Effect of ankle dorsiflexion on displacement and strain in the tibial nerve and biceps femoris muscle at the posterior knee during the straight leg raise: Investigation of specificity of nerve movement

A structural differentiation maneuver has been proposed to differentiate between muscle and nerve involvement during the straight leg raise test. However, to date, the mechanical specificity of this maneuver for the tibial nerve at the posterior knee has not been tested. The aim of this study was to...

Full description

Saved in:
Bibliographic Details
Published inClinical biomechanics (Bristol) Vol. 75; no. NA; p. 105003
Main Authors Bueno-Gracia, Elena, Estébanez-de-Miguel, Elena, López-de-Celis, Carlos, Shacklock, Michael, Caudevilla-Polo, Santos, González-Rueda, Vanesa, Pérez-Bellmunt, Albert
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.05.2020
Subjects
Online AccessGet full text
ISSN0268-0033
1879-1271
1879-1271
DOI10.1016/j.clinbiomech.2020.105003

Cover

Loading…
Abstract A structural differentiation maneuver has been proposed to differentiate between muscle and nerve involvement during the straight leg raise test. However, to date, the mechanical specificity of this maneuver for the tibial nerve at the posterior knee has not been tested. The aim of this study was to investigate the specificity of ankle dorsiflexion as a differentiation maneuver between the tibial nerve and the biceps femoris muscle at the posterior knee during the straight leg raise in cadavers. A cross-sectional study was carried out. In fresh frozen cadavers, with microstrain devices and Vernier calipers, strain and excursion in the tibial nerve and distal biceps femoris muscle were measured during ankle dorsiflexion at 0°, 30°, 60° and 90° of hip flexion of the straight leg raise. Ankle dorsiflexion resulted in significant distal excursion and increased strain in the tibial nerve (p < 0.05) whilst the muscle was not affected by the dorsiflexion (p > 0.05) at all hip flexion angles. Ankle dorsiflexion was mechanically specific between the tibial nerve and biceps femoris during the straight leg raise. This study adds to evidence that, in certain circumstances, dorsiflexion may be used in differentiation of nerve and muscle disorders in the posterior knee. •Ankle dorsiflexion increases the strain in the tibial nerve.•Ankle dorsiflexion produces distal sliding of the tibial nerve.•Ankle dorsiflexion does not affect the biceps femoris.
AbstractList A structural differentiation maneuver has been proposed to differentiate between muscle and nerve involvement during the straight leg raise test. However, to date, the mechanical specificity of this maneuver for the tibial nerve at the posterior knee has not been tested. The aim of this study was to investigate the specificity of ankle dorsiflexion as a differentiation maneuver between the tibial nerve and the biceps femoris muscle at the posterior knee during the straight leg raise in cadavers. A cross-sectional study was carried out. In fresh frozen cadavers, with microstrain devices and Vernier calipers, strain and excursion in the tibial nerve and distal biceps femoris muscle were measured during ankle dorsiflexion at 0°, 30°, 60° and 90° of hip flexion of the straight leg raise. Ankle dorsiflexion resulted in significant distal excursion and increased strain in the tibial nerve (p < 0.05) whilst the muscle was not affected by the dorsiflexion (p > 0.05) at all hip flexion angles. Ankle dorsiflexion was mechanically specific between the tibial nerve and biceps femoris during the straight leg raise. This study adds to evidence that, in certain circumstances, dorsiflexion may be used in differentiation of nerve and muscle disorders in the posterior knee. •Ankle dorsiflexion increases the strain in the tibial nerve.•Ankle dorsiflexion produces distal sliding of the tibial nerve.•Ankle dorsiflexion does not affect the biceps femoris.
A structural differentiation maneuver has been proposed to differentiate between muscle and nerve involvement during the straight leg raise test. However, to date, the mechanical specificity of this maneuver for the tibial nerve at the posterior knee has not been tested. The aim of this study was to investigate the specificity of ankle dorsiflexion as a differentiation maneuver between the tibial nerve and the biceps femoris muscle at the posterior knee during the straight leg raise in cadavers. A cross-sectional study was carried out. In fresh frozen cadavers, with microstrain devices and Vernier calipers, strain and excursion in the tibial nerve and distal biceps femoris muscle were measured during ankle dorsiflexion at 0°, 30°, 60° and 90° of hip flexion of the straight leg raise. Ankle dorsiflexion resulted in significant distal excursion and increased strain in the tibial nerve (p < 0.05) whilst the muscle was not affected by the dorsiflexion (p > 0.05) at all hip flexion angles. Ankle dorsiflexion was mechanically specific between the tibial nerve and biceps femoris during the straight leg raise. This study adds to evidence that, in certain circumstances, dorsiflexion may be used in differentiation of nerve and muscle disorders in the posterior knee.
AbstractBackgroundA structural differentiation maneuver has been proposed to differentiate between muscle and nerve involvement during the straight leg raise test. However, to date, the mechanical specificity of this maneuver for the tibial nerve at the posterior knee has not been tested. The aim of this study was to investigate the specificity of ankle dorsiflexion as a differentiation maneuver between the tibial nerve and the biceps femoris muscle at the posterior knee during the straight leg raise in cadavers. MethodsA cross-sectional study was carried out. In fresh frozen cadavers, with microstrain devices and Vernier calipers, strain and excursion in the tibial nerve and distal biceps femoris muscle were measured during ankle dorsiflexion at 0°, 30°, 60° and 90° of hip flexion of the straight leg raise. FindingsAnkle dorsiflexion resulted in significant distal excursion and increased strain in the tibial nerve ( p < 0.05) whilst the muscle was not affected by the dorsiflexion ( p > 0.05) at all hip flexion angles. InterpretationAnkle dorsiflexion was mechanically specific between the tibial nerve and biceps femoris during the straight leg raise. This study adds to evidence that, in certain circumstances, dorsiflexion may be used in differentiation of nerve and muscle disorders in the posterior knee.
A structural differentiation maneuver has been proposed to differentiate between muscle and nerve involvement during the straight leg raise test. However, to date, the mechanical specificity of this maneuver for the tibial nerve at the posterior knee has not been tested. The aim of this study was to investigate the specificity of ankle dorsiflexion as a differentiation maneuver between the tibial nerve and the biceps femoris muscle at the posterior knee during the straight leg raise in cadavers.BACKGROUNDA structural differentiation maneuver has been proposed to differentiate between muscle and nerve involvement during the straight leg raise test. However, to date, the mechanical specificity of this maneuver for the tibial nerve at the posterior knee has not been tested. The aim of this study was to investigate the specificity of ankle dorsiflexion as a differentiation maneuver between the tibial nerve and the biceps femoris muscle at the posterior knee during the straight leg raise in cadavers.A cross-sectional study was carried out. In fresh frozen cadavers, with microstrain devices and Vernier calipers, strain and excursion in the tibial nerve and distal biceps femoris muscle were measured during ankle dorsiflexion at 0°, 30°, 60° and 90° of hip flexion of the straight leg raise.METHODSA cross-sectional study was carried out. In fresh frozen cadavers, with microstrain devices and Vernier calipers, strain and excursion in the tibial nerve and distal biceps femoris muscle were measured during ankle dorsiflexion at 0°, 30°, 60° and 90° of hip flexion of the straight leg raise.Ankle dorsiflexion resulted in significant distal excursion and increased strain in the tibial nerve (p < 0.05) whilst the muscle was not affected by the dorsiflexion (p > 0.05) at all hip flexion angles.FINDINGSAnkle dorsiflexion resulted in significant distal excursion and increased strain in the tibial nerve (p < 0.05) whilst the muscle was not affected by the dorsiflexion (p > 0.05) at all hip flexion angles.Ankle dorsiflexion was mechanically specific between the tibial nerve and biceps femoris during the straight leg raise. This study adds to evidence that, in certain circumstances, dorsiflexion may be used in differentiation of nerve and muscle disorders in the posterior knee.INTERPRETATIONAnkle dorsiflexion was mechanically specific between the tibial nerve and biceps femoris during the straight leg raise. This study adds to evidence that, in certain circumstances, dorsiflexion may be used in differentiation of nerve and muscle disorders in the posterior knee.
Background. A structural differentiation maneuver has been proposed to differentiate between muscle and nerve involvement during the straight leg raise test. However, to date, the mechanical specificity of this maneuver for the tibial nerve at the posterior knee has not been tested. The aim of this study was to investigate the specificity of ankle dorsiflexion as a differentiation maneuver between the tibial nerve and the biceps femoris muscle at the posterior knee during the straight leg raise in cadavers. Methods. A cross-sectional study was carried out. In fresh frozen cadavers, with microstrain devices and Vernier calipers, strain and excursion in the tibial nerve and distal biceps femoris muscle were measured during ankle dorsiflexion at 0°, 30°, 60° and 90° of hip flexion of the straight leg raise. Findings. Ankle dorsiflexion resulted in significant distal excursion and increased strain in the tibial nerve (p < 0.05) whilst the muscle was not affected by the dorsiflexion (p > 0.05) at all hip flexion angles. Interpretation. Ankle dorsiflexion was mechanically specific between the tibial nerve and biceps femoris during the straight leg raise. This study adds to evidence that, in certain circumstances, dorsiflexion may be used in differentiation of nerve and muscle disorders in the posterior knee.
ArticleNumber 105003
Author González-Rueda, Vanesa
Bueno-Gracia, Elena
Pérez-Bellmunt, Albert
Caudevilla-Polo, Santos
Estébanez-de-Miguel, Elena
López-de-Celis, Carlos
Shacklock, Michael
Author_xml – sequence: 1
  givenname: Elena
  surname: Bueno-Gracia
  fullname: Bueno-Gracia, Elena
  email: ebueno@unizar.es
  organization: Faculty of Health Sciences, University of Zaragoza, Zaragoza, Spain
– sequence: 2
  givenname: Elena
  surname: Estébanez-de-Miguel
  fullname: Estébanez-de-Miguel, Elena
  organization: Faculty of Health Sciences, University of Zaragoza, Zaragoza, Spain
– sequence: 3
  givenname: Carlos
  surname: López-de-Celis
  fullname: López-de-Celis, Carlos
  organization: Faculty of Medicine and Health Sciences, International University of Catalonia, Barcelona, Spain
– sequence: 4
  givenname: Michael
  surname: Shacklock
  fullname: Shacklock, Michael
  organization: Neurodynamic Solutions, Adelaide, Australia
– sequence: 5
  givenname: Santos
  surname: Caudevilla-Polo
  fullname: Caudevilla-Polo, Santos
  organization: Faculty of Health Sciences, University of Zaragoza, Zaragoza, Spain
– sequence: 6
  givenname: Vanesa
  surname: González-Rueda
  fullname: González-Rueda, Vanesa
  organization: Faculty of Medicine and Health Sciences, International University of Catalonia, Barcelona, Spain
– sequence: 7
  givenname: Albert
  surname: Pérez-Bellmunt
  fullname: Pérez-Bellmunt, Albert
  organization: Faculty of Medicine and Health Sciences, International University of Catalonia, Barcelona, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32335471$$D View this record in MEDLINE/PubMed
BookMark eNqNUk2P0zAQjdAitrvwF5C5cWnxR9IkHECraoGVVuIAnC3XGbfTJnawnYr-RP4VTroroZUQlSzZnnnzZvTmXWUX1lnIsjeMLhhly3e7hW7RrtF1oLcLTvkYLygVz7IZq8p6znjJLrIZ5ctqnsLiMrsKYUcpzXlRvsguBReiyEs2y37fGgM6EmeIsvsWSON8QNPCL3SWpNNg6FuloQMbE6QhIXqFlqQTt0AirlG1xII_wJReo4Y-EAOd8xhINwSdWFWc0L0LETw6T_YWUq_Bo91MmYl1s42khQ1JzwDvyZ09QIi4UXGaxZDQg0aDGuNx_J6adu4wDfcye25UG-DVw32d_fh0-331ZX7_9fPd6uZ-rgsu4pxXy6rOjaoVpVWTM5ZzDg0sG6GVSIJRkydBa6BQalEpXepSlMXaJLVEBVyJ6-ztibf37ueQBpQdBg1tqyy4IUie52VepjUt_w8VdcGLik_Q1w_QYd1BI3uPnfJH-bipBPh4AmjvQvBgZJJhUmZUrpWMytEbcif_8oYcvSFP3kgM9ROGxybn1K5OtZCUPSB4GTSC1dCgT_aRjcOzWD48YRmRqFW7hyOEnRu8TauTTAYuqfw2-nes41RQxvgows2_Cc4c4g-qsQlx
CitedBy_id crossref_primary_10_1016_j_jbmt_2023_04_079
crossref_primary_10_1016_j_msksp_2022_102529
crossref_primary_10_3390_jcm13237122
crossref_primary_10_1055_a_1867_3304
crossref_primary_10_3390_diagnostics14242881
crossref_primary_10_3390_healthcare12212152
crossref_primary_10_3390_life12101666
crossref_primary_10_1007_s00167_022_07202_0
crossref_primary_10_1016_j_ft_2022_05_001
crossref_primary_10_1016_j_msksp_2024_103221
Cites_doi 10.1186/1471-2474-13-245
10.1016/S1356-689X(98)80004-0
10.3233/BMR-169720
10.1093/brain/95.1.1
10.1002/jor.20310
10.2519/jospt.2013.4413
10.1080/10669817.2016.1200216
10.1016/S0031-9406(05)67024-1
10.2519/jospt.2009.2913
10.1002/jor.20210
10.1016/S0004-9514(14)60328-7
10.1016/j.jmpt.2011.04.010
10.1177/107110079801900204
10.1016/j.math.2012.06.002
10.1016/j.math.2015.12.007
10.1186/1471-2474-10-11
10.1016/j.math.2015.01.013
10.1016/j.tvjl.2006.07.005
10.2519/jospt.2012.3988
10.1097/01.BRS.0000067087.94398.35
10.1053/jhsu.2001.26140
10.1016/j.math.2007.01.013
10.1097/01.phm.0000200386.28819.6a
10.1097/BRS.0000000000001218
10.1123/jab.24.4.368
10.2106/00004623-199612000-00013
10.1016/j.apmr.2006.06.012
10.1016/S0140-6736(51)93353-3
10.1016/j.math.2005.07.002
10.1136/jnnp.39.6.566
10.1016/j.orthres.2004.11.008
10.1016/j.math.2004.08.008
10.2519/jospt.2009.3002
10.1016/j.math.2008.01.002
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.clinbiomech.2020.105003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1879-1271
EndPage 105003
ExternalDocumentID 32335471
10_1016_j_clinbiomech_2020_105003
S0268003320301121
1_s2_0_S0268003320301121
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6PF
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
H~9
IHE
J1W
KOM
M29
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OVD
OZT
P-8
P-9
P2P
PC.
Q38
QZG
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
TEORI
UAP
UPT
WH7
WUQ
Z5R
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
YCJ
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c523t-286894fa9a008d411422ede6d3ca30260f42029e0e7c38ac7c7375bf47138e2a3
IEDL.DBID .~1
ISSN 0268-0033
1879-1271
IngestDate Fri Jul 11 06:10:46 EDT 2025
Fri Jul 11 02:18:48 EDT 2025
Thu Apr 03 07:07:07 EDT 2025
Thu Apr 24 23:08:11 EDT 2025
Tue Jul 01 01:24:38 EDT 2025
Sun Apr 06 06:54:55 EDT 2025
Tue Feb 25 19:54:33 EST 2025
Tue Aug 26 16:34:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue NA
Keywords Biomechanics
Hamstrings
Tibial nerve
Diagnosis
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-286894fa9a008d411422ede6d3ca30260f42029e0e7c38ac7c7375bf47138e2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32335471
PQID 2395258266
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_2447470166
proquest_miscellaneous_2395258266
pubmed_primary_32335471
crossref_citationtrail_10_1016_j_clinbiomech_2020_105003
crossref_primary_10_1016_j_clinbiomech_2020_105003
elsevier_sciencedirect_doi_10_1016_j_clinbiomech_2020_105003
elsevier_clinicalkeyesjournals_1_s2_0_S0268003320301121
elsevier_clinicalkey_doi_10_1016_j_clinbiomech_2020_105003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Clinical biomechanics (Bristol)
PublicationTitleAlternate Clin Biomech (Bristol, Avon)
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Butler (bb0050) 1991
Shacklock (bb0195) 2009; 14
Coppieters, Alshami, Hodges (bb0095) 2006; 87
McLellan, Swash (bb0150) 1976; 39
Butler (bb0055) 2000
Coppieters, Stappaerts, Wouters, Koen (bb0085) 2003; 26
Wright, Glowczewskie, Wheeler, Miller, Cowin (bb0220) 1996
Shacklock, Yee, Van Hoof, Foley, Boddie, Lacey, Poley, Rade, Kankaanpää, Kröger, Airaksinen (bb0200) 2016; 41
Sierra-Silvestre, Torres Lacomba, de la Villa Polo (bb0205) 2017; 25
Ko, Park, Park, Shin, Shon, Lee (bb0140) 2006; 85
Bueno-Gracia, Tricás-Moreno, Fanlo-Mazas, Malo-Urriés, Haddad-Garay, Estébanez-de-Miguel, Hidalgo-García, Krauss (bb0045) 2016; 22
Shacklock (bb0185) 1995; 81
Norkin, White (bb0160) 1995
Cleland, Childs, Palmer, Eberhart (bb0075) 2006; 11
Alshami, Babri, Souvlis, Coppieters (bb0005) 2008; 24
Clarke, Bearn (bb0070) 1972; 95
Gugliotti, Douris, Handrakis, Shacklock, Asaro, Garrick, Kartsev, Lin (bb0120) 2018; 2
Kobayashi, Shizu, Suzuki, Asai, Yoshizawa (bb0145) 2003; 28
Szikszay, Hall, Von Piekartz (bb0215) 2017; 30
Gajdosik, R.L., Barney, F., n.d. Effects of Ankle Dorsiflexion on Active and Passive Unilateral Straight Leg Raising.
Nee, Jull, Vicenzino, Coppieters (bb0155) 2012; 42
Charnley (bb0065) 1951; 27
Boland, Adams (bb0015) 2000; 46
Daniels, Lau, Hearn (bb0110) 1998; 19
Capra, Vanti, Donati, Tombetti, O’Reilly, Pillastrini (bb0060) 2011; 34
Coppieters, Alshami, Babri, Souvlis, Kippers, Hodges (bb0090) 2006; 24
Research Randomizer [WWW Document], n.d.
Boyd, Topp, Coppieters (bb0035) 2013; 43
Coppieters, Crooke, Lawrenson, Jiun, Skulstad, Bet-or (bb0105) 2015; 20
Coppieters, Hough, Dilley (bb0100) 2009; 39
Shacklock (bb0190) 2005
Breig (bb0040) 2007
Sunderland (bb0210) 1968
Herrington, Bendix, Cornwell, Fielden, Hankey (bb0130) 2008; 13
Schmid, Brunner, Luomajoki, Held, Bachmann, Künzer, Coppieters (bb0180) 2009; 10
Hall, Zusman, Elvey (bb0125) 1998; 3
Babbage, Coppieters, McGowan (bb0010) 2007; 174
Boyd, Villa (bb0020) 2012; 13
K. (bb0135) 1929; 48
Boyd, Puttlitz, Gan, Topp (bb0025) 2005; 23
Wright, Glowczewskie, Cowin, Wheeler (bb0225) 2001; 26
Ridehalgh, Moore, Hough (bb0175) 2012; 17
Boyd, Wanek, Gray, Topp (bb0030) 2009; 39
Coppieters, Alshami (bb0080) 2007; 25
Ridehalgh, Greening, Petty (bb0170) 2005; 10
Capra (10.1016/j.clinbiomech.2020.105003_bb0060) 2011; 34
Shacklock (10.1016/j.clinbiomech.2020.105003_bb0190) 2005
Ridehalgh (10.1016/j.clinbiomech.2020.105003_bb0170) 2005; 10
Coppieters (10.1016/j.clinbiomech.2020.105003_bb0085) 2003; 26
Coppieters (10.1016/j.clinbiomech.2020.105003_bb0080) 2007; 25
Coppieters (10.1016/j.clinbiomech.2020.105003_bb0090) 2006; 24
Hall (10.1016/j.clinbiomech.2020.105003_bb0125) 1998; 3
McLellan (10.1016/j.clinbiomech.2020.105003_bb0150) 1976; 39
Babbage (10.1016/j.clinbiomech.2020.105003_bb0010) 2007; 174
10.1016/j.clinbiomech.2020.105003_bb0115
Shacklock (10.1016/j.clinbiomech.2020.105003_bb0185) 1995; 81
Nee (10.1016/j.clinbiomech.2020.105003_bb0155) 2012; 42
Alshami (10.1016/j.clinbiomech.2020.105003_bb0005) 2008; 24
Wright (10.1016/j.clinbiomech.2020.105003_bb0225) 2001; 26
Shacklock (10.1016/j.clinbiomech.2020.105003_bb0200) 2016; 41
Butler (10.1016/j.clinbiomech.2020.105003_bb0050) 1991
Daniels (10.1016/j.clinbiomech.2020.105003_bb0110) 1998; 19
Butler (10.1016/j.clinbiomech.2020.105003_bb0055) 2000
Boyd (10.1016/j.clinbiomech.2020.105003_bb0030) 2009; 39
Breig (10.1016/j.clinbiomech.2020.105003_bb0040) 2007
Wright (10.1016/j.clinbiomech.2020.105003_bb0220) 1996
Boland (10.1016/j.clinbiomech.2020.105003_bb0015) 2000; 46
Bueno-Gracia (10.1016/j.clinbiomech.2020.105003_bb0045) 2016; 22
Sunderland (10.1016/j.clinbiomech.2020.105003_bb0210) 1968
Coppieters (10.1016/j.clinbiomech.2020.105003_bb0105) 2015; 20
Ridehalgh (10.1016/j.clinbiomech.2020.105003_bb0175) 2012; 17
Schmid (10.1016/j.clinbiomech.2020.105003_bb0180) 2009; 10
Herrington (10.1016/j.clinbiomech.2020.105003_bb0130) 2008; 13
Coppieters (10.1016/j.clinbiomech.2020.105003_bb0100) 2009; 39
10.1016/j.clinbiomech.2020.105003_bb0165
Boyd (10.1016/j.clinbiomech.2020.105003_bb0025) 2005; 23
Boyd (10.1016/j.clinbiomech.2020.105003_bb0035) 2013; 43
K. (10.1016/j.clinbiomech.2020.105003_bb0135) 1929; 48
Ko (10.1016/j.clinbiomech.2020.105003_bb0140) 2006; 85
Sierra-Silvestre (10.1016/j.clinbiomech.2020.105003_bb0205) 2017; 25
Shacklock (10.1016/j.clinbiomech.2020.105003_bb0195) 2009; 14
Charnley (10.1016/j.clinbiomech.2020.105003_bb0065) 1951; 27
Boyd (10.1016/j.clinbiomech.2020.105003_bb0020) 2012; 13
Gugliotti (10.1016/j.clinbiomech.2020.105003_bb0120) 2018; 2
Kobayashi (10.1016/j.clinbiomech.2020.105003_bb0145) 2003; 28
Coppieters (10.1016/j.clinbiomech.2020.105003_bb0095) 2006; 87
Clarke (10.1016/j.clinbiomech.2020.105003_bb0070) 1972; 95
Norkin (10.1016/j.clinbiomech.2020.105003_bb0160) 1995
Szikszay (10.1016/j.clinbiomech.2020.105003_bb0215) 2017; 30
Cleland (10.1016/j.clinbiomech.2020.105003_bb0075) 2006; 11
References_xml – volume: 11
  start-page: 279
  year: 2006
  end-page: 286
  ident: bb0075
  article-title: Slump stretching in the management of non-radicular low back pain: a pilot clinical trial
  publication-title: Man. Ther.
– volume: 24
  start-page: 368
  year: 2008
  end-page: 376
  ident: bb0005
  article-title: Strain in the tibial and plantar nerves with foot and ankle movements and the influence of adjacent joint positions
  publication-title: J. Appl. Biomech.
– year: 1991
  ident: bb0050
  article-title: Mobilisation of the Nervous System. Melbourne, Australia
– volume: 26
  start-page: 182
  year: 2003
  end-page: 186
  ident: bb0085
  article-title: The immediate effects of a cervical lateral glide treatment technique in patients with neurogenic cervicobrachial pain
  publication-title: J. Orthop. Sport. Phys. Ther.
– year: 2007
  ident: bb0040
  article-title: Biomechanics of the Nervous System: Breig Revisited
– volume: 87
  start-page: 1412
  year: 2006
  end-page: 1417
  ident: bb0095
  article-title: An experimental pain model to investigate the specificity of the neurodynamic test for the median nerve in the differential diagnosis of hand symptoms
  publication-title: Arch. Phys. Med. Rehabil.
– reference: Research Randomizer [WWW Document], n.d.
– volume: 2
  start-page: 1
  year: 2018
  end-page: 5
  ident: bb0120
  article-title: Characteristics, distribution and behavior of sensory responses of the straight leg raise test in asymptomatic individuals
  publication-title: J. Physiother. Rehabil.
– volume: 39
  start-page: 566
  year: 1976
  end-page: 570
  ident: bb0150
  article-title: Longitudinal sliding of the median nerve during movements of the upper limb
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 24
  start-page: 1883
  year: 2006
  end-page: 1889
  ident: bb0090
  article-title: Strain and excursion of the sciatic, tibial and plantar nerves during a modified straight leg raising test
  publication-title: J. Orthop. Res.
– volume: 43
  start-page: 398
  year: 2013
  end-page: 403
  ident: bb0035
  article-title: Impact of movement sequencing on sciatic and tibial nerve strain and excursion during the straight leg raise test in embalmed cadavers
  publication-title: J. Orthop. Sport. Phys. Ther.
– volume: 26
  start-page: 655
  year: 2001
  end-page: 662
  ident: bb0225
  article-title: Ulnar nerve excursion and strain at the elbow and wrist associated with upper extremity motion
  publication-title: J. Hand. Surg. [Am.]
– volume: 10
  start-page: 11
  year: 2009
  ident: bb0180
  article-title: Reliability of clinical tests to evaluate nerve function and mechanosensitivity of the upper limb peripheral nervous system
  publication-title: BMC Musculoskelet. Disord.
– year: 1968
  ident: bb0210
  article-title: The mechanical properties of peripheral nerve trunks
  publication-title: Nerves and Nerve Injuries
– volume: 3
  start-page: 140
  year: 1998
  end-page: 146
  ident: bb0125
  article-title: Adverse mechanical tension in the nervous system? Analysis of straight leg raise
  publication-title: Man. Ther.
– volume: 174
  start-page: 330
  year: 2007
  end-page: 336
  ident: bb0010
  article-title: Strain and excursion of the sciatic nerve in the dog: biomechanical considerations in the development of a clinical test for increased neural mechanosensitivity
  publication-title: Vet. J.
– volume: 42
  start-page: 413
  year: 2012
  end-page: 424
  ident: bb0155
  article-title: The validity of Upper Limb Neurodynamic Tests for detecting peripheral neuropathic pain
  publication-title: J. Orthop. Sports Phys. Ther.
– volume: 39
  start-page: 164
  year: 2009
  end-page: 171
  ident: bb0100
  article-title: Different nerve-gliding exercises induce different magnitudes of median nerve longitudinal excursion: an in vivo study using dynamic ultrasound imaging
  publication-title: J. Orthop. Sports Phys. Ther.
– volume: 85
  start-page: 222
  year: 2006
  end-page: 227
  ident: bb0140
  article-title: Intrathecal movement and tension of the lumbosacral roots induced by straight-leg raising
  publication-title: Am. J. Phys. Med. Rehabil.
– volume: 41
  start-page: E205
  year: 2016
  end-page: E210
  ident: bb0200
  article-title: Slump test
  publication-title: Spine (Phila Pa 1976)
– volume: 81
  start-page: 9
  year: 1995
  end-page: 16
  ident: bb0185
  article-title: Neurodynamics
  publication-title: Physiotherapy
– year: 1995
  ident: bb0160
  article-title: Measurement of Joint Motion: A Guide to Goniometry
– volume: 13
  start-page: 245
  year: 2012
  ident: bb0020
  article-title: Normal inter-limb differences during the straight leg raise neurodynamic test: a cross sectional study
  publication-title: BMC Musculoskelet. Disord.
– volume: 22
  year: 2016
  ident: bb0045
  article-title: Validity of the Upper Limb Neurodynamic Test 1 for the diagnosis of Carpal Tunnel Syndrome. The role of structural differentiation
  publication-title: Man. Ther.
– volume: 28
  start-page: 1427
  year: 2003
  end-page: 1434
  ident: bb0145
  article-title: Changes in nerve root motion and intraradicular blood flow during an intraoperative straight-leg-raising test
  publication-title: Spine (Phila Pa 1976)
– reference: Gajdosik, R.L., Barney, F., n.d. Effects of Ankle Dorsiflexion on Active and Passive Unilateral Straight Leg Raising.
– volume: 39
  start-page: 780
  year: 2009
  end-page: 790
  ident: bb0030
  article-title: Mechanosensitivity of the lower extremity nervous system during straight-leg raise neurodynamic testing in healthy individuals
  publication-title: J Orthop Sport. Phys Ther
– volume: 27
  start-page: 186
  year: 1951
  end-page: 192
  ident: bb0065
  article-title: Orthopaedic signs in the diagnosis of disc protrusion. With special reference to the straight-leg-raising test
  publication-title: Lancet
– volume: 19
  start-page: 73
  year: 1998
  end-page: 78
  ident: bb0110
  article-title: The effects of foot position and load on tibial nerve tension
  publication-title: Foot Ankle Int.
– volume: 13
  start-page: 289
  year: 2008
  end-page: 294
  ident: bb0130
  article-title: What is the normal response to structural differentiation within the slump and straight leg raise tests?
  publication-title: Man. Ther.
– volume: 25
  start-page: 91
  year: 2017
  end-page: 97
  ident: bb0205
  article-title: Effect of leg dominance, gender and age on sensory responses to structural differentiation of straight leg raise test in asymptomatic subjects: a cross-sectional study
  publication-title: J. Man. Manip. Ther.
– volume: 30
  start-page: 1171
  year: 2017
  end-page: 1186
  ident: bb0215
  article-title: In vivo effects of limb movement on nerve stretch, strain, and tension: a systematic review
  publication-title: J. Back Musculoskelet. Rehabil.
– volume: 14
  start-page: e1
  year: 2009
  end-page: e2
  ident: bb0195
  article-title: Response to Butler and Coppieters 2007, letter to the editor: clinical neurodynamics—throwing the baby out with the bath water
  publication-title: Man. Ther.
– volume: 95
  start-page: 1
  year: 1972
  end-page: 20
  ident: bb0070
  article-title: The spiral nerve bands of fontana
  publication-title: Brain
– volume: 46
  start-page: 191
  year: 2000
  end-page: 200
  ident: bb0015
  article-title: Effects of ankle dorsiflexion on range and reliability of straight leg raising
  publication-title: Aus. J. Physiother.
– volume: 48
  start-page: 1999
  year: 1929
  end-page: 2003
  ident: bb0135
  article-title: Die Nervendehnung als diagnostisches Prinzip ergipt eine Reiche neuer Nerven phämonene
  publication-title: Münchener Medizinische Wochenschrift
– volume: 17
  start-page: 572
  year: 2012
  end-page: 576
  ident: bb0175
  article-title: Repeatability of measuring sciatic nerve excursion during a modified passive straight leg raise test with ultrasound imaging
  publication-title: Man. Ther.
– year: 1996
  ident: bb0220
  article-title: Excursion and strain of the median nerve
  publication-title: J Bone Jt. Surg Am.
– year: 2000
  ident: bb0055
  article-title: The Sensitive Nervous System
– volume: 25
  start-page: 972
  year: 2007
  end-page: 980
  ident: bb0080
  article-title: Longitudinal excursion and strain in the median nerve during novel nerve gliding exercises for carpal tunnel syndrome
  publication-title: J. Orthop. Res.
– volume: 10
  start-page: 136
  year: 2005
  end-page: 143
  ident: bb0170
  article-title: Effect of straight leg raise examination and treatment on vibration thresholds in the lower limb: a pilot study in asymptomatic subjects
  publication-title: Man. Ther.
– year: 2005
  ident: bb0190
  article-title: Clinical Neurodynamics. A New System of Musculoskeletal Treatment
– volume: 34
  start-page: 231
  year: 2011
  end-page: 238
  ident: bb0060
  article-title: Validity of the straight-leg raise test for patients with sciatic pain with or without lumbar pain using magnetic resonance imaging results as a reference standard
  publication-title: J. Manipulative Physiol. Ther.
– volume: 20
  start-page: 587
  year: 2015
  end-page: 591
  ident: bb0105
  article-title: A modified straight leg raise test to differentiate between sural nerve pathology and Achilles tendinopathy. A cross-sectional cadaver study
  publication-title: Man. Ther.
– volume: 23
  start-page: 764
  year: 2005
  end-page: 770
  ident: bb0025
  article-title: Strain and excursion in the rat sciatic nerve during a modified straight leg raise are altered after traumatic nerve injury
  publication-title: J. Orthop. Res.
– volume: 13
  start-page: 245
  year: 2012
  ident: 10.1016/j.clinbiomech.2020.105003_bb0020
  article-title: Normal inter-limb differences during the straight leg raise neurodynamic test: a cross sectional study
  publication-title: BMC Musculoskelet. Disord.
  doi: 10.1186/1471-2474-13-245
– volume: 26
  start-page: 182
  year: 2003
  ident: 10.1016/j.clinbiomech.2020.105003_bb0085
  article-title: The immediate effects of a cervical lateral glide treatment technique in patients with neurogenic cervicobrachial pain
  publication-title: J. Orthop. Sport. Phys. Ther.
– volume: 3
  start-page: 140
  year: 1998
  ident: 10.1016/j.clinbiomech.2020.105003_bb0125
  article-title: Adverse mechanical tension in the nervous system? Analysis of straight leg raise
  publication-title: Man. Ther.
  doi: 10.1016/S1356-689X(98)80004-0
– volume: 30
  start-page: 1171
  year: 2017
  ident: 10.1016/j.clinbiomech.2020.105003_bb0215
  article-title: In vivo effects of limb movement on nerve stretch, strain, and tension: a systematic review
  publication-title: J. Back Musculoskelet. Rehabil.
  doi: 10.3233/BMR-169720
– volume: 95
  start-page: 1
  year: 1972
  ident: 10.1016/j.clinbiomech.2020.105003_bb0070
  article-title: The spiral nerve bands of fontana
  publication-title: Brain
  doi: 10.1093/brain/95.1.1
– year: 2000
  ident: 10.1016/j.clinbiomech.2020.105003_bb0055
– volume: 25
  start-page: 972
  year: 2007
  ident: 10.1016/j.clinbiomech.2020.105003_bb0080
  article-title: Longitudinal excursion and strain in the median nerve during novel nerve gliding exercises for carpal tunnel syndrome
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.20310
– year: 2005
  ident: 10.1016/j.clinbiomech.2020.105003_bb0190
– volume: 43
  start-page: 398
  year: 2013
  ident: 10.1016/j.clinbiomech.2020.105003_bb0035
  article-title: Impact of movement sequencing on sciatic and tibial nerve strain and excursion during the straight leg raise test in embalmed cadavers
  publication-title: J. Orthop. Sport. Phys. Ther.
  doi: 10.2519/jospt.2013.4413
– volume: 25
  start-page: 91
  year: 2017
  ident: 10.1016/j.clinbiomech.2020.105003_bb0205
  article-title: Effect of leg dominance, gender and age on sensory responses to structural differentiation of straight leg raise test in asymptomatic subjects: a cross-sectional study
  publication-title: J. Man. Manip. Ther.
  doi: 10.1080/10669817.2016.1200216
– volume: 81
  start-page: 9
  year: 1995
  ident: 10.1016/j.clinbiomech.2020.105003_bb0185
  article-title: Neurodynamics
  publication-title: Physiotherapy
  doi: 10.1016/S0031-9406(05)67024-1
– volume: 39
  start-page: 164
  year: 2009
  ident: 10.1016/j.clinbiomech.2020.105003_bb0100
  article-title: Different nerve-gliding exercises induce different magnitudes of median nerve longitudinal excursion: an in vivo study using dynamic ultrasound imaging
  publication-title: J. Orthop. Sports Phys. Ther.
  doi: 10.2519/jospt.2009.2913
– volume: 24
  start-page: 1883
  year: 2006
  ident: 10.1016/j.clinbiomech.2020.105003_bb0090
  article-title: Strain and excursion of the sciatic, tibial and plantar nerves during a modified straight leg raising test
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.20210
– volume: 46
  start-page: 191
  year: 2000
  ident: 10.1016/j.clinbiomech.2020.105003_bb0015
  article-title: Effects of ankle dorsiflexion on range and reliability of straight leg raising
  publication-title: Aus. J. Physiother.
  doi: 10.1016/S0004-9514(14)60328-7
– volume: 34
  start-page: 231
  year: 2011
  ident: 10.1016/j.clinbiomech.2020.105003_bb0060
  article-title: Validity of the straight-leg raise test for patients with sciatic pain with or without lumbar pain using magnetic resonance imaging results as a reference standard
  publication-title: J. Manipulative Physiol. Ther.
  doi: 10.1016/j.jmpt.2011.04.010
– volume: 19
  start-page: 73
  year: 1998
  ident: 10.1016/j.clinbiomech.2020.105003_bb0110
  article-title: The effects of foot position and load on tibial nerve tension
  publication-title: Foot Ankle Int.
  doi: 10.1177/107110079801900204
– volume: 17
  start-page: 572
  year: 2012
  ident: 10.1016/j.clinbiomech.2020.105003_bb0175
  article-title: Repeatability of measuring sciatic nerve excursion during a modified passive straight leg raise test with ultrasound imaging
  publication-title: Man. Ther.
  doi: 10.1016/j.math.2012.06.002
– volume: 22
  year: 2016
  ident: 10.1016/j.clinbiomech.2020.105003_bb0045
  article-title: Validity of the Upper Limb Neurodynamic Test 1 for the diagnosis of Carpal Tunnel Syndrome. The role of structural differentiation
  publication-title: Man. Ther.
  doi: 10.1016/j.math.2015.12.007
– volume: 10
  start-page: 11
  year: 2009
  ident: 10.1016/j.clinbiomech.2020.105003_bb0180
  article-title: Reliability of clinical tests to evaluate nerve function and mechanosensitivity of the upper limb peripheral nervous system
  publication-title: BMC Musculoskelet. Disord.
  doi: 10.1186/1471-2474-10-11
– ident: 10.1016/j.clinbiomech.2020.105003_bb0115
– ident: 10.1016/j.clinbiomech.2020.105003_bb0165
– volume: 20
  start-page: 587
  year: 2015
  ident: 10.1016/j.clinbiomech.2020.105003_bb0105
  article-title: A modified straight leg raise test to differentiate between sural nerve pathology and Achilles tendinopathy. A cross-sectional cadaver study
  publication-title: Man. Ther.
  doi: 10.1016/j.math.2015.01.013
– volume: 174
  start-page: 330
  year: 2007
  ident: 10.1016/j.clinbiomech.2020.105003_bb0010
  article-title: Strain and excursion of the sciatic nerve in the dog: biomechanical considerations in the development of a clinical test for increased neural mechanosensitivity
  publication-title: Vet. J.
  doi: 10.1016/j.tvjl.2006.07.005
– volume: 42
  start-page: 413
  year: 2012
  ident: 10.1016/j.clinbiomech.2020.105003_bb0155
  article-title: The validity of Upper Limb Neurodynamic Tests for detecting peripheral neuropathic pain
  publication-title: J. Orthop. Sports Phys. Ther.
  doi: 10.2519/jospt.2012.3988
– volume: 28
  start-page: 1427
  year: 2003
  ident: 10.1016/j.clinbiomech.2020.105003_bb0145
  article-title: Changes in nerve root motion and intraradicular blood flow during an intraoperative straight-leg-raising test
  publication-title: Spine (Phila Pa 1976)
  doi: 10.1097/01.BRS.0000067087.94398.35
– volume: 26
  start-page: 655
  year: 2001
  ident: 10.1016/j.clinbiomech.2020.105003_bb0225
  article-title: Ulnar nerve excursion and strain at the elbow and wrist associated with upper extremity motion
  publication-title: J. Hand. Surg. [Am.]
  doi: 10.1053/jhsu.2001.26140
– volume: 13
  start-page: 289
  year: 2008
  ident: 10.1016/j.clinbiomech.2020.105003_bb0130
  article-title: What is the normal response to structural differentiation within the slump and straight leg raise tests?
  publication-title: Man. Ther.
  doi: 10.1016/j.math.2007.01.013
– volume: 85
  start-page: 222
  year: 2006
  ident: 10.1016/j.clinbiomech.2020.105003_bb0140
  article-title: Intrathecal movement and tension of the lumbosacral roots induced by straight-leg raising
  publication-title: Am. J. Phys. Med. Rehabil.
  doi: 10.1097/01.phm.0000200386.28819.6a
– volume: 41
  start-page: E205
  year: 2016
  ident: 10.1016/j.clinbiomech.2020.105003_bb0200
  article-title: Slump test
  publication-title: Spine (Phila Pa 1976)
  doi: 10.1097/BRS.0000000000001218
– volume: 24
  start-page: 368
  year: 2008
  ident: 10.1016/j.clinbiomech.2020.105003_bb0005
  article-title: Strain in the tibial and plantar nerves with foot and ankle movements and the influence of adjacent joint positions
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.24.4.368
– year: 2007
  ident: 10.1016/j.clinbiomech.2020.105003_bb0040
– volume: 48
  start-page: 1999
  year: 1929
  ident: 10.1016/j.clinbiomech.2020.105003_bb0135
  article-title: Die Nervendehnung als diagnostisches Prinzip ergipt eine Reiche neuer Nerven phämonene
  publication-title: Münchener Medizinische Wochenschrift
– year: 1995
  ident: 10.1016/j.clinbiomech.2020.105003_bb0160
– year: 1996
  ident: 10.1016/j.clinbiomech.2020.105003_bb0220
  article-title: Excursion and strain of the median nerve
  publication-title: J Bone Jt. Surg Am.
  doi: 10.2106/00004623-199612000-00013
– volume: 87
  start-page: 1412
  year: 2006
  ident: 10.1016/j.clinbiomech.2020.105003_bb0095
  article-title: An experimental pain model to investigate the specificity of the neurodynamic test for the median nerve in the differential diagnosis of hand symptoms
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2006.06.012
– volume: 27
  start-page: 186
  year: 1951
  ident: 10.1016/j.clinbiomech.2020.105003_bb0065
  article-title: Orthopaedic signs in the diagnosis of disc protrusion. With special reference to the straight-leg-raising test
  publication-title: Lancet
  doi: 10.1016/S0140-6736(51)93353-3
– volume: 11
  start-page: 279
  year: 2006
  ident: 10.1016/j.clinbiomech.2020.105003_bb0075
  article-title: Slump stretching in the management of non-radicular low back pain: a pilot clinical trial
  publication-title: Man. Ther.
  doi: 10.1016/j.math.2005.07.002
– volume: 39
  start-page: 566
  year: 1976
  ident: 10.1016/j.clinbiomech.2020.105003_bb0150
  article-title: Longitudinal sliding of the median nerve during movements of the upper limb
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.39.6.566
– volume: 23
  start-page: 764
  year: 2005
  ident: 10.1016/j.clinbiomech.2020.105003_bb0025
  article-title: Strain and excursion in the rat sciatic nerve during a modified straight leg raise are altered after traumatic nerve injury
  publication-title: J. Orthop. Res.
  doi: 10.1016/j.orthres.2004.11.008
– volume: 2
  start-page: 1
  year: 2018
  ident: 10.1016/j.clinbiomech.2020.105003_bb0120
  article-title: Characteristics, distribution and behavior of sensory responses of the straight leg raise test in asymptomatic individuals
  publication-title: J. Physiother. Rehabil.
– volume: 10
  start-page: 136
  year: 2005
  ident: 10.1016/j.clinbiomech.2020.105003_bb0170
  article-title: Effect of straight leg raise examination and treatment on vibration thresholds in the lower limb: a pilot study in asymptomatic subjects
  publication-title: Man. Ther.
  doi: 10.1016/j.math.2004.08.008
– volume: 39
  start-page: 780
  year: 2009
  ident: 10.1016/j.clinbiomech.2020.105003_bb0030
  article-title: Mechanosensitivity of the lower extremity nervous system during straight-leg raise neurodynamic testing in healthy individuals
  publication-title: J Orthop Sport. Phys Ther
  doi: 10.2519/jospt.2009.3002
– year: 1991
  ident: 10.1016/j.clinbiomech.2020.105003_bb0050
– year: 1968
  ident: 10.1016/j.clinbiomech.2020.105003_bb0210
  article-title: The mechanical properties of peripheral nerve trunks
– volume: 14
  start-page: e1
  year: 2009
  ident: 10.1016/j.clinbiomech.2020.105003_bb0195
  article-title: Response to Butler and Coppieters 2007, letter to the editor: clinical neurodynamics—throwing the baby out with the bath water
  publication-title: Man. Ther.
  doi: 10.1016/j.math.2008.01.002
SSID ssj0004257
Score 2.3361979
Snippet A structural differentiation maneuver has been proposed to differentiate between muscle and nerve involvement during the straight leg raise test. However, to...
AbstractBackgroundA structural differentiation maneuver has been proposed to differentiate between muscle and nerve involvement during the straight leg raise...
Background. A structural differentiation maneuver has been proposed to differentiate between muscle and nerve involvement during the straight leg raise test....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105003
SubjectTerms Adult
Biomechanics
Cadaver
Cross-Sectional Studies
Diagnosis
Female
Hamstring Muscles - physiology
Hamstrings
Humans
Knee - innervation
Knee - physiology
Leg - physiology
Male
Movement - physiology
Physical Medicine and Rehabilitation
Tibial nerve
Tibial Nerve - physiology
Title Effect of ankle dorsiflexion on displacement and strain in the tibial nerve and biceps femoris muscle at the posterior knee during the straight leg raise: Investigation of specificity of nerve movement
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0268003320301121
https://www.clinicalkey.es/playcontent/1-s2.0-S0268003320301121
https://dx.doi.org/10.1016/j.clinbiomech.2020.105003
https://www.ncbi.nlm.nih.gov/pubmed/32335471
https://www.proquest.com/docview/2395258266
https://www.proquest.com/docview/2447470166
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIlVcELQ8lkflSohb2F3beVVcVhXVAmovUKk3y_GjpHSTVZw99NL_x79ixkm2RQW0ElIu2YzXjseeRzzzDSFvBTM8TXUeMVDukciYilSswHEVeVFM7UTHAafg5DSZn4nP5_H5FjkacmEwrLKX_Z1MD9K6_2Xcz-Z4WZbjr-A9ZFiKjAWrPiSTI3odrOn3N7dhHqJH-wTiCKl3yMFtjBdmH4Y093AuwULV28lQP-u-jvqbDRp00fFj8qg3IumsG-cTsmWrXbI3q8CBXlzTdzSEdYbv5btk56Q_Pd8jPzuoYlo7ipXaLTV140uHkJh1ReEypQ8xWvjFEEgM9aGCBIUL7ETapZfQCoMkw-MCpMzSU4fRuqWni5WH4VDVBuolpo80Zd3QH5WFvkI-ZHgS_vXie0uv7AVt8OzqkN7B-8CxOIopoBjGBF4C3nadLuoAb94-JWfHH78dzaO-lEOkwdNtI5YlWS6cyhXYHEaEBF5rbGK4VhxhzZyA-c_txKaaZ0qnOuVpXDhQnTyzTPFnZLuqK_uC0IkzLAenjWnBhcuLzCQZd0yYKUusVtMRyQbmSd3jnONrXckhoO1S3uG7RL7Lju8jwtZNlx3YxyaNDocVIodsVpC_ElTSJo3TPzW2vpckXk6lZ3Ii7632Efmwbvnbhtm044NhMUsQKHhKpCpbr7xkPI9ZDF5n8g8a2GgihQ6A5nm3E9YTxhnnMfDt5f8N8BV5iHddbOlrst02K_sG7L-22A8bfJ88mH36Mj_9BWSMXV0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLamThq8INi4lKsnId6iJrZzm3ipJqaOrX1hk_ZmOY4zAmtSJekDP5F_xTmO0w0NUCWkvLQ-p3Z9OZf4fOcQ8l6wnMexTj0Gyt0TCVOeChU4riLNssD4OrR5CuaLaHYpPl-FVzvkeMDCYFilk_29TLfS2n0zcbM5WZXl5At4DwmWImPWqkcw-S5mpxIjsjs9PZstbuGRLuEn0HvIsEcOb8O8EIBoke72aoLZwrf-UELrvpr6mxlq1dHJY_LI2ZF02g_1Cdkx1T45mFbgQy9_0A_URnbaV-b7ZG_uLtAPyM8-WzGtC4rF2g3N66YtC8yKWVcUnrxsbZgWvjQEkpy2togEhQdMRdojTGiFcZK2OQNBs2ppgQG7ZUuX6xaGQ1VnqVeIIGnKuqHfKwN9WUikbbG_ev21ozfmmjZ4fXVE76T8wLEUFFGgGMkEjgJ-7Dtd1jbDefeUXJ58ujieea6ag6fB2e08lkRJKgqVKjA7cmExvCY3Uc614pjZrBAw_6nxTax5onSsYx6HWQHakyeGKf6MjKq6Mi8I9YucpeC3MS24KNIsyaOEF0zkAYuMVsGYJMPiSe1SnePfupFDTNs3eWfdJa677Nd9TNiGddXn-9iG6WjYIXIAtIIIlqCVtmGO_8RsWidMWhnIlklf3tvwY_Jxw_nbmdm248NhM0uQKXhRpCpTr1vJeBqyEBzP6B80Ao5aDB0AzfP-JGwmjDPO4SQGL_9vgO_Ig9nF_Fyeny7OXpGH2NKHmr4mo65ZmzdgDnbZW3fcfwEjeWAO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+ankle+dorsiflexion+on+displacement+and+strain+in+the+tibial+nerve+and+biceps+femoris+muscle+at+the+posterior+knee+during+the+straight+leg+raise%3A+Investigation+of+specificity+of+nerve+movement&rft.jtitle=Clinical+biomechanics+%28Bristol%29&rft.au=Bueno-Gracia%2C+Elena&rft.au=Est%C3%A9banez-de-Miguel%2C+Elena&rft.au=L%C3%B3pez-de-Celis%2C+Carlos&rft.au=Shacklock%2C+Michael&rft.date=2020-05-01&rft.pub=Elsevier+Ltd&rft.issn=0268-0033&rft.volume=75&rft_id=info:doi/10.1016%2Fj.clinbiomech.2020.105003&rft.externalDocID=S0268003320301121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-0033&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-0033&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-0033&client=summon