Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass

► Biochars from anaerobically digested biomass effectively removed heavy metals. ► Lead sorption capacities of the biochars were close to or higher than 200mmol/kg. ► Surface precipitation was the governing heavy metal removal mechanism. This study examined the ability of two biochars converted from...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 110; pp. 50 - 56
Main Authors Inyang, Mandu, Gao, Bin, Yao, Ying, Xue, Yingwen, Zimmerman, Andrew R., Pullammanappallil, Pratap, Cao, Xinde
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.04.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► Biochars from anaerobically digested biomass effectively removed heavy metals. ► Lead sorption capacities of the biochars were close to or higher than 200mmol/kg. ► Surface precipitation was the governing heavy metal removal mechanism. This study examined the ability of two biochars converted from anaerobically digested biomass to sorb heavy metals using a range of laboratory sorption and characterization experiments. Initial evaluation of DAWC (digested dairy waste biochar) and DWSBC (digested whole sugar beet biochar) showed that both biochars were effective in removing a mixture of four heavy metals (Pb2 +, Cu2+, Ni2+, and Cd2+) from aqueous solutions. Compared to DAWC, DWSBC demonstrated a better ability to remove Ni and Cd. Further investigations of lead sorption by the two biochars indicated that the removal was mainly through a surface precipitation mechanism, which was confirmed by batch sorption experiments, mathematical modeling, and examinations of lead-laden biochars samples using SEM–EDS, XRD, and FTIR. The lead sorption capacity of the two biochars was close to or higher than 200mmol/kg, which is comparable to that of commercial activated carbons.
AbstractList This study examined the ability of two biochars converted from anaerobically digested biomass to sorb heavy metals using a range of laboratory sorption and characterization experiments. Initial evaluation of DAWC (digested dairy waste biochar) and DWSBC (digested whole sugar beet biochar) showed that both biochars were effective in removing a mixture of four heavy metals (Pb2 +, Cu2+, Ni2+, and Cd2+) from aqueous solutions. Compared to DAWC, DWSBC demonstrated a better ability to remove Ni and Cd. Further investigations of lead sorption by the two biochars indicated that the removal was mainly through a surface precipitation mechanism, which was confirmed by batch sorption experiments, mathematical modeling, and examinations of lead-laden biochars samples using SEM-EDS, XRD, and FTIR. The lead sorption capacity of the two biochars was close to or higher than 200 mmol/kg, which is comparable to that of commercial activated carbons.
This study examined the ability of two biochars converted from anaerobically digested biomass to sorb heavy metals using a range of laboratory sorption and characterization experiments. Initial evaluation of DAWC (digested dairy waste biochar) and DWSBC (digested whole sugar beet biochar) showed that both biochars were effective in removing a mixture of four heavy metals (Pb² ⁺, Cu²⁺, Ni²⁺, and Cd²⁺) from aqueous solutions. Compared to DAWC, DWSBC demonstrated a better ability to remove Ni and Cd. Further investigations of lead sorption by the two biochars indicated that the removal was mainly through a surface precipitation mechanism, which was confirmed by batch sorption experiments, mathematical modeling, and examinations of lead-laden biochars samples using SEM–EDS, XRD, and FTIR. The lead sorption capacity of the two biochars was close to or higher than 200mmol/kg, which is comparable to that of commercial activated carbons.
► Biochars from anaerobically digested biomass effectively removed heavy metals. ► Lead sorption capacities of the biochars were close to or higher than 200mmol/kg. ► Surface precipitation was the governing heavy metal removal mechanism. This study examined the ability of two biochars converted from anaerobically digested biomass to sorb heavy metals using a range of laboratory sorption and characterization experiments. Initial evaluation of DAWC (digested dairy waste biochar) and DWSBC (digested whole sugar beet biochar) showed that both biochars were effective in removing a mixture of four heavy metals (Pb2 +, Cu2+, Ni2+, and Cd2+) from aqueous solutions. Compared to DAWC, DWSBC demonstrated a better ability to remove Ni and Cd. Further investigations of lead sorption by the two biochars indicated that the removal was mainly through a surface precipitation mechanism, which was confirmed by batch sorption experiments, mathematical modeling, and examinations of lead-laden biochars samples using SEM–EDS, XRD, and FTIR. The lead sorption capacity of the two biochars was close to or higher than 200mmol/kg, which is comparable to that of commercial activated carbons.
This study examined the ability of two biochars converted from anaerobically digested biomass to sorb heavy metals using a range of laboratory sorption and characterization experiments. Initial evaluation of DAWC (digested dairy waste biochar) and DWSBC (digested whole sugar beet biochar) showed that both biochars were effective in removing a mixture of four heavy metals (Pb(2 +), Cu(2+), Ni(2+), and Cd(2+)) from aqueous solutions. Compared to DAWC, DWSBC demonstrated a better ability to remove Ni and Cd. Further investigations of lead sorption by the two biochars indicated that the removal was mainly through a surface precipitation mechanism, which was confirmed by batch sorption experiments, mathematical modeling, and examinations of lead-laden biochars samples using SEM-EDS, XRD, and FTIR. The lead sorption capacity of the two biochars was close to or higher than 200mmol/kg, which is comparable to that of commercial activated carbons.This study examined the ability of two biochars converted from anaerobically digested biomass to sorb heavy metals using a range of laboratory sorption and characterization experiments. Initial evaluation of DAWC (digested dairy waste biochar) and DWSBC (digested whole sugar beet biochar) showed that both biochars were effective in removing a mixture of four heavy metals (Pb(2 +), Cu(2+), Ni(2+), and Cd(2+)) from aqueous solutions. Compared to DAWC, DWSBC demonstrated a better ability to remove Ni and Cd. Further investigations of lead sorption by the two biochars indicated that the removal was mainly through a surface precipitation mechanism, which was confirmed by batch sorption experiments, mathematical modeling, and examinations of lead-laden biochars samples using SEM-EDS, XRD, and FTIR. The lead sorption capacity of the two biochars was close to or higher than 200mmol/kg, which is comparable to that of commercial activated carbons.
This study examined the ability of two biochars converted from anaerobically digested biomass to sorb heavy metals using a range of laboratory sorption and characterization experiments. Initial evaluation of DAWC (digested dairy waste biochar) and DWSBC (digested whole sugar beet biochar) showed that both biochars were effective in removing a mixture of four heavy metals (Pb(2 +), Cu(2+), Ni(2+), and Cd(2+)) from aqueous solutions. Compared to DAWC, DWSBC demonstrated a better ability to remove Ni and Cd. Further investigations of lead sorption by the two biochars indicated that the removal was mainly through a surface precipitation mechanism, which was confirmed by batch sorption experiments, mathematical modeling, and examinations of lead-laden biochars samples using SEM-EDS, XRD, and FTIR. The lead sorption capacity of the two biochars was close to or higher than 200mmol/kg, which is comparable to that of commercial activated carbons.
Author Zimmerman, Andrew R.
Xue, Yingwen
Inyang, Mandu
Yao, Ying
Pullammanappallil, Pratap
Cao, Xinde
Gao, Bin
Author_xml – sequence: 1
  givenname: Mandu
  surname: Inyang
  fullname: Inyang, Mandu
  organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
– sequence: 2
  givenname: Bin
  surname: Gao
  fullname: Gao, Bin
  email: bg55@ufl.edu
  organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
– sequence: 3
  givenname: Ying
  surname: Yao
  fullname: Yao, Ying
  organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
– sequence: 4
  givenname: Yingwen
  surname: Xue
  fullname: Xue, Yingwen
  organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
– sequence: 5
  givenname: Andrew R.
  surname: Zimmerman
  fullname: Zimmerman, Andrew R.
  organization: Department of Geological Sciences, University of Florida, Gainesville, FL 32611, United States
– sequence: 6
  givenname: Pratap
  surname: Pullammanappallil
  fullname: Pullammanappallil, Pratap
  organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
– sequence: 7
  givenname: Xinde
  surname: Cao
  fullname: Cao, Xinde
  organization: School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22325901$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAYhC1URLeFv1B8g0vC6484icSBqoKCVAkJ6Nly7Dddr5K42NmV9t_jaHcvHLonH_zMjD1zRS6mMCEhNwxKBkx92pSdD3FGuy45MF4CK6Hmr8iKNbUoeFurC7KCVkHRVFxekquUNgAgWM3fkEvOBa9aYCuCv3AMOzPQ0NM1mt2ejjibIdE-hpGav1sM20RTGLazDxPt9jTn2rWJiTqMfofuSE4GY-i8NcOwp84_YZrzXYZHk9Jb8rrPpvjueF6Tx29f_9x9Lx5-3v-4u30obMXFXFSglKg4Q1EZ2WDNZKsaZ7ltlJK1kQqBW1YBZwa4cCClMtKiqyV3HWdOXJMPB9_nGPLT06xHnywOg5mWf-iWNy3jUohMfnyRZEJVIFmt-HkUoGkkY_XienNEt92ITj9HP5q416e-M_D5ANgYUorYa-tns1Q7R-OH7KWXefVGn-bVy7wamM7zZrn6T35KOCt8fxD2JmjzFH3Sj78zICGLZCUgE18OBOZ9dh6jTtbjlNv1Ee2sXfDnQv4BEsjLWQ
CitedBy_id crossref_primary_10_1016_j_eti_2020_101310
crossref_primary_10_1063_5_0116500
crossref_primary_10_1016_j_jece_2024_112333
crossref_primary_10_1016_j_seppur_2021_120140
crossref_primary_10_1016_j_jaap_2015_07_011
crossref_primary_10_1016_j_biortech_2014_10_104
crossref_primary_10_1016_j_jwpe_2020_101561
crossref_primary_10_1016_j_jhazmat_2016_02_040
crossref_primary_10_1016_j_ultsonch_2018_09_015
crossref_primary_10_1016_j_jenvman_2016_09_062
crossref_primary_10_1016_j_scitotenv_2017_08_228
crossref_primary_10_1016_j_chemosphere_2017_02_061
crossref_primary_10_1039_C9RA04869C
crossref_primary_10_1016_j_chemosphere_2022_135384
crossref_primary_10_1007_s11356_017_1145_1
crossref_primary_10_1007_s11356_017_8847_2
crossref_primary_10_1016_j_scitotenv_2021_151442
crossref_primary_10_1016_j_jclepro_2024_144118
crossref_primary_10_32628_IJSRST218339
crossref_primary_10_1039_C9RA02459J
crossref_primary_10_1007_s13762_019_02615_w
crossref_primary_10_1016_j_jclepro_2018_01_133
crossref_primary_10_1016_j_matpr_2020_12_953
crossref_primary_10_1016_j_cej_2016_09_122
crossref_primary_10_1016_j_chemosphere_2013_02_050
crossref_primary_10_1016_j_chemosphere_2019_124351
crossref_primary_10_3390_land12020416
crossref_primary_10_3390_su13168817
crossref_primary_10_4236_ojss_2015_52004
crossref_primary_10_1016_j_biortech_2017_08_025
crossref_primary_10_3390_app9061139
crossref_primary_10_1021_acssuschemeng_9b00868
crossref_primary_10_1007_s11356_019_05185_z
crossref_primary_10_1111_ejss_12107
crossref_primary_10_32628_IJSRST218340
crossref_primary_10_1007_s12665_015_5167_z
crossref_primary_10_1016_j_molliq_2018_08_039
crossref_primary_10_1260_0263_6174_31_7_625
crossref_primary_10_1016_j_scitotenv_2012_07_038
crossref_primary_10_3390_agriculture14081246
crossref_primary_10_3390_cryst14050447
crossref_primary_10_2139_ssrn_3992717
crossref_primary_10_1016_j_eti_2023_103435
crossref_primary_10_1016_j_chemosphere_2018_12_053
crossref_primary_10_1080_10934529_2015_1047680
crossref_primary_10_1016_j_clet_2020_100006
crossref_primary_10_1016_j_catena_2018_07_018
crossref_primary_10_1016_j_scitotenv_2020_140283
crossref_primary_10_1016_j_jenvman_2018_04_108
crossref_primary_10_1016_j_wen_2024_11_001
crossref_primary_10_3390_molecules25122812
crossref_primary_10_1016_j_jclepro_2019_04_282
crossref_primary_10_1007_s11356_017_1047_2
crossref_primary_10_1021_acssuschemeng_7b00434
crossref_primary_10_1016_j_scitotenv_2019_05_007
crossref_primary_10_1016_j_scitotenv_2019_134470
crossref_primary_10_1080_10643389_2017_1328918
crossref_primary_10_7745_KJSSF_2019_52_1_029
crossref_primary_10_1016_j_ibiod_2016_04_029
crossref_primary_10_1080_19443994_2015_1112841
crossref_primary_10_1016_j_ecoleng_2016_10_007
crossref_primary_10_1007_s11696_023_02752_0
crossref_primary_10_1016_j_chemosphere_2022_136466
crossref_primary_10_1016_j_biortech_2013_08_049
crossref_primary_10_1016_j_arabjc_2013_11_047
crossref_primary_10_1007_s10653_023_01617_5
crossref_primary_10_1016_j_envres_2021_111518
crossref_primary_10_1016_j_chroma_2014_03_072
crossref_primary_10_1016_j_envpol_2019_113114
crossref_primary_10_1016_j_envres_2021_111879
crossref_primary_10_1016_j_psep_2018_06_036
crossref_primary_10_1007_s11270_020_04557_3
crossref_primary_10_1016_j_ecoenv_2016_04_033
crossref_primary_10_1016_j_cjche_2020_02_012
crossref_primary_10_1016_j_biortech_2018_09_138
crossref_primary_10_1016_j_jclepro_2020_122259
crossref_primary_10_5338_KJEA_2014_33_1_1
crossref_primary_10_1016_j_scitotenv_2021_147136
crossref_primary_10_1016_j_chemosphere_2021_130204
crossref_primary_10_1016_j_jssc_2018_02_010
crossref_primary_10_1007_s12011_018_1422_y
crossref_primary_10_1016_j_biortech_2019_03_113
crossref_primary_10_1016_j_cej_2018_08_098
crossref_primary_10_1016_j_matpr_2022_03_270
crossref_primary_10_3389_fenvs_2023_1275087
crossref_primary_10_1016_j_fuel_2022_125243
crossref_primary_10_1016_j_cej_2013_04_077
crossref_primary_10_1016_j_envpol_2024_124850
crossref_primary_10_1007_s13399_022_03213_6
crossref_primary_10_1016_j_biortech_2013_03_186
crossref_primary_10_1016_j_scitotenv_2021_150413
crossref_primary_10_1007_s13762_024_05646_0
crossref_primary_10_1016_j_cej_2020_127468
crossref_primary_10_1039_c4ra02332c
crossref_primary_10_1016_j_biortech_2018_12_044
crossref_primary_10_1016_j_wasman_2021_01_037
crossref_primary_10_1021_sc5002269
crossref_primary_10_1016_j_eti_2020_101121
crossref_primary_10_1007_s10098_016_1218_8
crossref_primary_10_1016_j_eti_2017_06_002
crossref_primary_10_1007_s13762_018_02191_5
crossref_primary_10_1016_j_chemosphere_2019_125004
crossref_primary_10_3390_su152316173
crossref_primary_10_1016_j_jece_2020_104980
crossref_primary_10_1016_j_biortech_2013_03_057
crossref_primary_10_1021_acsami_6b14071
crossref_primary_10_1088_1755_1315_1074_1_012033
crossref_primary_10_1016_j_scitotenv_2017_10_193
crossref_primary_10_1016_j_jhazmat_2022_130257
crossref_primary_10_1007_s11696_023_03136_0
crossref_primary_10_1007_s11783_020_1225_1
crossref_primary_10_7745_KJSSF_2014_47_5_351
crossref_primary_10_1007_s11814_019_0304_0
crossref_primary_10_1002_clen_202100396
crossref_primary_10_1016_j_apenergy_2016_02_084
crossref_primary_10_1016_j_scitotenv_2021_150444
crossref_primary_10_1080_09542299_2015_1087162
crossref_primary_10_1007_s11157_020_09531_3
crossref_primary_10_2166_aqua_2023_082
crossref_primary_10_1016_j_chemosphere_2016_01_044
crossref_primary_10_1039_C6RA01895E
crossref_primary_10_1007_s00374_014_0960_5
crossref_primary_10_1007_s11356_022_18637_w
crossref_primary_10_1007_s13762_023_05364_z
crossref_primary_10_1007_s10098_016_1284_y
crossref_primary_10_1016_j_biortech_2013_01_114
crossref_primary_10_1016_j_scitotenv_2017_09_082
crossref_primary_10_1039_C4RA12351D
crossref_primary_10_3390_ijerph191912405
crossref_primary_10_1021_acs_est_8b00104
crossref_primary_10_1038_s41598_019_46234_4
crossref_primary_10_1007_s42773_021_00123_0
crossref_primary_10_1016_j_colsurfa_2023_132628
crossref_primary_10_1016_j_jece_2022_107725
crossref_primary_10_1007_s11270_019_4135_8
crossref_primary_10_1016_j_polymer_2024_127829
crossref_primary_10_1007_s10967_016_5043_7
crossref_primary_10_1016_j_chemosphere_2015_05_093
crossref_primary_10_1080_01496395_2018_1425301
crossref_primary_10_1016_j_enconman_2020_112654
crossref_primary_10_2478_pjct_2013_0025
crossref_primary_10_1039_D0GC00717J
crossref_primary_10_1016_j_chemosphere_2015_04_062
crossref_primary_10_1016_j_scitotenv_2022_159554
crossref_primary_10_1016_j_seppur_2023_126199
crossref_primary_10_3103_S0361521920060075
crossref_primary_10_1016_j_jwpe_2024_105705
crossref_primary_10_1016_j_scitotenv_2018_09_259
crossref_primary_10_1080_09542299_2017_1403294
crossref_primary_10_1111_ejss_12246
crossref_primary_10_1016_j_biortech_2019_122030
crossref_primary_10_1016_j_rcrx_2019_100015
crossref_primary_10_1016_j_biortech_2014_11_077
crossref_primary_10_1016_j_jwpe_2021_101929
crossref_primary_10_1016_j_scitotenv_2019_03_364
crossref_primary_10_1016_j_biortech_2018_10_065
crossref_primary_10_1016_j_cej_2018_04_161
crossref_primary_10_1088_1742_6596_1763_1_012071
crossref_primary_10_2174_2405520413999201117143926
crossref_primary_10_1021_acs_est_7b06487
crossref_primary_10_1016_j_jiec_2015_10_007
crossref_primary_10_1088_1742_6596_1736_1_012002
crossref_primary_10_3390_molecules29153545
crossref_primary_10_1007_s11356_020_11571_9
crossref_primary_10_1016_j_wasman_2017_06_032
crossref_primary_10_1007_s42773_019_00002_9
crossref_primary_10_1016_j_indcrop_2024_118743
crossref_primary_10_3390_su15129380
crossref_primary_10_1016_j_jenvman_2013_12_007
crossref_primary_10_1016_j_jenvman_2018_11_021
crossref_primary_10_1016_j_surfin_2022_102323
crossref_primary_10_1016_j_jenvman_2018_02_002
crossref_primary_10_1016_j_jclepro_2018_03_017
crossref_primary_10_1016_j_rser_2021_111068
crossref_primary_10_1016_j_wasman_2021_04_027
crossref_primary_10_1016_j_biortech_2021_125102
crossref_primary_10_1016_j_jclepro_2017_01_125
crossref_primary_10_1021_acs_est_6b00627
crossref_primary_10_3390_w11071438
crossref_primary_10_5338_KJEA_2017_36_1_02
crossref_primary_10_1016_j_scitotenv_2020_143910
crossref_primary_10_1002_etc_5127
crossref_primary_10_1016_j_jenvman_2018_10_117
crossref_primary_10_1007_s12517_022_10909_6
crossref_primary_10_1016_j_scitotenv_2019_04_037
crossref_primary_10_1007_s11356_023_29135_y
crossref_primary_10_1016_j_jenvman_2017_10_056
crossref_primary_10_1007_s42729_020_00336_5
crossref_primary_10_1016_j_chemosphere_2014_10_057
crossref_primary_10_1111_sum_12931
crossref_primary_10_1016_j_jclepro_2017_08_122
crossref_primary_10_1016_S1002_0160_17_60375_8
crossref_primary_10_1007_s11368_018_1927_1
crossref_primary_10_3390_w16131834
crossref_primary_10_1061__ASCE_EE_1943_7870_0001917
crossref_primary_10_1038_s41598_023_49036_x
crossref_primary_10_1016_j_scitotenv_2021_147595
crossref_primary_10_1007_s41742_022_00498_3
crossref_primary_10_1016_j_biortech_2017_04_051
crossref_primary_10_1088_2053_1591_abae27
crossref_primary_10_1007_s11270_021_05407_6
crossref_primary_10_1016_j_biortech_2017_03_169
crossref_primary_10_1016_j_watres_2020_116648
crossref_primary_10_1007_s11270_022_05749_9
crossref_primary_10_1016_j_jclepro_2023_136713
crossref_primary_10_1016_j_jwpe_2022_102821
crossref_primary_10_1016_j_wasman_2018_08_023
crossref_primary_10_3390_agronomy14081781
crossref_primary_10_1016_j_scitotenv_2018_03_071
crossref_primary_10_1016_S1001_0742_12_60305_2
crossref_primary_10_1016_j_seppur_2023_123399
crossref_primary_10_1007_s11356_015_5486_3
crossref_primary_10_1016_j_biteb_2023_101680
crossref_primary_10_3390_cleantechnol4030039
crossref_primary_10_1186_s13765_024_00969_5
crossref_primary_10_1007_s11368_014_0969_2
crossref_primary_10_1007_s11356_020_11979_3
crossref_primary_10_1016_j_psep_2024_12_013
crossref_primary_10_3139_113_110672
crossref_primary_10_4028_www_scientific_net_AMR_955_959_16
crossref_primary_10_1016_j_scitotenv_2020_143816
crossref_primary_10_1080_15226514_2019_1647405
crossref_primary_10_1155_2018_2684962
crossref_primary_10_1016_j_scitotenv_2020_141999
crossref_primary_10_1080_09593330_2016_1170888
crossref_primary_10_1016_j_jaap_2015_08_016
crossref_primary_10_1016_j_biotechadv_2021_107886
crossref_primary_10_1016_j_chemosphere_2019_03_193
crossref_primary_10_1007_s11356_015_5451_1
crossref_primary_10_1016_j_biortech_2019_121818
crossref_primary_10_1007_s10661_024_12985_5
crossref_primary_10_1016_j_jenvman_2014_11_005
crossref_primary_10_3390_w12102933
crossref_primary_10_1021_es405676h
crossref_primary_10_1007_s10653_015_9709_9
crossref_primary_10_1016_j_cemconcomp_2020_103588
crossref_primary_10_1016_j_wri_2023_100219
crossref_primary_10_1016_j_jenvman_2023_118568
crossref_primary_10_1007_s10653_024_02243_5
crossref_primary_10_1016_j_fuel_2017_01_052
crossref_primary_10_1016_j_jenvman_2018_04_046
crossref_primary_10_1016_j_biortech_2015_08_055
crossref_primary_10_1016_j_jclepro_2018_10_268
crossref_primary_10_1080_15320383_2022_2031867
crossref_primary_10_1007_s11270_023_06334_4
crossref_primary_10_1080_19443994_2015_1120689
crossref_primary_10_1021_acsomega_0c00216
crossref_primary_10_1016_j_envpol_2017_04_048
crossref_primary_10_1007_s11356_018_1292_z
crossref_primary_10_1016_j_cscee_2020_100018
crossref_primary_10_1080_10962247_2015_1094429
crossref_primary_10_1016_j_envpol_2024_124588
crossref_primary_10_1016_j_scitotenv_2019_03_438
crossref_primary_10_1061__ASCE_EE_1943_7870_0000872
crossref_primary_10_1080_15320383_2024_2395945
crossref_primary_10_1016_j_jenvman_2014_07_029
crossref_primary_10_1007_s42773_023_00207_z
crossref_primary_10_1016_j_jenvman_2016_02_049
crossref_primary_10_1016_j_seppur_2023_125124
crossref_primary_10_1002_jpln_201400601
crossref_primary_10_1016_j_jhazmat_2014_01_056
crossref_primary_10_1016_j_jece_2017_05_055
crossref_primary_10_48072_2525_7579_rog_2022_155
crossref_primary_10_1039_C9GC01843C
crossref_primary_10_1080_19397038_2020_1862350
crossref_primary_10_1021_acs_langmuir_0c01454
crossref_primary_10_1016_j_chemosphere_2013_03_055
crossref_primary_10_1061__ASCE_EE_1943_7870_0001950
crossref_primary_10_1016_j_scitotenv_2018_02_137
crossref_primary_10_1016_j_jcis_2014_12_030
crossref_primary_10_1098_rsos_180966
crossref_primary_10_5004_dwt_2022_28376
crossref_primary_10_1007_s42108_019_00025_9
crossref_primary_10_1016_j_chemosphere_2022_134592
crossref_primary_10_1016_j_jhazmat_2022_130628
crossref_primary_10_1021_acs_est_8b01817
crossref_primary_10_1016_j_envres_2022_114043
crossref_primary_10_1021_acs_langmuir_2c00317
crossref_primary_10_1080_00032719_2022_2098310
crossref_primary_10_5322_JESI_2018_27_9_753
crossref_primary_10_1016_j_cej_2019_05_139
crossref_primary_10_1007_s11356_019_04315_x
crossref_primary_10_1016_j_ijbiomac_2022_06_178
crossref_primary_10_1680_jenge_18_00091
crossref_primary_10_1016_j_biortech_2018_03_125
crossref_primary_10_1016_j_jhazmat_2020_124605
crossref_primary_10_3390_ijerph16050845
crossref_primary_10_1007_s13369_017_2934_z
crossref_primary_10_3390_en13164203
crossref_primary_10_1016_j_ccr_2019_213096
crossref_primary_10_1007_s10570_018_1935_8
crossref_primary_10_1016_j_chemosphere_2014_04_043
crossref_primary_10_1016_j_biortech_2024_130762
crossref_primary_10_1016_j_scitotenv_2020_137108
crossref_primary_10_2139_ssrn_4126026
crossref_primary_10_1016_j_chemosphere_2017_05_161
crossref_primary_10_1080_03650340_2015_1074186
crossref_primary_10_1016_j_nanoen_2015_08_004
crossref_primary_10_1016_j_scitotenv_2016_03_248
crossref_primary_10_1016_j_scitotenv_2021_145676
crossref_primary_10_5004_dwt_2020_26425
crossref_primary_10_1016_j_eti_2022_102640
crossref_primary_10_1016_j_jes_2017_05_023
crossref_primary_10_1016_j_jclepro_2016_07_205
crossref_primary_10_1016_j_envpol_2022_119107
crossref_primary_10_1016_j_biortech_2015_08_132
crossref_primary_10_1016_j_ecoenv_2022_113646
crossref_primary_10_1016_S1001_0742_12_60118_1
crossref_primary_10_1016_j_pedobi_2022_150861
crossref_primary_10_1016_j_scitotenv_2015_09_022
crossref_primary_10_1016_j_matpr_2020_08_721
crossref_primary_10_1016_j_scitotenv_2018_07_374
crossref_primary_10_1007_s11356_023_25817_9
crossref_primary_10_1007_s11356_018_3247_9
crossref_primary_10_1016_j_cej_2013_01_054
crossref_primary_10_1016_j_jenvman_2017_06_019
crossref_primary_10_2166_wst_2017_289
crossref_primary_10_3390_agriculture14030464
crossref_primary_10_3390_w12102871
crossref_primary_10_3390_ijerph14070681
crossref_primary_10_1016_j_biortech_2012_11_132
crossref_primary_10_12677_WPT_2022_102010
crossref_primary_10_1007_s10163_024_01908_8
crossref_primary_10_1021_ie404135y
crossref_primary_10_1089_ees_2014_0540
crossref_primary_10_1007_s13369_021_05362_8
crossref_primary_10_1016_j_chemosphere_2015_02_055
crossref_primary_10_1016_j_chemosphere_2019_01_128
crossref_primary_10_1016_j_jenvman_2017_07_071
crossref_primary_10_1007_s11356_014_2740_z
crossref_primary_10_1016_j_apenergy_2019_03_050
crossref_primary_10_1016_j_biortech_2012_12_096
crossref_primary_10_1016_j_envres_2024_118652
crossref_primary_10_1016_j_ecoenv_2017_03_020
crossref_primary_10_1016_j_scitotenv_2015_10_057
crossref_primary_10_3390_pr11123423
crossref_primary_10_5004_dwt_2019_24489
crossref_primary_10_1016_j_cej_2013_09_074
crossref_primary_10_1039_D1RA03201A
crossref_primary_10_1016_j_biortech_2021_125827
crossref_primary_10_1016_j_jece_2022_109027
crossref_primary_10_1016_j_eti_2021_102031
crossref_primary_10_1016_j_rser_2018_03_025
crossref_primary_10_1016_j_colsurfa_2015_11_039
crossref_primary_10_1155_2020_2805479
crossref_primary_10_1016_j_colsurfa_2018_07_010
crossref_primary_10_1021_es4012977
crossref_primary_10_3390_ma13112462
crossref_primary_10_3390_su16072972
crossref_primary_10_3390_ijerph17051602
crossref_primary_10_1016_j_apgeochem_2017_09_001
crossref_primary_10_1007_s12517_019_4557_z
crossref_primary_10_1021_acsomega_9b01805
crossref_primary_10_1016_j_cej_2023_147657
crossref_primary_10_1007_s10098_016_1236_6
crossref_primary_10_1007_s10653_017_0005_8
crossref_primary_10_5004_dwt_2018_22744
crossref_primary_10_1080_07388551_2022_2119547
crossref_primary_10_1007_s11356_020_08706_3
crossref_primary_10_3390_molecules28072897
crossref_primary_10_1007_s11270_016_3191_6
crossref_primary_10_1007_s10934_019_00845_4
crossref_primary_10_1039_C6RA22511J
crossref_primary_10_1016_j_biortech_2017_05_025
crossref_primary_10_1016_j_envpol_2021_117094
crossref_primary_10_1016_j_carbon_2014_08_081
crossref_primary_10_55544_jrasb_2_4_2
crossref_primary_10_1016_j_chemosphere_2023_138269
crossref_primary_10_1039_D0EW00619J
crossref_primary_10_1016_j_jenvman_2014_07_001
crossref_primary_10_3103_S0361521921020099
crossref_primary_10_2166_wst_2024_051
crossref_primary_10_1016_j_envpol_2021_117916
crossref_primary_10_3390_su132112125
crossref_primary_10_1016_j_biortech_2017_03_109
crossref_primary_10_1007_s11356_023_28261_x
crossref_primary_10_1007_s44246_022_00015_3
crossref_primary_10_1016_j_jenvman_2024_121183
crossref_primary_10_1088_1757_899X_801_1_012080
crossref_primary_10_3390_app12105040
crossref_primary_10_1016_j_clay_2020_105828
crossref_primary_10_5004_dwt_2017_21802
crossref_primary_10_1016_j_chemosphere_2019_124719
crossref_primary_10_1155_2019_4506314
crossref_primary_10_1007_s10661_014_4062_5
crossref_primary_10_1016_j_ecoenv_2023_115179
crossref_primary_10_1007_s13762_020_03060_w
crossref_primary_10_1016_j_jhazmat_2016_06_009
crossref_primary_10_1007_s10311_017_0688_1
crossref_primary_10_1080_00103624_2021_1984508
crossref_primary_10_1016_j_jwpe_2021_102201
crossref_primary_10_1016_j_envres_2020_109609
crossref_primary_10_3390_nano11113071
crossref_primary_10_1016_j_cej_2013_10_081
crossref_primary_10_1016_j_cej_2012_05_025
crossref_primary_10_1007_s12517_020_05532_2
crossref_primary_10_1038_s41598_021_97525_8
crossref_primary_10_1016_j_seppur_2024_128574
crossref_primary_10_3389_fchem_2020_00140
crossref_primary_10_1016_j_jclepro_2022_131097
crossref_primary_10_1002_jctb_5897
crossref_primary_10_1007_s11869_025_01692_w
crossref_primary_10_1016_j_cej_2019_123386
crossref_primary_10_1346_CCMN_2016_064034
crossref_primary_10_5004_dwt_2020_25635
crossref_primary_10_1080_09593330_2019_1626912
crossref_primary_10_1016_j_jcis_2013_07_050
crossref_primary_10_1016_j_jwpe_2025_107407
crossref_primary_10_1016_j_biortech_2015_01_044
crossref_primary_10_1016_j_jclepro_2016_03_088
crossref_primary_10_2134_jeq2016_09_0344
crossref_primary_10_1016_j_chemosphere_2021_133384
crossref_primary_10_1016_j_rser_2017_01_054
crossref_primary_10_1007_s11356_016_7647_4
crossref_primary_10_1016_j_jics_2024_101175
crossref_primary_10_1007_s13762_022_04617_7
crossref_primary_10_3390_w17070918
crossref_primary_10_3390_su15010775
crossref_primary_10_1080_21655979_2021_1993536
crossref_primary_10_3390_su142417049
crossref_primary_10_1007_s11270_024_06907_x
crossref_primary_10_1016_S1002_0160_20_60094_7
crossref_primary_10_1016_j_ecoenv_2024_117557
crossref_primary_10_1007_s13762_018_1910_9
crossref_primary_10_1007_s13762_024_06082_w
crossref_primary_10_1038_s41598_017_02353_4
crossref_primary_10_1186_s13065_024_01363_4
crossref_primary_10_1016_j_cej_2017_08_124
crossref_primary_10_1016_j_jece_2023_110986
crossref_primary_10_1016_j_chemosphere_2022_133672
crossref_primary_10_1080_10643389_2017_1418580
crossref_primary_10_2134_jeq2017_04_0152
crossref_primary_10_1016_j_cej_2019_02_119
crossref_primary_10_1016_j_jscs_2022_101518
crossref_primary_10_1021_acs_est_0c02227
crossref_primary_10_1016_j_jece_2023_109874
crossref_primary_10_1016_j_scitotenv_2018_01_052
crossref_primary_10_1007_s11270_013_1711_1
crossref_primary_10_15415_jce_2019_52003
crossref_primary_10_1039_C5EE01633A
crossref_primary_10_1016_j_jhazmat_2016_07_067
crossref_primary_10_3390_ijerph20075405
crossref_primary_10_3390_w13192613
crossref_primary_10_17137_korrae_2015_23_3_060
crossref_primary_10_1016_j_biortech_2020_123304
crossref_primary_10_1016_j_rser_2016_09_057
crossref_primary_10_1016_j_scitotenv_2016_10_163
crossref_primary_10_1039_C6RA15206F
crossref_primary_10_1016_j_jwpe_2023_103616
crossref_primary_10_1016_j_biortech_2014_08_015
crossref_primary_10_1016_j_resconrec_2016_11_016
crossref_primary_10_1002_slct_201901043
crossref_primary_10_1016_j_scitotenv_2020_137811
crossref_primary_10_3390_su8020131
crossref_primary_10_1016_j_colsurfa_2017_08_041
crossref_primary_10_1007_s12665_017_6916_y
crossref_primary_10_1016_j_jclepro_2020_120322
crossref_primary_10_1007_s12665_017_6895_z
crossref_primary_10_1016_j_biortech_2022_127467
crossref_primary_10_1016_j_jenvman_2019_02_068
crossref_primary_10_1007_s11270_022_05981_3
crossref_primary_10_1007_s12517_018_4184_0
crossref_primary_10_1007_s11270_016_3161_z
crossref_primary_10_1016_j_biortech_2015_03_137
crossref_primary_10_1007_s42773_020_00040_8
crossref_primary_10_1016_j_biortech_2014_01_006
crossref_primary_10_1016_j_matpr_2023_05_195
crossref_primary_10_1007_s10653_017_0036_1
crossref_primary_10_1016_j_biortech_2017_07_033
crossref_primary_10_1039_C9RA09487C
crossref_primary_10_1088_1755_1315_796_1_012013
crossref_primary_10_1080_10643389_2017_1421844
crossref_primary_10_1002_jctb_5215
crossref_primary_10_1016_j_envpol_2020_115396
crossref_primary_10_1016_j_scitotenv_2022_153957
crossref_primary_10_1016_j_jhazmat_2020_124581
crossref_primary_10_1016_j_jhazmat_2021_126215
crossref_primary_10_3390_app8071019
crossref_primary_10_1016_j_chemosphere_2021_131439
crossref_primary_10_1007_s13399_020_01000_9
crossref_primary_10_21967_jbb_v4i1_180
crossref_primary_10_1016_j_fuel_2021_120243
crossref_primary_10_1631_jzus_B1300102
crossref_primary_10_1016_j_ecoleng_2017_06_029
crossref_primary_10_1016_j_chemosphere_2023_139760
crossref_primary_10_1007_s11270_024_07653_w
crossref_primary_10_2166_wst_2015_504
crossref_primary_10_1007_s11356_020_09163_8
crossref_primary_10_1021_acsomega_3c03484
crossref_primary_10_1016_j_biombioe_2024_107296
crossref_primary_10_3390_su71115057
crossref_primary_10_1080_09593330_2017_1304454
crossref_primary_10_1007_s11356_018_2889_y
crossref_primary_10_1016_j_chemosphere_2021_130458
crossref_primary_10_1016_j_eti_2022_102399
crossref_primary_10_1016_S2095_3119_16_61488_0
crossref_primary_10_1016_j_biortech_2015_12_087
crossref_primary_10_1016_j_molliq_2018_10_142
crossref_primary_10_1007_s11356_023_25958_x
crossref_primary_10_1016_j_chemosphere_2019_124772
crossref_primary_10_1007_s11356_022_21047_7
crossref_primary_10_5004_dwt_2022_28506
crossref_primary_10_1080_10643389_2016_1239975
crossref_primary_10_3389_fmicb_2025_1529784
crossref_primary_10_1007_s42773_019_00030_5
crossref_primary_10_1039_C5RA13236C
crossref_primary_10_1016_j_biortech_2014_08_108
crossref_primary_10_1016_j_ecoenv_2017_08_033
crossref_primary_10_1016_j_scitotenv_2020_144351
crossref_primary_10_3389_fbioe_2023_1258483
crossref_primary_10_1016_j_envres_2022_114526
crossref_primary_10_5004_dwt_2017_21276
crossref_primary_10_1039_C6RA15532D
crossref_primary_10_1016_j_biombioe_2014_09_027
crossref_primary_10_3390_molecules29133160
crossref_primary_10_1016_j_jece_2015_11_022
crossref_primary_10_1155_2014_715398
crossref_primary_10_1002_jctb_7664
crossref_primary_10_1007_s10661_014_4093_y
crossref_primary_10_1039_C9RA08199B
crossref_primary_10_1016_j_jcis_2021_03_114
crossref_primary_10_1016_j_jclepro_2020_123506
crossref_primary_10_1016_j_chemosphere_2016_01_104
crossref_primary_10_1016_j_scitotenv_2022_153892
crossref_primary_10_1016_j_jes_2020_05_001
crossref_primary_10_1007_s11356_018_2500_6
crossref_primary_10_1016_j_scitotenv_2019_135657
crossref_primary_10_1016_j_jaap_2016_06_018
crossref_primary_10_1016_j_jhazmat_2014_11_033
crossref_primary_10_1016_j_cej_2013_09_057
crossref_primary_10_1080_10643389_2015_1096880
crossref_primary_10_1007_s11270_017_3615_y
crossref_primary_10_1016_j_jiec_2019_07_026
crossref_primary_10_2166_wst_2019_276
crossref_primary_10_5696_2156_9614_10_27_200902
crossref_primary_10_1016_j_scitotenv_2021_151120
crossref_primary_10_5338_KJEA_2015_34_1_10
crossref_primary_10_1088_1755_1315_648_1_012184
crossref_primary_10_1016_j_chemosphere_2022_133966
crossref_primary_10_1016_j_ecoenv_2019_109833
crossref_primary_10_1007_s10661_020_08268_4
crossref_primary_10_1016_j_envint_2020_105576
crossref_primary_10_5004_dwt_2019_23571
crossref_primary_10_1016_j_biortech_2017_08_061
crossref_primary_10_1016_j_scitotenv_2021_144955
crossref_primary_10_1016_j_scitotenv_2025_178693
crossref_primary_10_4491_KSEE_2019_41_10_515
crossref_primary_10_1016_j_jenvman_2019_109429
crossref_primary_10_1016_j_scitotenv_2019_07_103
crossref_primary_10_1016_j_chemosphere_2020_128904
crossref_primary_10_1016_j_cherd_2016_02_006
crossref_primary_10_1016_j_trac_2022_116891
crossref_primary_10_1016_j_biortech_2021_125190
crossref_primary_10_1021_acsomega_9b00524
crossref_primary_10_1016_j_biortech_2017_06_023
crossref_primary_10_1016_j_ijbiomac_2024_132703
crossref_primary_10_1016_j_surfin_2022_102058
crossref_primary_10_1080_10643389_2020_1864957
crossref_primary_10_1016_j_biortech_2014_01_120
crossref_primary_10_1016_j_jhazmat_2016_08_002
crossref_primary_10_1007_s13765_015_0103_1
crossref_primary_10_1016_j_chemosphere_2016_02_004
crossref_primary_10_3390_ma14216566
crossref_primary_10_1016_j_chemosphere_2017_10_125
crossref_primary_10_1016_j_envres_2022_112676
crossref_primary_10_1016_j_arabjc_2016_12_025
crossref_primary_10_1016_j_biortech_2014_03_087
crossref_primary_10_1016_j_jaap_2017_08_006
crossref_primary_10_1016_j_rser_2017_03_022
crossref_primary_10_1080_15567036_2024_2445125
crossref_primary_10_1016_j_jes_2019_04_007
crossref_primary_10_1016_j_chemosphere_2017_04_014
crossref_primary_10_1260_0263_6174_31_10_869
crossref_primary_10_1016_j_jhazmat_2021_126886
crossref_primary_10_1016_j_indcrop_2024_118051
crossref_primary_10_1080_10643389_2018_1547621
crossref_primary_10_3390_biomass4020012
crossref_primary_10_1016_j_cej_2012_06_116
crossref_primary_10_1111_ejss_12090
crossref_primary_10_1016_j_jwpe_2022_103332
crossref_primary_10_1016_j_scitotenv_2021_145824
crossref_primary_10_1007_s11356_017_9520_5
crossref_primary_10_1021_acssuschemeng_3c06592
crossref_primary_10_1016_j_envint_2019_03_031
crossref_primary_10_1039_C5RA20235C
Cites_doi 10.1080/01496395.2011.584604
10.1016/j.jcis.2007.01.020
10.1016/j.biortech.2007.11.064
10.1016/S0048-9697(00)00373-9
10.1021/es0347134
10.1016/j.biortech.2011.03.006
10.1016/j.jhazmat.2008.12.114
10.1016/j.biortech.2009.10.062
10.1021/je1009569
10.1007/s11270-010-0625-4
10.1016/j.desal.2010.11.001
10.1021/jf9044217
10.1016/j.jhazmat.2011.03.083
10.2166/wst.2008.516
10.1080/10934520801959864
10.1007/s11027-005-9006-5
10.1007/s11104-009-0050-x
10.1016/j.jhazmat.2009.04.020
10.1021/es803092k
10.1016/j.biortech.2010.06.088
10.1080/10643380600729089
10.1021/es960053+
10.1016/j.jhazmat.2009.01.085
10.1016/j.jhazmat.2011.03.063
10.1016/j.watres.2011.04.008
10.1007/s00128-008-9451-4
10.1016/j.envpol.2010.10.016
10.1038/447143a
10.1016/j.jhazmat.2008.01.024
ContentType Journal Article
Copyright 2012 Elsevier Ltd
Copyright © 2012 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: Copyright © 2012 Elsevier Ltd. All rights reserved.
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
8FD
C1K
FR3
P64
SOI
7S9
L.6
7X8
DOI 10.1016/j.biortech.2012.01.072
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Engineering Research Database


MEDLINE - Academic
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 56
ExternalDocumentID 22325901
10_1016_j_biortech_2012_01_072
US201400164530
S0960852412000958
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
8FD
C1K
FR3
P64
SOI
7S9
EFKBS
L.6
7X8
ID FETCH-LOGICAL-c523t-50663521e35a48e714968dc2c86647a46e02c15021a023d0446a4ced742db21d3
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Fri Jul 11 10:05:49 EDT 2025
Tue Aug 05 09:57:35 EDT 2025
Thu Jul 10 18:52:01 EDT 2025
Thu Apr 03 07:01:06 EDT 2025
Tue Jul 01 02:42:56 EDT 2025
Thu Apr 24 22:59:03 EDT 2025
Wed Dec 27 19:28:52 EST 2023
Fri Feb 23 02:26:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sorption
Biochar
Wastewater
Anaerobic digestion
Heavy metal
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2012 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-50663521e35a48e714968dc2c86647a46e02c15021a023d0446a4ced742db21d3
Notes http://dx.doi.org/10.1016/j.biortech.2012.01.072
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22325901
PQID 1008841173
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_928912433
proquest_miscellaneous_1365041762
proquest_miscellaneous_1008841173
pubmed_primary_22325901
crossref_citationtrail_10_1016_j_biortech_2012_01_072
crossref_primary_10_1016_j_biortech_2012_01_072
fao_agris_US201400164530
elsevier_sciencedirect_doi_10_1016_j_biortech_2012_01_072
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-04-01
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shi, Jia, Chen, Wen, Du, Guo, Wang (b0110) 2009; 169
Akbal, Camci (b0005) 2011; 269
Beesley, Marmiroli (b0010) 2011; 159
Cao, Ma, Gao, Harris (b0025) 2009; 43
Lehmann (b0085) 2007; 447
Hanay, Hasar, Kocer, Aslan (b0060) 2008; 81
Inyang, Gao, Pullammanappallil, Ding, Zimmerman (b0075) 2010; 101
Johnson, Sun, Elimelech (b0080) 1996; 30
Gerente, Lee, Le Cloirec, McKay (b0050) 2007; 37
Liu, Zhang (b0095) 2009; 167
Demirbas (b0040) 2008; 157
Yao, Gao, Inyang, Zimmerman, Cao, Pullammanappallil, Yang (b0145) 2011; 190
Demirbas (b0035) 2009; 167
Mohan, Pittman, Bricka, Smith, Yancey, Mohammad, Steele, Alexandre-Franco, Gomez-Serrano, Gong (b0105) 2007; 310
Fang, Boe, Angelidaki (b0045) 2011; 45
Hooda, Edwards, Anderson, Miller (b0065) 2000; 250
Boudrahem, Soualah, Aissani-Benissad (b0015) 2011; 56
Das, Garcia-Perez, Bibens, Melear (b0030) 2008; 43
Uchimiya, Chang, Klasson (b0120) 2011; 190
Gu, Wong (b0055) 2004; 38
Lehmann, Gaunt, Rondon (b0090) 2006; 11
Van Zwieten, Kimber, Morris, Chan, Downie, Rust, Joseph, Cowie (b0130) 2010; 327
Sud, Mahajan, Kaur (b0115) 2008; 99
Wang, Li, Chen, Min, Chen, Zhu, Ruan (b0135) 2010; 101
Uchimiya, Lima, Klasson, Chang, Wartelle, Rodgers (b0125) 2010; 58
Inyang, Gao, Ding, Pullammanappallil, Zimmerman, Cao (b0070) 2011; 46
Yao, Gao, Inyang, Zimmerman, Cao, Pullammanappallil, Yang (b0140) 2011; 102
Malamis, Katsou, Haralambous (b0100) 2011; 218
Brooks, Parravicini, Svardal, Kroiss, Prendl (b0020) 2008; 58
Akbal (10.1016/j.biortech.2012.01.072_b0005) 2011; 269
Hanay (10.1016/j.biortech.2012.01.072_b0060) 2008; 81
Lehmann (10.1016/j.biortech.2012.01.072_b0085) 2007; 447
Brooks (10.1016/j.biortech.2012.01.072_b0020) 2008; 58
Demirbas (10.1016/j.biortech.2012.01.072_b0040) 2008; 157
Van Zwieten (10.1016/j.biortech.2012.01.072_b0130) 2010; 327
Sud (10.1016/j.biortech.2012.01.072_b0115) 2008; 99
Johnson (10.1016/j.biortech.2012.01.072_b0080) 1996; 30
Cao (10.1016/j.biortech.2012.01.072_b0025) 2009; 43
Uchimiya (10.1016/j.biortech.2012.01.072_b0120) 2011; 190
Yao (10.1016/j.biortech.2012.01.072_b0140) 2011; 102
Shi (10.1016/j.biortech.2012.01.072_b0110) 2009; 169
Gerente (10.1016/j.biortech.2012.01.072_b0050) 2007; 37
Malamis (10.1016/j.biortech.2012.01.072_b0100) 2011; 218
Fang (10.1016/j.biortech.2012.01.072_b0045) 2011; 45
Demirbas (10.1016/j.biortech.2012.01.072_b0035) 2009; 167
Inyang (10.1016/j.biortech.2012.01.072_b0075) 2010; 101
Gu (10.1016/j.biortech.2012.01.072_b0055) 2004; 38
Liu (10.1016/j.biortech.2012.01.072_b0095) 2009; 167
Das (10.1016/j.biortech.2012.01.072_b0030) 2008; 43
Hooda (10.1016/j.biortech.2012.01.072_b0065) 2000; 250
Uchimiya (10.1016/j.biortech.2012.01.072_b0125) 2010; 58
Inyang (10.1016/j.biortech.2012.01.072_b0070) 2011; 46
Beesley (10.1016/j.biortech.2012.01.072_b0010) 2011; 159
Lehmann (10.1016/j.biortech.2012.01.072_b0090) 2006; 11
Yao (10.1016/j.biortech.2012.01.072_b0145) 2011; 190
Mohan (10.1016/j.biortech.2012.01.072_b0105) 2007; 310
Wang (10.1016/j.biortech.2012.01.072_b0135) 2010; 101
Boudrahem (10.1016/j.biortech.2012.01.072_b0015) 2011; 56
References_xml – volume: 37
  start-page: 41
  year: 2007
  end-page: 127
  ident: b0050
  article-title: Application of chitosan for the removal of metals from wastewaters by adsorption–mechanisms and models review
  publication-title: Crit. Rev. Env. Sci. Technol.
– volume: 169
  start-page: 838
  year: 2009
  end-page: 846
  ident: b0110
  article-title: Adsorption of Pb(II), Cr(III), Cu(II), Cd(II) and Ni(II) onto a vanadium mine tailing from aqueous solution
  publication-title: J. Hazard. Mater.
– volume: 101
  start-page: 8868
  year: 2010
  end-page: 8872
  ident: b0075
  article-title: Biochar from anaerobically digested sugarcane bagasse
  publication-title: Bioresour. Technol.
– volume: 167
  start-page: 933
  year: 2009
  end-page: 939
  ident: b0095
  article-title: Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass
  publication-title: J. Hazard. Mater.
– volume: 11
  start-page: 403
  year: 2006
  end-page: 427
  ident: b0090
  article-title: Bio-char sequestration in terrestrial ecosystems – a review
  publication-title: Mitig. Adapt. Strat. Global. Change.
– volume: 102
  start-page: 6273
  year: 2011
  end-page: 6278
  ident: b0140
  article-title: Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential
  publication-title: Bioresour. Technol.
– volume: 250
  start-page: 143
  year: 2000
  end-page: 167
  ident: b0065
  article-title: A review of water quality concerns in livestock farming areas
  publication-title: Sci. Total Environ.
– volume: 30
  start-page: 3284
  year: 1996
  end-page: 3293
  ident: b0080
  article-title: Colloid transport in geochemically heterogeneous porous media: modeling and measurements
  publication-title: Environ. Sci. Technol.
– volume: 56
  start-page: 1946
  year: 2011
  end-page: 1955
  ident: b0015
  article-title: Pb(II) and Cd(II) removal from aqueous solutions using activated carbon developed from coffee residue activated with phosphoric acid and zinc chloride
  publication-title: J. Chem. Eng. Data
– volume: 218
  start-page: 81
  year: 2011
  end-page: 92
  ident: b0100
  article-title: Study of Ni(II), Cu(II), Pb(II), and Zn(II) removal using sludge and minerals followed by MF/UF
  publication-title: Water Air Soil Pollut.
– volume: 167
  start-page: 1
  year: 2009
  end-page: 9
  ident: b0035
  article-title: Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review
  publication-title: J. Hazard. Mater.
– volume: 101
  start-page: 2623
  year: 2010
  end-page: 2628
  ident: b0135
  article-title: Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae
  publication-title: Bioresour. Technol.
– volume: 447
  start-page: 143
  year: 2007
  end-page: 144
  ident: b0085
  article-title: A handful of carbon
  publication-title: Nature
– volume: 99
  start-page: 6017
  year: 2008
  end-page: 6027
  ident: b0115
  article-title: Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review
  publication-title: Bioresour. Technol.
– volume: 45
  start-page: 3473
  year: 2011
  end-page: 3480
  ident: b0045
  article-title: Anaerobic co-digestion of by-products from sugar production with cow manure
  publication-title: Water Res.
– volume: 190
  start-page: 432
  year: 2011
  end-page: 441
  ident: b0120
  article-title: Screening biochars for heavy metal retention in soil: role of oxygen functional groups
  publication-title: J. Hazard. Mater.
– volume: 157
  start-page: 220
  year: 2008
  end-page: 229
  ident: b0040
  article-title: Heavy metal adsorption onto agro-based waste materials: a review
  publication-title: J. Hazard. Mater.
– volume: 58
  start-page: 5538
  year: 2010
  end-page: 5544
  ident: b0125
  article-title: Immobilization of heavy metal ions (Cu-II, Cd-II, Ni-II, and Pb-II) by broiler litter-derived biochars in water and soil
  publication-title: J. Agric. Food Chem.
– volume: 43
  start-page: 714
  year: 2008
  end-page: 724
  ident: b0030
  article-title: Slow pyrolysis of poultry litter and pine woody biomass: impact of chars and bio-oils on microbial growth
  publication-title: J. Environ. Sci. Health, Part A
– volume: 81
  start-page: 42
  year: 2008
  end-page: 46
  ident: b0060
  article-title: Evaluation for agricultural usage with speciation of heavy metals in a municipal sewage sludge
  publication-title: B. Environ. Contam. Toxicol.
– volume: 269
  start-page: 214
  year: 2011
  end-page: 222
  ident: b0005
  article-title: Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation
  publication-title: Desalination
– volume: 58
  start-page: 1497
  year: 2008
  end-page: 1504
  ident: b0020
  article-title: Biogas from sugar beet press pulp as substitute of fossil fuel in sugar beet factories
  publication-title: Water Sci. Technol.
– volume: 327
  start-page: 235
  year: 2010
  end-page: 246
  ident: b0130
  article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility
  publication-title: Plant Soil
– volume: 38
  start-page: 2934
  year: 2004
  end-page: 2939
  ident: b0055
  article-title: Identification of inhibitory substances affecting bioleaching of heavy metals from anaerobically digested sewage sludge
  publication-title: Environ. Sci. Technol.
– volume: 46
  start-page: 1950
  year: 2011
  end-page: 1956
  ident: b0070
  article-title: Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse
  publication-title: Sep. Sci. Technol.
– volume: 190
  start-page: 501
  year: 2011
  end-page: 507
  ident: b0145
  article-title: Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings
  publication-title: J. Hazard. Mater.
– volume: 310
  start-page: 57
  year: 2007
  end-page: 73
  ident: b0105
  article-title: Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production
  publication-title: J. Colloid Interface Sci.
– volume: 43
  start-page: 3285
  year: 2009
  end-page: 3291
  ident: b0025
  article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine
  publication-title: Environ. Sci. Technol.
– volume: 159
  start-page: 474
  year: 2011
  end-page: 480
  ident: b0010
  article-title: The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar
  publication-title: Environ. Pollut.
– volume: 46
  start-page: 1950
  issue: 12
  year: 2011
  ident: 10.1016/j.biortech.2012.01.072_b0070
  article-title: Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496395.2011.584604
– volume: 310
  start-page: 57
  issue: 1
  year: 2007
  ident: 10.1016/j.biortech.2012.01.072_b0105
  article-title: Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2007.01.020
– volume: 99
  start-page: 6017
  issue: 14
  year: 2008
  ident: 10.1016/j.biortech.2012.01.072_b0115
  article-title: Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2007.11.064
– volume: 250
  start-page: 143
  issue: 1–3
  year: 2000
  ident: 10.1016/j.biortech.2012.01.072_b0065
  article-title: A review of water quality concerns in livestock farming areas
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(00)00373-9
– volume: 38
  start-page: 2934
  issue: 10
  year: 2004
  ident: 10.1016/j.biortech.2012.01.072_b0055
  article-title: Identification of inhibitory substances affecting bioleaching of heavy metals from anaerobically digested sewage sludge
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0347134
– volume: 102
  start-page: 6273
  issue: 10
  year: 2011
  ident: 10.1016/j.biortech.2012.01.072_b0140
  article-title: Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.03.006
– volume: 167
  start-page: 1
  issue: 1–3
  year: 2009
  ident: 10.1016/j.biortech.2012.01.072_b0035
  article-title: Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.12.114
– volume: 101
  start-page: 2623
  issue: 8
  year: 2010
  ident: 10.1016/j.biortech.2012.01.072_b0135
  article-title: Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp.
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.10.062
– volume: 56
  start-page: 1946
  issue: 5
  year: 2011
  ident: 10.1016/j.biortech.2012.01.072_b0015
  article-title: Pb(II) and Cd(II) removal from aqueous solutions using activated carbon developed from coffee residue activated with phosphoric acid and zinc chloride
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je1009569
– volume: 218
  start-page: 81
  issue: 1–4
  year: 2011
  ident: 10.1016/j.biortech.2012.01.072_b0100
  article-title: Study of Ni(II), Cu(II), Pb(II), and Zn(II) removal using sludge and minerals followed by MF/UF
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-010-0625-4
– volume: 269
  start-page: 214
  issue: 1–3
  year: 2011
  ident: 10.1016/j.biortech.2012.01.072_b0005
  article-title: Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation
  publication-title: Desalination
  doi: 10.1016/j.desal.2010.11.001
– volume: 58
  start-page: 5538
  issue: 9
  year: 2010
  ident: 10.1016/j.biortech.2012.01.072_b0125
  article-title: Immobilization of heavy metal ions (Cu-II, Cd-II, Ni-II, and Pb-II) by broiler litter-derived biochars in water and soil
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf9044217
– volume: 190
  start-page: 501
  issue: 1–3
  year: 2011
  ident: 10.1016/j.biortech.2012.01.072_b0145
  article-title: Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.03.083
– volume: 58
  start-page: 1497
  issue: 7
  year: 2008
  ident: 10.1016/j.biortech.2012.01.072_b0020
  article-title: Biogas from sugar beet press pulp as substitute of fossil fuel in sugar beet factories
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2008.516
– volume: 43
  start-page: 714
  issue: 7
  year: 2008
  ident: 10.1016/j.biortech.2012.01.072_b0030
  article-title: Slow pyrolysis of poultry litter and pine woody biomass: impact of chars and bio-oils on microbial growth
  publication-title: J. Environ. Sci. Health, Part A
  doi: 10.1080/10934520801959864
– volume: 11
  start-page: 403
  year: 2006
  ident: 10.1016/j.biortech.2012.01.072_b0090
  article-title: Bio-char sequestration in terrestrial ecosystems – a review
  publication-title: Mitig. Adapt. Strat. Global. Change.
  doi: 10.1007/s11027-005-9006-5
– volume: 327
  start-page: 235
  issue: 1–2
  year: 2010
  ident: 10.1016/j.biortech.2012.01.072_b0130
  article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-0050-x
– volume: 169
  start-page: 838
  issue: 1–3
  year: 2009
  ident: 10.1016/j.biortech.2012.01.072_b0110
  article-title: Adsorption of Pb(II), Cr(III), Cu(II), Cd(II) and Ni(II) onto a vanadium mine tailing from aqueous solution
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.04.020
– volume: 43
  start-page: 3285
  issue: 9
  year: 2009
  ident: 10.1016/j.biortech.2012.01.072_b0025
  article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803092k
– volume: 101
  start-page: 8868
  issue: 22
  year: 2010
  ident: 10.1016/j.biortech.2012.01.072_b0075
  article-title: Biochar from anaerobically digested sugarcane bagasse
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.06.088
– volume: 37
  start-page: 41
  issue: 1
  year: 2007
  ident: 10.1016/j.biortech.2012.01.072_b0050
  article-title: Application of chitosan for the removal of metals from wastewaters by adsorption–mechanisms and models review
  publication-title: Crit. Rev. Env. Sci. Technol.
  doi: 10.1080/10643380600729089
– volume: 30
  start-page: 3284
  issue: 11
  year: 1996
  ident: 10.1016/j.biortech.2012.01.072_b0080
  article-title: Colloid transport in geochemically heterogeneous porous media: modeling and measurements
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es960053+
– volume: 167
  start-page: 933
  issue: 1–3
  year: 2009
  ident: 10.1016/j.biortech.2012.01.072_b0095
  article-title: Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.01.085
– volume: 190
  start-page: 432
  issue: 1–3
  year: 2011
  ident: 10.1016/j.biortech.2012.01.072_b0120
  article-title: Screening biochars for heavy metal retention in soil: role of oxygen functional groups
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.03.063
– volume: 45
  start-page: 3473
  issue: 11
  year: 2011
  ident: 10.1016/j.biortech.2012.01.072_b0045
  article-title: Anaerobic co-digestion of by-products from sugar production with cow manure
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.04.008
– volume: 81
  start-page: 42
  issue: 1
  year: 2008
  ident: 10.1016/j.biortech.2012.01.072_b0060
  article-title: Evaluation for agricultural usage with speciation of heavy metals in a municipal sewage sludge
  publication-title: B. Environ. Contam. Toxicol.
  doi: 10.1007/s00128-008-9451-4
– volume: 159
  start-page: 474
  issue: 2
  year: 2011
  ident: 10.1016/j.biortech.2012.01.072_b0010
  article-title: The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2010.10.016
– volume: 447
  start-page: 143
  issue: 7141
  year: 2007
  ident: 10.1016/j.biortech.2012.01.072_b0085
  article-title: A handful of carbon
  publication-title: Nature
  doi: 10.1038/447143a
– volume: 157
  start-page: 220
  issue: 2–3
  year: 2008
  ident: 10.1016/j.biortech.2012.01.072_b0040
  article-title: Heavy metal adsorption onto agro-based waste materials: a review
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.01.024
SSID ssj0003172
Score 2.581018
Snippet ► Biochars from anaerobically digested biomass effectively removed heavy metals. ► Lead sorption capacities of the biochars were close to or higher than...
This study examined the ability of two biochars converted from anaerobically digested biomass to sorb heavy metals using a range of laboratory sorption and...
SourceID proquest
pubmed
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 50
SubjectTerms activated carbon
Anaerobic digestion
Anaerobiosis
aqueous solutions
Biochar
Biomass
dairies
Fourier transform infrared spectroscopy
Heavy metal
heavy metals
isolation & purification
Kinetics
lead
mathematical models
Metals, Heavy
Metals, Heavy - isolation & purification
Solutions
Sorption
sugar beet
Wastewater
Water
Title Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass
URI https://dx.doi.org/10.1016/j.biortech.2012.01.072
https://www.ncbi.nlm.nih.gov/pubmed/22325901
https://www.proquest.com/docview/1008841173
https://www.proquest.com/docview/1365041762
https://www.proquest.com/docview/928912433
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH5i7MB2QBtso7AhT-KaNnZsJzlWFajbNA6DStwsJ3amIkgQLUi98LfznpMwdug47NjkOY3zvfh9L--HAY5SVaEhUDzSWlSR1NxHeRbLKC-rNHG60nlox_DzVE9n8vuFutiASV8LQ2mV3drfrulhte6OjLqnObqZz0dnRL4zhRZIBKJABb9SpqTlw4c_aR5oH0MkAYUjkn5WJXw5LOaU0RqCEvRNkA_jVKwzUK8q26ynocEcnbyD7Y5HsnF7q-9hw9c78Hb8-7brpeF3YGvSb-aGZ571HdwF_8tfN6hirKkYLsb3K3btkYQvGBWbMIv_3NwtWK-VrFgxnALVZy2Yw0vce9dJ1tZTHyfE-WrFXIhV4Tkq6UdO_gFmJ8fnk2nU7bcQleiOLiMV6IfgPlFWZj5F50lnrhRlprVMrdQ-FiUSSMEtWnpHoWArESf0rl0huEs-wmbd1H4PGBLHpFJ5IVXhcagtuKwEL50O_fZsOgDVP2RTds3IaU-MK9NnnV2aHhxD4JiYGwRnAKOncTdtO44XR-Q9huYvxTJoM14cu4egG4vYLczsTJA3Si3JVBIP4GuvCQahpCiLrQkcagKdZZLzNPmHTILEWHI0RANga2RydIWRfCV4mU-tpj3NGCmdoJrh_f-Y2wG8oV9tEtJn2Fze3vkvyK-WxWF4gQ7h9fjbj-npI2tGIZ0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPdAeUEsfbJ-u1B6zGzu2kxx6QLRoKY9DYSVurpM41SJIEFlAe-mf6h_sjJNQethyqLiuH2t7xjPfZB4G-BCrEhWB4oHWogyk5i5Ik1AGaV7GUaFLnfpyDPsHejyRX4_V8RL86nNhKKyyk_2tTPfSuvtl1J3m6Hw6HR0S-E4UaiDhgULSRVbuuvk12m3Np53PSOSPQmx_OdoaB93TAkGOltcsUF7TCu4iZWXiYrQTdFLkIk-0lrGV2oUiR6wkuEWlVpDX00pcEhqSRSZ4EeG8y_BAorigZxOGP__ElaBC9q4LXF1Ay7uVlnwyzKYUQuu9IPQRkg_DWCzSiMulrRfjXq__th_DWgdc2WZ7Nk9gyVXr8Gjzx0VXvMOtw-pW_3octtwqdPgU3Dd3ViNPs7pkKP2v5uzMIepvGGW3MIv_XF82rL8GLJsz3AIlhDWswCmuXNH1rKyjwlHIWKdzVnjnGLZRDQE0Ap7B5F6o8BxWqrpyG8AQqUalSjOpModDbcZlKXheaF_gz8YDUP0hm7yrfk6PcJyaPsztxPTEMUQcE3KDxBnA6GbceVv_484RaU9D8xcnG1RSd47dQKIbi7RrzORQkPlLNdBUFA7gfc8JBklJbh1bEXGo6nSSSM7j6B99IkTikqPmGwBb0CdF2xvRXoTTvGg57WbHiCEFJSm__I-9vYPV8dH-ntnbOdh9BQ-ppY2Aeg0rs4tL9wbB3Sx76y8Tg-_3fXt_A9DvWok
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Removal+of+heavy+metals+from+aqueous+solution+by+biochars+derived+from+anaerobically+digested+biomass&rft.jtitle=Bioresource+technology&rft.au=Inyang%2C+Mandu&rft.au=Gao%2C+Bin&rft.au=Yao%2C+Ying&rft.au=Xue%2C+Yingwen&rft.date=2012-04-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=110&rft.spage=50&rft_id=info:doi/10.1016%2Fj.biortech.2012.01.072&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon