Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data

The rapidly reducing cost of bacterial genome sequencing has lead to its routine use in large-scale microbial analysis. Though mapping approaches can be used to find differences relative to the reference, many bacteria are subject to constant evolutionary pressures resulting in events such as the lo...

Full description

Saved in:
Bibliographic Details
Published inMicrobial genomics Vol. 2; no. 8; p. e000083
Main Authors Page, Andrew J., De Silva, Nishadi, Hunt, Martin, Quail, Michael A., Parkhill, Julian, Harris, Simon R., Otto, Thomas D., Keane, Jacqueline A.
Format Journal Article
LanguageEnglish
Published England Microbiology Society 01.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rapidly reducing cost of bacterial genome sequencing has lead to its routine use in large-scale microbial analysis. Though mapping approaches can be used to find differences relative to the reference, many bacteria are subject to constant evolutionary pressures resulting in events such as the loss and gain of mobile genetic elements, horizontal gene transfer through recombination and genomic rearrangements. De novo assembly is the reconstruction of the underlying genome sequence, an essential step to understanding bacterial genome diversity. Here we present a high-throughput bacterial assembly and improvement pipeline that has been used to generate nearly 20 000 annotated draft genome assemblies in public databases. We demonstrate its performance on a public data set of 9404 genomes. We find all the genes used in multi-locus sequence typing schema present in 99.6 % of assembled genomes. When tested on low-, neutral- and high-GC organisms, more than 94 % of genes were present and completely intact. The pipeline has been proven to be scalable and robust with a wide variety of datasets without requiring human intervention. All of the software is available on GitHub under the GNU GPL open source license.
AbstractList The rapidly reducing cost of bacterial genome sequencing has lead to its routine use in large-scale microbial analysis. Though mapping approaches can be used to find differences relative to the reference, many bacteria are subject to constant evolutionary pressures resulting in events such as the loss and gain of mobile genetic elements, horizontal gene transfer through recombination and genomic rearrangements. De novo assembly is the reconstruction of the underlying genome sequence, an essential step to understanding bacterial genome diversity. Here we present a high-throughput bacterial assembly and improvement pipeline that has been used to generate nearly 20 000 annotated draft genome assemblies in public databases. We demonstrate its performance on a public data set of 9404 genomes. We find all the genes used in multi-locus sequence typing schema present in 99.6 % of assembled genomes. When tested on low-, neutral- and high-GC organisms, more than 94 % of genes were present and completely intact. The pipeline has been proven to be scalable and robust with a wide variety of datasets without requiring human intervention. All of the software is available on GitHub under the GNU GPL open source license.The rapidly reducing cost of bacterial genome sequencing has lead to its routine use in large-scale microbial analysis. Though mapping approaches can be used to find differences relative to the reference, many bacteria are subject to constant evolutionary pressures resulting in events such as the loss and gain of mobile genetic elements, horizontal gene transfer through recombination and genomic rearrangements. De novo assembly is the reconstruction of the underlying genome sequence, an essential step to understanding bacterial genome diversity. Here we present a high-throughput bacterial assembly and improvement pipeline that has been used to generate nearly 20 000 annotated draft genome assemblies in public databases. We demonstrate its performance on a public data set of 9404 genomes. We find all the genes used in multi-locus sequence typing schema present in 99.6 % of assembled genomes. When tested on low-, neutral- and high-GC organisms, more than 94 % of genes were present and completely intact. The pipeline has been proven to be scalable and robust with a wide variety of datasets without requiring human intervention. All of the software is available on GitHub under the GNU GPL open source license.
The rapidly reducing cost of bacterial genome sequencing has lead to its routine use in large-scale microbial analysis. Though mapping approaches can be used to find differences relative to the reference, many bacteria are subject to constant evolutionary pressures resulting in events such as the loss and gain of mobile genetic elements, horizontal gene transfer through recombination and genomic rearrangements. De novo assembly is the reconstruction of the underlying genome sequence, an essential step to understanding bacterial genome diversity. Here we present a high-throughput bacterial assembly and improvement pipeline that has been used to generate nearly 20 000 annotated draft genome assemblies in public databases. We demonstrate its performance on a public data set of 9404 genomes. We find all the genes used in multi-locus sequence typing schema present in 99.6 % of assembled genomes. When tested on low-, neutral- and high-GC organisms, more than 94 % of genes were present and completely intact. The pipeline has been proven to be scalable and robust with a wide variety of datasets without requiring human intervention. All of the software is available on GitHub under the GNU GPL open source license.
The rapidly reducing cost of bacterial genome sequencing has lead to its routine use in large-scale microbial analysis. Though mapping approaches can be used to find differences relative to the reference, many bacteria are subject to constant evolutionary pressures resulting in events such as the loss and gain of mobile genetic elements, horizontal gene transfer through recombination and genomic rearrangements. assembly is the reconstruction of the underlying genome sequence, an essential step to understanding bacterial genome diversity. Here we present a high-throughput bacterial assembly and improvement pipeline that has been used to generate nearly 20 000 annotated draft genome assemblies in public databases. We demonstrate its performance on a public data set of 9404 genomes. We find all the genes used in multi-locus sequence typing schema present in 99.6 % of assembled genomes. When tested on low-, neutral- and high-GC organisms, more than 94 % of genes were present and completely intact. The pipeline has been proven to be scalable and robust with a wide variety of datasets without requiring human intervention. All of the software is available on GitHub under the GNU GPL open source license.
Author Page, Andrew J.
Harris, Simon R.
Otto, Thomas D.
Keane, Jacqueline A.
Hunt, Martin
Quail, Michael A.
Parkhill, Julian
De Silva, Nishadi
Author_xml – sequence: 1
  givenname: Andrew J.
  surname: Page
  fullname: Page, Andrew J.
  organization: 1​Pathogen Informatics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK
– sequence: 2
  givenname: Nishadi
  surname: De Silva
  fullname: De Silva, Nishadi
  organization: 1​Pathogen Informatics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK
– sequence: 3
  givenname: Martin
  surname: Hunt
  fullname: Hunt, Martin
  organization: 1​Pathogen Informatics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK
– sequence: 4
  givenname: Michael A.
  surname: Quail
  fullname: Quail, Michael A.
  organization: 2​Biochemical Development, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK
– sequence: 5
  givenname: Julian
  surname: Parkhill
  fullname: Parkhill, Julian
  organization: 3​Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK
– sequence: 6
  givenname: Simon R.
  surname: Harris
  fullname: Harris, Simon R.
  organization: 3​Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK
– sequence: 7
  givenname: Thomas D.
  surname: Otto
  fullname: Otto, Thomas D.
  organization: 4​Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK
– sequence: 8
  givenname: Jacqueline A.
  surname: Keane
  fullname: Keane, Jacqueline A.
  organization: 1​Pathogen Informatics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28348874$$D View this record in MEDLINE/PubMed
BookMark eNptkc1rHSEUxaWkNB_NstviMpt5dUYdnU0hhLYJBAol2yKOc-eNiaNTdR7kv6-Pl4Q01M0V_N1zvPecoiMfPCD0qSabmnTdl3kLfkM2pBxJ36GThnBRccnl0av7MTpP6b4gNZdtJ_gHdNxIyqQU7AT9_hX6NWU82e1U5SmGdTsta8ZLDA86PoYMeADswy5gnRLMvXvE2g_YzoXYwQy-sHYBZz3gMUR849w6W6_xoLP-iN6P2iU4f6pn6O77t7ur6-r254-bq8vbyvCG5kqYlrSmM5SztoFu5LwFqnkvegaMaN6MPUit9TgYUWtGKO1kRwdGBTGCSXqGvh5kl7WfYTDlU1E7tUQ7lxlU0Fb9--LtpLZhpzgtW-r2AhdPAjH8WSFlNdtkwDntIaxJ1VLWQlDGRUE_v_Z6MXleaQHoATAxpBRhVMZmnW3YW1unaqL22al9doqoQ3alq3rT9Sz8f_4vWG6eJw
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e41531
crossref_primary_10_1099_mgen_0_000979
crossref_primary_10_1099_mgen_0_000297
crossref_primary_10_3389_fmicb_2020_00548
crossref_primary_10_3389_fmicb_2017_01272
crossref_primary_10_1186_s40168_019_0753_z
crossref_primary_10_1128_mSphere_00537_18
crossref_primary_10_12688_wellcomeopenres_14265_1
crossref_primary_10_1099_mgen_0_000181
crossref_primary_10_12688_wellcomeopenres_14265_2
crossref_primary_10_1099_mgen_0_000743
crossref_primary_10_1099_mgen_0_000506
crossref_primary_10_1186_s13073_016_0353_5
crossref_primary_10_1007_s00203_023_03654_1
crossref_primary_10_1099_mgen_0_000103
crossref_primary_10_1128_mBio_02521_19
crossref_primary_10_1099_mgen_0_001035
crossref_primary_10_1128_msystems_00346_21
crossref_primary_10_1099_ijsem_0_002321
crossref_primary_10_1099_mgen_0_000190
crossref_primary_10_1038_s42003_020_01290_9
crossref_primary_10_1099_jmm_0_001531
crossref_primary_10_1099_jmm_0_001013
crossref_primary_10_1128_genomeA_01429_17
crossref_primary_10_3389_fvets_2024_1321202
crossref_primary_10_1099_mgen_0_000594
crossref_primary_10_1186_s12985_021_01655_4
crossref_primary_10_1099_mgen_0_000357
crossref_primary_10_1128_msystems_00141_23
crossref_primary_10_1099_mgen_0_000114
crossref_primary_10_1099_mgen_0_000993
crossref_primary_10_1093_cid_ciz174
crossref_primary_10_1128_JCM_00771_20
crossref_primary_10_1093_gbe_evx019
crossref_primary_10_1111_pbi_13294
crossref_primary_10_1128_mSphere_00154_21
crossref_primary_10_3390_microorganisms12122393
crossref_primary_10_3389_fcimb_2021_729981
crossref_primary_10_1186_s12864_017_3657_y
crossref_primary_10_1038_s41598_020_66214_3
crossref_primary_10_1126_science_abb8699
crossref_primary_10_1099_mgen_0_000124
crossref_primary_10_1099_mgen_0_001211
crossref_primary_10_1016_j_snr_2024_100238
crossref_primary_10_1128_MRA_00029_19
crossref_primary_10_1128_spectrum_02306_22
crossref_primary_10_1038_s41564_021_00963_3
crossref_primary_10_1099_mgen_0_000778
crossref_primary_10_7717_peerj_12446
crossref_primary_10_1038_s42003_021_01905_9
crossref_primary_10_3389_fmicb_2024_1410651
crossref_primary_10_1128_mSphere_01297_20
crossref_primary_10_1099_ijsem_0_002528
crossref_primary_10_1007_s00203_022_02860_7
crossref_primary_10_21105_joss_00118
crossref_primary_10_1007_s00284_021_02353_8
crossref_primary_10_1099_mgen_0_000499
crossref_primary_10_3389_fmicb_2023_1181376
crossref_primary_10_1016_j_chom_2021_12_003
crossref_primary_10_3389_fmed_2020_594769
crossref_primary_10_1128_genomeA_01428_17
crossref_primary_10_1038_s41564_022_01216_7
crossref_primary_10_3389_fmicb_2024_1422902
crossref_primary_10_1128_mBio_00802_17
crossref_primary_10_1038_s41598_018_26079_z
crossref_primary_10_1099_mgen_0_000826
crossref_primary_10_1099_mgen_0_000144
crossref_primary_10_1128_spectrum_02423_21
crossref_primary_10_1099_mgen_0_000422
crossref_primary_10_1093_cid_ciz404
crossref_primary_10_1099_mgen_0_000266
crossref_primary_10_1128_JCM_01465_20
crossref_primary_10_1099_mgen_0_000677
crossref_primary_10_1099_mgen_0_000831
crossref_primary_10_1016_j_cmi_2023_02_022
crossref_primary_10_1098_rspb_2018_2025
crossref_primary_10_1126_science_adi0908
crossref_primary_10_1099_mgen_0_000312
crossref_primary_10_1038_s41598_018_33622_5
crossref_primary_10_1016_j_jhin_2023_06_025
crossref_primary_10_3389_fmicb_2023_1185753
crossref_primary_10_1038_s41598_018_25764_3
crossref_primary_10_1101_gr_264465_120
crossref_primary_10_7554_eLife_74819
crossref_primary_10_7554_eLife_67113
crossref_primary_10_1128_MRA_00716_19
crossref_primary_10_1007_s12223_022_00980_7
crossref_primary_10_1128_mBio_02410_21
crossref_primary_10_1111_1462_2920_16200
crossref_primary_10_1186_s12879_016_1987_z
crossref_primary_10_3389_fcimb_2021_686090
crossref_primary_10_7717_peerj_6995
crossref_primary_10_1128_mSphere_00738_20
crossref_primary_10_3201_eid2311_170833
crossref_primary_10_1128_AEM_02177_20
crossref_primary_10_1128_genomeA_00804_17
crossref_primary_10_1099_mgen_0_001376
crossref_primary_10_1128_mBio_01056_18
crossref_primary_10_1038_s41598_019_41883_x
crossref_primary_10_1099_mgen_0_001262
crossref_primary_10_1186_s13059_017_1252_9
crossref_primary_10_1128_JB_00738_17
crossref_primary_10_7554_eLife_69244
crossref_primary_10_1128_mBio_01755_19
crossref_primary_10_1186_s13059_021_02428_6
crossref_primary_10_1186_s13073_024_01342_3
Cites_doi 10.1093/bib/bbp026
10.1016/j.gde.2005.09.006
10.1371/journal.pone.0112963
10.1093/bioinformatics/btt476
10.1126/science.277.5331.1453
10.1093/bib/bbv104
10.1186/gb-2013-14-5-r47
10.1093/bioinformatics/btp324
10.1002/0471250953.bi1105s31
10.1093/bioinformatics/btp347
10.1038/35054089
10.1186/1471-2105-15-126
10.1186/gb-2012-13-6-r56
10.1093/bioinformatics/btv421
10.1093/bioinformatics/btt086
10.1093/nar/gku1196
10.1186/1471-2105-10-421
10.1126/science.1198545
10.1186/gb-2014-15-3-r46
10.1186/1471-2164-16-S3-S7
10.1073/pnas.95.6.3140
10.1073/pnas.1403138111
10.1089/cmb.2012.0021
10.1038/ng.2895
10.1038/nmeth.1814
10.1093/bioinformatics/btu153
10.1186/gb-2009-10-3-r25
10.1186/1471-2105-11-595
10.1093/nar/gku1243
10.1128/JB.01255-09
10.1186/1471-2164-15-S9-S10
10.1186/gb-2014-15-3-r42
10.1093/bioinformatics/btv056
10.1038/ng.3281
10.1186/gb-2010-11-4-r41
10.1093/nar/gkr1079
10.1371/journal.pntd.0004446
10.1093/bioinformatics/btq683
10.1038/nmicrobiol.2015.23
10.1093/bioinformatics/btq269
ContentType Journal Article
Copyright 2016 The Authors 2016
Copyright_xml – notice: 2016 The Authors 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1099/mgen.0.000083
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate http://mgen.microbiologyresearch.org
EISSN 2057-5858
ExternalDocumentID PMC5320598
28348874
10_1099_mgen_0_000083
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: WT098051
– fundername: Wellcome Trust
– fundername: Wellcome Trust
  grantid: 098051
GroupedDBID 53G
AAVHR
AAXYV
AAYXX
ADBBV
ADCDP
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
DIK
EBS
EJD
FRP
GROUPED_DOAJ
H13
HYE
M~E
OK1
RGM
RPM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c523t-7c606c9c35462e9f556e3a5b7b4e40a52fbe8aaafdc71a40339893d4370c7483
ISSN 2057-5858
IngestDate Thu Aug 21 18:32:32 EDT 2025
Fri Jul 11 03:51:55 EDT 2025
Thu Jan 02 22:34:41 EST 2025
Tue Jul 01 02:27:00 EDT 2025
Thu Apr 24 22:57:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords illumina
assembly
high-throughput
prokaryotic
Language English
License http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/4.0
This is an open access article under the terms of the Creative Commons Attribution 4.04.0 International License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c523t-7c606c9c35462e9f556e3a5b7b4e40a52fbe8aaafdc71a40339893d4370c7483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
All supporting data, code and protocols have been provided within the article or through supplementary data files.
OpenAccessLink http://dx.doi.org/10.1099/mgen.0.000083
PMID 28348874
PQID 1881773457
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5320598
proquest_miscellaneous_1881773457
pubmed_primary_28348874
crossref_citationtrail_10_1099_mgen_0_000083
crossref_primary_10_1099_mgen_0_000083
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-01
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Microbial genomics
PublicationTitleAlternate Microb Genom
PublicationYear 2016
Publisher Microbiology Society
Publisher_xml – name: Microbiology Society
References b1
R21
b2
R20
b3
R23
R22
R24
R29
R28
R1
R2
R4
R5
R6
R7
R8
R9
R32
R31
R34
R33
R36
R35
R38
R37
R39
Page (R26) 2016a
Page (R27) 2016b
R41
R43
R42
R45
R44
Ponstingl (R30) 2015
R46
Page (R25) 2016
Bala (R3) 2016
Gladman (R11) 2008
R10
R12
R14
R13
R16
R15
R18
R17
R19
Zerbino (R40) 2010; 31
References_xml – ident: R31
  doi: 10.1093/bib/bbp026
– ident: R44
  doi: 10.1016/j.gde.2005.09.006
– ident: R37
  doi: 10.1371/journal.pone.0112963
– ident: R41
  doi: 10.1093/bioinformatics/btt476
– ident: b2
– ident: R5
  doi: 10.1126/science.277.5331.1453
– ident: R29
  doi: 10.1093/bib/bbv104
– ident: R14
  doi: 10.1186/gb-2013-14-5-r47
– ident: R19
  doi: 10.1093/bioinformatics/btp324
– volume: 31
  start-page: 11.5.1
  year: 2010
  ident: R40
  article-title: Using the Velvet de novo assembler for short-read sequencing technologies
  publication-title: Curr Protoc Bioinformatics
  doi: 10.1002/0471250953.bi1105s31
– ident: R2
  doi: 10.1093/bioinformatics/btp347
– ident: R28
  doi: 10.1038/35054089
– ident: R17
  doi: 10.1186/1471-2105-15-126
– ident: R7
  doi: 10.1186/gb-2012-13-6-r56
– ident: R24
  doi: 10.1093/bioinformatics/btv421
– ident: b1
– year: 2016b
  ident: R27
  article-title: MLST-check
– year: 2016a
  ident: R26
  article-title: Assembly improvement example
  publication-title: GitHub
– year: 2016
  ident: R25
  article-title: GFF3toEMBL
  publication-title: GitHub
– ident: R12
  doi: 10.1093/bioinformatics/btt086
– ident: R10
  doi: 10.1093/nar/gku1196
– ident: R8
  doi: 10.1186/1471-2105-10-421
– year: 2015
  ident: R30
  article-title: SMALT
– ident: R9
  doi: 10.1126/science.1198545
– ident: R39
  doi: 10.1186/gb-2014-15-3-r46
– ident: R33
  doi: 10.1186/1471-2164-16-S3-S7
– ident: R46
  doi: 10.1073/pnas.95.6.3140
– ident: R43
  doi: 10.1073/pnas.1403138111
– ident: R4
  doi: 10.1089/cmb.2012.0021
– ident: R42
  doi: 10.1038/ng.2895
– ident: R34
  doi: 10.1038/nmeth.1814
– ident: R35
  doi: 10.1093/bioinformatics/btu153
– ident: R18
  doi: 10.1186/gb-2009-10-3-r25
– ident: R16
  doi: 10.1186/1471-2105-11-595
– ident: R22
  doi: 10.1093/nar/gku1243
– ident: R13
  doi: 10.1128/JB.01255-09
– ident: R1
  doi: 10.1186/1471-2164-15-S9-S10
– ident: R15
  doi: 10.1186/gb-2014-15-3-r42
– ident: R21
  doi: 10.1093/bioinformatics/btv056
– year: 2016
  ident: R3
  article-title: Vertebrate resequencing sequence analysis pipeline
  publication-title: GitHub
– ident: R38
  doi: 10.1038/ng.3281
– ident: R36
  doi: 10.1186/gb-2010-11-4-r41
– ident: b3
– ident: R32
  doi: 10.1093/nar/gkr1079
– year: 2008
  ident: R11
  article-title: Velvet optimiser
– ident: R20
  doi: 10.1371/journal.pntd.0004446
– ident: R6
  doi: 10.1093/bioinformatics/btq683
– ident: R45
  doi: 10.1038/nmicrobiol.2015.23
– ident: R23
  doi: 10.1093/bioinformatics/btq269
SSID ssj0001586975
Score 2.4318502
Snippet The rapidly reducing cost of bacterial genome sequencing has lead to its routine use in large-scale microbial analysis. Though mapping approaches can be used...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e000083
SubjectTerms Genome, Bacterial - genetics
Genomics - economics
Genomics - methods
High-Throughput Nucleotide Sequencing
Methods Paper
Multilocus Sequence Typing
Prokaryotic Cells
Sequence Analysis, DNA - methods
Software
Title Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data
URI https://www.ncbi.nlm.nih.gov/pubmed/28348874
https://www.proquest.com/docview/1881773457
https://pubmed.ncbi.nlm.nih.gov/PMC5320598
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZZ97KXsbFf2S80GHvxnCWWZNmPpWx0hYyyZdCXYc6yTE0T2zROof3rd7Jkx8k62PpigqPIRN9n-e589x0h7_EZEyhQqc_SLPN5nmc-5LH25TSOQs24BGmKk-ffwuOf_ORMnI1G9SBradOkE3Vza13JXVDFc4irqZL9D2T7SfEEfkZ88YgI4_GfMP5epZt14xnJYd813Kk3jcm5uoDL66oxNVFeWV1VHprIepUundhSG0ho44JeXdS6tTRNuuFX0_a4KMFzFWu92TovWr0mhNNouq4GGfKnYHuz28RI72TSW8ba-1Esr8DSbX0OWbGlUNnVCXXC323oFWw82mXye4eTYUhiFvYJcS4tqRhoSLnkU_u4afe1AE1EH72UaLgJBwOuRbdu7WjKIh4r_JuTaas6aRvgDGCuVy3OaDDhrmR7_-xpaZ_Oj0wjDBFH98j9AB2LoRNu68qjMJbCibHiJT_tXNBIR7vZd-2YP5yT_RzbgdGyeEQeOm-DHlrqPCYjXT4hvyxt6B5t6JY2NNPU0IZ2tKFIGzqgDe1oQ5E2tKMNNbR5ShZfPi-Ojn3XZcNXImCNLxX6sCpWTPAw0HEuBN6jIFKZcs2nIII81REA5JmSM-BTxmK0cTPO5FRJHrFn5KCsSv2C0Bi0aTfAc5YJrqUEYBAyiR63SjWE2Zh87JYsUU6B3jRCWSY2EyJOzGInRq_WLPaYfOiH11Z65W8D33Xrn-DmaN54QamrzTqZRdFMSsaFHJPnFo9-qg7IMZE7SPUDjPD67jdlcd4KsDsOvbzzL1-RB9v75jU5aC43-g0at036tuXjb8J1r1o
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+high-throughput+prokaryote+de+novo+assembly+and+improvement+pipeline+for+Illumina+data&rft.jtitle=Microbial+genomics&rft.au=Page%2C+Andrew+J.&rft.au=De+Silva%2C+Nishadi&rft.au=Hunt%2C+Martin&rft.au=Quail%2C+Michael+A.&rft.date=2016-08-01&rft.pub=Microbiology+Society&rft.eissn=2057-5858&rft.volume=2&rft.issue=8&rft_id=info:doi/10.1099%2Fmgen.0.000083&rft_id=info%3Apmid%2F28348874&rft.externalDocID=PMC5320598
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-5858&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-5858&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-5858&client=summon