A review of methods to reduce the probability of the airborne spread of COVID-19 in ventilation systems and enclosed spaces
COVID-19 forced the human population to rethink its way of living. The threat posed by the potential spread of the virus via an airborne transmission mode through ventilation systems in buildings and enclosed spaces has been recognized as a major concern. To mitigate this threat, researchers have ex...
Saved in:
Published in | Environmental research Vol. 203; no. C; p. 111765 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.01.2022
Elsevier The Authors. Published by Elsevier Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0013-9351 1096-0953 1096-0953 |
DOI | 10.1016/j.envres.2021.111765 |
Cover
Loading…
Abstract | COVID-19 forced the human population to rethink its way of living. The threat posed by the potential spread of the virus via an airborne transmission mode through ventilation systems in buildings and enclosed spaces has been recognized as a major concern. To mitigate this threat, researchers have explored different technologies and methods that can remove or decrease the concentration of the virus in ventilation systems and enclosed spaces. Although many technologies and methods have already been researched, some are currently available on the market, but their effectiveness and safety concerns have not been fully investigated. To acquire a broader view and collective perspective of the current research and development status, this paper discusses a comprehensive review of various workable technologies and methods to combat airborne viruses, e.g., COVID-19, in ventilation systems and enclosed spaces. These technologies and methods include an increase in ventilation, high-efficiency air filtration, ionization of the air, environmental condition control, ultraviolet germicidal irradiation, non-thermal plasma and reactive oxygen species, filter coatings, chemical disinfectants, and heat inactivation. Research gaps have been identified and discussed, and recommendations for applying such technologies and methods have also been provided in this article.
•Comprehensive review of COVID-19 mitigation methods focusing on HVAC systems.•Investigated methods include ventilation, filtration, and air ionization.•Other featured methods include environmental conditioning and ultraviolet light.•Developing technologies include heat, nanoparticles, chemical, and plasma methods.•Identified research gaps provide paths for future work and development. |
---|---|
AbstractList | COVID-19 forced the human population to rethink its way of living. The threat posed by the potential spread of the virus via an airborne transmission mode through ventilation systems in buildings and enclosed spaces has been recognized as a major concern. To mitigate this threat, researchers have explored different technologies and methods that can remove or decrease the concentration of the virus in ventilation systems and enclosed spaces. Although many technologies and methods have already been researched, some are currently available on the market, but their effectiveness and safety concerns have not been fully investigated. To acquire a broader view and collective perspective of the current research and development status, this paper discusses a comprehensive review of various workable technologies and methods to combat airborne viruses, e.g., COVID-19, in ventilation systems and enclosed spaces. These technologies and methods include an increase in ventilation, high-efficiency air filtration, ionization of the air, environmental condition control, ultraviolet germicidal irradiation, non-thermal plasma and reactive oxygen species, filter coatings, chemical disinfectants, and heat inactivation. Research gaps have been identified and discussed, and recommendations for applying such technologies and methods have also been provided in this article. COVID-19 forced the human population to rethink its way of living. The threat posed by the potential spread of the virus via an airborne transmission mode through ventilation systems in buildings and enclosed spaces has been recognized as a major concern. To mitigate this threat, researchers have explored different technologies and methods that can remove or decrease the concentration of the virus in ventilation systems and enclosed spaces. Although many technologies and methods have already been researched, some are currently available on the market, but their effectiveness and safety concerns have not been fully investigated. To acquire a broader view and collective perspective of the current research and development status, this paper discusses a comprehensive review of various workable technologies and methods to combat airborne viruses, e.g., COVID-19, in ventilation systems and enclosed spaces. These technologies and methods include an increase in ventilation, high-efficiency air filtration, ionization of the air, environmental condition control, ultraviolet germicidal irradiation, non-thermal plasma and reactive oxygen species, filter coatings, chemical disinfectants, and heat inactivation. Research gaps have been identified and discussed, and recommendations for applying such technologies and methods have also been provided in this article. •Comprehensive review of COVID-19 mitigation methods focusing on HVAC systems.•Investigated methods include ventilation, filtration, and air ionization.•Other featured methods include environmental conditioning and ultraviolet light.•Developing technologies include heat, nanoparticles, chemical, and plasma methods.•Identified research gaps provide paths for future work and development. COVID-19 forced the human population to rethink its way of living. The threat posed by the potential spread of the virus via an airborne transmission mode through ventilation systems in buildings and enclosed spaces has been recognized as a major concern. To mitigate this threat, researchers have explored different technologies and methods that can remove or decrease the concentration of the virus in ventilation systems and enclosed spaces. Although many technologies and methods have already been researched, some are currently available on the market, but their effectiveness and safety concerns have not been fully investigated. To acquire a broader view and collective perspective of the current research and development status, this paper discusses a comprehensive review of various workable technologies and methods to combat airborne viruses, e.g., COVID-19, in ventilation systems and enclosed spaces. These technologies and methods include an increase in ventilation, high-efficiency air filtration, ionization of the air, environmental condition control, ultraviolet germicidal irradiation, non-thermal plasma and reactive oxygen species, filter coatings, chemical disinfectants, and heat inactivation. Research gaps have been identified and discussed, and recommendations for applying such technologies and methods have also been provided in this article.COVID-19 forced the human population to rethink its way of living. The threat posed by the potential spread of the virus via an airborne transmission mode through ventilation systems in buildings and enclosed spaces has been recognized as a major concern. To mitigate this threat, researchers have explored different technologies and methods that can remove or decrease the concentration of the virus in ventilation systems and enclosed spaces. Although many technologies and methods have already been researched, some are currently available on the market, but their effectiveness and safety concerns have not been fully investigated. To acquire a broader view and collective perspective of the current research and development status, this paper discusses a comprehensive review of various workable technologies and methods to combat airborne viruses, e.g., COVID-19, in ventilation systems and enclosed spaces. These technologies and methods include an increase in ventilation, high-efficiency air filtration, ionization of the air, environmental condition control, ultraviolet germicidal irradiation, non-thermal plasma and reactive oxygen species, filter coatings, chemical disinfectants, and heat inactivation. Research gaps have been identified and discussed, and recommendations for applying such technologies and methods have also been provided in this article. |
ArticleNumber | 111765 |
Author | Rickert, Jaime Berry, Gentry Parsons, Adam Cho, Heejin Morgan, Matthew |
Author_xml | – sequence: 1 givenname: Gentry orcidid: 0000-0002-2921-151X surname: Berry fullname: Berry, Gentry – sequence: 2 givenname: Adam surname: Parsons fullname: Parsons, Adam – sequence: 3 givenname: Matthew surname: Morgan fullname: Morgan, Matthew – sequence: 4 givenname: Jaime surname: Rickert fullname: Rickert, Jaime – sequence: 5 givenname: Heejin orcidid: 0000-0003-2789-510X surname: Cho fullname: Cho, Heejin email: cho@me.msstate.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34331921$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1810612$$D View this record in Osti.gov |
BookMark | eNqFUk2PUyEUJWaMM1P9B8YQV25e5cLjfbgwmdSvSSaZjbolPLi1NK9QgXbS-Ofl2TpRF84GwuHcw-Hec0nOfPBIyHNgc2DQvF7P0e8jpjlnHOYA0DbyEbkA1jcV66U4IxeMgah6IeGcXKa0LkeQgj0h56IWAnoOF-THFY24d3hHw5JuMK-CTTSHAtqdQZpXSLcxDHpwo8uHiTRB2sUhRI80bSNqO8GL26_X7yroqfN0jz67UWcXPE2HlHGTqPaWojdjSGhLmTaYnpLHSz0mfHbaZ-TLh_efF5-qm9uP14urm8pILnLViWHgsmvaYbC6lZbVsmkkrxlbMmHqgfOy2HrJJDccmBDMTAh0FrhoTS1m5O1Rd7sbNmhNcRf1qLbRbXQ8qKCd-vvGu5X6FvaqE9DWsisCL48CIWWnknEZzcoE79FkBR2wprw0I69Or8TwfYcpq41LBsdRewy7pHgjiutG9uxhqpQt57JvJu8v_vR-b_r3BAuhPhJMDClFXN5TgKkpKGqtjkFRU1DUMSil7M0_ZeVXvyZWOuDGh4pPDcUytRKeOPWkDBeti1NLbHD_F_gJm-Ta_g |
CitedBy_id | crossref_primary_10_3390_en15041359 crossref_primary_10_1016_j_scitotenv_2024_174432 crossref_primary_10_1007_s13762_022_04399_y crossref_primary_10_1016_j_porgcoat_2024_108636 crossref_primary_10_1016_j_jaerosci_2022_106078 crossref_primary_10_1016_j_buildenv_2024_111957 crossref_primary_10_1016_j_buildenv_2025_112579 crossref_primary_10_3390_app14167311 crossref_primary_10_3390_en15030937 crossref_primary_10_1016_j_scs_2024_105185 crossref_primary_10_1136_bmj_o1 crossref_primary_10_1016_j_enbuild_2022_112145 crossref_primary_10_1016_j_heliyon_2023_e15207 crossref_primary_10_1016_j_buildenv_2023_110074 crossref_primary_10_2139_ssrn_4134218 crossref_primary_10_3390_buildings12070976 crossref_primary_10_1007_s12273_022_0951_7 crossref_primary_10_1111_risa_15103 crossref_primary_10_29026_oea_2023_220201 crossref_primary_10_1016_j_scs_2022_104048 crossref_primary_10_3390_microorganisms13030593 crossref_primary_10_3390_a16050256 crossref_primary_10_1016_j_scs_2023_104583 crossref_primary_10_1016_j_scs_2023_104781 crossref_primary_10_55005_v3i1_4 crossref_primary_10_1016_j_jaerosci_2022_106045 crossref_primary_10_3390_pathogens10101267 crossref_primary_10_1016_j_jaerosci_2022_106003 crossref_primary_10_1177_13623613231155265 crossref_primary_10_1007_s10729_022_09603_6 crossref_primary_10_1016_j_buildenv_2022_109696 crossref_primary_10_1016_j_buildenv_2022_109530 crossref_primary_10_1021_acsapm_2c01086 crossref_primary_10_1021_envhealth_4c00215 crossref_primary_10_1177_1420326X231154011 crossref_primary_10_1016_j_buildenv_2024_112341 crossref_primary_10_1016_j_csite_2022_102440 crossref_primary_10_12998_wjcc_v10_i15_4726 crossref_primary_10_1016_j_jobe_2023_106737 crossref_primary_10_3390_microorganisms12091923 crossref_primary_10_1016_j_jobe_2024_111488 crossref_primary_10_1016_j_jobe_2024_110474 crossref_primary_10_1080_2373566X_2023_2280570 crossref_primary_10_1016_j_scs_2022_104232 crossref_primary_10_1016_j_envres_2023_116952 crossref_primary_10_1007_s12273_022_0959_z crossref_primary_10_1155_2022_4496679 crossref_primary_10_1016_j_rser_2023_113378 crossref_primary_10_7717_peerj_15298 crossref_primary_10_7717_peerj_16420 crossref_primary_10_1016_S0140_6736_23_00860_7 crossref_primary_10_1021_envhealth_4c00100 crossref_primary_10_1016_j_autcon_2022_104625 crossref_primary_10_1016_j_heliyon_2024_e26596 crossref_primary_10_1016_j_buildenv_2024_112313 crossref_primary_10_1590_1980_220x_reeusp_2021_0579pt crossref_primary_10_3389_fbuil_2024_1523055 crossref_primary_10_1016_j_jobe_2022_105599 crossref_primary_10_3390_fib9120084 crossref_primary_10_1007_s11783_023_1627_y crossref_primary_10_1016_j_enbenv_2023_07_009 crossref_primary_10_1016_j_jobe_2023_107651 crossref_primary_10_1016_j_rineng_2024_103642 crossref_primary_10_3390_buildings13040871 crossref_primary_10_1155_ina_1785997 crossref_primary_10_3390_pathogens12030419 crossref_primary_10_1002_ppap_202100133 crossref_primary_10_1002_hsr2_1042 crossref_primary_10_3390_su16020886 crossref_primary_10_1093_jambio_lxae078 crossref_primary_10_3390_en15051781 crossref_primary_10_34172_jaehr_1330 crossref_primary_10_1080_15592324_2022_2163869 crossref_primary_10_1007_s11356_023_28237_x crossref_primary_10_1590_1980_220x_reeusp_2021_0579en |
Cites_doi | 10.1002/ppap.202000154 10.1128/AEM.00767-14 10.1177/1420326X20951968 10.13031/aea.13699 10.1016/j.atmosenv.2004.06.010 10.1016/j.envint.2020.106112 10.3390/ijms19102966 10.1088/1757-899X/913/4/042049 10.1016/S0140-6736(03)14897-0 10.1111/dth.13399 10.1098/rsif.2010.0026 10.3390/ijerph17176083 10.1016/j.msec.2020.110924 10.1016/j.jaerosci.2011.09.006 10.1136/archdischild-2020-319431 10.1002/alr.22661 10.1186/1745-6673-7-2 10.4209/aaqr.2011.11.0214 10.1016/j.apt.2012.02.006 10.1016/j.scitotenv.2020.139051 10.1371/journal.pone.0046789 10.1016/j.buildenv.2015.12.005 10.1016/0160-4120(82)90043-5 10.34133/2021/2173642 10.1093/oxfordjournals.aje.a112560 10.3390/nano10020387 10.1016/j.biotechadv.2008.08.001 10.1007/s41403-020-00124-8 10.1109/TPS.2008.917165 10.1021/ja1018755 10.14311/498 10.3390/su12239992 10.1111/j.1600-0668.2005.00364.x 10.1016/j.jenvman.2020.111515 10.1016/j.scitotenv.2020.138226 10.1016/j.mehy.2020.109781 10.1016/S2666-5247(20)30003-3 10.1021/es070056u 10.1016/j.jaerosci.2017.02.004 10.1111/j.1600-0668.2007.00512.x 10.1164/ajrccm.156.3.9612088 10.1111/j.1365-4632.2010.04474.x 10.1080/02786828308958618 10.1088/0022-3727/33/7/312 10.1016/j.jhin.2020.04.040 10.1177/0748233720967528 10.1080/104732299302909 10.1073/pnas.2018995118 10.1080/02786820600833203 10.1039/C3EN00007A 10.1016/j.jhin.2008.04.010 10.1099/vir.0.83393-0 10.1093/oxfordjournals.aje.a118097 10.1016/j.envint.2020.105794 10.1080/02786820500428575 10.1016/j.carbon.2014.04.019 10.1021/es300537f 10.1080/02786826.2010.509119 10.1016/j.jhin.2020.05.014 10.1016/j.jobb.2020.12.001 10.3390/ijerph17176052 10.1016/0964-8305(95)00055-0 10.1016/j.jhazmat.2014.08.013 10.1007/s11356-017-9239-3 10.1016/j.combustflame.2013.07.017 10.1016/j.jaerosci.2005.08.002 10.1111/j.1600-0668.2006.00445.x 10.1080/02786826.2012.708948 10.1128/AEM.02291-09 10.1016/0021-9681(72)90204-4 10.1023/A:1021315412208 10.1590/1678-4324-2020200335 10.1155/2011/734690 10.1021/acs.nanolett.0c03173 10.1088/1361-6463/ab1466 10.1016/j.nano.2019.03.003 10.1016/j.mtphys.2020.100249 10.1016/j.jaerosci.2008.03.009 10.1111/j.1751-1097.2006.tb09805.x 10.1021/acsphotonics.0c01245 10.1177/003335491012500105 10.1007/s12206-009-0613-z 10.3201/eid0303.970310 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. 2021 The Authors 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2021 The Authors 2021 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 OTOTI 5PM |
DOI | 10.1016/j.envres.2021.111765 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Environmental Sciences |
EISSN | 1096-0953 |
EndPage | 111765 |
ExternalDocumentID | PMC8317458 1810612 34331921 10_1016_j_envres_2021_111765 S0013935121010598 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Review |
GroupedDBID | --- --K --M -~X .DC .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29G 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYJJ ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AFDAS AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC C45 CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F3I F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W KCYFY KOM L7B LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OHT OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K TAE TEORI TN5 TWZ UPT VOH WH7 WUQ XOL XPP ZCA ZGI ZKB ZMT ZU3 ZXP ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 AALMO AAPBV ABPIF ABPTK EFJIC OTOTI 5PM |
ID | FETCH-LOGICAL-c523t-83bb25867bbda75d0456652400f03c4b22c4bd4f052c210330c2c4b18d1237c43 |
IEDL.DBID | .~1 |
ISSN | 0013-9351 1096-0953 |
IngestDate | Thu Aug 21 18:21:57 EDT 2025 Fri May 19 00:57:52 EDT 2023 Fri Jul 11 10:00:04 EDT 2025 Sun Aug 24 03:11:38 EDT 2025 Thu Apr 03 07:08:37 EDT 2025 Tue Jul 01 03:06:04 EDT 2025 Thu Apr 24 23:13:19 EDT 2025 Fri Feb 23 02:41:05 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | COVID-19 Enclosed space Buildings Airborne virus ventilation |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c523t-83bb25867bbda75d0456652400f03c4b22c4bd4f052c210330c2c4b18d1237c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 USDOE Office of Environmental Management (EM) EM0003163 |
ORCID | 0000-0002-2921-151X 0000-0003-2789-510X 000000022921151X 000000032789510X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0013935121010598 |
PMID | 34331921 |
PQID | 2557225964 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8317458 osti_scitechconnect_1810612 proquest_miscellaneous_2636526590 proquest_miscellaneous_2557225964 pubmed_primary_34331921 crossref_primary_10_1016_j_envres_2021_111765 crossref_citationtrail_10_1016_j_envres_2021_111765 elsevier_sciencedirect_doi_10_1016_j_envres_2021_111765 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: United States |
PublicationTitle | Environmental research |
PublicationTitleAlternate | Environ Res |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier The Authors. Published by Elsevier Inc |
Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: The Authors. Published by Elsevier Inc |
References | Bazant, Bush (bib6) 2021; 118 Hernández-Díaz, Martos-Ferreira, Hernández-Abad, Villar-Ribera, Tarrés, Rojas-Sola (bib32) 2021; 278 Riley, Murphy, Riley (bib79) 1978; 107 Pyankov, Usachev, Pyankova, Agranovski (bib73) 2012; 46 Kohanski, Lo, Waring (bib39) 2020; 10 Chan, Peiris, Lam, Poon, Yuen, Seto (bib13) 2011; 2011 Riley (bib78) 1982; 8 Spena, Palombi, Corcione, Carestia, Spena (bib89) 2020; 17 Shi, Dong, Yan, Li, Zhao, Liu, He, Tang, Xi (bib86) 2020; 77 Sigma-Aldrich (bib87) 2021 Chen, Davidson (bib14) 2002; 22 Xia, Kleinheksel, Lee, Qiao, Wigginton, Clack (bib102) 2019; 52 Yu, Peel, Cheema, Lawrence, Bukreyeva, Jinks, Peel, Peterson, Paessler, Hourani, Ren (bib105) 2020; 15 Park, Yoon, Kim, Byeon, Hwang (bib69) 2009; 23 Raeiszadeh, Adeli (bib75) 2020; 7 Kowalski, Bahnfleth (bib41) 2000; 18 Yuan, Jiang, Li (bib106) 2020; 8 Krishna, Springall, Meng, Withers, Macleod, Biscione, Frew, Polak, Holgate (bib45) 1997; 156 Riley (bib77) 1972; 25 Tseng, Li (bib93) 2005; 39 Pekárek (bib71) 2003; 43 Sharma, Sharma (bib85) 2020; 5 Bisag, Isabelli, Laurita, Bucci, Capelli, Dirani, Gherardi, Laghi, Paglianti, Sambri, Colombo (bib8) 2020; 17 Bahnfleth, Kowalski, Freihaut (bib4) 2005; 104 Buonanno, Morawska, Stabile (bib9) 2020; 145 Batéjat, Grassin, Manuguerra, Leclercq (bib5) 2021; 3 Suwardi, Ooi, Daniel, Tan, Li, Liang, Tang, Chee, Sadovoy, Jiang, Ramachandran, Ye, Kang, Cheong, Lim, Loh (bib92) 2021; 2021 Sawant, Jadhav (bib81) 2012; vol. 30 Hugo (bib35) 1995; 36 Monge, George, D'Anna, Doussin, Jammoul, Wang, Eyglunent, Solignac, Daële, Mellouki (bib59) 2010; 132 Narayanan, Saladi, Fox (bib61) 2010; 49 Casanova, Jeon, Rutala, Weber, Sobsey (bib11) 2010; 76 López, Calvo, Prieto, Múgica-Vidal, Muro-Fraguas, Alba-Elías, Alvarez-Ordóñez (bib52) 2019; 10 Kowalski (bib40) 2001; August Moreau, Orange, Feuilloley (bib60) 2008; 26 Occupational Safety and Health Administration (bib66) 2020 Centers for Disease Control and Prevention (bib12) Feb. 9, 2021 Sung, Kim, Kim, Han, Hong, Kim (bib91) 2019; 166 Reed (bib76) 2010; 125 Buonanno, Stabile, Morawska (bib10) 2020; 141 Beggs, Noakes, Sleigh, Fletcher, Kerr (bib7) 2006; 37 Donaldsson, Naver, Jonsson, Drevhammar (bib22) 2020; 105 Yang, Elankumaran, Marr (bib103) 2012; 7 Peters, Parneix, Otter, Pittet (bib72) 2020; 105 Skyspring (bib88) 2021 Kowalski, Bahnfleth (bib43) 2004; 6 Yehia, Abdel-Salam, Mizuno (bib104) 2000; 33 Ogata, Shibata (bib67) 2008; 89 Gammaitoni, Nucci (bib26) 1997; 3 Ma, Zhao, Liu, He, Wang, Fu, Yan, Niu, Zhou, Luo (bib54) 2020; 724 Foarde, Franke, Webber, Hanley, Owen, Koglin (bib24) 2006 Uk Lee, Yermakov, Grinshpun (bib95) 2004; 38 Lai, Cheung, Wong, Li (bib47) 2016; 98 Hyun, Lee, Hwang (bib36) 2017; 107 Schiappacasse, Peng, Zhou, Liu, Zhai, Cheng, Shao, Verma, Singh, Chen, Janni, Liang, Noll, Ruan (bib83) 2020; 36 Mikaeva, Mikaeva, Brysin (bib58) 2020; 913 Ma, Zhang, Shi, Xu, Yang (bib53) 2008; 36 Ziental, Czarczynska-Goslinska, Mlynarczyk, Glowacka-Sobotta, Stanisz, Goslinski, Sobotta (bib107) 2020; 10 Woo, Grippin, Wu, Baney (bib100) 2012; 46 Santos, Gaspar, Hamandosh, Aguiar, Guerra Filho, Souza (bib80) 2020; 63 Chin, Chu, Perera, Hui, Yen, Chan, Peiris, Poon (bib16) 2020; 1 Lim, Heng Koh, Kuang Lim, Hoon Ore, Kiat Tay, Ma, Wang (bib50) 2008; 39 Nuvolone, Petri, Voller (bib65) 2018; 25 Akamatsu, Lee, Morino, Miura, Ogata, Shibata (bib2) 2012; 7 Ding, Yu, Cao (bib21) 2020; 29 Wells (bib99) 1934; 20 Wu, Jing, Liu, Ma, Yuan, Wang, Du, Liu (bib101) 2020; 729 Lippmann (bib51) 1989; 39 Joe, Woo, Hwang (bib38) 2014; 280 Davis (bib20) 1982; 2 Pyrgiotakis, McDevitt, Bordini, Diaz, Molina, Watson, Deloid, Lenard, Fix, Mizuyama, Yamauchi, Brain, Demokritou (bib74) 2014; 1 Jiang, Ma, Ramachandran (bib37) 2018; 19 Menzies, Popa, Hanley, Rand, Milton (bib57) 2003; 362 Martin, Denyer, McDonnell, Maillard (bib55) 2008; 69 Turgeon, Toulouse, Martel, Moineau, Duchaine (bib94) 2014; 80 Hinds (bib33) 1999 Lee, Bahnfleth, Auer (bib48) 2009 Park, Hwang (bib68) 2014; 75 Grinshpun, Adhikari, Yermakov, Reponen, Dreizin, Schoenitz, Hoffmann, Zhang (bib29) 2012; 46 Chen, Liang (bib15) 2020; 112 (bib108) 2021 Francisco, Emmerich, Schoen, Hodgson, Mccoy, Miller, Li, Kong, Olmsted, Sekhar, Parsons, Wargocki (bib25) 2020 Grinshpun, Mainelis, Trunov, Adhikari, Reponen, Willeke (bib27) 2005; 15 Nicas, Miller (bib63) 1999; 14 Agranovski, Huang, Pyankov, Altman, Grinshpun (bib1) 2006; 40 Correia, Rodrigues, Gameiro da Silva, Gonçalves (bib18) 2020; 141 Grinshpun, Adhikari, Li, Yermakov, Reponen, Johansson, Trunov (bib28) 2010; 44 Chirico, Sacco, Bragazzi, Magnavita (bib17) 2020; 17 Kowalski, Bahnfleth (bib42) 2000; 106 Norval (bib64) 2006; 82 Walker, Ko (bib98) 2007; 41 Vaze, Pyrgiotakis, McDevitt, Mena, Melo, Bedugnis, Kobzik, Eleftheriadou, Demokritou (bib96) 2019; 18 Vranay, Pirsel, Kacik, Vranayova (bib97) 2020; 12 Kowalski, Bahnfleth (bib44) 2014 Sawant, Meena, Jadhav (bib82) 2012; 12 Mecenas, da Rosa Moreira Bastos, Rosário Vallinoto, Normando (bib56) 2020; 15 Pazokifard, Mirabedini, Esfandeh, Farrokhpay (bib70) 2012; 23 Li, Leung, Tang, Yang, Chao, Lin, Lu, Nielsen, Niu, Qian, Sleigh, Su, Sundell, Wong, Yuen (bib49) 2007; 17 Dancer, Tang, Marr, Miller, Morawska, Jimenez (bib19) 2020; 105 Heo, Jeong, Bin, Shin, Hwang, Ko, Kim, Choi, Jung (bib31) 2020; 21 Stilianakis, Drossinos (bib90) 2010; 7 Grinshpun, Schoenitz, Dreizin, Adhikari, Reponen, Yermakov (bib30) 2013 Kroumpouzos, Gupta, Jafferany, Lotti, Sadoughifar, Sitkowska, Goldust (bib46) 2020; 33 Schinköthe, Scheinemann, Diederich, Freese, Eschbaumer, Teifke, Reiche (bib84) 2020; 87 Faucher, James Lundberg, Anna Liang, Cindy Jin, Phillips, Parviz, Buongiorno, Strano (bib23) 2020 Nembhard, Burton, Cohen (bib62) 2020; 36 Huang, Agranovski, Pyankov, Grinshpun (bib34) 2008; 18 Aly, Zhang, Schoenitz, Hoffmann, Dreizin, Yermakov, Indugula, Grinshpun (bib3) 2014; 161 Batéjat (10.1016/j.envres.2021.111765_bib5) 2021; 3 Huang (10.1016/j.envres.2021.111765_bib34) 2008; 18 Nicas (10.1016/j.envres.2021.111765_bib63) 1999; 14 Schiappacasse (10.1016/j.envres.2021.111765_bib83) 2020; 36 Martin (10.1016/j.envres.2021.111765_bib55) 2008; 69 Schinköthe (10.1016/j.envres.2021.111765_bib84) 2020; 87 Dancer (10.1016/j.envres.2021.111765_bib19) 2020; 105 Monge (10.1016/j.envres.2021.111765_bib59) 2010; 132 Davis (10.1016/j.envres.2021.111765_bib20) 1982; 2 Narayanan (10.1016/j.envres.2021.111765_bib61) 2010; 49 Faucher (10.1016/j.envres.2021.111765_bib23) 2020 Gammaitoni (10.1016/j.envres.2021.111765_bib26) 1997; 3 Chen (10.1016/j.envres.2021.111765_bib14) 2002; 22 Reed (10.1016/j.envres.2021.111765_bib76) 2010; 125 Chirico (10.1016/j.envres.2021.111765_bib17) 2020; 17 Kohanski (10.1016/j.envres.2021.111765_bib39) 2020; 10 Kowalski (10.1016/j.envres.2021.111765_bib42) 2000; 106 Lee (10.1016/j.envres.2021.111765_bib48) 2009 Nuvolone (10.1016/j.envres.2021.111765_bib65) 2018; 25 Donaldsson (10.1016/j.envres.2021.111765_bib22) 2020; 105 Kowalski (10.1016/j.envres.2021.111765_bib41) 2000; 18 Lippmann (10.1016/j.envres.2021.111765_bib51) 1989; 39 Grinshpun (10.1016/j.envres.2021.111765_bib30) 2013 Occupational Safety and Health Administration (10.1016/j.envres.2021.111765_bib66) Yuan (10.1016/j.envres.2021.111765_bib106) 2020; 8 Lai (10.1016/j.envres.2021.111765_bib47) 2016; 98 Bahnfleth (10.1016/j.envres.2021.111765_bib4) 2005; 104 Chan (10.1016/j.envres.2021.111765_bib13) 2011; 2011 Buonanno (10.1016/j.envres.2021.111765_bib9) 2020; 145 Correia (10.1016/j.envres.2021.111765_bib18) 2020; 141 Heo (10.1016/j.envres.2021.111765_bib31) 2020; 21 Sawant (10.1016/j.envres.2021.111765_bib82) 2012; 12 Wells (10.1016/j.envres.2021.111765_bib99) 1934; 20 Park (10.1016/j.envres.2021.111765_bib69) 2009; 23 Walker (10.1016/j.envres.2021.111765_bib98) 2007; 41 Kowalski (10.1016/j.envres.2021.111765_bib44) 2014 Moreau (10.1016/j.envres.2021.111765_bib60) 2008; 26 Xia (10.1016/j.envres.2021.111765_bib102) 2019; 52 Wu (10.1016/j.envres.2021.111765_bib101) 2020; 729 Foarde (10.1016/j.envres.2021.111765_bib24) 2006 Aly (10.1016/j.envres.2021.111765_bib3) 2014; 161 Santos (10.1016/j.envres.2021.111765_bib80) 2020; 63 Suwardi (10.1016/j.envres.2021.111765_bib92) 2021; 2021 Yang (10.1016/j.envres.2021.111765_bib103) 2012; 7 Lim (10.1016/j.envres.2021.111765_bib50) 2008; 39 Centers for Disease Control and Prevention (10.1016/j.envres.2021.111765_bib12) 2021 Sung (10.1016/j.envres.2021.111765_bib91) 2019; 166 Menzies (10.1016/j.envres.2021.111765_bib57) 2003; 362 Vaze (10.1016/j.envres.2021.111765_bib96) 2019; 18 Grinshpun (10.1016/j.envres.2021.111765_bib29) 2012; 46 Bisag (10.1016/j.envres.2021.111765_bib8) 2020; 17 Shi (10.1016/j.envres.2021.111765_bib86) 2020; 77 Krishna (10.1016/j.envres.2021.111765_bib45) 1997; 156 Raeiszadeh (10.1016/j.envres.2021.111765_bib75) 2020; 7 Akamatsu (10.1016/j.envres.2021.111765_bib2) 2012; 7 Yehia (10.1016/j.envres.2021.111765_bib104) 2000; 33 Pyrgiotakis (10.1016/j.envres.2021.111765_bib74) 2014; 1 Pekárek (10.1016/j.envres.2021.111765_bib71) 2003; 43 Tseng (10.1016/j.envres.2021.111765_bib93) 2005; 39 Skyspring (10.1016/j.envres.2021.111765_bib88) 2021 Jiang (10.1016/j.envres.2021.111765_bib37) 2018; 19 Pazokifard (10.1016/j.envres.2021.111765_bib70) 2012; 23 Norval (10.1016/j.envres.2021.111765_bib64) 2006; 82 López (10.1016/j.envres.2021.111765_bib52) 2019; 10 Li (10.1016/j.envres.2021.111765_bib49) 2007; 17 Kowalski (10.1016/j.envres.2021.111765_bib40) 2001; August Buonanno (10.1016/j.envres.2021.111765_bib10) 2020; 141 Uk Lee (10.1016/j.envres.2021.111765_bib95) 2004; 38 Grinshpun (10.1016/j.envres.2021.111765_bib27) 2005; 15 Hyun (10.1016/j.envres.2021.111765_bib36) 2017; 107 Ma (10.1016/j.envres.2021.111765_bib54) 2020; 724 Francisco (10.1016/j.envres.2021.111765_bib25) 2020 Hugo (10.1016/j.envres.2021.111765_bib35) 1995; 36 Riley (10.1016/j.envres.2021.111765_bib77) 1972; 25 Vranay (10.1016/j.envres.2021.111765_bib97) 2020; 12 Bazant (10.1016/j.envres.2021.111765_bib6) 2021; 118 Grinshpun (10.1016/j.envres.2021.111765_bib28) 2010; 44 Riley (10.1016/j.envres.2021.111765_bib79) 1978; 107 Ziental (10.1016/j.envres.2021.111765_bib107) 2020; 10 Riley (10.1016/j.envres.2021.111765_bib78) 1982; 8 Beggs (10.1016/j.envres.2021.111765_bib7) 2006; 37 Joe (10.1016/j.envres.2021.111765_bib38) 2014; 280 Chen (10.1016/j.envres.2021.111765_bib15) 2020; 112 Turgeon (10.1016/j.envres.2021.111765_bib94) 2014; 80 Hernández-Díaz (10.1016/j.envres.2021.111765_bib32) 2021; 278 Hinds (10.1016/j.envres.2021.111765_bib33) 1999 Kowalski (10.1016/j.envres.2021.111765_bib43) 2004; 6 Mecenas (10.1016/j.envres.2021.111765_bib56) 2020; 15 Sigma-Aldrich (10.1016/j.envres.2021.111765_bib87) 2021 Mikaeva (10.1016/j.envres.2021.111765_bib58) 2020; 913 Ogata (10.1016/j.envres.2021.111765_bib67) 2008; 89 Sawant (10.1016/j.envres.2021.111765_bib81) 2012; vol. 30 Park (10.1016/j.envres.2021.111765_bib68) 2014; 75 Pyankov (10.1016/j.envres.2021.111765_bib73) 2012; 46 Kroumpouzos (10.1016/j.envres.2021.111765_bib46) 2020; 33 Chin (10.1016/j.envres.2021.111765_bib16) 2020; 1 Spena (10.1016/j.envres.2021.111765_bib89) 2020; 17 Agranovski (10.1016/j.envres.2021.111765_bib1) 2006; 40 Sharma (10.1016/j.envres.2021.111765_bib85) 2020; 5 Woo (10.1016/j.envres.2021.111765_bib100) 2012; 46 Peters (10.1016/j.envres.2021.111765_bib72) 2020; 105 Yu (10.1016/j.envres.2021.111765_bib105) 2020; 15 Nembhard (10.1016/j.envres.2021.111765_bib62) 2020; 36 Stilianakis (10.1016/j.envres.2021.111765_bib90) 2010; 7 Ding (10.1016/j.envres.2021.111765_bib21) 2020; 29 Casanova (10.1016/j.envres.2021.111765_bib11) 2010; 76 Ma (10.1016/j.envres.2021.111765_bib53) 2008; 36 |
References_xml | – volume: 145 start-page: 106112 year: 2020 ident: bib9 article-title: Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: prospective and retrospective applications publication-title: Environ. Int. – volume: 106 year: 2000 ident: bib42 article-title: Effective UVGI system design through improved modeling publication-title: ASHRAE Trans. – volume: 52 year: 2019 ident: bib102 article-title: Inactivation of airborne viruses using a packed bed non-thermal plasma reactor publication-title: J. Phys. D Appl. Phys. – volume: 10 start-page: 1173 year: 2020 end-page: 1179 ident: bib39 article-title: Review of indoor aerosol generation, transport, and control in the context of COVID-19 publication-title: Int. Forum Allergy Rhinol. – volume: 105 start-page: 381 year: 2020 end-page: 382 ident: bib72 article-title: Putting some context to the aerosolization debate around SARS-CoV-2 publication-title: J. Hosp. Infect. – volume: 19 year: 2018 ident: bib37 article-title: Negative air ions and their effects on human Health and air quality improvement publication-title: Int. J. Mol. Sci. – volume: 15 start-page: 235 year: 2005 end-page: 245 ident: bib27 article-title: Evaluation of ionic air purifiers for reducing aerosol exposure in confined indoor spaces publication-title: Indoor Air – volume: 17 start-page: 1 year: 2020 end-page: 11 ident: bib17 article-title: Can air-conditioning systems contribute to the spread of SARS/MERS/COVID-19 infection? Insights from a rapid review of the literature publication-title: Int. J. Environ. Res. Publ. Health – volume: 29 start-page: 1195 year: 2020 end-page: 1201 ident: bib21 article-title: HVAC systems for environmental control to minimize the COVID-19 infection publication-title: Indoor Built Environ. – year: 2020 ident: bib25 article-title: ASHRAE Position Document on Airborne Infectious Diseases by ASHRAE Board of Directors – volume: 107 start-page: 421 year: 1978 end-page: 432 ident: bib79 article-title: Airborne spread of measles in a suburban elementary school publication-title: Am. J. Epidemiol. – volume: 161 start-page: 303 year: 2014 end-page: 310 ident: bib3 article-title: Iodine-containing aluminum-based fuels for inactivation of bioaerosols publication-title: Combust. Flame – volume: 125 start-page: 15 year: 2010 end-page: 27 ident: bib76 article-title: The history of ultraviolet germicidal irradiation for air disinfection publication-title: Publ. Health Rep. – year: 2014 ident: bib44 article-title: A SPECULAR MODEL FOR UVGI AIR DISINFECTION SYSTEMS – volume: 2011 year: 2011 ident: bib13 article-title: The effects of temperature and relative humidity on the viability of the SARS coronavirus publication-title: Adv. Virol. – volume: 77 year: 2020 ident: bib86 article-title: The impact of temperature and absolute humidity on the coronavirus Disease 2019 (COVID-19) outbreak - evidence from China publication-title: medRxiv – volume: 17 start-page: 2 year: 2007 end-page: 18 ident: bib49 article-title: Role of ventilation in airborne transmission of infectious agents in the built Environment ;? A multidisciplinary systematic review publication-title: Indoor Air – volume: August year: 2001 ident: bib40 article-title: Design and optimization of UVGI air disinfection systems A thesis in architectural engineering by publication-title: Configurations – volume: 104 start-page: 3464 year: 2005 end-page: 3468 ident: bib4 article-title: Standard and guideline for UVGI air treatment systems publication-title: Indoor Air – volume: 15 start-page: 1 year: 2020 end-page: 21 ident: bib56 article-title: Effects of temperature and humidity on the spread of COVID-19: a systematic review publication-title: PloS One – volume: 2 start-page: 121 year: 1982 end-page: 144 ident: bib20 article-title: Transport phenomena with single aerosol particles publication-title: Aerosol Sci. Technol. – volume: 46 start-page: 77 year: 2012 end-page: 82 ident: bib100 article-title: Use of dialdehyde starch treated filters for protection against airborne viruses publication-title: J. Aerosol Sci. – volume: 38 start-page: 4815 year: 2004 end-page: 4823 ident: bib95 article-title: Removal of fine and ultrafine particles from indoor air environments by the unipolar ion emission publication-title: Atmos. Environ. – volume: 25 start-page: 421 year: 1972 end-page: 423 ident: bib77 article-title: The ecology of indoor atmospheres: airborne infection in hospitals publication-title: J. Chron. Dis. – volume: 118 year: 2021 ident: bib6 article-title: A guideline to limit indoor airborne transmission of COVID-19 publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 26 start-page: 610 year: 2008 end-page: 617 ident: bib60 article-title: Non-thermal plasma technologies: new tools for bio-decontamination publication-title: Biotechnol. Adv. – volume: 14 start-page: 317 year: 1999 end-page: 328 ident: bib63 article-title: A multi-zone model evaluation of the efficacy of upper-room Air ultraviolet germicidal irradiation publication-title: Appl. Occup. Environ. Hyg – volume: 46 start-page: 1295 year: 2012 end-page: 1302 ident: bib73 article-title: Inactivation of airborne influenza virus by tea tree and Eucalyptus oils publication-title: Aerosol Sci. Technol. – year: 2021 ident: bib88 article-title: Silicon Dioxide Nanoparticles/Nanopowder (98.7%, 20nm) – volume: 166 year: 2019 ident: bib91 article-title: Ultrafine particle cleaning performance of an ion spray electrostatic air cleaner emitting zero ozone with diffusion charging by carbon fiber publication-title: Build. Environ. – volume: 3 start-page: 1 year: 2021 end-page: 3 ident: bib5 article-title: Heat inactivation of the severe acute respiratory syndrome coronavirus 2 publication-title: J. Biosaf. Biosecurity – year: 2020 ident: bib66 article-title: Chlorine dioxide – volume: 89 start-page: 60 year: 2008 end-page: 67 ident: bib67 article-title: Protective effect of low-concentration chlorine dioxide gas against influenza A virus infection publication-title: J. Gen. Virol. – volume: 22 start-page: 495 year: 2002 end-page: 522 ident: bib14 article-title: Ozone production in the positive DC corona discharge: model and comparison to experiments publication-title: Plasma Chem. Plasma Process. – volume: 23 start-page: 1846 year: 2009 end-page: 1851 ident: bib69 article-title: Removal of submicron aerosol particles and bioaerosols using carbon fiber ionizer assisted fibrous medium filter media publication-title: J. Mech. Sci. Technol. – volume: 7 start-page: 2941 year: 2020 end-page: 2951 ident: bib75 article-title: A critical review on ultraviolet disinfection systems against COVID-19 outbreak: applicability, validation, and safety considerations publication-title: ACS Photonics – volume: 82 start-page: 1495 year: 2006 ident: bib64 article-title: The effect of ultraviolet radiation on human viral infections publication-title: Photochem. Photobiol. – volume: 20 start-page: 611 year: 1934 end-page: 618 ident: bib99 article-title: On airborne infection. Study II: droplets and droplet nuclei publication-title: Am. J. Epidemiol. – volume: 87 start-page: 1 year: 2020 end-page: 14 ident: bib84 article-title: Airborne disinfection by dry fogging efficiently inactivates severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), mycobacteria, and bacterial spores and shows limitations of commercial spore carriers publication-title: Appl. Environ. Microbiol. – volume: 36 start-page: 197 year: 1995 end-page: 217 ident: bib35 article-title: A brief history of heat, chemical and radiation preservation and disinfection publication-title: Int. Biodeterior. Biodegrad. – volume: 7 start-page: e46789 year: 2012 ident: bib103 article-title: Relationship between humidity and influenza A viability in droplets and implications for influenza's seasonality publication-title: PloS One – volume: 36 start-page: 644 year: 2020 end-page: 653 ident: bib62 article-title: Ventilation use in nonmedical settings during COVID-19: cleaning protocol, maintenance, and recommendations publication-title: Toxicol. Ind. Health – volume: 39 start-page: 672 year: 1989 end-page: 695 ident: bib51 article-title: Health effects of ozone A critical review publication-title: J. Air Pollut. Contr. Assoc. – volume: 105 start-page: 569 year: 2020 end-page: 570 ident: bib19 article-title: Putting a balance on the aerosolization debate around SARS-CoV-2 publication-title: J. Hosp. Infect. – volume: 43 year: 2003 ident: bib71 article-title: Non-thermal plasma ozone generation publication-title: Acta Polytech. – volume: 10 start-page: 387 year: 2020 ident: bib107 article-title: Titanium dioxide nanoparticles: prospects and applications in medicine publication-title: Nanomaterials – volume: 1 start-page: e10 year: 2020 ident: bib16 article-title: Stability of SARS-CoV-2 in different environmental conditions publication-title: The Lancet Microbe – volume: 2021 start-page: 1 year: 2021 end-page: 11 ident: bib92 article-title: The efficacy of plant-based ionizers in removing aerosol for COVID-19 mitigation publication-title: Research – volume: 913 year: 2020 ident: bib58 article-title: Ultraviolet air disinfection in ventilation and air conditioning systems publication-title: IOP Conf. Ser. Mater. Sci. Eng. – volume: 21 start-page: 1576 year: 2020 end-page: 1583 ident: bib31 article-title: Water-repellent TiO2-organic dye-based air filters for efficient visible-light-activated photochemical inactivation against bioaerosols publication-title: Nano Lett. – volume: 49 start-page: 978 year: 2010 end-page: 986 ident: bib61 article-title: Ultraviolet radiation and skin cancer publication-title: Int. J. Dermatol. – volume: 17 start-page: 1 year: 2020 end-page: 8 ident: bib8 article-title: Cold atmospheric plasma inactivation of aerosolized microdroplets containing bacteria and purified SARS-CoV-2 RNA to contrast airborne indoor transmission publication-title: Plasma Process. Polym. – volume: 112 start-page: 110924 year: 2020 ident: bib15 article-title: An overview of functional nanoparticles as novel emerging antiviral therapeutic agents publication-title: Mater. Sci. Eng. C – year: 2006 ident: bib24 article-title: Biological Inactivation Efficiency by HVAC In-Duct Ultraviolet Light Systems Projecting Air Purifier – volume: 141 start-page: 105794 year: 2020 ident: bib10 article-title: Estimation of airborne viral emission: quanta emission rate of SARS-CoV-2 for infection risk assessment publication-title: Environ. Int. – volume: 8 start-page: 317 year: 1982 end-page: 320 ident: bib78 article-title: Indoor airborne infection publication-title: Environ. Int. – volume: 105 start-page: 669 year: 2020 end-page: 671 ident: bib22 article-title: COVID-19: minimising contaminated aerosol spreading during CPAP treatment publication-title: Arch. Dis. Child. Fetal Neonatal Ed. – volume: 5 start-page: 321 year: 2020 end-page: 326 ident: bib85 article-title: Sterilization of microorganisms contaminated surfaces and its treatment with dielectric barrier discharge plasma publication-title: Trans. Indian Natl. Acad. Eng. – volume: 18 start-page: 100 year: 2000 end-page: 110 ident: bib41 article-title: UVGI design basics publication-title: Print. Circuit Des. – volume: 39 start-page: 618 year: 2008 end-page: 634 ident: bib50 article-title: Experimental and computational studies of liquid aerosol evaporation publication-title: J. Aerosol Sci. – year: 2021 ident: bib87 article-title: Titanium(IV) Oxide - Nanopowder, 21 Nm Primary Particle Size (TEM), ≥99.5% Trace Metals Basis – volume: 3 start-page: 335 year: 1997 end-page: 342 ident: bib26 article-title: Using a mathematical model to evaluate the efficacy of TB control measures publication-title: Emerg. Infect. Dis. – start-page: 1159 year: 2009 end-page: 1166 ident: bib48 article-title: Life-cycle cost simulation of in-duct ultraviolet germicidal irradiation systems publication-title: 11th International IBPSA Conference - Building Simulation 2009 – volume: 36 start-page: 55 year: 2020 end-page: 60 ident: bib83 article-title: Inactivation of aerosolized Newcastle Disease virus with non-thermal plasma publication-title: Appl. Eng. Agric. – volume: 37 start-page: 885 year: 2006 end-page: 902 ident: bib7 article-title: Methodology for determining the susceptibility of airborne microorganisms to irradiation by an upper-room UVGI system publication-title: J. Aerosol Sci. – volume: 25 start-page: 8074 year: 2018 end-page: 8088 ident: bib65 article-title: The effects of ozone on human Health publication-title: Environ. Sci. Pollut. Res. – year: 2013 ident: bib30 article-title: Inactivation of Aerosolized Biological Agents Using Filled Nanocomposite Materials – volume: 18 start-page: 106 year: 2008 end-page: 112 ident: bib34 article-title: Removal of viable bioaerosol particles with a low-efficiency HVAC filter enhanced by continuous emission of unipolar air ions publication-title: Indoor Air – year: 2020 ident: bib23 article-title: A Virucidal Face Mask Based on the Reverse-Flow Reactor Concept for Thermal Inactivation of SARS-CoV-2 – volume: 12 start-page: 1007 year: 2012 end-page: 1015 ident: bib82 article-title: Effect of negative air ions on fog and smoke publication-title: Aerosol Air Qual. Res. – volume: vol. 30 start-page: 63 year: 2012 end-page: 67 ident: bib81 publication-title: Laboratory Experiments on Aerosol Removal by Negative Air Ions – volume: 280 start-page: 356 year: 2014 end-page: 363 ident: bib38 article-title: Fabrication of an anti-viral air filter with SiO2-Ag nanoparticles and performance evaluation in a continuous airflow condition publication-title: J. Hazard Mater. – volume: 75 start-page: 401 year: 2014 end-page: 410 ident: bib68 article-title: Filtration and inactivation of aerosolized bacteriophage MS2 by a CNT air filter fabricated using electro-aerodynamic deposition publication-title: Carbon N. Y. – volume: 63 year: 2020 ident: bib80 article-title: Best practices on HVAC design to minimize the risk of COVID-19 infection within indoor environments publication-title: Braz. Arch. Biol. Technol. – volume: 6 start-page: 20 year: 2004 end-page: 25 ident: bib43 article-title: Proposed standards and guidelines for UVGI air disinfection publication-title: IUVA News – volume: 132 start-page: 8234 year: 2010 end-page: 8235 ident: bib59 article-title: Ozone formation from illuminated titanium dioxide surfaces publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 1 year: 2020 end-page: 15 ident: bib89 article-title: On the optimal indoor air conditions for sars-cov-2 inactivation. An enthalpy-based approach publication-title: Int. J. Environ. Res. Publ. Health – volume: 15 start-page: 100249 year: 2020 ident: bib105 article-title: Catching and killing of airborne SARS-CoV-2 to control spread of COVID-19 by a heated air disinfection system publication-title: Mater. Today Phys. – volume: 362 start-page: 1785 year: 2003 end-page: 1791 ident: bib57 article-title: Effect of ultraviolet germicidal lights installed in office ventilation systems on workers' Health and wellbeing: double-blind multiple crossover trial publication-title: Lancet – volume: 278 start-page: 111515 year: 2021 ident: bib32 article-title: Indoor PM2.5 removal efficiency of two different non-thermal plasma systems publication-title: J. Environ. Manag. – volume: 724 start-page: 138226 year: 2020 ident: bib54 article-title: Effects of temperature variation and humidity on the death of COVID-19 in wuhan, China publication-title: Sci. Total Environ. – volume: 10 year: 2019 ident: bib52 article-title: A review on non-thermal atmospheric plasma for food preservation: mode of action, determinants of effectiveness, and applications publication-title: Front. Microbiol. – volume: 41 start-page: 5460 year: 2007 end-page: 5465 ident: bib98 article-title: Effect of ultraviolet germicidal irradiation on viral aerosols publication-title: Environ. Sci. Technol. – volume: 44 start-page: 1042 year: 2010 end-page: 1048 ident: bib28 article-title: Inactivation of aerosolized viruses in continuous air flow with axial heating publication-title: Aerosol. Sci. Technol. – volume: 98 start-page: 39 year: 2016 end-page: 46 ident: bib47 article-title: Evaluation of cold plasma inactivation efficacy against different airborne bacteria in ventilation duct flow publication-title: Build. Environ. – volume: 156 start-page: 943 year: 1997 end-page: 950 ident: bib45 article-title: Effects of ozone on epithelium and sensory nerves in the bronchial mucosa of healthy humans publication-title: Am. J. Respir. Crit. Care Med. – volume: 76 start-page: 2712 year: 2010 end-page: 2717 ident: bib11 article-title: Effects of air temperature and relative humidity on coronavirus survival on surfaces publication-title: Appl. Environ. Microbiol. – volume: 107 start-page: 31 year: 2017 end-page: 40 ident: bib36 article-title: Application of corona discharge-generated air ions for filtration of aerosolized virus and inactivation of filtered virus publication-title: J. Aerosol Sci. – volume: 1 start-page: 15 year: 2014 end-page: 26 ident: bib74 article-title: A chemical free, nanotechnology-based method for airborne bacterial inactivation using engineered water nanostructures publication-title: Environ. Sci. Nano – volume: 40 start-page: 963 year: 2006 end-page: 968 ident: bib1 article-title: Enhancement of the performance of low-efficiency HVAC filters due to continuous unipolar ion emission publication-title: Aerosol Sci. Technol. – volume: 46 start-page: 7334 year: 2012 end-page: 7341 ident: bib29 article-title: Inactivation of aerosolized Bacillus atrophaeus (BG) endospores and MS2 viruses by combustion of reactive materials publication-title: Environ. Sci. Technol. – volume: 729 start-page: 1 year: 2020 end-page: 7 ident: bib101 article-title: Effects of temperature and humidity on the daily new cases and new deaths of COVID-19 in 166 countries publication-title: Sci. Total Environ. – volume: 8 start-page: 8 year: 2020 end-page: 11 ident: bib106 article-title: Do humidity and temperature impact the spread of the novel coronavirus? publication-title: Front. Public Heal. – volume: 12 start-page: 9992 year: 2020 ident: bib97 article-title: Adaptation of HVAC systems to reduce the spread of COVID-19 in buildings publication-title: Sustainability – volume: 39 start-page: 1136 year: 2005 end-page: 1142 ident: bib93 article-title: Inactivation of virus-containing aerosols by ultraviolet germicidal irradiation publication-title: Aerosol Sci. Technol. – volume: 69 start-page: 377 year: 2008 end-page: 383 ident: bib55 article-title: Resistance and cross-resistance to oxidising agents of bacterial isolates from endoscope washer disinfectors publication-title: J. Hosp. Infect. – volume: 33 start-page: 831 year: 2000 end-page: 835 ident: bib104 article-title: On assessment of ozone generation in dc coronas publication-title: J. Phys. D Appl. Phys. – volume: 80 start-page: 4242 year: 2014 end-page: 4250 ident: bib94 article-title: Comparison of five bacteriophages as models for viral aerosol studies publication-title: Appl. Environ. Microbiol. – volume: 36 start-page: 1615 year: 2008 end-page: 1620 ident: bib53 article-title: Chemical mechanisms of bacterial inactivation using dielectric barrier discharge plasma in atmospheric air publication-title: IEEE Trans. Plasma Sci. – volume: 7 start-page: 1355 year: 2010 end-page: 1366 ident: bib90 article-title: Dynamics of infectious Disease transmission by inhalable respiratory droplets publication-title: J. R. Soc. Interface – year: 2021 ident: bib108 article-title: What is a MERV rating? – start-page: 1 year: Feb. 9, 2021 end-page: 8 ident: bib12 article-title: COVID-19 ventilation FAQs – volume: 141 start-page: 109781 year: 2020 ident: bib18 article-title: Airborne route and bad use of ventilation systems as non-negligible factors in SARS-CoV-2 transmission publication-title: Med. Hypotheses – volume: 18 start-page: 234 year: 2019 end-page: 242 ident: bib96 article-title: Inactivation of common hospital acquired pathogens on surfaces and in air utilizing engineered water nanostructures (EWNS) based nano-sanitizers publication-title: Nanomed. Nanotechnol. Biol. Med. – year: 1999 ident: bib33 article-title: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles – volume: 33 start-page: 8 year: 2020 end-page: 9 ident: bib46 article-title: COVID-19: a relationship to climate and environmental conditions? publication-title: Dermatol. Ther. – volume: 7 start-page: 2 year: 2012 ident: bib2 article-title: Six-month low level chlorine dioxide gas inhalation toxicity study with two-week recovery period in rats publication-title: J. Occup. Med. Toxicol. – volume: 23 start-page: 428 year: 2012 end-page: 436 ident: bib70 article-title: Fluoroalkylsilane treatment of TiO 2 nanoparticles in difference PH values: characterization and mechanism publication-title: Adv. Powder Technol. – volume: 17 start-page: 1 issue: 10 year: 2020 ident: 10.1016/j.envres.2021.111765_bib8 article-title: Cold atmospheric plasma inactivation of aerosolized microdroplets containing bacteria and purified SARS-CoV-2 RNA to contrast airborne indoor transmission publication-title: Plasma Process. Polym. doi: 10.1002/ppap.202000154 – volume: 80 start-page: 4242 issue: 14 year: 2014 ident: 10.1016/j.envres.2021.111765_bib94 article-title: Comparison of five bacteriophages as models for viral aerosol studies publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00767-14 – volume: 29 start-page: 1195 issue: 9 year: 2020 ident: 10.1016/j.envres.2021.111765_bib21 article-title: HVAC systems for environmental control to minimize the COVID-19 infection publication-title: Indoor Built Environ. doi: 10.1177/1420326X20951968 – volume: 36 start-page: 55 issue: 1 year: 2020 ident: 10.1016/j.envres.2021.111765_bib83 article-title: Inactivation of aerosolized Newcastle Disease virus with non-thermal plasma publication-title: Appl. Eng. Agric. doi: 10.13031/aea.13699 – volume: 38 start-page: 4815 issue: 29 year: 2004 ident: 10.1016/j.envres.2021.111765_bib95 article-title: Removal of fine and ultrafine particles from indoor air environments by the unipolar ion emission publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2004.06.010 – volume: 145 start-page: 106112 issue: August year: 2020 ident: 10.1016/j.envres.2021.111765_bib9 article-title: Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: prospective and retrospective applications publication-title: Environ. Int. doi: 10.1016/j.envint.2020.106112 – volume: vol. 30 start-page: 63 year: 2012 ident: 10.1016/j.envres.2021.111765_bib81 – volume: 19 issue: 10 year: 2018 ident: 10.1016/j.envres.2021.111765_bib37 article-title: Negative air ions and their effects on human Health and air quality improvement publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19102966 – volume: 166 issue: August year: 2019 ident: 10.1016/j.envres.2021.111765_bib91 article-title: Ultrafine particle cleaning performance of an ion spray electrostatic air cleaner emitting zero ozone with diffusion charging by carbon fiber publication-title: Build. Environ. – volume: 87 start-page: 1 issue: 3 year: 2020 ident: 10.1016/j.envres.2021.111765_bib84 article-title: Airborne disinfection by dry fogging efficiently inactivates severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), mycobacteria, and bacterial spores and shows limitations of commercial spore carriers publication-title: Appl. Environ. Microbiol. – year: 2021 ident: 10.1016/j.envres.2021.111765_bib88 – volume: 913 issue: 4 year: 2020 ident: 10.1016/j.envres.2021.111765_bib58 article-title: Ultraviolet air disinfection in ventilation and air conditioning systems publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/913/4/042049 – volume: 362 start-page: 1785 issue: 9398 year: 2003 ident: 10.1016/j.envres.2021.111765_bib57 article-title: Effect of ultraviolet germicidal lights installed in office ventilation systems on workers' Health and wellbeing: double-blind multiple crossover trial publication-title: Lancet doi: 10.1016/S0140-6736(03)14897-0 – volume: 33 start-page: 8 issue: 4 year: 2020 ident: 10.1016/j.envres.2021.111765_bib46 article-title: COVID-19: a relationship to climate and environmental conditions? publication-title: Dermatol. Ther. doi: 10.1111/dth.13399 – volume: 7 start-page: 1355 issue: 50 year: 2010 ident: 10.1016/j.envres.2021.111765_bib90 article-title: Dynamics of infectious Disease transmission by inhalable respiratory droplets publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2010.0026 – volume: 17 start-page: 1 issue: 17 year: 2020 ident: 10.1016/j.envres.2021.111765_bib89 article-title: On the optimal indoor air conditions for sars-cov-2 inactivation. An enthalpy-based approach publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph17176083 – volume: 112 start-page: 110924 issue: March year: 2020 ident: 10.1016/j.envres.2021.111765_bib15 article-title: An overview of functional nanoparticles as novel emerging antiviral therapeutic agents publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2020.110924 – volume: 46 start-page: 77 year: 2012 ident: 10.1016/j.envres.2021.111765_bib100 article-title: Use of dialdehyde starch treated filters for protection against airborne viruses publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2011.09.006 – volume: 8 start-page: 8 issue: May year: 2020 ident: 10.1016/j.envres.2021.111765_bib106 article-title: Do humidity and temperature impact the spread of the novel coronavirus? publication-title: Front. Public Heal. – volume: 105 start-page: 669 issue: 6 year: 2020 ident: 10.1016/j.envres.2021.111765_bib22 article-title: COVID-19: minimising contaminated aerosol spreading during CPAP treatment publication-title: Arch. Dis. Child. Fetal Neonatal Ed. doi: 10.1136/archdischild-2020-319431 – volume: 15 start-page: 1 issue: 9 September year: 2020 ident: 10.1016/j.envres.2021.111765_bib56 article-title: Effects of temperature and humidity on the spread of COVID-19: a systematic review publication-title: PloS One – volume: 10 start-page: 1173 issue: 10 year: 2020 ident: 10.1016/j.envres.2021.111765_bib39 article-title: Review of indoor aerosol generation, transport, and control in the context of COVID-19 publication-title: Int. Forum Allergy Rhinol. doi: 10.1002/alr.22661 – volume: 104 start-page: 3464 issue: December 2014 year: 2005 ident: 10.1016/j.envres.2021.111765_bib4 article-title: Standard and guideline for UVGI air treatment systems publication-title: Indoor Air – volume: 7 start-page: 2 issue: 1 year: 2012 ident: 10.1016/j.envres.2021.111765_bib2 article-title: Six-month low level chlorine dioxide gas inhalation toxicity study with two-week recovery period in rats publication-title: J. Occup. Med. Toxicol. doi: 10.1186/1745-6673-7-2 – start-page: 1159 year: 2009 ident: 10.1016/j.envres.2021.111765_bib48 article-title: Life-cycle cost simulation of in-duct ultraviolet germicidal irradiation systems – volume: 12 start-page: 1007 issue: 5 year: 2012 ident: 10.1016/j.envres.2021.111765_bib82 article-title: Effect of negative air ions on fog and smoke publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2011.11.0214 – volume: 23 start-page: 428 issue: 4 year: 2012 ident: 10.1016/j.envres.2021.111765_bib70 article-title: Fluoroalkylsilane treatment of TiO 2 nanoparticles in difference PH values: characterization and mechanism publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2012.02.006 – volume: 729 start-page: 1 year: 2020 ident: 10.1016/j.envres.2021.111765_bib101 article-title: Effects of temperature and humidity on the daily new cases and new deaths of COVID-19 in 166 countries publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139051 – year: 1999 ident: 10.1016/j.envres.2021.111765_bib33 – volume: 7 start-page: e46789 issue: 10 year: 2012 ident: 10.1016/j.envres.2021.111765_bib103 article-title: Relationship between humidity and influenza A viability in droplets and implications for influenza's seasonality publication-title: PloS One doi: 10.1371/journal.pone.0046789 – volume: 98 start-page: 39 year: 2016 ident: 10.1016/j.envres.2021.111765_bib47 article-title: Evaluation of cold plasma inactivation efficacy against different airborne bacteria in ventilation duct flow publication-title: Build. Environ. doi: 10.1016/j.buildenv.2015.12.005 – volume: 8 start-page: 317 issue: 1–6 year: 1982 ident: 10.1016/j.envres.2021.111765_bib78 article-title: Indoor airborne infection publication-title: Environ. Int. doi: 10.1016/0160-4120(82)90043-5 – volume: 2021 start-page: 1 year: 2021 ident: 10.1016/j.envres.2021.111765_bib92 article-title: The efficacy of plant-based ionizers in removing aerosol for COVID-19 mitigation publication-title: Research doi: 10.34133/2021/2173642 – volume: 39 start-page: 672 issue: 5 year: 1989 ident: 10.1016/j.envres.2021.111765_bib51 article-title: Health effects of ozone A critical review publication-title: J. Air Pollut. Contr. Assoc. – volume: 107 start-page: 421 issue: 5 year: 1978 ident: 10.1016/j.envres.2021.111765_bib79 article-title: Airborne spread of measles in a suburban elementary school publication-title: Am. J. Epidemiol. doi: 10.1093/oxfordjournals.aje.a112560 – volume: 18 start-page: 100 issue: 9 year: 2000 ident: 10.1016/j.envres.2021.111765_bib41 article-title: UVGI design basics publication-title: Print. Circuit Des. – volume: 10 start-page: 387 issue: 2 year: 2020 ident: 10.1016/j.envres.2021.111765_bib107 article-title: Titanium dioxide nanoparticles: prospects and applications in medicine publication-title: Nanomaterials doi: 10.3390/nano10020387 – volume: 6 start-page: 20 issue: 1 year: 2004 ident: 10.1016/j.envres.2021.111765_bib43 article-title: Proposed standards and guidelines for UVGI air disinfection publication-title: IUVA News – volume: 26 start-page: 610 issue: 6 year: 2008 ident: 10.1016/j.envres.2021.111765_bib60 article-title: Non-thermal plasma technologies: new tools for bio-decontamination publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2008.08.001 – volume: 5 start-page: 321 issue: 2 year: 2020 ident: 10.1016/j.envres.2021.111765_bib85 article-title: Sterilization of microorganisms contaminated surfaces and its treatment with dielectric barrier discharge plasma publication-title: Trans. Indian Natl. Acad. Eng. doi: 10.1007/s41403-020-00124-8 – volume: 36 start-page: 1615 issue: 4 PART 3 year: 2008 ident: 10.1016/j.envres.2021.111765_bib53 article-title: Chemical mechanisms of bacterial inactivation using dielectric barrier discharge plasma in atmospheric air publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2008.917165 – volume: 132 start-page: 8234 issue: 24 year: 2010 ident: 10.1016/j.envres.2021.111765_bib59 article-title: Ozone formation from illuminated titanium dioxide surfaces publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1018755 – volume: 43 issue: 6 year: 2003 ident: 10.1016/j.envres.2021.111765_bib71 article-title: Non-thermal plasma ozone generation publication-title: Acta Polytech. doi: 10.14311/498 – volume: 12 start-page: 9992 issue: 23 year: 2020 ident: 10.1016/j.envres.2021.111765_bib97 article-title: Adaptation of HVAC systems to reduce the spread of COVID-19 in buildings publication-title: Sustainability doi: 10.3390/su12239992 – volume: 15 start-page: 235 issue: 4 year: 2005 ident: 10.1016/j.envres.2021.111765_bib27 article-title: Evaluation of ionic air purifiers for reducing aerosol exposure in confined indoor spaces publication-title: Indoor Air doi: 10.1111/j.1600-0668.2005.00364.x – volume: 278 start-page: 111515 issue: October 2020 year: 2021 ident: 10.1016/j.envres.2021.111765_bib32 article-title: Indoor PM2.5 removal efficiency of two different non-thermal plasma systems publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.111515 – volume: 724 start-page: 138226 year: 2020 ident: 10.1016/j.envres.2021.111765_bib54 article-title: Effects of temperature variation and humidity on the death of COVID-19 in wuhan, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138226 – volume: 141 start-page: 109781 issue: April year: 2020 ident: 10.1016/j.envres.2021.111765_bib18 article-title: Airborne route and bad use of ventilation systems as non-negligible factors in SARS-CoV-2 transmission publication-title: Med. Hypotheses doi: 10.1016/j.mehy.2020.109781 – year: 2014 ident: 10.1016/j.envres.2021.111765_bib44 – volume: 1 start-page: e10 issue: 1 year: 2020 ident: 10.1016/j.envres.2021.111765_bib16 article-title: Stability of SARS-CoV-2 in different environmental conditions publication-title: The Lancet Microbe doi: 10.1016/S2666-5247(20)30003-3 – volume: 41 start-page: 5460 issue: 15 year: 2007 ident: 10.1016/j.envres.2021.111765_bib98 article-title: Effect of ultraviolet germicidal irradiation on viral aerosols publication-title: Environ. Sci. Technol. doi: 10.1021/es070056u – volume: 107 start-page: 31 issue: February year: 2017 ident: 10.1016/j.envres.2021.111765_bib36 article-title: Application of corona discharge-generated air ions for filtration of aerosolized virus and inactivation of filtered virus publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2017.02.004 – year: 2020 ident: 10.1016/j.envres.2021.111765_bib25 – year: 2006 ident: 10.1016/j.envres.2021.111765_bib24 – volume: 106 issue: November year: 2000 ident: 10.1016/j.envres.2021.111765_bib42 article-title: Effective UVGI system design through improved modeling publication-title: ASHRAE Trans. – volume: 18 start-page: 106 issue: 2 year: 2008 ident: 10.1016/j.envres.2021.111765_bib34 article-title: Removal of viable bioaerosol particles with a low-efficiency HVAC filter enhanced by continuous emission of unipolar air ions publication-title: Indoor Air doi: 10.1111/j.1600-0668.2007.00512.x – volume: 156 start-page: 943 issue: 3 I year: 1997 ident: 10.1016/j.envres.2021.111765_bib45 article-title: Effects of ozone on epithelium and sensory nerves in the bronchial mucosa of healthy humans publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/ajrccm.156.3.9612088 – volume: 49 start-page: 978 issue: 9 year: 2010 ident: 10.1016/j.envres.2021.111765_bib61 article-title: Ultraviolet radiation and skin cancer publication-title: Int. J. Dermatol. doi: 10.1111/j.1365-4632.2010.04474.x – year: 2013 ident: 10.1016/j.envres.2021.111765_bib30 – volume: 2 start-page: 121 issue: 2 year: 1982 ident: 10.1016/j.envres.2021.111765_bib20 article-title: Transport phenomena with single aerosol particles publication-title: Aerosol Sci. Technol. doi: 10.1080/02786828308958618 – volume: 33 start-page: 831 issue: 7 year: 2000 ident: 10.1016/j.envres.2021.111765_bib104 article-title: On assessment of ozone generation in dc coronas publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/33/7/312 – volume: 105 start-page: 381 issue: 2 year: 2020 ident: 10.1016/j.envres.2021.111765_bib72 article-title: Putting some context to the aerosolization debate around SARS-CoV-2 publication-title: J. Hosp. Infect. doi: 10.1016/j.jhin.2020.04.040 – volume: 36 start-page: 644 issue: 9 year: 2020 ident: 10.1016/j.envres.2021.111765_bib62 article-title: Ventilation use in nonmedical settings during COVID-19: cleaning protocol, maintenance, and recommendations publication-title: Toxicol. Ind. Health doi: 10.1177/0748233720967528 – volume: 14 start-page: 317 issue: 5 year: 1999 ident: 10.1016/j.envres.2021.111765_bib63 article-title: A multi-zone model evaluation of the efficacy of upper-room Air ultraviolet germicidal irradiation publication-title: Appl. Occup. Environ. Hyg doi: 10.1080/104732299302909 – start-page: 1 year: 2021 ident: 10.1016/j.envres.2021.111765_bib12 – volume: 10 issue: APR year: 2019 ident: 10.1016/j.envres.2021.111765_bib52 article-title: A review on non-thermal atmospheric plasma for food preservation: mode of action, determinants of effectiveness, and applications publication-title: Front. Microbiol. – volume: 118 issue: 17 year: 2021 ident: 10.1016/j.envres.2021.111765_bib6 article-title: A guideline to limit indoor airborne transmission of COVID-19 publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.2018995118 – volume: 40 start-page: 963 issue: 11 year: 2006 ident: 10.1016/j.envres.2021.111765_bib1 article-title: Enhancement of the performance of low-efficiency HVAC filters due to continuous unipolar ion emission publication-title: Aerosol Sci. Technol. doi: 10.1080/02786820600833203 – volume: 1 start-page: 15 issue: 1 year: 2014 ident: 10.1016/j.envres.2021.111765_bib74 article-title: A chemical free, nanotechnology-based method for airborne bacterial inactivation using engineered water nanostructures publication-title: Environ. Sci. Nano doi: 10.1039/C3EN00007A – year: 2020 ident: 10.1016/j.envres.2021.111765_bib23 – volume: 69 start-page: 377 issue: 4 year: 2008 ident: 10.1016/j.envres.2021.111765_bib55 article-title: Resistance and cross-resistance to oxidising agents of bacterial isolates from endoscope washer disinfectors publication-title: J. Hosp. Infect. doi: 10.1016/j.jhin.2008.04.010 – volume: 89 start-page: 60 issue: 1 year: 2008 ident: 10.1016/j.envres.2021.111765_bib67 article-title: Protective effect of low-concentration chlorine dioxide gas against influenza A virus infection publication-title: J. Gen. Virol. doi: 10.1099/vir.0.83393-0 – volume: 20 start-page: 611 issue: 3 year: 1934 ident: 10.1016/j.envres.2021.111765_bib99 article-title: On airborne infection. Study II: droplets and droplet nuclei publication-title: Am. J. Epidemiol. doi: 10.1093/oxfordjournals.aje.a118097 – volume: 141 start-page: 105794 issue: May year: 2020 ident: 10.1016/j.envres.2021.111765_bib10 article-title: Estimation of airborne viral emission: quanta emission rate of SARS-CoV-2 for infection risk assessment publication-title: Environ. Int. doi: 10.1016/j.envint.2020.105794 – volume: 39 start-page: 1136 issue: 12 year: 2005 ident: 10.1016/j.envres.2021.111765_bib93 article-title: Inactivation of virus-containing aerosols by ultraviolet germicidal irradiation publication-title: Aerosol Sci. Technol. doi: 10.1080/02786820500428575 – volume: 75 start-page: 401 year: 2014 ident: 10.1016/j.envres.2021.111765_bib68 article-title: Filtration and inactivation of aerosolized bacteriophage MS2 by a CNT air filter fabricated using electro-aerodynamic deposition publication-title: Carbon N. Y. doi: 10.1016/j.carbon.2014.04.019 – volume: 46 start-page: 7334 issue: 13 year: 2012 ident: 10.1016/j.envres.2021.111765_bib29 article-title: Inactivation of aerosolized Bacillus atrophaeus (BG) endospores and MS2 viruses by combustion of reactive materials publication-title: Environ. Sci. Technol. doi: 10.1021/es300537f – year: 2021 ident: 10.1016/j.envres.2021.111765_bib87 – volume: 44 start-page: 1042 issue: 11 year: 2010 ident: 10.1016/j.envres.2021.111765_bib28 article-title: Inactivation of aerosolized viruses in continuous air flow with axial heating publication-title: Aerosol. Sci. Technol. doi: 10.1080/02786826.2010.509119 – volume: 105 start-page: 569 issue: 3 year: 2020 ident: 10.1016/j.envres.2021.111765_bib19 article-title: Putting a balance on the aerosolization debate around SARS-CoV-2 publication-title: J. Hosp. Infect. doi: 10.1016/j.jhin.2020.05.014 – volume: 3 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.envres.2021.111765_bib5 article-title: Heat inactivation of the severe acute respiratory syndrome coronavirus 2 publication-title: J. Biosaf. Biosecurity doi: 10.1016/j.jobb.2020.12.001 – volume: 17 start-page: 1 issue: 17 year: 2020 ident: 10.1016/j.envres.2021.111765_bib17 article-title: Can air-conditioning systems contribute to the spread of SARS/MERS/COVID-19 infection? Insights from a rapid review of the literature publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph17176052 – volume: 36 start-page: 197 issue: 3–4 year: 1995 ident: 10.1016/j.envres.2021.111765_bib35 article-title: A brief history of heat, chemical and radiation preservation and disinfection publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/0964-8305(95)00055-0 – volume: 280 start-page: 356 year: 2014 ident: 10.1016/j.envres.2021.111765_bib38 article-title: Fabrication of an anti-viral air filter with SiO2-Ag nanoparticles and performance evaluation in a continuous airflow condition publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2014.08.013 – volume: 25 start-page: 8074 issue: 9 year: 2018 ident: 10.1016/j.envres.2021.111765_bib65 article-title: The effects of ozone on human Health publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-9239-3 – volume: 161 start-page: 303 issue: 1 year: 2014 ident: 10.1016/j.envres.2021.111765_bib3 article-title: Iodine-containing aluminum-based fuels for inactivation of bioaerosols publication-title: Combust. Flame doi: 10.1016/j.combustflame.2013.07.017 – volume: 37 start-page: 885 issue: 7 year: 2006 ident: 10.1016/j.envres.2021.111765_bib7 article-title: Methodology for determining the susceptibility of airborne microorganisms to irradiation by an upper-room UVGI system publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2005.08.002 – volume: 17 start-page: 2 issue: 1 year: 2007 ident: 10.1016/j.envres.2021.111765_bib49 article-title: Role of ventilation in airborne transmission of infectious agents in the built Environment ;? A multidisciplinary systematic review publication-title: Indoor Air doi: 10.1111/j.1600-0668.2006.00445.x – volume: 46 start-page: 1295 issue: 12 year: 2012 ident: 10.1016/j.envres.2021.111765_bib73 article-title: Inactivation of airborne influenza virus by tea tree and Eucalyptus oils publication-title: Aerosol Sci. Technol. doi: 10.1080/02786826.2012.708948 – volume: 76 start-page: 2712 issue: 9 year: 2010 ident: 10.1016/j.envres.2021.111765_bib11 article-title: Effects of air temperature and relative humidity on coronavirus survival on surfaces publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02291-09 – volume: 25 start-page: 421 year: 1972 ident: 10.1016/j.envres.2021.111765_bib77 article-title: The ecology of indoor atmospheres: airborne infection in hospitals publication-title: J. Chron. Dis. doi: 10.1016/0021-9681(72)90204-4 – volume: 22 start-page: 495 issue: 4 year: 2002 ident: 10.1016/j.envres.2021.111765_bib14 article-title: Ozone production in the positive DC corona discharge: model and comparison to experiments publication-title: Plasma Chem. Plasma Process. doi: 10.1023/A:1021315412208 – ident: 10.1016/j.envres.2021.111765_bib66 – volume: 63 year: 2020 ident: 10.1016/j.envres.2021.111765_bib80 article-title: Best practices on HVAC design to minimize the risk of COVID-19 infection within indoor environments publication-title: Braz. Arch. Biol. Technol. doi: 10.1590/1678-4324-2020200335 – volume: 2011 year: 2011 ident: 10.1016/j.envres.2021.111765_bib13 article-title: The effects of temperature and relative humidity on the viability of the SARS coronavirus publication-title: Adv. Virol. doi: 10.1155/2011/734690 – volume: 77 year: 2020 ident: 10.1016/j.envres.2021.111765_bib86 article-title: The impact of temperature and absolute humidity on the coronavirus Disease 2019 (COVID-19) outbreak - evidence from China publication-title: medRxiv – volume: 21 start-page: 1576 issue: 4 year: 2020 ident: 10.1016/j.envres.2021.111765_bib31 article-title: Water-repellent TiO2-organic dye-based air filters for efficient visible-light-activated photochemical inactivation against bioaerosols publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c03173 – volume: 52 issue: 25 year: 2019 ident: 10.1016/j.envres.2021.111765_bib102 article-title: Inactivation of airborne viruses using a packed bed non-thermal plasma reactor publication-title: J. Phys. D Appl. Phys. doi: 10.1088/1361-6463/ab1466 – volume: 18 start-page: 234 year: 2019 ident: 10.1016/j.envres.2021.111765_bib96 article-title: Inactivation of common hospital acquired pathogens on surfaces and in air utilizing engineered water nanostructures (EWNS) based nano-sanitizers publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2019.03.003 – volume: 15 start-page: 100249 year: 2020 ident: 10.1016/j.envres.2021.111765_bib105 article-title: Catching and killing of airborne SARS-CoV-2 to control spread of COVID-19 by a heated air disinfection system publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2020.100249 – volume: 39 start-page: 618 issue: 7 year: 2008 ident: 10.1016/j.envres.2021.111765_bib50 article-title: Experimental and computational studies of liquid aerosol evaporation publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2008.03.009 – volume: August year: 2001 ident: 10.1016/j.envres.2021.111765_bib40 article-title: Design and optimization of UVGI air disinfection systems A thesis in architectural engineering by publication-title: Configurations – volume: 82 start-page: 1495 issue: 6 year: 2006 ident: 10.1016/j.envres.2021.111765_bib64 article-title: The effect of ultraviolet radiation on human viral infections publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.2006.tb09805.x – volume: 7 start-page: 2941 issue: 11 year: 2020 ident: 10.1016/j.envres.2021.111765_bib75 article-title: A critical review on ultraviolet disinfection systems against COVID-19 outbreak: applicability, validation, and safety considerations publication-title: ACS Photonics doi: 10.1021/acsphotonics.0c01245 – volume: 125 start-page: 15 issue: 1 year: 2010 ident: 10.1016/j.envres.2021.111765_bib76 article-title: The history of ultraviolet germicidal irradiation for air disinfection publication-title: Publ. Health Rep. doi: 10.1177/003335491012500105 – volume: 23 start-page: 1846 issue: 7 year: 2009 ident: 10.1016/j.envres.2021.111765_bib69 article-title: Removal of submicron aerosol particles and bioaerosols using carbon fiber ionizer assisted fibrous medium filter media publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-009-0613-z – volume: 3 start-page: 335 issue: 3 year: 1997 ident: 10.1016/j.envres.2021.111765_bib26 article-title: Using a mathematical model to evaluate the efficacy of TB control measures publication-title: Emerg. Infect. Dis. doi: 10.3201/eid0303.970310 |
SSID | ssj0011530 |
Score | 2.5991597 |
SecondaryResourceType | review_article |
Snippet | COVID-19 forced the human population to rethink its way of living. The threat posed by the potential spread of the virus via an airborne transmission mode... |
SourceID | pubmedcentral osti proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 111765 |
SubjectTerms | air Air Conditioning airborne transmission Airborne virus ventilation Buildings COVID-19 COVID-19 infection Enclosed space environmental factors filtration heat inactivation human population Humans ionization irradiation markets Probability reactive oxygen species research and development SARS-CoV-2 Ventilation viruses |
Title | A review of methods to reduce the probability of the airborne spread of COVID-19 in ventilation systems and enclosed spaces |
URI | https://dx.doi.org/10.1016/j.envres.2021.111765 https://www.ncbi.nlm.nih.gov/pubmed/34331921 https://www.proquest.com/docview/2557225964 https://www.proquest.com/docview/2636526590 https://www.osti.gov/biblio/1810612 https://pubmed.ncbi.nlm.nih.gov/PMC8317458 |
Volume | 203 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7C9lIopU2bdpMmqNCrG9uSLPm4bBM2LU0vTcnN2JJMXYK8xJtCCOS3Z8ayN90SGujFB1ljpJ2HvtHOA-CDECrVlit0ctAEioyXkc6ViVC3uKiEi7mhC_2vp9niTHw-l-dbMB9zYSiscrD9wab31noYORx-zcNl01COb0J5pVQBi0ACJfxS9TqU6Y-36zAPBDw8HrsY0Owxfa6P8XL-Nzq16CWmCdkORUfMw8fTpEWNewiF_h1M-cfpdPwCng-wks3Cyl_ClvPbsHN0n8WGLwc17rbhWbisYyEH6RXczFhIYWFtzUJP6Y6tWhy0yHmGGJFR45lQ0vuaJtFQ2VyiAHnHuiUiT0vD828_Tj5FSc4az_pAyhBpx0K96I6V3jJcw0XbOYtkFA72Gs6Oj77PF9HQlSEy6LSuIs2rKpU6U1VlSyUtYcJMUihqjYwVVZriw4o6lqlB1nAeGxpJtMVDUhnBd2DiW-_eAkvQWlTkcHIu6VJTa2NiVRvrSlULbqbAR2YUZihZTp0zLooxNu1XEVhYEAuLwMIpRGuqZSjZ8ch8NfK52BC9Ak-VRyj3SCyIiiruGgpNQjIETQQcp_B-lJYCdZb-iCm9a6_wE1Iq3HWeiX_MyXhGrQvyeApvgoStd8MpzS1PE1z5huytJ1DN8M03vvnZ1w7XiBeF1Lv_vec9eJpSBkh_C_UOJqvLK7ePuGxVHfSKdwBPZidfFqd3-4Q2vA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Nb9Mw9Gl0B5AQgsGgjIGRuEZLYjt2jlW3qWVbuWxoNyuxEy1oSqqlQ0L8ed6Lk25FE5O49PDiV9l53877APgihIq14wqDHFSBIuFZoFNlA5QtLnJRhNzShf7ZIpldiK-X8nILpkMtDKVV9rrf6_ROW_eQg_5tHiyrimp8I6orpQ5Y5CToJ7BN3anECLYn85PZYv0xAYU6HAYZEMJQQdeleRX1T4xrMVCMI1IfiqzMwxZq1KDQPeSI_p1Pec9AHb-EF71nySZ-869gq6h3YPforpANH_aS3O7Ac39fx3wZ0mv4PWG-ioU1JfNjpVu2ahDokPgM3URGs2d8V-9ftIhAWXWDPFQXrF2i8-kIPP32fX4YRCmratblUvpkO-ZbRrcsqx3DPVw3beEQjTLC3sDF8dH5dBb0gxkCi3HrKtA8z2OpE5XnLlPSkVuYSMpGLZG2Io9j_HGiDGVskTqch5YgkXZoJ5UVfBdGdVMX74BFqDByijk5l3SvqbW1oSqtKzJVCm7HwAdiGNt3LafhGddmSE_7YTwJDZHQeBKOIVhjLX3XjkfWq4HOZoP7DBqWRzD3iC0Ii5ruWspOQjT0m8h3HMPngVsMii19i8nqornFv5BS4anTRPxjTcITml6QhmN46zlsfRpOlW5pHOHON3hvvYDahm8-qaurrn24RpdRSP3-v8_8CZ7Ozs9Ozel8cbIHz2IqCOkupT7AaHVzW-yjm7bKP_Zi-AeBUDlt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+methods+to+reduce+the+probability+of+the+airborne+spread+of+COVID-19+in+ventilation+systems+and+enclosed+spaces&rft.jtitle=Environmental+research&rft.au=Berry%2C+Gentry&rft.au=Parsons%2C+Adam&rft.au=Morgan%2C+Matthew&rft.au=Rickert%2C+Jaime&rft.date=2022-01-01&rft.pub=Elsevier+Inc&rft.issn=0013-9351&rft.eissn=1096-0953&rft.volume=203&rft_id=info:doi/10.1016%2Fj.envres.2021.111765&rft.externalDocID=S0013935121010598 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9351&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9351&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9351&client=summon |