNlRw3K3YM9Ut-HgqELr_fuavWAuptQ91h_Ah9GaMsKYnYzPP_qDwVtGWlOzkjA7BSk5vmC1ZZKyQ-r5mslKs5_TxQqXmG2CbtisyWcwiztwcSUkvgu9qq7MfWCocJWKrU2NzUWgtSvWl-SI-WIpcMSDfkfFomwrnFOjjW8FWjpE98LRvSC6F47uHrzc_GLWVPfYMfeYDmYzj-pyuy_q-ZeiFfMikgmahKZMeGkFImEZatysMrniOkt06cFhd6xFe1ngGhvW9uDpZhjFnHw3sjL1alEgbE4RnOY83jWH2gsEcRZ4cK_hlM1uw1ik9PEg3eKhrb-zPVJNv7py4wi4Y1z8we6tP4FrKI_F-_Hk9CFcJ7JRxmaQHUJvOV-ZRwjdlupxKyMMPl-1WP4BXfVX2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+fNIRS-EEG+based+classification+of+auditory+and+visual+perception+processes&rft.jtitle=Frontiers+in+neuroscience&rft.au=Putze%2C+Felix&rft.au=Hesslinger%2C+Sebastian&rft.au=Tse%2C+Chun-Yu&rft.au=Huang%2C+YunYing&rft.date=2014-11-18&rft.issn=1662-4548&rft.eissn=1662-453X&rft.volume=8&rft_id=info:doi/10.3389%2Ffnins.2014.00373&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon