Catalytic steam reforming of biogas – Effects of feed composition and operating conditions
A study was conducted on the steam reforming of biogas mixtures over a 4 wt.% Rh/La–Al2O3 catalyst, where the effects of temperature (590–685 °C), steam (S/C molar ratio = 1.28–3.86), CO2/CH4 molar ratio (0.55–1.51), and the gas hourly space velocity (9810–27,000 hr−1) on the conversions and product...
Saved in:
Published in | International journal of hydrogen energy Vol. 40; no. 2; pp. 1005 - 1015 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United Kingdom
Elsevier Ltd
12.01.2015
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A study was conducted on the steam reforming of biogas mixtures over a 4 wt.% Rh/La–Al2O3 catalyst, where the effects of temperature (590–685 °C), steam (S/C molar ratio = 1.28–3.86), CO2/CH4 molar ratio (0.55–1.51), and the gas hourly space velocity (9810–27,000 hr−1) on the conversions and product yields were evaluated. Within these ranges, temperature and steam had the most pronounced effect on methane and carbon dioxide conversions. The highest methane conversion observed was 99%. Low temperatures and high S/C resulted in a net CO2 production. The water gas shift reaction appeared to have a stronger effect on the CO2 conversion than the CO2 reforming reaction. Experimental methane conversions were lower than the equilibrium predicted values. Lower temperature operations yielded a lower carbon balance suggesting the tendency to form carbonaceous species other than CO, CO2, and CH4. The presence of CO2 in the biogas contributed to the CO yield (beyond that from CH4 steam reforming) only above certain CO2/CH4 ratios.
•A study of the steam reforming of biogas was conducted with a rhodium catalyst.•The effects of temperature, feed composition (S/C, CO2/CH4), and GHSV were studied.•99% of the methane was converted at 650 °C, 19,600 hr−1, and [H2O/(CO2+CH4)] = 3.87.•Net conversion of CO2 is favored at high CO2/CH4 ratios, high temperatures, and low H2O/C ratios. |
---|---|
AbstractList | A study was conducted on the steam reforming of biogas mixtures over a 4 wt.% Rh/La-Al sub(2)O sub(3) catalyst, where the effects of temperature (590-685 degree C), steam (S/C molar ratio = 1.28-3.86), CO sub(2)/CH sub(4) molar ratio (0.55-1.51), and the gas hourly space velocity (9810-27,000 hr super(-1)) on the conversions and product yields were evaluated. Within these ranges, temperature and steam had the most pronounced effect on methane and carbon dioxide conversions. The highest methane conversion observed was 99%. Low temperatures and high S/C resulted in a net CO sub(2) production. The water gas shift reaction appeared to have a stronger effect on the CO sub(2) conversion than the CO sub(2) reforming reaction. Experimental methane conversions were lower than the equilibrium predicted values. Lower temperature operations yielded a lower carbon balance suggesting the tendency to form carbonaceous species other than CO, CO sub(2), and CH sub(4). The presence of CO sub(2) in the biogas contributed to the CO yield (beyond that from CH sub(4) steam reforming) only above certain CO sub(2)/CH sub(4) ratios. A study was conducted on the steam reforming of biogas mixtures over a 4 wt.% Rh/La–Al2O3 catalyst, where the effects of temperature (590–685 °C), steam (S/C molar ratio = 1.28–3.86), CO2/CH4 molar ratio (0.55–1.51), and the gas hourly space velocity (9810–27,000 hr−1) on the conversions and product yields were evaluated. Within these ranges, temperature and steam had the most pronounced effect on methane and carbon dioxide conversions. The highest methane conversion observed was 99%. Low temperatures and high S/C resulted in a net CO2 production. The water gas shift reaction appeared to have a stronger effect on the CO2 conversion than the CO2 reforming reaction. Experimental methane conversions were lower than the equilibrium predicted values. Lower temperature operations yielded a lower carbon balance suggesting the tendency to form carbonaceous species other than CO, CO2, and CH4. The presence of CO2 in the biogas contributed to the CO yield (beyond that from CH4 steam reforming) only above certain CO2/CH4 ratios. •A study of the steam reforming of biogas was conducted with a rhodium catalyst.•The effects of temperature, feed composition (S/C, CO2/CH4), and GHSV were studied.•99% of the methane was converted at 650 °C, 19,600 hr−1, and [H2O/(CO2+CH4)] = 3.87.•Net conversion of CO2 is favored at high CO2/CH4 ratios, high temperatures, and low H2O/C ratios. |
Author | Ferrandon, Magali S. Lee, Sheldon H.D. Ahmed, Shabbir |
Author_xml | – sequence: 1 givenname: Shabbir surname: Ahmed fullname: Ahmed, Shabbir email: ahmeds@anl.gov – sequence: 2 givenname: Sheldon H.D. surname: Lee fullname: Lee, Sheldon H.D. – sequence: 3 givenname: Magali S. surname: Ferrandon fullname: Ferrandon, Magali S. |
BackLink | https://www.osti.gov/biblio/1254761$$D View this record in Osti.gov |
BookMark | eNqFkE1uFDEQhS0UJCaBKyCLFZvuVPWP3b0DjRKIFIkN7JAst11OPJq2B9tBmh134IachG4a1qxKVXrv6dV3yS5CDMTYa4QaAcX1ofaHx7OlQHUD2NWINcD4jO1wkGPVdoO8YDtoBVQtjuMLdpnzAQAldOOOfd3roo_n4g3PhfTME7mYZh8eeHR88vFBZ_7rx09-4xyZkterI7LcxPkUsy8-Bq6D5fFESZfVZ2Kwf-75JXvu9DHTq7_zin25vfm8_1jdf_pwt39_X5m-aUslxDT1Eqah64fe6gadkaYBK3DZrGtGO0noqQVjQRhpSTa9ti1KBxIH6tor9mbLjbl4lY0vZB6XGmFprLDpOylwEb3dRKcUvz1RLmr22dDxqAPFp6xQiHHo5IJukYpNalLMeSGiTsnPOp0VglqZq4P6x1ytzBWi2ozvNiMt3373lNYyFAxZn9YuNvr_RfwGVouRLA |
CitedBy_id | crossref_primary_10_1016_j_renene_2018_06_046 crossref_primary_10_1016_j_psep_2023_01_034 crossref_primary_10_1016_j_ijhydene_2023_08_108 crossref_primary_10_3390_en11051075 crossref_primary_10_1016_j_biteb_2022_101104 crossref_primary_10_1016_j_jece_2024_112674 crossref_primary_10_1007_s13399_020_00911_x crossref_primary_10_1016_j_ijhydene_2016_03_125 crossref_primary_10_1016_j_rser_2017_02_031 crossref_primary_10_1016_j_ijhydene_2020_08_027 crossref_primary_10_1007_s13762_019_02520_2 crossref_primary_10_1016_j_renene_2017_05_018 crossref_primary_10_1016_j_joei_2016_08_008 crossref_primary_10_1016_j_jclepro_2023_137907 crossref_primary_10_1016_j_fuel_2022_127005 crossref_primary_10_1016_j_ijhydene_2023_09_167 crossref_primary_10_3390_en12061007 crossref_primary_10_1016_j_ijhydene_2017_11_140 crossref_primary_10_1016_j_renene_2017_11_029 crossref_primary_10_1016_j_ijhydene_2022_01_100 crossref_primary_10_1016_j_enconman_2018_06_033 crossref_primary_10_1016_j_enconman_2018_08_088 crossref_primary_10_1021_acssuschemeng_3c01778 crossref_primary_10_1016_j_apenergy_2017_08_028 crossref_primary_10_1016_j_ijhydene_2015_06_143 crossref_primary_10_1016_j_renene_2020_06_122 crossref_primary_10_1016_j_renene_2022_10_106 crossref_primary_10_1016_j_pecs_2017_04_002 crossref_primary_10_3390_catal13121482 crossref_primary_10_1016_j_ijhydene_2022_08_059 crossref_primary_10_1016_j_jiec_2017_12_050 crossref_primary_10_1016_j_fuel_2016_03_104 crossref_primary_10_1016_j_fuel_2021_122411 crossref_primary_10_1016_j_psep_2023_07_049 crossref_primary_10_1016_j_jgsce_2023_204918 crossref_primary_10_1021_acsomega_9b01784 crossref_primary_10_1016_j_ijhydene_2020_02_127 crossref_primary_10_1016_j_mcat_2022_112803 crossref_primary_10_1016_j_enconman_2019_02_029 crossref_primary_10_1016_j_jece_2019_103018 crossref_primary_10_1016_j_joei_2023_101208 crossref_primary_10_1016_j_psep_2023_11_010 crossref_primary_10_1007_s10562_017_2256_5 crossref_primary_10_1016_j_ijhydene_2022_01_234 crossref_primary_10_1016_j_apenergy_2018_08_037 crossref_primary_10_1016_j_energy_2020_119491 crossref_primary_10_1252_jcej_22we044 crossref_primary_10_1016_j_ijhydene_2017_12_008 |
Cites_doi | 10.1021/ef950227t 10.1016/j.fuel.2004.12.011 10.1007/s00253-009-2246-7 10.1016/j.jpowsour.2012.01.114 10.1007/s12010-013-0652-x 10.1016/j.cej.2013.02.062 10.1016/j.energy.2006.10.018 10.1016/j.seppur.2010.05.010 10.1016/S0926-860X(98)00251-8 10.1016/j.ijhydene.2012.03.130 10.1016/j.ijhydene.2010.04.075 10.1080/03602457608073410 10.1016/j.ijhydene.2009.12.042 10.1016/j.ijhydene.2010.09.086 10.1016/j.apcata.2006.06.014 10.1016/0926-860X(92)80195-I 10.1006/jcat.2001.3458 10.1016/j.jpowsour.2008.11.097 10.1002/bit.260240822 10.1016/0926-860X(93)80211-8 10.1016/j.ijhydene.2012.04.077 10.1023/B:KICA.0000044979.71525.24 10.1016/j.ijhydene.2009.03.041 10.1016/S0926-860X(97)00106-3 10.1016/j.fuel.2007.06.002 10.1016/S1003-9953(09)60102-X 10.1016/j.ijhydene.2010.05.106 10.1016/S0920-5861(02)00244-4 |
ContentType | Journal Article |
Copyright | 2014 |
Copyright_xml | – notice: 2014 |
DBID | AAYXX CITATION 7SP 7TB 8FD FR3 L7M OTOTI |
DOI | 10.1016/j.ijhydene.2014.11.009 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3487 |
EndPage | 1015 |
ExternalDocumentID | 1254761 10_1016_j_ijhydene_2014_11_009 S0360319914030845 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AAXKI AAYXX ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HVGLF R2- SAC SCB SEW T9H WUQ 7SP 7TB 8FD FR3 L7M AALMO ABPIF ABPTK OTOTI |
ID | FETCH-LOGICAL-c523t-66bb570b84585da21fc7c20d615dadf29db705e30cd06c7de725ad317f0718e43 |
IEDL.DBID | .~1 |
ISSN | 0360-3199 |
IngestDate | Fri May 19 02:09:14 EDT 2023 Thu Oct 24 23:43:28 EDT 2024 Fri Dec 06 01:02:43 EST 2024 Fri Feb 23 02:26:37 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Biogas Reforming CO2/CH4 molar ratio Rhodium catalyst S/C molar ratio Hydrogen |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c523t-66bb570b84585da21fc7c20d615dadf29db705e30cd06c7de725ad317f0718e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE |
OpenAccessLink | http://manuscript.elsevier.com/S0360319914030845/pdf/S0360319914030845.pdf |
PQID | 1669847009 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_1254761 proquest_miscellaneous_1669847009 crossref_primary_10_1016_j_ijhydene_2014_11_009 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2014_11_009 |
PublicationCentury | 2000 |
PublicationDate | 2015-01-12 |
PublicationDateYYYYMMDD | 2015-01-12 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | United Kingdom |
PublicationPlace_xml | – name: United Kingdom |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2015 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Kolbitsch, Pfeifer, Hofbauer (bib9) 2008; 87 Chen, Tomishige, Fujimoto (bib15) 1997; 161 Ferrandon, Krause (bib24) 2006; 311 Ito, Tagawa, Goto (bib16) 1999; 177 Effendi, Hellgardt, Zhang, Yoshida (bib20) 2005; 84 (bib27) 2002 Makaruk, Miltner, Harasek (bib6) 2010; 74 Andriani, Wresta, Atmaja (bib4) 2014; 172 Chiodo, Urbani, Galvagno, Mondello, Freni (bib29) 2012; 206 Avraam, Halkides, Liguras, Bereketidou, Goula (bib10) 2010; 35 Alyes, He, Wang (bib11) 1993; 104 Lin, Chang, Chang (bib28) 2012; 37 Li, Fu, Bian, Xie, Hu, Zhang (bib18) 2004; 45 Adachi, Ahmed, Lee, Papadias, Ahluwalia (bib25) 2009; 188 Burch, Petch (bib12) 1992; 88 Araki, Hino, More, Hikazudani (bib23) 2010; 19 Ozturk, Demirciyeva (bib5) 2013; 222 Papadias, Lee, Ferrandon, Ahmed (bib26) 2010; 35 Effendi, Zhang, Hellgardt, Honda, Yoshida (bib19) 2002; 77 Lau, Tsolakis, Wyszynski (bib8) 2011; 36 Rasi, Veijanen, Rintala (bib2) 2007; 32 Samson, LeDuy (bib1) 2012; 24 Vannice (bib14) 1976; 14 Ruckenstein, Wang (bib17) 2002; 205 Xu, Zhou, Li, Wang, Ma (bib22) 2010; 35 Weiland (bib3) 2010; 85 Izquierdo, Barrio, Lago, Requies, Cambra, Guemez (bib7) 2012; 37 Araki, Hino, More, Hikazudani (bib21) 2009; 34 Wang, Lu, Millar (bib13) 1996; 10 Wang (10.1016/j.ijhydene.2014.11.009_bib13) 1996; 10 Chiodo (10.1016/j.ijhydene.2014.11.009_bib29) 2012; 206 Xu (10.1016/j.ijhydene.2014.11.009_bib22) 2010; 35 Ruckenstein (10.1016/j.ijhydene.2014.11.009_bib17) 2002; 205 Andriani (10.1016/j.ijhydene.2014.11.009_bib4) 2014; 172 Effendi (10.1016/j.ijhydene.2014.11.009_bib20) 2005; 84 Ito (10.1016/j.ijhydene.2014.11.009_bib16) 1999; 177 Burch (10.1016/j.ijhydene.2014.11.009_bib12) 1992; 88 Makaruk (10.1016/j.ijhydene.2014.11.009_bib6) 2010; 74 Li (10.1016/j.ijhydene.2014.11.009_bib18) 2004; 45 Araki (10.1016/j.ijhydene.2014.11.009_bib21) 2009; 34 Weiland (10.1016/j.ijhydene.2014.11.009_bib3) 2010; 85 Adachi (10.1016/j.ijhydene.2014.11.009_bib25) 2009; 188 Papadias (10.1016/j.ijhydene.2014.11.009_bib26) 2010; 35 (10.1016/j.ijhydene.2014.11.009_bib27) 2002 Alyes (10.1016/j.ijhydene.2014.11.009_bib11) 1993; 104 Vannice (10.1016/j.ijhydene.2014.11.009_bib14) 1976; 14 Izquierdo (10.1016/j.ijhydene.2014.11.009_bib7) 2012; 37 Chen (10.1016/j.ijhydene.2014.11.009_bib15) 1997; 161 Kolbitsch (10.1016/j.ijhydene.2014.11.009_bib9) 2008; 87 Effendi (10.1016/j.ijhydene.2014.11.009_bib19) 2002; 77 Ferrandon (10.1016/j.ijhydene.2014.11.009_bib24) 2006; 311 Lin (10.1016/j.ijhydene.2014.11.009_bib28) 2012; 37 Ozturk (10.1016/j.ijhydene.2014.11.009_bib5) 2013; 222 Rasi (10.1016/j.ijhydene.2014.11.009_bib2) 2007; 32 Samson (10.1016/j.ijhydene.2014.11.009_bib1) 2012; 24 Lau (10.1016/j.ijhydene.2014.11.009_bib8) 2011; 36 Araki (10.1016/j.ijhydene.2014.11.009_bib23) 2010; 19 Avraam (10.1016/j.ijhydene.2014.11.009_bib10) 2010; 35 |
References_xml | – volume: 36 start-page: 397 year: 2011 end-page: 404 ident: bib8 article-title: Biogas upgrade to syn-gas (H publication-title: Int J Hydrog Energy contributor: fullname: Wyszynski – volume: 10 start-page: 896 year: 1996 end-page: 904 ident: bib13 article-title: Carbon dioxide reforming of methane to produce synthesis gas over metal supported catalysts: state of the art publication-title: Energy Fuels contributor: fullname: Millar – volume: 35 start-page: 2004 year: 2010 end-page: 2017 ident: bib26 article-title: An analytical and experimental investigation of high pressure catalytic steam reforming of ethanol publication-title: Int J Hydrog Energy contributor: fullname: Ahmed – volume: 161 start-page: L11 year: 1997 end-page: 17 ident: bib15 article-title: Formation and characteristic properties of carbonaceous species on nickel-magnesia solid solution catalysts during CH publication-title: Appl Catal A contributor: fullname: Fujimoto – volume: 32 start-page: 1370 year: 2007 end-page: 1380 ident: bib2 article-title: Trace compounds of biogas from different biogas production plants publication-title: Energy contributor: fullname: Rintala – volume: 45 start-page: 679 year: 2004 end-page: 683 ident: bib18 article-title: Effect of steam in CO publication-title: Kinet Catal contributor: fullname: Zhang – volume: 19 start-page: 477 year: 2010 end-page: 481 ident: bib23 article-title: Autothermal reforming of biogas over a monolithic catalyst publication-title: J Nat Gas Chem contributor: fullname: Hikazudani – volume: 37 start-page: 15696 year: 2012 end-page: 15703 ident: bib28 article-title: Biogas reforming for hydrogen production over mesoporous Ni publication-title: Int J Hydrog Energy contributor: fullname: Chang – volume: 206 start-page: 215 year: 2012 end-page: 221 ident: bib29 article-title: Analysis of biogas reforming process for molten carbonate fuel cells publication-title: J Power Sources contributor: fullname: Freni – volume: 35 start-page: 13013 year: 2010 end-page: 13020 ident: bib22 article-title: Biogas reforming for hydrogen production over a Ni-Co bimetallic catalyst: effect of operating conditions publication-title: Int J Hydrog Energy contributor: fullname: Ma – volume: 222 start-page: 209 year: 2013 end-page: 217 ident: bib5 article-title: Compariosn of biogas upgrading performances of different mixed matrix membranes publication-title: Chem Eng J contributor: fullname: Demirciyeva – volume: 34 start-page: 4727 year: 2009 end-page: 4734 ident: bib21 article-title: Durability of a Ni monolithic catalyst in the autothermal reforming of biogas publication-title: Int J Hydrog Energy contributor: fullname: Hikazudani – volume: 84 start-page: 869 year: 2005 end-page: 874 ident: bib20 article-title: Optimizing H publication-title: Fuel contributor: fullname: Yoshida – volume: 35 start-page: 9818 year: 2010 end-page: 9827 ident: bib10 article-title: An experimental and theoretical approach for the biogas steam reforming reaction publication-title: Int J Hydrog Energy contributor: fullname: Goula – volume: 37 start-page: 13829 year: 2012 end-page: 13842 ident: bib7 article-title: Biogas steam and oxidative reforming processes for synthesis gas and hydrogen production in conventional microreactor reaction systems publication-title: Int J Hydrog Energy contributor: fullname: Guemez – volume: 87 start-page: 701 year: 2008 end-page: 706 ident: bib9 article-title: Catalytic steam reforming of model biogas publication-title: Fuel contributor: fullname: Hofbauer – volume: 14 start-page: 153 year: 1976 end-page: 191 ident: bib14 article-title: The catalytic synthesis of hydrocarbons from carbon monoxide and hydrogen publication-title: Catal Rev Sci Eng contributor: fullname: Vannice – volume: 85 start-page: 849 year: 2010 end-page: 860 ident: bib3 article-title: Biogas production: current state and perspectives publication-title: Appl Microbiol Biotechnol contributor: fullname: Weiland – volume: 311 start-page: 135 year: 2006 end-page: 145 ident: bib24 article-title: Role of the oxide support on the performance of Rh catalysts for the autothermal reforming of gasoline and gasoline surrogates to hydrogen publication-title: Appl Catal A contributor: fullname: Krause – volume: 188 start-page: 244 year: 2009 end-page: 255 ident: bib25 article-title: A natural gas fuel processor for a residential fuel cell system publication-title: J Power Sources contributor: fullname: Ahluwalia – volume: 177 start-page: 15 year: 1999 end-page: 23 ident: bib16 article-title: Suppression of carbonaceous depositions on nickel catalyst for carbon dioxide reforming of methane publication-title: Appl Catal A contributor: fullname: Goto – volume: 172 start-page: 1909 year: 2014 end-page: 1928 ident: bib4 article-title: A review on optimization production and upgrading biogas through CO2 removal using various techniques publication-title: Appl Biochem Biotechnol contributor: fullname: Atmaja – volume: 104 start-page: 77 year: 1993 end-page: 85 ident: bib11 article-title: Alcohol synthesis from syngas: I. Performance of alkali-promoted Ni-Mo (MOVS) catalysts publication-title: J Appl Catal contributor: fullname: Wang – volume: 77 start-page: 181 year: 2002 end-page: 189 ident: bib19 article-title: Steam reforming of a clean model biogas over Ni/Al publication-title: Catal Today contributor: fullname: Yoshida – volume: 24 start-page: 1919 year: 2012 end-page: 1924 ident: bib1 article-title: Biogas production from anaerobic digestion of spirulina maxima algal biomass publication-title: Biotechnol Bioeng contributor: fullname: LeDuy – volume: 74 start-page: 83 year: 2010 end-page: 92 ident: bib6 article-title: Membrane biogas upgrading processes for the production of natural gas substitute publication-title: Sep Ad Purif Technol contributor: fullname: Harasek – year: 2002 ident: bib27 publication-title: HSC chemistry 5.1 – volume: 205 start-page: 289 year: 2002 end-page: 293 ident: bib17 article-title: Carbon deposition and catalytic deactivation during CO publication-title: J Catal contributor: fullname: Wang – volume: 88 start-page: 39 year: 1992 end-page: 60 ident: bib12 article-title: Investigation of the synthesis of oxygenates from carbon monoxide/hydrogen mixtures on supported rhodium catalysts publication-title: Appl Catal contributor: fullname: Petch – volume: 10 start-page: 896 year: 1996 ident: 10.1016/j.ijhydene.2014.11.009_bib13 article-title: Carbon dioxide reforming of methane to produce synthesis gas over metal supported catalysts: state of the art publication-title: Energy Fuels doi: 10.1021/ef950227t contributor: fullname: Wang – year: 2002 ident: 10.1016/j.ijhydene.2014.11.009_bib27 – volume: 84 start-page: 869 year: 2005 ident: 10.1016/j.ijhydene.2014.11.009_bib20 article-title: Optimizing H2 production from model biogas via combined steam reforming and CO shift reactions publication-title: Fuel doi: 10.1016/j.fuel.2004.12.011 contributor: fullname: Effendi – volume: 85 start-page: 849 year: 2010 ident: 10.1016/j.ijhydene.2014.11.009_bib3 article-title: Biogas production: current state and perspectives publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-009-2246-7 contributor: fullname: Weiland – volume: 206 start-page: 215 year: 2012 ident: 10.1016/j.ijhydene.2014.11.009_bib29 article-title: Analysis of biogas reforming process for molten carbonate fuel cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.01.114 contributor: fullname: Chiodo – volume: 172 start-page: 1909 year: 2014 ident: 10.1016/j.ijhydene.2014.11.009_bib4 article-title: A review on optimization production and upgrading biogas through CO2 removal using various techniques publication-title: Appl Biochem Biotechnol doi: 10.1007/s12010-013-0652-x contributor: fullname: Andriani – volume: 222 start-page: 209 year: 2013 ident: 10.1016/j.ijhydene.2014.11.009_bib5 article-title: Compariosn of biogas upgrading performances of different mixed matrix membranes publication-title: Chem Eng J doi: 10.1016/j.cej.2013.02.062 contributor: fullname: Ozturk – volume: 32 start-page: 1370 year: 2007 ident: 10.1016/j.ijhydene.2014.11.009_bib2 article-title: Trace compounds of biogas from different biogas production plants publication-title: Energy doi: 10.1016/j.energy.2006.10.018 contributor: fullname: Rasi – volume: 74 start-page: 83 year: 2010 ident: 10.1016/j.ijhydene.2014.11.009_bib6 article-title: Membrane biogas upgrading processes for the production of natural gas substitute publication-title: Sep Ad Purif Technol doi: 10.1016/j.seppur.2010.05.010 contributor: fullname: Makaruk – volume: 177 start-page: 15 issue: 10 year: 1999 ident: 10.1016/j.ijhydene.2014.11.009_bib16 article-title: Suppression of carbonaceous depositions on nickel catalyst for carbon dioxide reforming of methane publication-title: Appl Catal A doi: 10.1016/S0926-860X(98)00251-8 contributor: fullname: Ito – volume: 37 start-page: 15696 year: 2012 ident: 10.1016/j.ijhydene.2014.11.009_bib28 article-title: Biogas reforming for hydrogen production over mesoporous Ni2xCe21-xO2 catalysts publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2012.03.130 contributor: fullname: Lin – volume: 35 start-page: 13013 year: 2010 ident: 10.1016/j.ijhydene.2014.11.009_bib22 article-title: Biogas reforming for hydrogen production over a Ni-Co bimetallic catalyst: effect of operating conditions publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2010.04.075 contributor: fullname: Xu – volume: 14 start-page: 153 issue: 2 year: 1976 ident: 10.1016/j.ijhydene.2014.11.009_bib14 article-title: The catalytic synthesis of hydrocarbons from carbon monoxide and hydrogen publication-title: Catal Rev Sci Eng doi: 10.1080/03602457608073410 contributor: fullname: Vannice – volume: 35 start-page: 2004 year: 2010 ident: 10.1016/j.ijhydene.2014.11.009_bib26 article-title: An analytical and experimental investigation of high pressure catalytic steam reforming of ethanol publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2009.12.042 contributor: fullname: Papadias – volume: 36 start-page: 397 issue: 1 year: 2011 ident: 10.1016/j.ijhydene.2014.11.009_bib8 article-title: Biogas upgrade to syn-gas (H2-CO) via dry and oxidative reforming publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2010.09.086 contributor: fullname: Lau – volume: 311 start-page: 135 year: 2006 ident: 10.1016/j.ijhydene.2014.11.009_bib24 article-title: Role of the oxide support on the performance of Rh catalysts for the autothermal reforming of gasoline and gasoline surrogates to hydrogen publication-title: Appl Catal A doi: 10.1016/j.apcata.2006.06.014 contributor: fullname: Ferrandon – volume: 88 start-page: 39 year: 1992 ident: 10.1016/j.ijhydene.2014.11.009_bib12 article-title: Investigation of the synthesis of oxygenates from carbon monoxide/hydrogen mixtures on supported rhodium catalysts publication-title: Appl Catal doi: 10.1016/0926-860X(92)80195-I contributor: fullname: Burch – volume: 205 start-page: 289 year: 2002 ident: 10.1016/j.ijhydene.2014.11.009_bib17 article-title: Carbon deposition and catalytic deactivation during CO2 reforming of CH4 over Co/Al2O3 catalyst publication-title: J Catal doi: 10.1006/jcat.2001.3458 contributor: fullname: Ruckenstein – volume: 188 start-page: 244 year: 2009 ident: 10.1016/j.ijhydene.2014.11.009_bib25 article-title: A natural gas fuel processor for a residential fuel cell system publication-title: J Power Sources doi: 10.1016/j.jpowsour.2008.11.097 contributor: fullname: Adachi – volume: 24 start-page: 1919 issue: 8 year: 2012 ident: 10.1016/j.ijhydene.2014.11.009_bib1 article-title: Biogas production from anaerobic digestion of spirulina maxima algal biomass publication-title: Biotechnol Bioeng doi: 10.1002/bit.260240822 contributor: fullname: Samson – volume: 104 start-page: 77 year: 1993 ident: 10.1016/j.ijhydene.2014.11.009_bib11 article-title: Alcohol synthesis from syngas: I. Performance of alkali-promoted Ni-Mo (MOVS) catalysts publication-title: J Appl Catal doi: 10.1016/0926-860X(93)80211-8 contributor: fullname: Alyes – volume: 37 start-page: 13829 year: 2012 ident: 10.1016/j.ijhydene.2014.11.009_bib7 article-title: Biogas steam and oxidative reforming processes for synthesis gas and hydrogen production in conventional microreactor reaction systems publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2012.04.077 contributor: fullname: Izquierdo – volume: 45 start-page: 679 issue: 5 year: 2004 ident: 10.1016/j.ijhydene.2014.11.009_bib18 article-title: Effect of steam in CO2 reforming of CH4 over a Ni/CeO2-ZrO2-Al2O3 catalyst publication-title: Kinet Catal doi: 10.1023/B:KICA.0000044979.71525.24 contributor: fullname: Li – volume: 34 start-page: 4727 year: 2009 ident: 10.1016/j.ijhydene.2014.11.009_bib21 article-title: Durability of a Ni monolithic catalyst in the autothermal reforming of biogas publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2009.03.041 contributor: fullname: Araki – volume: 161 start-page: L11 year: 1997 ident: 10.1016/j.ijhydene.2014.11.009_bib15 article-title: Formation and characteristic properties of carbonaceous species on nickel-magnesia solid solution catalysts during CH4-CO2 reforming reaction publication-title: Appl Catal A doi: 10.1016/S0926-860X(97)00106-3 contributor: fullname: Chen – volume: 87 start-page: 701 year: 2008 ident: 10.1016/j.ijhydene.2014.11.009_bib9 article-title: Catalytic steam reforming of model biogas publication-title: Fuel doi: 10.1016/j.fuel.2007.06.002 contributor: fullname: Kolbitsch – volume: 19 start-page: 477 year: 2010 ident: 10.1016/j.ijhydene.2014.11.009_bib23 article-title: Autothermal reforming of biogas over a monolithic catalyst publication-title: J Nat Gas Chem doi: 10.1016/S1003-9953(09)60102-X contributor: fullname: Araki – volume: 35 start-page: 9818 year: 2010 ident: 10.1016/j.ijhydene.2014.11.009_bib10 article-title: An experimental and theoretical approach for the biogas steam reforming reaction publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2010.05.106 contributor: fullname: Avraam – volume: 77 start-page: 181 year: 2002 ident: 10.1016/j.ijhydene.2014.11.009_bib19 article-title: Steam reforming of a clean model biogas over Ni/Al2O3 in fluidized- and fixed-bed reactors publication-title: Catal Today doi: 10.1016/S0920-5861(02)00244-4 contributor: fullname: Effendi |
SSID | ssj0017049 |
Score | 2.423338 |
Snippet | A study was conducted on the steam reforming of biogas mixtures over a 4 wt.% Rh/La–Al2O3 catalyst, where the effects of temperature (590–685 °C), steam (S/C... A study was conducted on the steam reforming of biogas mixtures over a 4 wt.% Rh/La-Al sub(2)O sub(3) catalyst, where the effects of temperature (590-685... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 1005 |
SubjectTerms | Biogas Carbon Carbon dioxide Carbon monoxide Catalysts CO2/CH4 molar ratio Conversion Hydrogen Hydrogen-based energy Methane Reforming Rhodium catalyst S/C molar ratio |
Title | Catalytic steam reforming of biogas – Effects of feed composition and operating conditions |
URI | https://dx.doi.org/10.1016/j.ijhydene.2014.11.009 https://search.proquest.com/docview/1669847009 https://www.osti.gov/biblio/1254761 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBZhc2kPJUlbukkbVMhVu5JXlu1jWBo2DeTSBHIoCEkjpbtQe8luDrmEvEPeME_SmbUdUlrooReDhcY2M9b82N98YuwIAnGwl0l4ZUBo57Woog8i-GAUHpQLG4DsuZld6q9X-dUWm_a9MASr7Hx_69M33robGXfaHC_n8_E39L3UglMR45wsNTWa61zSLgaj-2eYhyq6FBgnC5r9okt4MZovftzh8ia6TKVHxOZJwMS_B6hBg2vuD4-9CUMnO-xNlz_y4_YRd9lWrPfY6xesgm_Z9yl9krnDCZxM-JPjPRqCvFzzJnE_b67dij89PPKWuXhFowmDGCd4eYfh4q4G3iyJcZnksGiGFtv1jl2efLmYzkS3iYIIWGOuhTHe54X0qKAyB5epFIqQScBMBhykrAJfyDxOZABpQgGxyHIHmFUkTD7KqCfv2aBu6viB8TICWjBCBlnSE6yrY4KEGaYC6UAZOWTjXnN22XJl2B5EtrC9ri3pGgsPi7oesqpXsP3N6hYd-j9lD8giJEd0t4FwQSiICZsujBqyz72hLC4Y-gvi6tjcrqwypsKQjFfY_4-7H7BXeEa4R6Gyj2ywvrmNnzA9WfvDzft3yLaPT89m578A6W_oOg |
link.rule.ids | 230,314,780,784,885,4502,24116,27924,27925,45585,45679 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2V5QAcEJ9iKR9G4urdOOs4yRGtqBYovdBKPSBZtscuuxLJit0eeqn6H_iH_BJmNgkqAokDlxwcTxLN2OM3yfMLwGsMrMFeJemVQamd17KOPsjgg1F0UC7sCLJHZnGi358Wp3swH_bCMK2yz_1dTt9l675l2ntzul4up58o9_IWnJoV57JKFzfgpi4I_dKgnlz-4nmossfA1Fty92vbhFeT5erLBc1v1stUesJynsxM_PsKNWpp0v2Rsnfr0ME9uNsDSPGme8b7sBebB3DnmqzgQ_g853cyF9RBcAy_CrpHy5yXM9Em4ZftmduIH1ffRSddvOHWRKuYYH55T-ISrkHRrllyme2oasaO3PUITg7eHs8Xsv-LggxUZG6lMd4XZebJQ1WBLlcplCHPkKAMOkx5jb7MijjLAmYmlBjLvHBIsCIR-qiinj2GUdM28QmIKiKFMGKOedIzKqxjwkQQU2HmUJlsDNPBc3bdiWXYgUW2soOvLfuaKg9Lvh5DPTjY_hZ2Sxn9n7b7HBG2Y73bwMQgMiTEpkujxvBqCJSlGcOfQVwT2_ONVcbUtCbTFZ7-x91fwq3F8cdDe_ju6MM-3KYzTIKUKn8Go-238_icsMrWv9iNxZ9soenX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalytic+steam+reforming+of+biogas+-+Effects+of+feed+composition+and+operating+conditions&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Ahmed%2C+Shabbir&rft.au=Lee%2C+Sheldon+HD&rft.au=Ferrandon%2C+Magali+S&rft.date=2015-01-12&rft.issn=0360-3199&rft.volume=40&rft.issue=2&rft.spage=1005&rft.epage=1015&rft_id=info:doi/10.1016%2Fj.ijhydene.2014.11.009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |