REM sleep homeostasis in the absence of REM sleep: Effects of antidepressants

Most antidepressants suppress rapid eye movement (REM) sleep, which is thought to be important to brain function, yet the resulting REM sleep restriction is well tolerated. This study investigated the impact of antidepressants with different mechanisms of action, such as selective serotonin reuptake...

Full description

Saved in:
Bibliographic Details
Published inNeuropharmacology Vol. 108; pp. 415 - 425
Main Authors McCarthy, Andrew, Wafford, Keith, Shanks, Elaine, Ligocki, Marcin, Edgar, Dale M., Dijk, Derk-Jan
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most antidepressants suppress rapid eye movement (REM) sleep, which is thought to be important to brain function, yet the resulting REM sleep restriction is well tolerated. This study investigated the impact of antidepressants with different mechanisms of action, such as selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCA), on the regulation of REM sleep in rats. REM sleep was first demonstrated to be homeostatically regulated using 5, 8 and 10 h of REM-sleep specific restriction through EEG-triggered arousals, with an average of 91 ± 10% of lost REM sleep recovered following a 26–29 -hour recovery period. Acute treatment with the antidepressants paroxetine, citalopram and imipramine inhibited REM sleep by 84 ± 8, 84 ± 8 and 69 ± 9% respectively relative to vehicle control. The pharmacologically-induced REM sleep deficits by paroxetine and citalopram were not fully recovered, whereas, after imipramine the REM sleep deficit was fully compensated. Given the marked difference between REM sleep recovery following the administration of paroxetine, citalopram, imipramine and REM sleep restriction, the homeostatic response was further examined by pairing REM sleep specific restriction with the three antidepressants. Surprisingly, the physiologically-induced REM sleep deficits incurred prior to suppression of REM sleep by all antidepressants was consistently recovered. The data indicate that REM sleep homeostasis remains operative following subsequent treatment with antidepressants and is unaffected by additional pharmacological inhibition of REM sleep. •Selective serotonin re-uptake inhibitor antidepressants do not activate the REM sleep homeostat.•In contrast, the tricyclic antidepressant imipramine elicits a homeostatic response in REM sleep similar to that of REM sleep restriction.•The REM sleep homeostat remains active even in the presence of the pharmacological REM sleep inhibition antidepressants.
AbstractList Most antidepressants suppress rapid eye movement (REM) sleep, which is thought to be important to brain function, yet the resulting REM sleep restriction is well tolerated. This study investigated the impact of antidepressants with different mechanisms of action, such as selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCA), on the regulation of REM sleep in rats. REM sleep was first demonstrated to be homeostatically regulated using 5, 8 and 10 h of REM-sleep specific restriction through EEG-triggered arousals, with an average of 91 plus or minus 10% of lost REM sleep recovered following a 26-29 -hour recovery period. Acute treatment with the antidepressants paroxetine, citalopram and imipramine inhibited REM sleep by 84 plus or minus 8, 84 plus or minus 8 and 69 plus or minus 9% respectively relative to vehicle control. The pharmacologically-induced REM sleep deficits by paroxetine and citalopram were not fully recovered, whereas, after imipramine the REM sleep deficit was fully compensated. Given the marked difference between REM sleep recovery following the administration of paroxetine, citalopram, imipramine and REM sleep restriction, the homeostatic response was further examined by pairing REM sleep specific restriction with the three antidepressants. Surprisingly, the physiologically-induced REM sleep deficits incurred prior to suppression of REM sleep by all antidepressants was consistently recovered. The data indicate that REM sleep homeostasis remains operative following subsequent treatment with antidepressants and is unaffected by additional pharmacological inhibition of REM sleep.
Most antidepressants suppress rapid eye movement (REM) sleep, which is thought to be important to brain function, yet the resulting REM sleep restriction is well tolerated. This study investigated the impact of antidepressants with different mechanisms of action, such as selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCA), on the regulation of REM sleep in rats. REM sleep was first demonstrated to be homeostatically regulated using 5, 8 and 10 h of REM-sleep specific restriction through EEG-triggered arousals, with an average of 91 ± 10% of lost REM sleep recovered following a 26–29 -hour recovery period. Acute treatment with the antidepressants paroxetine, citalopram and imipramine inhibited REM sleep by 84 ± 8, 84 ± 8 and 69 ± 9% respectively relative to vehicle control. The pharmacologically-induced REM sleep deficits by paroxetine and citalopram were not fully recovered, whereas, after imipramine the REM sleep deficit was fully compensated. Given the marked difference between REM sleep recovery following the administration of paroxetine, citalopram, imipramine and REM sleep restriction, the homeostatic response was further examined by pairing REM sleep specific restriction with the three antidepressants. Surprisingly, the physiologically-induced REM sleep deficits incurred prior to suppression of REM sleep by all antidepressants was consistently recovered. The data indicate that REM sleep homeostasis remains operative following subsequent treatment with antidepressants and is unaffected by additional pharmacological inhibition of REM sleep. •Selective serotonin re-uptake inhibitor antidepressants do not activate the REM sleep homeostat.•In contrast, the tricyclic antidepressant imipramine elicits a homeostatic response in REM sleep similar to that of REM sleep restriction.•The REM sleep homeostat remains active even in the presence of the pharmacological REM sleep inhibition antidepressants.
Most antidepressants suppress rapid eye movement (REM) sleep, which is thought to be important to brain function, yet the resulting REM sleep restriction is well tolerated. This study investigated the impact of antidepressants with different mechanisms of action, such as selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCA), on the regulation of REM sleep in rats. REM sleep was first demonstrated to be homeostatically regulated using 5, 8 and 10 h of REM-sleep specific restriction through EEG-triggered arousals, with an average of 91 ± 10% of lost REM sleep recovered following a 26-29 -hour recovery period. Acute treatment with the antidepressants paroxetine, citalopram and imipramine inhibited REM sleep by 84 ± 8, 84 ± 8 and 69 ± 9% respectively relative to vehicle control. The pharmacologically-induced REM sleep deficits by paroxetine and citalopram were not fully recovered, whereas, after imipramine the REM sleep deficit was fully compensated. Given the marked difference between REM sleep recovery following the administration of paroxetine, citalopram, imipramine and REM sleep restriction, the homeostatic response was further examined by pairing REM sleep specific restriction with the three antidepressants. Surprisingly, the physiologically-induced REM sleep deficits incurred prior to suppression of REM sleep by all antidepressants was consistently recovered. The data indicate that REM sleep homeostasis remains operative following subsequent treatment with antidepressants and is unaffected by additional pharmacological inhibition of REM sleep.
Most antidepressants suppress rapid eye movement (REM) sleep, which is thought to be important to brain function, yet the resulting REM sleep restriction is well tolerated. This study investigated the impact of antidepressants with different mechanisms of action, such as selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCA), on the regulation of REM sleep in rats. REM sleep was first demonstrated to be homeostatically regulated using 5, 8 and 10 h of REM-sleep specific restriction through EEG-triggered arousals, with an average of 91 ± 10% of lost REM sleep recovered following a 26-29 -hour recovery period. Acute treatment with the antidepressants paroxetine, citalopram and imipramine inhibited REM sleep by 84 ± 8, 84 ± 8 and 69 ± 9% respectively relative to vehicle control. The pharmacologically-induced REM sleep deficits by paroxetine and citalopram were not fully recovered, whereas, after imipramine the REM sleep deficit was fully compensated. Given the marked difference between REM sleep recovery following the administration of paroxetine, citalopram, imipramine and REM sleep restriction, the homeostatic response was further examined by pairing REM sleep specific restriction with the three antidepressants. Surprisingly, the physiologically-induced REM sleep deficits incurred prior to suppression of REM sleep by all antidepressants was consistently recovered. The data indicate that REM sleep homeostasis remains operative following subsequent treatment with antidepressants and is unaffected by additional pharmacological inhibition of REM sleep.Most antidepressants suppress rapid eye movement (REM) sleep, which is thought to be important to brain function, yet the resulting REM sleep restriction is well tolerated. This study investigated the impact of antidepressants with different mechanisms of action, such as selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCA), on the regulation of REM sleep in rats. REM sleep was first demonstrated to be homeostatically regulated using 5, 8 and 10 h of REM-sleep specific restriction through EEG-triggered arousals, with an average of 91 ± 10% of lost REM sleep recovered following a 26-29 -hour recovery period. Acute treatment with the antidepressants paroxetine, citalopram and imipramine inhibited REM sleep by 84 ± 8, 84 ± 8 and 69 ± 9% respectively relative to vehicle control. The pharmacologically-induced REM sleep deficits by paroxetine and citalopram were not fully recovered, whereas, after imipramine the REM sleep deficit was fully compensated. Given the marked difference between REM sleep recovery following the administration of paroxetine, citalopram, imipramine and REM sleep restriction, the homeostatic response was further examined by pairing REM sleep specific restriction with the three antidepressants. Surprisingly, the physiologically-induced REM sleep deficits incurred prior to suppression of REM sleep by all antidepressants was consistently recovered. The data indicate that REM sleep homeostasis remains operative following subsequent treatment with antidepressants and is unaffected by additional pharmacological inhibition of REM sleep.
Author Wafford, Keith
McCarthy, Andrew
Ligocki, Marcin
Shanks, Elaine
Edgar, Dale M.
Dijk, Derk-Jan
Author_xml – sequence: 1
  givenname: Andrew
  surname: McCarthy
  fullname: McCarthy, Andrew
  email: a.mccarthy@surrey.ac.uk
  organization: Lilly Research Laboratories, Windlesham, Surrey, GU20 6PH, UK
– sequence: 2
  givenname: Keith
  surname: Wafford
  fullname: Wafford, Keith
  organization: Lilly Research Laboratories, Windlesham, Surrey, GU20 6PH, UK
– sequence: 3
  givenname: Elaine
  surname: Shanks
  fullname: Shanks, Elaine
  organization: Lilly Research Laboratories, Windlesham, Surrey, GU20 6PH, UK
– sequence: 4
  givenname: Marcin
  surname: Ligocki
  fullname: Ligocki, Marcin
  organization: Lilly Research Laboratories, Windlesham, Surrey, GU20 6PH, UK
– sequence: 5
  givenname: Dale M.
  surname: Edgar
  fullname: Edgar, Dale M.
  organization: Lilly Research Laboratories, Windlesham, Surrey, GU20 6PH, UK
– sequence: 6
  givenname: Derk-Jan
  surname: Dijk
  fullname: Dijk, Derk-Jan
  organization: Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guilford, Surrey, GU2 7XP, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27150557$$D View this record in MEDLINE/PubMed
BookMark eNqNkVFrFDEQx4O02Gv1K8g--rJnks0mWR8ELVcVWgTR55DNTrgcu5s1kxP89s1ytYIvLQzMMPzmz8z8L8nZHGcgpGJ0yyiT7w7bGY4pLnubpi0vnS0VJdQLsmFaNbWiUpyRDaVc101H9QW5RDxQSoVm-iW54Iq1tG3Vhtx9391VOAIs1T5OEDFbDFiFucp7qGyPMDuooq8euffVzntwGdeunXMYYEmAWEp8Rc69HRFeP-Qr8vNm9-P6S3377fPX64-3tWt5k2vtnONWguXeCd92vgFaNtaglICBNR2XUkjFhaBlTdkPVHjuacd62TPmmuaKvD3pLin-OgJmMwV0MI52hnhEwzTV64mKPY2qTmmpG8kL-uYBPfYTDGZJYbLpj_n7rQLoE-BSREzgHxFGzWqMOZh_xpjVGENFiXX0w3-jLmSbQ5xzsmF8jsCnkwCUv_4OkAy6sJozhFTcMEMMT4vcA7-KrvQ
CitedBy_id crossref_primary_10_1016_j_bmcl_2019_06_043
crossref_primary_10_1073_pnas_1816456116
crossref_primary_10_3389_fphar_2018_00177
crossref_primary_10_1093_sleep_zsy046
crossref_primary_10_1093_sleep_zsaa023
crossref_primary_10_3390_e22030347
crossref_primary_10_1007_s00213_023_06442_3
crossref_primary_10_1007_s10439_023_03427_3
crossref_primary_10_1016_j_neubiorev_2023_105041
crossref_primary_10_1155_2020_8836983
crossref_primary_10_3389_fphar_2017_00096
crossref_primary_10_1038_s41398_023_02399_1
crossref_primary_10_3389_fnins_2019_01402
crossref_primary_10_1016_j_cub_2024_05_075
crossref_primary_10_1038_s41583_023_00764_z
crossref_primary_10_1177_0269881120981378
crossref_primary_10_1098_rstb_2019_0655
crossref_primary_10_3389_fpsyt_2021_648713
crossref_primary_10_1038_s41398_022_01846_9
crossref_primary_10_3389_fnmol_2023_1128974
crossref_primary_10_1016_j_jneumeth_2024_110063
crossref_primary_10_1016_j_bbr_2023_114473
crossref_primary_10_1111_adj_13037
Cites_doi 10.1016/j.ejphar.2005.08.050
10.1016/S0022-3565(25)26687-3
10.1093/sleep/14.1.48
10.1073/pnas.1408886111
10.1186/s12868-014-0120-8
10.5665/sleep.3192
10.1523/JNEUROSCI.20-11-04300.2000
10.1016/S0022-3565(24)37509-3
10.1016/0166-4328(95)00020-T
10.1523/JNEUROSCI.15-05-03526.1995
10.1016/j.brainres.2008.03.062
10.1152/ajpregu.00462.2001
10.1007/s00213-013-3046-4
10.1046/j.1365-2869.2002.00275.x
10.1016/0013-4694(90)90136-8
10.5665/sleep.4656
10.1001/archpsyc.1976.01770090114012
10.1016/0006-8993(95)00305-A
10.1016/0006-3223(95)00583-8
10.1001/archpsyc.1975.01760240093007
10.1016/j.euroneuro.2003.11.004
10.1016/0006-3223(94)00135-P
10.1016/j.biopsych.2011.07.016
10.1017/S0140525X00004003
10.1016/j.smrv.2012.11.001
10.1016/j.neuropharm.2011.04.006
10.1016/0278-5846(83)90122-7
10.1152/ajpregu.1998.274.4.R1186
10.1126/science.1063049
10.1176/ajp.138.4.429
10.1016/S0013-4694(96)95671-0
10.1016/S0022-3565(25)12045-4
10.1016/S0893-133X(01)00314-1
10.1001/archpsyc.1975.01760240077006
10.1111/j.1365-2869.1996.00238.x
ContentType Journal Article
Copyright 2016 The Authors
Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2016 The Authors
– notice: Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
DOI 10.1016/j.neuropharm.2016.04.047
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Neurosciences Abstracts

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-7064
EndPage 425
ExternalDocumentID 27150557
10_1016_j_neuropharm_2016_04_047
S0028390816301873
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.55
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
3O-
4.4
41~
457
4G.
53G
5RE
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMQ
HMT
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M2V
M34
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SPT
SSN
SSP
SSZ
T5K
TEORI
WUQ
X7M
XOL
ZGI
ZXP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
7TK
ID FETCH-LOGICAL-c523t-8ccc2a6ea2fc4f59f3e00648e774ed13926646724405056bd04f2f091b6b11c33
IEDL.DBID .~1
ISSN 0028-3908
1873-7064
IngestDate Fri Jul 11 00:32:20 EDT 2025
Fri Jul 11 10:56:14 EDT 2025
Wed Feb 19 02:43:18 EST 2025
Thu Jul 03 08:38:29 EDT 2025
Thu Apr 24 22:52:51 EDT 2025
Fri Feb 23 02:30:51 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Selective serotonin reuptake inhibitors
Paradoxical sleep
Recovery
Tricyclic antidepressants
Sleep deprivation
Language English
License This is an open access article under the CC BY license.
Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-8ccc2a6ea2fc4f59f3e00648e774ed13926646724405056bd04f2f091b6b11c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0028390816301873
PMID 27150557
PQID 1797868362
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1808715071
proquest_miscellaneous_1797868362
pubmed_primary_27150557
crossref_primary_10_1016_j_neuropharm_2016_04_047
crossref_citationtrail_10_1016_j_neuropharm_2016_04_047
elsevier_sciencedirect_doi_10_1016_j_neuropharm_2016_04_047
PublicationCentury 2000
PublicationDate September 2016
2016-09-00
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Neuropharmacology
PublicationTitleAlternate Neuropharmacology
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dijk, Czeisler (bib5) 1995; 15
Kupfer, Spiker, Coble, Neil, Ulrich, Shaw (bib14) 1981; 138
Kátai, Adori, Kitka, Vas, Kalmár, Kostyalik, Tóthfalusi, Palkovits, Bagdy (bib12) 2013; 228
Benington, Heller (bib2) 1995; 681
Vogel (bib31) 1983; 7
Brunner, Dijk, Tobler, Borbely (bib3) 1990; 75
Luppi, Peyron, Fort (bib16) 2013; 36
Franken (bib9) 2002; 11
Kostyalik, Vas, Katai, Kitka, Gyertyan, Bagdy, Tothfalusi (bib13) 2014; 15
Vogel, Thurmond, Gibbons, Sloan, Walker (bib32) 1975; 32
Endo, Roth, Landolt, Werth, Aeschbach, Achermann, Borbély (bib7) 1998; 274
Maudhuit, Jolas, Chastanet, Hamon, Adrien (bib17) 1996; 40
Vertes, Eastman (bib30) 2000; 23
Van Gelder, Edgar, Dement (bib29) 1991; 14
Feige, Voderholzer, Riemann, Dittmann, Hohagen, Berger (bib8) 2002; 26
Shea, Mochizuki, Sagvaag, Aspevik, Bjorkum, Datta (bib26) 2008; 1213
Vogel (bib33) 1975; 32
Stephenson, Caron, Famina (bib28) 2015; 38
Coble, Foster, Kupfer (bib4) 1976; 33
Lucidi, Devoto, Violani, De Gennaro, Mastracci, Bertini (bib15) 1996; 99
Dingell, Sulser, Gillette (bib6) 1964; 143
Wilson, Bailey, Rich, Adrover, Potokar, Nutt (bib35) 2004; 14
Werth, Cote, Gallmann, Borbely, Achermann (bib34) 2002; 283
Phillips, Cotel, McCarthy, Edgar, Tricklebank, O’Neill, Jones, Wafford (bib20) 2012; 62
Ivarsson, Paterson, Hutson (bib38) 2005; 522
Prevot, Maudhuit, Le Poul, Hamon, Adrien (bib22) 1996; 5
Seidel, Maze, Dement, Edgar (bib24) 1995; 275
Rechtschaffen, Bergmann (bib23) 1995; 69
Sharpley, Cowen (bib25) 1995; 37
Jones, Oliphant, Peterson (bib11) 2001
Olive, Seidel, Edgar (bib18) 1998; 285
Pillai, Kalmbach, Ciesla (bib21) 2011; 70
Palagini, Baglioni, Ciapparelli, Gemignani, Riemann (bib19) 2013; 17
Siegel (bib27) 2001; 294
Zhang, Lahens, Ballance, Hughes, Hogenesch (bib37) 2014; 111
Wurts, Edgar (bib36) 2000; 20
Olive (10.1016/j.neuropharm.2016.04.047_bib18) 1998; 285
Wurts (10.1016/j.neuropharm.2016.04.047_bib36) 2000; 20
Phillips (10.1016/j.neuropharm.2016.04.047_bib20) 2012; 62
Franken (10.1016/j.neuropharm.2016.04.047_bib9) 2002; 11
Wilson (10.1016/j.neuropharm.2016.04.047_bib35) 2004; 14
Kupfer (10.1016/j.neuropharm.2016.04.047_bib14) 1981; 138
Shea (10.1016/j.neuropharm.2016.04.047_bib26) 2008; 1213
Vogel (10.1016/j.neuropharm.2016.04.047_bib33) 1975; 32
Pillai (10.1016/j.neuropharm.2016.04.047_bib21) 2011; 70
Zhang (10.1016/j.neuropharm.2016.04.047_bib37) 2014; 111
Van Gelder (10.1016/j.neuropharm.2016.04.047_bib29) 1991; 14
Vogel (10.1016/j.neuropharm.2016.04.047_bib31) 1983; 7
Sharpley (10.1016/j.neuropharm.2016.04.047_bib25) 1995; 37
Vogel (10.1016/j.neuropharm.2016.04.047_bib32) 1975; 32
Kostyalik (10.1016/j.neuropharm.2016.04.047_bib13) 2014; 15
Seidel (10.1016/j.neuropharm.2016.04.047_bib24) 1995; 275
Kátai (10.1016/j.neuropharm.2016.04.047_bib12) 2013; 228
Brunner (10.1016/j.neuropharm.2016.04.047_bib3) 1990; 75
Dijk (10.1016/j.neuropharm.2016.04.047_bib5) 1995; 15
Luppi (10.1016/j.neuropharm.2016.04.047_bib16) 2013; 36
Maudhuit (10.1016/j.neuropharm.2016.04.047_bib17) 1996; 40
Lucidi (10.1016/j.neuropharm.2016.04.047_bib15) 1996; 99
Siegel (10.1016/j.neuropharm.2016.04.047_bib27) 2001; 294
Ivarsson (10.1016/j.neuropharm.2016.04.047_bib38) 2005; 522
Coble (10.1016/j.neuropharm.2016.04.047_bib4) 1976; 33
Dingell (10.1016/j.neuropharm.2016.04.047_bib6) 1964; 143
Benington (10.1016/j.neuropharm.2016.04.047_bib2) 1995; 681
Werth (10.1016/j.neuropharm.2016.04.047_bib34) 2002; 283
Rechtschaffen (10.1016/j.neuropharm.2016.04.047_bib23) 1995; 69
Jones (10.1016/j.neuropharm.2016.04.047_bib11) 2001
Feige (10.1016/j.neuropharm.2016.04.047_bib8) 2002; 26
Vertes (10.1016/j.neuropharm.2016.04.047_bib30) 2000; 23
Endo (10.1016/j.neuropharm.2016.04.047_bib7) 1998; 274
Stephenson (10.1016/j.neuropharm.2016.04.047_bib28) 2015; 38
Palagini (10.1016/j.neuropharm.2016.04.047_bib19) 2013; 17
Prevot (10.1016/j.neuropharm.2016.04.047_bib22) 1996; 5
References_xml – volume: 7
  start-page: 343
  year: 1983
  end-page: 349
  ident: bib31
  article-title: Evidence for REM sleep deprivation as the mechanism of action of antidepressant drugs
  publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry
– volume: 40
  start-page: 1000
  year: 1996
  end-page: 1007
  ident: bib17
  article-title: Reduced inhibitory potency of serotonin reuptake blockers on central serotoninergic neurons in rats selectively deprived of rapid eye movement sleep
  publication-title: Biol. Psychiatry
– volume: 20
  start-page: 4300
  year: 2000
  end-page: 4310
  ident: bib36
  article-title: Circadian and homeostatic control of rapid eye movement (REM) sleep: promotion of REM tendency by the suprachiasmatic nucleus
  publication-title: J. Neurosci.
– volume: 138
  start-page: 429
  year: 1981
  end-page: 434
  ident: bib14
  article-title: Sleep and treatment prediction in endogenous depression
  publication-title: Am. J. Psychiatry
– volume: 274
  start-page: R1186
  year: 1998
  end-page: R1194
  ident: bib7
  article-title: Selective REM sleep deprivation in humans: effects on sleep and sleep EEG
  publication-title: Am. J. Physiol. - Regul. Integr. Comp. Physiol.
– volume: 285
  start-page: 1073
  year: 1998
  end-page: 1083
  ident: bib18
  article-title: Compensatory sleep responses to wakefulness induced by the dopamine autoreceptor antagonist (-)DS121
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 275
  start-page: 263
  year: 1995
  end-page: 273
  ident: bib24
  article-title: Alpha-2 adrenergic modulation of sleep: time-of-day-dependent pharmacodynamic profiles of dexmedetomidine and clonidine in the rat
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 143
  start-page: 14
  year: 1964
  end-page: 22
  ident: bib6
  article-title: Species differences in the metabolism of imipramine and desmethylimipramine (Dmi)
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 32
  start-page: 749
  year: 1975
  end-page: 761
  ident: bib33
  article-title: A review of REM sleep deprivation
  publication-title: Arch. Gen. Psychiatry
– volume: 37
  start-page: 85
  year: 1995
  end-page: 98
  ident: bib25
  article-title: Effect of pharmacologic treatments on the sleep of depressed patients
  publication-title: Biol. Psychiatry
– volume: 33
  start-page: 1124
  year: 1976
  end-page: 1127
  ident: bib4
  article-title: Electroencephalographic sleep diagnosis of primary depression
  publication-title: Arch. Gen. Psychiatry
– volume: 62
  start-page: 1359
  year: 2012
  end-page: 1370
  ident: bib20
  article-title: Differential effects of NMDA antagonists on high frequency and gamma EEG oscillations in a neurodevelopmental model of schizophrenia
  publication-title: Neuropharmacology
– volume: 681
  start-page: 141
  year: 1995
  end-page: 146
  ident: bib2
  article-title: Monoaminergic and cholinergic modulation of REM-sleep timing in rats
  publication-title: Brain Res.
– volume: 23
  start-page: 867
  year: 2000
  end-page: 876
  ident: bib30
  article-title: The case against memory consolidation in REM sleep
  publication-title: Behav. Brain Sci.
– volume: 294
  start-page: 1058
  year: 2001
  end-page: 1063
  ident: bib27
  article-title: The REM sleep-memory consolidation hypothesis
  publication-title: Science
– volume: 522
  start-page: 63
  year: 2005
  end-page: 71
  ident: bib38
  article-title: Antidepressants and REM sleep in Wistar-Kyoto and Sprague-Dawley rats
  publication-title: Eur J Pharmacol
– volume: 283
  start-page: R521
  year: 2002
  end-page: R526
  ident: bib34
  article-title: Selective REM sleep deprivation during daytime I. Time course of interventions and recovery sleep
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
– volume: 14
  start-page: 367
  year: 2004
  end-page: 372
  ident: bib35
  article-title: Using sleep to evaluate comparative serotonergic effects of paroxetine and citalopram
  publication-title: Eur. Neuropsychopharmacol.
– volume: 17
  start-page: 377
  year: 2013
  end-page: 390
  ident: bib19
  article-title: REM sleep dysregulation in depression: state of the art
  publication-title: Sleep Med. Rev.
– volume: 1213
  start-page: 48
  year: 2008
  end-page: 56
  ident: bib26
  article-title: Rapid eye movement (REM) sleep homeostatic regulatory processes in the rat: changes in the sleep-wake stages and electroencephalographic power spectra
  publication-title: Brain Res.
– volume: 15
  start-page: 120
  year: 2014
  ident: bib13
  article-title: Chronic escitalopram treatment attenuated the accelerated rapid eye movement sleep transitions after selective rapid eye movement sleep deprivation: a model-based analysis using Markov chains
  publication-title: BMC Neurosci.
– volume: 69
  start-page: 55
  year: 1995
  end-page: 63
  ident: bib23
  article-title: Sleep deprivation in the rat by the disk-over-water method
  publication-title: Behav. Brain Res.
– volume: 26
  start-page: 246
  year: 2002
  end-page: 258
  ident: bib8
  article-title: Fluoxetine and sleep EEG: effects of a single dose, subchronic treatment, and discontinuation in healthy subjects
  publication-title: Neuropsychopharmacology
– volume: 99
  start-page: 556
  year: 1996
  end-page: 561
  ident: bib15
  article-title: Rapid eye movements density as a measure of sleep need: REM density decreases linearly with the reduction of prior sleep duration
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– year: 2001
  ident: bib11
  article-title: SciPy: Open Source Scientific Tools for Python
– volume: 111
  start-page: 16219
  year: 2014
  end-page: 16224
  ident: bib37
  article-title: A circadian gene expression atlas in mammals: implications for biology and medicine
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 38
  start-page: 685
  year: 2015
  end-page: 697
  ident: bib28
  article-title: Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat
  publication-title: Sleep
– volume: 70
  start-page: 912
  year: 2011
  end-page: 919
  ident: bib21
  article-title: A meta-analysis of electroencephalographic sleep in depression: evidence for genetic biomarkers
  publication-title: Biol. Psychiatry
– volume: 32
  start-page: 765
  year: 1975
  end-page: 777
  ident: bib32
  article-title: REM sleep reduction effects on depression syndromes
  publication-title: Arch. Gen. Psychiatry
– volume: 14
  start-page: 48
  year: 1991
  end-page: 55
  ident: bib29
  article-title: Real-time automated sleep scoring: validation of a microcomputer-based system for mice
  publication-title: Sleep
– volume: 228
  start-page: 439
  year: 2013
  end-page: 449
  ident: bib12
  article-title: Acute escitalopram treatment inhibits REM sleep rebound and activation of MCH-expressing neurons in the lateral hypothalamus after long term selective REM sleep deprivation
  publication-title: Psychopharmacology
– volume: 75
  start-page: 492
  year: 1990
  end-page: 499
  ident: bib3
  article-title: Effect of partial sleep deprivation on sleep stages and EEG power spectra: evidence for non-REM and REM sleep homeostasis
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 15
  start-page: 3526
  year: 1995
  end-page: 3538
  ident: bib5
  article-title: Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans
  publication-title: J. Neurosci.
– volume: 5
  start-page: 238
  year: 1996
  end-page: 245
  ident: bib22
  article-title: Sleep deprivation reduces the citalopram-induced inhibition of serotoninergic neuronal firing in the nucleus raphe dorsalis of the rat
  publication-title: J. Sleep. Res.
– volume: 11
  start-page: 17
  year: 2002
  end-page: 28
  ident: bib9
  article-title: Long-term vs. short-term processes regulating REM sleep
  publication-title: J. Sleep. Res.
– volume: 36
  start-page: 1775
  year: 2013
  end-page: 1776
  ident: bib16
  article-title: Role of MCH neurons in para-doxical (REM) sleep control
  publication-title: Sleep
– volume: 522
  start-page: 63
  year: 2005
  ident: 10.1016/j.neuropharm.2016.04.047_bib38
  article-title: Antidepressants and REM sleep in Wistar-Kyoto and Sprague-Dawley rats
  publication-title: Eur J Pharmacol
  doi: 10.1016/j.ejphar.2005.08.050
– volume: 143
  start-page: 14
  year: 1964
  ident: 10.1016/j.neuropharm.2016.04.047_bib6
  article-title: Species differences in the metabolism of imipramine and desmethylimipramine (Dmi)
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1016/S0022-3565(25)26687-3
– volume: 14
  start-page: 48
  year: 1991
  ident: 10.1016/j.neuropharm.2016.04.047_bib29
  article-title: Real-time automated sleep scoring: validation of a microcomputer-based system for mice
  publication-title: Sleep
  doi: 10.1093/sleep/14.1.48
– volume: 111
  start-page: 16219
  year: 2014
  ident: 10.1016/j.neuropharm.2016.04.047_bib37
  article-title: A circadian gene expression atlas in mammals: implications for biology and medicine
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1408886111
– volume: 15
  start-page: 120
  year: 2014
  ident: 10.1016/j.neuropharm.2016.04.047_bib13
  article-title: Chronic escitalopram treatment attenuated the accelerated rapid eye movement sleep transitions after selective rapid eye movement sleep deprivation: a model-based analysis using Markov chains
  publication-title: BMC Neurosci.
  doi: 10.1186/s12868-014-0120-8
– volume: 36
  start-page: 1775
  year: 2013
  ident: 10.1016/j.neuropharm.2016.04.047_bib16
  article-title: Role of MCH neurons in para-doxical (REM) sleep control
  publication-title: Sleep
  doi: 10.5665/sleep.3192
– volume: 20
  start-page: 4300
  year: 2000
  ident: 10.1016/j.neuropharm.2016.04.047_bib36
  article-title: Circadian and homeostatic control of rapid eye movement (REM) sleep: promotion of REM tendency by the suprachiasmatic nucleus
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-11-04300.2000
– volume: 285
  start-page: 1073
  year: 1998
  ident: 10.1016/j.neuropharm.2016.04.047_bib18
  article-title: Compensatory sleep responses to wakefulness induced by the dopamine autoreceptor antagonist (-)DS121
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1016/S0022-3565(24)37509-3
– volume: 69
  start-page: 55
  year: 1995
  ident: 10.1016/j.neuropharm.2016.04.047_bib23
  article-title: Sleep deprivation in the rat by the disk-over-water method
  publication-title: Behav. Brain Res.
  doi: 10.1016/0166-4328(95)00020-T
– volume: 15
  start-page: 3526
  year: 1995
  ident: 10.1016/j.neuropharm.2016.04.047_bib5
  article-title: Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.15-05-03526.1995
– volume: 1213
  start-page: 48
  year: 2008
  ident: 10.1016/j.neuropharm.2016.04.047_bib26
  article-title: Rapid eye movement (REM) sleep homeostatic regulatory processes in the rat: changes in the sleep-wake stages and electroencephalographic power spectra
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2008.03.062
– year: 2001
  ident: 10.1016/j.neuropharm.2016.04.047_bib11
– volume: 283
  start-page: R521
  year: 2002
  ident: 10.1016/j.neuropharm.2016.04.047_bib34
  article-title: Selective REM sleep deprivation during daytime I. Time course of interventions and recovery sleep
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00462.2001
– volume: 228
  start-page: 439
  year: 2013
  ident: 10.1016/j.neuropharm.2016.04.047_bib12
  article-title: Acute escitalopram treatment inhibits REM sleep rebound and activation of MCH-expressing neurons in the lateral hypothalamus after long term selective REM sleep deprivation
  publication-title: Psychopharmacology
  doi: 10.1007/s00213-013-3046-4
– volume: 11
  start-page: 17
  year: 2002
  ident: 10.1016/j.neuropharm.2016.04.047_bib9
  article-title: Long-term vs. short-term processes regulating REM sleep
  publication-title: J. Sleep. Res.
  doi: 10.1046/j.1365-2869.2002.00275.x
– volume: 75
  start-page: 492
  year: 1990
  ident: 10.1016/j.neuropharm.2016.04.047_bib3
  article-title: Effect of partial sleep deprivation on sleep stages and EEG power spectra: evidence for non-REM and REM sleep homeostasis
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(90)90136-8
– volume: 38
  start-page: 685
  year: 2015
  ident: 10.1016/j.neuropharm.2016.04.047_bib28
  article-title: Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat
  publication-title: Sleep
  doi: 10.5665/sleep.4656
– volume: 33
  start-page: 1124
  year: 1976
  ident: 10.1016/j.neuropharm.2016.04.047_bib4
  article-title: Electroencephalographic sleep diagnosis of primary depression
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.1976.01770090114012
– volume: 681
  start-page: 141
  year: 1995
  ident: 10.1016/j.neuropharm.2016.04.047_bib2
  article-title: Monoaminergic and cholinergic modulation of REM-sleep timing in rats
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(95)00305-A
– volume: 40
  start-page: 1000
  year: 1996
  ident: 10.1016/j.neuropharm.2016.04.047_bib17
  article-title: Reduced inhibitory potency of serotonin reuptake blockers on central serotoninergic neurons in rats selectively deprived of rapid eye movement sleep
  publication-title: Biol. Psychiatry
  doi: 10.1016/0006-3223(95)00583-8
– volume: 32
  start-page: 765
  year: 1975
  ident: 10.1016/j.neuropharm.2016.04.047_bib32
  article-title: REM sleep reduction effects on depression syndromes
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.1975.01760240093007
– volume: 14
  start-page: 367
  year: 2004
  ident: 10.1016/j.neuropharm.2016.04.047_bib35
  article-title: Using sleep to evaluate comparative serotonergic effects of paroxetine and citalopram
  publication-title: Eur. Neuropsychopharmacol.
  doi: 10.1016/j.euroneuro.2003.11.004
– volume: 37
  start-page: 85
  year: 1995
  ident: 10.1016/j.neuropharm.2016.04.047_bib25
  article-title: Effect of pharmacologic treatments on the sleep of depressed patients
  publication-title: Biol. Psychiatry
  doi: 10.1016/0006-3223(94)00135-P
– volume: 70
  start-page: 912
  year: 2011
  ident: 10.1016/j.neuropharm.2016.04.047_bib21
  article-title: A meta-analysis of electroencephalographic sleep in depression: evidence for genetic biomarkers
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2011.07.016
– volume: 23
  start-page: 867
  year: 2000
  ident: 10.1016/j.neuropharm.2016.04.047_bib30
  article-title: The case against memory consolidation in REM sleep
  publication-title: Behav. Brain Sci.
  doi: 10.1017/S0140525X00004003
– volume: 17
  start-page: 377
  year: 2013
  ident: 10.1016/j.neuropharm.2016.04.047_bib19
  article-title: REM sleep dysregulation in depression: state of the art
  publication-title: Sleep Med. Rev.
  doi: 10.1016/j.smrv.2012.11.001
– volume: 62
  start-page: 1359
  year: 2012
  ident: 10.1016/j.neuropharm.2016.04.047_bib20
  article-title: Differential effects of NMDA antagonists on high frequency and gamma EEG oscillations in a neurodevelopmental model of schizophrenia
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2011.04.006
– volume: 7
  start-page: 343
  year: 1983
  ident: 10.1016/j.neuropharm.2016.04.047_bib31
  article-title: Evidence for REM sleep deprivation as the mechanism of action of antidepressant drugs
  publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry
  doi: 10.1016/0278-5846(83)90122-7
– volume: 274
  start-page: R1186
  year: 1998
  ident: 10.1016/j.neuropharm.2016.04.047_bib7
  article-title: Selective REM sleep deprivation in humans: effects on sleep and sleep EEG
  publication-title: Am. J. Physiol. - Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.1998.274.4.R1186
– volume: 294
  start-page: 1058
  year: 2001
  ident: 10.1016/j.neuropharm.2016.04.047_bib27
  article-title: The REM sleep-memory consolidation hypothesis
  publication-title: Science
  doi: 10.1126/science.1063049
– volume: 138
  start-page: 429
  year: 1981
  ident: 10.1016/j.neuropharm.2016.04.047_bib14
  article-title: Sleep and treatment prediction in endogenous depression
  publication-title: Am. J. Psychiatry
  doi: 10.1176/ajp.138.4.429
– volume: 99
  start-page: 556
  year: 1996
  ident: 10.1016/j.neuropharm.2016.04.047_bib15
  article-title: Rapid eye movements density as a measure of sleep need: REM density decreases linearly with the reduction of prior sleep duration
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(96)95671-0
– volume: 275
  start-page: 263
  year: 1995
  ident: 10.1016/j.neuropharm.2016.04.047_bib24
  article-title: Alpha-2 adrenergic modulation of sleep: time-of-day-dependent pharmacodynamic profiles of dexmedetomidine and clonidine in the rat
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1016/S0022-3565(25)12045-4
– volume: 26
  start-page: 246
  year: 2002
  ident: 10.1016/j.neuropharm.2016.04.047_bib8
  article-title: Fluoxetine and sleep EEG: effects of a single dose, subchronic treatment, and discontinuation in healthy subjects
  publication-title: Neuropsychopharmacology
  doi: 10.1016/S0893-133X(01)00314-1
– volume: 32
  start-page: 749
  year: 1975
  ident: 10.1016/j.neuropharm.2016.04.047_bib33
  article-title: A review of REM sleep deprivation
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.1975.01760240077006
– volume: 5
  start-page: 238
  year: 1996
  ident: 10.1016/j.neuropharm.2016.04.047_bib22
  article-title: Sleep deprivation reduces the citalopram-induced inhibition of serotoninergic neuronal firing in the nucleus raphe dorsalis of the rat
  publication-title: J. Sleep. Res.
  doi: 10.1111/j.1365-2869.1996.00238.x
SSID ssj0004818
Score 2.3475907
Snippet Most antidepressants suppress rapid eye movement (REM) sleep, which is thought to be important to brain function, yet the resulting REM sleep restriction is...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 415
SubjectTerms Animals
Antidepressive Agents - pharmacology
Antidepressive Agents, Tricyclic - pharmacology
Homeostasis - drug effects
Homeostasis - physiology
Male
Paradoxical sleep
Rats
Rats, Wistar
Recovery
Selective serotonin reuptake inhibitors
Serotonin Uptake Inhibitors - pharmacology
Sleep deprivation
Sleep, REM - drug effects
Sleep, REM - physiology
Tricyclic antidepressants
Title REM sleep homeostasis in the absence of REM sleep: Effects of antidepressants
URI https://dx.doi.org/10.1016/j.neuropharm.2016.04.047
https://www.ncbi.nlm.nih.gov/pubmed/27150557
https://www.proquest.com/docview/1797868362
https://www.proquest.com/docview/1808715071
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6LXryIb9cXEWRPVvtIk1ZPIsqqrIis4C00aYIVbRe7Hrz4253pYxdBZUEoLW0TCJnpzBf65RtCDpRwfRMr5rgBnFiQWgeWYNzhPoqT-1bpqn7K4Jb3H9j1Y_jYIeftXhikVTaxv47pVbRunhw3s3k8yjLc4wupMcbCEQFWlkPFT8YEevnR55TmwSIvapWYsXXD5qk5XpVm5Ag1opHkxSvRUyy08nOK-g2CVqnocoksNhiSntXDXCYdk6-Q3l0tQv1xSIfTPVXlIe3Ru6k89ccqGdxfDGj5YsyIPhWvpgB4WGYlzXIKWJAmqsQ5oIWlk3YntNY4LvEpWCJr6LNIoVkjD5cXw_O-0xRVcDSsOcdOpLX2E24S32pmw9gGBmFJZAAHmhTwIGRsCJ6Q9bHGHVepy6xvAVUorjxPB8E6mcuL3GwSmsRBaGIvEZ4VTKGuDlzTxEsTzVORqi4R7TxK3SiOY-GLF9lSy57l1AISLSBdBofoEm_Sc1SrbszQ57Q1lfzmQRKSwwy991vrSvjA8K9JkpvivZQQsUTEI0j0f7SJXFh4IrTuko3aNSbj9vFFGIqtf41vmyzgXc1u2yFz47d3swtwaKz2Kn_fI_NnVzf92y-8dwpz
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fS9xAEB7EPrQv0p96VtstWJ9MTTabTdLSh9IqZ_VE5ATfttnNLqbY5DAnci_9p_oPdiY_7ii0RRAhJLDJwjKzmZlNvv0-gC0d-9ymWnh-iCcR5s7DJZj0JCdycu60afRTRsdyeCa-nkfnS_Cr3wtDsMou9rcxvYnWXctuZ83dSVHQHl9MjSkJR4SkLNcrWB_a2Q2u2-qPB1_QyW85398bfx56nbSAZ3DlNfUSYwzPpM24M8JFqQstJefEYjVkc6yKMG9hCMHcR0pvUue-cNxhbtVSB4Ghr6AY9x8IDBckm_Du5wJXIpIg6amfaXgdfKgFlTUklRMipSZUmWxYVknZ5e858V81b5P79h_DSle0sk-tXZ7Aki2fwvZJy3o922HjxSaueodts5MFH_bsGYxO90asvrR2wi6qH7bCerQualaUDItPlumajM4qx-bPvWctqXJNrej6osPrEmbnOZzdi6lfwHJZlXYNWJaGkU2DLA5cLDQR-eA1z4I8MzKPcz2AuLejMh3FOSltXKoey_ZdLTygyAPKF3jEAwjmPSctzcct-nzoXaX-mLIKs9Eter_pvavwjabfNFlpq-taYYiME5lgZfGfZxIfV7pUyw9gtZ0a83FzuhFF8fqdxvcaHg7HoyN1dHB8-BIe0Z0WWrcBy9Ora7uJtdhUv2rmPoNv9_2y_QbNLESl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=REM+sleep+homeostasis+in+the+absence+of+REM+sleep%3A+Effects+of+antidepressants&rft.jtitle=Neuropharmacology&rft.au=McCarthya%2C+Andrew&rft.au=Wafforda%2C+Keith&rft.au=Shanksa%2C+Elaine&rft.au=Ligockia%2C+Marcin&rft.date=2016-09-01&rft.issn=0028-3908&rft.volume=108&rft.spage=415&rft.epage=425&rft_id=info:doi/10.1016%2Fj.neuropharm.2016.04.047&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-3908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-3908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-3908&client=summon