Efficient Multi-View Graph Convolutional Network with Self-Attention for Multi-Class Motor Imagery Decoding

Research on electroencephalogram-based motor imagery (MI-EEG) can identify the limbs of subjects that generate motor imagination by decoding EEG signals, which is an important issue in the field of brain–computer interface (BCI). Existing deep-learning-based classification methods have not been able...

Full description

Saved in:
Bibliographic Details
Published inBioengineering (Basel) Vol. 11; no. 9; p. 926
Main Authors Tan, Xiyue, Wang, Dan, Xu, Meng, Chen, Jiaming, Wu, Shuhan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.09.2024
MDPI
Subjects
Online AccessGet full text
ISSN2306-5354
2306-5354
DOI10.3390/bioengineering11090926

Cover

Abstract Research on electroencephalogram-based motor imagery (MI-EEG) can identify the limbs of subjects that generate motor imagination by decoding EEG signals, which is an important issue in the field of brain–computer interface (BCI). Existing deep-learning-based classification methods have not been able to entirely employ the topological information among brain regions, and thus, the classification performance needs further improving. In this paper, we propose a multi-view graph convolutional attention network (MGCANet) with residual learning structure for multi-class MI decoding. Specifically, we design a multi-view graph convolution spatial feature extraction method based on the topological relationship of brain regions to achieve more comprehensive information aggregation. During the modeling, we build an adaptive weight fusion (Awf) module to adaptively merge feature from different brain views to improve classification accuracy. In addition, the self-attention mechanism is introduced for feature selection to expand the receptive field of EEG signals to global dependence and enhance the expression of important features. The proposed model is experimentally evaluated on two public MI datasets and achieved a mean accuracy of 78.26% (BCIC IV 2a dataset) and 73.68% (OpenBMI dataset), which significantly outperforms representative comparative methods in classification accuracy. Comprehensive experiment results verify the effectiveness of our proposed method, which can provide novel perspectives for MI decoding.
AbstractList Research on electroencephalogram-based motor imagery (MI-EEG) can identify the limbs of subjects that generate motor imagination by decoding EEG signals, which is an important issue in the field of brain–computer interface (BCI). Existing deep-learning-based classification methods have not been able to entirely employ the topological information among brain regions, and thus, the classification performance needs further improving. In this paper, we propose a multi-view graph convolutional attention network (MGCANet) with residual learning structure for multi-class MI decoding. Specifically, we design a multi-view graph convolution spatial feature extraction method based on the topological relationship of brain regions to achieve more comprehensive information aggregation. During the modeling, we build an adaptive weight fusion (Awf) module to adaptively merge feature from different brain views to improve classification accuracy. In addition, the self-attention mechanism is introduced for feature selection to expand the receptive field of EEG signals to global dependence and enhance the expression of important features. The proposed model is experimentally evaluated on two public MI datasets and achieved a mean accuracy of 78.26% (BCIC IV 2a dataset) and 73.68% (OpenBMI dataset), which significantly outperforms representative comparative methods in classification accuracy. Comprehensive experiment results verify the effectiveness of our proposed method, which can provide novel perspectives for MI decoding.
Research on electroencephalogram-based motor imagery (MI-EEG) can identify the limbs of subjects that generate motor imagination by decoding EEG signals, which is an important issue in the field of brain-computer interface (BCI). Existing deep-learning-based classification methods have not been able to entirely employ the topological information among brain regions, and thus, the classification performance needs further improving. In this paper, we propose a multi-view graph convolutional attention network (MGCANet) with residual learning structure for multi-class MI decoding. Specifically, we design a multi-view graph convolution spatial feature extraction method based on the topological relationship of brain regions to achieve more comprehensive information aggregation. During the modeling, we build an adaptive weight fusion (Awf) module to adaptively merge feature from different brain views to improve classification accuracy. In addition, the self-attention mechanism is introduced for feature selection to expand the receptive field of EEG signals to global dependence and enhance the expression of important features. The proposed model is experimentally evaluated on two public MI datasets and achieved a mean accuracy of 78.26% (BCIC IV 2a dataset) and 73.68% (OpenBMI dataset), which significantly outperforms representative comparative methods in classification accuracy. Comprehensive experiment results verify the effectiveness of our proposed method, which can provide novel perspectives for MI decoding.Research on electroencephalogram-based motor imagery (MI-EEG) can identify the limbs of subjects that generate motor imagination by decoding EEG signals, which is an important issue in the field of brain-computer interface (BCI). Existing deep-learning-based classification methods have not been able to entirely employ the topological information among brain regions, and thus, the classification performance needs further improving. In this paper, we propose a multi-view graph convolutional attention network (MGCANet) with residual learning structure for multi-class MI decoding. Specifically, we design a multi-view graph convolution spatial feature extraction method based on the topological relationship of brain regions to achieve more comprehensive information aggregation. During the modeling, we build an adaptive weight fusion (Awf) module to adaptively merge feature from different brain views to improve classification accuracy. In addition, the self-attention mechanism is introduced for feature selection to expand the receptive field of EEG signals to global dependence and enhance the expression of important features. The proposed model is experimentally evaluated on two public MI datasets and achieved a mean accuracy of 78.26% (BCIC IV 2a dataset) and 73.68% (OpenBMI dataset), which significantly outperforms representative comparative methods in classification accuracy. Comprehensive experiment results verify the effectiveness of our proposed method, which can provide novel perspectives for MI decoding.
Audience Academic
Author Tan, Xiyue
Wang, Dan
Chen, Jiaming
Wu, Shuhan
Xu, Meng
AuthorAffiliation College of Computer Science, Beijing University of Technology, Beijing 100124, China; tanxy@emails.bjut.edu.cn (X.T.)
AuthorAffiliation_xml – name: College of Computer Science, Beijing University of Technology, Beijing 100124, China; tanxy@emails.bjut.edu.cn (X.T.)
Author_xml – sequence: 1
  givenname: Xiyue
  surname: Tan
  fullname: Tan, Xiyue
– sequence: 2
  givenname: Dan
  surname: Wang
  fullname: Wang, Dan
– sequence: 3
  givenname: Meng
  orcidid: 0000-0001-5594-4410
  surname: Xu
  fullname: Xu, Meng
– sequence: 4
  givenname: Jiaming
  surname: Chen
  fullname: Chen, Jiaming
– sequence: 5
  givenname: Shuhan
  surname: Wu
  fullname: Wu, Shuhan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39329668$$D View this record in MEDLINE/PubMed
BookMark eNptkstuEzEUhi1UREvoK1QjsWEzxfeMVygKpURqYcFla3l8mTid2MHjadS3xyGhNKjywtY53_mPj_2_BichBgvABYKXhAj4vvXRhs4Ha5MPHUJQQIH5C3CGCeQ1I4yePDmfgvNhWEEIEcEMc_oKnBJBsOC8OQN3V8557W3I1e3YZ1__9HZbXSe1WVbzGO5jP2Yfg-qrLzZvY7qrtj4vq2-2d_Us51JXspWL6VA-79UwVLcxl8hirTqbHqqPVkdTLvoGvHSqH-z5YZ-AH5-uvs8_1zdfrxfz2U2tGSa5Zsw4ahpkCWkbKqATLYNY4ZYLBhk2xhlIGXFCIIO1bhSiiokpa3EDFUGCTMBir2uiWslN8muVHmRUXv4JxNRJlbLXvZWMYtEIh7WlmDao9MMQG94iN22YmfKi9WGvtRnbtTW6DJxUfyR6nAl-Kbt4LxGiuBFop_DuoJDir9EOWa79oG3fq2DjOEhS_o_CKRS0oG__Q1dxTOXx9xThnMPpP6pTZQIfXCyN9U5UzpriBYFJeZ4JuHyGKsvYtdfFT86X-FHBxdNJH0f865UC8D2gUxyGZN0jgqDc-VI-70vyG_Rw10w
Cites_doi 10.1088/1741-2552/ab260c
10.1007/s41095-022-0271-y
10.1109/JBHI.2021.3083525
10.1109/CVPR.2016.90
10.3389/fnins.2012.00055
10.1109/TNSRE.2022.3230250
10.3389/fnhum.2021.788036
10.1093/gigascience/giz002
10.1109/CVPR.2018.00745
10.1016/j.bbe.2021.10.001
10.1109/TNSRE.2020.3037326
10.3389/fbioe.2021.706229
10.1109/JBHI.2020.2967128
10.1109/TNSRE.2021.3076234
10.1016/j.neunet.2020.05.032
10.1109/TNN.2008.2005605
10.1109/CVPR42600.2020.01155
10.1016/j.bspc.2021.103342
10.1016/j.bspc.2021.103241
10.3390/bioengineering9120768
10.1109/APWC-on-CSE.2016.017
10.1109/RBME.2020.2969915
10.1002/hbm.23730
10.1109/ICASSP39728.2021.9414568
10.1016/j.aiopen.2021.01.001
10.1109/TNNLS.2020.3019893
10.1109/SPMB.2017.8257015
10.1088/1741-2552/ab405f
10.1088/1741-2552/aace8c
10.1109/TNNLS.2022.3202569
10.1088/1741-2552/ac1d36
10.3390/s23146434
10.1007/s11831-021-09684-6
10.1109/LSP.2021.3049683
10.1016/j.bspc.2022.103618
10.3389/frai.2024.1290491
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/bioengineering11090926
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef


Publicly Available Content Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2306-5354
ExternalDocumentID oai_doaj_org_article_542989f2ce42481b84202d6b1f785d76
PMC11428916
A810992345
39329668
10_3390_bioengineering11090926
Genre Journal Article
GrantInformation_xml – fundername: Postdoctoral Fellowship Program of China Postdoctoral Science Foundation
  grantid: GZC20230189
– fundername: National Natural Science Foundation of China
  grantid: 12275295
– fundername: Project of Construction and Support for high-level teaching Teams of Beijing Municipal Institutions
– fundername: Postdoctoral Fellowship Program of the China Postdoctoral Science Foundatio
  grantid: GZC20230189
– fundername: Natural Science Foundation of China
  grantid: 12275295
GroupedDBID 53G
5VS
8FE
8FG
8FH
AAFWJ
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
KQ8
L6V
LK8
M7P
M7S
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RPM
NPM
PMFND
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c523t-55df4d81e33b8490f9b502a2b695052ddfd0453f991d2cc8a14a5975b280a3193
IEDL.DBID 8FG
ISSN 2306-5354
IngestDate Wed Aug 27 01:27:39 EDT 2025
Thu Aug 21 18:31:13 EDT 2025
Fri Sep 05 07:11:55 EDT 2025
Fri Jul 25 12:00:54 EDT 2025
Tue Jun 17 22:03:58 EDT 2025
Tue Jun 10 21:03:12 EDT 2025
Thu Apr 03 07:04:15 EDT 2025
Tue Jul 01 04:35:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords deep learning
brain–computer interface
motor imagery
self-attention
graph convolutional networks
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-55df4d81e33b8490f9b502a2b695052ddfd0453f991d2cc8a14a5975b280a3193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5594-4410
OpenAccessLink https://www.proquest.com/docview/3110366607?pq-origsite=%requestingapplication%
PMID 39329668
PQID 3110366607
PQPubID 2055440
ParticipantIDs doaj_primary_oai_doaj_org_article_542989f2ce42481b84202d6b1f785d76
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11428916
proquest_miscellaneous_3110407094
proquest_journals_3110366607
gale_infotracmisc_A810992345
gale_infotracacademiconefile_A810992345
pubmed_primary_39329668
crossref_primary_10_3390_bioengineering11090926
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Bioengineering (Basel)
PublicationTitleAlternate Bioengineering (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Galassi (ref_21) 2020; 32
ref_36
Laurens (ref_40) 2008; 9
ref_12
ref_11
ref_33
ref_32
ref_31
Izzuddin (ref_14) 2021; 41
Hou (ref_20) 2022; 35
Liu (ref_27) 2021; 26
ref_17
ref_38
Zhang (ref_24) 2021; 18
Song (ref_39) 2023; 31
Eldele (ref_28) 2021; 29
Guo (ref_22) 2022; 8
Ioffe (ref_30) 2015; 37
Lee (ref_34) 2019; 8
Schirrmeister (ref_35) 2017; 38
Scarselli (ref_16) 2008; 20
Zhang (ref_18) 2020; 24
ref_43
ref_42
ref_41
Aggarwal (ref_1) 2022; 29
Zhou (ref_15) 2020; 1
ref_3
Li (ref_23) 2020; 28
ref_2
ref_29
Borra (ref_37) 2020; 129
Sun (ref_19) 2021; 28
Dai (ref_10) 2020; 17
Hosseini (ref_5) 2020; 14
ref_26
ref_8
Lawhern (ref_13) 2018; 15
Liu (ref_25) 2021; 18
Yannick (ref_9) 2019; 16
ref_4
ref_7
ref_6
References_xml – ident: ref_7
– volume: 16
  start-page: 051001
  year: 2019
  ident: ref_9
  article-title: Deep learning-based electroencephalography analysis: A systematic review
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab260c
– volume: 8
  start-page: 331
  year: 2022
  ident: ref_22
  article-title: Attention mechanisms in computer vision: A survey
  publication-title: Comput. Vis. Media
  doi: 10.1007/s41095-022-0271-y
– ident: ref_32
– volume: 26
  start-page: 5321
  year: 2021
  ident: ref_27
  article-title: 3DCANN: A spatio-temporal convolution attention neural network for EEG emotion recognition
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3083525
– ident: ref_29
  doi: 10.1109/CVPR.2016.90
– ident: ref_33
  doi: 10.3389/fnins.2012.00055
– volume: 31
  start-page: 710
  year: 2023
  ident: ref_39
  article-title: EEG conformer: Convolutional transformer for EEG decoding and visualization
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3230250
– ident: ref_3
  doi: 10.3389/fnhum.2021.788036
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref_40
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: giz002
  year: 2019
  ident: ref_34
  article-title: EEG dataset and OpenBMI toolbox for three BCI paradigms: An investigation into BCI illiteracy
  publication-title: GigaScience
  doi: 10.1093/gigascience/giz002
– ident: ref_41
  doi: 10.1109/CVPR.2018.00745
– volume: 41
  start-page: 1629
  year: 2021
  ident: ref_14
  article-title: Compact convolutional neural network (CNN) based on SincNet for end-to-end motor imagery decoding and analysis
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2021.10.001
– volume: 28
  start-page: 2615
  year: 2020
  ident: ref_23
  article-title: A multi-scale fusion convolutional neural network based on attention mechanism for the visualization analysis of EEG signals decoding
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.3037326
– ident: ref_38
  doi: 10.3389/fbioe.2021.706229
– volume: 24
  start-page: 2570
  year: 2020
  ident: ref_18
  article-title: Motor imagery classification via temporal attention cues of graph embedded EEG signals
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2967128
– volume: 29
  start-page: 809
  year: 2021
  ident: ref_28
  article-title: An attention-based deep learning approach for sleep stage classification with single-channel EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3076234
– volume: 129
  start-page: 55
  year: 2020
  ident: ref_37
  article-title: Interpretable and lightweight convolutional neural network for EEG decoding: Application to movement execution and imagination
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.05.032
– volume: 20
  start-page: 61
  year: 2008
  ident: ref_16
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2005605
– ident: ref_42
  doi: 10.1109/CVPR42600.2020.01155
– volume: 37
  start-page: 448
  year: 2015
  ident: ref_30
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: JMLR Org.
– ident: ref_11
  doi: 10.1016/j.bspc.2021.103342
– ident: ref_6
  doi: 10.1016/j.bspc.2021.103241
– ident: ref_2
  doi: 10.3390/bioengineering9120768
– ident: ref_8
  doi: 10.1109/APWC-on-CSE.2016.017
– volume: 14
  start-page: 204
  year: 2020
  ident: ref_5
  article-title: A review on machine learning for EEG signal processing in bioengineering
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2020.2969915
– volume: 38
  start-page: 5391
  year: 2017
  ident: ref_35
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23730
– ident: ref_43
  doi: 10.1109/ICASSP39728.2021.9414568
– volume: 1
  start-page: 57
  year: 2020
  ident: ref_15
  article-title: Graph neural networks: A review of methods and applications
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.01.001
– volume: 32
  start-page: 4291
  year: 2020
  ident: ref_21
  article-title: Attention in natural language processing
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3019893
– ident: ref_12
  doi: 10.1109/SPMB.2017.8257015
– volume: 17
  start-page: 016025
  year: 2020
  ident: ref_10
  article-title: HS-CNN: A CNN with hybrid convolution scale for EEG motor imagery classification
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab405f
– ident: ref_17
– ident: ref_36
– volume: 18
  start-page: 016004
  year: 2021
  ident: ref_24
  article-title: Motor imagery recognition with automatic EEG channel selection and deep learning
  publication-title: J. Neural Eng.
– volume: 15
  start-page: 056013
  year: 2018
  ident: ref_13
  article-title: EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– volume: 35
  start-page: 7312
  year: 2022
  ident: ref_20
  article-title: GCNs-net: A graph convolutional neural network approach for decoding time-resolved eeg motor imagery signals
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2022.3202569
– volume: 18
  start-page: 0460e4
  year: 2021
  ident: ref_25
  article-title: Distinguishable spatial-spectral feature learning neural network framework for motor imagery-based brain–computer interface
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac1d36
– ident: ref_4
  doi: 10.3390/s23146434
– volume: 29
  start-page: 3001
  year: 2022
  ident: ref_1
  article-title: Review of machine learning techniques for EEG based brain computer interface
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-021-09684-6
– volume: 28
  start-page: 219
  year: 2021
  ident: ref_19
  article-title: Adaptive spatiotemporal graph convolutional networks for motor imagery classification
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2021.3049683
– ident: ref_26
  doi: 10.1016/j.bspc.2022.103618
– ident: ref_31
  doi: 10.3389/frai.2024.1290491
SSID ssj0001325264
Score 2.2663546
Snippet Research on electroencephalogram-based motor imagery (MI-EEG) can identify the limbs of subjects that generate motor imagination by decoding EEG signals, which...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 926
SubjectTerms Accuracy
Analysis
Artificial neural networks
Attention
Biochips
Brain
Brain research
brain–computer interface
Classification
Computer applications
Datasets
Deep learning
EEG
Electrodes
Electroencephalography
Euclidean space
Feature extraction
Feature selection
graph convolutional networks
Graph representations
Human-computer interface
Imagery
Implants
Machine learning
Medical research
Mental task performance
motor imagery
Neural networks
Receptive field
self-attention
Signal classification
Topology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAeBMolZGQOEXr9SPrHJfSUpDaCxT1ZtmOI1aUpCopiH_PjJ1uE4HEhWtsR45nJjNfMvMNwCsThQ_o5sogg6EWZqp0VYilivWqbrl2PNVWHZ9UR6fqw5k-m7T6opywTA-cD25B_ZRM3YoQlVAYYxmFcL2p_LJdGd2sEtk2r_kETKWvK1JodPW5JFgirl_4TR9vGP6IZ5PXxKgw8UaJtP_PV_PEN83zJieO6PAe3B0jSLbOO78Pt2L3AO5MeAUfwteDRAyB61kqsC0_b-JP9o64qdl-3_0Y1Q3vcpKzwBl9jmUf43lbrochZ0AyDGfH5alzJjvuEZ-z99-I9eIXe4u4lfzeIzg9PPi0f1SOXRXKgKBzKLVuWtWYZZQSD7Pmbe01F074qqamdk3TNhjmyRYDx0aEYNxSOUQd2gvDHRqsfAw7Xd_Fp8AweKL3E3eucmoZvcdokwdVBee1ki4WsLg-XXuRyTMsgg6Sh_27PAp4Q0LYziby63QBVcKOKmH_pRIFvCYRWjJRlFNwY6UBbprIruza0O9AIZUuYHc2E00rzIevlcCOpv3dStyrRNDHVwW83A7TSkpX62J_lecgUkboXMCTrDPbR5IYMSPGNAWYmTbNnnk-0m2-JOJvqns2GM8_-x-n9Bxu4wWV8-V2YWe4vIovMMAa_F6ypd-66CNe
  priority: 102
  providerName: Directory of Open Access Journals
Title Efficient Multi-View Graph Convolutional Network with Self-Attention for Multi-Class Motor Imagery Decoding
URI https://www.ncbi.nlm.nih.gov/pubmed/39329668
https://www.proquest.com/docview/3110366607
https://www.proquest.com/docview/3110407094
https://pubmed.ncbi.nlm.nih.gov/PMC11428916
https://doaj.org/article/542989f2ce42481b84202d6b1f785d76
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcCh4k2grIyExClax4-sc0K77W4LUlcIKOotsh2nVNCktCkS_54Zx_uIQJwixXYUZ2Y83zjjbwh5oz23Dtxc6oTTWMJMpiZ3PpW-mBQ1U4aFs1Uny_z4VH44U2dxw-0mplWu1sSwUFetwz3ysQA_JQBrs8m7q58pVo3Cv6uxhMZdspuBp0E914ujzR6L4Aocfn8wWEB0P7YXrd_w_CHbJiuQV2HLJwXq_r8X6C0PNcye3HJHiwdkL-JIOu0F_5Dc8c0jcn-LXfAx-T4P9BAwnoZjtulXmCE9QoZqetA2v6LSwVOWfS44xU1Z-tn_qNNp1_V5kBRAbRwe6mfSkxaidPr-ErkvftNDiF7R-z0hp4v5l4PjNNZWSB2Enl2qVFXLSmdeCKtlwerCKsYNt3mBpe2qqq4A7Ika4GPFndMmkwZiD2W5ZgbMVjwlO03b-OeEAoTCVYoZkxuZeWsBczInc2esksL4hIxXX7e86ik0Sgg9UB7lv-WRkBkKYd0bKbDDjfb6vIwWVWKhLV3U3HnJJYBvLTnjVW6zeqJVNYGHvEURlmioICdn4nkDeGmkvCqnGn8KciFVQvYHPcHA3LB5pQRlNPCbcqOOCXm9bsaRmLTW-Pa27wPxMgTQCXnW68x6SgJwM0SaOiF6oE2DOQ9bmotvgf4bTz9rQPUv_v9eL8k9-CCyz4fbJzvd9a1_BQCqs6NgJSOyO50dzhZwnc2XHz-NwnbEH6GtIBE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IN4EChgJxCmq13ayzgGhbbtll3ZXCFrUW7AdByogKW0K6p_iNzKTZB8RiFuv8UOJZ-z5xpn5BuC59sI6NHOhk05TCTMVmtj5UPlkkOQ8MrzOrZrO4vGhensUHa3B73kuDIVVzs_E-qDOSkd35JsS7ZRErM0Hr09-hFQ1iv6uzktoNGqx5y9-oct29mqyg_J9IcTu6GB7HLZVBUKHTlcVRlGWq0z3vZRWq4TniY24MMLGCRV1y7I8Q5gjcwROmXBOm74yiLojKzQ3qLAS570C64oyWnuwvjWavXu_vNWRIkKI0aQiS5nwTXtc-iWzIPF78oSYHFasYF0s4G-TsGITu_GaKwZw9ybcaJErGzaqdgvWfHEbrq_wGd6Br6OakALHszqxN_yIa8reECc22y6Ln62a4yyzJvqc0TUw--C_5eGwqprIS4Ywuh1eV-xk07LCJ5PvxLZxwXbQXyZ7excOL2Xd70GvKAv_ABiCNjoXuTGxUX1vLaJc7lTsjI2UND6AzfnqpicNaUeKzg7JI_23PALYIiEsehPpdv2gPP2ctns4pdJeOsmF80oohPtaCS6y2PbzgY6yAU7ykkSY0tGAcnKmzXDAlyaSrXSo6TekkCoKYKPTE7e06zbPlSBtj5SzdLkBAni2aKaRFCZX-PK86YMeOrrsAdxvdGbxSRKROvq2OgDd0abON3dbiuMvNeE45Vtr9CMe_v-9nsLV8cF0P92fzPYewTVcHNVE421Arzo9948RvlX2SbtnGHy67G36By5xWQU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4EChgJxClar-0kzgGhpdttl9IVEhT1FmzHaSsgKW0K6l_j1zGTZB8RiFuv8UOJ5_WNMw-AF9oL69DMhU46TS3MVGhi50Pl0yQteGR4k1u1N4t39tW7g-hgDX7Pc2EorHKuExtFnVeO7sgHEu2URKzNk0HRhUV8GE_enPwIqYMU_Wmdt9NoWWTXX_xC9-3s9XSMtH4pxGTr0-ZO2HUYCB06YHUYRXmhcj30UlqtUl6kNuLCCBun1OAtz4scIY8sEETlwjlthsogAo-s0Nwg80rc9wpcTWSSkuOnJ9vL-x0pIgQbbVKylCkf2OPKL2sMUqVPnlJNhxV72LQN-Ns4rFjHfuTmiimc3IKbHYZlo5bpbsOaL-_AjZXKhnfh61ZTmgLXsybFN_yMp8u2qTo226zKnx3D4y6zNg6d0YUw--i_FeGortsYTIaAulve9O5ke1WNT6bfqe7GBRuj50yW9x7sX8qp34f1sir9Q2AI30hDcmNio4beWsS73KnYGRspaXwAg_npZidt-Y4M3R6iR_ZvegTwloiwmE3lt5sH1elh1klzRk2-dFoI55VQCPy1ElzksR0WiY7yBDd5RSTMSEkgnZzpch3wpancVjbS9ENSSBUFsNGbicLt-sNzJsg65XKWLUUhgOeLYVpJAXOlr87bOeiro_MewIOWZxafJBGzo5erA9A9bup9c3-kPD5qSo9T5rVGj-LR_9_rGVxD4czeT2e7j-E6no1qw_I2YL0-PfdPEMfV9mkjMAy-XLaE_gFW3VvV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Multi-View+Graph+Convolutional+Network+with+Self-Attention+for+Multi-Class+Motor+Imagery+Decoding&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Tan%2C+Xiyue&rft.au=Wang%2C+Dan&rft.au=Xu%2C+Meng&rft.au=Chen%2C+Jiaming&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.issn=2306-5354&rft.eissn=2306-5354&rft.volume=11&rft.issue=9&rft_id=info:doi/10.3390%2Fbioengineering11090926&rft.externalDocID=A810992345
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon