Modification of magnetic nanoparticle lipase designs for biodiesel production from palm oil
Biocatalytic conversion of vegetable oils by immobilized lipase to fatty acid methyl ester (FAME) is an efficient eco-friendly alternative to the conventional alkaline-catalyzed biodiesel production process. In this work, immobilization of Thermomyces lanuginosus lipase on Fe sub(3)O sub(4) was stud...
Saved in:
Published in | Fuel processing technology Vol. 134; pp. 189 - 197 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.06.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biocatalytic conversion of vegetable oils by immobilized lipase to fatty acid methyl ester (FAME) is an efficient eco-friendly alternative to the conventional alkaline-catalyzed biodiesel production process. In this work, immobilization of Thermomyces lanuginosus lipase on Fe sub(3)O sub(4) was studied using different covalent linkage designs. Immobilization of lipase on magnetic supports was shown by Fourier-Transformed infrared microscopy and scanning electron microscopy. Immobilized lipase prepared on Fe sub(3)O sub(4) carrier modified by 3-aminopropyl triethyoxysilane and covalently linked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (Fe sub(3)O sub(4)-AP-EN-LIP) showed the highest catalytic activity on hydrolysis of p-nitrophenyl palmitate and transesterification of refined palm oil. Reaction variables were optimized by Central Composite Design, which identified 23.2% w/w enzyme loading and 4.7:1 methanol to FFAs molar ratio with 3.4% water content in the presence of 1:1 (v/v) tert-butanol to oil as optimal conditions, leading to 97.2% FAME yield after incubation at 50 [degrees]C for 24 h. The biocatalyst showed high operational stability and could be simply separated by magnetization and recycled for at least 5 consecutive batches with > 80% activity remaining, suggesting its potential for application in biocatalytic biodiesel synthesis. |
---|---|
AbstractList | Biocatalytic conversion of vegetable oils by immobilized lipase to fatty acid methyl ester (FAME) is an efficient eco-friendly alternative to the conventional alkaline-catalyzed biodiesel production process. In this work, immobilization of Thermomyces lanuginosus lipase on Fe sub(3)O sub(4) was studied using different covalent linkage designs. Immobilization of lipase on magnetic supports was shown by Fourier-Transformed infrared microscopy and scanning electron microscopy. Immobilized lipase prepared on Fe sub(3)O sub(4) carrier modified by 3-aminopropyl triethyoxysilane and covalently linked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (Fe sub(3)O sub(4)-AP-EN-LIP) showed the highest catalytic activity on hydrolysis of p-nitrophenyl palmitate and transesterification of refined palm oil. Reaction variables were optimized by Central Composite Design, which identified 23.2% w/w enzyme loading and 4.7:1 methanol to FFAs molar ratio with 3.4% water content in the presence of 1:1 (v/v) tert-butanol to oil as optimal conditions, leading to 97.2% FAME yield after incubation at 50 [degrees]C for 24 h. The biocatalyst showed high operational stability and could be simply separated by magnetization and recycled for at least 5 consecutive batches with > 80% activity remaining, suggesting its potential for application in biocatalytic biodiesel synthesis. Biocatalytic conversion of vegetable oils by immobilized lipase to fatty acid methyl ester (FAME) is an efficient eco-friendly alternative to the conventional alkaline-catalyzed biodiesel production process. In this work, immobilization of Thermomyces lanuginosus lipase on Fe3O4 was studied using different covalent linkage designs. Immobilization of lipase on magnetic supports was shown by Fourier-Transformed infrared microscopy and scanning electron microscopy. Immobilized lipase prepared on Fe3O4 carrier modified by 3-aminopropyl triethyoxysilane and covalently linked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (Fe3O4-AP-EN-LIP) showed the highest catalytic activity on hydrolysis of p-nitrophenyl palmitate and transesterification of refined palm oil. Reaction variables were optimized by Central Composite Design, which identified 23.2% w/w enzyme loading and 4.7:1 methanol to FFAs molar ratio with 3.4% water content in the presence of 1:1 (v/v) tert-butanol to oil as optimal conditions, leading to 97.2% FAME yield after incubation at 50°C for 24h. The biocatalyst showed high operational stability and could be simply separated by magnetization and recycled for at least 5 consecutive batches with >80% activity remaining, suggesting its potential for application in biocatalytic biodiesel synthesis. |
Author | Champreda, Verawat Raita, Marisa Arnthong, Jantima Laosiripojana, Navadol |
Author_xml | – sequence: 1 givenname: Marisa surname: Raita fullname: Raita, Marisa – sequence: 2 givenname: Jantima surname: Arnthong fullname: Arnthong, Jantima – sequence: 3 givenname: Verawat surname: Champreda fullname: Champreda, Verawat – sequence: 4 givenname: Navadol surname: Laosiripojana fullname: Laosiripojana, Navadol |
BookMark | eNqFkbtOwzAUhj0UibbwBgweWRKO7cRx2FDFTSpigYnBcmyncuXEwU4G3p6UMjHQ6Zzh_85F3wot-tBbhK4I5AQIv9nn7TTEoHMKpMyB5MDoAi2BVSJjgsI5WqW0B4CyrKsl-ngJxrVOq9GFHocWd2rX29Fp3Ks-DCrOrbfYu0Eli41Nbtcn3IaIGzeTNlmP53Vm0j8D2hg6PCjf4eD8BTprlU_28reu0fvD_dvmKdu-Pj5v7raZLikbM2INU4TpsjIGal1prVpB6kJpxbkwVSNMaWqhtC10aRtac6gV5URwWnChG7ZG18e58yGfk02j7FzS1nvV2zAlSedvWSGAkpNRUgEhhHNWnY7yuqgFh6qYo8UxqmNIKdpWDtF1Kn5JAvJgRe7l0Yo8WJFA5Gxlxm7_YNqNPyLGqJz_H_4Gh_ma9A |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_6b00570 crossref_primary_10_3390_en15228432 crossref_primary_10_1080_10242422_2016_1265948 crossref_primary_10_1080_17597269_2017_1345359 crossref_primary_10_2139_ssrn_4049412 crossref_primary_10_1016_j_renene_2020_05_172 crossref_primary_10_1039_D0GC00924E crossref_primary_10_3390_molecules24030490 crossref_primary_10_1016_j_cattod_2024_115099 crossref_primary_10_3390_catal11060734 crossref_primary_10_1016_j_fuproc_2015_05_015 crossref_primary_10_3390_catal8020068 crossref_primary_10_1093_ce_zky020 crossref_primary_10_1007_s00449_018_2013_1 crossref_primary_10_1007_s00449_021_02647_y crossref_primary_10_1016_j_fuproc_2020_106577 crossref_primary_10_1039_C6RA22047A crossref_primary_10_1016_j_molcatb_2016_12_003 crossref_primary_10_1016_j_biteb_2022_101137 crossref_primary_10_1016_j_biortech_2015_10_072 crossref_primary_10_1016_j_fuel_2021_122934 crossref_primary_10_1007_s00289_024_05149_5 crossref_primary_10_1016_j_ijbiomac_2016_10_058 crossref_primary_10_1016_j_scp_2023_101392 crossref_primary_10_1007_s12551_023_01146_6 crossref_primary_10_1016_j_renene_2019_03_069 crossref_primary_10_1021_acs_langmuir_4c02542 crossref_primary_10_1016_j_jclepro_2018_12_146 crossref_primary_10_1002_cctc_201701712 crossref_primary_10_1039_C8CS00410B crossref_primary_10_1016_j_renene_2019_08_048 crossref_primary_10_1007_s13205_024_04008_4 crossref_primary_10_1016_j_enconman_2016_06_001 crossref_primary_10_1016_j_applthermaleng_2016_07_184 crossref_primary_10_1016_j_matpr_2021_07_027 crossref_primary_10_1016_j_bej_2018_05_019 crossref_primary_10_1016_j_jbiosc_2018_08_007 crossref_primary_10_1016_j_biotechadv_2022_107936 crossref_primary_10_5650_jos_ess16167 crossref_primary_10_1016_j_aca_2018_05_046 crossref_primary_10_1016_j_fuel_2018_10_030 crossref_primary_10_1016_j_sjbs_2020_11_034 crossref_primary_10_1016_j_biotechadv_2021_107738 crossref_primary_10_1177_09544089221145485 crossref_primary_10_1016_j_rser_2022_113017 crossref_primary_10_1515_ntrev_2015_0069 crossref_primary_10_1016_j_cattod_2015_06_025 crossref_primary_10_1016_j_jclepro_2022_134653 crossref_primary_10_1038_s41598_022_10721_y crossref_primary_10_1016_j_fuproc_2016_04_013 crossref_primary_10_1016_j_fuproc_2016_06_004 crossref_primary_10_1080_10739149_2015_1131714 crossref_primary_10_1016_j_eti_2022_102597 crossref_primary_10_1049_mnl_2017_0402 crossref_primary_10_18245_ijaet_438118 crossref_primary_10_1002_cben_201900017 crossref_primary_10_1007_s12010_019_03196_7 crossref_primary_10_1007_s40242_015_5209_9 crossref_primary_10_1016_j_jare_2020_12_001 crossref_primary_10_1007_s11244_022_01712_4 crossref_primary_10_1016_j_jddst_2022_104103 crossref_primary_10_1016_j_cattod_2020_06_059 |
Cites_doi | 10.1016/j.apenergy.2014.01.017 10.1016/j.rser.2012.03.004 10.1016/j.apcata.2014.03.034 10.1016/j.biombioe.2010.01.034 10.1016/j.fuproc.2004.11.005 10.1002/bit.22256 10.1016/j.molcatb.2005.05.007 10.1016/j.biotechadv.2010.03.002 10.1016/j.procbio.2009.05.011 10.1016/j.jbiotec.2012.01.018 10.1021/bm0342281 10.1016/j.biortech.2013.10.037 10.1016/j.molcatb.2004.04.004 10.1016/j.ymeth.2004.11.003 10.1016/j.molcatb.2011.07.020 10.1007/s00289-012-0853-4 10.3109/02652049709056467 10.1016/j.procbio.2012.07.024 10.1016/j.procbio.2010.02.002 10.1021/ef500131s 10.1016/j.biombioe.2013.04.010 10.1016/j.molcatb.2013.10.019 10.1021/ef800648y 10.1016/j.biombioe.2011.11.006 10.1016/0003-2697(86)90176-4 10.1016/j.procbio.2006.09.024 10.1016/j.bej.2013.09.001 10.1016/j.biotechadv.2011.09.005 10.1016/j.jinorgbio.2011.02.006 10.1016/j.molcatb.2009.09.002 10.1016/j.procbio.2008.08.010 10.5650/jos.ess14089 10.1016/j.carbpol.2011.11.026 10.1016/j.fbp.2008.02.004 10.1016/j.biortech.2006.12.024 10.1016/j.jmmm.2009.02.036 10.1016/j.biotechadv.2010.05.012 10.1016/S1872-2067(11)60490-7 10.1016/j.biortech.2007.04.060 10.1016/j.procbio.2012.02.009 10.1016/j.biortech.2011.01.006 10.1016/j.jbiotec.2006.11.016 10.1007/s00253-012-4535-9 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7ST C1K SOI 7TB 7U5 8FD FR3 H8D L7M 7S9 L.6 |
DOI | 10.1016/j.fuproc.2015.01.032 |
DatabaseName | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Aerospace Database Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aerospace Database Environment Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 197 |
ExternalDocumentID | 10_1016_j_fuproc_2015_01_032 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABNK AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABJNI ABMAC ABNUV ABWVN ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADECG ADEWK ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AFZHZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AJSZI AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SDF SDG SES SEW SPC SPCBC SSG SSH SSK SSR SSZ T5K TWZ UHS WUQ ZY4 ~02 ~G- 7ST C1K SOI 7TB 7U5 8FD FR3 H8D L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c523t-1ed3a13c57dd09c7ccaf8194aca668d7b8d5d98ace4c5eb29609a261862468cb3 |
ISSN | 0378-3820 |
IngestDate | Thu Jul 10 23:35:08 EDT 2025 Thu Jul 10 23:58:30 EDT 2025 Fri Jul 11 06:27:36 EDT 2025 Tue Jul 01 03:04:29 EDT 2025 Thu Apr 24 22:58:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c523t-1ed3a13c57dd09c7ccaf8194aca668d7b8d5d98ace4c5eb29609a261862468cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1694986074 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000348021 proquest_miscellaneous_1701116637 proquest_miscellaneous_1694986074 crossref_primary_10_1016_j_fuproc_2015_01_032 crossref_citationtrail_10_1016_j_fuproc_2015_01_032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-01 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Fuel processing technology |
PublicationYear | 2015 |
References | Lam (10.1016/j.fuproc.2015.01.032_bb0195) 2010; 28 Ansari (10.1016/j.fuproc.2015.01.032_bb0065) 2012; 30 Xie (10.1016/j.fuproc.2015.01.032_bb0110) 2010; 34 Yan (10.1016/j.fuproc.2015.01.032_bb0055) 2011; 102 Alonso (10.1016/j.fuproc.2015.01.032_bb0150) 2005; 35 Meunier (10.1016/j.fuproc.2015.01.032_bb0030) 2010; 62 Xie (10.1016/j.fuproc.2015.01.032_bb0085) 2009; 23 Zang (10.1016/j.fuproc.2015.01.032_bb0100) 2014; 63 Barbosa (10.1016/j.fuproc.2015.01.032_bb0155) 2012; 47 Cipolatti (10.1016/j.fuproc.2015.01.032_bb0060) 2014; 99 Guldhe (10.1016/j.fuproc.2015.01.032_bb0215) 2014; 1–9 Abdulla (10.1016/j.fuproc.2015.01.032_bb0035) 2013; 56 Verma (10.1016/j.fuproc.2015.01.032_bb0080) 2013; 97 Atadashi (10.1016/j.fuproc.2015.01.032_bb0185) 2012; 16 Ranganathan (10.1016/j.fuproc.2015.01.032_bb0005) 2008; 99 Gilham (10.1016/j.fuproc.2015.01.032_bb0115) 2005; 36 Campos (10.1016/j.fuproc.2015.01.032_bb0120) 2013; 70 Campelj (10.1016/j.fuproc.2015.01.032_bb0210) 2009; 321 Netto (10.1016/j.fuproc.2015.01.032_bb0135) 2011; 105 Halim (10.1016/j.fuproc.2015.01.032_bb0205) 2008; 43 Kuo (10.1016/j.fuproc.2015.01.032_bb0090) 2012; 87 Richert (10.1016/j.fuproc.2015.01.032_bb0145) 2004; 5 Tan (10.1016/j.fuproc.2015.01.032_bb0190) 2010; 28 Shah (10.1016/j.fuproc.2015.01.032_bb0180) 2007; 42 Yan (10.1016/j.fuproc.2015.01.032_bb0225) 2014; 151 Xie (10.1016/j.fuproc.2015.01.032_bb0095) 2014; 28 Lai (10.1016/j.fuproc.2015.01.032_bb0040) 2012; 47 Kalantari (10.1016/j.fuproc.2015.01.032_bb0200) 2013; 79 Chui (10.1016/j.fuproc.2015.01.032_bb0160) 1997; 14 Hong (10.1016/j.fuproc.2015.01.032_bb0125) 2007; 128 Du (10.1016/j.fuproc.2015.01.032_bb0220) 2013; 34 Freitas (10.1016/j.fuproc.2015.01.032_bb0025) 2009; 44 Lin (10.1016/j.fuproc.2015.01.032_bb0070) 2014; 478 Staros (10.1016/j.fuproc.2015.01.032_bb0140) 1986; 156 Bordbar (10.1016/j.fuproc.2015.01.032_bb0130) 2014; 6 Raita (10.1016/j.fuproc.2015.01.032_bb0050) 2011; 73 Shao (10.1016/j.fuproc.2015.01.032_bb0165) 2008; 86 Van Gerpen (10.1016/j.fuproc.2015.01.032_bb0175) 2005; 86 Du (10.1016/j.fuproc.2015.01.032_bb0020) 2004; 30 Raita (10.1016/j.fuproc.2015.01.032_bb0045) 2010; 45 Christopher (10.1016/j.fuproc.2015.01.032_bb0010) 2014; 119 Fjerbaek (10.1016/j.fuproc.2015.01.032_bb0015) 2009; 102 Tran (10.1016/j.fuproc.2015.01.032_bb0075) 2012; 158 Xie (10.1016/j.fuproc.2015.01.032_bb0105) 2012; 36 Hernández-Martín (10.1016/j.fuproc.2015.01.032_bb0170) 2008; 99 |
References_xml | – volume: 119 start-page: 497 year: 2014 ident: 10.1016/j.fuproc.2015.01.032_bb0010 article-title: Enzymatic biodiesel: challenges and opportunities publication-title: Applied Energy doi: 10.1016/j.apenergy.2014.01.017 – volume: 16 start-page: 3456 year: 2012 ident: 10.1016/j.fuproc.2015.01.032_bb0185 article-title: The effects of water on biodiesel production and refining technologies: A review publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2012.03.004 – volume: 478 start-page: 175 year: 2014 ident: 10.1016/j.fuproc.2015.01.032_bb0070 article-title: Rationally designed Fe-MCM-41 by protein size to enhance lipase immobilization, catalytic efficiency and performance publication-title: Applied Catalysis A: General doi: 10.1016/j.apcata.2014.03.034 – volume: 34 start-page: 890 year: 2010 ident: 10.1016/j.fuproc.2015.01.032_bb0110 article-title: Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles publication-title: Biomass and Bioenergy doi: 10.1016/j.biombioe.2010.01.034 – volume: 86 start-page: 1097 year: 2005 ident: 10.1016/j.fuproc.2015.01.032_bb0175 article-title: Biodiesel processing and production publication-title: Fuel Processing Technology doi: 10.1016/j.fuproc.2004.11.005 – volume: 102 start-page: 1298 year: 2009 ident: 10.1016/j.fuproc.2015.01.032_bb0015 article-title: A review of the current state of biodiesel production using enzymatic transesterification publication-title: Biotechnology and Bioengineering doi: 10.1002/bit.22256 – volume: 35 start-page: 57 year: 2005 ident: 10.1016/j.fuproc.2015.01.032_bb0150 article-title: Immobilization and stabilization of glutaryl acylase on aminated sepabeads supports by the glutaraldehyde crosslinking method publication-title: Journal of Molecular Catalysis B: Enzymatic doi: 10.1016/j.molcatb.2005.05.007 – volume: 28 start-page: 500 year: 2010 ident: 10.1016/j.fuproc.2015.01.032_bb0195 article-title: Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review publication-title: Biotechnology Advances doi: 10.1016/j.biotechadv.2010.03.002 – volume: 44 start-page: 1068 year: 2009 ident: 10.1016/j.fuproc.2015.01.032_bb0025 article-title: An integrated approach to produce biodiesel and monoglycerides by enzymatic interestification of babassu oil (Orbinya sp) publication-title: Process Biochemistry doi: 10.1016/j.procbio.2009.05.011 – volume: 158 start-page: 112 year: 2012 ident: 10.1016/j.fuproc.2015.01.032_bb0075 article-title: Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production publication-title: Journal of Biotechnology doi: 10.1016/j.jbiotec.2012.01.018 – volume: 6 year: 2014 ident: 10.1016/j.fuproc.2015.01.032_bb0130 article-title: Characterization of modified magnetite nanoparticles for albumin immobilization publication-title: Biotechnology Research International – volume: 5 start-page: 284 year: 2004 ident: 10.1016/j.fuproc.2015.01.032_bb0145 article-title: Improvement of stability and cell adhesion properties of polyelectrolyte multilayer films by chemical cross-linking publication-title: Biomacromolecules doi: 10.1021/bm0342281 – volume: 151 start-page: 43 year: 2014 ident: 10.1016/j.fuproc.2015.01.032_bb0225 article-title: A novel and robust recombinant Pichia pastoris yeast whole cell biocatalyst with intracellular overexpression of a Thermomyces lanuginosus lipase: preparation, characterization and application in biodiesel production publication-title: Bioresource Technology doi: 10.1016/j.biortech.2013.10.037 – volume: 30 start-page: 125 year: 2004 ident: 10.1016/j.fuproc.2015.01.032_bb0020 article-title: Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors publication-title: Journal of Molecular Catalysis B: Enzymatic doi: 10.1016/j.molcatb.2004.04.004 – volume: 36 start-page: 139 year: 2005 ident: 10.1016/j.fuproc.2015.01.032_bb0115 article-title: Techniques to measure lipase and esterase activity in vitro publication-title: Methods doi: 10.1016/j.ymeth.2004.11.003 – volume: 1–9 year: 2014 ident: 10.1016/j.fuproc.2015.01.032_bb0215 article-title: Synthesis of biodiesel from Scenedesmus sp. by microwave and ultrasound assisted in situ transesterification using tungstated zirconia as a solid acid catalyst publication-title: Chemical Engineering Research and Design – volume: 73 start-page: 74 year: 2011 ident: 10.1016/j.fuproc.2015.01.032_bb0050 article-title: Biocatalytic esterification of palm oil fatty acids for biodiesel production using glycine-based cross-linked protein coated microcrystalline lipase publication-title: Journal of Molecular Catalysis B: Enzymatic doi: 10.1016/j.molcatb.2011.07.020 – volume: 70 start-page: 549 year: 2013 ident: 10.1016/j.fuproc.2015.01.032_bb0120 article-title: An improved method for preparing glutaraldehyde cross-linked chitosan–poly(vinyl alcohol) microparticles publication-title: Polymer Bulletin doi: 10.1007/s00289-012-0853-4 – volume: 14 start-page: 51 year: 1997 ident: 10.1016/j.fuproc.2015.01.032_bb0160 article-title: Prolonged retention of cross-linked trypsin in calcium alginate microspheres publication-title: Journal of Microencapsulation doi: 10.3109/02652049709056467 – volume: 47 start-page: 2058 year: 2012 ident: 10.1016/j.fuproc.2015.01.032_bb0040 article-title: Catalytic performance of cross-linked enzyme aggregates of Penicillium expansum lipase and their use as catalyst for biodiesel production publication-title: Process Biochemistry doi: 10.1016/j.procbio.2012.07.024 – volume: 45 start-page: 829 year: 2010 ident: 10.1016/j.fuproc.2015.01.032_bb0045 article-title: Biocatalytic ethanolysis of palm oil for biodiesel production using microcrystalline lipase in tert-butanol system publication-title: Process Biochemistry doi: 10.1016/j.procbio.2010.02.002 – volume: 28 start-page: 2624 year: 2014 ident: 10.1016/j.fuproc.2015.01.032_bb0095 article-title: Enzymatic production of biodiesel from soybean oil by using immobilized lipase on Fe3O4/poly(styrene-methacrylic acid) magnetic microsphere as a biocatalyst publication-title: Energy and Fuels doi: 10.1021/ef500131s – volume: 56 start-page: 8 year: 2013 ident: 10.1016/j.fuproc.2015.01.032_bb0035 article-title: Immobilized Burkholderia cepacia lipase for biodiesel production from crude Jatropha curcas L. oil publication-title: Biomass and Bioenergy doi: 10.1016/j.biombioe.2013.04.010 – volume: 99 start-page: 56 year: 2014 ident: 10.1016/j.fuproc.2015.01.032_bb0060 article-title: Current status and trends in enzymatic nanoimmobilization publication-title: Journal of Molecular Catalysis B: Enzymatic doi: 10.1016/j.molcatb.2013.10.019 – volume: 23 start-page: 1347 year: 2009 ident: 10.1016/j.fuproc.2015.01.032_bb0085 article-title: Immobilized lipase on Fe3O4 nanoparticles as biocatalyst for biodiesel production publication-title: Energy and Fuels doi: 10.1021/ef800648y – volume: 36 start-page: 373 year: 2012 ident: 10.1016/j.fuproc.2015.01.032_bb0105 article-title: Immobilized lipase on magnetic chitosan microspheres for transesterification of soybean oil publication-title: Biomass and Bioenergy doi: 10.1016/j.biombioe.2011.11.006 – volume: 156 start-page: 220 year: 1986 ident: 10.1016/j.fuproc.2015.01.032_bb0140 article-title: Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions publication-title: Analytical Biochemistry doi: 10.1016/0003-2697(86)90176-4 – volume: 42 start-page: 409 year: 2007 ident: 10.1016/j.fuproc.2015.01.032_bb0180 article-title: Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system publication-title: Process Biochemistry doi: 10.1016/j.procbio.2006.09.024 – volume: 79 start-page: 267 year: 2013 ident: 10.1016/j.fuproc.2015.01.032_bb0200 article-title: Evaluation of biodiesel production using lipase immobilized on magnetic silica nanocomposite particles of various structures publication-title: Biochemical Engineering Journal doi: 10.1016/j.bej.2013.09.001 – volume: 30 start-page: 512 year: 2012 ident: 10.1016/j.fuproc.2015.01.032_bb0065 article-title: Potential applications of enzymes immobilized on/in nano materials: a review publication-title: Biotechnology Advances doi: 10.1016/j.biotechadv.2011.09.005 – volume: 105 start-page: 738 year: 2011 ident: 10.1016/j.fuproc.2015.01.032_bb0135 article-title: Catalytic properties of thioredoxin immobilized on superparamagnetic nanoparticles publication-title: Journal of Inorganic Biochemistry doi: 10.1016/j.jinorgbio.2011.02.006 – volume: 62 start-page: 53 year: 2010 ident: 10.1016/j.fuproc.2015.01.032_bb0030 article-title: Evaluation of diatomaceous earth as a support for sol–gel immobilized lipase for transesterification publication-title: Journal of Molecular Catalysis B: Enzymatic doi: 10.1016/j.molcatb.2009.09.002 – volume: 43 start-page: 1436 year: 2008 ident: 10.1016/j.fuproc.2015.01.032_bb0205 article-title: Catalytic studies of lipase on FAME production from waste cooking palm oil in a tert-butanol system publication-title: Process Biochemistry doi: 10.1016/j.procbio.2008.08.010 – volume: 63 start-page: 1027 year: 2014 ident: 10.1016/j.fuproc.2015.01.032_bb0100 article-title: Enzymatic interesterification of soybean oil and methyl stearate blends using lipase immobilized on magnetic Fe3O4/SBA-15 composites as a biocatalyst publication-title: Journal of Oleo Science doi: 10.5650/jos.ess14089 – volume: 87 start-page: 2538 year: 2012 ident: 10.1016/j.fuproc.2015.01.032_bb0090 article-title: Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2011.11.026 – volume: 86 start-page: 283 year: 2008 ident: 10.1016/j.fuproc.2015.01.032_bb0165 article-title: Analysis of immobilized Candida rugosa lipase catalyzed preparation of biodiesel from rapeseed soapstock publication-title: Food and Bioproducts Processing doi: 10.1016/j.fbp.2008.02.004 – volume: 99 start-page: 277 year: 2008 ident: 10.1016/j.fuproc.2015.01.032_bb0170 article-title: Different enzyme requirements for the synthesis of biodiesel: Novozym® 435 and Lipozyme® TL IM publication-title: Bioresource Technology doi: 10.1016/j.biortech.2006.12.024 – volume: 321 start-page: 1346 year: 2009 ident: 10.1016/j.fuproc.2015.01.032_bb0210 article-title: Functionalization of magnetic nanoparticles with 3-aminopropyl silane publication-title: Journal of Magnetism and Magnetic Materials doi: 10.1016/j.jmmm.2009.02.036 – volume: 28 start-page: 628 year: 2010 ident: 10.1016/j.fuproc.2015.01.032_bb0190 article-title: Biodiesel production with immobilized lipase: a review publication-title: Biotechnology Advances doi: 10.1016/j.biotechadv.2010.05.012 – volume: 34 start-page: 101 year: 2013 ident: 10.1016/j.fuproc.2015.01.032_bb0220 article-title: Research and development of a sub-critical methanol alcoholysis process for producing biodiesel using waste oils and fats publication-title: Chinese Journal of Catalysis doi: 10.1016/S1872-2067(11)60490-7 – volume: 99 start-page: 3975 year: 2008 ident: 10.1016/j.fuproc.2015.01.032_bb0005 article-title: An overview of enzymatic production of biodiesel publication-title: Bioresource Technology doi: 10.1016/j.biortech.2007.04.060 – volume: 47 start-page: 766 year: 2012 ident: 10.1016/j.fuproc.2015.01.032_bb0155 article-title: The slow-down of the CALB immobilization rate permits to control the inter and intra molecular modification produced by glutaraldehyde publication-title: Process Biochemistry doi: 10.1016/j.procbio.2012.02.009 – volume: 102 start-page: 4755 year: 2011 ident: 10.1016/j.fuproc.2015.01.032_bb0055 article-title: Preparation of cross-linked lipase-coated micro-crystals for biodiesel production from waste cooking oil publication-title: Bioresource Technology doi: 10.1016/j.biortech.2011.01.006 – volume: 128 start-page: 597 year: 2007 ident: 10.1016/j.fuproc.2015.01.032_bb0125 article-title: Stabilization of α-chymotrypsin by covalent immobilization on amine-functionalized superparamagnetic nanogel publication-title: Journal of Biotechnology doi: 10.1016/j.jbiotec.2006.11.016 – volume: 97 start-page: 23 year: 2013 ident: 10.1016/j.fuproc.2015.01.032_bb0080 article-title: Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production publication-title: Applied Microbiology and Biotechnology doi: 10.1007/s00253-012-4535-9 |
SSID | ssj0005597 |
Score | 2.4054308 |
Snippet | Biocatalytic conversion of vegetable oils by immobilized lipase to fatty acid methyl ester (FAME) is an efficient eco-friendly alternative to the conventional... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 189 |
SubjectTerms | biocatalysts Biodiesel carboxylic ester hydrolases catalytic activity Covalence Elaeis guineensis Enzymes fatty acid methyl esters fuel production hydrolysis Immobilization Lipase magnetite methanol Methyl alcohol nanoparticles Nanostructure Palm oil palmitates scanning electron microscopy Thermomyces lanuginosus transesterification vegetable oil water content |
Title | Modification of magnetic nanoparticle lipase designs for biodiesel production from palm oil |
URI | https://www.proquest.com/docview/1694986074 https://www.proquest.com/docview/1701116637 https://www.proquest.com/docview/2000348021 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFA66vuiDeMXdVYngW5kyt8wkj7LsskhbQVop-BAySUantDOlFxd88Ld7ksyt1Mvqy1CGZNrmfD3nJP3OdxB660ufEJWHXsRiBRsUFXs085mnUx3mVNIssDoF40lyPYvfz8m8o_La6pJdNpTff1lX8j9WhXtgV1Ml-w-WbR8KN-A12BeuYGG43srG40oZpk-b9a3El9IUJQ5KUcJm2E0YLIs1hKqBslyNreNnFpVhD-ql4WcpJyDrKk3WYrkaVDXvomnfuXcDTUWBra46Oo7_KAqXhY5NT0PRochKEzjOL5iw6ILAxVexWm-0srM-6Y24ES0BZySqbQHOrFoIV7E2Ed-M8lT_hCIgHZOqqcwyFAwa-gdetz7DdH4zcH2E6hAcOMrukXd3Bw2LYb4339nw8pzman1CeiCmPfnAr2ajEZ9ezqd30b0QdhHGDQ5_9BhAxPbeaT9eU1lp6X_H73GYuRwGbpuNTB-hh_U2Ar9zJn6M7ujyCXrQE5d8ij730YGrHDfowH10YIcOXKMDAzpwiw7coQMbdGCDDgzoeIZmV5fTi2uvbqXhSRJGOy_QKhJBJEmqlM9kCr_bHHLBWEiRJFSlGVVEMSqkjiXRWWh0CEVoeimEcUJlFj1HJ2VV6hcIS5apGEIoZUEeM98XCY0gJ2SQ2GYqJ_oURc0ycVnrzJt2J0veEAoX3C0uN4vL_YDD4p4ir521djorfxn_prEAB4do_uUSpa72Wx4kLGY0gdT4D2NSCGsBJNvp78eEVruJQg58dovnnKP7HfRfopPdZq9fQbq6y15b0P0EI_GcZQ |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modification+of+magnetic+nanoparticle+lipase+designs+for+biodiesel+production+from+palm+oil&rft.jtitle=Fuel+processing+technology&rft.au=Raita%2C+Marisa&rft.au=Arnthong%2C+Jantima&rft.au=Champreda%2C+Verawat&rft.au=Laosiripojana%2C+Navadol&rft.date=2015-06-01&rft.issn=0378-3820&rft.volume=134&rft.spage=189&rft.epage=197&rft_id=info:doi/10.1016%2Fj.fuproc.2015.01.032&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3820&client=summon |