Use of Physiological Data From a Wearable Device to Identify SARS-CoV-2 Infection and Symptoms and Predict COVID-19 Diagnosis: Observational Study

Changes in autonomic nervous system function, characterized by heart rate variability (HRV), have been associated with infection and observed prior to its clinical identification. We performed an evaluation of HRV collected by a wearable device to identify and predict COVID-19 and its related sympto...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical Internet research Vol. 23; no. 2; p. e26107
Main Authors Hirten, Robert P, Danieletto, Matteo, Tomalin, Lewis, Choi, Katie Hyewon, Zweig, Micol, Golden, Eddye, Kaur, Sparshdeep, Helmus, Drew, Biello, Anthony, Pyzik, Renata, Charney, Alexander, Miotto, Riccardo, Glicksberg, Benjamin S, Levin, Matthew, Nabeel, Ismail, Aberg, Judith, Reich, David, Charney, Dennis, Bottinger, Erwin P, Keefer, Laurie, Suarez-Farinas, Mayte, Nadkarni, Girish N, Fayad, Zahi A
Format Journal Article
LanguageEnglish
Published Canada Gunther Eysenbach MD MPH, Associate Professor 22.02.2021
JMIR Publications
Subjects
Online AccessGet full text
ISSN1438-8871
1439-4456
1438-8871
DOI10.2196/26107

Cover

Loading…
Abstract Changes in autonomic nervous system function, characterized by heart rate variability (HRV), have been associated with infection and observed prior to its clinical identification. We performed an evaluation of HRV collected by a wearable device to identify and predict COVID-19 and its related symptoms. Health care workers in the Mount Sinai Health System were prospectively followed in an ongoing observational study using the custom Warrior Watch Study app, which was downloaded to their smartphones. Participants wore an Apple Watch for the duration of the study, measuring HRV throughout the follow-up period. Surveys assessing infection and symptom-related questions were obtained daily. Using a mixed-effect cosinor model, the mean amplitude of the circadian pattern of the standard deviation of the interbeat interval of normal sinus beats (SDNN), an HRV metric, differed between subjects with and without COVID-19 (P=.006). The mean amplitude of this circadian pattern differed between individuals during the 7 days before and the 7 days after a COVID-19 diagnosis compared to this metric during uninfected time periods (P=.01). Significant changes in the mean and amplitude of the circadian pattern of the SDNN was observed between the first day of reporting a COVID-19-related symptom compared to all other symptom-free days (P=.01). Longitudinally collected HRV metrics from a commonly worn commercial wearable device (Apple Watch) can predict the diagnosis of COVID-19 and identify COVID-19-related symptoms. Prior to the diagnosis of COVID-19 by nasal swab polymerase chain reaction testing, significant changes in HRV were observed, demonstrating the predictive ability of this metric to identify COVID-19 infection.
AbstractList Changes in autonomic nervous system function, characterized by heart rate variability (HRV), have been associated with infection and observed prior to its clinical identification.BACKGROUNDChanges in autonomic nervous system function, characterized by heart rate variability (HRV), have been associated with infection and observed prior to its clinical identification.We performed an evaluation of HRV collected by a wearable device to identify and predict COVID-19 and its related symptoms.OBJECTIVEWe performed an evaluation of HRV collected by a wearable device to identify and predict COVID-19 and its related symptoms.Health care workers in the Mount Sinai Health System were prospectively followed in an ongoing observational study using the custom Warrior Watch Study app, which was downloaded to their smartphones. Participants wore an Apple Watch for the duration of the study, measuring HRV throughout the follow-up period. Surveys assessing infection and symptom-related questions were obtained daily.METHODSHealth care workers in the Mount Sinai Health System were prospectively followed in an ongoing observational study using the custom Warrior Watch Study app, which was downloaded to their smartphones. Participants wore an Apple Watch for the duration of the study, measuring HRV throughout the follow-up period. Surveys assessing infection and symptom-related questions were obtained daily.Using a mixed-effect cosinor model, the mean amplitude of the circadian pattern of the standard deviation of the interbeat interval of normal sinus beats (SDNN), an HRV metric, differed between subjects with and without COVID-19 (P=.006). The mean amplitude of this circadian pattern differed between individuals during the 7 days before and the 7 days after a COVID-19 diagnosis compared to this metric during uninfected time periods (P=.01). Significant changes in the mean and amplitude of the circadian pattern of the SDNN was observed between the first day of reporting a COVID-19-related symptom compared to all other symptom-free days (P=.01).RESULTSUsing a mixed-effect cosinor model, the mean amplitude of the circadian pattern of the standard deviation of the interbeat interval of normal sinus beats (SDNN), an HRV metric, differed between subjects with and without COVID-19 (P=.006). The mean amplitude of this circadian pattern differed between individuals during the 7 days before and the 7 days after a COVID-19 diagnosis compared to this metric during uninfected time periods (P=.01). Significant changes in the mean and amplitude of the circadian pattern of the SDNN was observed between the first day of reporting a COVID-19-related symptom compared to all other symptom-free days (P=.01).Longitudinally collected HRV metrics from a commonly worn commercial wearable device (Apple Watch) can predict the diagnosis of COVID-19 and identify COVID-19-related symptoms. Prior to the diagnosis of COVID-19 by nasal swab polymerase chain reaction testing, significant changes in HRV were observed, demonstrating the predictive ability of this metric to identify COVID-19 infection.CONCLUSIONSLongitudinally collected HRV metrics from a commonly worn commercial wearable device (Apple Watch) can predict the diagnosis of COVID-19 and identify COVID-19-related symptoms. Prior to the diagnosis of COVID-19 by nasal swab polymerase chain reaction testing, significant changes in HRV were observed, demonstrating the predictive ability of this metric to identify COVID-19 infection.
Background: Changes in autonomic nervous system function, characterized by heart rate variability (HRV), have been associated with infection and observed prior to its clinical identification. Objective: We performed an evaluation of HRV collected by a wearable device to identify and predict COVID-19 and its related symptoms. Methods: Health care workers in the Mount Sinai Health System were prospectively followed in an ongoing observational study using the custom Warrior Watch Study app, which was downloaded to their smartphones. Participants wore an Apple Watch for the duration of the study, measuring HRV throughout the follow-up period. Surveys assessing infection and symptom-related questions were obtained daily. Results: Using a mixed-effect cosinor model, the mean amplitude of the circadian pattern of the standard deviation of the interbeat interval of normal sinus beats (SDNN), an HRV metric, differed between subjects with and without COVID-19 (P=.006). The mean amplitude of this circadian pattern differed between individuals during the 7 days before and the 7 days after a COVID-19 diagnosis compared to this metric during uninfected time periods (P=.01). Significant changes in the mean and amplitude of the circadian pattern of the SDNN was observed between the first day of reporting a COVID-19–related symptom compared to all other symptom-free days (P=.01). Conclusions: Longitudinally collected HRV metrics from a commonly worn commercial wearable device (Apple Watch) can predict the diagnosis of COVID-19 and identify COVID-19–related symptoms. Prior to the diagnosis of COVID-19 by nasal swab polymerase chain reaction testing, significant changes in HRV were observed, demonstrating the predictive ability of this metric to identify COVID-19 infection.
Changes in autonomic nervous system function, characterized by heart rate variability (HRV), have been associated with infection and observed prior to its clinical identification. We performed an evaluation of HRV collected by a wearable device to identify and predict COVID-19 and its related symptoms. Health care workers in the Mount Sinai Health System were prospectively followed in an ongoing observational study using the custom Warrior Watch Study app, which was downloaded to their smartphones. Participants wore an Apple Watch for the duration of the study, measuring HRV throughout the follow-up period. Surveys assessing infection and symptom-related questions were obtained daily. Using a mixed-effect cosinor model, the mean amplitude of the circadian pattern of the standard deviation of the interbeat interval of normal sinus beats (SDNN), an HRV metric, differed between subjects with and without COVID-19 (P=.006). The mean amplitude of this circadian pattern differed between individuals during the 7 days before and the 7 days after a COVID-19 diagnosis compared to this metric during uninfected time periods (P=.01). Significant changes in the mean and amplitude of the circadian pattern of the SDNN was observed between the first day of reporting a COVID-19-related symptom compared to all other symptom-free days (P=.01). Longitudinally collected HRV metrics from a commonly worn commercial wearable device (Apple Watch) can predict the diagnosis of COVID-19 and identify COVID-19-related symptoms. Prior to the diagnosis of COVID-19 by nasal swab polymerase chain reaction testing, significant changes in HRV were observed, demonstrating the predictive ability of this metric to identify COVID-19 infection.
BackgroundChanges in autonomic nervous system function, characterized by heart rate variability (HRV), have been associated with infection and observed prior to its clinical identification. ObjectiveWe performed an evaluation of HRV collected by a wearable device to identify and predict COVID-19 and its related symptoms. MethodsHealth care workers in the Mount Sinai Health System were prospectively followed in an ongoing observational study using the custom Warrior Watch Study app, which was downloaded to their smartphones. Participants wore an Apple Watch for the duration of the study, measuring HRV throughout the follow-up period. Surveys assessing infection and symptom-related questions were obtained daily. ResultsUsing a mixed-effect cosinor model, the mean amplitude of the circadian pattern of the standard deviation of the interbeat interval of normal sinus beats (SDNN), an HRV metric, differed between subjects with and without COVID-19 (P=.006). The mean amplitude of this circadian pattern differed between individuals during the 7 days before and the 7 days after a COVID-19 diagnosis compared to this metric during uninfected time periods (P=.01). Significant changes in the mean and amplitude of the circadian pattern of the SDNN was observed between the first day of reporting a COVID-19–related symptom compared to all other symptom-free days (P=.01). ConclusionsLongitudinally collected HRV metrics from a commonly worn commercial wearable device (Apple Watch) can predict the diagnosis of COVID-19 and identify COVID-19–related symptoms. Prior to the diagnosis of COVID-19 by nasal swab polymerase chain reaction testing, significant changes in HRV were observed, demonstrating the predictive ability of this metric to identify COVID-19 infection.
Author Kaur, Sparshdeep
Suarez-Farinas, Mayte
Golden, Eddye
Charney, Alexander
Keefer, Laurie
Tomalin, Lewis
Zweig, Micol
Charney, Dennis
Helmus, Drew
Aberg, Judith
Reich, David
Nadkarni, Girish N
Hirten, Robert P
Pyzik, Renata
Biello, Anthony
Danieletto, Matteo
Nabeel, Ismail
Choi, Katie Hyewon
Bottinger, Erwin P
Fayad, Zahi A
Miotto, Riccardo
Glicksberg, Benjamin S
Levin, Matthew
AuthorAffiliation 4 Center for Biostatistics Department of Population Health Science and Policy Icahn School of Medicine at Mount Sinai New York, NY United States
3 Department of Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai New York, NY United States
8 Department of Anesthesiology Perioperative and Pain Medicine Icahn School of Medicine at Mount Sinai New York, NY United States
6 Department of Psychiatry Icahn School of Medicine at Mount Sinai New York, NY United States
5 The BioMedical Engineering and Imaging Institute Icahn School of Medicine at Mount Sinai New York, NY United States
10 Division of Infectious Diseases Icahn School of Medicine at Mount Sinai New York, NY United States
12 Nash Family Department of Neuroscience Icahn School of Medicine at Mount Sinai New York, NY United States
14 Charles Bronfman Institute for Personalized Medicine Icahn School of Medicine at Mount Sinai New York, NY United States
15 Department of Diagnostic, Molecular and Interventional Radiology Icahn
AuthorAffiliation_xml – name: 10 Division of Infectious Diseases Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 2 Hasso Plattner Institute for Digital Health at Mount Sinai Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 15 Department of Diagnostic, Molecular and Interventional Radiology Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 1 The Dr Henry D Janowitz Division of Gastroenterology Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 13 Department of Medicine Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 11 Office of the Dean Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 9 Department of Environmental Medicine and Public Health Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 12 Nash Family Department of Neuroscience Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 5 The BioMedical Engineering and Imaging Institute Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 8 Department of Anesthesiology Perioperative and Pain Medicine Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 6 Department of Psychiatry Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 7 Pamela Sklar Division of Psychiatric Genomics Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 14 Charles Bronfman Institute for Personalized Medicine Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 4 Center for Biostatistics Department of Population Health Science and Policy Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 3 Department of Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai New York, NY United States
Author_xml – sequence: 1
  givenname: Robert P
  orcidid: 0000-0002-7980-9368
  surname: Hirten
  fullname: Hirten, Robert P
– sequence: 2
  givenname: Matteo
  orcidid: 0000-0002-5178-9182
  surname: Danieletto
  fullname: Danieletto, Matteo
– sequence: 3
  givenname: Lewis
  orcidid: 0000-0003-4545-7138
  surname: Tomalin
  fullname: Tomalin, Lewis
– sequence: 4
  givenname: Katie Hyewon
  orcidid: 0000-0001-7465-4558
  surname: Choi
  fullname: Choi, Katie Hyewon
– sequence: 5
  givenname: Micol
  orcidid: 0000-0001-8190-7197
  surname: Zweig
  fullname: Zweig, Micol
– sequence: 6
  givenname: Eddye
  orcidid: 0000-0002-9818-5693
  surname: Golden
  fullname: Golden, Eddye
– sequence: 7
  givenname: Sparshdeep
  orcidid: 0000-0001-5386-8506
  surname: Kaur
  fullname: Kaur, Sparshdeep
– sequence: 8
  givenname: Drew
  orcidid: 0000-0001-6799-3674
  surname: Helmus
  fullname: Helmus, Drew
– sequence: 9
  givenname: Anthony
  orcidid: 0000-0001-6683-5738
  surname: Biello
  fullname: Biello, Anthony
– sequence: 10
  givenname: Renata
  orcidid: 0000-0003-1099-1672
  surname: Pyzik
  fullname: Pyzik, Renata
– sequence: 11
  givenname: Alexander
  orcidid: 0000-0001-8135-6858
  surname: Charney
  fullname: Charney, Alexander
– sequence: 12
  givenname: Riccardo
  orcidid: 0000-0002-7815-6000
  surname: Miotto
  fullname: Miotto, Riccardo
– sequence: 13
  givenname: Benjamin S
  orcidid: 0000-0003-4515-8090
  surname: Glicksberg
  fullname: Glicksberg, Benjamin S
– sequence: 14
  givenname: Matthew
  orcidid: 0000-0002-6013-2684
  surname: Levin
  fullname: Levin, Matthew
– sequence: 15
  givenname: Ismail
  orcidid: 0000-0002-6909-1970
  surname: Nabeel
  fullname: Nabeel, Ismail
– sequence: 16
  givenname: Judith
  orcidid: 0000-0001-8162-0284
  surname: Aberg
  fullname: Aberg, Judith
– sequence: 17
  givenname: David
  orcidid: 0000-0003-0095-515X
  surname: Reich
  fullname: Reich, David
– sequence: 18
  givenname: Dennis
  orcidid: 0000-0003-0610-3433
  surname: Charney
  fullname: Charney, Dennis
– sequence: 19
  givenname: Erwin P
  orcidid: 0000-0001-6868-6676
  surname: Bottinger
  fullname: Bottinger, Erwin P
– sequence: 20
  givenname: Laurie
  orcidid: 0000-0003-4779-8593
  surname: Keefer
  fullname: Keefer, Laurie
– sequence: 21
  givenname: Mayte
  orcidid: 0000-0001-8712-3553
  surname: Suarez-Farinas
  fullname: Suarez-Farinas, Mayte
– sequence: 22
  givenname: Girish N
  orcidid: 0000-0001-6319-4314
  surname: Nadkarni
  fullname: Nadkarni, Girish N
– sequence: 23
  givenname: Zahi A
  orcidid: 0000-0002-3439-7347
  surname: Fayad
  fullname: Fayad, Zahi A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33529156$$D View this record in MEDLINE/PubMed
BookMark eNpdkttq2zAYgMXoWNusrzAEYzAY3iRLsqxdFErSboFCyrJ2l0bWIVWwrUxSAnmNPXHVpCttrnT69En_4RQcDX4wAJxh9LXEovpWVhjxN-AEU1IXdc3x0Yv5MTiNcYlQiajA78AxIawUmFUn4N9tNNBbeHO_jc53fuGU7OBEJgmvgu-hhH-MDLLtDJyYjVMGJg-n2gzJ2S2cX_yaF2N_V5RwOlijkvMDlIOG822_Sr6Pu8VNMNqpBMezu-mkwAJOnFwMPrr4Hc7aaMJGPl7M787TWm_fg7dWdtGcPY0jcHt1-Xv8s7ie_ZiOL64LxUqSCso0EtJyjWxlGZcKS06o1BoLrVvDGGkZZRaJlgrLBCasFhVTFceI1mVlyAhM917t5bJZBdfLsG28dM1uw4dFI0NyqjON5gZVlKva8pZiWtetIqWttURW6JaQ7Drfu1brtjda5fwE2b2Svj4Z3H2z8JuGC4SZoFnw-UkQ_N-1ianpXVSm6-Rg_Do2Ja2r_DDOcYzAxwN06dchpy9TuQkYQSWrM_Xh5Y-ev_K_9Bn4tAdU8DEGY58RjJrHltrZeOa-HHDKpV3BciCuO6AfAEJfydI
CitedBy_id crossref_primary_10_1016_S2589_7500_22_00019_X
crossref_primary_10_5057_isase_2023_C000008
crossref_primary_10_1145_3580850
crossref_primary_10_1016_S2589_7500_24_00096_7
crossref_primary_10_2196_35717
crossref_primary_10_3390_bios13010062
crossref_primary_10_3390_bios14040205
crossref_primary_10_3390_jcm10235590
crossref_primary_10_5694_mja2_51920
crossref_primary_10_1146_annurev_med_052422_020437
crossref_primary_10_3389_fnins_2021_564159
crossref_primary_10_3390_diagnostics13193071
crossref_primary_10_3390_jcm11133883
crossref_primary_10_2196_49719
crossref_primary_10_3390_medicina59020403
crossref_primary_10_1016_j_heliyon_2024_e34842
crossref_primary_10_1145_3494960
crossref_primary_10_1177_20552076241290684
crossref_primary_10_2196_55552
crossref_primary_10_1177_20552076241247374
crossref_primary_10_1097_CPT_0000000000000268
crossref_primary_10_1371_journal_pone_0268065
crossref_primary_10_2139_ssrn_4454582
crossref_primary_10_56083_RCV4N1_266
crossref_primary_10_7717_peerj_cs_564
crossref_primary_10_1038_s41746_021_00533_1
crossref_primary_10_2196_53977
crossref_primary_10_1177_19417381231183709
crossref_primary_10_2196_49204
crossref_primary_10_1016_S2589_7500_23_00045_6
crossref_primary_10_3390_ijerph20247146
crossref_primary_10_3390_math10162927
crossref_primary_10_1038_s41575_022_00593_y
crossref_primary_10_1016_j_patcog_2021_108403
crossref_primary_10_2196_25494
crossref_primary_10_1007_s41358_021_00309_9
crossref_primary_10_1016_S2589_7500_21_00064_9
crossref_primary_10_1371_journal_pdig_0000100
crossref_primary_10_1088_1748_0221_17_07_P07020
crossref_primary_10_1038_s41598_023_37301_y
crossref_primary_10_1146_annurev_bioeng_103020_040136
crossref_primary_10_2196_28568
crossref_primary_10_1007_s11019_024_10231_w
crossref_primary_10_2196_57382
crossref_primary_10_1001_jamanetworkopen_2021_28534
crossref_primary_10_3389_fnetp_2024_1211413
crossref_primary_10_1186_s12859_021_04463_3
crossref_primary_10_32388_X0TQ1D_4
crossref_primary_10_2196_31295
crossref_primary_10_3389_fneur_2024_1403551
crossref_primary_10_1016_j_biopsycho_2022_108473
crossref_primary_10_1016_j_ypmed_2022_107170
crossref_primary_10_1177_20552076231177498
crossref_primary_10_3390_diagnostics15030327
crossref_primary_10_1038_s41366_024_01603_6
crossref_primary_10_5057_ijae_IJAE_D_23_00022
crossref_primary_10_1016_j_compbiomed_2021_105003
crossref_primary_10_3390_ijerph20020909
crossref_primary_10_2196_41050
crossref_primary_10_3390_s24061818
crossref_primary_10_1038_s43856_022_00090_y
crossref_primary_10_1093_jamiaopen_ooac041
crossref_primary_10_2196_47112
crossref_primary_10_15275_rusomj_2021_0307
crossref_primary_10_1038_s41746_024_01341_z
crossref_primary_10_2196_47879
crossref_primary_10_1016_j_lanepe_2024_100934
crossref_primary_10_2196_39546
crossref_primary_10_1016_j_cct_2023_107103
crossref_primary_10_3390_jfmk9020093
crossref_primary_10_2196_29562
crossref_primary_10_2196_60484
crossref_primary_10_1145_3645091
crossref_primary_10_3390_s21248424
crossref_primary_10_1016_j_injury_2023_111254
crossref_primary_10_1053_j_gastro_2024_12_024
crossref_primary_10_1007_s11033_022_07486_y
crossref_primary_10_2196_53716
crossref_primary_10_1093_infdis_jiac262
crossref_primary_10_1038_s41746_022_00593_x
crossref_primary_10_1016_j_biosx_2023_100435
crossref_primary_10_3390_ijerph19031710
crossref_primary_10_2196_29875
crossref_primary_10_1038_s41598_022_07764_6
crossref_primary_10_1093_jamiaopen_ooad029
crossref_primary_10_1177_20552076241249931
crossref_primary_10_32388_X0TQ1D_5
crossref_primary_10_32388_X0TQ1D_6
crossref_primary_10_34067_KID_0000000000000089
crossref_primary_10_2196_42359
Cites_doi 10.7326/m20-3012
10.1016/S2214-109X(20)30074-7
10.1016/s0140-6736(20)30183-5
10.1038/s41591-020-1123-x
10.1371/journal.pntd.0006762
10.3109/07420528.2012.674592
10.1159/000084894
10.1203/01.pdr.0000088074.97781.4f
10.1016/S2589-7500(20)30142-4
10.1371/journal.pone.0006642
10.1016/j.epidem.2011.01.001
10.1007/s10620-020-06493-y
10.1038/s41591-020-0869-5
10.1016/s2589-7500(19)30222-5
10.1186/cc8132
10.1002/cne.10765
10.1038/s41591-020-0916-2
10.3389/fpubh.2017.00258
10.1136/bmj.m3582
10.3201/eid2209.152116
10.1016/S2468-2667(20)30164-X
ContentType Journal Article
Copyright Robert P Hirten, Matteo Danieletto, Lewis Tomalin, Katie Hyewon Choi, Micol Zweig, Eddye Golden, Sparshdeep Kaur, Drew Helmus, Anthony Biello, Renata Pyzik, Alexander Charney, Riccardo Miotto, Benjamin S Glicksberg, Matthew Levin, Ismail Nabeel, Judith Aberg, David Reich, Dennis Charney, Erwin P Bottinger, Laurie Keefer, Mayte Suarez-Farinas, Girish N Nadkarni, Zahi A Fayad. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.02.2021.
2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Robert P Hirten, Matteo Danieletto, Lewis Tomalin, Katie Hyewon Choi, Micol Zweig, Eddye Golden, Sparshdeep Kaur, Drew Helmus, Anthony Biello, Renata Pyzik, Alexander Charney, Riccardo Miotto, Benjamin S Glicksberg, Matthew Levin, Ismail Nabeel, Judith Aberg, David Reich, Dennis Charney, Erwin P Bottinger, Laurie Keefer, Mayte Suarez-Farinas, Girish N Nadkarni, Zahi A Fayad. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.02.2021. 2021
Copyright_xml – notice: Robert P Hirten, Matteo Danieletto, Lewis Tomalin, Katie Hyewon Choi, Micol Zweig, Eddye Golden, Sparshdeep Kaur, Drew Helmus, Anthony Biello, Renata Pyzik, Alexander Charney, Riccardo Miotto, Benjamin S Glicksberg, Matthew Levin, Ismail Nabeel, Judith Aberg, David Reich, Dennis Charney, Erwin P Bottinger, Laurie Keefer, Mayte Suarez-Farinas, Girish N Nadkarni, Zahi A Fayad. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.02.2021.
– notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Robert P Hirten, Matteo Danieletto, Lewis Tomalin, Katie Hyewon Choi, Micol Zweig, Eddye Golden, Sparshdeep Kaur, Drew Helmus, Anthony Biello, Renata Pyzik, Alexander Charney, Riccardo Miotto, Benjamin S Glicksberg, Matthew Levin, Ismail Nabeel, Judith Aberg, David Reich, Dennis Charney, Erwin P Bottinger, Laurie Keefer, Mayte Suarez-Farinas, Girish N Nadkarni, Zahi A Fayad. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.02.2021. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QJ
7RV
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
CCPQU
CNYFK
COVID
DWQXO
E3H
F2A
FYUFA
GHDGH
K9.
KB0
M0S
M1O
NAPCQ
PHGZM
PHGZT
PIMPY
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PRQQA
7X8
5PM
DOA
DOI 10.2196/26107
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Applied Social Sciences Index & Abstracts (ASSIA)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest One
Library & Information Science Collection
Coronavirus Research Database
ProQuest Central Korea
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Library Science Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
Library and Information Science Abstracts (LISA)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Applied Social Sciences Index and Abstracts (ASSIA)
ProQuest Central China
ProQuest Central
ProQuest Library Science
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Library & Information Science Collection
ProQuest Central (New)
Social Science Premium Collection
ProQuest One Social Sciences
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Library & Information Science
EISSN 1438-8871
ExternalDocumentID oai_doaj_org_article_d7e0647c8f7b41488bc32f8da0f9db33
PMC7901594
33529156
10_2196_26107
Genre Journal Article
Observational Study
GroupedDBID ---
.4I
.DC
29L
2WC
36B
53G
5GY
5VS
77K
7RV
7X7
8FI
8FJ
AAFWJ
AAKPC
AAWTL
AAYXX
ABDBF
ABIVO
ABUWG
ACGFO
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
CNYFK
CS3
DIK
DU5
DWQXO
E3Z
EAP
EBD
EBS
EJD
ELW
EMB
EMOBN
ESX
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
KQ8
M1O
M48
NAPCQ
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
RNS
RPM
SJN
SV3
TR2
UKHRP
XSB
ACUHS
CGR
CUY
CVF
ECM
EIF
NPM
PPXIY
PRQQA
3V.
7QJ
7XB
8FK
AZQEC
COVID
E3H
F2A
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c523t-45d09af7d0f6f57ac1a734add19ddbe553b545f09b49f591358965c67104826e3
IEDL.DBID M1O
ISSN 1438-8871
1439-4456
IngestDate Wed Aug 27 01:30:34 EDT 2025
Thu Aug 21 18:40:46 EDT 2025
Fri Jul 11 01:47:50 EDT 2025
Fri Jul 25 20:45:17 EDT 2025
Mon Jul 21 05:17:42 EDT 2025
Thu Apr 24 23:11:24 EDT 2025
Tue Jul 01 02:05:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords app
observational
wearable
data
diagnosis
COVID-19
wearable device
symptom
identification
heart rate variability
infectious disease
prediction
physiological
Language English
License Robert P Hirten, Matteo Danieletto, Lewis Tomalin, Katie Hyewon Choi, Micol Zweig, Eddye Golden, Sparshdeep Kaur, Drew Helmus, Anthony Biello, Renata Pyzik, Alexander Charney, Riccardo Miotto, Benjamin S Glicksberg, Matthew Levin, Ismail Nabeel, Judith Aberg, David Reich, Dennis Charney, Erwin P Bottinger, Laurie Keefer, Mayte Suarez-Farinas, Girish N Nadkarni, Zahi A Fayad. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.02.2021.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-45d09af7d0f6f57ac1a734add19ddbe553b545f09b49f591358965c67104826e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0003-0610-3433
0000-0003-4545-7138
0000-0002-3439-7347
0000-0002-5178-9182
0000-0001-6683-5738
0000-0001-8135-6858
0000-0003-4515-8090
0000-0002-6909-1970
0000-0003-4779-8593
0000-0003-0095-515X
0000-0001-6868-6676
0000-0001-8190-7197
0000-0001-6799-3674
0000-0001-7465-4558
0000-0001-5386-8506
0000-0002-6013-2684
0000-0002-7980-9368
0000-0003-1099-1672
0000-0001-6319-4314
0000-0002-7815-6000
0000-0001-8162-0284
0000-0001-8712-3553
0000-0002-9818-5693
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.proquest.com/docview/2610530258?pq-origsite=%requestingapplication%
PMID 33529156
PQID 2610530258
PQPubID 2033121
ParticipantIDs doaj_primary_oai_doaj_org_article_d7e0647c8f7b41488bc32f8da0f9db33
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7901594
proquest_miscellaneous_2486148191
proquest_journals_2610530258
pubmed_primary_33529156
crossref_primary_10_2196_26107
crossref_citationtrail_10_2196_26107
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-22
PublicationDateYYYYMMDD 2021-02-22
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-22
  day: 22
PublicationDecade 2020
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Toronto
– name: Toronto, Canada
PublicationTitle Journal of medical Internet research
PublicationTitleAlternate J Med Internet Res
PublicationYear 2021
Publisher Gunther Eysenbach MD MPH, Associate Professor
JMIR Publications
Publisher_xml – name: Gunther Eysenbach MD MPH, Associate Professor
– name: JMIR Publications
References ref13
ref24
ref12
ref23
ref15
ref14
ref20
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref4
  doi: 10.7326/m20-3012
– ident: ref21
  doi: 10.1016/S2214-109X(20)30074-7
– ident: ref1
– ident: ref2
  doi: 10.1016/s0140-6736(20)30183-5
– ident: ref10
  doi: 10.1038/s41591-020-1123-x
– ident: ref19
  doi: 10.1371/journal.pntd.0006762
– ident: ref12
  doi: 10.3109/07420528.2012.674592
– ident: ref14
  doi: 10.1159/000084894
– ident: ref15
  doi: 10.1203/01.pdr.0000088074.97781.4f
– ident: ref7
  doi: 10.1016/S2589-7500(20)30142-4
– ident: ref16
  doi: 10.1371/journal.pone.0006642
– ident: ref18
  doi: 10.1016/j.epidem.2011.01.001
– ident: ref22
  doi: 10.1007/s10620-020-06493-y
– ident: ref3
  doi: 10.1038/s41591-020-0869-5
– ident: ref23
  doi: 10.1016/s2589-7500(19)30222-5
– ident: ref24
  doi: 10.1186/cc8132
– ident: ref9
– ident: ref13
  doi: 10.1002/cne.10765
– ident: ref8
  doi: 10.1038/s41591-020-0916-2
– ident: ref11
  doi: 10.3389/fpubh.2017.00258
– ident: ref6
  doi: 10.1136/bmj.m3582
– ident: ref17
– ident: ref20
  doi: 10.3201/eid2209.152116
– ident: ref5
  doi: 10.1016/S2468-2667(20)30164-X
SSID ssj0020491
Score 2.5975473
Snippet Changes in autonomic nervous system function, characterized by heart rate variability (HRV), have been associated with infection and observed prior to its...
Background: Changes in autonomic nervous system function, characterized by heart rate variability (HRV), have been associated with infection and observed prior...
BackgroundChanges in autonomic nervous system function, characterized by heart rate variability (HRV), have been associated with infection and observed prior...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e26107
SubjectTerms Adult
Asymptomatic
Autonomic nervous system
Between-subjects design
Central nervous system
Chemical analysis
Circadian rhythm
Circadian Rhythm - physiology
Coronaviruses
COVID-19
COVID-19 - diagnosis
COVID-19 - physiopathology
COVID-19 - virology
COVID-19 Testing - methods
Diagnostic tests
Disease transmission
Female
Health care
Health Personnel
Heart rate
Heart Rate - physiology
Humans
Hypothesis testing
Infections
Male
Medical diagnosis
Medical personnel
Multimedia
Nervous system
Observational studies
Original Paper
Physiology
Predictions
Questionnaires
SARS-CoV-2 - genetics
SARS-CoV-2 - isolation & purification
Severe acute respiratory syndrome coronavirus 2
Smartphones
Symptoms
Wearable computers
Wearable Electronic Devices
Workers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQDhMSQjB-BbbJSBO3aElsxzG30VINJBiidOwW2bGtTaLJ1GaH_hv8xbznuFU7IXHhEimxFTvxZ_t7yffeI-REaq5Fw8pUOFakvIGDcoKlrOINEAKhCh8Esl_L8xn_fCWutlJ9oSZsCA88vLhTKx36QzaVl4YDd68M3M9XVmdeWcNCnE_Y89bGVDS1gPfm--QRCp0BYqdgJmC-2K2dJwTo_xurvC-O3NptJk_I40gT6dnQvafkgWsPyFF0MqDvaPQiwrdK4_Q8IPtf4o_yZ-T3bOlo52kQeK7XNzrWvaaTRTenmv4EiKPbFB07XCxo39HBadev6PTs-zQddZdpgQ0FsVZLdWvpdDW_7bv5Mpx8W2BzPR1dXH4ap7mi40G2d7N8Ty_M5msvtItixdVzMpt8_DE6T2P6hbQB67RPubCZ0l7azJdeSN3kWjIO62GurDVOCGaAfvlMGa68UDkTlSpFUwJn4WC0OPaC7LVd614RWjSmLACzVWU591AsnVM2M0yUxjMpEnKyHpq6ibHJMUXGrxpsFBzBOoxgQo431W6HYBz3K3zAcd0UYuzscAEQVUdE1f9CVEIO16io44RehttjgiVRJeTtphimIv5f0a3r7qAOrzCsKljACXk5gGjTE3RtU2ArJ0TuwGunq7sl7c11CPctkbIp_vp_PNsb8rBAUQ765BeHZK9f3LkjYFW9OQ4T6A9UViDm
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3_a9UwEA8yYQgiOr9VtxFh-Fu1bZKmEUTmez6mMCc-3_S3krSJDvba2deB79_wL_Yu7SvrGP5SaO9oQu8uuWs-d0fIgdRci4KlobAsCXkBF2UFC1nGC3AIhEqcB8h-To8W_NMPcQVN2H_A1Y2hHfaTWjTnr_78Xr8Dg3-LMGZQoNcQBGA--W3YjCR2bzjmw0FCAg5wvE3ujlhHW5Cv1H-Te3kdJXll25ndJ_d6f5EedgJ-QG7Zaofs9dkG9CXt04nw89LeTnfI9nF_Yv6Q_F2sLK0d9UjPzUJHp7rVdNbUS6rpd9B1zJ-iU4urBm1r2mXvujWdH36dh5P6NExwII_aqqiuSjpfLy_aernyN18aHK6lk5PTj9MwVnTa4ffOVm_oiRl--8K4iFpcPyKL2Ydvk6Ow78MQFhCmtiEXZaS0k2XkUiekLmItGYeFMVZlaawQzIAf5iJluHJCxUxkKhVFCs4Lh-jFssdkq6or-5TQpDBpAsqbZSXnDsjSWlVGhonUOCZFQA42osmLvkg59so4zyFYQQnmXoIB2R_YLrqqHNcZ3qNcByIW0fYP6uZn3ttkXkqLqbZF5qThEBZmBlTVZaWOnCoNYwHZ3WhFvlFM_3rstCSygLwYyGCTeNCiK1tfAg_PsL4qhMIBedIp0TATzHFTEDQHRI7UazTVMaU6--Xrfkv03RR_9v9pPSd3EsTdYNp9sku22ubS7oHj1Jp9bxr_AMGiGCc
  priority: 102
  providerName: Scholars Portal
Title Use of Physiological Data From a Wearable Device to Identify SARS-CoV-2 Infection and Symptoms and Predict COVID-19 Diagnosis: Observational Study
URI https://www.ncbi.nlm.nih.gov/pubmed/33529156
https://www.proquest.com/docview/2610530258
https://www.proquest.com/docview/2486148191
https://pubmed.ncbi.nlm.nih.gov/PMC7901594
https://doaj.org/article/d7e0647c8f7b41488bc32f8da0f9db33
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbYJk1IiB-DQWCrjDTxlpHEdhzzgrZ21UBinVY6-hbFiQ3T1qS06UP5M_iL8TluoBXigZdIia3YUe7O39nf3SF0xDOasZzEPlMk8mluLkIx4pOE5gYQMBFpS5C9iM9H9OOYjd2G29zRKlc20Rrqosphj_ytQfoBVLhhyfvpdx-qRsHpqiuhsYV2QljqgboXDlqHy6DfcBc9ALqzETT7Cr62_tg0_X_DlpsUyT_WnP4jlK5m21BNbo8XtTzOf2wkcvz_z3mMHjo4ik8a-XmC7qlyDx26YAb8BrtoJfh72JmBPbT7yR3IP0U_R3OFK40tkXRlR3EvqzPcn1UTnOEvRpUgPAv3FBglXFe4CQ7WSzw8uRr63eraj2AgSworcVYWeLicTOtqMrc3lzMYrsbdwfWHnh8K3GvogTfzd3gg211lMy6QIpfP0Kh_9rl77rsyD35uvODap6wIRKZ5EehYM57lYcYJNXY3FEUhFWNEGpinAyGp0EyEhCUiZnlssBE1zpEi-2i7rEr1AuEol3FkdCNJCkq1aeZKiSKQhMVSE848dLT6-WnucqBDKY671PhCICOplREPddpu0ybpx2aHU5CcthFydNsH1exr6lQ-LbiCSN480VxS43Um0miCToos0KKQhHjoYCUaqTMc8_S3XHjoddtsVB7OcbJSVQvThyaQvtV42h563ohpOxMIoRPGJ_cQXxPgtamut5Q332xacQ7QUNCX_57WK3Q_AloPRPVHB2i7ni3UocFlteygLT7mHbRzenZxedWxuxsdq5BwpckvwKg_AQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQxpICMG4BbZhpMFbtDS24xgJodFSteyG6Dr6FnKxYRJNSpsJ9W_wQ_iNnJOkHZ0Qb3up1NqqrZyLvxN_5xyAXRWLWKY8cKXhvitS_NBGcpeHIkVAILVvK4LscdAbig8jOVqD34tcGKJVLnxi5aizIqV35HuI9D3qcCPDt5MfLnWNotvVRQuNWi0OzPwnhmyzN_0Oyvel73ffn7Z7btNVwE0x6CpdITNPx1Zlng2sVHHaihUXaOYtnWWJkZIniCqspxOhrdQtLkMdyDTAo1ggFjcc__cG3MSD1yMKoRpdBniItlsbcIfo1ajY1ZbVynlXtQX4F5a9Ssn864zr3oO7DThl-7U23Yc1k2_CdpPawF6xJneJZMkap7AJG0fN9fwD-DWcGVZYVtFKF16VdeIyZt1pMWYx-4xPkJK1WMeQi2JlwepUYTtng_1PA7ddnLk-LVRRxHIW5xkbzMeTshjPqi8fp7RcydonZ_2O29KsU5MFz2ev2UmyfMeM6xJFcv4Qhtcinkewnhe5eQLMT5PAR0sJw0wIi8PKGJ15CZdBYrmSDuwuRBOlTUV0aszxPcLIiCQYVRJ0YGc5bVKXALk64R3JdTlIFburH4rp16hxAFGmDOX1pqFVicAYNEzQLmyYxZ7VWcK5A1sLrYgaNzKLLpXegRfLYXQAdKsT56a4wDkipGKuGHc78LhWouVOKKFOY4TugFpRr5Wtro7k59-qIuOKgKIWT_-_redwq3d6dBgd9o8PnsFtnwg_lO_vb8F6Ob0w24jYymSnMhMGX67bLv8AnBdTzQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwED6NIVVICMF4C2zDSINv0dLYjmMkhEZDtTLYJsq2fgt5sWESTUqbCfVv8HP4ddwlaUcnxLd9qdTaqq3ci5-Ln7sD2FGJSGTGA1ca7rsiww9tJHd5KDIEBFL7tibIHgb7J-L9SI7W4PciF4ZolQufWDvqvMzoHfkuIn2POtzIcNe2tIjjqP9m8sOlDlJ007pop9GoyIGZ_8TwbfZ6EKGsX_h-_93n3r7bdhhwMwzAKlfI3NOJVblnAytVknUTxQWafFfneWqk5CkiDOvpVGgrdZfLUAcyC_BYFojLDcf_vQE3FcdjE21JjS6DPUTe3Q7cJqo1Knm9fbVy9tUtAv6Fa6_SM_867_p34U4LVNleo1n3YM0UG7DVpjmwl6zNYyK5stZBbEDnY3tVfx9-ncwMKy2rKaYLD8uipEpYf1qOWcLO8AlS4haLDLkrVpWsSRu2czbc-zR0e-Wp69NCNV2sYEmRs-F8PKnK8az-cjyl5SrWOzodRG5Xs6ghDp7PXrGjdPm-GdcluuT8AZxci3gewnpRFuYxMD9LAx-tJgxzISwOK2N07qVcBqnlSjqwsxBNnLXV0alJx_cYoySSYFxL0IHt5bRJUw7k6oS3JNflIFXvrn8op1_j1hnEuTKU45uFVqUC49EwRRuxYZ54Vucp5w5sLrQibl3KLL40AAeeL4fRGdANT1KY8gLniJAKu2IM7sCjRomWO6HkOo3RugNqRb1Wtro6Upx_qwuOKwKNWjz5_7aeQQctMv4wODx4Crd84v5Q6r-_CevV9MJsIXir0u3aShh8uW6z_ANbBVgD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+Physiological+Data+From+a+Wearable+Device+to+Identify+SARS-CoV-2+Infection+and+Symptoms+and+Predict+COVID-19+Diagnosis%3A+Observational+Study&rft.jtitle=Journal+of+medical+Internet+research&rft.au=Hirten%2C+Robert+P&rft.au=Danieletto%2C+Matteo&rft.au=Tomalin%2C+Lewis&rft.au=Choi%2C+Katie+Hyewon&rft.date=2021-02-22&rft.pub=Gunther+Eysenbach+MD+MPH%2C+Associate+Professor&rft.eissn=1438-8871&rft.volume=23&rft.issue=2&rft.spage=e26107&rft_id=info:doi/10.2196%2F26107&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-8871&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-8871&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-8871&client=summon