AutoScore: A Machine Learning–Based Automatic Clinical Score Generator and Its Application to Mortality Prediction Using Electronic Health Records

Risk scores can be useful in clinical risk stratification and accurate allocations of medical resources, helping health providers improve patient care. Point-based scores are more understandable and explainable than other complex models and are now widely used in clinical decision making. However, t...

Full description

Saved in:
Bibliographic Details
Published inJMIR medical informatics Vol. 8; no. 10; p. e21798
Main Authors Xie, Feng, Chakraborty, Bibhas, Ong, Marcus Eng Hock, Goldstein, Benjamin Alan, Liu, Nan
Format Journal Article
LanguageEnglish
Published Canada JMIR Publications 21.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Risk scores can be useful in clinical risk stratification and accurate allocations of medical resources, helping health providers improve patient care. Point-based scores are more understandable and explainable than other complex models and are now widely used in clinical decision making. However, the development of the risk scoring model is nontrivial and has not yet been systematically presented, with few studies investigating methods of clinical score generation using electronic health records. This study aims to propose AutoScore, a machine learning-based automatic clinical score generator consisting of 6 modules for developing interpretable point-based scores. Future users can employ the AutoScore framework to create clinical scores effortlessly in various clinical applications. We proposed the AutoScore framework comprising 6 modules that included variable ranking, variable transformation, score derivation, model selection, score fine-tuning, and model evaluation. To demonstrate the performance of AutoScore, we used data from the Beth Israel Deaconess Medical Center to build a scoring model for mortality prediction and then compared the data with other baseline models using the receiver operating characteristic analysis. A software package in R 3.5.3 (R Foundation) was also developed to demonstrate the implementation of AutoScore. Implemented on the data set with 44,918 individual admission episodes of intensive care, the AutoScore-created scoring models performed comparably well as other standard methods (ie, logistic regression, stepwise regression, least absolute shrinkage and selection operator, and random forest) in terms of predictive accuracy and model calibration but required fewer predictors and presented high interpretability and accessibility. The nine-variable, AutoScore-created, point-based scoring model achieved an area under the curve (AUC) of 0.780 (95% CI 0.764-0.798), whereas the model of logistic regression with 24 variables had an AUC of 0.778 (95% CI 0.760-0.795). Moreover, the AutoScore framework also drives the clinical research continuum and automation with its integration of all necessary modules. We developed an easy-to-use, machine learning-based automatic clinical score generator, AutoScore; systematically presented its structure; and demonstrated its superiority (predictive performance and interpretability) over other conventional methods using a benchmark database. AutoScore will emerge as a potential scoring tool in various medical applications.
AbstractList Risk scores can be useful in clinical risk stratification and accurate allocations of medical resources, helping health providers improve patient care. Point-based scores are more understandable and explainable than other complex models and are now widely used in clinical decision making. However, the development of the risk scoring model is nontrivial and has not yet been systematically presented, with few studies investigating methods of clinical score generation using electronic health records.BACKGROUNDRisk scores can be useful in clinical risk stratification and accurate allocations of medical resources, helping health providers improve patient care. Point-based scores are more understandable and explainable than other complex models and are now widely used in clinical decision making. However, the development of the risk scoring model is nontrivial and has not yet been systematically presented, with few studies investigating methods of clinical score generation using electronic health records.This study aims to propose AutoScore, a machine learning-based automatic clinical score generator consisting of 6 modules for developing interpretable point-based scores. Future users can employ the AutoScore framework to create clinical scores effortlessly in various clinical applications.OBJECTIVEThis study aims to propose AutoScore, a machine learning-based automatic clinical score generator consisting of 6 modules for developing interpretable point-based scores. Future users can employ the AutoScore framework to create clinical scores effortlessly in various clinical applications.We proposed the AutoScore framework comprising 6 modules that included variable ranking, variable transformation, score derivation, model selection, score fine-tuning, and model evaluation. To demonstrate the performance of AutoScore, we used data from the Beth Israel Deaconess Medical Center to build a scoring model for mortality prediction and then compared the data with other baseline models using the receiver operating characteristic analysis. A software package in R 3.5.3 (R Foundation) was also developed to demonstrate the implementation of AutoScore.METHODSWe proposed the AutoScore framework comprising 6 modules that included variable ranking, variable transformation, score derivation, model selection, score fine-tuning, and model evaluation. To demonstrate the performance of AutoScore, we used data from the Beth Israel Deaconess Medical Center to build a scoring model for mortality prediction and then compared the data with other baseline models using the receiver operating characteristic analysis. A software package in R 3.5.3 (R Foundation) was also developed to demonstrate the implementation of AutoScore.Implemented on the data set with 44,918 individual admission episodes of intensive care, the AutoScore-created scoring models performed comparably well as other standard methods (ie, logistic regression, stepwise regression, least absolute shrinkage and selection operator, and random forest) in terms of predictive accuracy and model calibration but required fewer predictors and presented high interpretability and accessibility. The nine-variable, AutoScore-created, point-based scoring model achieved an area under the curve (AUC) of 0.780 (95% CI 0.764-0.798), whereas the model of logistic regression with 24 variables had an AUC of 0.778 (95% CI 0.760-0.795). Moreover, the AutoScore framework also drives the clinical research continuum and automation with its integration of all necessary modules.RESULTSImplemented on the data set with 44,918 individual admission episodes of intensive care, the AutoScore-created scoring models performed comparably well as other standard methods (ie, logistic regression, stepwise regression, least absolute shrinkage and selection operator, and random forest) in terms of predictive accuracy and model calibration but required fewer predictors and presented high interpretability and accessibility. The nine-variable, AutoScore-created, point-based scoring model achieved an area under the curve (AUC) of 0.780 (95% CI 0.764-0.798), whereas the model of logistic regression with 24 variables had an AUC of 0.778 (95% CI 0.760-0.795). Moreover, the AutoScore framework also drives the clinical research continuum and automation with its integration of all necessary modules.We developed an easy-to-use, machine learning-based automatic clinical score generator, AutoScore; systematically presented its structure; and demonstrated its superiority (predictive performance and interpretability) over other conventional methods using a benchmark database. AutoScore will emerge as a potential scoring tool in various medical applications.CONCLUSIONSWe developed an easy-to-use, machine learning-based automatic clinical score generator, AutoScore; systematically presented its structure; and demonstrated its superiority (predictive performance and interpretability) over other conventional methods using a benchmark database. AutoScore will emerge as a potential scoring tool in various medical applications.
Risk scores can be useful in clinical risk stratification and accurate allocations of medical resources, helping health providers improve patient care. Point-based scores are more understandable and explainable than other complex models and are now widely used in clinical decision making. However, the development of the risk scoring model is nontrivial and has not yet been systematically presented, with few studies investigating methods of clinical score generation using electronic health records. This study aims to propose AutoScore, a machine learning-based automatic clinical score generator consisting of 6 modules for developing interpretable point-based scores. Future users can employ the AutoScore framework to create clinical scores effortlessly in various clinical applications. We proposed the AutoScore framework comprising 6 modules that included variable ranking, variable transformation, score derivation, model selection, score fine-tuning, and model evaluation. To demonstrate the performance of AutoScore, we used data from the Beth Israel Deaconess Medical Center to build a scoring model for mortality prediction and then compared the data with other baseline models using the receiver operating characteristic analysis. A software package in R 3.5.3 (R Foundation) was also developed to demonstrate the implementation of AutoScore. Implemented on the data set with 44,918 individual admission episodes of intensive care, the AutoScore-created scoring models performed comparably well as other standard methods (ie, logistic regression, stepwise regression, least absolute shrinkage and selection operator, and random forest) in terms of predictive accuracy and model calibration but required fewer predictors and presented high interpretability and accessibility. The nine-variable, AutoScore-created, point-based scoring model achieved an area under the curve (AUC) of 0.780 (95% CI 0.764-0.798), whereas the model of logistic regression with 24 variables had an AUC of 0.778 (95% CI 0.760-0.795). Moreover, the AutoScore framework also drives the clinical research continuum and automation with its integration of all necessary modules. We developed an easy-to-use, machine learning-based automatic clinical score generator, AutoScore; systematically presented its structure; and demonstrated its superiority (predictive performance and interpretability) over other conventional methods using a benchmark database. AutoScore will emerge as a potential scoring tool in various medical applications.
BackgroundRisk scores can be useful in clinical risk stratification and accurate allocations of medical resources, helping health providers improve patient care. Point-based scores are more understandable and explainable than other complex models and are now widely used in clinical decision making. However, the development of the risk scoring model is nontrivial and has not yet been systematically presented, with few studies investigating methods of clinical score generation using electronic health records. ObjectiveThis study aims to propose AutoScore, a machine learning–based automatic clinical score generator consisting of 6 modules for developing interpretable point-based scores. Future users can employ the AutoScore framework to create clinical scores effortlessly in various clinical applications. MethodsWe proposed the AutoScore framework comprising 6 modules that included variable ranking, variable transformation, score derivation, model selection, score fine-tuning, and model evaluation. To demonstrate the performance of AutoScore, we used data from the Beth Israel Deaconess Medical Center to build a scoring model for mortality prediction and then compared the data with other baseline models using the receiver operating characteristic analysis. A software package in R 3.5.3 (R Foundation) was also developed to demonstrate the implementation of AutoScore. ResultsImplemented on the data set with 44,918 individual admission episodes of intensive care, the AutoScore-created scoring models performed comparably well as other standard methods (ie, logistic regression, stepwise regression, least absolute shrinkage and selection operator, and random forest) in terms of predictive accuracy and model calibration but required fewer predictors and presented high interpretability and accessibility. The nine-variable, AutoScore-created, point-based scoring model achieved an area under the curve (AUC) of 0.780 (95% CI 0.764-0.798), whereas the model of logistic regression with 24 variables had an AUC of 0.778 (95% CI 0.760-0.795). Moreover, the AutoScore framework also drives the clinical research continuum and automation with its integration of all necessary modules. ConclusionsWe developed an easy-to-use, machine learning–based automatic clinical score generator, AutoScore; systematically presented its structure; and demonstrated its superiority (predictive performance and interpretability) over other conventional methods using a benchmark database. AutoScore will emerge as a potential scoring tool in various medical applications.
Background: Risk scores can be useful in clinical risk stratification and accurate allocations of medical resources, helping health providers improve patient care. Point-based scores are more understandable and explainable than other complex models and are now widely used in clinical decision making. However, the development of the risk scoring model is nontrivial and has not yet been systematically presented, with few studies investigating methods of clinical score generation using electronic health records. Objective: This study aims to propose AutoScore, a machine learning–based automatic clinical score generator consisting of 6 modules for developing interpretable point-based scores. Future users can employ the AutoScore framework to create clinical scores effortlessly in various clinical applications. Methods: We proposed the AutoScore framework comprising 6 modules that included variable ranking, variable transformation, score derivation, model selection, score fine-tuning, and model evaluation. To demonstrate the performance of AutoScore, we used data from the Beth Israel Deaconess Medical Center to build a scoring model for mortality prediction and then compared the data with other baseline models using the receiver operating characteristic analysis. A software package in R 3.5.3 (R Foundation) was also developed to demonstrate the implementation of AutoScore. Results: Implemented on the data set with 44,918 individual admission episodes of intensive care, the AutoScore-created scoring models performed comparably well as other standard methods (ie, logistic regression, stepwise regression, least absolute shrinkage and selection operator, and random forest) in terms of predictive accuracy and model calibration but required fewer predictors and presented high interpretability and accessibility. The nine-variable, AutoScore-created, point-based scoring model achieved an area under the curve (AUC) of 0.780 (95% CI 0.764-0.798), whereas the model of logistic regression with 24 variables had an AUC of 0.778 (95% CI 0.760-0.795). Moreover, the AutoScore framework also drives the clinical research continuum and automation with its integration of all necessary modules. Conclusions: We developed an easy-to-use, machine learning–based automatic clinical score generator, AutoScore; systematically presented its structure; and demonstrated its superiority (predictive performance and interpretability) over other conventional methods using a benchmark database. AutoScore will emerge as a potential scoring tool in various medical applications.
Author Xie, Feng
Ong, Marcus Eng Hock
Chakraborty, Bibhas
Goldstein, Benjamin Alan
Liu, Nan
AuthorAffiliation 4 Department of Emergency Medicine Singapore General Hospital Singapore Singapore
6 Institute of Data Science National University of Singapore Singapore Singapore
1 Programme in Health Services and Systems Research Duke-NUS Medical School Singapore Singapore
2 Department of Statistics and Applied Probability National University of Singapore Singapore Singapore
3 Department of Biostatistics & Bioinformatics Duke University Durham, NC United States
5 Health Services Research Centre Singapore Health Services Singapore Singapore
AuthorAffiliation_xml – name: 3 Department of Biostatistics & Bioinformatics Duke University Durham, NC United States
– name: 4 Department of Emergency Medicine Singapore General Hospital Singapore Singapore
– name: 1 Programme in Health Services and Systems Research Duke-NUS Medical School Singapore Singapore
– name: 2 Department of Statistics and Applied Probability National University of Singapore Singapore Singapore
– name: 5 Health Services Research Centre Singapore Health Services Singapore Singapore
– name: 6 Institute of Data Science National University of Singapore Singapore Singapore
Author_xml – sequence: 1
  givenname: Feng
  orcidid: 0000-0002-0215-667X
  surname: Xie
  fullname: Xie, Feng
– sequence: 2
  givenname: Bibhas
  orcidid: 0000-0002-7366-0478
  surname: Chakraborty
  fullname: Chakraborty, Bibhas
– sequence: 3
  givenname: Marcus Eng Hock
  orcidid: 0000-0001-7874-7612
  surname: Ong
  fullname: Ong, Marcus Eng Hock
– sequence: 4
  givenname: Benjamin Alan
  orcidid: 0000-0001-5261-3632
  surname: Goldstein
  fullname: Goldstein, Benjamin Alan
– sequence: 5
  givenname: Nan
  orcidid: 0000-0003-3610-4883
  surname: Liu
  fullname: Liu, Nan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33084589$$D View this record in MEDLINE/PubMed
BookMark eNpdkt9qUzEYwA8ycXP2FSQggiDVk5yc5MQLoZa5FToUddchyflOm5ImXZIKu_Md9Al9ErN2jq1XSb788uP7k-fVkQ8eqmqE63cEC_aeYC66J9UJIQKPBRP06MH-uBqltKrrGlPMGOPPquOmqTvaduKk-jPZ5vDdhAgf0ARdKrO0HtAcVPTWL_7--v1JJejRLbVW2Ro0ddZboxzaPULn4CGqHCJSvkeznNBks3EFyDZ4lAO6DDErZ_MN-hqht2YXv0pFjs4cmBxD0aELUC4v0Tco0j69qJ4OyiUY3a2n1dXnsx_Ti_H8y_lsOpmPTUuaPOaGDhqo6LnWPaFY006TAbBoatEJNgy1ETXTTCnKqSknzYVou85wMXQtgea0mu29fVAruYl2reKNDMrKXSDEhVSxFO1AUqYN1wz3jcKUaC1KL1Vf-g4YCGW8uD7uXZutXkNvwOeo3CPp4xtvl3IRfkrOKOZdUwRv7gQxXG8hZbm2yYBzykPYJkloSwTnlLKCvjpAV2EbfWmVJC3GgtdCiEK9fJjRfSr_h1-A13vAxJBShOEewbW8_Vdy968K9_aAMzbvBlwKse6A_gf-j87n
CitedBy_id crossref_primary_10_1007_s10916_024_02061_3
crossref_primary_10_15441_ceem_22_366
crossref_primary_10_1016_j_jbi_2021_103980
crossref_primary_10_1093_jamia_ocae318
crossref_primary_10_1186_s12874_022_01770_y
crossref_primary_10_1212_WNL_0000000000200553
crossref_primary_10_1016_j_eclinm_2022_101315
crossref_primary_10_1016_j_isci_2024_109225
crossref_primary_10_1038_s41597_022_01782_9
crossref_primary_10_1109_JBHI_2024_3430226
crossref_primary_10_1016_j_jbi_2022_104072
crossref_primary_10_1007_s41649_024_00348_8
crossref_primary_10_3390_jpm14010094
crossref_primary_10_2147_RMHP_S417553
crossref_primary_10_1097_ICO_0000000000003641
crossref_primary_10_3389_fninf_2022_1063610
crossref_primary_10_1002_med4_75
crossref_primary_10_1109_ACCESS_2020_3046078
crossref_primary_10_2196_43251
crossref_primary_10_1038_s41598_024_54364_7
crossref_primary_10_1007_s10462_024_10876_2
crossref_primary_10_1016_j_xpro_2023_102302
crossref_primary_10_1002_clc_70101
crossref_primary_10_1016_j_tjpad_2025_100069
crossref_primary_10_1016_j_ijoa_2024_104288
crossref_primary_10_1371_journal_pone_0249868
crossref_primary_10_1016_j_puhe_2025_01_031
crossref_primary_10_1111_nicc_13201
crossref_primary_10_1007_s11739_023_03224_9
crossref_primary_10_2196_58021
crossref_primary_10_1016_j_eclinm_2022_101446
crossref_primary_10_3390_ijerph21020179
crossref_primary_10_1186_s12931_023_02386_6
crossref_primary_10_1016_j_jbi_2023_104485
crossref_primary_10_1038_s41598_023_42854_z
crossref_primary_10_1371_journal_pdig_0000062
crossref_primary_10_17241_smr_2024_02523
crossref_primary_10_1016_j_jogc_2025_102789
crossref_primary_10_1016_j_patter_2022_100452
crossref_primary_10_1016_j_patter_2022_100493
crossref_primary_10_1038_s41598_022_22233_w
crossref_primary_10_1016_j_resuscitation_2022_04_028
crossref_primary_10_2196_34201
crossref_primary_10_3390_jcm12072640
crossref_primary_10_1016_j_ibmed_2022_100077
crossref_primary_10_3389_fneur_2025_1534961
crossref_primary_10_3389_fmed_2022_930226
crossref_primary_10_1001_jamanetworkopen_2021_18467
crossref_primary_10_15441_ceem_23_145
crossref_primary_10_1038_s41598_022_11129_4
crossref_primary_10_1016_j_cpcardiol_2023_102143
crossref_primary_10_1016_j_ijmedinf_2023_105274
crossref_primary_10_1002_sim_9569
crossref_primary_10_1093_jamia_ocae140
crossref_primary_10_1016_j_eclinm_2024_102834
crossref_primary_10_1016_j_lanwpc_2023_100733
crossref_primary_10_1177_11297298241237830
crossref_primary_10_3389_fmed_2023_1222973
crossref_primary_10_1016_j_ijcard_2025_133181
crossref_primary_10_1007_s12630_022_02294_1
crossref_primary_10_1016_j_jbi_2021_103959
crossref_primary_10_1214_21_SS133
crossref_primary_10_1177_20552076241272657
crossref_primary_10_1186_s12871_022_01888_y
crossref_primary_10_3389_fmed_2021_632210
crossref_primary_10_1016_j_compbiomed_2024_109589
crossref_primary_10_1016_j_eclinm_2022_101422
crossref_primary_10_1016_j_jbi_2022_104084
crossref_primary_10_3389_fpubh_2024_1413529
crossref_primary_10_1016_j_resuscitation_2021_11_029
crossref_primary_10_1093_gerona_glac107
crossref_primary_10_3389_fmed_2021_663739
crossref_primary_10_1038_s41598_025_86933_9
crossref_primary_10_1007_s11739_023_03199_7
crossref_primary_10_1016_j_injury_2024_111956
crossref_primary_10_3389_fmed_2021_661710
crossref_primary_10_1093_infdis_jiae080
Cites_doi 10.1007/BF01709751
10.1016/j.jclinepi.2008.10.010
10.1038/s42256-019-0048-x
10.1136/bmj.m958
10.1038/s41746-018-0029-1
10.1111/jth.12262
10.1158/1078-0432.CCR-11-2799
10.1016/j.patrec.2010.03.014
10.1186/1472-6947-14-75
10.1136/bmjopen-2019-031382
10.1080/03610919808813505
10.21037/atm.2017.08.22
10.1016/j.jclinepi.2015.10.002
10.1038/sdata.2016.35
10.1177/2381468319899663
10.1186/1472-6947-15-S4-S1
10.1111/j.2517-6161.1996.tb02080.x
10.1093/jamia/ocw042
10.1186/s12913-017-2137-z
10.1371/journal.pone.0226518
10.1007/s00521-019-04051-w
10.1109/icdar.1995.598994
10.1198/0003130043277
10.1093/qjmed/94.10.521
10.7861/clinmedicine.12-6-501
10.1007/BF03086144
10.1016/j.jclinepi.2006.01.014
10.1002/bimj.201700067
10.1016/j.resuscitation.2018.09.021
10.1186/s12874-019-0738-4
10.1002/sim.1742
10.1097/CCM.0b013e318250aa5a
10.1186/s12911-017-0441-5
10.1007/978-1-4614-7138-7
10.1016/j.ijmedinf.2018.05.006
10.1016/0021-9681(87)90171-8
10.1007/s11606-019-05512-7
10.1002/sim.6744
10.1186/1478-7954-9-29
10.1016/j.resuscitation.2012.12.016
10.1097/01.CCM.0000215112.84523.F0
10.1016/j.tjem.2018.04.004
10.1016/s2589-7500(20)30018-2
10.1513/AnnalsATS.201403-102OC
10.1016/j.jclinepi.2004.04.003
10.1016/j.resuscitation.2010.04.014
10.1007/978-3-642-31537-4_13
ContentType Journal Article
Copyright Feng Xie, Bibhas Chakraborty, Marcus Eng Hock Ong, Benjamin Alan Goldstein, Nan Liu. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 21.10.2020.
2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Feng Xie, Bibhas Chakraborty, Marcus Eng Hock Ong, Benjamin Alan Goldstein, Nan Liu. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 21.10.2020. 2020
Copyright_xml – notice: Feng Xie, Bibhas Chakraborty, Marcus Eng Hock Ong, Benjamin Alan Goldstein, Nan Liu. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 21.10.2020.
– notice: 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Feng Xie, Bibhas Chakraborty, Marcus Eng Hock Ong, Benjamin Alan Goldstein, Nan Liu. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 21.10.2020. 2020
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88C
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M0T
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.2196/21798
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Healthcare Administration Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Health Management
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2291-9694
ExternalDocumentID oai_doaj_org_article_46bc7b61d3a142bb9416ad217e1e2467
PMC7641783
33084589
10_2196_21798
Genre Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK123062
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
DIK
FYUFA
GROUPED_DOAJ
HMCUK
HYE
KQ8
M0T
M48
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
UKHRP
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c523t-7c4fbe49d7bbd241b48b2fe19309896ff0c906b6aa474cf0cb799588c79f852e3
IEDL.DBID M48
ISSN 2291-9694
IngestDate Wed Aug 27 01:31:48 EDT 2025
Thu Aug 21 17:46:23 EDT 2025
Tue Aug 05 10:38:13 EDT 2025
Fri Jul 25 20:50:08 EDT 2025
Thu Jan 02 22:42:00 EST 2025
Thu Apr 24 23:03:17 EDT 2025
Tue Jul 01 04:31:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords clinical decision making
electronic health records
machine learning
prognosis
clinical prediction rule
Language English
License Feng Xie, Bibhas Chakraborty, Marcus Eng Hock Ong, Benjamin Alan Goldstein, Nan Liu. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 21.10.2020.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-7c4fbe49d7bbd241b48b2fe19309896ff0c906b6aa474cf0cb799588c79f852e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7874-7612
0000-0001-5261-3632
0000-0003-3610-4883
0000-0002-0215-667X
0000-0002-7366-0478
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.2196/21798
PMID 33084589
PQID 2511970999
PQPubID 4997117
ParticipantIDs doaj_primary_oai_doaj_org_article_46bc7b61d3a142bb9416ad217e1e2467
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7641783
proquest_miscellaneous_2452977446
proquest_journals_2511970999
pubmed_primary_33084589
crossref_primary_10_2196_21798
crossref_citationtrail_10_2196_21798
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201021
PublicationDateYYYYMMDD 2020-10-21
PublicationDate_xml – month: 10
  year: 2020
  text: 20201021
  day: 21
PublicationDecade 2020
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Toronto
– name: Toronto, Canada
PublicationTitle JMIR medical informatics
PublicationTitleAlternate JMIR Med Inform
PublicationYear 2020
Publisher JMIR Publications
Publisher_xml – name: JMIR Publications
References ref13
ref12
ref15
Probst, P (ref29) 2017; 18
ref14
ref52
ref11
ref10
Biau, G (ref19) 2012; 13
ref17
ref16
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Breiman, L (ref18) 1984
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref25
ref20
ref22
ref21
ref28
ref27
James, G (ref26) 2013
References_xml – ident: ref5
  doi: 10.1007/BF01709751
– volume: 13
  start-page: 1063
  year: 2012
  ident: ref19
  publication-title: J Mach Learn Res
– year: 1984
  ident: ref18
  publication-title: Classification and Regression Trees
– ident: ref37
  doi: 10.1016/j.jclinepi.2008.10.010
– ident: ref45
  doi: 10.1038/s42256-019-0048-x
– ident: ref52
  doi: 10.1136/bmj.m958
– ident: ref41
  doi: 10.1038/s41746-018-0029-1
– ident: ref49
  doi: 10.1111/jth.12262
– ident: ref34
  doi: 10.1158/1078-0432.CCR-11-2799
– ident: ref20
  doi: 10.1016/j.patrec.2010.03.014
– ident: ref33
  doi: 10.1186/1472-6947-14-75
– ident: ref24
  doi: 10.1136/bmjopen-2019-031382
– ident: ref39
  doi: 10.1080/03610919808813505
– ident: ref50
  doi: 10.21037/atm.2017.08.22
– ident: ref32
  doi: 10.1016/j.jclinepi.2015.10.002
– ident: ref23
  doi: 10.1038/sdata.2016.35
– ident: ref13
  doi: 10.1177/2381468319899663
– ident: ref31
  doi: 10.1186/1472-6947-15-S4-S1
– ident: ref27
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref9
  doi: 10.1093/jamia/ocw042
– ident: ref36
  doi: 10.1186/s12913-017-2137-z
– ident: ref44
  doi: 10.1371/journal.pone.0226518
– ident: ref12
  doi: 10.1007/s00521-019-04051-w
– ident: ref16
  doi: 10.1109/icdar.1995.598994
– ident: ref40
  doi: 10.1198/0003130043277
– ident: ref46
  doi: 10.1093/qjmed/94.10.521
– ident: ref6
  doi: 10.7861/clinmedicine.12-6-501
– ident: ref7
  doi: 10.1007/BF03086144
– ident: ref38
  doi: 10.1016/j.jclinepi.2006.01.014
– ident: ref10
  doi: 10.1002/bimj.201700067
– ident: ref25
  doi: 10.1016/j.resuscitation.2018.09.021
– ident: ref35
  doi: 10.1186/s12874-019-0738-4
– ident: ref15
  doi: 10.1002/sim.1742
– ident: ref4
  doi: 10.1097/CCM.0b013e318250aa5a
– ident: ref14
  doi: 10.1186/s12911-017-0441-5
– year: 2013
  ident: ref26
  publication-title: An Introduction to Statistical Learning: with Applications in R
  doi: 10.1007/978-1-4614-7138-7
– ident: ref11
  doi: 10.1016/j.ijmedinf.2018.05.006
– ident: ref8
  doi: 10.1016/0021-9681(87)90171-8
– ident: ref22
– ident: ref43
  doi: 10.1007/s11606-019-05512-7
– ident: ref30
  doi: 10.1002/sim.6744
– ident: ref17
  doi: 10.1186/1478-7954-9-29
– ident: ref2
  doi: 10.1016/j.resuscitation.2012.12.016
– ident: ref48
  doi: 10.1097/01.CCM.0000215112.84523.F0
– ident: ref3
  doi: 10.1016/j.tjem.2018.04.004
– ident: ref42
  doi: 10.1016/s2589-7500(20)30018-2
– ident: ref1
  doi: 10.1513/AnnalsATS.201403-102OC
– ident: ref51
  doi: 10.1016/j.jclinepi.2004.04.003
– ident: ref21
– volume: 18
  start-page: 6673
  issue: 1
  year: 2017
  ident: ref29
  publication-title: The Journal of Machine Learning Research
– ident: ref47
  doi: 10.1016/j.resuscitation.2010.04.014
– ident: ref28
  doi: 10.1007/978-3-642-31537-4_13
SSID ssj0001416667
Score 2.4844203
Snippet Risk scores can be useful in clinical risk stratification and accurate allocations of medical resources, helping health providers improve patient care....
Background: Risk scores can be useful in clinical risk stratification and accurate allocations of medical resources, helping health providers improve patient...
BackgroundRisk scores can be useful in clinical risk stratification and accurate allocations of medical resources, helping health providers improve patient...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e21798
SubjectTerms Automation
Clinical decision making
Clinical medicine
Decision making
Decision trees
Electronic health records
Feature selection
Machine learning
Mortality
Original Paper
Variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYlh1AoJf13m4Yp5Gpiy7Ik57YJCWlhS6EN5Gb02xaCN2S9975D-oR9kszIjrMbCr30aGmEZWmk-UYz_sTYfu2dLb2JuSysywXagNxEyfPK4X6plPGFS1m-n-XZufh0UV-sXfVFOWEDPfAwcAdCWqesLH1lSsGtbRBBGI9AOpSB4yqn3Rdt3pozlU5XBIXD1DZ7QrnOqGUHnJi5NoxP4uj_G7B8mB-5ZnBOd9jTESnCbOjhM_YodM_Z9nyMhb9gv2erfvGVWCgPYQbzlBQZYORL_f7n180RGigPJJVoWWGkAL2E1AgGwml0ucF0Hj72S5jdB7OhX8A8IXNE6fDlmt6aylOKAZxMl-fA8B8TDG7s8iU7Pz35dnyWj3cs5A5d0D5XTkQbROOVtR6tuRXa8hgQ1hWNbmSMhWsKaaUxQgmHT5YY5LR2qom65qF6xba6RRfeMIhCOyGlCTzUQhWx8bqoKE4pEgt8yNj-3eC3biQgp3swLlt0RGiO2jRHGdubxK4Gxo2HAkc0c1MlEWSnAlSbdlSb9l9qk7Hdu3lvx1W7bHkKqhJmztiHqRrXGwVRTBcWK5ShSDViZiEz9npQk6knVVVoUWtsrTYUaKOrmzXdzx-J01tJUSpdvf0f3_aOPeZ0KoAWlpe7bKu_XoX3CJ16u5dWyS0jBhpF
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ti9QwEA56wiGI-G71PCLc13JtmiapX2RP7jiFFUEP9lvJ6ykc7bnb_e5_0F_oL3EmzXbdQ_zYvNDQmWRm8kyfIeSodtaUTodcFMbmHGxAroNgeWXhvJRSu8LGLN-P4vyCf1jUi3ThtkpplZszMR7Urrd4R37MIuCF_szb6-85Vo1CdDWV0LhN7iB1GWq1XMjtHQtHUEzuk3uY8Qy6dsyQn2vHBEWm_n-5lzezJP8yO2cPyP3kL9LZKOCH5JbvHpH9eULEH5Nfs_XQf0Yuyjd0RucxNdLTxJp6-fvHzxMwU47iqEjOShMR6BWNk-hIOw2BN9Wdo--HFZ1tIW069HQe_XPw1emnJb41tsdEA3o6ldCh499MdAxmV0_Ixdnpl3fneaq0kFsIRIdcWh6M542Txjiw6YYrw4IH565oVCNCKGxTCCO05pJbeDLII6eUlU1QNfPVU7LX9Z1_TmjgynIhtGe-5rIIjVNFhWglj1zwPiNHm4_f2kRDjtUwrloIR1BGbZRRRg6nYdcj78bNAScouakTabJjQ7-8bNOua7kwVhpRukrD-41pQCG0g_m-9AxMREYONnJv095dtVtNy8jrqRt2HUIpuvP9GsYgXg2eMxcZeTaqybSSqioUrxXMljsKtLPU3Z7u29fI7C0FL6WqXvx_WS_JXYZRP1hQVh6QvWG59q_ANRrMYdT_P-_dEkM
  priority: 102
  providerName: ProQuest
Title AutoScore: A Machine Learning–Based Automatic Clinical Score Generator and Its Application to Mortality Prediction Using Electronic Health Records
URI https://www.ncbi.nlm.nih.gov/pubmed/33084589
https://www.proquest.com/docview/2511970999
https://www.proquest.com/docview/2452977446
https://pubmed.ncbi.nlm.nih.gov/PMC7641783
https://doaj.org/article/46bc7b61d3a142bb9416ad217e1e2467
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9RAEB9sC0Uo4v-m1rBCX6O5ZLO7EUTu5EoVrhT1oG9h_6UWjqTe5cC--R30E_pJnN3kYlP66GN2Z9nNzmxmZmfyG4CjzGg1MrKMWKx0RFEHRLJkSZRq_F5yLk2sfZbvKTuZ00_n2Y1swm4DV3e6dq6e1Hy5eP3j-_V7PPDvXBozCtCbxIFubcEOKiPuihjMOgvfX7NQFxfju7A3oB5oIQ_Wf5eFeTtR8obmOX4IDzqTkYxbHj-Ce7Z6DLuzLij-BH6P1039xcFRviVjMvPZkZZ0wKkXf37-mqCmMsRReXxW0mGBLogfRFrkafS9iawM-disyPhfVJs0NZn53UFznZwt3ay-3ecakGlfRYe0PzSR1p9dPYX58fTrh5OoK7YQafRFm4hrWipLc8OVMriTigqVlBbtuzgXOSvLWOcxU0xKyqnGJ-Wg5ITQPC9Fltj0GWxXdWX3gZRUaMqYtInNKI_L3Ig4dQFL6uHgbQBHm80vdIdE7gpiLAr0SByPCs-jAMKe7KqF3rhNMHGc6zsdUrZvqJcXRXfwCsqU5oqNTCpxfqVyFAhpcLwd2QS1RACHG74XG-krEh9ddcZzAK_6bjx4LpoiK1uvkcaFrNF4piyA562Y9CtJ01jQTOBoPhCgwVKHPdXlNw_uzRlKsUgP_se7vYD7ibseQFWbjA5hu1mu7Uu0oRoVwhY_5yHsTKanZ59DfxMR-pPzF_C8ItQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NIQ0khPhPYAwjjcdoqePaCRJCHWxq2TohsUl9y-I_GUhTMtpUiDe-A3wOPhSfhDsnaemEeNtj7HNi5c6-O9_5dwDbfWt0z-ZFKCNtQoE6IMwLycPY4H6pVG4j47N8j-TwRLyf9Cdr8Ku7C0Npld2e6DdqWxk6I9_hPuBF9sybiy8hVY2i6GpXQqMRiwP37Su6bLPXo3fI35ec7-8dvx2GbVWB0KDTVYfKiEI7kVqltUX9pUWieeHQkInSJJVFEZk0klrmuVDC4JMmzLQkMSotkj53Mb73GlxHxRuRs6cmanmmIygIpzbgFmVYo2zvcMIDW1F5vjLAv8zZy1mZf6m5_Ttwu7VP2aARqLuw5sp7sDFuI_D34edgXlcfCfvyFRuwsU_FdKxFaT37_f3HLqpFy4jKg8GyFnj0nPlBrIG5Rkef5aVlo3rGBssQOqsrNvb-APoG7MOUvurbfWID21uU7GHN7SnWOM-zB3ByJTx4COtlVbrHwAqRGCFl7rjrCxUVqU2imKKjwmPPuwC2u5-fmRb2nKpvnGfo_hCPMs-jALYWZBcNzsdlgl3i3KKTYLl9QzU9y9pVngmpjdKyZ-Mcv691igKRWxzveo6jSgpgs-N71u4Vs2wp2QG8WHTjKqfQTV66ao40FB9HS13IAB41YrKYSRxHiegnOFqtCNDKVFd7ys-fPJK4kqKnkvjJ_6f1HG4Mj8eH2eHo6OAp3OR04oDam_c2Yb2ezt0zNMtqveXXAoPTq158fwC6E0-M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVIqQEOKfQCmLVI5W7PV610ZCKKGJGkqiCKjUm_H-uCBVdkkcIW68AzwNj8OTMLu2E1Ihbj16f-yVZ2ZnZmf2G4CDSCsZ6Cz3uC-Vx1AHeFnOqRcq3C-FyLSvXJbvjB-dsDen0ekO_Grvwti0ynZPdBu1LpU9I-9TF_Cy9kw_b9Ii5ofjVxdfPFtBykZa23IaNYscm29f0X1bvpwcIq2fUzoefXh95DUVBjyFDljlCcVyaViihZQadZlksaS5QaPGT-KE57mvEp9LnmVMMIVP0uKnxbESSR5H1IT43muwK6xX1IHd4Wg2f7c54WE2JCe6cMPmWyOn96lFB9tSgK5OwL-M28s5mn8pvfEtuNlYq2RQs9dt2DHFHehOm3j8Xfg5WFXle4uE-YIMyNQlZhrSYLae_f7-Y4hKUhM7ykHDkgaG9Jy4SaQGvUa3n2SFJpNqSQabgDqpSjJ13gF6CmS-sF917S7NgYzWBXxIfZeK1K708h6cXAkV7kOnKAvzEEjOYsU4zww1ERN-nujYD22slDkketODg_bnp6oBQbe1OM5TdIYsjVJHox7sr4dd1KgflwcMLeXWnRak2zWUi7O0kfmUcamE5IEOM_y-lAkyRKZxvgkMRQXVg72W7mmzcyzTDZ_34Nm6G2XeBnKywpQrHGOj5Wi3M96DBzWbrFcShn7Mohhniy0G2lrqdk_x-ZPDFRecBSIOH_1_WU-hi4KXvp3Mjh_DdWqPH1CV02APOtViZZ6gjVbJ_UYYCHy8avn7A8IVVSc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AutoScore%3A+A+Machine+Learning%E2%80%93Based+Automatic+Clinical+Score+Generator+and+Its+Application+to+Mortality+Prediction+Using+Electronic+Health+Records&rft.jtitle=JMIR+medical+informatics&rft.au=Xie%2C+Feng&rft.au=Chakraborty%2C+Bibhas&rft.au=Ong%2C+Marcus+Eng+Hock&rft.au=Goldstein%2C+Benjamin+Alan&rft.date=2020-10-21&rft.pub=JMIR+Publications&rft.eissn=2291-9694&rft.volume=8&rft.issue=10&rft.spage=e21798&rft_id=info:doi/10.2196%2F21798&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_46bc7b61d3a142bb9416ad217e1e2467
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2291-9694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2291-9694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2291-9694&client=summon