Integrated Metabolomic and Transcriptomic Analysis of the Quinoa Seedling Response to High Relative Humidity Stress

Quinoa is of great interest because it is cold- and drought-resistant; however, little research has been performed on quinoa under high relative humidity (RH) stress. In this study, quinoa seedlings of a highly HR-resistant variety (“Dianli-439”) and a sensitive variety (“Dianli-969”) were subjected...

Full description

Saved in:
Bibliographic Details
Published inBiomolecules (Basel, Switzerland) Vol. 13; no. 9; p. 1352
Main Authors Li, Xinyi, Zhang, Ping, Liu, Jia, Wang, Hongxin, Liu, Junna, Li, Hanxue, Xie, Heng, Wang, Qianchao, Li, Li, Zhang, Shan, Huang, Liubin, Liu, Chenghong, Qin, Peng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Quinoa is of great interest because it is cold- and drought-resistant; however, little research has been performed on quinoa under high relative humidity (RH) stress. In this study, quinoa seedlings of a highly HR-resistant variety (“Dianli-439”) and a sensitive variety (“Dianli-969”) were subjected to morphological and physiological measurements and metabolome and transcriptome analyses to investigate their response to high RH stress. In total, 1060 metabolites were detected, and lipids and flavonoids were the most abundant, with 173 and 167 metabolites, respectively. In total, 13,095 differentially expressed genes were identified, and the results showed that abscisic acid, auxin, and jasmonic-acid-related genes involved in plant hormone signaling may be involved in the response of quinoa seedlings to high RH stress. The analysis of the transcription factors revealed that the AP2/ERF family may also play an important role in the response to high RH stress. We identified the possible regulatory mechanisms of the hormone signaling pathways under high RH stress. Our findings can provide a basis for the selection and identification of highly resistant quinoa varieties and the screening of the metabolite-synthesis- and gene-regulation-related mechanisms in quinoa in response to RH stress.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:2218-273X
2218-273X
DOI:10.3390/biom13091352