Combatting glufosinate-induced pepper toxicity: jasmonic acid recruiting rhizosphere bacterial strain Rhodococcus gordoniae

Plant-microbe interactions are essential for mitigating abiotic and biotic stressors by shaping the rhizosphere environment. However, how rhizosphere beneficial bacteria and plant metabolites respond to glufosinate (GLU)-induced toxicity remains largely unknown. Our study investigates the impact of...

Full description

Saved in:
Bibliographic Details
Published inMicrobiome Vol. 13; no. 1; pp. 158 - 22
Main Authors Wang, Jialing, Liu, Ziyi, Wang, Xiaoyi, Zhang, Zhijia, Zhou, Tianbing, Li, Mengmeng, Wang, Shuai, Hu, Zhan, Sun, Ranfeng, Li, Dong
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 02.07.2025
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plant-microbe interactions are essential for mitigating abiotic and biotic stressors by shaping the rhizosphere environment. However, how rhizosphere beneficial bacteria and plant metabolites respond to glufosinate (GLU)-induced toxicity remains largely unknown. Our study investigates the impact of GLU on chili plant growth and rhizosphere microbiome, emphasizing GLU-induced alterations in amino acid profiles, secondary metabolites, and microbial community composition, with notable enrichment of the Rhodococcus genus. To uncover the underlying mechanisms of Rhodococcus genus-root exudate interactions under GLU stress, we successfully isolated an efficient Rhodococcus gordoniae strain TR-5 from soil samples contaminated with GLU. This strain, isolated from GLU-contaminated soil, demonstrates potential for bioremediation and achieved over 95% GLU degradation efficiency at 35 °C, pH 6.38, and 1% inoculation rate. Through growth analysis, chemotaxis analysis, and molecular docking, caffeic acid disrupts the bacterial strain's metabolic pathways and impedes TR-5 development. In contrast, jasmonic acid (JA) acts as a chemoattractant, promoting bacterial growth and metabolic activity to degrade GLU residues, thereby effectively degrading GLU residues in the soil. This research indicates that GLU significantly influences the metabolic mechanisms of pepper plants. The optimization of microbial remediation strategies may improve soil remediation efficiency and reduce environmental impacts, highlighting opportunities for integrating microbial remediation into sustainable agricultural practices. Our findings provide insights into the role of JA in attracting and promoting the growth and metabolic activities of the Rhodococcus genus, which could be harnessed to improve soil remediation and plant health under GLU stress. Video Abstract.
AbstractList Plant-microbe interactions are essential for mitigating abiotic and biotic stressors by shaping the rhizosphere environment. However, how rhizosphere beneficial bacteria and plant metabolites respond to glufosinate (GLU)-induced toxicity remains largely unknown. Our study investigates the impact of GLU on chili plant growth and rhizosphere microbiome, emphasizing GLU-induced alterations in amino acid profiles, secondary metabolites, and microbial community composition, with notable enrichment of the Rhodococcus genus. To uncover the underlying mechanisms of Rhodococcus genus-root exudate interactions under GLU stress, we successfully isolated an efficient Rhodococcus gordoniae strain TR-5 from soil samples contaminated with GLU. This strain, isolated from GLU-contaminated soil, demonstrates potential for bioremediation and achieved over 95% GLU degradation efficiency at 35 °C, pH 6.38, and 1% inoculation rate. Through growth analysis, chemotaxis analysis, and molecular docking, caffeic acid disrupts the bacterial strain's metabolic pathways and impedes TR-5 development. In contrast, jasmonic acid (JA) acts as a chemoattractant, promoting bacterial growth and metabolic activity to degrade GLU residues, thereby effectively degrading GLU residues in the soil. This research indicates that GLU significantly influences the metabolic mechanisms of pepper plants. The optimization of microbial remediation strategies may improve soil remediation efficiency and reduce environmental impacts, highlighting opportunities for integrating microbial remediation into sustainable agricultural practices. Our findings provide insights into the role of JA in attracting and promoting the growth and metabolic activities of the Rhodococcus genus, which could be harnessed to improve soil remediation and plant health under GLU stress.
Plant-microbe interactions are essential for mitigating abiotic and biotic stressors by shaping the rhizosphere environment. However, how rhizosphere beneficial bacteria and plant metabolites respond to glufosinate (GLU)-induced toxicity remains largely unknown.BACKGROUNDPlant-microbe interactions are essential for mitigating abiotic and biotic stressors by shaping the rhizosphere environment. However, how rhizosphere beneficial bacteria and plant metabolites respond to glufosinate (GLU)-induced toxicity remains largely unknown.Our study investigates the impact of GLU on chili plant growth and rhizosphere microbiome, emphasizing GLU-induced alterations in amino acid profiles, secondary metabolites, and microbial community composition, with notable enrichment of the Rhodococcus genus. To uncover the underlying mechanisms of Rhodococcus genus-root exudate interactions under GLU stress, we successfully isolated an efficient Rhodococcus gordoniae strain TR-5 from soil samples contaminated with GLU. This strain, isolated from GLU-contaminated soil, demonstrates potential for bioremediation and achieved over 95% GLU degradation efficiency at 35 °C, pH 6.38, and 1% inoculation rate. Through growth analysis, chemotaxis analysis, and molecular docking, caffeic acid disrupts the bacterial strain's metabolic pathways and impedes TR-5 development. In contrast, jasmonic acid (JA) acts as a chemoattractant, promoting bacterial growth and metabolic activity to degrade GLU residues, thereby effectively degrading GLU residues in the soil.RESULTSOur study investigates the impact of GLU on chili plant growth and rhizosphere microbiome, emphasizing GLU-induced alterations in amino acid profiles, secondary metabolites, and microbial community composition, with notable enrichment of the Rhodococcus genus. To uncover the underlying mechanisms of Rhodococcus genus-root exudate interactions under GLU stress, we successfully isolated an efficient Rhodococcus gordoniae strain TR-5 from soil samples contaminated with GLU. This strain, isolated from GLU-contaminated soil, demonstrates potential for bioremediation and achieved over 95% GLU degradation efficiency at 35 °C, pH 6.38, and 1% inoculation rate. Through growth analysis, chemotaxis analysis, and molecular docking, caffeic acid disrupts the bacterial strain's metabolic pathways and impedes TR-5 development. In contrast, jasmonic acid (JA) acts as a chemoattractant, promoting bacterial growth and metabolic activity to degrade GLU residues, thereby effectively degrading GLU residues in the soil.This research indicates that GLU significantly influences the metabolic mechanisms of pepper plants. The optimization of microbial remediation strategies may improve soil remediation efficiency and reduce environmental impacts, highlighting opportunities for integrating microbial remediation into sustainable agricultural practices. Our findings provide insights into the role of JA in attracting and promoting the growth and metabolic activities of the Rhodococcus genus, which could be harnessed to improve soil remediation and plant health under GLU stress. Video Abstract.CONCLUSIONSThis research indicates that GLU significantly influences the metabolic mechanisms of pepper plants. The optimization of microbial remediation strategies may improve soil remediation efficiency and reduce environmental impacts, highlighting opportunities for integrating microbial remediation into sustainable agricultural practices. Our findings provide insights into the role of JA in attracting and promoting the growth and metabolic activities of the Rhodococcus genus, which could be harnessed to improve soil remediation and plant health under GLU stress. Video Abstract.
Background Plant-microbe interactions are essential for mitigating abiotic and biotic stressors by shaping the rhizosphere environment. However, how rhizosphere beneficial bacteria and plant metabolites respond to glufosinate (GLU)-induced toxicity remains largely unknown. Results Our study investigates the impact of GLU on chili plant growth and rhizosphere microbiome, emphasizing GLU-induced alterations in amino acid profiles, secondary metabolites, and microbial community composition, with notable enrichment of the Rhodococcus genus. To uncover the underlying mechanisms of Rhodococcus genus-root exudate interactions under GLU stress, we successfully isolated an efficient Rhodococcus gordoniae strain TR-5 from soil samples contaminated with GLU. This strain, isolated from GLU-contaminated soil, demonstrates potential for bioremediation and achieved over 95% GLU degradation efficiency at 35 °C, pH 6.38, and 1% inoculation rate. Through growth analysis, chemotaxis analysis, and molecular docking, caffeic acid disrupts the bacterial strain's metabolic pathways and impedes TR-5 development. In contrast, jasmonic acid (JA) acts as a chemoattractant, promoting bacterial growth and metabolic activity to degrade GLU residues, thereby effectively degrading GLU residues in the soil. Conclusions This research indicates that GLU significantly influences the metabolic mechanisms of pepper plants. The optimization of microbial remediation strategies may improve soil remediation efficiency and reduce environmental impacts, highlighting opportunities for integrating microbial remediation into sustainable agricultural practices. Our findings provide insights into the role of JA in attracting and promoting the growth and metabolic activities of the Rhodococcus genus, which could be harnessed to improve soil remediation and plant health under GLU stress. Graphical Keywords: Glufosinate stress, Plant growth, Bacterial community, Root exudates, Microbial remediation
Plant-microbe interactions are essential for mitigating abiotic and biotic stressors by shaping the rhizosphere environment. However, how rhizosphere beneficial bacteria and plant metabolites respond to glufosinate (GLU)-induced toxicity remains largely unknown. Our study investigates the impact of GLU on chili plant growth and rhizosphere microbiome, emphasizing GLU-induced alterations in amino acid profiles, secondary metabolites, and microbial community composition, with notable enrichment of the Rhodococcus genus. To uncover the underlying mechanisms of Rhodococcus genus-root exudate interactions under GLU stress, we successfully isolated an efficient Rhodococcus gordoniae strain TR-5 from soil samples contaminated with GLU. This strain, isolated from GLU-contaminated soil, demonstrates potential for bioremediation and achieved over 95% GLU degradation efficiency at 35 °C, pH 6.38, and 1% inoculation rate. Through growth analysis, chemotaxis analysis, and molecular docking, caffeic acid disrupts the bacterial strain's metabolic pathways and impedes TR-5 development. In contrast, jasmonic acid (JA) acts as a chemoattractant, promoting bacterial growth and metabolic activity to degrade GLU residues, thereby effectively degrading GLU residues in the soil. This research indicates that GLU significantly influences the metabolic mechanisms of pepper plants. The optimization of microbial remediation strategies may improve soil remediation efficiency and reduce environmental impacts, highlighting opportunities for integrating microbial remediation into sustainable agricultural practices. Our findings provide insights into the role of JA in attracting and promoting the growth and metabolic activities of the Rhodococcus genus, which could be harnessed to improve soil remediation and plant health under GLU stress. Video Abstract.
Abstract Background Plant-microbe interactions are essential for mitigating abiotic and biotic stressors by shaping the rhizosphere environment. However, how rhizosphere beneficial bacteria and plant metabolites respond to glufosinate (GLU)-induced toxicity remains largely unknown. Results Our study investigates the impact of GLU on chili plant growth and rhizosphere microbiome, emphasizing GLU-induced alterations in amino acid profiles, secondary metabolites, and microbial community composition, with notable enrichment of the Rhodococcus genus. To uncover the underlying mechanisms of Rhodococcus genus-root exudate interactions under GLU stress, we successfully isolated an efficient Rhodococcus gordoniae strain TR-5 from soil samples contaminated with GLU. This strain, isolated from GLU-contaminated soil, demonstrates potential for bioremediation and achieved over 95% GLU degradation efficiency at 35 °C, pH 6.38, and 1% inoculation rate. Through growth analysis, chemotaxis analysis, and molecular docking, caffeic acid disrupts the bacterial strain’s metabolic pathways and impedes TR-5 development. In contrast, jasmonic acid (JA) acts as a chemoattractant, promoting bacterial growth and metabolic activity to degrade GLU residues, thereby effectively degrading GLU residues in the soil. Conclusions This research indicates that GLU significantly influences the metabolic mechanisms of pepper plants. The optimization of microbial remediation strategies may improve soil remediation efficiency and reduce environmental impacts, highlighting opportunities for integrating microbial remediation into sustainable agricultural practices. Our findings provide insights into the role of JA in attracting and promoting the growth and metabolic activities of the Rhodococcus genus, which could be harnessed to improve soil remediation and plant health under GLU stress. Video Abstract Graphical Abstract
ArticleNumber 158
Audience Academic
Author Liu, Ziyi
Zhang, Zhijia
Wang, Jialing
Li, Dong
Li, Mengmeng
Zhou, Tianbing
Wang, Shuai
Hu, Zhan
Wang, Xiaoyi
Sun, Ranfeng
Author_xml – sequence: 1
  givenname: Jialing
  surname: Wang
  fullname: Wang, Jialing
– sequence: 2
  givenname: Ziyi
  surname: Liu
  fullname: Liu, Ziyi
– sequence: 3
  givenname: Xiaoyi
  surname: Wang
  fullname: Wang, Xiaoyi
– sequence: 4
  givenname: Zhijia
  surname: Zhang
  fullname: Zhang, Zhijia
– sequence: 5
  givenname: Tianbing
  surname: Zhou
  fullname: Zhou, Tianbing
– sequence: 6
  givenname: Mengmeng
  surname: Li
  fullname: Li, Mengmeng
– sequence: 7
  givenname: Shuai
  surname: Wang
  fullname: Wang, Shuai
– sequence: 8
  givenname: Zhan
  surname: Hu
  fullname: Hu, Zhan
– sequence: 9
  givenname: Ranfeng
  surname: Sun
  fullname: Sun, Ranfeng
– sequence: 10
  givenname: Dong
  surname: Li
  fullname: Li, Dong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40604909$$D View this record in MEDLINE/PubMed
BookMark eNptkl2L1DAUhousuOu6f8ALKXijF13z1bT1RpbBj4EFYdXrkCYnnQxtUpNUdvXPm5lZlx2wpaSc85yHHHifFyfOOyiKlxhdYtzyd5EhzNsKkTp_uK4r_KQ4I4h1FeG4PXn0f1pcxLhF-ekwa1j7rDhliOcu6s6KPys_9TIl64ZyGBfjo3UyQWWdXhTocoZ5hlAmf2uVTXfvy62Mk3dWlVJZXQZQYbH76bCxv32cNxCg7KVKEKwcy5iCtK682XjtlVdqieXgg84GCS-Kp0aOES7uz_Pix6eP31dfquuvn9erq-tK1YSmqu4pZ53BDZWmAcPauuNYM9UhlRuGk5o2jCqjW4aUaolmSPYdNj1hRmoN9LxYH7zay62Yg51kuBNeWrEv-DAIGZJVI4iONrQmhlKJNCOYSskN47hhWragNc-uDwfXvPQTaAUuLzgeSY87zm7E4H8JTAhhvEXZ8ObeEPzPBWISk40KxlE68EsUlBDe4KarcUZfH9BB5rtZZ3xWqh0urlrGWc0J2lGX_6Hyq2GyKqfG2Fw_Gnh7NJCZBLdpkEuMYv3t5ph99Xjfh0X_JSgD5ACo4GMMYB4QjMQuqeKQVJGTKvZJFZj-BdW82-Y
Cites_doi 10.1111/pbi.14168
10.1016/j.tree.2022.09.009
10.1021/acs.est.0c00425
10.1021/acs.est.3c04593
10.1016/j.ese.2024.100407
10.1021/acs.est.4c04196
10.1111/nph.16223
10.1016/j.jhazmat.2022.128689
10.1186/s40168-024-01911-z
10.1016/j.scitotenv.2017.10.309
10.1016/j.jhazmat.2023.132452
10.1093/plcell/koac163
10.1007/1-4020-4152-7_4
10.1021/acs.est.1c01906
10.1016/j.jhazmat.2024.134542
10.1016/j.jhazmat.2024.135755
10.1186/s40168-024-01814-z
10.1016/j.scitotenv.2021.150177
10.1016/j.cej.2023.143863
10.1021/acsnano.4c11219
10.1111/pbi.14491
10.1093/ismejo/wrae105
10.1021/acs.est.2c09737
10.1021/acs.est.3c10925
10.1021/acs.est.3c09835
10.1016/j.tibs.2022.07.001
10.1016/j.envint.2023.108280
10.1016/j.jhazmat.2024.133967
10.1186/s40168-024-01883-0
10.1016/j.jhazmat.2020.123282
10.1016/j.tplants.2020.03.014
10.1038/s41467-024-54616-0
10.1007/s00253-010-2775-0
10.1016/j.jhazmat.2024.134874
10.1016/j.jpba.2019.112812
10.1038/s41467-024-49098-z
10.1016/j.jhazmat.2021.127135
10.1016/j.envint.2024.108655
10.1016/j.jhazmat.2024.136502
10.3390/plants12203636
10.1002/ps.5965
10.1016/j.jhazmat.2024.134776
10.1186/s40168-024-01886-x
10.1038/s41477-025-01936-8
10.1016/j.jhazmat.2023.131886
10.1007/s11356-018-3576-8
10.1093/eurheartj/ehad655.2796
10.1016/j.envres.2023.116570
10.1016/j.envint.2020.105989
10.1186/s40168-022-01420-x
10.1016/j.jhazmat.2023.132668
10.1186/s40168-024-01885-y
10.1016/j.jhazmat.2024.135674
10.1021/acs.est.2c09352
10.1016/j.scitotenv.2020.144396
10.1186/s40168-024-01957-z
10.1007/s10725-023-01024-x
ContentType Journal Article
Copyright 2025. The Author(s).
COPYRIGHT 2025 BioMed Central Ltd.
The Author(s) 2025 2025
Copyright_xml – notice: 2025. The Author(s).
– notice: COPYRIGHT 2025 BioMed Central Ltd.
– notice: The Author(s) 2025 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOA
DOI 10.1186/s40168-025-02155-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2049-2618
EndPage 22
ExternalDocumentID oai_doaj_org_article_937352f33a0d4213aa6f46174da8edd6
PMC12224680
A846456201
40604909
10_1186_s40168_025_02155_1
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Natural Science Foundation of Hainan Province
  grantid: 321CXTD436
– fundername: National Nature Science Foundation of China
  grantid: 22067004
GroupedDBID 0R~
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABUWG
ACGFS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ASPBG
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
EBLON
EBS
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IEP
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M7P
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RBZ
ROL
RPM
RSV
SOJ
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c523t-5b3649f173af7ef485961d4c90c364f6253743cfd840cc82d40ab91fb24fadde3
IEDL.DBID DOA
ISSN 2049-2618
IngestDate Wed Aug 27 01:30:53 EDT 2025
Thu Aug 21 18:32:51 EDT 2025
Fri Jul 11 16:53:29 EDT 2025
Thu Jul 10 08:24:19 EDT 2025
Tue Jul 08 03:50:38 EDT 2025
Fri Jul 04 04:33:11 EDT 2025
Mon Jul 21 06:00:02 EDT 2025
Thu Jul 10 09:00:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Microbial remediation
Plant growth
Root exudates
Glufosinate stress
Bacterial community
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-5b3649f173af7ef485961d4c90c364f6253743cfd840cc82d40ab91fb24fadde3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/937352f33a0d4213aa6f46174da8edd6
PMID 40604909
PQID 3226717951
PQPubID 23479
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_937352f33a0d4213aa6f46174da8edd6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12224680
proquest_miscellaneous_3226717951
gale_infotracmisc_A846456201
gale_infotracacademiconefile_A846456201
gale_incontextgauss_ISR_A846456201
pubmed_primary_40604909
crossref_primary_10_1186_s40168_025_02155_1
PublicationCentury 2000
PublicationDate 2025-07-02
PublicationDateYYYYMMDD 2025-07-02
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-02
  day: 02
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Microbiome
PublicationTitleAlternate Microbiome
PublicationYear 2025
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References W Zhang (2155_CR19) 2022; 432
Y Li (2155_CR20) 2024; 58
Z An (2155_CR37) 2020; 178
Y Ren (2155_CR6) 2023; 21
B Xia (2155_CR11) 2024; 58
Q Lei (2155_CR38) 2023; 235
G Ricci (2155_CR9) 2023; 101
Z Mao (2155_CR15) 2024; 469
C Zhou (2155_CR18) 2024; 476
RS Bhende (2155_CR33) 2024; 461
2155_CR40
J Moormann (2155_CR43) 2022; 47
L Wang (2155_CR45) 2022; 10
SA Hoang (2155_CR31) 2021; 401
J Qi (2155_CR26) 2024; 12
H Xing (2155_CR39) 2023; 57
W Wang (2155_CR42) 2024; 12
V Silva (2155_CR3) 2023; 181
Z Ruan (2155_CR17) 2024; 15
E Korenblum (2155_CR52) 2022; 34
C Walker (2155_CR1) 2025; 11
H Liu (2155_CR55) 2020; 25
A Williams (2155_CR50) 2020; 225
S Ruuskanen (2155_CR16) 2023; 38
H Yu (2155_CR7) 2024; 473
AM Sharkey (2155_CR2) 2021; 55
H Yu (2155_CR48) 2024; 18
J Wu (2155_CR56) 2023; 57
S-T Zhang (2155_CR29) 2023; 458
Y Huang (2155_CR23) 2023; 469
L Han (2155_CR35) 2022; 423
RC Lajmanovich (2155_CR5) 2022; 804
Q Zhang (2155_CR8) 2019; 26
IT Ermakova (2155_CR13) 2010; 88
Y Li (2155_CR21) 2023; 57
X Wang (2155_CR41) 2025; 481
F Wang (2155_CR46) 2024; 12
E Chen (2155_CR34) 2023; 12
Z Ma (2155_CR30) 2024; 15
2155_CR36
X Ping (2155_CR49) 2024; 12
F Wu (2155_CR53) 2023; 460
MC Rillig (2155_CR22) 2024; 58
AHC Van Bruggen (2155_CR14) 2018; 616–617
ZA Siddiqui (2155_CR54) 2006
HK Takano (2155_CR10) 2020; 76
Z Hou (2155_CR28) 2024; 474
N Liu (2155_CR44) 2020; 54
B Sun (2155_CR57) 2020; 144
VA Seitz (2155_CR47) 2024; 12
Y Geng (2155_CR4) 2021; 769
Y Qiao (2155_CR51) 2024; 12
R Duan (2155_CR12) 2024; 479
X Lin (2155_CR25) 2024; 479
2155_CR24
GD Barone (2155_CR32) 2024; 20
Y Zhu (2155_CR27) 2024; 186
References_xml – volume: 21
  start-page: 2417
  issue: 12
  year: 2023
  ident: 2155_CR6
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.14168
– volume: 38
  start-page: 35
  issue: 1
  year: 2023
  ident: 2155_CR16
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2022.09.009
– volume: 54
  start-page: 6115
  issue: 10
  year: 2020
  ident: 2155_CR44
  publication-title: Environmental Science & Technology.
  doi: 10.1021/acs.est.0c00425
– volume: 57
  start-page: 17312
  issue: 45
  year: 2023
  ident: 2155_CR21
  publication-title: Foliar spraying of chlorpyrifos triggers plant production of linolenic acid recruiting rhizosphere bacterial Sphingomonas sp. Environmental Science & Technology.
  doi: 10.1021/acs.est.3c04593
– volume: 20
  year: 2024
  ident: 2155_CR32
  publication-title: Environmental Science and Ecotechnology
  doi: 10.1016/j.ese.2024.100407
– volume: 58
  start-page: 12542
  issue: 28
  year: 2024
  ident: 2155_CR20
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.4c04196
– volume: 225
  start-page: 1899
  issue: 5
  year: 2020
  ident: 2155_CR50
  publication-title: New Phytol
  doi: 10.1111/nph.16223
– volume: 432
  start-page: 128689
  year: 2022
  ident: 2155_CR19
  publication-title: Journal of Hazardous Materials.
  doi: 10.1016/j.jhazmat.2022.128689
– volume: 12
  start-page: 200
  issue: 1
  year: 2024
  ident: 2155_CR46
  publication-title: Microbiome
  doi: 10.1186/s40168-024-01911-z
– volume: 616–617
  start-page: 255
  year: 2018
  ident: 2155_CR14
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.10.309
– volume: 460
  year: 2023
  ident: 2155_CR53
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2023.132452
– volume: 34
  start-page: 3168
  issue: 9
  year: 2022
  ident: 2155_CR52
  publication-title: Plant Cell
  doi: 10.1093/plcell/koac163
– start-page: 111
  volume-title: PGPR: Biocontrol and Biofertilization
  year: 2006
  ident: 2155_CR54
  doi: 10.1007/1-4020-4152-7_4
– volume: 55
  start-page: 15559
  issue: 23
  year: 2021
  ident: 2155_CR2
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.1c01906
– volume: 473
  year: 2024
  ident: 2155_CR7
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2024.134542
– volume: 479
  start-page: 135755
  year: 2024
  ident: 2155_CR25
  publication-title: Journal of Hazardous Materials.
  doi: 10.1016/j.jhazmat.2024.135755
– volume: 12
  start-page: 101
  issue: 1
  year: 2024
  ident: 2155_CR51
  publication-title: Microbiome
  doi: 10.1186/s40168-024-01814-z
– volume: 804
  year: 2022
  ident: 2155_CR5
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.150177
– volume: 469
  year: 2023
  ident: 2155_CR23
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2023.143863
– volume: 18
  start-page: 32145
  issue: 46
  year: 2024
  ident: 2155_CR48
  publication-title: ACS Nano
  doi: 10.1021/acsnano.4c11219
– ident: 2155_CR40
  doi: 10.1111/pbi.14491
– ident: 2155_CR24
  doi: 10.1093/ismejo/wrae105
– volume: 57
  start-page: 8870
  issue: 24
  year: 2023
  ident: 2155_CR39
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.2c09737
– volume: 58
  start-page: 7600
  issue: 17
  year: 2024
  ident: 2155_CR11
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.3c10925
– volume: 58
  start-page: 1787
  issue: 4
  year: 2024
  ident: 2155_CR22
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.3c09835
– volume: 47
  start-page: 839
  issue: 10
  year: 2022
  ident: 2155_CR43
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2022.07.001
– volume: 181
  year: 2023
  ident: 2155_CR3
  publication-title: Environ Int
  doi: 10.1016/j.envint.2023.108280
– volume: 469
  start-page: 133967
  year: 2024
  ident: 2155_CR15
  publication-title: Journal of Hazardous Materials.
  doi: 10.1016/j.jhazmat.2024.133967
– volume: 12
  start-page: 160
  issue: 1
  year: 2024
  ident: 2155_CR49
  publication-title: Microbiome
  doi: 10.1186/s40168-024-01883-0
– volume: 401
  year: 2021
  ident: 2155_CR31
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.123282
– volume: 25
  start-page: 733
  issue: 8
  year: 2020
  ident: 2155_CR55
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2020.03.014
– volume: 15
  start-page: 10148
  issue: 1
  year: 2024
  ident: 2155_CR30
  publication-title: Nat Commun
  doi: 10.1038/s41467-024-54616-0
– volume: 88
  start-page: 585
  issue: 2
  year: 2010
  ident: 2155_CR13
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-010-2775-0
– volume: 476
  year: 2024
  ident: 2155_CR18
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2024.134874
– volume: 178
  year: 2020
  ident: 2155_CR37
  publication-title: J Pharm Biomed Anal
  doi: 10.1016/j.jpba.2019.112812
– volume: 15
  start-page: 4694
  issue: 1
  year: 2024
  ident: 2155_CR17
  publication-title: Nat Commun
  doi: 10.1038/s41467-024-49098-z
– volume: 423
  year: 2022
  ident: 2155_CR35
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.127135
– volume: 186
  year: 2024
  ident: 2155_CR27
  publication-title: Environ Int
  doi: 10.1016/j.envint.2024.108655
– volume: 481
  start-page: 136502
  year: 2025
  ident: 2155_CR41
  publication-title: Journal of Hazardous Materials.
  doi: 10.1016/j.jhazmat.2024.136502
– volume: 12
  start-page: 3636
  issue: 20
  year: 2023
  ident: 2155_CR34
  publication-title: Plants
  doi: 10.3390/plants12203636
– volume: 76
  start-page: 3911
  issue: 12
  year: 2020
  ident: 2155_CR10
  publication-title: Pest Manag Sci
  doi: 10.1002/ps.5965
– volume: 474
  start-page: 134776
  year: 2024
  ident: 2155_CR28
  publication-title: Journal of Hazardous Materials.
  doi: 10.1016/j.jhazmat.2024.134776
– volume: 12
  start-page: 183
  issue: 1
  year: 2024
  ident: 2155_CR47
  publication-title: Microbiome
  doi: 10.1186/s40168-024-01886-x
– volume: 11
  start-page: 150
  issue: 2
  year: 2025
  ident: 2155_CR1
  publication-title: Nature Plants.
  doi: 10.1038/s41477-025-01936-8
– volume: 458
  start-page: 131886
  year: 2023
  ident: 2155_CR29
  publication-title: Journal of Hazardous Materials.
  doi: 10.1016/j.jhazmat.2023.131886
– volume: 26
  start-page: 171
  issue: 1
  year: 2019
  ident: 2155_CR8
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-018-3576-8
– ident: 2155_CR36
  doi: 10.1093/eurheartj/ehad655.2796
– volume: 235
  year: 2023
  ident: 2155_CR38
  publication-title: Environ Res
  doi: 10.1016/j.envres.2023.116570
– volume: 144
  year: 2020
  ident: 2155_CR57
  publication-title: Environ Int
  doi: 10.1016/j.envint.2020.105989
– volume: 10
  start-page: 233
  issue: 1
  year: 2022
  ident: 2155_CR45
  publication-title: Microbiome
  doi: 10.1186/s40168-022-01420-x
– volume: 461
  year: 2024
  ident: 2155_CR33
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2023.132668
– volume: 12
  start-page: 167
  issue: 1
  year: 2024
  ident: 2155_CR42
  publication-title: Microbiome.
  doi: 10.1186/s40168-024-01885-y
– volume: 479
  year: 2024
  ident: 2155_CR12
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2024.135674
– volume: 57
  start-page: 4852
  issue: 12
  year: 2023
  ident: 2155_CR56
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.2c09352
– volume: 769
  year: 2021
  ident: 2155_CR4
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.144396
– volume: 12
  start-page: 240
  issue: 1
  year: 2024
  ident: 2155_CR26
  publication-title: Microbiome
  doi: 10.1186/s40168-024-01957-z
– volume: 101
  start-page: 373
  issue: 2
  year: 2023
  ident: 2155_CR9
  publication-title: Plant Growth Regul
  doi: 10.1007/s10725-023-01024-x
SSID ssj0000914748
Score 2.358032
Snippet Plant-microbe interactions are essential for mitigating abiotic and biotic stressors by shaping the rhizosphere environment. However, how rhizosphere...
Background Plant-microbe interactions are essential for mitigating abiotic and biotic stressors by shaping the rhizosphere environment. However, how...
Abstract Background Plant-microbe interactions are essential for mitigating abiotic and biotic stressors by shaping the rhizosphere environment. However, how...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 158
SubjectTerms Amino acids
Aminobutyrates - metabolism
Aminobutyrates - toxicity
Bacterial community
Biodegradation, Environmental
Bioremediation
Caffeic Acids - pharmacology
Capsicum - drug effects
Capsicum - growth & development
Capsicum - microbiology
Cyclopentanes - metabolism
Cyclopentanes - pharmacology
Glufosinate stress
Microbial remediation
Microbiota
Oxylipins - metabolism
Oxylipins - pharmacology
Plant growth
Plant metabolites
Plant Roots - microbiology
Rhizosphere
Rhodococcus - classification
Rhodococcus - drug effects
Rhodococcus - genetics
Rhodococcus - growth & development
Rhodococcus - isolation & purification
Rhodococcus - metabolism
Root exudates
Soil Microbiology
Title Combatting glufosinate-induced pepper toxicity: jasmonic acid recruiting rhizosphere bacterial strain Rhodococcus gordoniae
URI https://www.ncbi.nlm.nih.gov/pubmed/40604909
https://www.proquest.com/docview/3226717951
https://pubmed.ncbi.nlm.nih.gov/PMC12224680
https://doaj.org/article/937352f33a0d4213aa6f46174da8edd6
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZgCInLxO8FRmUQEgcULU4cx-G2oY2BxIQKk3qzHP_oglhSNY0E4p_nPSedGnHgwqWH2m1jv-f3vk99_h4hr60ufFnJLNZlWsXc5SKGPANATiO65y4zOd53_nwhzi_5p0W-2Gn1hTVhgzzwsHFHkD4BI_gs04nlKcu0Fp5D2uVWS2dtENuGnLdDpkIMLhkvuNzekpHiqAMiIWSM3VsxzeUxm2SiINj_d1jeyUvTmsmdJHR2n-yP6JEeD0_9gNxyzUNyd-gn-esR-Q2nu9Khkpkuf_S-7eoGsGQMvBssaOnKrVZuTTftz9oA-n5Hv-vuGrVxqTa1pRD81n0dPr3GUrwOJQccrQZBZ_jdLjSUoPMr4LIQSE3f0SWQV_gG7R6Ty7PTb-_P47G7QmyAfG7ivMoELz0rMu0L57nMS8EsN2ViYMADL8oAXRhvgQIaI1PLE12VzFcp9xgUsydkr2kbd0AoGCMVVSG9kYw7A4HL-DxhtrIMb_nJiLzd7rRaDSIaKpAPKdRgFwV2UcEuikXkBI1xMxMFsMMb4BZqdAv1L7eIyCs0pUKJiwZraJa67zr18etcHUv8N1cA8onIm3GSb2EDjR6vJMCqUBVrMvNwMhPOoJkMv9x6jMIhLFxrXNt3CuKlAMYMODYiTwcPulkYR-GiMikjIie-NVn5dKSpr4IEOEtRCFAmz_7HXj0n99JwLgo4Godkb7Pu3QuAWptqRm4Xi2JG7pycXnyZz8IZg9cPC_YHPowrOg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combatting+glufosinate-induced+pepper+toxicity%3A+jasmonic+acid+recruiting+rhizosphere+bacterial+strain+Rhodococcus+gordoniae&rft.jtitle=Microbiome&rft.au=Jialing+Wang&rft.au=Ziyi+Liu&rft.au=Xiaoyi+Wang&rft.au=Zhijia+Zhang&rft.date=2025-07-02&rft.pub=BMC&rft.eissn=2049-2618&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1186%2Fs40168-025-02155-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_937352f33a0d4213aa6f46174da8edd6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon