Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data
The rapidly reducing cost of bacterial genome sequencing has lead to its routine use in large-scale microbial analysis. Though mapping approaches can be used to find differences relative to the reference, many bacteria are subject to constant evolutionary pressures resulting in events such as the lo...
Saved in:
Published in | Microbial genomics Vol. 2; no. 8; p. e000083 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Microbiology Society
01.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rapidly reducing cost of bacterial genome sequencing has lead to its routine use in large-scale microbial analysis. Though mapping approaches can be used to find differences relative to the reference, many bacteria are subject to constant evolutionary pressures resulting in events such as the loss and gain of mobile genetic elements, horizontal gene transfer through recombination and genomic rearrangements.
De novo
assembly is the reconstruction of the underlying genome sequence, an essential step to understanding bacterial genome diversity. Here we present a high-throughput bacterial assembly and improvement pipeline that has been used to generate nearly 20 000 annotated draft genome assemblies in public databases. We demonstrate its performance on a public data set of 9404 genomes. We find all the genes used in multi-locus sequence typing schema present in 99.6 % of assembled genomes. When tested on low-, neutral- and high-GC organisms, more than 94 % of genes were present and completely intact. The pipeline has been proven to be scalable and robust with a wide variety of datasets without requiring human intervention. All of the software is available on GitHub under the GNU GPL open source license. |
---|---|
AbstractList | The rapidly reducing cost of bacterial genome sequencing has lead to its routine use in large-scale microbial analysis. Though mapping approaches can be used to find differences relative to the reference, many bacteria are subject to constant evolutionary pressures resulting in events such as the loss and gain of mobile genetic elements, horizontal gene transfer through recombination and genomic rearrangements. De novo assembly is the reconstruction of the underlying genome sequence, an essential step to understanding bacterial genome diversity. Here we present a high-throughput bacterial assembly and improvement pipeline that has been used to generate nearly 20 000 annotated draft genome assemblies in public databases. We demonstrate its performance on a public data set of 9404 genomes. We find all the genes used in multi-locus sequence typing schema present in 99.6 % of assembled genomes. When tested on low-, neutral- and high-GC organisms, more than 94 % of genes were present and completely intact. The pipeline has been proven to be scalable and robust with a wide variety of datasets without requiring human intervention. All of the software is available on GitHub under the GNU GPL open source license.The rapidly reducing cost of bacterial genome sequencing has lead to its routine use in large-scale microbial analysis. Though mapping approaches can be used to find differences relative to the reference, many bacteria are subject to constant evolutionary pressures resulting in events such as the loss and gain of mobile genetic elements, horizontal gene transfer through recombination and genomic rearrangements. De novo assembly is the reconstruction of the underlying genome sequence, an essential step to understanding bacterial genome diversity. Here we present a high-throughput bacterial assembly and improvement pipeline that has been used to generate nearly 20 000 annotated draft genome assemblies in public databases. We demonstrate its performance on a public data set of 9404 genomes. We find all the genes used in multi-locus sequence typing schema present in 99.6 % of assembled genomes. When tested on low-, neutral- and high-GC organisms, more than 94 % of genes were present and completely intact. The pipeline has been proven to be scalable and robust with a wide variety of datasets without requiring human intervention. All of the software is available on GitHub under the GNU GPL open source license. The rapidly reducing cost of bacterial genome sequencing has lead to its routine use in large-scale microbial analysis. Though mapping approaches can be used to find differences relative to the reference, many bacteria are subject to constant evolutionary pressures resulting in events such as the loss and gain of mobile genetic elements, horizontal gene transfer through recombination and genomic rearrangements. De novo assembly is the reconstruction of the underlying genome sequence, an essential step to understanding bacterial genome diversity. Here we present a high-throughput bacterial assembly and improvement pipeline that has been used to generate nearly 20 000 annotated draft genome assemblies in public databases. We demonstrate its performance on a public data set of 9404 genomes. We find all the genes used in multi-locus sequence typing schema present in 99.6 % of assembled genomes. When tested on low-, neutral- and high-GC organisms, more than 94 % of genes were present and completely intact. The pipeline has been proven to be scalable and robust with a wide variety of datasets without requiring human intervention. All of the software is available on GitHub under the GNU GPL open source license. The rapidly reducing cost of bacterial genome sequencing has lead to its routine use in large-scale microbial analysis. Though mapping approaches can be used to find differences relative to the reference, many bacteria are subject to constant evolutionary pressures resulting in events such as the loss and gain of mobile genetic elements, horizontal gene transfer through recombination and genomic rearrangements. assembly is the reconstruction of the underlying genome sequence, an essential step to understanding bacterial genome diversity. Here we present a high-throughput bacterial assembly and improvement pipeline that has been used to generate nearly 20 000 annotated draft genome assemblies in public databases. We demonstrate its performance on a public data set of 9404 genomes. We find all the genes used in multi-locus sequence typing schema present in 99.6 % of assembled genomes. When tested on low-, neutral- and high-GC organisms, more than 94 % of genes were present and completely intact. The pipeline has been proven to be scalable and robust with a wide variety of datasets without requiring human intervention. All of the software is available on GitHub under the GNU GPL open source license. |
Author | Page, Andrew J. Harris, Simon R. Otto, Thomas D. Keane, Jacqueline A. Hunt, Martin Quail, Michael A. Parkhill, Julian De Silva, Nishadi |
Author_xml | – sequence: 1 givenname: Andrew J. surname: Page fullname: Page, Andrew J. organization: 1Pathogen Informatics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK – sequence: 2 givenname: Nishadi surname: De Silva fullname: De Silva, Nishadi organization: 1Pathogen Informatics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK – sequence: 3 givenname: Martin surname: Hunt fullname: Hunt, Martin organization: 1Pathogen Informatics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK – sequence: 4 givenname: Michael A. surname: Quail fullname: Quail, Michael A. organization: 2Biochemical Development, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK – sequence: 5 givenname: Julian surname: Parkhill fullname: Parkhill, Julian organization: 3Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK – sequence: 6 givenname: Simon R. surname: Harris fullname: Harris, Simon R. organization: 3Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK – sequence: 7 givenname: Thomas D. surname: Otto fullname: Otto, Thomas D. organization: 4Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK – sequence: 8 givenname: Jacqueline A. surname: Keane fullname: Keane, Jacqueline A. organization: 1Pathogen Informatics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28348874$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1rHSEUxaWkNB_NstviMpt5dUYdnU0hhLYJBAol2yKOc-eNiaNTdR7kv6-Pl4Q01M0V_N1zvPecoiMfPCD0qSabmnTdl3kLfkM2pBxJ36GThnBRccnl0av7MTpP6b4gNZdtJ_gHdNxIyqQU7AT9_hX6NWU82e1U5SmGdTsta8ZLDA86PoYMeADswy5gnRLMvXvE2g_YzoXYwQy-sHYBZz3gMUR849w6W6_xoLP-iN6P2iU4f6pn6O77t7ur6-r254-bq8vbyvCG5kqYlrSmM5SztoFu5LwFqnkvegaMaN6MPUit9TgYUWtGKO1kRwdGBTGCSXqGvh5kl7WfYTDlU1E7tUQ7lxlU0Fb9--LtpLZhpzgtW-r2AhdPAjH8WSFlNdtkwDntIaxJ1VLWQlDGRUE_v_Z6MXleaQHoATAxpBRhVMZmnW3YW1unaqL22al9doqoQ3alq3rT9Sz8f_4vWG6eJw |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e41531 crossref_primary_10_1099_mgen_0_000979 crossref_primary_10_1099_mgen_0_000297 crossref_primary_10_3389_fmicb_2020_00548 crossref_primary_10_3389_fmicb_2017_01272 crossref_primary_10_1186_s40168_019_0753_z crossref_primary_10_1128_mSphere_00537_18 crossref_primary_10_12688_wellcomeopenres_14265_1 crossref_primary_10_1099_mgen_0_000181 crossref_primary_10_12688_wellcomeopenres_14265_2 crossref_primary_10_1099_mgen_0_000743 crossref_primary_10_1099_mgen_0_000506 crossref_primary_10_1186_s13073_016_0353_5 crossref_primary_10_1007_s00203_023_03654_1 crossref_primary_10_1099_mgen_0_000103 crossref_primary_10_1128_mBio_02521_19 crossref_primary_10_1099_mgen_0_001035 crossref_primary_10_1128_msystems_00346_21 crossref_primary_10_1099_ijsem_0_002321 crossref_primary_10_1099_mgen_0_000190 crossref_primary_10_1038_s42003_020_01290_9 crossref_primary_10_1099_jmm_0_001531 crossref_primary_10_1099_jmm_0_001013 crossref_primary_10_1128_genomeA_01429_17 crossref_primary_10_3389_fvets_2024_1321202 crossref_primary_10_1099_mgen_0_000594 crossref_primary_10_1186_s12985_021_01655_4 crossref_primary_10_1099_mgen_0_000357 crossref_primary_10_1128_msystems_00141_23 crossref_primary_10_1099_mgen_0_000114 crossref_primary_10_1099_mgen_0_000993 crossref_primary_10_1093_cid_ciz174 crossref_primary_10_1128_JCM_00771_20 crossref_primary_10_1093_gbe_evx019 crossref_primary_10_1111_pbi_13294 crossref_primary_10_1128_mSphere_00154_21 crossref_primary_10_3390_microorganisms12122393 crossref_primary_10_3389_fcimb_2021_729981 crossref_primary_10_1186_s12864_017_3657_y crossref_primary_10_1038_s41598_020_66214_3 crossref_primary_10_1126_science_abb8699 crossref_primary_10_1099_mgen_0_000124 crossref_primary_10_1099_mgen_0_001211 crossref_primary_10_1016_j_snr_2024_100238 crossref_primary_10_1128_MRA_00029_19 crossref_primary_10_1128_spectrum_02306_22 crossref_primary_10_1038_s41564_021_00963_3 crossref_primary_10_1099_mgen_0_000778 crossref_primary_10_7717_peerj_12446 crossref_primary_10_1038_s42003_021_01905_9 crossref_primary_10_3389_fmicb_2024_1410651 crossref_primary_10_1128_mSphere_01297_20 crossref_primary_10_1099_ijsem_0_002528 crossref_primary_10_1007_s00203_022_02860_7 crossref_primary_10_21105_joss_00118 crossref_primary_10_1007_s00284_021_02353_8 crossref_primary_10_1099_mgen_0_000499 crossref_primary_10_3389_fmicb_2023_1181376 crossref_primary_10_1016_j_chom_2021_12_003 crossref_primary_10_3389_fmed_2020_594769 crossref_primary_10_1128_genomeA_01428_17 crossref_primary_10_1038_s41564_022_01216_7 crossref_primary_10_3389_fmicb_2024_1422902 crossref_primary_10_1128_mBio_00802_17 crossref_primary_10_1038_s41598_018_26079_z crossref_primary_10_1099_mgen_0_000826 crossref_primary_10_1099_mgen_0_000144 crossref_primary_10_1128_spectrum_02423_21 crossref_primary_10_1099_mgen_0_000422 crossref_primary_10_1093_cid_ciz404 crossref_primary_10_1099_mgen_0_000266 crossref_primary_10_1128_JCM_01465_20 crossref_primary_10_1099_mgen_0_000677 crossref_primary_10_1099_mgen_0_000831 crossref_primary_10_1016_j_cmi_2023_02_022 crossref_primary_10_1098_rspb_2018_2025 crossref_primary_10_1126_science_adi0908 crossref_primary_10_1099_mgen_0_000312 crossref_primary_10_1038_s41598_018_33622_5 crossref_primary_10_1016_j_jhin_2023_06_025 crossref_primary_10_3389_fmicb_2023_1185753 crossref_primary_10_1038_s41598_018_25764_3 crossref_primary_10_1101_gr_264465_120 crossref_primary_10_7554_eLife_74819 crossref_primary_10_7554_eLife_67113 crossref_primary_10_1128_MRA_00716_19 crossref_primary_10_1007_s12223_022_00980_7 crossref_primary_10_1128_mBio_02410_21 crossref_primary_10_1111_1462_2920_16200 crossref_primary_10_1186_s12879_016_1987_z crossref_primary_10_3389_fcimb_2021_686090 crossref_primary_10_7717_peerj_6995 crossref_primary_10_1128_mSphere_00738_20 crossref_primary_10_3201_eid2311_170833 crossref_primary_10_1128_AEM_02177_20 crossref_primary_10_1128_genomeA_00804_17 crossref_primary_10_1099_mgen_0_001376 crossref_primary_10_1128_mBio_01056_18 crossref_primary_10_1038_s41598_019_41883_x crossref_primary_10_1099_mgen_0_001262 crossref_primary_10_1186_s13059_017_1252_9 crossref_primary_10_1128_JB_00738_17 crossref_primary_10_7554_eLife_69244 crossref_primary_10_1128_mBio_01755_19 crossref_primary_10_1186_s13059_021_02428_6 crossref_primary_10_1186_s13073_024_01342_3 |
Cites_doi | 10.1093/bib/bbp026 10.1016/j.gde.2005.09.006 10.1371/journal.pone.0112963 10.1093/bioinformatics/btt476 10.1126/science.277.5331.1453 10.1093/bib/bbv104 10.1186/gb-2013-14-5-r47 10.1093/bioinformatics/btp324 10.1002/0471250953.bi1105s31 10.1093/bioinformatics/btp347 10.1038/35054089 10.1186/1471-2105-15-126 10.1186/gb-2012-13-6-r56 10.1093/bioinformatics/btv421 10.1093/bioinformatics/btt086 10.1093/nar/gku1196 10.1186/1471-2105-10-421 10.1126/science.1198545 10.1186/gb-2014-15-3-r46 10.1186/1471-2164-16-S3-S7 10.1073/pnas.95.6.3140 10.1073/pnas.1403138111 10.1089/cmb.2012.0021 10.1038/ng.2895 10.1038/nmeth.1814 10.1093/bioinformatics/btu153 10.1186/gb-2009-10-3-r25 10.1186/1471-2105-11-595 10.1093/nar/gku1243 10.1128/JB.01255-09 10.1186/1471-2164-15-S9-S10 10.1186/gb-2014-15-3-r42 10.1093/bioinformatics/btv056 10.1038/ng.3281 10.1186/gb-2010-11-4-r41 10.1093/nar/gkr1079 10.1371/journal.pntd.0004446 10.1093/bioinformatics/btq683 10.1038/nmicrobiol.2015.23 10.1093/bioinformatics/btq269 |
ContentType | Journal Article |
Copyright | 2016 The Authors 2016 |
Copyright_xml | – notice: 2016 The Authors 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1099/mgen.0.000083 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | http://mgen.microbiologyresearch.org |
EISSN | 2057-5858 |
ExternalDocumentID | PMC5320598 28348874 10_1099_mgen_0_000083 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust grantid: WT098051 – fundername: Wellcome Trust – fundername: Wellcome Trust grantid: 098051 |
GroupedDBID | 53G AAVHR AAXYV AAYXX ADBBV ADCDP ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION DIK EBS EJD FRP GROUPED_DOAJ H13 HYE M~E OK1 RGM RPM CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c523t-7c606c9c35462e9f556e3a5b7b4e40a52fbe8aaafdc71a40339893d4370c7483 |
ISSN | 2057-5858 |
IngestDate | Thu Aug 21 18:32:32 EDT 2025 Fri Jul 11 03:51:55 EDT 2025 Thu Jan 02 22:34:41 EST 2025 Tue Jul 01 02:27:00 EDT 2025 Thu Apr 24 22:57:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | illumina assembly high-throughput prokaryotic |
Language | English |
License | http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/4.0 This is an open access article under the terms of the Creative Commons Attribution 4.04.0 International License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c523t-7c606c9c35462e9f556e3a5b7b4e40a52fbe8aaafdc71a40339893d4370c7483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 All supporting data, code and protocols have been provided within the article or through supplementary data files. |
OpenAccessLink | http://dx.doi.org/10.1099/mgen.0.000083 |
PMID | 28348874 |
PQID | 1881773457 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5320598 proquest_miscellaneous_1881773457 pubmed_primary_28348874 crossref_citationtrail_10_1099_mgen_0_000083 crossref_primary_10_1099_mgen_0_000083 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-01 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Microbial genomics |
PublicationTitleAlternate | Microb Genom |
PublicationYear | 2016 |
Publisher | Microbiology Society |
Publisher_xml | – name: Microbiology Society |
References | b1 R21 b2 R20 b3 R23 R22 R24 R29 R28 R1 R2 R4 R5 R6 R7 R8 R9 R32 R31 R34 R33 R36 R35 R38 R37 R39 Page (R26) 2016a Page (R27) 2016b R41 R43 R42 R45 R44 Ponstingl (R30) 2015 R46 Page (R25) 2016 Bala (R3) 2016 Gladman (R11) 2008 R10 R12 R14 R13 R16 R15 R18 R17 R19 Zerbino (R40) 2010; 31 |
References_xml | – ident: R31 doi: 10.1093/bib/bbp026 – ident: R44 doi: 10.1016/j.gde.2005.09.006 – ident: R37 doi: 10.1371/journal.pone.0112963 – ident: R41 doi: 10.1093/bioinformatics/btt476 – ident: b2 – ident: R5 doi: 10.1126/science.277.5331.1453 – ident: R29 doi: 10.1093/bib/bbv104 – ident: R14 doi: 10.1186/gb-2013-14-5-r47 – ident: R19 doi: 10.1093/bioinformatics/btp324 – volume: 31 start-page: 11.5.1 year: 2010 ident: R40 article-title: Using the Velvet de novo assembler for short-read sequencing technologies publication-title: Curr Protoc Bioinformatics doi: 10.1002/0471250953.bi1105s31 – ident: R2 doi: 10.1093/bioinformatics/btp347 – ident: R28 doi: 10.1038/35054089 – ident: R17 doi: 10.1186/1471-2105-15-126 – ident: R7 doi: 10.1186/gb-2012-13-6-r56 – ident: R24 doi: 10.1093/bioinformatics/btv421 – ident: b1 – year: 2016b ident: R27 article-title: MLST-check – year: 2016a ident: R26 article-title: Assembly improvement example publication-title: GitHub – year: 2016 ident: R25 article-title: GFF3toEMBL publication-title: GitHub – ident: R12 doi: 10.1093/bioinformatics/btt086 – ident: R10 doi: 10.1093/nar/gku1196 – ident: R8 doi: 10.1186/1471-2105-10-421 – year: 2015 ident: R30 article-title: SMALT – ident: R9 doi: 10.1126/science.1198545 – ident: R39 doi: 10.1186/gb-2014-15-3-r46 – ident: R33 doi: 10.1186/1471-2164-16-S3-S7 – ident: R46 doi: 10.1073/pnas.95.6.3140 – ident: R43 doi: 10.1073/pnas.1403138111 – ident: R4 doi: 10.1089/cmb.2012.0021 – ident: R42 doi: 10.1038/ng.2895 – ident: R34 doi: 10.1038/nmeth.1814 – ident: R35 doi: 10.1093/bioinformatics/btu153 – ident: R18 doi: 10.1186/gb-2009-10-3-r25 – ident: R16 doi: 10.1186/1471-2105-11-595 – ident: R22 doi: 10.1093/nar/gku1243 – ident: R13 doi: 10.1128/JB.01255-09 – ident: R1 doi: 10.1186/1471-2164-15-S9-S10 – ident: R15 doi: 10.1186/gb-2014-15-3-r42 – ident: R21 doi: 10.1093/bioinformatics/btv056 – year: 2016 ident: R3 article-title: Vertebrate resequencing sequence analysis pipeline publication-title: GitHub – ident: R38 doi: 10.1038/ng.3281 – ident: R36 doi: 10.1186/gb-2010-11-4-r41 – ident: b3 – ident: R32 doi: 10.1093/nar/gkr1079 – year: 2008 ident: R11 article-title: Velvet optimiser – ident: R20 doi: 10.1371/journal.pntd.0004446 – ident: R6 doi: 10.1093/bioinformatics/btq683 – ident: R45 doi: 10.1038/nmicrobiol.2015.23 – ident: R23 doi: 10.1093/bioinformatics/btq269 |
SSID | ssj0001586975 |
Score | 2.4318502 |
Snippet | The rapidly reducing cost of bacterial genome sequencing has lead to its routine use in large-scale microbial analysis. Though mapping approaches can be used... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e000083 |
SubjectTerms | Genome, Bacterial - genetics Genomics - economics Genomics - methods High-Throughput Nucleotide Sequencing Methods Paper Multilocus Sequence Typing Prokaryotic Cells Sequence Analysis, DNA - methods Software |
Title | Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28348874 https://www.proquest.com/docview/1881773457 https://pubmed.ncbi.nlm.nih.gov/PMC5320598 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZZ97KXsbFf2S80GHvxnCWWZNmPpWx0hYyyZdCXYc6yTE0T2zROof3rd7Jkx8k62PpigqPIRN9n-e589x0h7_EZEyhQqc_SLPN5nmc-5LH25TSOQs24BGmKk-ffwuOf_ORMnI1G9SBradOkE3Vza13JXVDFc4irqZL9D2T7SfEEfkZ88YgI4_GfMP5epZt14xnJYd813Kk3jcm5uoDL66oxNVFeWV1VHprIepUundhSG0ho44JeXdS6tTRNuuFX0_a4KMFzFWu92TovWr0mhNNouq4GGfKnYHuz28RI72TSW8ba-1Esr8DSbX0OWbGlUNnVCXXC323oFWw82mXye4eTYUhiFvYJcS4tqRhoSLnkU_u4afe1AE1EH72UaLgJBwOuRbdu7WjKIh4r_JuTaas6aRvgDGCuVy3OaDDhrmR7_-xpaZ_Oj0wjDBFH98j9AB2LoRNu68qjMJbCibHiJT_tXNBIR7vZd-2YP5yT_RzbgdGyeEQeOm-DHlrqPCYjXT4hvyxt6B5t6JY2NNPU0IZ2tKFIGzqgDe1oQ5E2tKMNNbR5ShZfPi-Ojn3XZcNXImCNLxX6sCpWTPAw0HEuBN6jIFKZcs2nIII81REA5JmSM-BTxmK0cTPO5FRJHrFn5KCsSv2C0Bi0aTfAc5YJrqUEYBAyiR63SjWE2Zh87JYsUU6B3jRCWSY2EyJOzGInRq_WLPaYfOiH11Z65W8D33Xrn-DmaN54QamrzTqZRdFMSsaFHJPnFo9-qg7IMZE7SPUDjPD67jdlcd4KsDsOvbzzL1-RB9v75jU5aC43-g0at036tuXjb8J1r1o |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+high-throughput+prokaryote+de+novo+assembly+and+improvement+pipeline+for+Illumina+data&rft.jtitle=Microbial+genomics&rft.au=Page%2C+Andrew+J.&rft.au=De+Silva%2C+Nishadi&rft.au=Hunt%2C+Martin&rft.au=Quail%2C+Michael+A.&rft.date=2016-08-01&rft.pub=Microbiology+Society&rft.eissn=2057-5858&rft.volume=2&rft.issue=8&rft_id=info:doi/10.1099%2Fmgen.0.000083&rft_id=info%3Apmid%2F28348874&rft.externalDocID=PMC5320598 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-5858&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-5858&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-5858&client=summon |