Irrigation and Greenhouse Gas Emissions: A Review of Field-Based Studies

Irrigation practices can greatly influence greenhouse gas (GHG) emissions because of their control on soil microbial activity and substrate supply. However, the effects of different irrigation management practices, such as flood irrigations versus reduced volume methods, including drip and sprinkler...

Full description

Saved in:
Bibliographic Details
Published inSoil systems Vol. 4; no. 2; p. 20
Main Authors Sapkota, Anish, Haghverdi, Amir, Avila, Claudia C. E., Ying, Samantha C.
Format Journal Article
LanguageEnglish
Published MDPI AG 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Irrigation practices can greatly influence greenhouse gas (GHG) emissions because of their control on soil microbial activity and substrate supply. However, the effects of different irrigation management practices, such as flood irrigations versus reduced volume methods, including drip and sprinkler irrigation, on GHG emissions are still poorly understood. Therefore, this review was performed to investigate the effects of different irrigation management strategies on the emission of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) by synthesizing existing research that either directly or indirectly examined the effects of at least two irrigation rates on GHG emissions within a single field-based study. Out of thirty-two articles selected for review, reduced irrigation was found to be effective in lowering the rate of CH4 emissions, while flood irrigation had the highest CH4 emission. The rate of CO2 emission increased mostly under low irrigation, and the effect of irrigation strategies on N2O emissions were inconsistent, though a majority of studies reported low N2O emissions in continuously flooded field treatments. The global warming potential (GWP) demonstrated that reduced or water-saving irrigation strategies have the potential to decrease the effect of GHG emissions. In general, GWP was higher for the field that was continuously flooded. The major finding from this review is that optimizing irrigation may help to reduce CH4 emissions and net GWP. However, more field research assessing the effect of varying rates of irrigation on the emission of GHGs from the agricultural field is warranted.
AbstractList Irrigation practices can greatly influence greenhouse gas (GHG) emissions because of their control on soil microbial activity and substrate supply. However, the effects of different irrigation management practices, such as flood irrigations versus reduced volume methods, including drip and sprinkler irrigation, on GHG emissions are still poorly understood. Therefore, this review was performed to investigate the effects of different irrigation management strategies on the emission of nitrous oxide (N₂O), carbon dioxide (CO₂), and methane (CH₄) by synthesizing existing research that either directly or indirectly examined the effects of at least two irrigation rates on GHG emissions within a single field-based study. Out of thirty-two articles selected for review, reduced irrigation was found to be effective in lowering the rate of CH₄ emissions, while flood irrigation had the highest CH₄ emission. The rate of CO₂ emission increased mostly under low irrigation, and the effect of irrigation strategies on N₂O emissions were inconsistent, though a majority of studies reported low N₂O emissions in continuously flooded field treatments. The global warming potential (GWP) demonstrated that reduced or water-saving irrigation strategies have the potential to decrease the effect of GHG emissions. In general, GWP was higher for the field that was continuously flooded. The major finding from this review is that optimizing irrigation may help to reduce CH₄ emissions and net GWP. However, more field research assessing the effect of varying rates of irrigation on the emission of GHGs from the agricultural field is warranted.
Irrigation practices can greatly influence greenhouse gas (GHG) emissions because of their control on soil microbial activity and substrate supply. However, the effects of different irrigation management practices, such as flood irrigations versus reduced volume methods, including drip and sprinkler irrigation, on GHG emissions are still poorly understood. Therefore, this review was performed to investigate the effects of different irrigation management strategies on the emission of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) by synthesizing existing research that either directly or indirectly examined the effects of at least two irrigation rates on GHG emissions within a single field-based study. Out of thirty-two articles selected for review, reduced irrigation was found to be effective in lowering the rate of CH4 emissions, while flood irrigation had the highest CH4 emission. The rate of CO2 emission increased mostly under low irrigation, and the effect of irrigation strategies on N2O emissions were inconsistent, though a majority of studies reported low N2O emissions in continuously flooded field treatments. The global warming potential (GWP) demonstrated that reduced or water-saving irrigation strategies have the potential to decrease the effect of GHG emissions. In general, GWP was higher for the field that was continuously flooded. The major finding from this review is that optimizing irrigation may help to reduce CH4 emissions and net GWP. However, more field research assessing the effect of varying rates of irrigation on the emission of GHGs from the agricultural field is warranted.
Irrigation practices can greatly influence greenhouse gas (GHG) emissions because of their control on soil microbial activity and substrate supply. However, the effects of different irrigation management practices, such as flood irrigations versus reduced volume methods, including drip and sprinkler irrigation, on GHG emissions are still poorly understood. Therefore, this review was performed to investigate the effects of different irrigation management strategies on the emission of nitrous oxide ([N.sub.2]O), carbon dioxide (C[O.sub.2]), and methane (C[H.sub.4]) by synthesizing existing research that either directly or indirectly examined the effects of at least two irrigation rates on GHG emissions within a single field-based study. Out of thirty-two articles selected for review, reduced irrigation was found to be effective in lowering the rate of C[H.sub.4] emissions, while flood irrigation had the highest C[H.sub.4] emission. The rate of C[O.sub.2] emission increased mostly under low irrigation, and the effect of irrigation strategies on [N.sub.2]O emissions were inconsistent, though a majority of studies reported low [N.sub.2]O emissions in continuously flooded field treatments. The global warming potential (GWP) demonstrated that reduced or water-saving irrigation strategies have the potential to decrease the effect of GHG emissions. In general, GWP was higher for the field that was continuously flooded. The major finding from this review is that optimizing irrigation may help to reduce C[H.sub.4] emissions and net GWP. However, more field research assessing the effect of varying rates of irrigation on the emission of GHGs from the agricultural field is warranted.
Irrigation practices can greatly influence greenhouse gas (GHG) emissions because of their control on soil microbial activity and substrate supply. However, the effects of different irrigation management practices, such as flood irrigations versus reduced volume methods, including drip and sprinkler irrigation, on GHG emissions are still poorly understood. Therefore, this review was performed to investigate the effects of different irrigation management strategies on the emission of nitrous oxide ([N.sub.2]O), carbon dioxide (C[O.sub.2]), and methane (C[H.sub.4]) by synthesizing existing research that either directly or indirectly examined the effects of at least two irrigation rates on GHG emissions within a single field-based study. Out of thirty-two articles selected for review, reduced irrigation was found to be effective in lowering the rate of C[H.sub.4] emissions, while flood irrigation had the highest C[H.sub.4] emission. The rate of C[O.sub.2] emission increased mostly under low irrigation, and the effect of irrigation strategies on [N.sub.2]O emissions were inconsistent, though a majority of studies reported low [N.sub.2]O emissions in continuously flooded field treatments. The global warming potential (GWP) demonstrated that reduced or water-saving irrigation strategies have the potential to decrease the effect of GHG emissions. In general, GWP was higher for the field that was continuously flooded. The major finding from this review is that optimizing irrigation may help to reduce C[H.sub.4] emissions and net GWP. However, more field research assessing the effect of varying rates of irrigation on the emission of GHGs from the agricultural field is warranted. Keywords: GHG; nitrous oxide; methane; carbon dioxide; deficit irrigation; reduced irrigation; redox
Audience Academic
Author Ying, Samantha C.
Sapkota, Anish
Haghverdi, Amir
Avila, Claudia C. E.
Author_xml – sequence: 1
  givenname: Anish
  surname: Sapkota
  fullname: Sapkota, Anish
– sequence: 2
  givenname: Amir
  orcidid: 0000-0001-5033-6395
  surname: Haghverdi
  fullname: Haghverdi, Amir
– sequence: 3
  givenname: Claudia C. E.
  orcidid: 0000-0001-9994-3647
  surname: Avila
  fullname: Avila, Claudia C. E.
– sequence: 4
  givenname: Samantha C.
  surname: Ying
  fullname: Ying, Samantha C.
BookMark eNp9UV1LHDEUDaKgtf4BnwJ96ctoJh-bjG9b0XVBKFR9DneTm21kdqLJrMV_36wr0mopuZBwcs7JvTmfyO6QBiTkuGUnQnTstKTYl-cy4qpIxlmtHXLAlW4bo023-8d5nxyVcs8qpZVMy8kBuZrnHJcwxjRQGDydZcThZ1oXpDMo9GIVS6l35YxO6Q98iviLpkAvI_a--QYFPb0Z1z5i-Uz2AvQFj173Q3J3eXF7ftVcf5_Nz6fXjVNcjI0whneKtRKddtx4tvBGOD8xomtbqaTmXBrnNQYnKgpqgnphgvDOsLYDIw7JfOvrE9zbhxxXkJ9tgmhfgJSXFvIYXY9WQfDAhdTBBykkADh0IiyU0twttK9eX7deDzk9rrGMto7rsO9hwPoFlisueSe0kpX6ZUtdQnWOQ0hjBreh2-lESG60YpvmTv7BqsvjKrqaWogV_0vAtwKXUykZw9tELbObcO3HcKvIvBO5OL5EWF-L_f-kvwFbTa4B
CitedBy_id crossref_primary_10_1016_j_agee_2022_108262
crossref_primary_10_1016_j_jenvman_2024_122945
crossref_primary_10_3390_agronomy14081843
crossref_primary_10_1016_j_gecadv_2023_100001
crossref_primary_10_3390_agronomy12061414
crossref_primary_10_3390_ijerph18020705
crossref_primary_10_1007_s00271_024_00926_6
crossref_primary_10_1016_j_scitotenv_2024_170190
crossref_primary_10_1016_j_agwat_2024_108806
crossref_primary_10_1177_1178622120939587
crossref_primary_10_1002_jeq2_20353
crossref_primary_10_1016_j_scitotenv_2024_178153
crossref_primary_10_1016_j_agwat_2023_108328
crossref_primary_10_3390_w16131770
crossref_primary_10_1111_gcb_17233
crossref_primary_10_1016_j_scitotenv_2021_152454
crossref_primary_10_1016_j_fcr_2022_108715
crossref_primary_10_3390_agronomy13030754
crossref_primary_10_1016_j_jclepro_2024_142255
crossref_primary_10_1080_14735903_2023_2193439
crossref_primary_10_1016_j_compag_2025_110054
crossref_primary_10_1016_j_biosystemseng_2021_09_013
crossref_primary_10_3390_agronomy13102566
crossref_primary_10_1016_j_agee_2022_107954
crossref_primary_10_1016_j_scienta_2022_111757
crossref_primary_10_1016_j_agee_2024_108923
crossref_primary_10_1016_j_agrformet_2025_110415
crossref_primary_10_1016_j_jenvman_2024_120088
crossref_primary_10_1016_j_resconrec_2020_105360
crossref_primary_10_1038_s41467_023_37391_2
crossref_primary_10_1080_00380768_2022_2095669
crossref_primary_10_1016_j_agwat_2025_109300
crossref_primary_10_5194_hess_27_303_2023
crossref_primary_10_1016_j_jia_2024_03_047
crossref_primary_10_1111_ejss_13515
crossref_primary_10_1002_jsfa_13833
crossref_primary_10_1002_ird_2696
crossref_primary_10_3390_agriculture12111878
crossref_primary_10_1007_s11270_021_05091_6
crossref_primary_10_54167_tch_v18i1_1415
crossref_primary_10_1016_j_envres_2024_119189
crossref_primary_10_1038_s44221_024_00283_w
crossref_primary_10_3390_agronomy13071925
crossref_primary_10_3389_fpls_2022_832683
crossref_primary_10_5897_AJAR2023_16596
crossref_primary_10_3390_en13184960
crossref_primary_10_3390_soilsystems4020022
crossref_primary_10_1016_j_cej_2024_153233
crossref_primary_10_1016_j_agwat_2024_108941
crossref_primary_10_3390_su152316240
crossref_primary_10_1007_s10343_022_00719_x
crossref_primary_10_1016_j_agee_2022_107944
crossref_primary_10_1038_s43017_023_00438_5
crossref_primary_10_1016_j_agwat_2021_107216
crossref_primary_10_1038_s43247_023_00889_0
crossref_primary_10_1016_j_envres_2024_118738
crossref_primary_10_1016_j_agee_2022_108197
crossref_primary_10_3390_su12208577
crossref_primary_10_1016_j_jksus_2024_103445
crossref_primary_10_1088_1748_9326_ad6339
crossref_primary_10_3390_grasses3030016
crossref_primary_10_1021_acssuschemeng_1c08237
crossref_primary_10_1016_j_geoderma_2023_116681
crossref_primary_10_1016_j_scitotenv_2020_142965
crossref_primary_10_1007_s11270_023_06069_2
crossref_primary_10_1038_s41893_025_01528_6
crossref_primary_10_3390_su16072802
crossref_primary_10_1016_j_energy_2025_134450
crossref_primary_10_1002_ird_2826
Cites_doi 10.1007/s13280-012-0349-3
10.2136/sssaj1991.03615995005500030016x
10.1146/annurev.mi.48.100194.001523
10.1029/97GB00627
10.1016/j.agee.2016.05.023
10.7717/peerj.5465
10.1590/0103-9016-2015-0050
10.2136/sssaj1998.03615995006200010032x
10.1016/j.scitotenv.2015.08.040
10.1111/sum.12229
10.1139/x99-218
10.1111/gcb.12701
10.1038/s41467-017-01753-4
10.3390/atmos10050242
10.1016/j.fcr.2018.09.010
10.1126/science.333.6042.540
10.1139/cjss-2017-0001
10.5194/bg-14-2611-2017
10.1016/j.soilbio.2004.01.004
10.2136/vzj2017.08.0152
10.1016/S0038-0717(01)00096-7
10.1046/j.1462-2920.2001.00163.x
10.1890/13-0570.1
10.1016/j.atmosenv.2018.12.003
10.1038/nature08930
10.1111/gcb.14514
10.1016/S0076-6879(05)97026-2
10.1007/s10333-015-0490-2
10.1016/j.chemosphere.2012.04.066
10.1016/j.atmosenv.2016.11.020
10.2136/sssaj2005.0387
10.1016/j.agee.2016.01.021
10.1038/ngeo2940
10.1080/00103620600767124
10.1007/BF02205580
10.1371/journal.pmed.1000097
10.1111/j.1574-6941.2008.00555.x
10.3390/su10020475
10.1038/s41467-017-01406-6
10.1016/j.chemer.2016.04.002
10.1080/00380768.1999.10409320
10.1016/j.scitotenv.2017.09.022
10.1126/science.1097396
10.1016/j.agwat.2019.03.042
10.1016/j.agwat.2015.10.012
10.2136/sssaj1990.03615995005400020022x
10.1016/j.watres.2009.03.001
10.1007/s10333-013-0406-y
10.2134/jeq2012.0176
10.1111/gcb.14472
10.1007/BF01343734
10.1016/0038-0717(83)90010-X
10.2136/sssaj2005.0032
10.1080/03601234.2017.1292094
10.1155/2014/407832
10.1007/s11104-012-1429-7
10.1023/A:1006244819642
10.1038/s41467-017-01320-x
10.1029/92GB01674
10.1098/rstb.2013.0122
10.1016/S2095-3119(17)61761-1
10.1016/S1465-9972(99)00056-2
10.1016/j.agwat.2015.10.015
10.1007/s11270-014-2118-3
10.1371/journal.pone.0066428
10.1111/j.1365-2486.2008.01631.x
10.1071/SR02064
10.1023/A:1026502414977
10.1016/j.soilbio.2005.05.005
10.1146/annurev.mi.31.100177.001521
10.1016/j.soilbio.2007.08.007
10.1029/96GB00517
10.2136/sssaj2000.6451630x
10.1139/x93-177
10.1080/00380768.2019.1579615
10.1073/pnas.1322434111
10.4296/cwrj2601107
10.1016/j.fcr.2016.04.007
10.1016/0045-6535(93)90426-6
10.1080/00380768.1990.10416797
10.1007/s13593-013-0134-0
10.1016/j.jenvman.2007.07.012
10.1016/B978-0-12-394626-3.00004-1
10.1016/j.agee.2010.02.010
10.1007/s10705-016-9775-0
10.1016/S0031-4056(24)00377-9
10.1111/j.1365-2486.2005.00976.x
10.1016/j.agee.2016.05.007
10.1016/j.scitotenv.2014.10.073
10.1007/s10533-013-9837-1
10.1016/0038-0717(94)90290-9
10.1007/s11104-016-2966-2
10.1016/j.pce.2011.08.020
10.1029/2004JD004590
10.5194/bg-13-4789-2016
10.1680/geot.2008.58.3.157
10.1016/j.scitotenv.2018.07.296
10.2136/sssaj2003.7980
10.1016/j.agee.2016.09.033
10.1111/j.1365-2486.2008.01681.x
10.1016/0929-1393(96)00106-0
10.1016/j.scitotenv.2017.07.118
10.2478/intag-2014-0011
10.1111/j.1365-2486.2011.02502.x
10.1111/gcb.12620
10.1007/s11104-012-1197-4
10.1016/0038-0717(85)90070-7
10.1016/S0038-0717(00)00094-8
10.2136/sssaj1990.03615995005400060018x
10.1007/s00248-014-0371-z
10.1016/0038-0717(83)90034-2
10.1097/00010694-200002000-00006
10.1007/BF00425811
10.2136/sssaj2000.6462180x
ContentType Journal Article
Copyright COPYRIGHT 2020 MDPI AG
Copyright_xml – notice: COPYRIGHT 2020 MDPI AG
DBID AAYXX
CITATION
7S9
L.6
DOA
DOI 10.3390/soilsystems4020020
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2571-8789
ExternalDocumentID oai_doaj_org_article_5afda2347fdf434aaacec3fb5572cb7d
A634287508
10_3390_soilsystems4020020
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 7X2
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
M0K
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
IAG
ITC
PMFND
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c523t-388295014ec7c28d0bd83cd68391145472248cd7efc3d68a56e7b8f3dc8019a83
IEDL.DBID DOA
ISSN 2571-8789
IngestDate Wed Aug 27 01:31:49 EDT 2025
Fri Jul 11 00:19:24 EDT 2025
Tue Jun 17 21:49:50 EDT 2025
Tue Jun 10 20:32:10 EDT 2025
Thu Apr 24 22:59:27 EDT 2025
Tue Jul 01 02:33:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-388295014ec7c28d0bd83cd68391145472248cd7efc3d68a56e7b8f3dc8019a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5033-6395
0000-0001-9994-3647
OpenAccessLink https://doaj.org/article/5afda2347fdf434aaacec3fb5572cb7d
PQID 2524293754
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_5afda2347fdf434aaacec3fb5572cb7d
proquest_miscellaneous_2524293754
gale_infotracmisc_A634287508
gale_infotracacademiconefile_A634287508
crossref_primary_10_3390_soilsystems4020020
crossref_citationtrail_10_3390_soilsystems4020020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Soil systems
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kallenbach (ref_73) 2010; 137
Masscheleyn (ref_28) 1993; 26
Yang (ref_90) 2019; 200
ref_97
Clein (ref_18) 1994; 26
Edwards (ref_67) 2018; 98
Jabro (ref_106) 2008; 88
Kulshreshtha (ref_53) 2001; 26
Liang (ref_76) 2017; 609
Khalil (ref_32) 2004; 36
Islam (ref_42) 2018; 612
Hou (ref_117) 2012; 89
Yang (ref_89) 2012; 53
Hou (ref_111) 2000; 64
Smith (ref_23) 2017; 8
Dao (ref_105) 1998; 62
Fangueiro (ref_68) 2017; 150
Schnell (ref_124) 2000; 32
Orchard (ref_12) 1983; 15
Neilson (ref_104) 1990; 54
Scheer (ref_82) 2014; 24
ref_26
Baggs (ref_39) 2013; 368
Gupta (ref_63) 2016; 230
Kim (ref_46) 2016; 13
Bouma (ref_101) 2000; 227
Jiao (ref_123) 2006; 37
Li (ref_110) 2016; 409
Olivella (ref_102) 2008; 58
Wu (ref_86) 2018; 8
Yagi (ref_121) 1996; 10
Rastogi (ref_9) 2002; 82
Halverson (ref_21) 2000; 64
Bowden (ref_16) 1993; 23
ref_83
Birch (ref_19) 1958; 10
Keiluweit (ref_50) 2017; 8
Smith (ref_99) 1983; 15
Nealson (ref_34) 1994; 48
Gebremichael (ref_98) 2017; 14
Sass (ref_119) 1992; 6
Fentabil (ref_69) 2016; 235
Zschornack (ref_91) 2016; 105
Cai (ref_122) 1999; 45
Kampschreur (ref_30) 2009; 43
Dalal (ref_47) 2003; 41
Maag (ref_25) 1996; 4
Maier (ref_15) 2000; 30
Fierer (ref_22) 2003; 67
Zheng (ref_27) 2000; 2
Boye (ref_125) 2017; 10
Maris (ref_78) 2015; 538
ref_58
Oertel (ref_11) 2016; 76
Haque (ref_71) 2016; 193
Ruser (ref_48) 2006; 38
Husson (ref_49) 2013; 362
Liu (ref_108) 2005; 69
ref_59
Sibayan (ref_80) 2019; 65
Roberson (ref_107) 1991; 55
Linquist (ref_57) 2015; 21
Arrue (ref_70) 2019; 221
Amos (ref_94) 2005; 69
Xu (ref_88) 2016; 221
Gayton (ref_45) 2018; 6
ref_61
ref_60
Li (ref_75) 2019; 646
Wrage (ref_31) 2001; 33
Scheer (ref_56) 2012; 359
Tiedje (ref_14) 1984; 76
Tian (ref_92) 2019; 25
Fares (ref_41) 2017; 52
Chen (ref_96) 2018; 17
Thomson (ref_8) 2010; 464
Haque (ref_72) 2016; 32
Mah (ref_36) 1977; 31
ref_62
Ali (ref_65) 2013; 42
Lal (ref_6) 2004; 304
Hanson (ref_10) 2000; 48
Maris (ref_77) 2016; 14
Linquist (ref_113) 2012; 18
Wang (ref_109) 2014; 20
Roberts (ref_1) 2011; 333
Ratering (ref_33) 2001; 3
Sigren (ref_120) 1997; 11
Scanlon (ref_51) 2000; 165
ref_118
Berger (ref_66) 2013; 115
Borken (ref_24) 2009; 15
ref_112
Riya (ref_79) 2014; 225
Shcherbak (ref_93) 2014; 111
Kumar (ref_74) 2016; 228
Wang (ref_84) 2016; 163
Win (ref_85) 2013; 13
Scheer (ref_81) 2008; 14
Scheer (ref_95) 2008; 40
Trost (ref_7) 2013; 33
Bottner (ref_20) 1985; 17
Friedrich (ref_38) 2005; Volume 397
McGill (ref_54) 2018; 24
Liang (ref_114) 2016; 163
Sulkava (ref_17) 1996; 40
Yan (ref_116) 2005; 11
Tarlera (ref_115) 2016; 73
ref_44
ref_43
Stres (ref_40) 2008; 66
Sainju (ref_55) 2012; 41
ref_3
ref_2
Xu (ref_87) 2015; 505
Yagi (ref_35) 1990; 36
Skopp (ref_13) 1990; 54
Hochstein (ref_29) 1984; 137
Hamoud (ref_103) 2018; 11
Ahn (ref_64) 2014; 68
(ref_52) 2014; 28
Kuang (ref_100) 2018; 229
Angle (ref_37) 2017; 8
ref_5
ref_4
References_xml – volume: 42
  start-page: 357
  year: 2013
  ident: ref_65
  article-title: Mitigating Global Warming Potentials of Methane and Nitrous Oxide Gases from Rice Paddies under different irrigation regimes
  publication-title: Ambio
  doi: 10.1007/s13280-012-0349-3
– volume: 55
  start-page: 734
  year: 1991
  ident: ref_107
  article-title: Cover crop management of polysaccharide-mediated aggregation in an orchard soil
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1991.03615995005500030016x
– volume: 48
  start-page: 311
  year: 1994
  ident: ref_34
  article-title: Iron and Manganese in anaerobic respiration: Environmental Significance, Physiology, and Regulation
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.mi.48.100194.001523
– volume: 11
  start-page: 151
  year: 1997
  ident: ref_120
  article-title: Effects of field drainage on soil parameters related to methane production and emission from rice paddies
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/97GB00627
– volume: 230
  start-page: 1
  year: 2016
  ident: ref_63
  article-title: Mitigation of greenhouse gas emission from rice-wheat system of the Indo-Gangetic plains: Through tillage, irrigation and fertilizer management
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2016.05.023
– volume: 6
  start-page: e5465
  year: 2018
  ident: ref_45
  article-title: Greenhouse gas emissions limited by low nitrogen and carbon availability in natural, restored, and agricultural Oregon seasonal wetlands
  publication-title: PeerJ
  doi: 10.7717/peerj.5465
– volume: 73
  start-page: 43
  year: 2016
  ident: ref_115
  article-title: Yield-scaled global warming potential of two irrigation management systems in a highly productive rice system
  publication-title: Sci. Agric.
  doi: 10.1590/0103-9016-2015-0050
– volume: 62
  start-page: 250
  year: 1998
  ident: ref_105
  article-title: Tillage and crop residue effects on carbon dioxide evolution and carbon storage in a Paleustoll
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1998.03615995006200010032x
– volume: 538
  start-page: 966
  year: 2015
  ident: ref_78
  article-title: Effect of irrigation, nitrogen application, and a nitrification inhibitor on nitrous oxide, carbon dioxide and methane emissions from an olive (Olea europaea L.) orchard
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.08.040
– volume: 32
  start-page: 72
  year: 2016
  ident: ref_72
  article-title: Suppressing methane emission and global warming potential from rice fields through intermittent drainage and green biomass amendment
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12229
– volume: 30
  start-page: 347
  year: 2000
  ident: ref_15
  article-title: Soil CO2 evolution and root respiration in 11 year-old loblolly pine (Pinus taeda) plantations as affected by moisture and nutrient availability
  publication-title: Can. J. For. Res.
  doi: 10.1139/x99-218
– volume: 21
  start-page: 407
  year: 2015
  ident: ref_57
  article-title: Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12701
– volume: 8
  start-page: 1567
  year: 2017
  ident: ref_37
  article-title: Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01753-4
– ident: ref_97
  doi: 10.3390/atmos10050242
– volume: 229
  start-page: 17
  year: 2018
  ident: ref_100
  article-title: Effects of fertilizer and irrigation management on nitrous oxide emission from cotton fields in an extremely arid region of northwestern China
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2018.09.010
– volume: 333
  start-page: 540
  year: 2011
  ident: ref_1
  article-title: 9 Billion?
  publication-title: Science
  doi: 10.1126/science.333.6042.540
– ident: ref_4
– volume: 98
  start-page: 389
  year: 2018
  ident: ref_67
  article-title: Nitrous oxide and carbon dioxide emissions from surface and subsurface drip irrigated tomato fields
  publication-title: Can. J. Soil Sci.
  doi: 10.1139/cjss-2017-0001
– volume: 14
  start-page: 2611
  year: 2017
  ident: ref_98
  article-title: Flooding-related increases in CO2 and N2O emissions from a temperate coastal grassland ecosystem
  publication-title: Biogeosciences
  doi: 10.5194/bg-14-2611-2017
– volume: 36
  start-page: 687
  year: 2004
  ident: ref_32
  article-title: Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2 concentration
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2004.01.004
– ident: ref_44
  doi: 10.2136/vzj2017.08.0152
– volume: 33
  start-page: 1723
  year: 2001
  ident: ref_31
  article-title: Role of nitrifier denitrification in the production of nitrous oxide
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(01)00096-7
– volume: 3
  start-page: 100
  year: 2001
  ident: ref_33
  article-title: Nitrate-dependent iron(II) oxidation in paddy soil
  publication-title: Environ. Microbiol.
  doi: 10.1046/j.1462-2920.2001.00163.x
– volume: 24
  start-page: 528
  year: 2014
  ident: ref_82
  article-title: Modeling nitrous oxide emissions from irrigated agriculture: Testing DayCent with high-frequency measurements
  publication-title: Ecol. Appl.
  doi: 10.1890/13-0570.1
– volume: 200
  start-page: 69
  year: 2019
  ident: ref_90
  article-title: Biochar improved rice yield and mitigated CH4 and N2O emissions from paddy field under controlled irrigation in the Taihu Lake Region of China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2018.12.003
– ident: ref_62
– volume: 464
  start-page: 579
  year: 2010
  ident: ref_8
  article-title: Temperature-associated increases in the global soil respiration record
  publication-title: Nature
  doi: 10.1038/nature08930
– volume: 25
  start-page: 640
  year: 2019
  ident: ref_92
  article-title: Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14514
– volume: Volume 397
  start-page: 428
  year: 2005
  ident: ref_38
  article-title: Methyl-Coenzyme M Reductase Genes: Unique Functional Markers for Methanogenic and Anaerobic Methane-Oxidizing Archaea
  publication-title: Methods in Enzymology
  doi: 10.1016/S0076-6879(05)97026-2
– volume: 14
  start-page: 199
  year: 2016
  ident: ref_77
  article-title: Influence of irrigation frequency on greenhouse gases emission from a paddy soil
  publication-title: Paddy Water Environ.
  doi: 10.1007/s10333-015-0490-2
– volume: 89
  start-page: 884
  year: 2012
  ident: ref_117
  article-title: Seasonal variations of CH4 and N2O emissions in response to water management of paddy fields located in Southeast China
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.04.066
– volume: 150
  start-page: 303
  year: 2017
  ident: ref_68
  article-title: Effect of tillage and water management on GHG emissions from Mediterranean rice growing ecosystems
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.11.020
– volume: 82
  start-page: 510
  year: 2002
  ident: ref_9
  article-title: Emission of carbon dioxide from soil
  publication-title: Curr. Sci.
– ident: ref_3
– volume: 69
  start-page: 387
  year: 2005
  ident: ref_94
  article-title: Soil surface fluxes of greenhouse gases in an irrigated maize-based agroecosystem
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0387
– volume: 221
  start-page: 87
  year: 2016
  ident: ref_88
  article-title: Improved water management to reduce greenhouse gas emissions in no-till rapeseed-rice rotations in Central China
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2016.01.021
– volume: 10
  start-page: 415
  year: 2017
  ident: ref_125
  article-title: Thermodynamically controlled preservation of organic carbon in floodplains
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2940
– volume: 37
  start-page: 1889
  year: 2006
  ident: ref_123
  article-title: Water Management Influencing Methane and Nitrous Oxide Emissions from Rice Field in Relation to Soil Redox and Microbial Community
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103620600767124
– volume: 76
  start-page: 197
  year: 1984
  ident: ref_14
  article-title: Anaerobic processes in soil
  publication-title: Plant Soil
  doi: 10.1007/BF02205580
– ident: ref_60
  doi: 10.1371/journal.pmed.1000097
– volume: 66
  start-page: 110
  year: 2008
  ident: ref_40
  article-title: Influence of temperature and soil water content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2008.00555.x
– ident: ref_83
  doi: 10.3390/su10020475
– volume: 8
  start-page: 1771
  year: 2017
  ident: ref_50
  article-title: Anaerobic microsites have an unaccounted role in soil carbon stabilization
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01406-6
– volume: 76
  start-page: 327
  year: 2016
  ident: ref_11
  article-title: Greenhouse gas emissions from soils—A review
  publication-title: Geochemistry
  doi: 10.1016/j.chemer.2016.04.002
– volume: 45
  start-page: 1
  year: 1999
  ident: ref_122
  article-title: Measurements of CH4 and N2O emissions from rice paddies in Fengqiu, China
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.1999.10409320
– volume: 612
  start-page: 1329
  year: 2018
  ident: ref_42
  article-title: The effective mitigation of greenhouse gas emissions from rice paddies without compromising yield by early-season drainage
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.022
– volume: 304
  start-page: 1623
  year: 2004
  ident: ref_6
  article-title: Soil Carbon Sequestration Impacts on Global Climate Change and Food Security
  publication-title: Science
  doi: 10.1126/science.1097396
– volume: 11
  start-page: 144
  year: 2018
  ident: ref_103
  article-title: Effects of irrigation water regime, soil clay content and their combination on growth, yield, and water use efficiency of rice grown in South China
  publication-title: Int. J. Agric. Biol. Eng.
– volume: 221
  start-page: 303
  year: 2019
  ident: ref_70
  article-title: Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2019.03.042
– ident: ref_112
– volume: 163
  start-page: 403
  year: 2016
  ident: ref_84
  article-title: Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2015.10.012
– volume: 54
  start-page: 428
  year: 1990
  ident: ref_104
  article-title: Soil respiration as an index of soil aeration
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1990.03615995005400020022x
– volume: 43
  start-page: 4093
  year: 2009
  ident: ref_30
  article-title: Nitrous oxide emission during wastewater treatment
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.03.001
– volume: 13
  start-page: 51
  year: 2013
  ident: ref_85
  article-title: Effects of water saving irrigation and rice variety on greenhouse gas emissions and water use efficiency in a paddy field fertilized with anaerobically digested pig slurry
  publication-title: Paddy Water Environ.
  doi: 10.1007/s10333-013-0406-y
– volume: 41
  start-page: 1774
  year: 2012
  ident: ref_55
  article-title: Soil Greenhouse Gas Emissions Affected by Irrigation, Tillage, Crop Rotation, and Nitrogen Fertilization
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2012.0176
– volume: 24
  start-page: 5948
  year: 2018
  ident: ref_54
  article-title: The greenhouse gas cost of agricultural intensification with groundwater irrigation in a Midwest U.S. row cropping system
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14472
– volume: 10
  start-page: 9
  year: 1958
  ident: ref_19
  article-title: The effect of soil drying on humus decomposition and nitrogen availability
  publication-title: Plant Soil
  doi: 10.1007/BF01343734
– volume: 15
  start-page: 447
  year: 1983
  ident: ref_12
  article-title: Relationship between soil respiration and soil moisture
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(83)90010-X
– volume: 69
  start-page: 2041
  year: 2005
  ident: ref_108
  article-title: Effects of cover crops on soil aggregate stability, total organic carbon, and polysaccharides
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0032
– volume: 52
  start-page: 387
  year: 2017
  ident: ref_41
  article-title: Carbon dioxide emission in relation with irrigation and organic amendments from a sweet corn field
  publication-title: J. Environ. Sci. Health Part B
  doi: 10.1080/03601234.2017.1292094
– ident: ref_59
  doi: 10.1155/2014/407832
– volume: 362
  start-page: 389
  year: 2013
  ident: ref_49
  article-title: Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1429-7
– volume: 48
  start-page: 115
  year: 2000
  ident: ref_10
  article-title: Separating root and soil microbial contributions to soil respiration: A review of methods and observations
  publication-title: Biogeochemistry
  doi: 10.1023/A:1006244819642
– volume: 8
  start-page: 1335
  year: 2017
  ident: ref_23
  article-title: Shifts in pore connectivity from precipitation versus groundwater rewetting increases soil carbon loss after drought
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01320-x
– ident: ref_5
– volume: 6
  start-page: 249
  year: 1992
  ident: ref_119
  article-title: Methane emission from rice fields: The effect of floodwater management
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/92GB01674
– volume: 368
  start-page: 20130122
  year: 2013
  ident: ref_39
  article-title: Nitrous oxide emissions from soils: How well do we understand the processes and their controls?
  publication-title: Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci.
  doi: 10.1098/rstb.2013.0122
– volume: 17
  start-page: 449
  year: 2018
  ident: ref_96
  article-title: The effects of aeration and irrigation regimes on soil CO2 and N2O emissions in a greenhouse tomato production system
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(17)61761-1
– volume: 2
  start-page: 207
  year: 2000
  ident: ref_27
  article-title: Impacts of soil moisture on nitrous oxide emission from croplands: A case study on the rice-based agro-ecosystem in Southeast China
  publication-title: Chemosphere - Glob. Chang. Sci.
  doi: 10.1016/S1465-9972(99)00056-2
– volume: 163
  start-page: 319
  year: 2016
  ident: ref_114
  article-title: Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2015.10.015
– volume: 225
  start-page: 2118
  year: 2014
  ident: ref_79
  article-title: Mitigation of greenhouse gas emissions by water management in a forage rice paddy field supplemented with dry-thermophilic anaerobic digestion residue
  publication-title: WaterAir Soil Pollut.
  doi: 10.1007/s11270-014-2118-3
– ident: ref_2
  doi: 10.1371/journal.pone.0066428
– volume: 14
  start-page: 2454
  year: 2008
  ident: ref_81
  article-title: Methane and nitrous oxide fluxes in annual and perennial land-use systems of the irrigated areas in the Aral Sea Basin
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2008.01631.x
– volume: 41
  start-page: 165
  year: 2003
  ident: ref_47
  article-title: Nitrous oxide emission from Australian agricultural lands and mitigation options: A review
  publication-title: Soil Res.
  doi: 10.1071/SR02064
– ident: ref_61
– volume: 227
  start-page: 215
  year: 2000
  ident: ref_101
  article-title: On the assessment of root and soil respiration for soils of different textures: Interactions with soil moisture contents and soil CO2 concentrations
  publication-title: Plant Soil
  doi: 10.1023/A:1026502414977
– volume: 38
  start-page: 263
  year: 2006
  ident: ref_48
  article-title: Emission of N2O, N2 and CO2 from soil fertilized with nitrate: Effect of compaction, soil moisture and rewetting
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2005.05.005
– volume: 31
  start-page: 309
  year: 1977
  ident: ref_36
  article-title: Biogenesis of Methane
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.mi.31.100177.001521
– volume: 40
  start-page: 290
  year: 2008
  ident: ref_95
  article-title: Nitrous oxide emissions from fertilized, irrigated cotton (Gossypium hirsutum L.) in the Aral Sea Basin, Uzbekistan: Influence of nitrogen applications and irrigation practices
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2007.08.007
– volume: 10
  start-page: 255
  year: 1996
  ident: ref_121
  article-title: Effect of water management on methane emission from a Japanese rice paddy field: Automated methane monitoring
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/96GB00517
– ident: ref_58
– volume: 64
  start-page: 1630
  year: 2000
  ident: ref_21
  article-title: Release of Intracellular Solutes by Four Soil Bacteria Exposed to Dilution Stress
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2000.6451630x
– volume: 23
  start-page: 1402
  year: 1993
  ident: ref_16
  article-title: Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest
  publication-title: Can. J. For. Res.
  doi: 10.1139/x93-177
– ident: ref_118
– volume: 65
  start-page: 203
  year: 2019
  ident: ref_80
  article-title: Is alternate wetting and drying irrigation technique enough to reduce methane emission from a tropical rice paddy?
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2019.1579615
– volume: 111
  start-page: 9199
  year: 2014
  ident: ref_93
  article-title: Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1322434111
– volume: 26
  start-page: 107
  year: 2001
  ident: ref_53
  article-title: Effect of irrigation development on greenhouse gas emissions in Alberta and Saskatchewan
  publication-title: Can. Water Resour. J. Rev. Can. Des Ressour. Hydr.
  doi: 10.4296/cwrj2601107
– volume: 193
  start-page: 133
  year: 2016
  ident: ref_71
  article-title: Comparison of net global warming potential between continuous flooding and midseason drainage in monsoon region paddy during rice cropping
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2016.04.007
– volume: 26
  start-page: 251
  year: 1993
  ident: ref_28
  article-title: Methane and nitrous oxide emissions from laboratory measurements of rice soil suspension: Effect of soil oxidation-reduction status
  publication-title: Chemosphere
  doi: 10.1016/0045-6535(93)90426-6
– volume: 36
  start-page: 599
  year: 1990
  ident: ref_35
  article-title: Effect of organic matter application on methane emission from some Japanese paddy fields
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.1990.10416797
– volume: 33
  start-page: 733
  year: 2013
  ident: ref_7
  article-title: Irrigation, soil organic carbon and N2O emissions. A review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-013-0134-0
– volume: 88
  start-page: 1478
  year: 2008
  ident: ref_106
  article-title: Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2007.07.012
– ident: ref_43
  doi: 10.1016/B978-0-12-394626-3.00004-1
– volume: 137
  start-page: 251
  year: 2010
  ident: ref_73
  article-title: Cover cropping affects soil N2O and CO2 emissions differently depending on type of irrigation
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2010.02.010
– volume: 105
  start-page: 61
  year: 2016
  ident: ref_91
  article-title: Mitigation of yield-scaled greenhouse gas emissions in subtropical paddy rice under alternative irrigation systems
  publication-title: Nutr. Cycl. Agroecosystems
  doi: 10.1007/s10705-016-9775-0
– volume: 40
  start-page: 505
  year: 1996
  ident: ref_17
  article-title: Impact of soil fauna structure on decomposition and N-mineralisation in relation to temperature and moisture in forest soil
  publication-title: Pedobiologia
  doi: 10.1016/S0031-4056(24)00377-9
– volume: 11
  start-page: 1131
  year: 2005
  ident: ref_116
  article-title: Statistical analysis of the major variables controlling methane emission from rice fields
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2005.00976.x
– volume: 228
  start-page: 111
  year: 2016
  ident: ref_74
  article-title: Greenhouse gas emission from direct seeded paddy fields under different soil water potentials in Eastern India
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2016.05.007
– volume: 505
  start-page: 1043
  year: 2015
  ident: ref_87
  article-title: Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.10.073
– volume: 115
  start-page: 317
  year: 2013
  ident: ref_66
  article-title: A record of N2O and CH4 emissions and underlying soil processes of Korean rice paddies as affected by different water management practices
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-013-9837-1
– volume: 26
  start-page: 403
  year: 1994
  ident: ref_18
  article-title: Reduction in microbial activity in Birch litter due to drying and rewetting event
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(94)90290-9
– volume: 409
  start-page: 247
  year: 2016
  ident: ref_110
  article-title: Potential effects of warming on soil respiration and carbon sequestration in a subtropical forest
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-2966-2
– volume: 8
  start-page: 1
  year: 2018
  ident: ref_86
  article-title: Net global warming potential and greenhouse gas intensity as affected by different water management strategies in Chinese double rice-cropping systems
  publication-title: Sci. Rep.
– volume: 53
  start-page: 30
  year: 2012
  ident: ref_89
  article-title: Methane and nitrous oxide emissions from paddy field as affected by water-saving irrigation
  publication-title: Phys. Chem. Earth
  doi: 10.1016/j.pce.2011.08.020
– ident: ref_26
  doi: 10.1029/2004JD004590
– volume: 13
  start-page: 4789
  year: 2016
  ident: ref_46
  article-title: Greenhouse gas emissions from natural ecosystems and agricultural lands in sub-Saharan Africa: Synthesis of available data and suggestions for further research
  publication-title: Biogeosciences
  doi: 10.5194/bg-13-4789-2016
– volume: 58
  start-page: 157
  year: 2008
  ident: ref_102
  article-title: Gas flow through clay barriers
  publication-title: Géotechnique
  doi: 10.1680/geot.2008.58.3.157
– volume: 646
  start-page: 290
  year: 2019
  ident: ref_75
  article-title: Irrigation reduces the negative effect of global warming on winter wheat yield and greenhouse gas intensity
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.07.296
– volume: 67
  start-page: 798
  year: 2003
  ident: ref_22
  article-title: A Proposed Mechanism for the Pulse in Carbon Dioxide Production Commonly Observed Following the Rapid Rewetting of a Dry Soil
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2003.7980
– volume: 235
  start-page: 242
  year: 2016
  ident: ref_69
  article-title: Effect of drip irrigation frequency, nitrogen rate and mulching on nitrous oxide emissions in a semi-arid climate: An assessment across two years in an apple orchard
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2016.09.033
– volume: 15
  start-page: 808
  year: 2009
  ident: ref_24
  article-title: Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2008.01681.x
– volume: 4
  start-page: 5
  year: 1996
  ident: ref_25
  article-title: Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/0929-1393(96)00106-0
– volume: 609
  start-page: 46
  year: 2017
  ident: ref_76
  article-title: Nitrogen losses and greenhouse gas emissions under different N and water management in a subtropical double-season rice cropping system
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.07.118
– volume: 28
  start-page: 219
  year: 2014
  ident: ref_52
  article-title: Aerobic and anaerobic respiration in profiles of Polesie Lubelskie peatlands
  publication-title: Int. Agrophysics
  doi: 10.2478/intag-2014-0011
– volume: 18
  start-page: 194
  year: 2012
  ident: ref_113
  article-title: An agronomic assessment of greenhouse gas emissions from major cereal crops
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2011.02502.x
– volume: 20
  start-page: 3229
  year: 2014
  ident: ref_109
  article-title: Soil respiration under climate warming: Differential response of heterotrophic and autotrophic respiration
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12620
– volume: 359
  start-page: 351
  year: 2012
  ident: ref_56
  article-title: Nitrous oxide emissions from irrigated wheat in Australia: Impact of irrigation management
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1197-4
– volume: 17
  start-page: 329
  year: 1985
  ident: ref_20
  article-title: Response of microbial biomass to alternate moist and dry conditions in a soil incubated with 14C- and 15N-labelled plant material
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(85)90070-7
– volume: 32
  start-page: 1811
  year: 2000
  ident: ref_124
  article-title: Suppression of methane emission from rice paddies by ferric iron fertilization
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00094-8
– volume: 54
  start-page: 1619
  year: 1990
  ident: ref_13
  article-title: Steady-state aerobic microbial activity as a function of soil water content
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1990.03615995005400060018x
– volume: 68
  start-page: 271
  year: 2014
  ident: ref_64
  article-title: Effects of Water-Saving Irrigation on Emissions of Greenhouse Gases and Prokaryotic Communities in Rice Paddy Soil
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-014-0371-z
– volume: 15
  start-page: 693
  year: 1983
  ident: ref_99
  article-title: Nitrous oxide emission as affected by alternate anaerobic and aerobic conditions from soil suspensions enriched with ammonium sulfate
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(83)90034-2
– volume: 165
  start-page: 153
  year: 2000
  ident: ref_51
  article-title: Carbon dioxide production from peatland soil profiles: The influence of temperature, oxic/anoxic conditions and substrate
  publication-title: Soil Sci.
  doi: 10.1097/00010694-200002000-00006
– volume: 137
  start-page: 74
  year: 1984
  ident: ref_29
  article-title: The effect of oxygen on denitrification during steady-state growth of Paracoccus halodenitrificans
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00425811
– volume: 64
  start-page: 2180
  year: 2000
  ident: ref_111
  article-title: Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2000.6462180x
SSID ssj0002140746
Score 2.4014916
SecondaryResourceType review_article
Snippet Irrigation practices can greatly influence greenhouse gas (GHG) emissions because of their control on soil microbial activity and substrate supply. However,...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 20
SubjectTerms agricultural land
Air pollution control
Analysis
carbon dioxide
deficit irrigation
Environmental aspects
flood irrigation
GHG
Global warming potential
Greenhouse gases
Irrigation (Agriculture)
methane
Methods
microbial activity
nitrous oxide
nitrous oxide production
reduced irrigation
soil
Soil microbiology
sprinkler irrigation
water conservation
Title Irrigation and Greenhouse Gas Emissions: A Review of Field-Based Studies
URI https://www.proquest.com/docview/2524293754
https://doaj.org/article/5afda2347fdf434aaacec3fb5572cb7d
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SL3oQn1hfRBA8yNLtJtnsemultXoQEQu9hTxVKFtp6_93ZncrLaJevOwhyUJ2ZpKZLzv5hpALgX405DziRsJDIAekzUIkQ6rbnhsLT8y2eEgHQ34_EqOlUl-YE1bRA1eCawkdnE4Yl8EFzrjW2nrLghFCJtZIh7sv-LwlMIV7cAK4QfK0uiXDANe3ZpO3cUWOPEPIFGOB7yVPVBL2_7Qtl76mv0226iCRdqrJ7ZA1X-ySzc7LtCbK8HtkcDedluwYk4LqwtEyf-YVYLynt3pGe6A-PAebXdMOrc7_6STQPuarRV3wXI7WGYT7ZNjvPd8MoroqQmQBNM4jBjFxjn8DvZU2yVxsXMasSyHSAWwjkPyRZ9ZJHyyDVi1SL00WmLPgjHKdsQPSKCaFPyS07bNgIADxPgSuY2FkZuI0t7CqQxyMaZL2QkLK1pThWLlirAA6oFTVd6k2ydXXO-8VYcavo7so-K-RSHZdNoAJqNoE1F8m0CSXqDaFSxKmZ3V9swA-EsmtVCdlCAwhFG2Sk5WRoAu70n2-ULzCLsw_KzyoTiUCQpkcywUf_ceMj8lGgri9PM05IY359MOfQnAzN2dkvdt7eHw6K-35E48d_PI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Irrigation+and+Greenhouse+Gas+Emissions%3A+A+Review+of+Field-Based+Studies&rft.jtitle=Soil+systems&rft.au=Sapkota%2C+Anish&rft.au=Haghverdi%2C+Amir&rft.au=Avila%2C+Claudia+C+E&rft.au=Ying%2C+Samantha+C&rft.date=2020-06-01&rft.issn=2571-8789&rft.eissn=2571-8789&rft.volume=4&rft.issue=2&rft_id=info:doi/10.3390%2Fsoilsystems4020020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2571-8789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2571-8789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2571-8789&client=summon