Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass
► Biochars from anaerobically digested biomass effectively removed heavy metals. ► Lead sorption capacities of the biochars were close to or higher than 200mmol/kg. ► Surface precipitation was the governing heavy metal removal mechanism. This study examined the ability of two biochars converted from...
Saved in:
Published in | Bioresource technology Vol. 110; pp. 50 - 56 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.04.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► Biochars from anaerobically digested biomass effectively removed heavy metals. ► Lead sorption capacities of the biochars were close to or higher than 200mmol/kg. ► Surface precipitation was the governing heavy metal removal mechanism.
This study examined the ability of two biochars converted from anaerobically digested biomass to sorb heavy metals using a range of laboratory sorption and characterization experiments. Initial evaluation of DAWC (digested dairy waste biochar) and DWSBC (digested whole sugar beet biochar) showed that both biochars were effective in removing a mixture of four heavy metals (Pb2 +, Cu2+, Ni2+, and Cd2+) from aqueous solutions. Compared to DAWC, DWSBC demonstrated a better ability to remove Ni and Cd. Further investigations of lead sorption by the two biochars indicated that the removal was mainly through a surface precipitation mechanism, which was confirmed by batch sorption experiments, mathematical modeling, and examinations of lead-laden biochars samples using SEM–EDS, XRD, and FTIR. The lead sorption capacity of the two biochars was close to or higher than 200mmol/kg, which is comparable to that of commercial activated carbons. |
---|---|
AbstractList | This study examined the ability of two biochars converted from anaerobically digested biomass to sorb heavy metals using a range of laboratory sorption and characterization experiments. Initial evaluation of DAWC (digested dairy waste biochar) and DWSBC (digested whole sugar beet biochar) showed that both biochars were effective in removing a mixture of four heavy metals (Pb2 +, Cu2+, Ni2+, and Cd2+) from aqueous solutions. Compared to DAWC, DWSBC demonstrated a better ability to remove Ni and Cd. Further investigations of lead sorption by the two biochars indicated that the removal was mainly through a surface precipitation mechanism, which was confirmed by batch sorption experiments, mathematical modeling, and examinations of lead-laden biochars samples using SEM-EDS, XRD, and FTIR. The lead sorption capacity of the two biochars was close to or higher than 200 mmol/kg, which is comparable to that of commercial activated carbons. This study examined the ability of two biochars converted from anaerobically digested biomass to sorb heavy metals using a range of laboratory sorption and characterization experiments. Initial evaluation of DAWC (digested dairy waste biochar) and DWSBC (digested whole sugar beet biochar) showed that both biochars were effective in removing a mixture of four heavy metals (Pb² ⁺, Cu²⁺, Ni²⁺, and Cd²⁺) from aqueous solutions. Compared to DAWC, DWSBC demonstrated a better ability to remove Ni and Cd. Further investigations of lead sorption by the two biochars indicated that the removal was mainly through a surface precipitation mechanism, which was confirmed by batch sorption experiments, mathematical modeling, and examinations of lead-laden biochars samples using SEM–EDS, XRD, and FTIR. The lead sorption capacity of the two biochars was close to or higher than 200mmol/kg, which is comparable to that of commercial activated carbons. ► Biochars from anaerobically digested biomass effectively removed heavy metals. ► Lead sorption capacities of the biochars were close to or higher than 200mmol/kg. ► Surface precipitation was the governing heavy metal removal mechanism. This study examined the ability of two biochars converted from anaerobically digested biomass to sorb heavy metals using a range of laboratory sorption and characterization experiments. Initial evaluation of DAWC (digested dairy waste biochar) and DWSBC (digested whole sugar beet biochar) showed that both biochars were effective in removing a mixture of four heavy metals (Pb2 +, Cu2+, Ni2+, and Cd2+) from aqueous solutions. Compared to DAWC, DWSBC demonstrated a better ability to remove Ni and Cd. Further investigations of lead sorption by the two biochars indicated that the removal was mainly through a surface precipitation mechanism, which was confirmed by batch sorption experiments, mathematical modeling, and examinations of lead-laden biochars samples using SEM–EDS, XRD, and FTIR. The lead sorption capacity of the two biochars was close to or higher than 200mmol/kg, which is comparable to that of commercial activated carbons. This study examined the ability of two biochars converted from anaerobically digested biomass to sorb heavy metals using a range of laboratory sorption and characterization experiments. Initial evaluation of DAWC (digested dairy waste biochar) and DWSBC (digested whole sugar beet biochar) showed that both biochars were effective in removing a mixture of four heavy metals (Pb(2 +), Cu(2+), Ni(2+), and Cd(2+)) from aqueous solutions. Compared to DAWC, DWSBC demonstrated a better ability to remove Ni and Cd. Further investigations of lead sorption by the two biochars indicated that the removal was mainly through a surface precipitation mechanism, which was confirmed by batch sorption experiments, mathematical modeling, and examinations of lead-laden biochars samples using SEM-EDS, XRD, and FTIR. The lead sorption capacity of the two biochars was close to or higher than 200mmol/kg, which is comparable to that of commercial activated carbons.This study examined the ability of two biochars converted from anaerobically digested biomass to sorb heavy metals using a range of laboratory sorption and characterization experiments. Initial evaluation of DAWC (digested dairy waste biochar) and DWSBC (digested whole sugar beet biochar) showed that both biochars were effective in removing a mixture of four heavy metals (Pb(2 +), Cu(2+), Ni(2+), and Cd(2+)) from aqueous solutions. Compared to DAWC, DWSBC demonstrated a better ability to remove Ni and Cd. Further investigations of lead sorption by the two biochars indicated that the removal was mainly through a surface precipitation mechanism, which was confirmed by batch sorption experiments, mathematical modeling, and examinations of lead-laden biochars samples using SEM-EDS, XRD, and FTIR. The lead sorption capacity of the two biochars was close to or higher than 200mmol/kg, which is comparable to that of commercial activated carbons. This study examined the ability of two biochars converted from anaerobically digested biomass to sorb heavy metals using a range of laboratory sorption and characterization experiments. Initial evaluation of DAWC (digested dairy waste biochar) and DWSBC (digested whole sugar beet biochar) showed that both biochars were effective in removing a mixture of four heavy metals (Pb(2 +), Cu(2+), Ni(2+), and Cd(2+)) from aqueous solutions. Compared to DAWC, DWSBC demonstrated a better ability to remove Ni and Cd. Further investigations of lead sorption by the two biochars indicated that the removal was mainly through a surface precipitation mechanism, which was confirmed by batch sorption experiments, mathematical modeling, and examinations of lead-laden biochars samples using SEM-EDS, XRD, and FTIR. The lead sorption capacity of the two biochars was close to or higher than 200mmol/kg, which is comparable to that of commercial activated carbons. |
Author | Zimmerman, Andrew R. Xue, Yingwen Inyang, Mandu Yao, Ying Pullammanappallil, Pratap Cao, Xinde Gao, Bin |
Author_xml | – sequence: 1 givenname: Mandu surname: Inyang fullname: Inyang, Mandu organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States – sequence: 2 givenname: Bin surname: Gao fullname: Gao, Bin email: bg55@ufl.edu organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States – sequence: 3 givenname: Ying surname: Yao fullname: Yao, Ying organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States – sequence: 4 givenname: Yingwen surname: Xue fullname: Xue, Yingwen organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States – sequence: 5 givenname: Andrew R. surname: Zimmerman fullname: Zimmerman, Andrew R. organization: Department of Geological Sciences, University of Florida, Gainesville, FL 32611, United States – sequence: 6 givenname: Pratap surname: Pullammanappallil fullname: Pullammanappallil, Pratap organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States – sequence: 7 givenname: Xinde surname: Cao fullname: Cao, Xinde organization: School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22325901$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAYhC1URLeFv1B8g0vC6484icSBqoKCVAkJ6Nly7Dddr5K42NmV9t_jaHcvHLonH_zMjD1zRS6mMCEhNwxKBkx92pSdD3FGuy45MF4CK6Hmr8iKNbUoeFurC7KCVkHRVFxekquUNgAgWM3fkEvOBa9aYCuCv3AMOzPQ0NM1mt2ejjibIdE-hpGav1sM20RTGLazDxPt9jTn2rWJiTqMfofuSE4GY-i8NcOwp84_YZrzXYZHk9Jb8rrPpvjueF6Tx29f_9x9Lx5-3v-4u30obMXFXFSglKg4Q1EZ2WDNZKsaZ7ltlJK1kQqBW1YBZwa4cCClMtKiqyV3HWdOXJMPB9_nGPLT06xHnywOg5mWf-iWNy3jUohMfnyRZEJVIFmt-HkUoGkkY_XienNEt92ITj9HP5q416e-M_D5ANgYUorYa-tns1Q7R-OH7KWXefVGn-bVy7wamM7zZrn6T35KOCt8fxD2JmjzFH3Sj78zICGLZCUgE18OBOZ9dh6jTtbjlNv1Ee2sXfDnQv4BEsjLWQ |
CitedBy_id | crossref_primary_10_1016_j_eti_2020_101310 crossref_primary_10_1063_5_0116500 crossref_primary_10_1016_j_jece_2024_112333 crossref_primary_10_1016_j_seppur_2021_120140 crossref_primary_10_1016_j_jaap_2015_07_011 crossref_primary_10_1016_j_biortech_2014_10_104 crossref_primary_10_1016_j_jwpe_2020_101561 crossref_primary_10_1016_j_jhazmat_2016_02_040 crossref_primary_10_1016_j_ultsonch_2018_09_015 crossref_primary_10_1016_j_jenvman_2016_09_062 crossref_primary_10_1016_j_scitotenv_2017_08_228 crossref_primary_10_1016_j_chemosphere_2017_02_061 crossref_primary_10_1039_C9RA04869C crossref_primary_10_1016_j_chemosphere_2022_135384 crossref_primary_10_1007_s11356_017_1145_1 crossref_primary_10_1007_s11356_017_8847_2 crossref_primary_10_1016_j_scitotenv_2021_151442 crossref_primary_10_1016_j_jclepro_2024_144118 crossref_primary_10_32628_IJSRST218339 crossref_primary_10_1039_C9RA02459J crossref_primary_10_1007_s13762_019_02615_w crossref_primary_10_1016_j_jclepro_2018_01_133 crossref_primary_10_1016_j_matpr_2020_12_953 crossref_primary_10_1016_j_cej_2016_09_122 crossref_primary_10_1016_j_chemosphere_2013_02_050 crossref_primary_10_1016_j_chemosphere_2019_124351 crossref_primary_10_3390_land12020416 crossref_primary_10_3390_su13168817 crossref_primary_10_4236_ojss_2015_52004 crossref_primary_10_1016_j_biortech_2017_08_025 crossref_primary_10_3390_app9061139 crossref_primary_10_1021_acssuschemeng_9b00868 crossref_primary_10_1007_s11356_019_05185_z crossref_primary_10_1111_ejss_12107 crossref_primary_10_32628_IJSRST218340 crossref_primary_10_1007_s12665_015_5167_z crossref_primary_10_1016_j_molliq_2018_08_039 crossref_primary_10_1260_0263_6174_31_7_625 crossref_primary_10_1016_j_scitotenv_2012_07_038 crossref_primary_10_3390_agriculture14081246 crossref_primary_10_3390_cryst14050447 crossref_primary_10_2139_ssrn_3992717 crossref_primary_10_1016_j_eti_2023_103435 crossref_primary_10_1016_j_chemosphere_2018_12_053 crossref_primary_10_1080_10934529_2015_1047680 crossref_primary_10_1016_j_clet_2020_100006 crossref_primary_10_1016_j_catena_2018_07_018 crossref_primary_10_1016_j_scitotenv_2020_140283 crossref_primary_10_1016_j_jenvman_2018_04_108 crossref_primary_10_1016_j_wen_2024_11_001 crossref_primary_10_3390_molecules25122812 crossref_primary_10_1016_j_jclepro_2019_04_282 crossref_primary_10_1007_s11356_017_1047_2 crossref_primary_10_1021_acssuschemeng_7b00434 crossref_primary_10_1016_j_scitotenv_2019_05_007 crossref_primary_10_1016_j_scitotenv_2019_134470 crossref_primary_10_1080_10643389_2017_1328918 crossref_primary_10_7745_KJSSF_2019_52_1_029 crossref_primary_10_1016_j_ibiod_2016_04_029 crossref_primary_10_1080_19443994_2015_1112841 crossref_primary_10_1016_j_ecoleng_2016_10_007 crossref_primary_10_1007_s11696_023_02752_0 crossref_primary_10_1016_j_chemosphere_2022_136466 crossref_primary_10_1016_j_biortech_2013_08_049 crossref_primary_10_1016_j_arabjc_2013_11_047 crossref_primary_10_1007_s10653_023_01617_5 crossref_primary_10_1016_j_envres_2021_111518 crossref_primary_10_1016_j_chroma_2014_03_072 crossref_primary_10_1016_j_envpol_2019_113114 crossref_primary_10_1016_j_envres_2021_111879 crossref_primary_10_1016_j_psep_2018_06_036 crossref_primary_10_1007_s11270_020_04557_3 crossref_primary_10_1016_j_ecoenv_2016_04_033 crossref_primary_10_1016_j_cjche_2020_02_012 crossref_primary_10_1016_j_biortech_2018_09_138 crossref_primary_10_1016_j_jclepro_2020_122259 crossref_primary_10_5338_KJEA_2014_33_1_1 crossref_primary_10_1016_j_scitotenv_2021_147136 crossref_primary_10_1016_j_chemosphere_2021_130204 crossref_primary_10_1016_j_jssc_2018_02_010 crossref_primary_10_1007_s12011_018_1422_y crossref_primary_10_1016_j_biortech_2019_03_113 crossref_primary_10_1016_j_cej_2018_08_098 crossref_primary_10_1016_j_matpr_2022_03_270 crossref_primary_10_3389_fenvs_2023_1275087 crossref_primary_10_1016_j_fuel_2022_125243 crossref_primary_10_1016_j_cej_2013_04_077 crossref_primary_10_1016_j_envpol_2024_124850 crossref_primary_10_1007_s13399_022_03213_6 crossref_primary_10_1016_j_biortech_2013_03_186 crossref_primary_10_1016_j_scitotenv_2021_150413 crossref_primary_10_1007_s13762_024_05646_0 crossref_primary_10_1016_j_cej_2020_127468 crossref_primary_10_1039_c4ra02332c crossref_primary_10_1016_j_biortech_2018_12_044 crossref_primary_10_1016_j_wasman_2021_01_037 crossref_primary_10_1021_sc5002269 crossref_primary_10_1016_j_eti_2020_101121 crossref_primary_10_1007_s10098_016_1218_8 crossref_primary_10_1016_j_eti_2017_06_002 crossref_primary_10_1007_s13762_018_02191_5 crossref_primary_10_1016_j_chemosphere_2019_125004 crossref_primary_10_3390_su152316173 crossref_primary_10_1016_j_jece_2020_104980 crossref_primary_10_1016_j_biortech_2013_03_057 crossref_primary_10_1021_acsami_6b14071 crossref_primary_10_1088_1755_1315_1074_1_012033 crossref_primary_10_1016_j_scitotenv_2017_10_193 crossref_primary_10_1016_j_jhazmat_2022_130257 crossref_primary_10_1007_s11696_023_03136_0 crossref_primary_10_1007_s11783_020_1225_1 crossref_primary_10_7745_KJSSF_2014_47_5_351 crossref_primary_10_1007_s11814_019_0304_0 crossref_primary_10_1002_clen_202100396 crossref_primary_10_1016_j_apenergy_2016_02_084 crossref_primary_10_1016_j_scitotenv_2021_150444 crossref_primary_10_1080_09542299_2015_1087162 crossref_primary_10_1007_s11157_020_09531_3 crossref_primary_10_2166_aqua_2023_082 crossref_primary_10_1016_j_chemosphere_2016_01_044 crossref_primary_10_1039_C6RA01895E crossref_primary_10_1007_s00374_014_0960_5 crossref_primary_10_1007_s11356_022_18637_w crossref_primary_10_1007_s13762_023_05364_z crossref_primary_10_1007_s10098_016_1284_y crossref_primary_10_1016_j_biortech_2013_01_114 crossref_primary_10_1016_j_scitotenv_2017_09_082 crossref_primary_10_1039_C4RA12351D crossref_primary_10_3390_ijerph191912405 crossref_primary_10_1021_acs_est_8b00104 crossref_primary_10_1038_s41598_019_46234_4 crossref_primary_10_1007_s42773_021_00123_0 crossref_primary_10_1016_j_colsurfa_2023_132628 crossref_primary_10_1016_j_jece_2022_107725 crossref_primary_10_1007_s11270_019_4135_8 crossref_primary_10_1016_j_polymer_2024_127829 crossref_primary_10_1007_s10967_016_5043_7 crossref_primary_10_1016_j_chemosphere_2015_05_093 crossref_primary_10_1080_01496395_2018_1425301 crossref_primary_10_1016_j_enconman_2020_112654 crossref_primary_10_2478_pjct_2013_0025 crossref_primary_10_1039_D0GC00717J crossref_primary_10_1016_j_chemosphere_2015_04_062 crossref_primary_10_1016_j_scitotenv_2022_159554 crossref_primary_10_1016_j_seppur_2023_126199 crossref_primary_10_3103_S0361521920060075 crossref_primary_10_1016_j_jwpe_2024_105705 crossref_primary_10_1016_j_scitotenv_2018_09_259 crossref_primary_10_1080_09542299_2017_1403294 crossref_primary_10_1111_ejss_12246 crossref_primary_10_1016_j_biortech_2019_122030 crossref_primary_10_1016_j_rcrx_2019_100015 crossref_primary_10_1016_j_biortech_2014_11_077 crossref_primary_10_1016_j_jwpe_2021_101929 crossref_primary_10_1016_j_scitotenv_2019_03_364 crossref_primary_10_1016_j_biortech_2018_10_065 crossref_primary_10_1016_j_cej_2018_04_161 crossref_primary_10_1088_1742_6596_1763_1_012071 crossref_primary_10_2174_2405520413999201117143926 crossref_primary_10_1021_acs_est_7b06487 crossref_primary_10_1016_j_jiec_2015_10_007 crossref_primary_10_1088_1742_6596_1736_1_012002 crossref_primary_10_3390_molecules29153545 crossref_primary_10_1007_s11356_020_11571_9 crossref_primary_10_1016_j_wasman_2017_06_032 crossref_primary_10_1007_s42773_019_00002_9 crossref_primary_10_1016_j_indcrop_2024_118743 crossref_primary_10_3390_su15129380 crossref_primary_10_1016_j_jenvman_2013_12_007 crossref_primary_10_1016_j_jenvman_2018_11_021 crossref_primary_10_1016_j_surfin_2022_102323 crossref_primary_10_1016_j_jenvman_2018_02_002 crossref_primary_10_1016_j_jclepro_2018_03_017 crossref_primary_10_1016_j_rser_2021_111068 crossref_primary_10_1016_j_wasman_2021_04_027 crossref_primary_10_1016_j_biortech_2021_125102 crossref_primary_10_1016_j_jclepro_2017_01_125 crossref_primary_10_1021_acs_est_6b00627 crossref_primary_10_3390_w11071438 crossref_primary_10_5338_KJEA_2017_36_1_02 crossref_primary_10_1016_j_scitotenv_2020_143910 crossref_primary_10_1002_etc_5127 crossref_primary_10_1016_j_jenvman_2018_10_117 crossref_primary_10_1007_s12517_022_10909_6 crossref_primary_10_1016_j_scitotenv_2019_04_037 crossref_primary_10_1007_s11356_023_29135_y crossref_primary_10_1016_j_jenvman_2017_10_056 crossref_primary_10_1007_s42729_020_00336_5 crossref_primary_10_1016_j_chemosphere_2014_10_057 crossref_primary_10_1111_sum_12931 crossref_primary_10_1016_j_jclepro_2017_08_122 crossref_primary_10_1016_S1002_0160_17_60375_8 crossref_primary_10_1007_s11368_018_1927_1 crossref_primary_10_3390_w16131834 crossref_primary_10_1061__ASCE_EE_1943_7870_0001917 crossref_primary_10_1038_s41598_023_49036_x crossref_primary_10_1016_j_scitotenv_2021_147595 crossref_primary_10_1007_s41742_022_00498_3 crossref_primary_10_1016_j_biortech_2017_04_051 crossref_primary_10_1088_2053_1591_abae27 crossref_primary_10_1007_s11270_021_05407_6 crossref_primary_10_1016_j_biortech_2017_03_169 crossref_primary_10_1016_j_watres_2020_116648 crossref_primary_10_1007_s11270_022_05749_9 crossref_primary_10_1016_j_jclepro_2023_136713 crossref_primary_10_1016_j_jwpe_2022_102821 crossref_primary_10_1016_j_wasman_2018_08_023 crossref_primary_10_3390_agronomy14081781 crossref_primary_10_1016_j_scitotenv_2018_03_071 crossref_primary_10_1016_S1001_0742_12_60305_2 crossref_primary_10_1016_j_seppur_2023_123399 crossref_primary_10_1007_s11356_015_5486_3 crossref_primary_10_1016_j_biteb_2023_101680 crossref_primary_10_3390_cleantechnol4030039 crossref_primary_10_1186_s13765_024_00969_5 crossref_primary_10_1007_s11368_014_0969_2 crossref_primary_10_1007_s11356_020_11979_3 crossref_primary_10_1016_j_psep_2024_12_013 crossref_primary_10_3139_113_110672 crossref_primary_10_4028_www_scientific_net_AMR_955_959_16 crossref_primary_10_1016_j_scitotenv_2020_143816 crossref_primary_10_1080_15226514_2019_1647405 crossref_primary_10_1155_2018_2684962 crossref_primary_10_1016_j_scitotenv_2020_141999 crossref_primary_10_1080_09593330_2016_1170888 crossref_primary_10_1016_j_jaap_2015_08_016 crossref_primary_10_1016_j_biotechadv_2021_107886 crossref_primary_10_1016_j_chemosphere_2019_03_193 crossref_primary_10_1007_s11356_015_5451_1 crossref_primary_10_1016_j_biortech_2019_121818 crossref_primary_10_1007_s10661_024_12985_5 crossref_primary_10_1016_j_jenvman_2014_11_005 crossref_primary_10_3390_w12102933 crossref_primary_10_1021_es405676h crossref_primary_10_1007_s10653_015_9709_9 crossref_primary_10_1016_j_cemconcomp_2020_103588 crossref_primary_10_1016_j_wri_2023_100219 crossref_primary_10_1016_j_jenvman_2023_118568 crossref_primary_10_1007_s10653_024_02243_5 crossref_primary_10_1016_j_fuel_2017_01_052 crossref_primary_10_1016_j_jenvman_2018_04_046 crossref_primary_10_1016_j_biortech_2015_08_055 crossref_primary_10_1016_j_jclepro_2018_10_268 crossref_primary_10_1080_15320383_2022_2031867 crossref_primary_10_1007_s11270_023_06334_4 crossref_primary_10_1080_19443994_2015_1120689 crossref_primary_10_1021_acsomega_0c00216 crossref_primary_10_1016_j_envpol_2017_04_048 crossref_primary_10_1007_s11356_018_1292_z crossref_primary_10_1016_j_cscee_2020_100018 crossref_primary_10_1080_10962247_2015_1094429 crossref_primary_10_1016_j_envpol_2024_124588 crossref_primary_10_1016_j_scitotenv_2019_03_438 crossref_primary_10_1061__ASCE_EE_1943_7870_0000872 crossref_primary_10_1080_15320383_2024_2395945 crossref_primary_10_1016_j_jenvman_2014_07_029 crossref_primary_10_1007_s42773_023_00207_z crossref_primary_10_1016_j_jenvman_2016_02_049 crossref_primary_10_1016_j_seppur_2023_125124 crossref_primary_10_1002_jpln_201400601 crossref_primary_10_1016_j_jhazmat_2014_01_056 crossref_primary_10_1016_j_jece_2017_05_055 crossref_primary_10_48072_2525_7579_rog_2022_155 crossref_primary_10_1039_C9GC01843C crossref_primary_10_1080_19397038_2020_1862350 crossref_primary_10_1021_acs_langmuir_0c01454 crossref_primary_10_1016_j_chemosphere_2013_03_055 crossref_primary_10_1061__ASCE_EE_1943_7870_0001950 crossref_primary_10_1016_j_scitotenv_2018_02_137 crossref_primary_10_1016_j_jcis_2014_12_030 crossref_primary_10_1098_rsos_180966 crossref_primary_10_5004_dwt_2022_28376 crossref_primary_10_1007_s42108_019_00025_9 crossref_primary_10_1016_j_chemosphere_2022_134592 crossref_primary_10_1016_j_jhazmat_2022_130628 crossref_primary_10_1021_acs_est_8b01817 crossref_primary_10_1016_j_envres_2022_114043 crossref_primary_10_1021_acs_langmuir_2c00317 crossref_primary_10_1080_00032719_2022_2098310 crossref_primary_10_5322_JESI_2018_27_9_753 crossref_primary_10_1016_j_cej_2019_05_139 crossref_primary_10_1007_s11356_019_04315_x crossref_primary_10_1016_j_ijbiomac_2022_06_178 crossref_primary_10_1680_jenge_18_00091 crossref_primary_10_1016_j_biortech_2018_03_125 crossref_primary_10_1016_j_jhazmat_2020_124605 crossref_primary_10_3390_ijerph16050845 crossref_primary_10_1007_s13369_017_2934_z crossref_primary_10_3390_en13164203 crossref_primary_10_1016_j_ccr_2019_213096 crossref_primary_10_1007_s10570_018_1935_8 crossref_primary_10_1016_j_chemosphere_2014_04_043 crossref_primary_10_1016_j_biortech_2024_130762 crossref_primary_10_1016_j_scitotenv_2020_137108 crossref_primary_10_2139_ssrn_4126026 crossref_primary_10_1016_j_chemosphere_2017_05_161 crossref_primary_10_1080_03650340_2015_1074186 crossref_primary_10_1016_j_nanoen_2015_08_004 crossref_primary_10_1016_j_scitotenv_2016_03_248 crossref_primary_10_1016_j_scitotenv_2021_145676 crossref_primary_10_5004_dwt_2020_26425 crossref_primary_10_1016_j_eti_2022_102640 crossref_primary_10_1016_j_jes_2017_05_023 crossref_primary_10_1016_j_jclepro_2016_07_205 crossref_primary_10_1016_j_envpol_2022_119107 crossref_primary_10_1016_j_biortech_2015_08_132 crossref_primary_10_1016_j_ecoenv_2022_113646 crossref_primary_10_1016_S1001_0742_12_60118_1 crossref_primary_10_1016_j_pedobi_2022_150861 crossref_primary_10_1016_j_scitotenv_2015_09_022 crossref_primary_10_1016_j_matpr_2020_08_721 crossref_primary_10_1016_j_scitotenv_2018_07_374 crossref_primary_10_1007_s11356_023_25817_9 crossref_primary_10_1007_s11356_018_3247_9 crossref_primary_10_1016_j_cej_2013_01_054 crossref_primary_10_1016_j_jenvman_2017_06_019 crossref_primary_10_2166_wst_2017_289 crossref_primary_10_3390_agriculture14030464 crossref_primary_10_3390_w12102871 crossref_primary_10_3390_ijerph14070681 crossref_primary_10_1016_j_biortech_2012_11_132 crossref_primary_10_12677_WPT_2022_102010 crossref_primary_10_1007_s10163_024_01908_8 crossref_primary_10_1021_ie404135y crossref_primary_10_1089_ees_2014_0540 crossref_primary_10_1007_s13369_021_05362_8 crossref_primary_10_1016_j_chemosphere_2015_02_055 crossref_primary_10_1016_j_chemosphere_2019_01_128 crossref_primary_10_1016_j_jenvman_2017_07_071 crossref_primary_10_1007_s11356_014_2740_z crossref_primary_10_1016_j_apenergy_2019_03_050 crossref_primary_10_1016_j_biortech_2012_12_096 crossref_primary_10_1016_j_envres_2024_118652 crossref_primary_10_1016_j_ecoenv_2017_03_020 crossref_primary_10_1016_j_scitotenv_2015_10_057 crossref_primary_10_3390_pr11123423 crossref_primary_10_5004_dwt_2019_24489 crossref_primary_10_1016_j_cej_2013_09_074 crossref_primary_10_1039_D1RA03201A crossref_primary_10_1016_j_biortech_2021_125827 crossref_primary_10_1016_j_jece_2022_109027 crossref_primary_10_1016_j_eti_2021_102031 crossref_primary_10_1016_j_rser_2018_03_025 crossref_primary_10_1016_j_colsurfa_2015_11_039 crossref_primary_10_1155_2020_2805479 crossref_primary_10_1016_j_colsurfa_2018_07_010 crossref_primary_10_1021_es4012977 crossref_primary_10_3390_ma13112462 crossref_primary_10_3390_su16072972 crossref_primary_10_3390_ijerph17051602 crossref_primary_10_1016_j_apgeochem_2017_09_001 crossref_primary_10_1007_s12517_019_4557_z crossref_primary_10_1021_acsomega_9b01805 crossref_primary_10_1016_j_cej_2023_147657 crossref_primary_10_1007_s10098_016_1236_6 crossref_primary_10_1007_s10653_017_0005_8 crossref_primary_10_5004_dwt_2018_22744 crossref_primary_10_1080_07388551_2022_2119547 crossref_primary_10_1007_s11356_020_08706_3 crossref_primary_10_3390_molecules28072897 crossref_primary_10_1007_s11270_016_3191_6 crossref_primary_10_1007_s10934_019_00845_4 crossref_primary_10_1039_C6RA22511J crossref_primary_10_1016_j_biortech_2017_05_025 crossref_primary_10_1016_j_envpol_2021_117094 crossref_primary_10_1016_j_carbon_2014_08_081 crossref_primary_10_55544_jrasb_2_4_2 crossref_primary_10_1016_j_chemosphere_2023_138269 crossref_primary_10_1039_D0EW00619J crossref_primary_10_1016_j_jenvman_2014_07_001 crossref_primary_10_3103_S0361521921020099 crossref_primary_10_2166_wst_2024_051 crossref_primary_10_1016_j_envpol_2021_117916 crossref_primary_10_3390_su132112125 crossref_primary_10_1016_j_biortech_2017_03_109 crossref_primary_10_1007_s11356_023_28261_x crossref_primary_10_1007_s44246_022_00015_3 crossref_primary_10_1016_j_jenvman_2024_121183 crossref_primary_10_1088_1757_899X_801_1_012080 crossref_primary_10_3390_app12105040 crossref_primary_10_1016_j_clay_2020_105828 crossref_primary_10_5004_dwt_2017_21802 crossref_primary_10_1016_j_chemosphere_2019_124719 crossref_primary_10_1155_2019_4506314 crossref_primary_10_1007_s10661_014_4062_5 crossref_primary_10_1016_j_ecoenv_2023_115179 crossref_primary_10_1007_s13762_020_03060_w crossref_primary_10_1016_j_jhazmat_2016_06_009 crossref_primary_10_1007_s10311_017_0688_1 crossref_primary_10_1080_00103624_2021_1984508 crossref_primary_10_1016_j_jwpe_2021_102201 crossref_primary_10_1016_j_envres_2020_109609 crossref_primary_10_3390_nano11113071 crossref_primary_10_1016_j_cej_2013_10_081 crossref_primary_10_1016_j_cej_2012_05_025 crossref_primary_10_1007_s12517_020_05532_2 crossref_primary_10_1038_s41598_021_97525_8 crossref_primary_10_1016_j_seppur_2024_128574 crossref_primary_10_3389_fchem_2020_00140 crossref_primary_10_1016_j_jclepro_2022_131097 crossref_primary_10_1002_jctb_5897 crossref_primary_10_1007_s11869_025_01692_w crossref_primary_10_1016_j_cej_2019_123386 crossref_primary_10_1346_CCMN_2016_064034 crossref_primary_10_5004_dwt_2020_25635 crossref_primary_10_1080_09593330_2019_1626912 crossref_primary_10_1016_j_jcis_2013_07_050 crossref_primary_10_1016_j_jwpe_2025_107407 crossref_primary_10_1016_j_biortech_2015_01_044 crossref_primary_10_1016_j_jclepro_2016_03_088 crossref_primary_10_2134_jeq2016_09_0344 crossref_primary_10_1016_j_chemosphere_2021_133384 crossref_primary_10_1016_j_rser_2017_01_054 crossref_primary_10_1007_s11356_016_7647_4 crossref_primary_10_1016_j_jics_2024_101175 crossref_primary_10_1007_s13762_022_04617_7 crossref_primary_10_3390_w17070918 crossref_primary_10_3390_su15010775 crossref_primary_10_1080_21655979_2021_1993536 crossref_primary_10_3390_su142417049 crossref_primary_10_1007_s11270_024_06907_x crossref_primary_10_1016_S1002_0160_20_60094_7 crossref_primary_10_1016_j_ecoenv_2024_117557 crossref_primary_10_1007_s13762_018_1910_9 crossref_primary_10_1007_s13762_024_06082_w crossref_primary_10_1038_s41598_017_02353_4 crossref_primary_10_1186_s13065_024_01363_4 crossref_primary_10_1016_j_cej_2017_08_124 crossref_primary_10_1016_j_jece_2023_110986 crossref_primary_10_1016_j_chemosphere_2022_133672 crossref_primary_10_1080_10643389_2017_1418580 crossref_primary_10_2134_jeq2017_04_0152 crossref_primary_10_1016_j_cej_2019_02_119 crossref_primary_10_1016_j_jscs_2022_101518 crossref_primary_10_1021_acs_est_0c02227 crossref_primary_10_1016_j_jece_2023_109874 crossref_primary_10_1016_j_scitotenv_2018_01_052 crossref_primary_10_1007_s11270_013_1711_1 crossref_primary_10_15415_jce_2019_52003 crossref_primary_10_1039_C5EE01633A crossref_primary_10_1016_j_jhazmat_2016_07_067 crossref_primary_10_3390_ijerph20075405 crossref_primary_10_3390_w13192613 crossref_primary_10_17137_korrae_2015_23_3_060 crossref_primary_10_1016_j_biortech_2020_123304 crossref_primary_10_1016_j_rser_2016_09_057 crossref_primary_10_1016_j_scitotenv_2016_10_163 crossref_primary_10_1039_C6RA15206F crossref_primary_10_1016_j_jwpe_2023_103616 crossref_primary_10_1016_j_biortech_2014_08_015 crossref_primary_10_1016_j_resconrec_2016_11_016 crossref_primary_10_1002_slct_201901043 crossref_primary_10_1016_j_scitotenv_2020_137811 crossref_primary_10_3390_su8020131 crossref_primary_10_1016_j_colsurfa_2017_08_041 crossref_primary_10_1007_s12665_017_6916_y crossref_primary_10_1016_j_jclepro_2020_120322 crossref_primary_10_1007_s12665_017_6895_z crossref_primary_10_1016_j_biortech_2022_127467 crossref_primary_10_1016_j_jenvman_2019_02_068 crossref_primary_10_1007_s11270_022_05981_3 crossref_primary_10_1007_s12517_018_4184_0 crossref_primary_10_1007_s11270_016_3161_z crossref_primary_10_1016_j_biortech_2015_03_137 crossref_primary_10_1007_s42773_020_00040_8 crossref_primary_10_1016_j_biortech_2014_01_006 crossref_primary_10_1016_j_matpr_2023_05_195 crossref_primary_10_1007_s10653_017_0036_1 crossref_primary_10_1016_j_biortech_2017_07_033 crossref_primary_10_1039_C9RA09487C crossref_primary_10_1088_1755_1315_796_1_012013 crossref_primary_10_1080_10643389_2017_1421844 crossref_primary_10_1002_jctb_5215 crossref_primary_10_1016_j_envpol_2020_115396 crossref_primary_10_1016_j_scitotenv_2022_153957 crossref_primary_10_1016_j_jhazmat_2020_124581 crossref_primary_10_1016_j_jhazmat_2021_126215 crossref_primary_10_3390_app8071019 crossref_primary_10_1016_j_chemosphere_2021_131439 crossref_primary_10_1007_s13399_020_01000_9 crossref_primary_10_21967_jbb_v4i1_180 crossref_primary_10_1016_j_fuel_2021_120243 crossref_primary_10_1631_jzus_B1300102 crossref_primary_10_1016_j_ecoleng_2017_06_029 crossref_primary_10_1016_j_chemosphere_2023_139760 crossref_primary_10_1007_s11270_024_07653_w crossref_primary_10_2166_wst_2015_504 crossref_primary_10_1007_s11356_020_09163_8 crossref_primary_10_1021_acsomega_3c03484 crossref_primary_10_1016_j_biombioe_2024_107296 crossref_primary_10_3390_su71115057 crossref_primary_10_1080_09593330_2017_1304454 crossref_primary_10_1007_s11356_018_2889_y crossref_primary_10_1016_j_chemosphere_2021_130458 crossref_primary_10_1016_j_eti_2022_102399 crossref_primary_10_1016_S2095_3119_16_61488_0 crossref_primary_10_1016_j_biortech_2015_12_087 crossref_primary_10_1016_j_molliq_2018_10_142 crossref_primary_10_1007_s11356_023_25958_x crossref_primary_10_1016_j_chemosphere_2019_124772 crossref_primary_10_1007_s11356_022_21047_7 crossref_primary_10_5004_dwt_2022_28506 crossref_primary_10_1080_10643389_2016_1239975 crossref_primary_10_3389_fmicb_2025_1529784 crossref_primary_10_1007_s42773_019_00030_5 crossref_primary_10_1039_C5RA13236C crossref_primary_10_1016_j_biortech_2014_08_108 crossref_primary_10_1016_j_ecoenv_2017_08_033 crossref_primary_10_1016_j_scitotenv_2020_144351 crossref_primary_10_3389_fbioe_2023_1258483 crossref_primary_10_1016_j_envres_2022_114526 crossref_primary_10_5004_dwt_2017_21276 crossref_primary_10_1039_C6RA15532D crossref_primary_10_1016_j_biombioe_2014_09_027 crossref_primary_10_3390_molecules29133160 crossref_primary_10_1016_j_jece_2015_11_022 crossref_primary_10_1155_2014_715398 crossref_primary_10_1002_jctb_7664 crossref_primary_10_1007_s10661_014_4093_y crossref_primary_10_1039_C9RA08199B crossref_primary_10_1016_j_jcis_2021_03_114 crossref_primary_10_1016_j_jclepro_2020_123506 crossref_primary_10_1016_j_chemosphere_2016_01_104 crossref_primary_10_1016_j_scitotenv_2022_153892 crossref_primary_10_1016_j_jes_2020_05_001 crossref_primary_10_1007_s11356_018_2500_6 crossref_primary_10_1016_j_scitotenv_2019_135657 crossref_primary_10_1016_j_jaap_2016_06_018 crossref_primary_10_1016_j_jhazmat_2014_11_033 crossref_primary_10_1016_j_cej_2013_09_057 crossref_primary_10_1080_10643389_2015_1096880 crossref_primary_10_1007_s11270_017_3615_y crossref_primary_10_1016_j_jiec_2019_07_026 crossref_primary_10_2166_wst_2019_276 crossref_primary_10_5696_2156_9614_10_27_200902 crossref_primary_10_1016_j_scitotenv_2021_151120 crossref_primary_10_5338_KJEA_2015_34_1_10 crossref_primary_10_1088_1755_1315_648_1_012184 crossref_primary_10_1016_j_chemosphere_2022_133966 crossref_primary_10_1016_j_ecoenv_2019_109833 crossref_primary_10_1007_s10661_020_08268_4 crossref_primary_10_1016_j_envint_2020_105576 crossref_primary_10_5004_dwt_2019_23571 crossref_primary_10_1016_j_biortech_2017_08_061 crossref_primary_10_1016_j_scitotenv_2021_144955 crossref_primary_10_1016_j_scitotenv_2025_178693 crossref_primary_10_4491_KSEE_2019_41_10_515 crossref_primary_10_1016_j_jenvman_2019_109429 crossref_primary_10_1016_j_scitotenv_2019_07_103 crossref_primary_10_1016_j_chemosphere_2020_128904 crossref_primary_10_1016_j_cherd_2016_02_006 crossref_primary_10_1016_j_trac_2022_116891 crossref_primary_10_1016_j_biortech_2021_125190 crossref_primary_10_1021_acsomega_9b00524 crossref_primary_10_1016_j_biortech_2017_06_023 crossref_primary_10_1016_j_ijbiomac_2024_132703 crossref_primary_10_1016_j_surfin_2022_102058 crossref_primary_10_1080_10643389_2020_1864957 crossref_primary_10_1016_j_biortech_2014_01_120 crossref_primary_10_1016_j_jhazmat_2016_08_002 crossref_primary_10_1007_s13765_015_0103_1 crossref_primary_10_1016_j_chemosphere_2016_02_004 crossref_primary_10_3390_ma14216566 crossref_primary_10_1016_j_chemosphere_2017_10_125 crossref_primary_10_1016_j_envres_2022_112676 crossref_primary_10_1016_j_arabjc_2016_12_025 crossref_primary_10_1016_j_biortech_2014_03_087 crossref_primary_10_1016_j_jaap_2017_08_006 crossref_primary_10_1016_j_rser_2017_03_022 crossref_primary_10_1080_15567036_2024_2445125 crossref_primary_10_1016_j_jes_2019_04_007 crossref_primary_10_1016_j_chemosphere_2017_04_014 crossref_primary_10_1260_0263_6174_31_10_869 crossref_primary_10_1016_j_jhazmat_2021_126886 crossref_primary_10_1016_j_indcrop_2024_118051 crossref_primary_10_1080_10643389_2018_1547621 crossref_primary_10_3390_biomass4020012 crossref_primary_10_1016_j_cej_2012_06_116 crossref_primary_10_1111_ejss_12090 crossref_primary_10_1016_j_jwpe_2022_103332 crossref_primary_10_1016_j_scitotenv_2021_145824 crossref_primary_10_1007_s11356_017_9520_5 crossref_primary_10_1021_acssuschemeng_3c06592 crossref_primary_10_1016_j_envint_2019_03_031 crossref_primary_10_1039_C5RA20235C |
Cites_doi | 10.1080/01496395.2011.584604 10.1016/j.jcis.2007.01.020 10.1016/j.biortech.2007.11.064 10.1016/S0048-9697(00)00373-9 10.1021/es0347134 10.1016/j.biortech.2011.03.006 10.1016/j.jhazmat.2008.12.114 10.1016/j.biortech.2009.10.062 10.1021/je1009569 10.1007/s11270-010-0625-4 10.1016/j.desal.2010.11.001 10.1021/jf9044217 10.1016/j.jhazmat.2011.03.083 10.2166/wst.2008.516 10.1080/10934520801959864 10.1007/s11027-005-9006-5 10.1007/s11104-009-0050-x 10.1016/j.jhazmat.2009.04.020 10.1021/es803092k 10.1016/j.biortech.2010.06.088 10.1080/10643380600729089 10.1021/es960053+ 10.1016/j.jhazmat.2009.01.085 10.1016/j.jhazmat.2011.03.063 10.1016/j.watres.2011.04.008 10.1007/s00128-008-9451-4 10.1016/j.envpol.2010.10.016 10.1038/447143a 10.1016/j.jhazmat.2008.01.024 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd Copyright © 2012 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2012 Elsevier Ltd – notice: Copyright © 2012 Elsevier Ltd. All rights reserved. |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 8FD C1K FR3 P64 SOI 7S9 L.6 7X8 |
DOI | 10.1016/j.biortech.2012.01.072 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 56 |
ExternalDocumentID | 22325901 10_1016_j_biortech_2012_01_072 US201400164530 S0960852412000958 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM ABPIF ABPTK FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7QO 7ST 8FD C1K FR3 P64 SOI 7S9 EFKBS L.6 7X8 |
ID | FETCH-LOGICAL-c523t-50663521e35a48e714968dc2c86647a46e02c15021a023d0446a4ced742db21d3 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Fri Jul 11 10:05:49 EDT 2025 Tue Aug 05 09:57:35 EDT 2025 Thu Jul 10 18:52:01 EDT 2025 Thu Apr 03 07:01:06 EDT 2025 Tue Jul 01 02:42:56 EDT 2025 Thu Apr 24 22:59:03 EDT 2025 Wed Dec 27 19:28:52 EST 2023 Fri Feb 23 02:26:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sorption Biochar Wastewater Anaerobic digestion Heavy metal |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2012 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c523t-50663521e35a48e714968dc2c86647a46e02c15021a023d0446a4ced742db21d3 |
Notes | http://dx.doi.org/10.1016/j.biortech.2012.01.072 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22325901 |
PQID | 1008841173 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_928912433 proquest_miscellaneous_1365041762 proquest_miscellaneous_1008841173 pubmed_primary_22325901 crossref_citationtrail_10_1016_j_biortech_2012_01_072 crossref_primary_10_1016_j_biortech_2012_01_072 fao_agris_US201400164530 elsevier_sciencedirect_doi_10_1016_j_biortech_2012_01_072 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-04-01 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2012 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Shi, Jia, Chen, Wen, Du, Guo, Wang (b0110) 2009; 169 Akbal, Camci (b0005) 2011; 269 Beesley, Marmiroli (b0010) 2011; 159 Cao, Ma, Gao, Harris (b0025) 2009; 43 Lehmann (b0085) 2007; 447 Hanay, Hasar, Kocer, Aslan (b0060) 2008; 81 Inyang, Gao, Pullammanappallil, Ding, Zimmerman (b0075) 2010; 101 Johnson, Sun, Elimelech (b0080) 1996; 30 Gerente, Lee, Le Cloirec, McKay (b0050) 2007; 37 Liu, Zhang (b0095) 2009; 167 Demirbas (b0040) 2008; 157 Yao, Gao, Inyang, Zimmerman, Cao, Pullammanappallil, Yang (b0145) 2011; 190 Demirbas (b0035) 2009; 167 Mohan, Pittman, Bricka, Smith, Yancey, Mohammad, Steele, Alexandre-Franco, Gomez-Serrano, Gong (b0105) 2007; 310 Fang, Boe, Angelidaki (b0045) 2011; 45 Hooda, Edwards, Anderson, Miller (b0065) 2000; 250 Boudrahem, Soualah, Aissani-Benissad (b0015) 2011; 56 Das, Garcia-Perez, Bibens, Melear (b0030) 2008; 43 Uchimiya, Chang, Klasson (b0120) 2011; 190 Gu, Wong (b0055) 2004; 38 Lehmann, Gaunt, Rondon (b0090) 2006; 11 Van Zwieten, Kimber, Morris, Chan, Downie, Rust, Joseph, Cowie (b0130) 2010; 327 Sud, Mahajan, Kaur (b0115) 2008; 99 Wang, Li, Chen, Min, Chen, Zhu, Ruan (b0135) 2010; 101 Uchimiya, Lima, Klasson, Chang, Wartelle, Rodgers (b0125) 2010; 58 Inyang, Gao, Ding, Pullammanappallil, Zimmerman, Cao (b0070) 2011; 46 Yao, Gao, Inyang, Zimmerman, Cao, Pullammanappallil, Yang (b0140) 2011; 102 Malamis, Katsou, Haralambous (b0100) 2011; 218 Brooks, Parravicini, Svardal, Kroiss, Prendl (b0020) 2008; 58 Akbal (10.1016/j.biortech.2012.01.072_b0005) 2011; 269 Hanay (10.1016/j.biortech.2012.01.072_b0060) 2008; 81 Lehmann (10.1016/j.biortech.2012.01.072_b0085) 2007; 447 Brooks (10.1016/j.biortech.2012.01.072_b0020) 2008; 58 Demirbas (10.1016/j.biortech.2012.01.072_b0040) 2008; 157 Van Zwieten (10.1016/j.biortech.2012.01.072_b0130) 2010; 327 Sud (10.1016/j.biortech.2012.01.072_b0115) 2008; 99 Johnson (10.1016/j.biortech.2012.01.072_b0080) 1996; 30 Cao (10.1016/j.biortech.2012.01.072_b0025) 2009; 43 Uchimiya (10.1016/j.biortech.2012.01.072_b0120) 2011; 190 Yao (10.1016/j.biortech.2012.01.072_b0140) 2011; 102 Shi (10.1016/j.biortech.2012.01.072_b0110) 2009; 169 Gerente (10.1016/j.biortech.2012.01.072_b0050) 2007; 37 Malamis (10.1016/j.biortech.2012.01.072_b0100) 2011; 218 Fang (10.1016/j.biortech.2012.01.072_b0045) 2011; 45 Demirbas (10.1016/j.biortech.2012.01.072_b0035) 2009; 167 Inyang (10.1016/j.biortech.2012.01.072_b0075) 2010; 101 Gu (10.1016/j.biortech.2012.01.072_b0055) 2004; 38 Liu (10.1016/j.biortech.2012.01.072_b0095) 2009; 167 Das (10.1016/j.biortech.2012.01.072_b0030) 2008; 43 Hooda (10.1016/j.biortech.2012.01.072_b0065) 2000; 250 Uchimiya (10.1016/j.biortech.2012.01.072_b0125) 2010; 58 Inyang (10.1016/j.biortech.2012.01.072_b0070) 2011; 46 Beesley (10.1016/j.biortech.2012.01.072_b0010) 2011; 159 Lehmann (10.1016/j.biortech.2012.01.072_b0090) 2006; 11 Yao (10.1016/j.biortech.2012.01.072_b0145) 2011; 190 Mohan (10.1016/j.biortech.2012.01.072_b0105) 2007; 310 Wang (10.1016/j.biortech.2012.01.072_b0135) 2010; 101 Boudrahem (10.1016/j.biortech.2012.01.072_b0015) 2011; 56 |
References_xml | – volume: 37 start-page: 41 year: 2007 end-page: 127 ident: b0050 article-title: Application of chitosan for the removal of metals from wastewaters by adsorption–mechanisms and models review publication-title: Crit. Rev. Env. Sci. Technol. – volume: 169 start-page: 838 year: 2009 end-page: 846 ident: b0110 article-title: Adsorption of Pb(II), Cr(III), Cu(II), Cd(II) and Ni(II) onto a vanadium mine tailing from aqueous solution publication-title: J. Hazard. Mater. – volume: 101 start-page: 8868 year: 2010 end-page: 8872 ident: b0075 article-title: Biochar from anaerobically digested sugarcane bagasse publication-title: Bioresour. Technol. – volume: 167 start-page: 933 year: 2009 end-page: 939 ident: b0095 article-title: Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass publication-title: J. Hazard. Mater. – volume: 11 start-page: 403 year: 2006 end-page: 427 ident: b0090 article-title: Bio-char sequestration in terrestrial ecosystems – a review publication-title: Mitig. Adapt. Strat. Global. Change. – volume: 102 start-page: 6273 year: 2011 end-page: 6278 ident: b0140 article-title: Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential publication-title: Bioresour. Technol. – volume: 250 start-page: 143 year: 2000 end-page: 167 ident: b0065 article-title: A review of water quality concerns in livestock farming areas publication-title: Sci. Total Environ. – volume: 30 start-page: 3284 year: 1996 end-page: 3293 ident: b0080 article-title: Colloid transport in geochemically heterogeneous porous media: modeling and measurements publication-title: Environ. Sci. Technol. – volume: 56 start-page: 1946 year: 2011 end-page: 1955 ident: b0015 article-title: Pb(II) and Cd(II) removal from aqueous solutions using activated carbon developed from coffee residue activated with phosphoric acid and zinc chloride publication-title: J. Chem. Eng. Data – volume: 218 start-page: 81 year: 2011 end-page: 92 ident: b0100 article-title: Study of Ni(II), Cu(II), Pb(II), and Zn(II) removal using sludge and minerals followed by MF/UF publication-title: Water Air Soil Pollut. – volume: 167 start-page: 1 year: 2009 end-page: 9 ident: b0035 article-title: Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review publication-title: J. Hazard. Mater. – volume: 101 start-page: 2623 year: 2010 end-page: 2628 ident: b0135 article-title: Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae publication-title: Bioresour. Technol. – volume: 447 start-page: 143 year: 2007 end-page: 144 ident: b0085 article-title: A handful of carbon publication-title: Nature – volume: 99 start-page: 6017 year: 2008 end-page: 6027 ident: b0115 article-title: Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review publication-title: Bioresour. Technol. – volume: 45 start-page: 3473 year: 2011 end-page: 3480 ident: b0045 article-title: Anaerobic co-digestion of by-products from sugar production with cow manure publication-title: Water Res. – volume: 190 start-page: 432 year: 2011 end-page: 441 ident: b0120 article-title: Screening biochars for heavy metal retention in soil: role of oxygen functional groups publication-title: J. Hazard. Mater. – volume: 157 start-page: 220 year: 2008 end-page: 229 ident: b0040 article-title: Heavy metal adsorption onto agro-based waste materials: a review publication-title: J. Hazard. Mater. – volume: 58 start-page: 5538 year: 2010 end-page: 5544 ident: b0125 article-title: Immobilization of heavy metal ions (Cu-II, Cd-II, Ni-II, and Pb-II) by broiler litter-derived biochars in water and soil publication-title: J. Agric. Food Chem. – volume: 43 start-page: 714 year: 2008 end-page: 724 ident: b0030 article-title: Slow pyrolysis of poultry litter and pine woody biomass: impact of chars and bio-oils on microbial growth publication-title: J. Environ. Sci. Health, Part A – volume: 81 start-page: 42 year: 2008 end-page: 46 ident: b0060 article-title: Evaluation for agricultural usage with speciation of heavy metals in a municipal sewage sludge publication-title: B. Environ. Contam. Toxicol. – volume: 269 start-page: 214 year: 2011 end-page: 222 ident: b0005 article-title: Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation publication-title: Desalination – volume: 58 start-page: 1497 year: 2008 end-page: 1504 ident: b0020 article-title: Biogas from sugar beet press pulp as substitute of fossil fuel in sugar beet factories publication-title: Water Sci. Technol. – volume: 327 start-page: 235 year: 2010 end-page: 246 ident: b0130 article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility publication-title: Plant Soil – volume: 38 start-page: 2934 year: 2004 end-page: 2939 ident: b0055 article-title: Identification of inhibitory substances affecting bioleaching of heavy metals from anaerobically digested sewage sludge publication-title: Environ. Sci. Technol. – volume: 46 start-page: 1950 year: 2011 end-page: 1956 ident: b0070 article-title: Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse publication-title: Sep. Sci. Technol. – volume: 190 start-page: 501 year: 2011 end-page: 507 ident: b0145 article-title: Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings publication-title: J. Hazard. Mater. – volume: 310 start-page: 57 year: 2007 end-page: 73 ident: b0105 article-title: Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production publication-title: J. Colloid Interface Sci. – volume: 43 start-page: 3285 year: 2009 end-page: 3291 ident: b0025 article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine publication-title: Environ. Sci. Technol. – volume: 159 start-page: 474 year: 2011 end-page: 480 ident: b0010 article-title: The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar publication-title: Environ. Pollut. – volume: 46 start-page: 1950 issue: 12 year: 2011 ident: 10.1016/j.biortech.2012.01.072_b0070 article-title: Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse publication-title: Sep. Sci. Technol. doi: 10.1080/01496395.2011.584604 – volume: 310 start-page: 57 issue: 1 year: 2007 ident: 10.1016/j.biortech.2012.01.072_b0105 article-title: Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2007.01.020 – volume: 99 start-page: 6017 issue: 14 year: 2008 ident: 10.1016/j.biortech.2012.01.072_b0115 article-title: Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.11.064 – volume: 250 start-page: 143 issue: 1–3 year: 2000 ident: 10.1016/j.biortech.2012.01.072_b0065 article-title: A review of water quality concerns in livestock farming areas publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(00)00373-9 – volume: 38 start-page: 2934 issue: 10 year: 2004 ident: 10.1016/j.biortech.2012.01.072_b0055 article-title: Identification of inhibitory substances affecting bioleaching of heavy metals from anaerobically digested sewage sludge publication-title: Environ. Sci. Technol. doi: 10.1021/es0347134 – volume: 102 start-page: 6273 issue: 10 year: 2011 ident: 10.1016/j.biortech.2012.01.072_b0140 article-title: Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.03.006 – volume: 167 start-page: 1 issue: 1–3 year: 2009 ident: 10.1016/j.biortech.2012.01.072_b0035 article-title: Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.12.114 – volume: 101 start-page: 2623 issue: 8 year: 2010 ident: 10.1016/j.biortech.2012.01.072_b0135 article-title: Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.10.062 – volume: 56 start-page: 1946 issue: 5 year: 2011 ident: 10.1016/j.biortech.2012.01.072_b0015 article-title: Pb(II) and Cd(II) removal from aqueous solutions using activated carbon developed from coffee residue activated with phosphoric acid and zinc chloride publication-title: J. Chem. Eng. Data doi: 10.1021/je1009569 – volume: 218 start-page: 81 issue: 1–4 year: 2011 ident: 10.1016/j.biortech.2012.01.072_b0100 article-title: Study of Ni(II), Cu(II), Pb(II), and Zn(II) removal using sludge and minerals followed by MF/UF publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-010-0625-4 – volume: 269 start-page: 214 issue: 1–3 year: 2011 ident: 10.1016/j.biortech.2012.01.072_b0005 article-title: Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation publication-title: Desalination doi: 10.1016/j.desal.2010.11.001 – volume: 58 start-page: 5538 issue: 9 year: 2010 ident: 10.1016/j.biortech.2012.01.072_b0125 article-title: Immobilization of heavy metal ions (Cu-II, Cd-II, Ni-II, and Pb-II) by broiler litter-derived biochars in water and soil publication-title: J. Agric. Food Chem. doi: 10.1021/jf9044217 – volume: 190 start-page: 501 issue: 1–3 year: 2011 ident: 10.1016/j.biortech.2012.01.072_b0145 article-title: Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.03.083 – volume: 58 start-page: 1497 issue: 7 year: 2008 ident: 10.1016/j.biortech.2012.01.072_b0020 article-title: Biogas from sugar beet press pulp as substitute of fossil fuel in sugar beet factories publication-title: Water Sci. Technol. doi: 10.2166/wst.2008.516 – volume: 43 start-page: 714 issue: 7 year: 2008 ident: 10.1016/j.biortech.2012.01.072_b0030 article-title: Slow pyrolysis of poultry litter and pine woody biomass: impact of chars and bio-oils on microbial growth publication-title: J. Environ. Sci. Health, Part A doi: 10.1080/10934520801959864 – volume: 11 start-page: 403 year: 2006 ident: 10.1016/j.biortech.2012.01.072_b0090 article-title: Bio-char sequestration in terrestrial ecosystems – a review publication-title: Mitig. Adapt. Strat. Global. Change. doi: 10.1007/s11027-005-9006-5 – volume: 327 start-page: 235 issue: 1–2 year: 2010 ident: 10.1016/j.biortech.2012.01.072_b0130 article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility publication-title: Plant Soil doi: 10.1007/s11104-009-0050-x – volume: 169 start-page: 838 issue: 1–3 year: 2009 ident: 10.1016/j.biortech.2012.01.072_b0110 article-title: Adsorption of Pb(II), Cr(III), Cu(II), Cd(II) and Ni(II) onto a vanadium mine tailing from aqueous solution publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.04.020 – volume: 43 start-page: 3285 issue: 9 year: 2009 ident: 10.1016/j.biortech.2012.01.072_b0025 article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine publication-title: Environ. Sci. Technol. doi: 10.1021/es803092k – volume: 101 start-page: 8868 issue: 22 year: 2010 ident: 10.1016/j.biortech.2012.01.072_b0075 article-title: Biochar from anaerobically digested sugarcane bagasse publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.06.088 – volume: 37 start-page: 41 issue: 1 year: 2007 ident: 10.1016/j.biortech.2012.01.072_b0050 article-title: Application of chitosan for the removal of metals from wastewaters by adsorption–mechanisms and models review publication-title: Crit. Rev. Env. Sci. Technol. doi: 10.1080/10643380600729089 – volume: 30 start-page: 3284 issue: 11 year: 1996 ident: 10.1016/j.biortech.2012.01.072_b0080 article-title: Colloid transport in geochemically heterogeneous porous media: modeling and measurements publication-title: Environ. Sci. Technol. doi: 10.1021/es960053+ – volume: 167 start-page: 933 issue: 1–3 year: 2009 ident: 10.1016/j.biortech.2012.01.072_b0095 article-title: Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.01.085 – volume: 190 start-page: 432 issue: 1–3 year: 2011 ident: 10.1016/j.biortech.2012.01.072_b0120 article-title: Screening biochars for heavy metal retention in soil: role of oxygen functional groups publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.03.063 – volume: 45 start-page: 3473 issue: 11 year: 2011 ident: 10.1016/j.biortech.2012.01.072_b0045 article-title: Anaerobic co-digestion of by-products from sugar production with cow manure publication-title: Water Res. doi: 10.1016/j.watres.2011.04.008 – volume: 81 start-page: 42 issue: 1 year: 2008 ident: 10.1016/j.biortech.2012.01.072_b0060 article-title: Evaluation for agricultural usage with speciation of heavy metals in a municipal sewage sludge publication-title: B. Environ. Contam. Toxicol. doi: 10.1007/s00128-008-9451-4 – volume: 159 start-page: 474 issue: 2 year: 2011 ident: 10.1016/j.biortech.2012.01.072_b0010 article-title: The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2010.10.016 – volume: 447 start-page: 143 issue: 7141 year: 2007 ident: 10.1016/j.biortech.2012.01.072_b0085 article-title: A handful of carbon publication-title: Nature doi: 10.1038/447143a – volume: 157 start-page: 220 issue: 2–3 year: 2008 ident: 10.1016/j.biortech.2012.01.072_b0040 article-title: Heavy metal adsorption onto agro-based waste materials: a review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.01.024 |
SSID | ssj0003172 |
Score | 2.581018 |
Snippet | ► Biochars from anaerobically digested biomass effectively removed heavy metals. ► Lead sorption capacities of the biochars were close to or higher than... This study examined the ability of two biochars converted from anaerobically digested biomass to sorb heavy metals using a range of laboratory sorption and... |
SourceID | proquest pubmed crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 50 |
SubjectTerms | activated carbon Anaerobic digestion Anaerobiosis aqueous solutions Biochar Biomass dairies Fourier transform infrared spectroscopy Heavy metal heavy metals isolation & purification Kinetics lead mathematical models Metals, Heavy Metals, Heavy - isolation & purification Solutions Sorption sugar beet Wastewater Water |
Title | Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass |
URI | https://dx.doi.org/10.1016/j.biortech.2012.01.072 https://www.ncbi.nlm.nih.gov/pubmed/22325901 https://www.proquest.com/docview/1008841173 https://www.proquest.com/docview/1365041762 https://www.proquest.com/docview/928912433 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH5i7MB2QBtso7AhT-KaNnZsJzlWFajbNA6DStwsJ3amIkgQLUi98LfznpMwdug47NjkOY3zvfh9L--HAY5SVaEhUDzSWlSR1NxHeRbLKC-rNHG60nlox_DzVE9n8vuFutiASV8LQ2mV3drfrulhte6OjLqnObqZz0dnRL4zhRZIBKJABb9SpqTlw4c_aR5oH0MkAYUjkn5WJXw5LOaU0RqCEvRNkA_jVKwzUK8q26ynocEcnbyD7Y5HsnF7q-9hw9c78Hb8-7brpeF3YGvSb-aGZ571HdwF_8tfN6hirKkYLsb3K3btkYQvGBWbMIv_3NwtWK-VrFgxnALVZy2Yw0vce9dJ1tZTHyfE-WrFXIhV4Tkq6UdO_gFmJ8fnk2nU7bcQleiOLiMV6IfgPlFWZj5F50lnrhRlprVMrdQ-FiUSSMEtWnpHoWArESf0rl0huEs-wmbd1H4PGBLHpFJ5IVXhcagtuKwEL50O_fZsOgDVP2RTds3IaU-MK9NnnV2aHhxD4JiYGwRnAKOncTdtO44XR-Q9huYvxTJoM14cu4egG4vYLczsTJA3Si3JVBIP4GuvCQahpCiLrQkcagKdZZLzNPmHTILEWHI0RANga2RydIWRfCV4mU-tpj3NGCmdoJrh_f-Y2wG8oV9tEtJn2Fze3vkvyK-WxWF4gQ7h9fjbj-npI2tGIZ0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPdAeUEsfbJ-u1B6zGzu2kxx6QLRoKY9DYSVurpM41SJIEFlAe-mf6h_sjJNQethyqLiuH2t7xjPfZB4G-BCrEhWB4oHWogyk5i5Ik1AGaV7GUaFLnfpyDPsHejyRX4_V8RL86nNhKKyyk_2tTPfSuvtl1J3m6Hw6HR0S-E4UaiDhgULSRVbuuvk12m3Np53PSOSPQmx_OdoaB93TAkGOltcsUF7TCu4iZWXiYrQTdFLkIk-0lrGV2oUiR6wkuEWlVpDX00pcEhqSRSZ4EeG8y_BAorigZxOGP__ElaBC9q4LXF1Ay7uVlnwyzKYUQuu9IPQRkg_DWCzSiMulrRfjXq__th_DWgdc2WZ7Nk9gyVXr8Gjzx0VXvMOtw-pW_3octtwqdPgU3Dd3ViNPs7pkKP2v5uzMIepvGGW3MIv_XF82rL8GLJsz3AIlhDWswCmuXNH1rKyjwlHIWKdzVnjnGLZRDQE0Ap7B5F6o8BxWqrpyG8AQqUalSjOpModDbcZlKXheaF_gz8YDUP0hm7yrfk6PcJyaPsztxPTEMUQcE3KDxBnA6GbceVv_484RaU9D8xcnG1RSd47dQKIbi7RrzORQkPlLNdBUFA7gfc8JBklJbh1bEXGo6nSSSM7j6B99IkTikqPmGwBb0CdF2xvRXoTTvGg57WbHiCEFJSm__I-9vYPV8dH-ntnbOdh9BQ-ppY2Aeg0rs4tL9wbB3Sx76y8Tg-_3fXt_A9DvWok |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Removal+of+heavy+metals+from+aqueous+solution+by+biochars+derived+from+anaerobically+digested+biomass&rft.jtitle=Bioresource+technology&rft.au=Inyang%2C+Mandu&rft.au=Gao%2C+Bin&rft.au=Yao%2C+Ying&rft.au=Xue%2C+Yingwen&rft.date=2012-04-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=110&rft.spage=50&rft_id=info:doi/10.1016%2Fj.biortech.2012.01.072&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |