Adipose stem cells in tissue regeneration and repair: from bench to bedside
ADSCs are a large number of mesenchymal stem cells in Adipose tissue, which can be applied to tissue engineering. ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc. Compared with other mesenchymal...
Saved in:
Published in | Regenerative therapy Vol. 24; pp. 547 - 560 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2023
Japanese Society for Regenerative Medicine Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ADSCs are a large number of mesenchymal stem cells in Adipose tissue, which can be applied to tissue engineering. ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc. Compared with other mesenchymal stem cells, ADSCs have a multitude of promising advantages, such as abundant number, accessibility in cell culture, stable function, and less immune rejection. There are two main methods to use ADSCs for tissue repair and regeneration. One is to implant the “ADSCs-scaffold composite” into the injured site to promote tissue regeneration. The other is cell-free therapy: using ADSC-exos or ADSC-CM alone to release a large number of miRNAs, cytokines and other bioactive substances to promote tissue regeneration. The tissue regeneration potential of ADSCs is regulated by a variety of cytokines, signaling molecules, and external environment. The differentiation of ADSCs into different tissues is also induced by growth factors, ions, hormones, scaffold materials, physical stimulation, and other factors. The specific mechanisms are complex, and most of the signaling pathways need to be further explored. This article reviews and summarizes the mechanism and clinical application of ADSCs in tissue injury repair so far, and puts forward further problems that need to be solved in this field, hoping to provide directions for further research in this field.
[Display omitted]
•Adipose-derived stem cells (ADSCs) are ideal seed cells of tissue engineering in future.•ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc.•Advantages of ADSCs: abundant number, accessibility in cell culture, stable function, and less immune rejection.•Cell-free therapy: using ADSCs-derived exosomes (ADSC-exos) or ADSC-conditioned medium (ADSC-CM) alone to promote tissue regeneration. |
---|---|
AbstractList | ADSCs are a large number of mesenchymal stem cells in Adipose tissue, which can be applied to tissue engineering. ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc. Compared with other mesenchymal stem cells, ADSCs have a multitude of promising advantages, such as abundant number, accessibility in cell culture, stable function, and less immune rejection. There are two main methods to use ADSCs for tissue repair and regeneration. One is to implant the "ADSCs-scaffold composite" into the injured site to promote tissue regeneration. The other is cell-free therapy: using ADSC-exos or ADSC-CM alone to release a large number of miRNAs, cytokines and other bioactive substances to promote tissue regeneration. The tissue regeneration potential of ADSCs is regulated by a variety of cytokines, signaling molecules, and external environment. The differentiation of ADSCs into different tissues is also induced by growth factors, ions, hormones, scaffold materials, physical stimulation, and other factors. The specific mechanisms are complex, and most of the signaling pathways need to be further explored. This article reviews and summarizes the mechanism and clinical application of ADSCs in tissue injury repair so far, and puts forward further problems that need to be solved in this field, hoping to provide directions for further research in this field.ADSCs are a large number of mesenchymal stem cells in Adipose tissue, which can be applied to tissue engineering. ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc. Compared with other mesenchymal stem cells, ADSCs have a multitude of promising advantages, such as abundant number, accessibility in cell culture, stable function, and less immune rejection. There are two main methods to use ADSCs for tissue repair and regeneration. One is to implant the "ADSCs-scaffold composite" into the injured site to promote tissue regeneration. The other is cell-free therapy: using ADSC-exos or ADSC-CM alone to release a large number of miRNAs, cytokines and other bioactive substances to promote tissue regeneration. The tissue regeneration potential of ADSCs is regulated by a variety of cytokines, signaling molecules, and external environment. The differentiation of ADSCs into different tissues is also induced by growth factors, ions, hormones, scaffold materials, physical stimulation, and other factors. The specific mechanisms are complex, and most of the signaling pathways need to be further explored. This article reviews and summarizes the mechanism and clinical application of ADSCs in tissue injury repair so far, and puts forward further problems that need to be solved in this field, hoping to provide directions for further research in this field. ADSCs are a large number of mesenchymal stem cells in Adipose tissue, which can be applied to tissue engineering. ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc. Compared with other mesenchymal stem cells, ADSCs have a multitude of promising advantages, such as abundant number, accessibility in cell culture, stable function, and less immune rejection. There are two main methods to use ADSCs for tissue repair and regeneration. One is to implant the “ADSCs-scaffold composite” into the injured site to promote tissue regeneration. The other is cell-free therapy: using ADSC-exos or ADSC-CM alone to release a large number of miRNAs, cytokines and other bioactive substances to promote tissue regeneration. The tissue regeneration potential of ADSCs is regulated by a variety of cytokines, signaling molecules, and external environment. The differentiation of ADSCs into different tissues is also induced by growth factors, ions, hormones, scaffold materials, physical stimulation, and other factors. The specific mechanisms are complex, and most of the signaling pathways need to be further explored. This article reviews and summarizes the mechanism and clinical application of ADSCs in tissue injury repair so far, and puts forward further problems that need to be solved in this field, hoping to provide directions for further research in this field. Image 1 • Adipose-derived stem cells (ADSCs) are ideal seed cells of tissue engineering in future. • ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc. • Advantages of ADSCs: abundant number, accessibility in cell culture, stable function, and less immune rejection. • Cell-free therapy: using ADSCs-derived exosomes (ADSC-exos) or ADSC-conditioned medium (ADSC-CM) alone to promote tissue regeneration. ADSCs are a large number of mesenchymal stem cells in Adipose tissue, which can be applied to tissue engineering. ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc. Compared with other mesenchymal stem cells, ADSCs have a multitude of promising advantages, such as abundant number, accessibility in cell culture, stable function, and less immune rejection. There are two main methods to use ADSCs for tissue repair and regeneration. One is to implant the “ADSCs-scaffold composite” into the injured site to promote tissue regeneration. The other is cell-free therapy: using ADSC-exos or ADSC-CM alone to release a large number of miRNAs, cytokines and other bioactive substances to promote tissue regeneration. The tissue regeneration potential of ADSCs is regulated by a variety of cytokines, signaling molecules, and external environment. The differentiation of ADSCs into different tissues is also induced by growth factors, ions, hormones, scaffold materials, physical stimulation, and other factors. The specific mechanisms are complex, and most of the signaling pathways need to be further explored. This article reviews and summarizes the mechanism and clinical application of ADSCs in tissue injury repair so far, and puts forward further problems that need to be solved in this field, hoping to provide directions for further research in this field. ADSCs are a large number of mesenchymal stem cells in Adipose tissue, which can be applied to tissue engineering. ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc. Compared with other mesenchymal stem cells, ADSCs have a multitude of promising advantages, such as abundant number, accessibility in cell culture, stable function, and less immune rejection. There are two main methods to use ADSCs for tissue repair and regeneration. One is to implant the “ADSCs-scaffold composite” into the injured site to promote tissue regeneration. The other is cell-free therapy: using ADSC-exos or ADSC-CM alone to release a large number of miRNAs, cytokines and other bioactive substances to promote tissue regeneration. The tissue regeneration potential of ADSCs is regulated by a variety of cytokines, signaling molecules, and external environment. The differentiation of ADSCs into different tissues is also induced by growth factors, ions, hormones, scaffold materials, physical stimulation, and other factors. The specific mechanisms are complex, and most of the signaling pathways need to be further explored. This article reviews and summarizes the mechanism and clinical application of ADSCs in tissue injury repair so far, and puts forward further problems that need to be solved in this field, hoping to provide directions for further research in this field. [Display omitted] •Adipose-derived stem cells (ADSCs) are ideal seed cells of tissue engineering in future.•ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc.•Advantages of ADSCs: abundant number, accessibility in cell culture, stable function, and less immune rejection.•Cell-free therapy: using ADSCs-derived exosomes (ADSC-exos) or ADSC-conditioned medium (ADSC-CM) alone to promote tissue regeneration. |
Author | Dong, Lei Guo, Zhenke Lin, Jian Li, Xiaoyu Leng, Wenyuan Xu, Chunru Cai, Tianyu Ji, Xing Zhu, Zhenpeng |
Author_xml | – sequence: 1 givenname: Lei orcidid: 0009-0000-1386-1377 surname: Dong fullname: Dong, Lei organization: Department of Urology, Peking University First Hospital, Beijing 100034, China – sequence: 2 givenname: Xiaoyu surname: Li fullname: Li, Xiaoyu organization: Department of Urology, Peking University First Hospital, Beijing 100034, China – sequence: 3 givenname: Wenyuan surname: Leng fullname: Leng, Wenyuan organization: Department of Urology, Peking University First Hospital, Beijing 100034, China – sequence: 4 givenname: Zhenke surname: Guo fullname: Guo, Zhenke organization: Department of Urology, Peking University First Hospital, Beijing 100034, China – sequence: 5 givenname: Tianyu surname: Cai fullname: Cai, Tianyu organization: Department of Urology, Peking University First Hospital, Beijing 100034, China – sequence: 6 givenname: Xing surname: Ji fullname: Ji, Xing organization: Department of Urology, Peking University First Hospital, Beijing 100034, China – sequence: 7 givenname: Chunru surname: Xu fullname: Xu, Chunru organization: Department of Urology, Peking University First Hospital, Beijing 100034, China – sequence: 8 givenname: Zhenpeng surname: Zhu fullname: Zhu, Zhenpeng organization: Department of Urology, Peking University First Hospital, Beijing 100034, China – sequence: 9 givenname: Jian surname: Lin fullname: Lin, Jian email: linjianbj@163.com organization: Department of Urology, Peking University First Hospital, Beijing 100034, China |
BookMark | eNp9kU1r3DAQhkVJoGmaP5CTj72sqy_bUimUEPoRGuglOYuxNN7VYktbSRvIv682m0LTQ04zzMz7MLzvO3ISYkBCLhltGWX9x22bsGxaTrloqW4pk2_IGRcdXwlO5ck__VtykfOWUspUx7hWZ-TnlfO7mLHJBZfG4jznxoem-Jz32CRcY8AExcfQQHB1sAOfPjVTikszYrCbpsTauOwdvienE8wZL57rObn_9vXu-sfq9tf3m-ur25XtuCgrNlKHFCSTABYGprVSTAkclbKqH4XWKEV9EdUAvQXR1421DHQ3jI7DJM7JzZHrImzNLvkF0qOJ4M3TIKa1gVS8ndFgZyVaDVpylKNzmiPVE6VKDH2vnKqsL0fWbj8u6CyGkmB-AX25CX5j1vHBMNoNWg28Ej48E1L8vcdczOLzwUgIGPfZcDVoSXulhnqqjqc2xZwTTsb68mRuRfu5Ms0hULM1h0DNIVBDtamBVin_T_r3xVdFn48irGk8eEwmW19DQ-cT2lLt8q_J_wCyaL0I |
CitedBy_id | crossref_primary_10_1186_s12967_024_05806_3 crossref_primary_10_1186_s13287_024_03931_w crossref_primary_10_3390_neurolint17020023 crossref_primary_10_1186_s40580_024_00450_5 crossref_primary_10_3390_cells13010051 crossref_primary_10_1088_1748_605X_ad270a crossref_primary_10_3390_ijms252413488 crossref_primary_10_1186_s12951_024_02684_1 crossref_primary_10_1186_s13287_024_03774_5 crossref_primary_10_1016_j_engreg_2025_02_002 crossref_primary_10_4012_dmj_2024_066 crossref_primary_10_1088_1748_605X_adaff8 crossref_primary_10_1155_sci_6344844 crossref_primary_10_3390_cells13242050 crossref_primary_10_3390_cells13161384 crossref_primary_10_17241_smr_2024_02159 crossref_primary_10_3390_bioengineering11111100 crossref_primary_10_52965_001c_125841 crossref_primary_10_1007_s12035_025_04704_z crossref_primary_10_3389_fbioe_2024_1455225 crossref_primary_10_24061_2413_4260_XIV_3_53_2024_14 crossref_primary_10_1021_acsbiomaterials_3c01222 crossref_primary_10_4103_JAPTR_JAPTR_390_23 |
Cites_doi | 10.3390/cells11213338 10.1177/1756287214553968 10.1016/S0165-2478(03)00108-1 10.1007/s00018-020-03516-9 10.1016/j.actbio.2022.11.057 10.1016/j.mce.2021.111298 10.1002/jbm.a.37340 10.1186/s13287-021-02662-6 10.1016/j.neuroscience.2019.10.018 10.1016/j.bbrc.2022.10.046 10.2174/1574888X13666181113113415 10.3389/fbioe.2019.00045 10.1002/jnr.24538 10.1016/j.arcmed.2020.08.006 10.1134/S0006297917110116 10.1016/j.abb.2020.108259 10.1016/j.jss.2012.01.047 10.1186/s13287-021-02203-1 10.1016/j.cej.2021.131624 10.1084/jem.20190418 10.1016/j.biopha.2020.109888 10.3390/ijms21228652 10.1111/cpr.13212 10.1016/j.exer.2021.108613 10.1007/s11033-022-08003-x 10.1016/j.celrep.2019.07.014 10.1016/j.jcyt.2016.10.014 10.1016/j.tcb.2023.06.006 10.1161/01.CIR.0000121425.42966.F1 10.1016/j.jcyt.2019.04.061 10.1089/scd.2022.0003 10.1186/s13287-020-02026-6 10.2217/rme-2020-0031 10.1002/sctm.16-0410 10.1186/s13287-020-01778-5 10.1016/j.mam.2017.11.007 10.1016/j.lfs.2019.116900 10.1016/S0169-328X(01)00094-8 10.1186/s13287-019-1358-y 10.1007/s11626-019-00340-9 10.3390/ijms17111885 10.1016/j.cell.2006.07.024 10.1016/j.carbpol.2019.115640 10.21037/atm-22-3489 10.2147/JIR.S307801 10.1007/s13577-019-00315-8 10.1186/s12868-021-00655-y 10.1002/jbm.a.37023 10.2217/rme-2019-0080 10.3390/ijms21041306 10.1002/dvg.23215 10.5152/tud.2020.20024 10.1007/s12015-021-10252-5 10.3390/ijms22052632 10.1007/s10495-021-01685-x 10.1089/ten.tea.2022.0087 10.7150/thno.40919 10.1177/0963689719853512 10.1186/s10020-021-00406-z 10.1039/C9PY01021A 10.7554/eLife.35012 10.1016/j.lfs.2021.119986 10.1016/j.mce.2020.111035 10.1186/s13287-022-03199-y 10.1177/0022034517733967 10.1155/2021/5502740 10.1016/j.ajpath.2020.12.011 10.1002/smll.202101741 10.1016/j.yexcr.2018.06.035 10.1007/s13770-021-00371-y 10.1126/science.aau6977 10.1177/0363546519848678 10.1186/s13287-019-1177-1 10.1186/s13287-017-0558-6 10.1093/burnst/tkaa009 10.1161/01.RES.0000118601.37875.AC 10.1097/GOX.0000000000002953 10.1002/jcp.30968 10.1016/j.brainres.2020.147121 10.1016/j.mce.2009.12.011 10.12968/bjcn.2019.24.Sup9.S12 10.1007/s11010-019-03630-8 10.1002/jcp.29681 10.1093/neuros/nyy374 10.1016/j.cell.2019.01.021 10.1038/s41374-021-00611-8 10.3390/ijms232214074 10.1111/neup.12650 10.1186/s13287-021-02695-x 10.1016/j.steroids.2019.108492 10.1016/j.addr.2019.09.003 10.1038/s41598-021-93642-6 10.1007/s12015-020-10038-1 10.3390/ijms23020644 10.1080/21655979.2021.1990193 10.3390/cells9092131 10.1097/PRS.0000000000008796 10.1002/glia.23881 10.1016/j.lfs.2023.121785 10.1007/s10561-019-09761-y 10.3109/14764172.2015.1114638 10.3390/ijms21144864 10.1080/09205063.2017.1414481 10.3390/cells9091939 10.1002/jcp.27697 10.1111/jcmm.15368 10.3390/biomedicines9111624 10.3389/fbioe.2022.825146 10.18632/oncotarget.28215 10.1186/s13287-021-02509-0 10.3390/bioengineering7020042 10.1186/s13287-020-01831-3 10.1177/09636897221093312 10.3390/ijms22137000 10.1016/j.biomaterials.2018.07.017 10.1016/j.semcancer.2022.05.002 10.1016/j.expneurol.2019.05.009 10.1089/cell.2019.0098 10.1002/marc.202100930 10.1002/jbm.a.36943 10.1111/cns.13282 10.1016/S0140-6736(10)62354-9 10.1002/jbm.a.35568 10.1088/1758-5090/abd56c 10.1021/acs.analchem.1c03155 10.1021/acs.chemrev.1c00815 10.2337/db18-0699 10.1111/jcmm.15387 10.1186/s13287-021-02528-x 10.1080/09205063.2022.2073426 10.1155/2019/9046430 10.1002/jcb.28376 10.1016/j.cell.2019.02.029 10.1089/scd.2019.0113 10.1093/asj/sjad139 10.3390/ijms19030826 10.1038/s41598-019-49339-y 10.1111/jocd.13215 10.1111/wrr.12516 10.1101/cshperspect.a021873 10.1186/s13287-022-03132-3 10.1016/j.celrep.2022.110309 10.3390/cells10113242 |
ContentType | Journal Article |
Copyright | 2023 The Japanese Society for Regenerative Medicine 2023 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. 2023 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. 2023 The Japanese Society for Regenerative Medicine |
Copyright_xml | – notice: 2023 The Japanese Society for Regenerative Medicine – notice: 2023 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. – notice: 2023 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. 2023 The Japanese Society for Regenerative Medicine |
DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.reth.2023.09.014 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2352-3204 |
EndPage | 560 |
ExternalDocumentID | oai_doaj_org_article_e5c4ec9a942e4bdd92e09f00837668d8 PMC10579872 10_1016_j_reth_2023_09_014 S2352320423000962 |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c523t-1b0de0a414aaca719988183eb88c86b399e43001e87a6ca36eb8cc1a957bd2af3 |
IEDL.DBID | DOA |
ISSN | 2352-3204 |
IngestDate | Wed Aug 27 01:24:58 EDT 2025 Thu Aug 21 18:36:05 EDT 2025 Fri Jul 11 03:17:18 EDT 2025 Tue Jul 01 03:44:13 EDT 2025 Thu Apr 24 23:11:30 EDT 2025 Fri Feb 23 02:35:06 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ADSCs Exosomes Tissue repair Mechanism |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c523t-1b0de0a414aaca719988183eb88c86b399e43001e87a6ca36eb8cc1a957bd2af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0009-0000-1386-1377 |
OpenAccessLink | https://doaj.org/article/e5c4ec9a942e4bdd92e09f00837668d8 |
PQID | 2879406887 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e5c4ec9a942e4bdd92e09f00837668d8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10579872 proquest_miscellaneous_2879406887 crossref_citationtrail_10_1016_j_reth_2023_09_014 crossref_primary_10_1016_j_reth_2023_09_014 elsevier_sciencedirect_doi_10_1016_j_reth_2023_09_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Regenerative therapy |
PublicationYear | 2023 |
Publisher | Elsevier B.V Japanese Society for Regenerative Medicine Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Japanese Society for Regenerative Medicine – name: Elsevier |
References | Shafaei (10.1016/j.reth.2023.09.014_bib45) 2020; 235 Piao (10.1016/j.reth.2023.09.014_bib162) 2021; 285 Sun (10.1016/j.reth.2023.09.014_bib65) 2020; 33 Kalluri (10.1016/j.reth.2023.09.014_bib25) 2020; 367 LeBlanc (10.1016/j.reth.2023.09.014_bib94) 2019; 24 Gholipourmalekabadi (10.1016/j.reth.2023.09.014_bib81) 2020; 153 Gordon (10.1016/j.reth.2023.09.014_bib112) 2020; 21 Zhou (10.1016/j.reth.2023.09.014_bib99) 2022; 2022 Nocera (10.1016/j.reth.2023.09.014_bib108) 2020; 77 Marofi (10.1016/j.reth.2023.09.014_bib72) 2021; 12 Podsednik (10.1016/j.reth.2023.09.014_bib156) 2022; 23 Yao (10.1016/j.reth.2023.09.014_bib39) 2022 Liu (10.1016/j.reth.2023.09.014_bib57) 2020; 108 Nagano (10.1016/j.reth.2023.09.014_bib107) 2021; 11 Tran (10.1016/j.reth.2023.09.014_bib78) 2015; 7 Molina (10.1016/j.reth.2023.09.014_bib20) 2022; 13 Zhou (10.1016/j.reth.2023.09.014_bib34) 2019; 47 Petsoglou (10.1016/j.reth.2023.09.014_bib136) 2021; 208 Lopes (10.1016/j.reth.2023.09.014_bib153) 2022; 23 Moon (10.1016/j.reth.2023.09.014_bib98) 2019; 68 Mantsounga (10.1016/j.reth.2023.09.014_bib69) 2022; 38 Jiang (10.1016/j.reth.2023.09.014_bib17) 2021; 12 Li (10.1016/j.reth.2023.09.014_bib137) 2022; 55 Künzel (10.1016/j.reth.2023.09.014_bib134) 2018; 7 Sun (10.1016/j.reth.2023.09.014_bib48) 2022; 10 Masuda (10.1016/j.reth.2023.09.014_bib144) 2020; 40 Ma (10.1016/j.reth.2023.09.014_bib146) 2020; 24 Sawai (10.1016/j.reth.2023.09.014_bib150) 2021; 2021 Wang (10.1016/j.reth.2023.09.014_bib141) 2021; 26 Glovinski (10.1016/j.reth.2023.09.014_bib31) 2017; 19 Modrak (10.1016/j.reth.2023.09.014_bib152) 2020; 98 Yh (10.1016/j.reth.2023.09.014_bib5) 2022; 13 Iwai (10.1016/j.reth.2023.09.014_bib106) 2016; 104 Gao (10.1016/j.reth.2023.09.014_bib55) 2022; 636 Bei (10.1016/j.reth.2023.09.014_bib52) 2021; 17 Ogawa (10.1016/j.reth.2023.09.014_bib84) 2022; 28 (10.1016/j.reth.2023.09.014_bib92) 2020; 22 Saraiva (10.1016/j.reth.2023.09.014_bib16) 2020; 217 Safavi (10.1016/j.reth.2023.09.014_bib46) 2019; 55 Soleimanifar (10.1016/j.reth.2023.09.014_bib42) 2019; 234 Ko (10.1016/j.reth.2023.09.014_bib120) 2018; 29 Castelnovo (10.1016/j.reth.2023.09.014_bib140) 2021; 531 Xuan (10.1016/j.reth.2023.09.014_bib80) 2022; 23 Babu (10.1016/j.reth.2023.09.014_bib32) 2023; 327 Pak (10.1016/j.reth.2023.09.014_bib116) 2021; 22 Wang (10.1016/j.reth.2023.09.014_bib62) 2021; 2021 Yang (10.1016/j.reth.2023.09.014_bib132) 2021; 12 Guennoun (10.1016/j.reth.2023.09.014_bib149) 2001; 90 Verla (10.1016/j.reth.2023.09.014_bib61) 2019; 2019 Pigossi (10.1016/j.reth.2023.09.014_bib37) 2016; 17 Mikhailova (10.1016/j.reth.2023.09.014_bib113) 2022; 33 Zhao (10.1016/j.reth.2023.09.014_bib59) 2012; 178 Zhang (10.1016/j.reth.2023.09.014_bib86) 2018; 370 Wang (10.1016/j.reth.2023.09.014_bib128) 2021; 1750 Zheng (10.1016/j.reth.2023.09.014_bib129) 2020; 125 Chen (10.1016/j.reth.2023.09.014_bib158) 2022; 31 Li (10.1016/j.reth.2023.09.014_bib7) 2022; 18 Zhao (10.1016/j.reth.2023.09.014_bib49) 2020; 254 Zhang (10.1016/j.reth.2023.09.014_bib64) 2018; 32 Fujiwara (10.1016/j.reth.2023.09.014_bib91) 2020; 8 Lee (10.1016/j.reth.2023.09.014_bib35) 2014; 42 Byun (10.1016/j.reth.2023.09.014_bib41) 2021 Bolívar (10.1016/j.reth.2023.09.014_bib110) 2020; 9 Askar (10.1016/j.reth.2023.09.014_bib111) 2022; 10 Kang (10.1016/j.reth.2023.09.014_bib148) 2019; 21 Li (10.1016/j.reth.2023.09.014_bib109) 2020; 10 Zarei (10.1016/j.reth.2023.09.014_bib96) 2019; 14 Narla (10.1016/j.reth.2023.09.014_bib71) 2021; 191 Figueroa (10.1016/j.reth.2023.09.014_bib27) 2019; 152 Li (10.1016/j.reth.2023.09.014_bib165) 2023 Rehman (10.1016/j.reth.2023.09.014_bib67) 2004; 109 Li (10.1016/j.reth.2023.09.014_bib60) 2017; 82 Z (10.1016/j.reth.2023.09.014_bib1) 2022; 122 Hou (10.1016/j.reth.2023.09.014_bib38) 2020; 24 Gharbia (10.1016/j.reth.2023.09.014_bib77) 2022; 11 Prautsch (10.1016/j.reth.2023.09.014_bib139) 2020; 7 Kang (10.1016/j.reth.2023.09.014_bib15) 2020 Miyamoto (10.1016/j.reth.2023.09.014_bib40) 2021; 15 Zhang (10.1016/j.reth.2023.09.014_bib9) 2020; 2020 Morikawa (10.1016/j.reth.2023.09.014_bib18) 2016; 8 Kinnaird (10.1016/j.reth.2023.09.014_bib66) 2004; 94 Bertolini (10.1016/j.reth.2023.09.014_bib22) 2012; 1826 Forbes (10.1016/j.reth.2023.09.014_bib28) 2020; 518 Razavi (10.1016/j.reth.2023.09.014_bib127) 2021; 22 Rodríguez-Fuentes (10.1016/j.reth.2023.09.014_bib3) 2021; 52 Papadopoulos (10.1016/j.reth.2023.09.014_bib29) 2018; 62 Lischer (10.1016/j.reth.2023.09.014_bib138) 2020; 15 Guo (10.1016/j.reth.2023.09.014_bib118) 2020; 463 Zhang (10.1016/j.reth.2023.09.014_bib44) 2020; 15 Mazini (10.1016/j.reth.2023.09.014_bib6) 2020 Siregar (10.1016/j.reth.2023.09.014_bib76) 2020; 46 Ma (10.1016/j.reth.2023.09.014_bib89) 2019; 120 Chiang (10.1016/j.reth.2023.09.014_bib117) 2021; 22 Challapalli (10.1016/j.reth.2023.09.014_bib8) 2021; 17 Hu (10.1016/j.reth.2023.09.014_bib166) 2023; 157 Yang (10.1016/j.reth.2023.09.014_bib74) 2020; 681 Enciso (10.1016/j.reth.2023.09.014_bib93) 2020; 11 Li (10.1016/j.reth.2023.09.014_bib90) 2018; 50 Fang (10.1016/j.reth.2023.09.014_bib114) 2019; 20 Hu (10.1016/j.reth.2023.09.014_bib54) 2021; 18 Farooq (10.1016/j.reth.2023.09.014_bib70) 2021; 10 Spicer (10.1016/j.reth.2023.09.014_bib104) 2020; 11 Chen (10.1016/j.reth.2023.09.014_bib151) 2021; 68 Zhang (10.1016/j.reth.2023.09.014_bib13) 2023; 238 Nyambat (10.1016/j.reth.2023.09.014_bib79) 2020; 21 da Silva (10.1016/j.reth.2023.09.014_bib82) 2022; 43 Rahman (10.1016/j.reth.2023.09.014_bib163) 2022; 2022 Apte (10.1016/j.reth.2023.09.014_bib19) 2019; 176 De Ugarte (10.1016/j.reth.2023.09.014_bib12) 2003; 89 Pedrini (10.1016/j.reth.2023.09.014_bib124) 2019; 85 Thesleff (10.1016/j.reth.2023.09.014_bib56) 2017; 6 Zhang (10.1016/j.reth.2023.09.014_bib143) 2020; 26 Zhou (10.1016/j.reth.2023.09.014_bib159) 2021; 27 Stachura (10.1016/j.reth.2023.09.014_bib97) 2021; 10 Miller (10.1016/j.reth.2023.09.014_bib147) 2018; 56 Entekhabi (10.1016/j.reth.2023.09.014_bib123) 2021; 109 Xiao (10.1016/j.reth.2023.09.014_bib68) 2021; 425 Ho-Shui-Ling (10.1016/j.reth.2023.09.014_bib53) 2018; 180 Hickey (10.1016/j.reth.2023.09.014_bib105) 2019; 7 Robinson (10.1016/j.reth.2023.09.014_bib36) 1979; 145 An (10.1016/j.reth.2023.09.014_bib73) 2019; 9 Syu (10.1016/j.reth.2023.09.014_bib157) 2019; 28 Glenske (10.1016/j.reth.2023.09.014_bib47) 2018; 19 Jeppesen (10.1016/j.reth.2023.09.014_bib50) 2019; 177 Melnik (10.1016/j.reth.2023.09.014_bib119) 2020; 11 Sun (10.1016/j.reth.2023.09.014_bib14) 2022; 86 Couve (10.1016/j.reth.2023.09.014_bib142) 2018; 97 Liu (10.1016/j.reth.2023.09.014_bib121) 2020; 19 Takahashi (10.1016/j.reth.2023.09.014_bib2) 2006; 126 H (10.1016/j.reth.2023.09.014_bib4) 2022; 13 Lin (10.1016/j.reth.2023.09.014_bib101) 2021; 12 Petrenko (10.1016/j.reth.2023.09.014_bib51) 2017; 8 Gonçalves (10.1016/j.reth.2023.09.014_bib145) 2020; 68 Li (10.1016/j.reth.2023.09.014_bib11) 2021; 12 Zhou (10.1016/j.reth.2023.09.014_bib33) 2021; 29 Cai (10.1016/j.reth.2023.09.014_bib24) 2020; 11 Hong (10.1016/j.reth.2023.09.014_bib26) 2019; 10 Zhou (10.1016/j.reth.2023.09.014_bib43) 2020; 230 Yannas (10.1016/j.reth.2023.09.014_bib95) 2017; 25 Song (10.1016/j.reth.2023.09.014_bib58) 2022; 10 Schweizer (10.1016/j.reth.2023.09.014_bib155) 2020; 8 Zhou (10.1016/j.reth.2023.09.014_bib100) 2016; 18 Wang (10.1016/j.reth.2023.09.014_bib135) 2022; 10 Xiao (10.1016/j.reth.2023.09.014_bib75) 2022; 94 Qian (10.1016/j.reth.2023.09.014_bib85) 2021; 101 Erdal (10.1016/j.reth.2023.09.014_bib122) 2022; 149 Pan (10.1016/j.reth.2023.09.014_bib125) 2019; 318 Zhang (10.1016/j.reth.2023.09.014_bib160) 2022; 13 Nasrin (10.1016/j.reth.2023.09.014_bib63) 2022; 110 Wu (10.1016/j.reth.2023.09.014_bib115) 2022; 13 Prautsch (10.1016/j.reth.2023.09.014_bib130) 2020; 9 Fu (10.1016/j.reth.2023.09.014_bib126) 2019; 422 Qiu (10.1016/j.reth.2023.09.014_bib87) 2020; 19 Raya-Rivera (10.1016/j.reth.2023.09.014_bib83) 2011; 377 Airuddin (10.1016/j.reth.2023.09.014_bib30) 2021; 9 Zhang (10.1016/j.reth.2023.09.014_bib131) 2019; 28 Poulos (10.1016/j.reth.2023.09.014_bib10) 2010; 323 Lu (10.1016/j.reth.2023.09.014_bib88) 2020; 24 Lischer (10.1016/j.reth.2023.09.014_bib154) 2020; 15 Vriend (10.1016/j.reth.2023.09.014_bib103) 2022; 31 Jin (10.1016/j.reth.2023.09.014_bib161) 2019; 10 Künzel (10.1016/j.reth.2023.09.014_bib133) 2018; 7 Petrenko (10.1016/j.reth.2023.09.014_bib164) 2017; 8 Pan (10.1016/j.reth.2023.09.014_bib21) 2021; 14 Zhou (10.1016/j.reth.2023.09.014_bib102) 2019; 28 Arya (10.1016/j.reth.2023.09.014_bib23) 2023 |
References_xml | – volume: 10 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib58 article-title: Gelatin-grafted tubular asymmetric scaffolds promote ureteral regeneration via activation of the integrin/Erk signaling pathway publication-title: Front Bioeng Biotechnol – volume: 11 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib77 article-title: Adipose-derived stem cells (ADSCs) supplemented with hepatocyte growth factor (HGF) attenuate hepatic stellate cell activation and liver fibrosis by inhibiting the TGF-β/smad signaling pathway in chemical-induced liver fibrosis associated with diabetes publication-title: Cells doi: 10.3390/cells11213338 – volume: 7 start-page: 22 year: 2015 ident: 10.1016/j.reth.2023.09.014_bib78 article-title: The potential role of stem cells in the treatment of urinary incontinence publication-title: Ther Adv Urol doi: 10.1177/1756287214553968 – volume: 89 start-page: 267 year: 2003 ident: 10.1016/j.reth.2023.09.014_bib12 article-title: Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow publication-title: Immunol Lett doi: 10.1016/S0165-2478(03)00108-1 – volume: 19 start-page: 223 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib121 article-title: Therapeutic effects of nerve leachate-treated adipose-derived mesenchymal stem cells on rat sciatic nerve injury publication-title: Exp Ther Med – volume: 77 start-page: 3977 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib108 article-title: Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury publication-title: Cell Mol Life Sci doi: 10.1007/s00018-020-03516-9 – volume: 157 start-page: 175 year: 2023 ident: 10.1016/j.reth.2023.09.014_bib166 article-title: Hypoxia-pretreated ADSC-derived exosome-embedded hydrogels promote angiogenesis and accelerate diabetic wound healing publication-title: Acta Biomater doi: 10.1016/j.actbio.2022.11.057 – volume: 531 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib140 article-title: Membrane progesterone receptor α (mPRα/PAQR7) promotes migration, proliferation and BDNF release in human Schwann cell-like differentiated adipose stem cells publication-title: Mol Cell Endocrinol doi: 10.1016/j.mce.2021.111298 – volume: 110 start-page: 916 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib63 article-title: 3D-printed bioresorbable poly(lactic-co-glycolic acid) and quantum-dot nanocomposites: scaffolds for enhanced bone mineralization and inbuilt co-monitoring publication-title: J Biomed Mater Res doi: 10.1002/jbm.a.37340 – volume: 12 start-page: 597 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib72 article-title: MSCs and their exosomes: a rapidly evolving approach in the context of cutaneous wounds therapy publication-title: Stem Cell Res Ther doi: 10.1186/s13287-021-02662-6 – volume: 422 start-page: 134 year: 2019 ident: 10.1016/j.reth.2023.09.014_bib126 article-title: The combination of adipose-derived schwann-like cells and acellular nerve allografts promotes sciatic nerve regeneration and repair through the JAK2/STAT3 signaling pathway in rats publication-title: Neuroscience doi: 10.1016/j.neuroscience.2019.10.018 – volume: 636 start-page: 96 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib55 article-title: 3D-printed regenerative polycaprolactone/silk fibroin osteogenic and chondrogenic implant for treatment of hip dysplasia publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2022.10.046 – volume: 14 start-page: 244 year: 2019 ident: 10.1016/j.reth.2023.09.014_bib96 article-title: Application of cell therapy for anti-aging facial skin publication-title: Curr Stem Cell Res Ther doi: 10.2174/1574888X13666181113113415 – volume: 2022 start-page: 6590025 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib99 article-title: Efficacy of human adipose derived mesenchymal stem cells in promoting skin wound healing publication-title: J Healthc Eng – volume: 7 start-page: 45 year: 2019 ident: 10.1016/j.reth.2023.09.014_bib105 article-title: Cellulose biomaterials for tissue engineering publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2019.00045 – volume: 98 start-page: 780 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib152 article-title: Peripheral nerve injury and myelination: potential therapeutic strategies publication-title: J Neurosci Res doi: 10.1002/jnr.24538 – volume: 52 start-page: 93 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib3 article-title: Mesenchymal stem cells current clinical applications: a systematic review publication-title: Arch Med Res doi: 10.1016/j.arcmed.2020.08.006 – volume: 82 start-page: 1336 year: 2017 ident: 10.1016/j.reth.2023.09.014_bib60 article-title: Cathelicidin LL37 promotes epithelial and smooth-muscle-like differentiation of adipose-derived stem cells through the Wnt/β-catenin and NF-κB pathways publication-title: Biochemistry (Moscow) doi: 10.1134/S0006297917110116 – volume: 681 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib74 article-title: Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway publication-title: Arch Biochem Biophys doi: 10.1016/j.abb.2020.108259 – volume: 178 start-page: 55 year: 2012 ident: 10.1016/j.reth.2023.09.014_bib59 article-title: Differentiation of adipose-derived stem cells promotes regeneration of smooth muscle for ureteral tissue engineering publication-title: J Surg Res doi: 10.1016/j.jss.2012.01.047 – volume: 12 start-page: 129 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib101 article-title: Co-culture of ASCs/EPCs and dermal extracellular matrix hydrogel enhances the repair of full-thickness skin wound by promoting angiogenesis publication-title: Stem Cell Res Ther doi: 10.1186/s13287-021-02203-1 – volume: 425 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib68 article-title: MicroRNA-126 from stem cell extracellular vesicles encapsulated in a tri-layer hydrogel scaffold promotes bladder angiogenesis by activating CXCR4/SDF-1α pathway publication-title: Chem Eng J doi: 10.1016/j.cej.2021.131624 – volume: 217 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib16 article-title: Biology and therapeutic potential of interleukin-10 publication-title: J Exp Med doi: 10.1084/jem.20190418 – volume: 32 start-page: 1351 year: 2018 ident: 10.1016/j.reth.2023.09.014_bib64 article-title: [Effects of adipose-derived stem cell released exosomes on proliferation, migration, and tube-like differentiation of human umbilical vein endothelial cells] publication-title: Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi – volume: 125 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib129 article-title: Icariside II facilitates the differentiation of ADSCs to schwann cells and restores erectile dysfunction through regulation of miR-33/GDNF axis publication-title: Biomed Pharmacother doi: 10.1016/j.biopha.2020.109888 – volume: 21 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib112 article-title: Peripheral nerve regeneration and muscle reinnervation publication-title: Int J Mol Sci doi: 10.3390/ijms21228652 – volume: 55 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib137 article-title: Growth factors-based platelet lysate rejuvenates skin against ageing through NF-κB signalling pathway: in vitro and in vivo mechanistic and clinical studies publication-title: Cell Prolif doi: 10.1111/cpr.13212 – volume: 10 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib97 article-title: The use of adipose-derived stem cells (ADSCs) and stromal vascular fraction (SVF) in skin scar treatment-A systematic review of clinical studies publication-title: J Clin Med – volume: 208 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib136 article-title: Effects of human platelet lysate on the growth of cultured human corneal endothelial cells publication-title: Exp Eye Res doi: 10.1016/j.exer.2021.108613 – year: 2022 ident: 10.1016/j.reth.2023.09.014_bib39 article-title: Aloe polysaccharide promotes osteogenesis potential of adipose-derived stromal cells via BMP-2/Smads and prevents ovariectomized-induced osteoporosis publication-title: Mol Biol Rep doi: 10.1007/s11033-022-08003-x – volume: 28 start-page: 1485 year: 2019 ident: 10.1016/j.reth.2023.09.014_bib131 article-title: Id4 downstream of Notch2 maintains neural stem cell quiescence in the adult Hippocampus publication-title: Cell Rep doi: 10.1016/j.celrep.2019.07.014 – volume: 19 start-page: 222 year: 2017 ident: 10.1016/j.reth.2023.09.014_bib31 article-title: Overcoming the bottleneck of platelet lysate supply in large-scale clinical expansion of adipose-derived stem cells: a comparison of fresh versus three types of platelet lysates from outdated buffy coat-derived platelet concentrates publication-title: Cytotherapy doi: 10.1016/j.jcyt.2016.10.014 – year: 2023 ident: 10.1016/j.reth.2023.09.014_bib23 article-title: The ins-and-outs of exosome biogenesis, secretion, and internalization publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2023.06.006 – volume: 109 start-page: 1292 year: 2004 ident: 10.1016/j.reth.2023.09.014_bib67 article-title: Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells publication-title: Circulation doi: 10.1161/01.CIR.0000121425.42966.F1 – volume: 21 start-page: 987 year: 2019 ident: 10.1016/j.reth.2023.09.014_bib148 article-title: Differentiated human adipose-derived stromal cells exhibit the phenotypic and functional characteristics of mature Schwann cells through a modified approach publication-title: Cytotherapy doi: 10.1016/j.jcyt.2019.04.061 – volume: 31 start-page: 630 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib103 article-title: Limited efficacy of adipose stromal cell secretome-loaded skin-derived hydrogels to augment skin flap regeneration in rats publication-title: Stem Cell Dev doi: 10.1089/scd.2022.0003 – volume: 11 start-page: 532 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib119 article-title: MiR-218 affects hypertrophic differentiation of human mesenchymal stromal cells during chondrogenesis via targeting RUNX2, MEF2C, and COL10A1 publication-title: Stem Cell Res Ther doi: 10.1186/s13287-020-02026-6 – volume: 15 start-page: 1399 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib138 article-title: Human platelet lysate stimulated adipose stem cells exhibit strong neurotrophic potency for nerve tissue engineering applications publication-title: Regen Med doi: 10.2217/rme-2020-0031 – volume: 6 start-page: 1576 year: 2017 ident: 10.1016/j.reth.2023.09.014_bib56 article-title: Cranioplasty with adipose-derived stem cells, beta-tricalcium phosphate granules and supporting mesh: six-year clinical follow-up results publication-title: Stem Cells Transl Med doi: 10.1002/sctm.16-0410 – volume: 11 start-page: 261 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib93 article-title: Cutaneous wound healing: canine allogeneic ASC therapy publication-title: Stem Cell Res Ther doi: 10.1186/s13287-020-01778-5 – volume: 62 start-page: 75 year: 2018 ident: 10.1016/j.reth.2023.09.014_bib29 article-title: The PDGF/PDGFR pathway as a drug target publication-title: Mol Aspect Med doi: 10.1016/j.mam.2017.11.007 – volume: 254 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib49 article-title: Mechanisms of lncRNA/microRNA interactions in angiogenesis publication-title: Life Sci doi: 10.1016/j.lfs.2019.116900 – volume: 90 start-page: 75 year: 2001 ident: 10.1016/j.reth.2023.09.014_bib149 article-title: Progesterone stimulates Krox-20 gene expression in Schwann cells publication-title: Mol Brain Res doi: 10.1016/S0169-328X(01)00094-8 – volume: 10 start-page: 242 year: 2019 ident: 10.1016/j.reth.2023.09.014_bib26 article-title: The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review publication-title: Stem Cell Res Ther doi: 10.1186/s13287-019-1358-y – volume: 55 start-page: 387 year: 2019 ident: 10.1016/j.reth.2023.09.014_bib46 article-title: Efficacy of mechanical vibration in regulating mesenchymal stem cells gene expression publication-title: Vitro Anim Cell Dev Biol doi: 10.1007/s11626-019-00340-9 – volume: 17 year: 2016 ident: 10.1016/j.reth.2023.09.014_bib37 article-title: Role of osteogenic growth peptide (OGP) and OGP(10-14) in bone regeneration: a review publication-title: Int J Mol Sci doi: 10.3390/ijms17111885 – volume: 126 start-page: 663 year: 2006 ident: 10.1016/j.reth.2023.09.014_bib2 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – volume: 230 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib43 article-title: Arginine based poly (ester amide)/hyaluronic acid hybrid hydrogels for bone tissue Engineering publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2019.115640 – volume: 10 start-page: 875 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib111 article-title: The Etv1/Er81 transcription factor coordinates myelination-related genes to regulate Schwann cell differentiation and myelination publication-title: Ann Transl Med doi: 10.21037/atm-22-3489 – volume: 14 start-page: 2045 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib21 article-title: The ACE2-ang-(1-7)-mas Axis modulates M1/M2 macrophage polarization to relieve CLP-induced inflammation via TLR4-mediated NF-кb and MAPK pathways publication-title: J Inflamm Res doi: 10.2147/JIR.S307801 – volume: 33 start-page: 479 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib65 article-title: The miR-590-3p/VEGFA axis modulates secretion of VEGFA from adipose-derived stem cells, which acts as a paracrine regulator of human dermal microvascular endothelial cell angiogenesis publication-title: Hum Cell doi: 10.1007/s13577-019-00315-8 – volume: 22 start-page: 50 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib127 article-title: Differential effects of rat ADSCs encapsulation in fibrin matrix and combination delivery of BDNF and Gold nanoparticles on peripheral nerve regeneration publication-title: BMC Neurosci doi: 10.1186/s12868-021-00655-y – volume: 13 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib4 article-title: Bone marrow mesenchymal stem cells in premature ovarian failure: mechanisms and prospects publication-title: Front Immunol – volume: 109 start-page: 300 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib123 article-title: Fabrication and in vitro evaluation of 3D composite scaffold based on collagen/hyaluronic acid sponge and electrospun polycaprolactone nanofibers for peripheral nerve regeneration publication-title: J Biomed Mater Res doi: 10.1002/jbm.a.37023 – volume: 15 start-page: 2129 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib44 article-title: FGF2: a key regulator augmenting tendon-to-bone healing and cartilage repair publication-title: Regen Med doi: 10.2217/rme-2019-0080 – year: 2020 ident: 10.1016/j.reth.2023.09.014_bib6 article-title: Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem cells (MSCs) in wound healing publication-title: Int J Mol Sci doi: 10.3390/ijms21041306 – volume: 56 year: 2018 ident: 10.1016/j.reth.2023.09.014_bib147 article-title: Neural crest Notch/Rbpj signaling regulates olfactory gliogenesis and neuronal migration publication-title: Genesis doi: 10.1002/dvg.23215 – volume: 46 start-page: 236 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib76 article-title: The effect of intravenous human adipose-derived stem cells (hADSC) on transforming growth factor β1 (TGF-β1), collagen type 1, and kidney histopathological features in the unilateral ureteropelvic junction obstruction model of wistar rats publication-title: Turk J Urol doi: 10.5152/tud.2020.20024 – volume: 18 start-page: 952 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib7 article-title: Application of ADSCs and their exosomes in scar prevention publication-title: Stem Cell Rev Rep doi: 10.1007/s12015-021-10252-5 – volume: 22 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib116 article-title: Effects of a catechol-functionalized hyaluronic acid patch combined with human adipose-derived stem cells in diabetic wound healing publication-title: Int J Mol Sci doi: 10.3390/ijms22052632 – volume: 2022 start-page: 9483166 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib163 article-title: Single-cell RNA sequencing reveals the interaction of injected ADSCs with lung-originated cells in mouse pulmonary fibrosis publication-title: Stem Cell Int – volume: 26 start-page: 548 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib141 article-title: Let-7a-5p regulated by lncRNA-MEG3 promotes functional differentiation to Schwann cells from adipose derived stem cells via directly inhibiting RBPJ-mediating Notch pathway publication-title: Apoptosis doi: 10.1007/s10495-021-01685-x – volume: 28 start-page: 855 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib84 article-title: Autologous bilayered adipose-derived mesenchymal cell-gelatin sheets reconstruct ureters in rabbits publication-title: Tissue Eng doi: 10.1089/ten.tea.2022.0087 – volume: 10 start-page: 1649 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib109 article-title: Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration publication-title: Theranostics doi: 10.7150/thno.40919 – volume: 28 start-page: 1220 year: 2019 ident: 10.1016/j.reth.2023.09.014_bib157 article-title: Adipose-derived neural stem cells combined with acellular dermal matrix as a neural conduit enhances peripheral nerve repair publication-title: Cell Transplant doi: 10.1177/0963689719853512 – volume: 27 start-page: 146 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib159 article-title: ADSCs enhance VEGFR3-mediated lymphangiogenesis via METTL3-mediated VEGF-C m(6)A modification to improve wound healing of diabetic foot ulcers publication-title: Mol Med doi: 10.1186/s10020-021-00406-z – volume: 11 start-page: 184 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib104 article-title: Hydrogel scaffolds for tissue engineering: the importance of polymer choice publication-title: Polym Chem doi: 10.1039/C9PY01021A – volume: 7 year: 2018 ident: 10.1016/j.reth.2023.09.014_bib133 article-title: FRMD8 promotes inflammatory and growth factor signalling by stabilising the iRhom/ADAM17 sheddase complex publication-title: Elife doi: 10.7554/eLife.35012 – volume: 285 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib162 article-title: Optimal intervention time of ADSCs for hepatic ischemia-reperfusion combined with partial resection injury in rats publication-title: Life Sci doi: 10.1016/j.lfs.2021.119986 – volume: 518 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib28 article-title: Disorders of IGFs and IGF-1R signaling pathways publication-title: Mol Cell Endocrinol doi: 10.1016/j.mce.2020.111035 – volume: 13 start-page: 511 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib5 article-title: The crosstalk between macrophages and bone marrow mesenchymal stem cells in bone healing publication-title: Stem Cell Res Ther doi: 10.1186/s13287-022-03199-y – volume: 97 start-page: 347 year: 2018 ident: 10.1016/j.reth.2023.09.014_bib142 article-title: Schwann cell phenotype changes in aging human dental pulp publication-title: J Dent Res doi: 10.1177/0022034517733967 – volume: 68 start-page: 347 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib151 article-title: Effective in vitro differentiation of adipose-derived stem cells into Schwann-like cells with folic acid supplementation publication-title: J Med Invest – volume: 2021 start-page: 5502740 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib62 article-title: Urethral tissue reconstruction using the acellular dermal matrix patch modified with collagen-binding VEGF in beagle urethral injury models publication-title: BioMed Res Int doi: 10.1155/2021/5502740 – volume: 191 start-page: 631 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib71 article-title: Loss of fibroblast growth factor receptor 2 (FGFR2) leads to defective bladder urothelial regeneration after cyclophosphamide injury publication-title: Am J Pathol doi: 10.1016/j.ajpath.2020.12.011 – volume: 17 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib52 article-title: Bone-a-Petite: engineering exosomes towards bone, osteochondral, and cartilage repair publication-title: Small doi: 10.1002/smll.202101741 – volume: 145 start-page: 10 year: 1979 ident: 10.1016/j.reth.2023.09.014_bib36 article-title: Bone tissue: composition and function publication-title: Johns Hopkins Med J – volume: 370 start-page: 333 year: 2018 ident: 10.1016/j.reth.2023.09.014_bib86 article-title: Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway publication-title: Exp Cell Res doi: 10.1016/j.yexcr.2018.06.035 – volume: 18 start-page: 905 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib54 article-title: The combination of concentrated growth factor and adipose-derived stem cell sheet repairs skull defects in rats publication-title: Tissue Eng Regen Med doi: 10.1007/s13770-021-00371-y – volume: 367 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib25 article-title: The biology, function, and biomedical applications of exosomes publication-title: Science doi: 10.1126/science.aau6977 – volume: 47 start-page: 1722 year: 2019 ident: 10.1016/j.reth.2023.09.014_bib34 article-title: Single-cell profiles and clinically useful properties of human mesenchymal stem cells of adipose and bone marrow origin publication-title: Am J Sports Med doi: 10.1177/0363546519848678 – volume: 10 start-page: 95 year: 2019 ident: 10.1016/j.reth.2023.09.014_bib161 article-title: Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte publication-title: Stem Cell Res Ther doi: 10.1186/s13287-019-1177-1 – volume: 8 start-page: 94 year: 2017 ident: 10.1016/j.reth.2023.09.014_bib51 article-title: The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids publication-title: Stem Cell Res Ther doi: 10.1186/s13287-017-0558-6 – volume: 8 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib91 article-title: Adipose-derived stem cells improve grafted burn wound healing by promoting wound bed blood flow publication-title: Burns & Trauma doi: 10.1093/burnst/tkaa009 – volume: 94 start-page: 678 year: 2004 ident: 10.1016/j.reth.2023.09.014_bib66 article-title: Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms publication-title: Circ Res doi: 10.1161/01.RES.0000118601.37875.AC – volume: 8 start-page: e2953 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib155 article-title: Effect of systemic adipose-derived stem cell therapy on functional nerve regeneration in a rodent model publication-title: Plast Reconstr Surg Glob Open doi: 10.1097/GOX.0000000000002953 – volume: 23 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib153 article-title: Peripheral Nerve Injury Treatments and Advances: One Health Perspective publication-title: nt J Mol Sci – volume: 238 start-page: 659 year: 2023 ident: 10.1016/j.reth.2023.09.014_bib13 article-title: ADSCs-exo attenuates hepatic ischemia-reperfusion injury after hepatectomy by inhibiting endoplasmic reticulum stress and inflammation publication-title: J Cell Physiol doi: 10.1002/jcp.30968 – volume: 1750 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib128 article-title: Adipose-derived stem cell transplantation improves learning and memory via releasing neurotrophins in rat model of temporal lobe epilepsy publication-title: Brain Res doi: 10.1016/j.brainres.2020.147121 – volume: 323 start-page: 20 year: 2010 ident: 10.1016/j.reth.2023.09.014_bib10 article-title: The development and endocrine functions of adipose tissue publication-title: Mol Cell Endocrinol doi: 10.1016/j.mce.2009.12.011 – volume: 24 year: 2019 ident: 10.1016/j.reth.2023.09.014_bib94 article-title: Skin tears: prevention and management publication-title: Br J Community Nurs doi: 10.12968/bjcn.2019.24.Sup9.S12 – volume: 10 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib48 article-title: Study on exosomes promoting the osteogenic differentiation of ADSCs in graphene porous titanium alloy scaffolds publication-title: Front Bioeng Biotechnol – volume: 463 start-page: 67 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib118 article-title: Adipose-derived stem cell-conditioned medium protects fibroblasts at different senescent degrees from UVB irradiation damages publication-title: Mol Cell Biochem doi: 10.1007/s11010-019-03630-8 – volume: 235 start-page: 8371 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib45 article-title: Adipose-derived stem cells: an appropriate selection for osteogenic differentiation publication-title: J Cell Physiol doi: 10.1002/jcp.29681 – volume: 85 start-page: 575 year: 2019 ident: 10.1016/j.reth.2023.09.014_bib124 article-title: Cell-Enhanced acellular nerve allografts for peripheral nerve reconstruction: a systematic review and a meta-analysis of the literature publication-title: Neurosurgery doi: 10.1093/neuros/nyy374 – volume: 176 start-page: 1248 year: 2019 ident: 10.1016/j.reth.2023.09.014_bib19 article-title: VEGF in signaling and disease: beyond discovery and development publication-title: Cell doi: 10.1016/j.cell.2019.01.021 – volume: 101 start-page: 1254 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib85 article-title: Adipose mesenchymal stem cell-derived exosomes accelerate skin wound healing via the lncRNA H19/miR-19b/SOX9 axis publication-title: Lab Invest doi: 10.1038/s41374-021-00611-8 – volume: 15 start-page: 1399 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib154 article-title: Human platelet lysate stimulated adipose stem cells exhibit strong neurotrophic potency for nerve tissue engineering applications publication-title: Regen Med doi: 10.2217/rme-2020-0031 – volume: 23 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib80 article-title: Sources, selection, and microenvironmental preconditioning of cells for urethral tissue engineering publication-title: Int J Mol Sci doi: 10.3390/ijms232214074 – volume: 40 start-page: 373 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib144 article-title: Utility of Schwann/2E and Sox10 in distinguishing CD57-negative olfactory groove schwannoma from olfactory ensheathing cell tumor: a case report and review of the literature publication-title: Neuropathology doi: 10.1111/neup.12650 – volume: 13 start-page: 19 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib115 article-title: Engineered adipose-derived stem cells with IGF-1-modified mRNA ameliorates osteoarthritis development publication-title: Stem Cell Res Ther doi: 10.1186/s13287-021-02695-x – volume: 152 year: 2019 ident: 10.1016/j.reth.2023.09.014_bib27 article-title: Nuclear action of FGF members in endocrine-related tissues and cancer: interplay with steroid receptor pathways publication-title: Steroids doi: 10.1016/j.steroids.2019.108492 – volume: 153 start-page: 28 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib81 article-title: Silk fibroin for skin injury repair: where do things stand? publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2019.09.003 – volume: 11 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib107 article-title: Enhanced cellular engraftment of adipose-derived mesenchymal stem cell spheroids by using nanosheets as scaffolds publication-title: Sci Rep doi: 10.1038/s41598-021-93642-6 – volume: 17 start-page: 523 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib8 article-title: Effect of breast cancer and adjuvant therapy on adipose-derived stromal cells: implications for the role of ADSCs in regenerative strategies for breast reconstruction publication-title: Stem Cell Rev Rep doi: 10.1007/s12015-020-10038-1 – volume: 29 start-page: 301 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib33 article-title: [Research advance of on the support effect of adipose tissue-derived stem cell on hematopoietic stem/progenitor cell--review] publication-title: Zhongguo Shi Yan Xue Ye Xue Za Zhi – volume: 23 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib156 article-title: Adipose tissue uses in peripheral nerve surgery publication-title: Int J Mol Sci doi: 10.3390/ijms23020644 – volume: 12 start-page: 10264 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib17 article-title: VAP-PLGA microspheres (VAP-PLGA) promote adipose-derived stem cells (ADSCs)-induced wound healing in chronic skin ulcers in mice via PI3K/Akt/HIF-1α pathway publication-title: Bioengineered doi: 10.1080/21655979.2021.1990193 – volume: 9 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib110 article-title: Schwann cell role in selectivity of nerve regeneration publication-title: Cells doi: 10.3390/cells9092131 – volume: 42 start-page: 323 year: 2014 ident: 10.1016/j.reth.2023.09.014_bib35 article-title: Biomaterials for tissue engineering publication-title: Ann Biomed Eng – volume: 149 start-page: 395 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib122 article-title: Use of erythropoietin and fibrin glue mixture for peripheral nerve repair publication-title: Plast Reconstr Surg doi: 10.1097/PRS.0000000000008796 – volume: 2020 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib9 article-title: Adipose-derived stem cells: current applications and future directions in the regeneration of multiple tissues publication-title: Stem Cell Int – volume: 68 start-page: 2725 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib145 article-title: Schwann cell p75 neurotrophin receptor modulates small fiber degeneration in diabetic neuropathy publication-title: Glia doi: 10.1002/glia.23881 – volume: 327 start-page: 121785 year: 2023 ident: 10.1016/j.reth.2023.09.014_bib32 article-title: A comprehensive review on therapeutic application of mesenchymal stem cells in neuroregeneration publication-title: Life Sci doi: 10.1016/j.lfs.2023.121785 – volume: 20 start-page: 153 year: 2019 ident: 10.1016/j.reth.2023.09.014_bib114 article-title: Adipose-derived mesenchymal stem cell exosomes: a novel pathway for tissues repair publication-title: Cell Tissue Bank doi: 10.1007/s10561-019-09761-y – volume: 18 start-page: 138 year: 2016 ident: 10.1016/j.reth.2023.09.014_bib100 article-title: The efficacy of conditioned media of adipose-derived stem cells combined with ablative carbon dioxide fractional resurfacing for atrophic acne scars and skin rejuvenation publication-title: J Cosmet Laser Ther doi: 10.3109/14764172.2015.1114638 – volume: 7 year: 2018 ident: 10.1016/j.reth.2023.09.014_bib134 article-title: FRMD8 promotes inflammatory and growth factor signalling by stabilising the iRhom/ADAM17 sheddase complex publication-title: Elife doi: 10.7554/eLife.35012 – volume: 21 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib79 article-title: New insight into natural extracellular matrix: genipin cross-linked adipose-derived stem cell extracellular matrix gel for tissue engineering publication-title: Int J Mol Sci doi: 10.3390/ijms21144864 – volume: 29 start-page: 1026 year: 2018 ident: 10.1016/j.reth.2023.09.014_bib120 article-title: Surface modification of PHBV nanofiber mats for rapid cell cultivation and harvesting publication-title: J Biomater Sci Polym Ed doi: 10.1080/09205063.2017.1414481 – volume: 9 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib130 article-title: Modulation of human adipose stem cells' neurotrophic capacity using a variety of growth factors for neural tissue engineering applications: axonal growth, transcriptional, and phosphoproteomic analyses in vitro publication-title: Cells doi: 10.3390/cells9091939 – volume: 234 start-page: 10315 year: 2019 ident: 10.1016/j.reth.2023.09.014_bib42 article-title: Adipose-derived stem cells-conditioned medium improved osteogenic differentiation of induced pluripotent stem cells when grown on polycaprolactone nanofibers publication-title: J Cell Physiol doi: 10.1002/jcp.27697 – volume: 24 start-page: 7460 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib146 article-title: Down-regulation of long non-coding RNA MEG3 promotes Schwann cell proliferation and migration and repairs sciatic nerve injury in rats publication-title: J Cell Mol Med doi: 10.1111/jcmm.15368 – volume: 9 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib30 article-title: Adipose-derived stem cell: "treat or trick" publication-title: Biomedicines doi: 10.3390/biomedicines9111624 – volume: 10 start-page: 825146 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib135 article-title: Hypocapnia stimuli-responsive engineered exosomes delivering miR-218 facilitate sciatic nerve regeneration publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2022.825146 – volume: 13 start-page: 521 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib20 article-title: Correlation of nuclear pIGF-1R/IGF-1R and YAP/TAZ in a tissue microarray with outcomes in osteosarcoma patients publication-title: Oncotarget doi: 10.18632/oncotarget.28215 – volume: 12 start-page: 473 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib11 article-title: Age-related alteration in characteristics, function, and transcription features of ADSCs publication-title: Stem Cell Res Ther doi: 10.1186/s13287-021-02509-0 – volume: 7 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib139 article-title: Ex-vivo stimulation of adipose stem cells by growth factors and fibrin-hydrogel assisted delivery strategies for treating nerve gap-injuries publication-title: Bioengineering doi: 10.3390/bioengineering7020042 – volume: 11 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib24 article-title: Therapeutic applications of adipose cell-free derivatives: a review publication-title: Stem Cell Res Ther doi: 10.1186/s13287-020-01831-3 – volume: 31 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib158 article-title: Newly generated 3D schwann-like cell spheroids from human adipose-derived stem cells using a modified protocol publication-title: Cell Transplant doi: 10.1177/09636897221093312 – volume: 22 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib117 article-title: Adipose-derived stem cells and their derived microvesicles ameliorate detrusor overactivity secondary to bilateral partial iliac arterial occlusion-induced bladder ischemia publication-title: Int J Mol Sci doi: 10.3390/ijms22137000 – start-page: 217 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib15 article-title: Historical overview of the interleukin-6 family cytokine publication-title: J Exp Med – volume: 180 start-page: 143 year: 2018 ident: 10.1016/j.reth.2023.09.014_bib53 article-title: Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.07.017 – volume: 86 start-page: 280 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib14 article-title: The IL-1 family in tumorigenesis and antitumor immunity publication-title: Semin Cancer Biol doi: 10.1016/j.semcancer.2022.05.002 – volume: 50 start-page: 1 year: 2018 ident: 10.1016/j.reth.2023.09.014_bib90 article-title: Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model publication-title: Exp Mol Med – volume: 318 start-page: 216 year: 2019 ident: 10.1016/j.reth.2023.09.014_bib125 article-title: The accumulation of T cells within acellular nerve allografts is length-dependent and critical for nerve regeneration publication-title: Exp Neurol doi: 10.1016/j.expneurol.2019.05.009 – volume: 22 start-page: 107 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib92 article-title: Roles of exosomes from mesenchymal stem cells in treating osteoarthritis publication-title: Cell Reprogr doi: 10.1089/cell.2019.0098 – volume: 2021 start-page: 8307797 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib150 article-title: ALK5 i II accelerates induction of adipose-derived stem cells toward schwann cells through a non-smad signaling pathway publication-title: Stem Cell Int – volume: 24 start-page: 12408 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib38 article-title: Liraglutide regulates proliferation, differentiation, and apoptosis of preosteoblasts through a signaling network of Notch/Wnt/Hedgehog signaling pathways publication-title: Eur Rev Med Pharmacol Sci – volume: 43 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib82 article-title: Nitric oxide-releasing supramolecular cellulose nanocrystal/silsesquioxane foams publication-title: Macromol Rapid Commun doi: 10.1002/marc.202100930 – volume: 15 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib40 article-title: Axial mechanical loading to ex vivo mouse long bone regulates endochondral ossification and endosteal mineralization through activation of the BMP-Smad pathway during postnatal growth publication-title: BoneKEy Rep – volume: 108 start-page: 1760 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib57 article-title: Sustained release of stromal cell-derived factor-1 alpha from silk fibroin microfiber promotes urethral reconstruction in rabbits publication-title: J Biomed Mater Res doi: 10.1002/jbm.a.36943 – volume: 26 start-page: 518 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib143 article-title: Activated Schwann cells and increased inflammatory cytokines IL-1β, IL-6, and TNF-α in patients' sural nerve are lack of tight relationship with specific sensory disturbances in Parkinson's disease publication-title: CNS Ne-urosci Ther doi: 10.1111/cns.13282 – volume: 377 start-page: 1175 year: 2011 ident: 10.1016/j.reth.2023.09.014_bib83 article-title: Tissue-engineered autologous urethras for patients who need reconstruction: an observational study publication-title: Lancet doi: 10.1016/S0140-6736(10)62354-9 – volume: 104 start-page: 305 year: 2016 ident: 10.1016/j.reth.2023.09.014_bib106 article-title: Preparation and characterization of directed, one-day-self-assembled millimeter-size spheroids of adipose-derived mesenchymal stem cells publication-title: J Biomed Mater Res doi: 10.1002/jbm.a.35568 – year: 2021 ident: 10.1016/j.reth.2023.09.014_bib41 article-title: Stem cell spheroid engineering with osteoinductive and ROS scavenging nanofibers for bone regeneration publication-title: Biofabrication doi: 10.1088/1758-5090/abd56c – volume: 94 start-page: 748 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib75 article-title: Renal-on-Chip microfluidic platform with a force-sensitive resistor (ROC-FS) for molecular pathogenesis analysis of hydronephrosis publication-title: Anal Chem doi: 10.1021/acs.analchem.1c03155 – volume: 8 start-page: 94 year: 2017 ident: 10.1016/j.reth.2023.09.014_bib164 article-title: The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids publication-title: Stem Cell Res Ther doi: 10.1186/s13287-017-0558-6 – volume: 122 start-page: 5604 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib1 article-title: Supramolecular adhesive hydrogels for tissue engineering applications publication-title: Chem Rev doi: 10.1021/acs.chemrev.1c00815 – volume: 68 start-page: 837 year: 2019 ident: 10.1016/j.reth.2023.09.014_bib98 article-title: Potential of allogeneic adipose-derived stem cell-hydrogel complex for treating diabetic foot ulcers publication-title: Diabetes doi: 10.2337/db18-0699 – volume: 24 start-page: 9590 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib88 article-title: Extracellular vesicle-enclosed miR-486-5p mediates wound healing with adipose-derived stem cells by promoting angiogenesis publication-title: J Cell Mol Med doi: 10.1111/jcmm.15387 – volume: 12 start-page: 442 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib132 article-title: Biomimetic nerve guidance conduit containing engineered exosomes of adipose-derived stem cells promotes peripheral nerve regeneration publication-title: Stem Cell Res Ther doi: 10.1186/s13287-021-02528-x – volume: 1826 start-page: 209 year: 2012 ident: 10.1016/j.reth.2023.09.014_bib22 article-title: Adipose tissue cells, lipotransfer and cancer: a challenge for scientists, oncologists and surgeons publication-title: Biochim Biophys Acta – volume: 33 start-page: 1685 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib113 article-title: Nonwoven spidroin materials as scaffolds for ex vivo cultivation of aortic fragments and dorsal root ganglia publication-title: J Biomater Sci Polym Ed doi: 10.1080/09205063.2022.2073426 – volume: 2019 year: 2019 ident: 10.1016/j.reth.2023.09.014_bib61 article-title: A comprehensive review emphasizing anatomy, etiology, diagnosis, and treatment of male urethral stricture disease publication-title: BioMed Res Int doi: 10.1155/2019/9046430 – volume: 120 start-page: 10847 year: 2019 ident: 10.1016/j.reth.2023.09.014_bib89 article-title: Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β-catenin signaling in cutaneous wound healing publication-title: J Cell Biochem doi: 10.1002/jcb.28376 – volume: 177 start-page: 428 year: 2019 ident: 10.1016/j.reth.2023.09.014_bib50 article-title: Reassessment of exosome composition publication-title: Cell doi: 10.1016/j.cell.2019.02.029 – volume: 28 start-page: 1463 year: 2019 ident: 10.1016/j.reth.2023.09.014_bib102 article-title: Multiple injections of autologous adipose-derived stem cells accelerate the burn wound healing process and promote blood vessel regeneration in a rat model publication-title: Stem Cell Dev doi: 10.1089/scd.2019.0113 – year: 2023 ident: 10.1016/j.reth.2023.09.014_bib165 article-title: Extracellular vesicles derived from hypoxia treated human adipose stem cells increase proliferation and angiogenic differentiation in human adipose stem cells publication-title: Aesthetic Surg J doi: 10.1093/asj/sjad139 – volume: 19 start-page: 826 year: 2018 ident: 10.1016/j.reth.2023.09.014_bib47 article-title: Applications of metals for bone regeneration publication-title: Int J Mol Sci doi: 10.3390/ijms19030826 – volume: 9 year: 2019 ident: 10.1016/j.reth.2023.09.014_bib73 article-title: Exosomes from adipose-derived stem cells (ADSCs) overexpressing miR-21 promote vascularization of endothelial cells publication-title: Sci Rep doi: 10.1038/s41598-019-49339-y – volume: 19 start-page: 574 year: 2020 ident: 10.1016/j.reth.2023.09.014_bib87 article-title: Prospective application of exosomes derived from adipose-derived stem cells in skin wound healing: a review publication-title: J Cosmet Dermatol doi: 10.1111/jocd.13215 – volume: 25 start-page: 177 year: 2017 ident: 10.1016/j.reth.2023.09.014_bib95 article-title: Regeneration of injured skin and peripheral nerves requires control of wound contraction, not scar formation publication-title: Wound Repair Regen doi: 10.1111/wrr.12516 – volume: 8 year: 2016 ident: 10.1016/j.reth.2023.09.014_bib18 article-title: TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology publication-title: Cold Spring Harbor Perspect Biol doi: 10.1101/cshperspect.a021873 – volume: 13 start-page: 448 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib160 article-title: ADSCs stimulated by VEGF-C alleviate intestinal inflammation via dual mechanisms of enhancing lymphatic drainage by a VEGF-C/VEGFR-3-dependent mechanism and inhibiting the NF-κB pathway by the secretome publication-title: Stem Cell Res Ther doi: 10.1186/s13287-022-03132-3 – volume: 38 year: 2022 ident: 10.1016/j.reth.2023.09.014_bib69 article-title: Macrophage IL-1β promotes arteriogenesis by autocrine STAT3- and NF-κB-mediated transcription of pro-angiogenic VEGF-A publication-title: Cell Rep doi: 10.1016/j.celrep.2022.110309 – volume: 10 year: 2021 ident: 10.1016/j.reth.2023.09.014_bib70 article-title: The role of fibroblast growth factor (FGF) signaling in tissue repair and regeneration publication-title: Cells doi: 10.3390/cells10113242 |
SSID | ssj0001851298 |
Score | 2.3916583 |
SecondaryResourceType | review_article |
Snippet | ADSCs are a large number of mesenchymal stem cells in Adipose tissue, which can be applied to tissue engineering. ADSCs have the potential of multi-directional... |
SourceID | doaj pubmedcentral proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 547 |
SubjectTerms | ADSCs Exosomes Mechanism Review Tissue repair |
Title | Adipose stem cells in tissue regeneration and repair: from bench to bedside |
URI | https://dx.doi.org/10.1016/j.reth.2023.09.014 https://www.proquest.com/docview/2879406887 https://pubmed.ncbi.nlm.nih.gov/PMC10579872 https://doaj.org/article/e5c4ec9a942e4bdd92e09f00837668d8 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp15C2rRk0ySoUHopppYt69HbpnQJDS0UGshN6OXEpbEXr3PIv--M7A3rS3rpxRhJluWZETMjz3xDyPvotQC9IDNfezy6cSyzsc4z5iUrGAefwmHu8Pcf4vKaf7upbnZKfWFM2AgPPBLuU6w8hwmt5kXkLgRdxFzXaDlIIVRIab6g83acqXS6olCRqSlLZgzo6uOAfx-KMgGbMj7TRAmwf6aQdgzOebjkjv5ZHZKDyXCky3HBL8lebF-Ro2ULTvP9I_1AUyhnOiM_IlfL0Ky7TaSI0kzxbH5Dm5YOici0j7cJaxpZQm0boGFtm_4zXfXdPXUgtnd06OAmYCnP1-R69fXXl8tsqpqQeXAqh4y5PMTccsat9VZiDh0o5TI6pbwSDgySyEugUFTSCm9LAT3eM6sr6UJh6_IN2W-7Nh4TGkRlA8tdXcuc15pr5sGAtJoFUTvgxoKwLQWNnyDFsbLFH7ONHfttkOoGqW5ybYDqC_Lx6Zn1CKjx7OgLZMzTSATDTg0gImYSEfMvEVmQastWM9kVo70AUzXPvvzdVgYMbDrklm1j97Ax4GZqjuV65IKomXDMVjrvaZu7BN-NlZW1ksXJ__i2t-QFrngMsDkl-0P_EM_ATBrcedoRcL36qf4CvYITiw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adipose+stem+cells+in+tissue+regeneration+and+repair%3A+From+bench+to+bedside&rft.jtitle=Regenerative+therapy&rft.au=Lei+Dong&rft.au=Xiaoyu+Li&rft.au=Wenyuan+Leng&rft.au=Zhenke+Guo&rft.date=2023-12-01&rft.pub=Elsevier&rft.eissn=2352-3204&rft.volume=24&rft.spage=547&rft.epage=560&rft_id=info:doi/10.1016%2Fj.reth.2023.09.014&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e5c4ec9a942e4bdd92e09f00837668d8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-3204&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-3204&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-3204&client=summon |