REM sleep homeostasis in the absence of REM sleep: Effects of antidepressants
Most antidepressants suppress rapid eye movement (REM) sleep, which is thought to be important to brain function, yet the resulting REM sleep restriction is well tolerated. This study investigated the impact of antidepressants with different mechanisms of action, such as selective serotonin reuptake...
Saved in:
Published in | Neuropharmacology Vol. 108; pp. 415 - 425 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most antidepressants suppress rapid eye movement (REM) sleep, which is thought to be important to brain function, yet the resulting REM sleep restriction is well tolerated. This study investigated the impact of antidepressants with different mechanisms of action, such as selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCA), on the regulation of REM sleep in rats. REM sleep was first demonstrated to be homeostatically regulated using 5, 8 and 10 h of REM-sleep specific restriction through EEG-triggered arousals, with an average of 91 ± 10% of lost REM sleep recovered following a 26–29 -hour recovery period.
Acute treatment with the antidepressants paroxetine, citalopram and imipramine inhibited REM sleep by 84 ± 8, 84 ± 8 and 69 ± 9% respectively relative to vehicle control. The pharmacologically-induced REM sleep deficits by paroxetine and citalopram were not fully recovered, whereas, after imipramine the REM sleep deficit was fully compensated. Given the marked difference between REM sleep recovery following the administration of paroxetine, citalopram, imipramine and REM sleep restriction, the homeostatic response was further examined by pairing REM sleep specific restriction with the three antidepressants.
Surprisingly, the physiologically-induced REM sleep deficits incurred prior to suppression of REM sleep by all antidepressants was consistently recovered. The data indicate that REM sleep homeostasis remains operative following subsequent treatment with antidepressants and is unaffected by additional pharmacological inhibition of REM sleep.
•Selective serotonin re-uptake inhibitor antidepressants do not activate the REM sleep homeostat.•In contrast, the tricyclic antidepressant imipramine elicits a homeostatic response in REM sleep similar to that of REM sleep restriction.•The REM sleep homeostat remains active even in the presence of the pharmacological REM sleep inhibition antidepressants. |
---|---|
AbstractList | Most antidepressants suppress rapid eye movement (REM) sleep, which is thought to be important to brain function, yet the resulting REM sleep restriction is well tolerated. This study investigated the impact of antidepressants with different mechanisms of action, such as selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCA), on the regulation of REM sleep in rats. REM sleep was first demonstrated to be homeostatically regulated using 5, 8 and 10 h of REM-sleep specific restriction through EEG-triggered arousals, with an average of 91 plus or minus 10% of lost REM sleep recovered following a 26-29 -hour recovery period. Acute treatment with the antidepressants paroxetine, citalopram and imipramine inhibited REM sleep by 84 plus or minus 8, 84 plus or minus 8 and 69 plus or minus 9% respectively relative to vehicle control. The pharmacologically-induced REM sleep deficits by paroxetine and citalopram were not fully recovered, whereas, after imipramine the REM sleep deficit was fully compensated. Given the marked difference between REM sleep recovery following the administration of paroxetine, citalopram, imipramine and REM sleep restriction, the homeostatic response was further examined by pairing REM sleep specific restriction with the three antidepressants. Surprisingly, the physiologically-induced REM sleep deficits incurred prior to suppression of REM sleep by all antidepressants was consistently recovered. The data indicate that REM sleep homeostasis remains operative following subsequent treatment with antidepressants and is unaffected by additional pharmacological inhibition of REM sleep. Most antidepressants suppress rapid eye movement (REM) sleep, which is thought to be important to brain function, yet the resulting REM sleep restriction is well tolerated. This study investigated the impact of antidepressants with different mechanisms of action, such as selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCA), on the regulation of REM sleep in rats. REM sleep was first demonstrated to be homeostatically regulated using 5, 8 and 10 h of REM-sleep specific restriction through EEG-triggered arousals, with an average of 91 ± 10% of lost REM sleep recovered following a 26–29 -hour recovery period. Acute treatment with the antidepressants paroxetine, citalopram and imipramine inhibited REM sleep by 84 ± 8, 84 ± 8 and 69 ± 9% respectively relative to vehicle control. The pharmacologically-induced REM sleep deficits by paroxetine and citalopram were not fully recovered, whereas, after imipramine the REM sleep deficit was fully compensated. Given the marked difference between REM sleep recovery following the administration of paroxetine, citalopram, imipramine and REM sleep restriction, the homeostatic response was further examined by pairing REM sleep specific restriction with the three antidepressants. Surprisingly, the physiologically-induced REM sleep deficits incurred prior to suppression of REM sleep by all antidepressants was consistently recovered. The data indicate that REM sleep homeostasis remains operative following subsequent treatment with antidepressants and is unaffected by additional pharmacological inhibition of REM sleep. •Selective serotonin re-uptake inhibitor antidepressants do not activate the REM sleep homeostat.•In contrast, the tricyclic antidepressant imipramine elicits a homeostatic response in REM sleep similar to that of REM sleep restriction.•The REM sleep homeostat remains active even in the presence of the pharmacological REM sleep inhibition antidepressants. Most antidepressants suppress rapid eye movement (REM) sleep, which is thought to be important to brain function, yet the resulting REM sleep restriction is well tolerated. This study investigated the impact of antidepressants with different mechanisms of action, such as selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCA), on the regulation of REM sleep in rats. REM sleep was first demonstrated to be homeostatically regulated using 5, 8 and 10 h of REM-sleep specific restriction through EEG-triggered arousals, with an average of 91 ± 10% of lost REM sleep recovered following a 26-29 -hour recovery period. Acute treatment with the antidepressants paroxetine, citalopram and imipramine inhibited REM sleep by 84 ± 8, 84 ± 8 and 69 ± 9% respectively relative to vehicle control. The pharmacologically-induced REM sleep deficits by paroxetine and citalopram were not fully recovered, whereas, after imipramine the REM sleep deficit was fully compensated. Given the marked difference between REM sleep recovery following the administration of paroxetine, citalopram, imipramine and REM sleep restriction, the homeostatic response was further examined by pairing REM sleep specific restriction with the three antidepressants. Surprisingly, the physiologically-induced REM sleep deficits incurred prior to suppression of REM sleep by all antidepressants was consistently recovered. The data indicate that REM sleep homeostasis remains operative following subsequent treatment with antidepressants and is unaffected by additional pharmacological inhibition of REM sleep. Most antidepressants suppress rapid eye movement (REM) sleep, which is thought to be important to brain function, yet the resulting REM sleep restriction is well tolerated. This study investigated the impact of antidepressants with different mechanisms of action, such as selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCA), on the regulation of REM sleep in rats. REM sleep was first demonstrated to be homeostatically regulated using 5, 8 and 10 h of REM-sleep specific restriction through EEG-triggered arousals, with an average of 91 ± 10% of lost REM sleep recovered following a 26-29 -hour recovery period. Acute treatment with the antidepressants paroxetine, citalopram and imipramine inhibited REM sleep by 84 ± 8, 84 ± 8 and 69 ± 9% respectively relative to vehicle control. The pharmacologically-induced REM sleep deficits by paroxetine and citalopram were not fully recovered, whereas, after imipramine the REM sleep deficit was fully compensated. Given the marked difference between REM sleep recovery following the administration of paroxetine, citalopram, imipramine and REM sleep restriction, the homeostatic response was further examined by pairing REM sleep specific restriction with the three antidepressants. Surprisingly, the physiologically-induced REM sleep deficits incurred prior to suppression of REM sleep by all antidepressants was consistently recovered. The data indicate that REM sleep homeostasis remains operative following subsequent treatment with antidepressants and is unaffected by additional pharmacological inhibition of REM sleep.Most antidepressants suppress rapid eye movement (REM) sleep, which is thought to be important to brain function, yet the resulting REM sleep restriction is well tolerated. This study investigated the impact of antidepressants with different mechanisms of action, such as selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCA), on the regulation of REM sleep in rats. REM sleep was first demonstrated to be homeostatically regulated using 5, 8 and 10 h of REM-sleep specific restriction through EEG-triggered arousals, with an average of 91 ± 10% of lost REM sleep recovered following a 26-29 -hour recovery period. Acute treatment with the antidepressants paroxetine, citalopram and imipramine inhibited REM sleep by 84 ± 8, 84 ± 8 and 69 ± 9% respectively relative to vehicle control. The pharmacologically-induced REM sleep deficits by paroxetine and citalopram were not fully recovered, whereas, after imipramine the REM sleep deficit was fully compensated. Given the marked difference between REM sleep recovery following the administration of paroxetine, citalopram, imipramine and REM sleep restriction, the homeostatic response was further examined by pairing REM sleep specific restriction with the three antidepressants. Surprisingly, the physiologically-induced REM sleep deficits incurred prior to suppression of REM sleep by all antidepressants was consistently recovered. The data indicate that REM sleep homeostasis remains operative following subsequent treatment with antidepressants and is unaffected by additional pharmacological inhibition of REM sleep. |
Author | Wafford, Keith McCarthy, Andrew Ligocki, Marcin Shanks, Elaine Edgar, Dale M. Dijk, Derk-Jan |
Author_xml | – sequence: 1 givenname: Andrew surname: McCarthy fullname: McCarthy, Andrew email: a.mccarthy@surrey.ac.uk organization: Lilly Research Laboratories, Windlesham, Surrey, GU20 6PH, UK – sequence: 2 givenname: Keith surname: Wafford fullname: Wafford, Keith organization: Lilly Research Laboratories, Windlesham, Surrey, GU20 6PH, UK – sequence: 3 givenname: Elaine surname: Shanks fullname: Shanks, Elaine organization: Lilly Research Laboratories, Windlesham, Surrey, GU20 6PH, UK – sequence: 4 givenname: Marcin surname: Ligocki fullname: Ligocki, Marcin organization: Lilly Research Laboratories, Windlesham, Surrey, GU20 6PH, UK – sequence: 5 givenname: Dale M. surname: Edgar fullname: Edgar, Dale M. organization: Lilly Research Laboratories, Windlesham, Surrey, GU20 6PH, UK – sequence: 6 givenname: Derk-Jan surname: Dijk fullname: Dijk, Derk-Jan organization: Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guilford, Surrey, GU2 7XP, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27150557$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkVFrFDEQx4O02Gv1K8g--rJnks0mWR8ELVcVWgTR55DNTrgcu5s1kxP89s1ytYIvLQzMMPzmz8z8L8nZHGcgpGJ0yyiT7w7bGY4pLnubpi0vnS0VJdQLsmFaNbWiUpyRDaVc101H9QW5RDxQSoVm-iW54Iq1tG3Vhtx9391VOAIs1T5OEDFbDFiFucp7qGyPMDuooq8euffVzntwGdeunXMYYEmAWEp8Rc69HRFeP-Qr8vNm9-P6S3377fPX64-3tWt5k2vtnONWguXeCd92vgFaNtaglICBNR2XUkjFhaBlTdkPVHjuacd62TPmmuaKvD3pLin-OgJmMwV0MI52hnhEwzTV64mKPY2qTmmpG8kL-uYBPfYTDGZJYbLpj_n7rQLoE-BSREzgHxFGzWqMOZh_xpjVGENFiXX0w3-jLmSbQ5xzsmF8jsCnkwCUv_4OkAy6sJozhFTcMEMMT4vcA7-KrvQ |
CitedBy_id | crossref_primary_10_1016_j_bmcl_2019_06_043 crossref_primary_10_1073_pnas_1816456116 crossref_primary_10_3389_fphar_2018_00177 crossref_primary_10_1093_sleep_zsy046 crossref_primary_10_1093_sleep_zsaa023 crossref_primary_10_3390_e22030347 crossref_primary_10_1007_s00213_023_06442_3 crossref_primary_10_1007_s10439_023_03427_3 crossref_primary_10_1016_j_neubiorev_2023_105041 crossref_primary_10_1155_2020_8836983 crossref_primary_10_3389_fphar_2017_00096 crossref_primary_10_1038_s41398_023_02399_1 crossref_primary_10_3389_fnins_2019_01402 crossref_primary_10_1016_j_cub_2024_05_075 crossref_primary_10_1038_s41583_023_00764_z crossref_primary_10_1177_0269881120981378 crossref_primary_10_1098_rstb_2019_0655 crossref_primary_10_3389_fpsyt_2021_648713 crossref_primary_10_1038_s41398_022_01846_9 crossref_primary_10_3389_fnmol_2023_1128974 crossref_primary_10_1016_j_jneumeth_2024_110063 crossref_primary_10_1016_j_bbr_2023_114473 crossref_primary_10_1111_adj_13037 |
Cites_doi | 10.1016/j.ejphar.2005.08.050 10.1016/S0022-3565(25)26687-3 10.1093/sleep/14.1.48 10.1073/pnas.1408886111 10.1186/s12868-014-0120-8 10.5665/sleep.3192 10.1523/JNEUROSCI.20-11-04300.2000 10.1016/S0022-3565(24)37509-3 10.1016/0166-4328(95)00020-T 10.1523/JNEUROSCI.15-05-03526.1995 10.1016/j.brainres.2008.03.062 10.1152/ajpregu.00462.2001 10.1007/s00213-013-3046-4 10.1046/j.1365-2869.2002.00275.x 10.1016/0013-4694(90)90136-8 10.5665/sleep.4656 10.1001/archpsyc.1976.01770090114012 10.1016/0006-8993(95)00305-A 10.1016/0006-3223(95)00583-8 10.1001/archpsyc.1975.01760240093007 10.1016/j.euroneuro.2003.11.004 10.1016/0006-3223(94)00135-P 10.1016/j.biopsych.2011.07.016 10.1017/S0140525X00004003 10.1016/j.smrv.2012.11.001 10.1016/j.neuropharm.2011.04.006 10.1016/0278-5846(83)90122-7 10.1152/ajpregu.1998.274.4.R1186 10.1126/science.1063049 10.1176/ajp.138.4.429 10.1016/S0013-4694(96)95671-0 10.1016/S0022-3565(25)12045-4 10.1016/S0893-133X(01)00314-1 10.1001/archpsyc.1975.01760240077006 10.1111/j.1365-2869.1996.00238.x |
ContentType | Journal Article |
Copyright | 2016 The Authors Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2016 The Authors – notice: Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK |
DOI | 10.1016/j.neuropharm.2016.04.047 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | Neurosciences Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-7064 |
EndPage | 425 |
ExternalDocumentID | 27150557 10_1016_j_neuropharm_2016_04_047 S0028390816301873 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .55 .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 3O- 4.4 41~ 457 4G. 53G 5RE 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATCM AAXLA AAXUO ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABXDB ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHPSJ AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMQ HMT HVGLF HZ~ IHE J1W K-O KOM L7B M2V M34 M41 MO0 MOBAO N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SNS SPCBC SPT SSN SSP SSZ T5K TEORI WUQ X7M XOL ZGI ZXP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM PKN 7X8 7TK |
ID | FETCH-LOGICAL-c523t-8ccc2a6ea2fc4f59f3e00648e774ed13926646724405056bd04f2f091b6b11c33 |
IEDL.DBID | .~1 |
ISSN | 0028-3908 1873-7064 |
IngestDate | Fri Jul 11 00:32:20 EDT 2025 Fri Jul 11 10:56:14 EDT 2025 Wed Feb 19 02:43:18 EST 2025 Thu Jul 03 08:38:29 EDT 2025 Thu Apr 24 22:52:51 EDT 2025 Fri Feb 23 02:30:51 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Selective serotonin reuptake inhibitors Paradoxical sleep Recovery Tricyclic antidepressants Sleep deprivation |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c523t-8ccc2a6ea2fc4f59f3e00648e774ed13926646724405056bd04f2f091b6b11c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0028390816301873 |
PMID | 27150557 |
PQID | 1797868362 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1808715071 proquest_miscellaneous_1797868362 pubmed_primary_27150557 crossref_primary_10_1016_j_neuropharm_2016_04_047 crossref_citationtrail_10_1016_j_neuropharm_2016_04_047 elsevier_sciencedirect_doi_10_1016_j_neuropharm_2016_04_047 |
PublicationCentury | 2000 |
PublicationDate | September 2016 2016-09-00 20160901 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: September 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Neuropharmacology |
PublicationTitleAlternate | Neuropharmacology |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Dijk, Czeisler (bib5) 1995; 15 Kupfer, Spiker, Coble, Neil, Ulrich, Shaw (bib14) 1981; 138 Kátai, Adori, Kitka, Vas, Kalmár, Kostyalik, Tóthfalusi, Palkovits, Bagdy (bib12) 2013; 228 Benington, Heller (bib2) 1995; 681 Vogel (bib31) 1983; 7 Brunner, Dijk, Tobler, Borbely (bib3) 1990; 75 Luppi, Peyron, Fort (bib16) 2013; 36 Franken (bib9) 2002; 11 Kostyalik, Vas, Katai, Kitka, Gyertyan, Bagdy, Tothfalusi (bib13) 2014; 15 Vogel, Thurmond, Gibbons, Sloan, Walker (bib32) 1975; 32 Endo, Roth, Landolt, Werth, Aeschbach, Achermann, Borbély (bib7) 1998; 274 Maudhuit, Jolas, Chastanet, Hamon, Adrien (bib17) 1996; 40 Vertes, Eastman (bib30) 2000; 23 Van Gelder, Edgar, Dement (bib29) 1991; 14 Feige, Voderholzer, Riemann, Dittmann, Hohagen, Berger (bib8) 2002; 26 Shea, Mochizuki, Sagvaag, Aspevik, Bjorkum, Datta (bib26) 2008; 1213 Vogel (bib33) 1975; 32 Stephenson, Caron, Famina (bib28) 2015; 38 Coble, Foster, Kupfer (bib4) 1976; 33 Lucidi, Devoto, Violani, De Gennaro, Mastracci, Bertini (bib15) 1996; 99 Dingell, Sulser, Gillette (bib6) 1964; 143 Wilson, Bailey, Rich, Adrover, Potokar, Nutt (bib35) 2004; 14 Werth, Cote, Gallmann, Borbely, Achermann (bib34) 2002; 283 Phillips, Cotel, McCarthy, Edgar, Tricklebank, O’Neill, Jones, Wafford (bib20) 2012; 62 Ivarsson, Paterson, Hutson (bib38) 2005; 522 Prevot, Maudhuit, Le Poul, Hamon, Adrien (bib22) 1996; 5 Seidel, Maze, Dement, Edgar (bib24) 1995; 275 Rechtschaffen, Bergmann (bib23) 1995; 69 Sharpley, Cowen (bib25) 1995; 37 Jones, Oliphant, Peterson (bib11) 2001 Olive, Seidel, Edgar (bib18) 1998; 285 Pillai, Kalmbach, Ciesla (bib21) 2011; 70 Palagini, Baglioni, Ciapparelli, Gemignani, Riemann (bib19) 2013; 17 Siegel (bib27) 2001; 294 Zhang, Lahens, Ballance, Hughes, Hogenesch (bib37) 2014; 111 Wurts, Edgar (bib36) 2000; 20 Olive (10.1016/j.neuropharm.2016.04.047_bib18) 1998; 285 Wurts (10.1016/j.neuropharm.2016.04.047_bib36) 2000; 20 Phillips (10.1016/j.neuropharm.2016.04.047_bib20) 2012; 62 Franken (10.1016/j.neuropharm.2016.04.047_bib9) 2002; 11 Wilson (10.1016/j.neuropharm.2016.04.047_bib35) 2004; 14 Kupfer (10.1016/j.neuropharm.2016.04.047_bib14) 1981; 138 Shea (10.1016/j.neuropharm.2016.04.047_bib26) 2008; 1213 Vogel (10.1016/j.neuropharm.2016.04.047_bib33) 1975; 32 Pillai (10.1016/j.neuropharm.2016.04.047_bib21) 2011; 70 Zhang (10.1016/j.neuropharm.2016.04.047_bib37) 2014; 111 Van Gelder (10.1016/j.neuropharm.2016.04.047_bib29) 1991; 14 Vogel (10.1016/j.neuropharm.2016.04.047_bib31) 1983; 7 Sharpley (10.1016/j.neuropharm.2016.04.047_bib25) 1995; 37 Vogel (10.1016/j.neuropharm.2016.04.047_bib32) 1975; 32 Kostyalik (10.1016/j.neuropharm.2016.04.047_bib13) 2014; 15 Seidel (10.1016/j.neuropharm.2016.04.047_bib24) 1995; 275 Kátai (10.1016/j.neuropharm.2016.04.047_bib12) 2013; 228 Brunner (10.1016/j.neuropharm.2016.04.047_bib3) 1990; 75 Dijk (10.1016/j.neuropharm.2016.04.047_bib5) 1995; 15 Luppi (10.1016/j.neuropharm.2016.04.047_bib16) 2013; 36 Maudhuit (10.1016/j.neuropharm.2016.04.047_bib17) 1996; 40 Lucidi (10.1016/j.neuropharm.2016.04.047_bib15) 1996; 99 Siegel (10.1016/j.neuropharm.2016.04.047_bib27) 2001; 294 Ivarsson (10.1016/j.neuropharm.2016.04.047_bib38) 2005; 522 Coble (10.1016/j.neuropharm.2016.04.047_bib4) 1976; 33 Dingell (10.1016/j.neuropharm.2016.04.047_bib6) 1964; 143 Benington (10.1016/j.neuropharm.2016.04.047_bib2) 1995; 681 Werth (10.1016/j.neuropharm.2016.04.047_bib34) 2002; 283 Rechtschaffen (10.1016/j.neuropharm.2016.04.047_bib23) 1995; 69 Jones (10.1016/j.neuropharm.2016.04.047_bib11) 2001 Feige (10.1016/j.neuropharm.2016.04.047_bib8) 2002; 26 Vertes (10.1016/j.neuropharm.2016.04.047_bib30) 2000; 23 Endo (10.1016/j.neuropharm.2016.04.047_bib7) 1998; 274 Stephenson (10.1016/j.neuropharm.2016.04.047_bib28) 2015; 38 Palagini (10.1016/j.neuropharm.2016.04.047_bib19) 2013; 17 Prevot (10.1016/j.neuropharm.2016.04.047_bib22) 1996; 5 |
References_xml | – volume: 7 start-page: 343 year: 1983 end-page: 349 ident: bib31 article-title: Evidence for REM sleep deprivation as the mechanism of action of antidepressant drugs publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry – volume: 40 start-page: 1000 year: 1996 end-page: 1007 ident: bib17 article-title: Reduced inhibitory potency of serotonin reuptake blockers on central serotoninergic neurons in rats selectively deprived of rapid eye movement sleep publication-title: Biol. Psychiatry – volume: 20 start-page: 4300 year: 2000 end-page: 4310 ident: bib36 article-title: Circadian and homeostatic control of rapid eye movement (REM) sleep: promotion of REM tendency by the suprachiasmatic nucleus publication-title: J. Neurosci. – volume: 138 start-page: 429 year: 1981 end-page: 434 ident: bib14 article-title: Sleep and treatment prediction in endogenous depression publication-title: Am. J. Psychiatry – volume: 274 start-page: R1186 year: 1998 end-page: R1194 ident: bib7 article-title: Selective REM sleep deprivation in humans: effects on sleep and sleep EEG publication-title: Am. J. Physiol. - Regul. Integr. Comp. Physiol. – volume: 285 start-page: 1073 year: 1998 end-page: 1083 ident: bib18 article-title: Compensatory sleep responses to wakefulness induced by the dopamine autoreceptor antagonist (-)DS121 publication-title: J. Pharmacol. Exp. Ther. – volume: 275 start-page: 263 year: 1995 end-page: 273 ident: bib24 article-title: Alpha-2 adrenergic modulation of sleep: time-of-day-dependent pharmacodynamic profiles of dexmedetomidine and clonidine in the rat publication-title: J. Pharmacol. Exp. Ther. – volume: 143 start-page: 14 year: 1964 end-page: 22 ident: bib6 article-title: Species differences in the metabolism of imipramine and desmethylimipramine (Dmi) publication-title: J. Pharmacol. Exp. Ther. – volume: 32 start-page: 749 year: 1975 end-page: 761 ident: bib33 article-title: A review of REM sleep deprivation publication-title: Arch. Gen. Psychiatry – volume: 37 start-page: 85 year: 1995 end-page: 98 ident: bib25 article-title: Effect of pharmacologic treatments on the sleep of depressed patients publication-title: Biol. Psychiatry – volume: 33 start-page: 1124 year: 1976 end-page: 1127 ident: bib4 article-title: Electroencephalographic sleep diagnosis of primary depression publication-title: Arch. Gen. Psychiatry – volume: 62 start-page: 1359 year: 2012 end-page: 1370 ident: bib20 article-title: Differential effects of NMDA antagonists on high frequency and gamma EEG oscillations in a neurodevelopmental model of schizophrenia publication-title: Neuropharmacology – volume: 681 start-page: 141 year: 1995 end-page: 146 ident: bib2 article-title: Monoaminergic and cholinergic modulation of REM-sleep timing in rats publication-title: Brain Res. – volume: 23 start-page: 867 year: 2000 end-page: 876 ident: bib30 article-title: The case against memory consolidation in REM sleep publication-title: Behav. Brain Sci. – volume: 294 start-page: 1058 year: 2001 end-page: 1063 ident: bib27 article-title: The REM sleep-memory consolidation hypothesis publication-title: Science – volume: 522 start-page: 63 year: 2005 end-page: 71 ident: bib38 article-title: Antidepressants and REM sleep in Wistar-Kyoto and Sprague-Dawley rats publication-title: Eur J Pharmacol – volume: 283 start-page: R521 year: 2002 end-page: R526 ident: bib34 article-title: Selective REM sleep deprivation during daytime I. Time course of interventions and recovery sleep publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. – volume: 14 start-page: 367 year: 2004 end-page: 372 ident: bib35 article-title: Using sleep to evaluate comparative serotonergic effects of paroxetine and citalopram publication-title: Eur. Neuropsychopharmacol. – volume: 17 start-page: 377 year: 2013 end-page: 390 ident: bib19 article-title: REM sleep dysregulation in depression: state of the art publication-title: Sleep Med. Rev. – volume: 1213 start-page: 48 year: 2008 end-page: 56 ident: bib26 article-title: Rapid eye movement (REM) sleep homeostatic regulatory processes in the rat: changes in the sleep-wake stages and electroencephalographic power spectra publication-title: Brain Res. – volume: 15 start-page: 120 year: 2014 ident: bib13 article-title: Chronic escitalopram treatment attenuated the accelerated rapid eye movement sleep transitions after selective rapid eye movement sleep deprivation: a model-based analysis using Markov chains publication-title: BMC Neurosci. – volume: 69 start-page: 55 year: 1995 end-page: 63 ident: bib23 article-title: Sleep deprivation in the rat by the disk-over-water method publication-title: Behav. Brain Res. – volume: 26 start-page: 246 year: 2002 end-page: 258 ident: bib8 article-title: Fluoxetine and sleep EEG: effects of a single dose, subchronic treatment, and discontinuation in healthy subjects publication-title: Neuropsychopharmacology – volume: 99 start-page: 556 year: 1996 end-page: 561 ident: bib15 article-title: Rapid eye movements density as a measure of sleep need: REM density decreases linearly with the reduction of prior sleep duration publication-title: Electroencephalogr. Clin. Neurophysiol. – year: 2001 ident: bib11 article-title: SciPy: Open Source Scientific Tools for Python – volume: 111 start-page: 16219 year: 2014 end-page: 16224 ident: bib37 article-title: A circadian gene expression atlas in mammals: implications for biology and medicine publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 38 start-page: 685 year: 2015 end-page: 697 ident: bib28 article-title: Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat publication-title: Sleep – volume: 70 start-page: 912 year: 2011 end-page: 919 ident: bib21 article-title: A meta-analysis of electroencephalographic sleep in depression: evidence for genetic biomarkers publication-title: Biol. Psychiatry – volume: 32 start-page: 765 year: 1975 end-page: 777 ident: bib32 article-title: REM sleep reduction effects on depression syndromes publication-title: Arch. Gen. Psychiatry – volume: 14 start-page: 48 year: 1991 end-page: 55 ident: bib29 article-title: Real-time automated sleep scoring: validation of a microcomputer-based system for mice publication-title: Sleep – volume: 228 start-page: 439 year: 2013 end-page: 449 ident: bib12 article-title: Acute escitalopram treatment inhibits REM sleep rebound and activation of MCH-expressing neurons in the lateral hypothalamus after long term selective REM sleep deprivation publication-title: Psychopharmacology – volume: 75 start-page: 492 year: 1990 end-page: 499 ident: bib3 article-title: Effect of partial sleep deprivation on sleep stages and EEG power spectra: evidence for non-REM and REM sleep homeostasis publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 15 start-page: 3526 year: 1995 end-page: 3538 ident: bib5 article-title: Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans publication-title: J. Neurosci. – volume: 5 start-page: 238 year: 1996 end-page: 245 ident: bib22 article-title: Sleep deprivation reduces the citalopram-induced inhibition of serotoninergic neuronal firing in the nucleus raphe dorsalis of the rat publication-title: J. Sleep. Res. – volume: 11 start-page: 17 year: 2002 end-page: 28 ident: bib9 article-title: Long-term vs. short-term processes regulating REM sleep publication-title: J. Sleep. Res. – volume: 36 start-page: 1775 year: 2013 end-page: 1776 ident: bib16 article-title: Role of MCH neurons in para-doxical (REM) sleep control publication-title: Sleep – volume: 522 start-page: 63 year: 2005 ident: 10.1016/j.neuropharm.2016.04.047_bib38 article-title: Antidepressants and REM sleep in Wistar-Kyoto and Sprague-Dawley rats publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2005.08.050 – volume: 143 start-page: 14 year: 1964 ident: 10.1016/j.neuropharm.2016.04.047_bib6 article-title: Species differences in the metabolism of imipramine and desmethylimipramine (Dmi) publication-title: J. Pharmacol. Exp. Ther. doi: 10.1016/S0022-3565(25)26687-3 – volume: 14 start-page: 48 year: 1991 ident: 10.1016/j.neuropharm.2016.04.047_bib29 article-title: Real-time automated sleep scoring: validation of a microcomputer-based system for mice publication-title: Sleep doi: 10.1093/sleep/14.1.48 – volume: 111 start-page: 16219 year: 2014 ident: 10.1016/j.neuropharm.2016.04.047_bib37 article-title: A circadian gene expression atlas in mammals: implications for biology and medicine publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1408886111 – volume: 15 start-page: 120 year: 2014 ident: 10.1016/j.neuropharm.2016.04.047_bib13 article-title: Chronic escitalopram treatment attenuated the accelerated rapid eye movement sleep transitions after selective rapid eye movement sleep deprivation: a model-based analysis using Markov chains publication-title: BMC Neurosci. doi: 10.1186/s12868-014-0120-8 – volume: 36 start-page: 1775 year: 2013 ident: 10.1016/j.neuropharm.2016.04.047_bib16 article-title: Role of MCH neurons in para-doxical (REM) sleep control publication-title: Sleep doi: 10.5665/sleep.3192 – volume: 20 start-page: 4300 year: 2000 ident: 10.1016/j.neuropharm.2016.04.047_bib36 article-title: Circadian and homeostatic control of rapid eye movement (REM) sleep: promotion of REM tendency by the suprachiasmatic nucleus publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-11-04300.2000 – volume: 285 start-page: 1073 year: 1998 ident: 10.1016/j.neuropharm.2016.04.047_bib18 article-title: Compensatory sleep responses to wakefulness induced by the dopamine autoreceptor antagonist (-)DS121 publication-title: J. Pharmacol. Exp. Ther. doi: 10.1016/S0022-3565(24)37509-3 – volume: 69 start-page: 55 year: 1995 ident: 10.1016/j.neuropharm.2016.04.047_bib23 article-title: Sleep deprivation in the rat by the disk-over-water method publication-title: Behav. Brain Res. doi: 10.1016/0166-4328(95)00020-T – volume: 15 start-page: 3526 year: 1995 ident: 10.1016/j.neuropharm.2016.04.047_bib5 article-title: Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.15-05-03526.1995 – volume: 1213 start-page: 48 year: 2008 ident: 10.1016/j.neuropharm.2016.04.047_bib26 article-title: Rapid eye movement (REM) sleep homeostatic regulatory processes in the rat: changes in the sleep-wake stages and electroencephalographic power spectra publication-title: Brain Res. doi: 10.1016/j.brainres.2008.03.062 – year: 2001 ident: 10.1016/j.neuropharm.2016.04.047_bib11 – volume: 283 start-page: R521 year: 2002 ident: 10.1016/j.neuropharm.2016.04.047_bib34 article-title: Selective REM sleep deprivation during daytime I. Time course of interventions and recovery sleep publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00462.2001 – volume: 228 start-page: 439 year: 2013 ident: 10.1016/j.neuropharm.2016.04.047_bib12 article-title: Acute escitalopram treatment inhibits REM sleep rebound and activation of MCH-expressing neurons in the lateral hypothalamus after long term selective REM sleep deprivation publication-title: Psychopharmacology doi: 10.1007/s00213-013-3046-4 – volume: 11 start-page: 17 year: 2002 ident: 10.1016/j.neuropharm.2016.04.047_bib9 article-title: Long-term vs. short-term processes regulating REM sleep publication-title: J. Sleep. Res. doi: 10.1046/j.1365-2869.2002.00275.x – volume: 75 start-page: 492 year: 1990 ident: 10.1016/j.neuropharm.2016.04.047_bib3 article-title: Effect of partial sleep deprivation on sleep stages and EEG power spectra: evidence for non-REM and REM sleep homeostasis publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(90)90136-8 – volume: 38 start-page: 685 year: 2015 ident: 10.1016/j.neuropharm.2016.04.047_bib28 article-title: Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat publication-title: Sleep doi: 10.5665/sleep.4656 – volume: 33 start-page: 1124 year: 1976 ident: 10.1016/j.neuropharm.2016.04.047_bib4 article-title: Electroencephalographic sleep diagnosis of primary depression publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.1976.01770090114012 – volume: 681 start-page: 141 year: 1995 ident: 10.1016/j.neuropharm.2016.04.047_bib2 article-title: Monoaminergic and cholinergic modulation of REM-sleep timing in rats publication-title: Brain Res. doi: 10.1016/0006-8993(95)00305-A – volume: 40 start-page: 1000 year: 1996 ident: 10.1016/j.neuropharm.2016.04.047_bib17 article-title: Reduced inhibitory potency of serotonin reuptake blockers on central serotoninergic neurons in rats selectively deprived of rapid eye movement sleep publication-title: Biol. Psychiatry doi: 10.1016/0006-3223(95)00583-8 – volume: 32 start-page: 765 year: 1975 ident: 10.1016/j.neuropharm.2016.04.047_bib32 article-title: REM sleep reduction effects on depression syndromes publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.1975.01760240093007 – volume: 14 start-page: 367 year: 2004 ident: 10.1016/j.neuropharm.2016.04.047_bib35 article-title: Using sleep to evaluate comparative serotonergic effects of paroxetine and citalopram publication-title: Eur. Neuropsychopharmacol. doi: 10.1016/j.euroneuro.2003.11.004 – volume: 37 start-page: 85 year: 1995 ident: 10.1016/j.neuropharm.2016.04.047_bib25 article-title: Effect of pharmacologic treatments on the sleep of depressed patients publication-title: Biol. Psychiatry doi: 10.1016/0006-3223(94)00135-P – volume: 70 start-page: 912 year: 2011 ident: 10.1016/j.neuropharm.2016.04.047_bib21 article-title: A meta-analysis of electroencephalographic sleep in depression: evidence for genetic biomarkers publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2011.07.016 – volume: 23 start-page: 867 year: 2000 ident: 10.1016/j.neuropharm.2016.04.047_bib30 article-title: The case against memory consolidation in REM sleep publication-title: Behav. Brain Sci. doi: 10.1017/S0140525X00004003 – volume: 17 start-page: 377 year: 2013 ident: 10.1016/j.neuropharm.2016.04.047_bib19 article-title: REM sleep dysregulation in depression: state of the art publication-title: Sleep Med. Rev. doi: 10.1016/j.smrv.2012.11.001 – volume: 62 start-page: 1359 year: 2012 ident: 10.1016/j.neuropharm.2016.04.047_bib20 article-title: Differential effects of NMDA antagonists on high frequency and gamma EEG oscillations in a neurodevelopmental model of schizophrenia publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2011.04.006 – volume: 7 start-page: 343 year: 1983 ident: 10.1016/j.neuropharm.2016.04.047_bib31 article-title: Evidence for REM sleep deprivation as the mechanism of action of antidepressant drugs publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry doi: 10.1016/0278-5846(83)90122-7 – volume: 274 start-page: R1186 year: 1998 ident: 10.1016/j.neuropharm.2016.04.047_bib7 article-title: Selective REM sleep deprivation in humans: effects on sleep and sleep EEG publication-title: Am. J. Physiol. - Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.1998.274.4.R1186 – volume: 294 start-page: 1058 year: 2001 ident: 10.1016/j.neuropharm.2016.04.047_bib27 article-title: The REM sleep-memory consolidation hypothesis publication-title: Science doi: 10.1126/science.1063049 – volume: 138 start-page: 429 year: 1981 ident: 10.1016/j.neuropharm.2016.04.047_bib14 article-title: Sleep and treatment prediction in endogenous depression publication-title: Am. J. Psychiatry doi: 10.1176/ajp.138.4.429 – volume: 99 start-page: 556 year: 1996 ident: 10.1016/j.neuropharm.2016.04.047_bib15 article-title: Rapid eye movements density as a measure of sleep need: REM density decreases linearly with the reduction of prior sleep duration publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0013-4694(96)95671-0 – volume: 275 start-page: 263 year: 1995 ident: 10.1016/j.neuropharm.2016.04.047_bib24 article-title: Alpha-2 adrenergic modulation of sleep: time-of-day-dependent pharmacodynamic profiles of dexmedetomidine and clonidine in the rat publication-title: J. Pharmacol. Exp. Ther. doi: 10.1016/S0022-3565(25)12045-4 – volume: 26 start-page: 246 year: 2002 ident: 10.1016/j.neuropharm.2016.04.047_bib8 article-title: Fluoxetine and sleep EEG: effects of a single dose, subchronic treatment, and discontinuation in healthy subjects publication-title: Neuropsychopharmacology doi: 10.1016/S0893-133X(01)00314-1 – volume: 32 start-page: 749 year: 1975 ident: 10.1016/j.neuropharm.2016.04.047_bib33 article-title: A review of REM sleep deprivation publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.1975.01760240077006 – volume: 5 start-page: 238 year: 1996 ident: 10.1016/j.neuropharm.2016.04.047_bib22 article-title: Sleep deprivation reduces the citalopram-induced inhibition of serotoninergic neuronal firing in the nucleus raphe dorsalis of the rat publication-title: J. Sleep. Res. doi: 10.1111/j.1365-2869.1996.00238.x |
SSID | ssj0004818 |
Score | 2.3475907 |
Snippet | Most antidepressants suppress rapid eye movement (REM) sleep, which is thought to be important to brain function, yet the resulting REM sleep restriction is... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 415 |
SubjectTerms | Animals Antidepressive Agents - pharmacology Antidepressive Agents, Tricyclic - pharmacology Homeostasis - drug effects Homeostasis - physiology Male Paradoxical sleep Rats Rats, Wistar Recovery Selective serotonin reuptake inhibitors Serotonin Uptake Inhibitors - pharmacology Sleep deprivation Sleep, REM - drug effects Sleep, REM - physiology Tricyclic antidepressants |
Title | REM sleep homeostasis in the absence of REM sleep: Effects of antidepressants |
URI | https://dx.doi.org/10.1016/j.neuropharm.2016.04.047 https://www.ncbi.nlm.nih.gov/pubmed/27150557 https://www.proquest.com/docview/1797868362 https://www.proquest.com/docview/1808715071 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6LXryIb9cXEWRPVvtIk1ZPIsqqrIis4C00aYIVbRe7Hrz4253pYxdBZUEoLW0TCJnpzBf65RtCDpRwfRMr5rgBnFiQWgeWYNzhPoqT-1bpqn7K4Jb3H9j1Y_jYIeftXhikVTaxv47pVbRunhw3s3k8yjLc4wupMcbCEQFWlkPFT8YEevnR55TmwSIvapWYsXXD5qk5XpVm5Ag1opHkxSvRUyy08nOK-g2CVqnocoksNhiSntXDXCYdk6-Q3l0tQv1xSIfTPVXlIe3Ru6k89ccqGdxfDGj5YsyIPhWvpgB4WGYlzXIKWJAmqsQ5oIWlk3YntNY4LvEpWCJr6LNIoVkjD5cXw_O-0xRVcDSsOcdOpLX2E24S32pmw9gGBmFJZAAHmhTwIGRsCJ6Q9bHGHVepy6xvAVUorjxPB8E6mcuL3GwSmsRBaGIvEZ4VTKGuDlzTxEsTzVORqi4R7TxK3SiOY-GLF9lSy57l1AISLSBdBofoEm_Sc1SrbszQ57Q1lfzmQRKSwwy991vrSvjA8K9JkpvivZQQsUTEI0j0f7SJXFh4IrTuko3aNSbj9vFFGIqtf41vmyzgXc1u2yFz47d3swtwaKz2Kn_fI_NnVzf92y-8dwpz |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fS9xAEB7EPrQv0p96VtstWJ9MTTabTdLSh9IqZ_VE5ATfttnNLqbY5DAnci_9p_oPdiY_7ii0RRAhJLDJwjKzmZlNvv0-gC0d-9ymWnh-iCcR5s7DJZj0JCdycu60afRTRsdyeCa-nkfnS_Cr3wtDsMou9rcxvYnWXctuZ83dSVHQHl9MjSkJR4SkLNcrWB_a2Q2u2-qPB1_QyW85398bfx56nbSAZ3DlNfUSYwzPpM24M8JFqQstJefEYjVkc6yKMG9hCMHcR0pvUue-cNxhbtVSB4Ghr6AY9x8IDBckm_Du5wJXIpIg6amfaXgdfKgFlTUklRMipSZUmWxYVknZ5e858V81b5P79h_DSle0sk-tXZ7Aki2fwvZJy3o922HjxSaueodts5MFH_bsGYxO90asvrR2wi6qH7bCerQualaUDItPlumajM4qx-bPvWctqXJNrej6osPrEmbnOZzdi6lfwHJZlXYNWJaGkU2DLA5cLDQR-eA1z4I8MzKPcz2AuLejMh3FOSltXKoey_ZdLTygyAPKF3jEAwjmPSctzcct-nzoXaX-mLIKs9Eter_pvavwjabfNFlpq-taYYiME5lgZfGfZxIfV7pUyw9gtZ0a83FzuhFF8fqdxvcaHg7HoyN1dHB8-BIe0Z0WWrcBy9Ora7uJtdhUv2rmPoNv9_2y_QbNLESl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=REM+sleep+homeostasis+in+the+absence+of+REM+sleep%3A+Effects+of+antidepressants&rft.jtitle=Neuropharmacology&rft.au=McCarthya%2C+Andrew&rft.au=Wafforda%2C+Keith&rft.au=Shanksa%2C+Elaine&rft.au=Ligockia%2C+Marcin&rft.date=2016-09-01&rft.issn=0028-3908&rft.volume=108&rft.spage=415&rft.epage=425&rft_id=info:doi/10.1016%2Fj.neuropharm.2016.04.047&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-3908&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-3908&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-3908&client=summon |