Adipose stem cells in tissue regeneration and repair: from bench to bedside

ADSCs are a large number of mesenchymal stem cells in Adipose tissue, which can be applied to tissue engineering. ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc. Compared with other mesenchymal...

Full description

Saved in:
Bibliographic Details
Published inRegenerative therapy Vol. 24; pp. 547 - 560
Main Authors Dong, Lei, Li, Xiaoyu, Leng, Wenyuan, Guo, Zhenke, Cai, Tianyu, Ji, Xing, Xu, Chunru, Zhu, Zhenpeng, Lin, Jian
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2023
Japanese Society for Regenerative Medicine
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ADSCs are a large number of mesenchymal stem cells in Adipose tissue, which can be applied to tissue engineering. ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc. Compared with other mesenchymal stem cells, ADSCs have a multitude of promising advantages, such as abundant number, accessibility in cell culture, stable function, and less immune rejection. There are two main methods to use ADSCs for tissue repair and regeneration. One is to implant the “ADSCs-scaffold composite” into the injured site to promote tissue regeneration. The other is cell-free therapy: using ADSC-exos or ADSC-CM alone to release a large number of miRNAs, cytokines and other bioactive substances to promote tissue regeneration. The tissue regeneration potential of ADSCs is regulated by a variety of cytokines, signaling molecules, and external environment. The differentiation of ADSCs into different tissues is also induced by growth factors, ions, hormones, scaffold materials, physical stimulation, and other factors. The specific mechanisms are complex, and most of the signaling pathways need to be further explored. This article reviews and summarizes the mechanism and clinical application of ADSCs in tissue injury repair so far, and puts forward further problems that need to be solved in this field, hoping to provide directions for further research in this field. [Display omitted] •Adipose-derived stem cells (ADSCs) are ideal seed cells of tissue engineering in future.•ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc.•Advantages of ADSCs: abundant number, accessibility in cell culture, stable function, and less immune rejection.•Cell-free therapy: using ADSCs-derived exosomes (ADSC-exos) or ADSC-conditioned medium (ADSC-CM) alone to promote tissue regeneration.
AbstractList ADSCs are a large number of mesenchymal stem cells in Adipose tissue, which can be applied to tissue engineering. ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc. Compared with other mesenchymal stem cells, ADSCs have a multitude of promising advantages, such as abundant number, accessibility in cell culture, stable function, and less immune rejection. There are two main methods to use ADSCs for tissue repair and regeneration. One is to implant the "ADSCs-scaffold composite" into the injured site to promote tissue regeneration. The other is cell-free therapy: using ADSC-exos or ADSC-CM alone to release a large number of miRNAs, cytokines and other bioactive substances to promote tissue regeneration. The tissue regeneration potential of ADSCs is regulated by a variety of cytokines, signaling molecules, and external environment. The differentiation of ADSCs into different tissues is also induced by growth factors, ions, hormones, scaffold materials, physical stimulation, and other factors. The specific mechanisms are complex, and most of the signaling pathways need to be further explored. This article reviews and summarizes the mechanism and clinical application of ADSCs in tissue injury repair so far, and puts forward further problems that need to be solved in this field, hoping to provide directions for further research in this field.ADSCs are a large number of mesenchymal stem cells in Adipose tissue, which can be applied to tissue engineering. ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc. Compared with other mesenchymal stem cells, ADSCs have a multitude of promising advantages, such as abundant number, accessibility in cell culture, stable function, and less immune rejection. There are two main methods to use ADSCs for tissue repair and regeneration. One is to implant the "ADSCs-scaffold composite" into the injured site to promote tissue regeneration. The other is cell-free therapy: using ADSC-exos or ADSC-CM alone to release a large number of miRNAs, cytokines and other bioactive substances to promote tissue regeneration. The tissue regeneration potential of ADSCs is regulated by a variety of cytokines, signaling molecules, and external environment. The differentiation of ADSCs into different tissues is also induced by growth factors, ions, hormones, scaffold materials, physical stimulation, and other factors. The specific mechanisms are complex, and most of the signaling pathways need to be further explored. This article reviews and summarizes the mechanism and clinical application of ADSCs in tissue injury repair so far, and puts forward further problems that need to be solved in this field, hoping to provide directions for further research in this field.
ADSCs are a large number of mesenchymal stem cells in Adipose tissue, which can be applied to tissue engineering. ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc. Compared with other mesenchymal stem cells, ADSCs have a multitude of promising advantages, such as abundant number, accessibility in cell culture, stable function, and less immune rejection. There are two main methods to use ADSCs for tissue repair and regeneration. One is to implant the “ADSCs-scaffold composite” into the injured site to promote tissue regeneration. The other is cell-free therapy: using ADSC-exos or ADSC-CM alone to release a large number of miRNAs, cytokines and other bioactive substances to promote tissue regeneration. The tissue regeneration potential of ADSCs is regulated by a variety of cytokines, signaling molecules, and external environment. The differentiation of ADSCs into different tissues is also induced by growth factors, ions, hormones, scaffold materials, physical stimulation, and other factors. The specific mechanisms are complex, and most of the signaling pathways need to be further explored. This article reviews and summarizes the mechanism and clinical application of ADSCs in tissue injury repair so far, and puts forward further problems that need to be solved in this field, hoping to provide directions for further research in this field. Image 1 • Adipose-derived stem cells (ADSCs) are ideal seed cells of tissue engineering in future. • ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc. • Advantages of ADSCs: abundant number, accessibility in cell culture, stable function, and less immune rejection. • Cell-free therapy: using ADSCs-derived exosomes (ADSC-exos) or ADSC-conditioned medium (ADSC-CM) alone to promote tissue regeneration.
ADSCs are a large number of mesenchymal stem cells in Adipose tissue, which can be applied to tissue engineering. ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc. Compared with other mesenchymal stem cells, ADSCs have a multitude of promising advantages, such as abundant number, accessibility in cell culture, stable function, and less immune rejection. There are two main methods to use ADSCs for tissue repair and regeneration. One is to implant the “ADSCs-scaffold composite” into the injured site to promote tissue regeneration. The other is cell-free therapy: using ADSC-exos or ADSC-CM alone to release a large number of miRNAs, cytokines and other bioactive substances to promote tissue regeneration. The tissue regeneration potential of ADSCs is regulated by a variety of cytokines, signaling molecules, and external environment. The differentiation of ADSCs into different tissues is also induced by growth factors, ions, hormones, scaffold materials, physical stimulation, and other factors. The specific mechanisms are complex, and most of the signaling pathways need to be further explored. This article reviews and summarizes the mechanism and clinical application of ADSCs in tissue injury repair so far, and puts forward further problems that need to be solved in this field, hoping to provide directions for further research in this field.
ADSCs are a large number of mesenchymal stem cells in Adipose tissue, which can be applied to tissue engineering. ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc. Compared with other mesenchymal stem cells, ADSCs have a multitude of promising advantages, such as abundant number, accessibility in cell culture, stable function, and less immune rejection. There are two main methods to use ADSCs for tissue repair and regeneration. One is to implant the “ADSCs-scaffold composite” into the injured site to promote tissue regeneration. The other is cell-free therapy: using ADSC-exos or ADSC-CM alone to release a large number of miRNAs, cytokines and other bioactive substances to promote tissue regeneration. The tissue regeneration potential of ADSCs is regulated by a variety of cytokines, signaling molecules, and external environment. The differentiation of ADSCs into different tissues is also induced by growth factors, ions, hormones, scaffold materials, physical stimulation, and other factors. The specific mechanisms are complex, and most of the signaling pathways need to be further explored. This article reviews and summarizes the mechanism and clinical application of ADSCs in tissue injury repair so far, and puts forward further problems that need to be solved in this field, hoping to provide directions for further research in this field. [Display omitted] •Adipose-derived stem cells (ADSCs) are ideal seed cells of tissue engineering in future.•ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc.•Advantages of ADSCs: abundant number, accessibility in cell culture, stable function, and less immune rejection.•Cell-free therapy: using ADSCs-derived exosomes (ADSC-exos) or ADSC-conditioned medium (ADSC-CM) alone to promote tissue regeneration.
Author Dong, Lei
Guo, Zhenke
Lin, Jian
Li, Xiaoyu
Leng, Wenyuan
Xu, Chunru
Cai, Tianyu
Ji, Xing
Zhu, Zhenpeng
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0009-0000-1386-1377
  surname: Dong
  fullname: Dong, Lei
  organization: Department of Urology, Peking University First Hospital, Beijing 100034, China
– sequence: 2
  givenname: Xiaoyu
  surname: Li
  fullname: Li, Xiaoyu
  organization: Department of Urology, Peking University First Hospital, Beijing 100034, China
– sequence: 3
  givenname: Wenyuan
  surname: Leng
  fullname: Leng, Wenyuan
  organization: Department of Urology, Peking University First Hospital, Beijing 100034, China
– sequence: 4
  givenname: Zhenke
  surname: Guo
  fullname: Guo, Zhenke
  organization: Department of Urology, Peking University First Hospital, Beijing 100034, China
– sequence: 5
  givenname: Tianyu
  surname: Cai
  fullname: Cai, Tianyu
  organization: Department of Urology, Peking University First Hospital, Beijing 100034, China
– sequence: 6
  givenname: Xing
  surname: Ji
  fullname: Ji, Xing
  organization: Department of Urology, Peking University First Hospital, Beijing 100034, China
– sequence: 7
  givenname: Chunru
  surname: Xu
  fullname: Xu, Chunru
  organization: Department of Urology, Peking University First Hospital, Beijing 100034, China
– sequence: 8
  givenname: Zhenpeng
  surname: Zhu
  fullname: Zhu, Zhenpeng
  organization: Department of Urology, Peking University First Hospital, Beijing 100034, China
– sequence: 9
  givenname: Jian
  surname: Lin
  fullname: Lin, Jian
  email: linjianbj@163.com
  organization: Department of Urology, Peking University First Hospital, Beijing 100034, China
BookMark eNp9kU1r3DAQhkVJoGmaP5CTj72sqy_bUimUEPoRGuglOYuxNN7VYktbSRvIv682m0LTQ04zzMz7MLzvO3ISYkBCLhltGWX9x22bsGxaTrloqW4pk2_IGRcdXwlO5ck__VtykfOWUspUx7hWZ-TnlfO7mLHJBZfG4jznxoem-Jz32CRcY8AExcfQQHB1sAOfPjVTikszYrCbpsTauOwdvienE8wZL57rObn_9vXu-sfq9tf3m-ur25XtuCgrNlKHFCSTABYGprVSTAkclbKqH4XWKEV9EdUAvQXR1421DHQ3jI7DJM7JzZHrImzNLvkF0qOJ4M3TIKa1gVS8ndFgZyVaDVpylKNzmiPVE6VKDH2vnKqsL0fWbj8u6CyGkmB-AX25CX5j1vHBMNoNWg28Ej48E1L8vcdczOLzwUgIGPfZcDVoSXulhnqqjqc2xZwTTsb68mRuRfu5Ms0hULM1h0DNIVBDtamBVin_T_r3xVdFn48irGk8eEwmW19DQ-cT2lLt8q_J_wCyaL0I
CitedBy_id crossref_primary_10_1186_s12967_024_05806_3
crossref_primary_10_1186_s13287_024_03931_w
crossref_primary_10_3390_neurolint17020023
crossref_primary_10_1186_s40580_024_00450_5
crossref_primary_10_3390_cells13010051
crossref_primary_10_1088_1748_605X_ad270a
crossref_primary_10_3390_ijms252413488
crossref_primary_10_1186_s12951_024_02684_1
crossref_primary_10_1186_s13287_024_03774_5
crossref_primary_10_1016_j_engreg_2025_02_002
crossref_primary_10_4012_dmj_2024_066
crossref_primary_10_1088_1748_605X_adaff8
crossref_primary_10_1155_sci_6344844
crossref_primary_10_3390_cells13242050
crossref_primary_10_3390_cells13161384
crossref_primary_10_17241_smr_2024_02159
crossref_primary_10_3390_bioengineering11111100
crossref_primary_10_52965_001c_125841
crossref_primary_10_1007_s12035_025_04704_z
crossref_primary_10_3389_fbioe_2024_1455225
crossref_primary_10_24061_2413_4260_XIV_3_53_2024_14
crossref_primary_10_1021_acsbiomaterials_3c01222
crossref_primary_10_4103_JAPTR_JAPTR_390_23
Cites_doi 10.3390/cells11213338
10.1177/1756287214553968
10.1016/S0165-2478(03)00108-1
10.1007/s00018-020-03516-9
10.1016/j.actbio.2022.11.057
10.1016/j.mce.2021.111298
10.1002/jbm.a.37340
10.1186/s13287-021-02662-6
10.1016/j.neuroscience.2019.10.018
10.1016/j.bbrc.2022.10.046
10.2174/1574888X13666181113113415
10.3389/fbioe.2019.00045
10.1002/jnr.24538
10.1016/j.arcmed.2020.08.006
10.1134/S0006297917110116
10.1016/j.abb.2020.108259
10.1016/j.jss.2012.01.047
10.1186/s13287-021-02203-1
10.1016/j.cej.2021.131624
10.1084/jem.20190418
10.1016/j.biopha.2020.109888
10.3390/ijms21228652
10.1111/cpr.13212
10.1016/j.exer.2021.108613
10.1007/s11033-022-08003-x
10.1016/j.celrep.2019.07.014
10.1016/j.jcyt.2016.10.014
10.1016/j.tcb.2023.06.006
10.1161/01.CIR.0000121425.42966.F1
10.1016/j.jcyt.2019.04.061
10.1089/scd.2022.0003
10.1186/s13287-020-02026-6
10.2217/rme-2020-0031
10.1002/sctm.16-0410
10.1186/s13287-020-01778-5
10.1016/j.mam.2017.11.007
10.1016/j.lfs.2019.116900
10.1016/S0169-328X(01)00094-8
10.1186/s13287-019-1358-y
10.1007/s11626-019-00340-9
10.3390/ijms17111885
10.1016/j.cell.2006.07.024
10.1016/j.carbpol.2019.115640
10.21037/atm-22-3489
10.2147/JIR.S307801
10.1007/s13577-019-00315-8
10.1186/s12868-021-00655-y
10.1002/jbm.a.37023
10.2217/rme-2019-0080
10.3390/ijms21041306
10.1002/dvg.23215
10.5152/tud.2020.20024
10.1007/s12015-021-10252-5
10.3390/ijms22052632
10.1007/s10495-021-01685-x
10.1089/ten.tea.2022.0087
10.7150/thno.40919
10.1177/0963689719853512
10.1186/s10020-021-00406-z
10.1039/C9PY01021A
10.7554/eLife.35012
10.1016/j.lfs.2021.119986
10.1016/j.mce.2020.111035
10.1186/s13287-022-03199-y
10.1177/0022034517733967
10.1155/2021/5502740
10.1016/j.ajpath.2020.12.011
10.1002/smll.202101741
10.1016/j.yexcr.2018.06.035
10.1007/s13770-021-00371-y
10.1126/science.aau6977
10.1177/0363546519848678
10.1186/s13287-019-1177-1
10.1186/s13287-017-0558-6
10.1093/burnst/tkaa009
10.1161/01.RES.0000118601.37875.AC
10.1097/GOX.0000000000002953
10.1002/jcp.30968
10.1016/j.brainres.2020.147121
10.1016/j.mce.2009.12.011
10.12968/bjcn.2019.24.Sup9.S12
10.1007/s11010-019-03630-8
10.1002/jcp.29681
10.1093/neuros/nyy374
10.1016/j.cell.2019.01.021
10.1038/s41374-021-00611-8
10.3390/ijms232214074
10.1111/neup.12650
10.1186/s13287-021-02695-x
10.1016/j.steroids.2019.108492
10.1016/j.addr.2019.09.003
10.1038/s41598-021-93642-6
10.1007/s12015-020-10038-1
10.3390/ijms23020644
10.1080/21655979.2021.1990193
10.3390/cells9092131
10.1097/PRS.0000000000008796
10.1002/glia.23881
10.1016/j.lfs.2023.121785
10.1007/s10561-019-09761-y
10.3109/14764172.2015.1114638
10.3390/ijms21144864
10.1080/09205063.2017.1414481
10.3390/cells9091939
10.1002/jcp.27697
10.1111/jcmm.15368
10.3390/biomedicines9111624
10.3389/fbioe.2022.825146
10.18632/oncotarget.28215
10.1186/s13287-021-02509-0
10.3390/bioengineering7020042
10.1186/s13287-020-01831-3
10.1177/09636897221093312
10.3390/ijms22137000
10.1016/j.biomaterials.2018.07.017
10.1016/j.semcancer.2022.05.002
10.1016/j.expneurol.2019.05.009
10.1089/cell.2019.0098
10.1002/marc.202100930
10.1002/jbm.a.36943
10.1111/cns.13282
10.1016/S0140-6736(10)62354-9
10.1002/jbm.a.35568
10.1088/1758-5090/abd56c
10.1021/acs.analchem.1c03155
10.1021/acs.chemrev.1c00815
10.2337/db18-0699
10.1111/jcmm.15387
10.1186/s13287-021-02528-x
10.1080/09205063.2022.2073426
10.1155/2019/9046430
10.1002/jcb.28376
10.1016/j.cell.2019.02.029
10.1089/scd.2019.0113
10.1093/asj/sjad139
10.3390/ijms19030826
10.1038/s41598-019-49339-y
10.1111/jocd.13215
10.1111/wrr.12516
10.1101/cshperspect.a021873
10.1186/s13287-022-03132-3
10.1016/j.celrep.2022.110309
10.3390/cells10113242
ContentType Journal Article
Copyright 2023 The Japanese Society for Regenerative Medicine
2023 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V.
2023 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. 2023 The Japanese Society for Regenerative Medicine
Copyright_xml – notice: 2023 The Japanese Society for Regenerative Medicine
– notice: 2023 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V.
– notice: 2023 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. 2023 The Japanese Society for Regenerative Medicine
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.reth.2023.09.014
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2352-3204
EndPage 560
ExternalDocumentID oai_doaj_org_article_e5c4ec9a942e4bdd92e09f00837668d8
PMC10579872
10_1016_j_reth_2023_09_014
S2352320423000962
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
7X8
5PM
ID FETCH-LOGICAL-c523t-1b0de0a414aaca719988183eb88c86b399e43001e87a6ca36eb8cc1a957bd2af3
IEDL.DBID DOA
ISSN 2352-3204
IngestDate Wed Aug 27 01:24:58 EDT 2025
Thu Aug 21 18:36:05 EDT 2025
Fri Jul 11 03:17:18 EDT 2025
Tue Jul 01 03:44:13 EDT 2025
Thu Apr 24 23:11:30 EDT 2025
Fri Feb 23 02:35:06 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ADSCs
Exosomes
Tissue repair
Mechanism
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-1b0de0a414aaca719988183eb88c86b399e43001e87a6ca36eb8cc1a957bd2af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0009-0000-1386-1377
OpenAccessLink https://doaj.org/article/e5c4ec9a942e4bdd92e09f00837668d8
PQID 2879406887
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_e5c4ec9a942e4bdd92e09f00837668d8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10579872
proquest_miscellaneous_2879406887
crossref_citationtrail_10_1016_j_reth_2023_09_014
crossref_primary_10_1016_j_reth_2023_09_014
elsevier_sciencedirect_doi_10_1016_j_reth_2023_09_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Regenerative therapy
PublicationYear 2023
Publisher Elsevier B.V
Japanese Society for Regenerative Medicine
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Japanese Society for Regenerative Medicine
– name: Elsevier
References Shafaei (10.1016/j.reth.2023.09.014_bib45) 2020; 235
Piao (10.1016/j.reth.2023.09.014_bib162) 2021; 285
Sun (10.1016/j.reth.2023.09.014_bib65) 2020; 33
Kalluri (10.1016/j.reth.2023.09.014_bib25) 2020; 367
LeBlanc (10.1016/j.reth.2023.09.014_bib94) 2019; 24
Gholipourmalekabadi (10.1016/j.reth.2023.09.014_bib81) 2020; 153
Gordon (10.1016/j.reth.2023.09.014_bib112) 2020; 21
Zhou (10.1016/j.reth.2023.09.014_bib99) 2022; 2022
Nocera (10.1016/j.reth.2023.09.014_bib108) 2020; 77
Marofi (10.1016/j.reth.2023.09.014_bib72) 2021; 12
Podsednik (10.1016/j.reth.2023.09.014_bib156) 2022; 23
Yao (10.1016/j.reth.2023.09.014_bib39) 2022
Liu (10.1016/j.reth.2023.09.014_bib57) 2020; 108
Nagano (10.1016/j.reth.2023.09.014_bib107) 2021; 11
Tran (10.1016/j.reth.2023.09.014_bib78) 2015; 7
Molina (10.1016/j.reth.2023.09.014_bib20) 2022; 13
Zhou (10.1016/j.reth.2023.09.014_bib34) 2019; 47
Petsoglou (10.1016/j.reth.2023.09.014_bib136) 2021; 208
Lopes (10.1016/j.reth.2023.09.014_bib153) 2022; 23
Moon (10.1016/j.reth.2023.09.014_bib98) 2019; 68
Mantsounga (10.1016/j.reth.2023.09.014_bib69) 2022; 38
Jiang (10.1016/j.reth.2023.09.014_bib17) 2021; 12
Li (10.1016/j.reth.2023.09.014_bib137) 2022; 55
Künzel (10.1016/j.reth.2023.09.014_bib134) 2018; 7
Sun (10.1016/j.reth.2023.09.014_bib48) 2022; 10
Masuda (10.1016/j.reth.2023.09.014_bib144) 2020; 40
Ma (10.1016/j.reth.2023.09.014_bib146) 2020; 24
Sawai (10.1016/j.reth.2023.09.014_bib150) 2021; 2021
Wang (10.1016/j.reth.2023.09.014_bib141) 2021; 26
Glovinski (10.1016/j.reth.2023.09.014_bib31) 2017; 19
Modrak (10.1016/j.reth.2023.09.014_bib152) 2020; 98
Yh (10.1016/j.reth.2023.09.014_bib5) 2022; 13
Iwai (10.1016/j.reth.2023.09.014_bib106) 2016; 104
Gao (10.1016/j.reth.2023.09.014_bib55) 2022; 636
Bei (10.1016/j.reth.2023.09.014_bib52) 2021; 17
Ogawa (10.1016/j.reth.2023.09.014_bib84) 2022; 28
(10.1016/j.reth.2023.09.014_bib92) 2020; 22
Saraiva (10.1016/j.reth.2023.09.014_bib16) 2020; 217
Safavi (10.1016/j.reth.2023.09.014_bib46) 2019; 55
Soleimanifar (10.1016/j.reth.2023.09.014_bib42) 2019; 234
Ko (10.1016/j.reth.2023.09.014_bib120) 2018; 29
Castelnovo (10.1016/j.reth.2023.09.014_bib140) 2021; 531
Xuan (10.1016/j.reth.2023.09.014_bib80) 2022; 23
Babu (10.1016/j.reth.2023.09.014_bib32) 2023; 327
Pak (10.1016/j.reth.2023.09.014_bib116) 2021; 22
Wang (10.1016/j.reth.2023.09.014_bib62) 2021; 2021
Yang (10.1016/j.reth.2023.09.014_bib132) 2021; 12
Guennoun (10.1016/j.reth.2023.09.014_bib149) 2001; 90
Verla (10.1016/j.reth.2023.09.014_bib61) 2019; 2019
Pigossi (10.1016/j.reth.2023.09.014_bib37) 2016; 17
Mikhailova (10.1016/j.reth.2023.09.014_bib113) 2022; 33
Zhao (10.1016/j.reth.2023.09.014_bib59) 2012; 178
Zhang (10.1016/j.reth.2023.09.014_bib86) 2018; 370
Wang (10.1016/j.reth.2023.09.014_bib128) 2021; 1750
Zheng (10.1016/j.reth.2023.09.014_bib129) 2020; 125
Chen (10.1016/j.reth.2023.09.014_bib158) 2022; 31
Li (10.1016/j.reth.2023.09.014_bib7) 2022; 18
Zhao (10.1016/j.reth.2023.09.014_bib49) 2020; 254
Zhang (10.1016/j.reth.2023.09.014_bib64) 2018; 32
Fujiwara (10.1016/j.reth.2023.09.014_bib91) 2020; 8
Lee (10.1016/j.reth.2023.09.014_bib35) 2014; 42
Byun (10.1016/j.reth.2023.09.014_bib41) 2021
Bolívar (10.1016/j.reth.2023.09.014_bib110) 2020; 9
Askar (10.1016/j.reth.2023.09.014_bib111) 2022; 10
Kang (10.1016/j.reth.2023.09.014_bib148) 2019; 21
Li (10.1016/j.reth.2023.09.014_bib109) 2020; 10
Zarei (10.1016/j.reth.2023.09.014_bib96) 2019; 14
Narla (10.1016/j.reth.2023.09.014_bib71) 2021; 191
Figueroa (10.1016/j.reth.2023.09.014_bib27) 2019; 152
Li (10.1016/j.reth.2023.09.014_bib165) 2023
Rehman (10.1016/j.reth.2023.09.014_bib67) 2004; 109
Li (10.1016/j.reth.2023.09.014_bib60) 2017; 82
Z (10.1016/j.reth.2023.09.014_bib1) 2022; 122
Hou (10.1016/j.reth.2023.09.014_bib38) 2020; 24
Gharbia (10.1016/j.reth.2023.09.014_bib77) 2022; 11
Prautsch (10.1016/j.reth.2023.09.014_bib139) 2020; 7
Kang (10.1016/j.reth.2023.09.014_bib15) 2020
Miyamoto (10.1016/j.reth.2023.09.014_bib40) 2021; 15
Zhang (10.1016/j.reth.2023.09.014_bib9) 2020; 2020
Morikawa (10.1016/j.reth.2023.09.014_bib18) 2016; 8
Kinnaird (10.1016/j.reth.2023.09.014_bib66) 2004; 94
Bertolini (10.1016/j.reth.2023.09.014_bib22) 2012; 1826
Forbes (10.1016/j.reth.2023.09.014_bib28) 2020; 518
Razavi (10.1016/j.reth.2023.09.014_bib127) 2021; 22
Rodríguez-Fuentes (10.1016/j.reth.2023.09.014_bib3) 2021; 52
Papadopoulos (10.1016/j.reth.2023.09.014_bib29) 2018; 62
Lischer (10.1016/j.reth.2023.09.014_bib138) 2020; 15
Guo (10.1016/j.reth.2023.09.014_bib118) 2020; 463
Zhang (10.1016/j.reth.2023.09.014_bib44) 2020; 15
Mazini (10.1016/j.reth.2023.09.014_bib6) 2020
Siregar (10.1016/j.reth.2023.09.014_bib76) 2020; 46
Ma (10.1016/j.reth.2023.09.014_bib89) 2019; 120
Chiang (10.1016/j.reth.2023.09.014_bib117) 2021; 22
Challapalli (10.1016/j.reth.2023.09.014_bib8) 2021; 17
Hu (10.1016/j.reth.2023.09.014_bib166) 2023; 157
Yang (10.1016/j.reth.2023.09.014_bib74) 2020; 681
Enciso (10.1016/j.reth.2023.09.014_bib93) 2020; 11
Li (10.1016/j.reth.2023.09.014_bib90) 2018; 50
Fang (10.1016/j.reth.2023.09.014_bib114) 2019; 20
Hu (10.1016/j.reth.2023.09.014_bib54) 2021; 18
Farooq (10.1016/j.reth.2023.09.014_bib70) 2021; 10
Spicer (10.1016/j.reth.2023.09.014_bib104) 2020; 11
Chen (10.1016/j.reth.2023.09.014_bib151) 2021; 68
Zhang (10.1016/j.reth.2023.09.014_bib13) 2023; 238
Nyambat (10.1016/j.reth.2023.09.014_bib79) 2020; 21
da Silva (10.1016/j.reth.2023.09.014_bib82) 2022; 43
Rahman (10.1016/j.reth.2023.09.014_bib163) 2022; 2022
Apte (10.1016/j.reth.2023.09.014_bib19) 2019; 176
De Ugarte (10.1016/j.reth.2023.09.014_bib12) 2003; 89
Pedrini (10.1016/j.reth.2023.09.014_bib124) 2019; 85
Thesleff (10.1016/j.reth.2023.09.014_bib56) 2017; 6
Zhang (10.1016/j.reth.2023.09.014_bib143) 2020; 26
Zhou (10.1016/j.reth.2023.09.014_bib159) 2021; 27
Stachura (10.1016/j.reth.2023.09.014_bib97) 2021; 10
Miller (10.1016/j.reth.2023.09.014_bib147) 2018; 56
Entekhabi (10.1016/j.reth.2023.09.014_bib123) 2021; 109
Xiao (10.1016/j.reth.2023.09.014_bib68) 2021; 425
Ho-Shui-Ling (10.1016/j.reth.2023.09.014_bib53) 2018; 180
Hickey (10.1016/j.reth.2023.09.014_bib105) 2019; 7
Robinson (10.1016/j.reth.2023.09.014_bib36) 1979; 145
An (10.1016/j.reth.2023.09.014_bib73) 2019; 9
Syu (10.1016/j.reth.2023.09.014_bib157) 2019; 28
Glenske (10.1016/j.reth.2023.09.014_bib47) 2018; 19
Jeppesen (10.1016/j.reth.2023.09.014_bib50) 2019; 177
Melnik (10.1016/j.reth.2023.09.014_bib119) 2020; 11
Sun (10.1016/j.reth.2023.09.014_bib14) 2022; 86
Couve (10.1016/j.reth.2023.09.014_bib142) 2018; 97
Liu (10.1016/j.reth.2023.09.014_bib121) 2020; 19
Takahashi (10.1016/j.reth.2023.09.014_bib2) 2006; 126
H (10.1016/j.reth.2023.09.014_bib4) 2022; 13
Lin (10.1016/j.reth.2023.09.014_bib101) 2021; 12
Petrenko (10.1016/j.reth.2023.09.014_bib51) 2017; 8
Gonçalves (10.1016/j.reth.2023.09.014_bib145) 2020; 68
Li (10.1016/j.reth.2023.09.014_bib11) 2021; 12
Zhou (10.1016/j.reth.2023.09.014_bib33) 2021; 29
Cai (10.1016/j.reth.2023.09.014_bib24) 2020; 11
Hong (10.1016/j.reth.2023.09.014_bib26) 2019; 10
Zhou (10.1016/j.reth.2023.09.014_bib43) 2020; 230
Yannas (10.1016/j.reth.2023.09.014_bib95) 2017; 25
Song (10.1016/j.reth.2023.09.014_bib58) 2022; 10
Schweizer (10.1016/j.reth.2023.09.014_bib155) 2020; 8
Zhou (10.1016/j.reth.2023.09.014_bib100) 2016; 18
Wang (10.1016/j.reth.2023.09.014_bib135) 2022; 10
Xiao (10.1016/j.reth.2023.09.014_bib75) 2022; 94
Qian (10.1016/j.reth.2023.09.014_bib85) 2021; 101
Erdal (10.1016/j.reth.2023.09.014_bib122) 2022; 149
Pan (10.1016/j.reth.2023.09.014_bib125) 2019; 318
Zhang (10.1016/j.reth.2023.09.014_bib160) 2022; 13
Nasrin (10.1016/j.reth.2023.09.014_bib63) 2022; 110
Wu (10.1016/j.reth.2023.09.014_bib115) 2022; 13
Prautsch (10.1016/j.reth.2023.09.014_bib130) 2020; 9
Fu (10.1016/j.reth.2023.09.014_bib126) 2019; 422
Qiu (10.1016/j.reth.2023.09.014_bib87) 2020; 19
Raya-Rivera (10.1016/j.reth.2023.09.014_bib83) 2011; 377
Airuddin (10.1016/j.reth.2023.09.014_bib30) 2021; 9
Zhang (10.1016/j.reth.2023.09.014_bib131) 2019; 28
Poulos (10.1016/j.reth.2023.09.014_bib10) 2010; 323
Lu (10.1016/j.reth.2023.09.014_bib88) 2020; 24
Lischer (10.1016/j.reth.2023.09.014_bib154) 2020; 15
Vriend (10.1016/j.reth.2023.09.014_bib103) 2022; 31
Jin (10.1016/j.reth.2023.09.014_bib161) 2019; 10
Künzel (10.1016/j.reth.2023.09.014_bib133) 2018; 7
Petrenko (10.1016/j.reth.2023.09.014_bib164) 2017; 8
Pan (10.1016/j.reth.2023.09.014_bib21) 2021; 14
Zhou (10.1016/j.reth.2023.09.014_bib102) 2019; 28
Arya (10.1016/j.reth.2023.09.014_bib23) 2023
References_xml – volume: 10
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib58
  article-title: Gelatin-grafted tubular asymmetric scaffolds promote ureteral regeneration via activation of the integrin/Erk signaling pathway
  publication-title: Front Bioeng Biotechnol
– volume: 11
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib77
  article-title: Adipose-derived stem cells (ADSCs) supplemented with hepatocyte growth factor (HGF) attenuate hepatic stellate cell activation and liver fibrosis by inhibiting the TGF-β/smad signaling pathway in chemical-induced liver fibrosis associated with diabetes
  publication-title: Cells
  doi: 10.3390/cells11213338
– volume: 7
  start-page: 22
  year: 2015
  ident: 10.1016/j.reth.2023.09.014_bib78
  article-title: The potential role of stem cells in the treatment of urinary incontinence
  publication-title: Ther Adv Urol
  doi: 10.1177/1756287214553968
– volume: 89
  start-page: 267
  year: 2003
  ident: 10.1016/j.reth.2023.09.014_bib12
  article-title: Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow
  publication-title: Immunol Lett
  doi: 10.1016/S0165-2478(03)00108-1
– volume: 19
  start-page: 223
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib121
  article-title: Therapeutic effects of nerve leachate-treated adipose-derived mesenchymal stem cells on rat sciatic nerve injury
  publication-title: Exp Ther Med
– volume: 77
  start-page: 3977
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib108
  article-title: Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-020-03516-9
– volume: 157
  start-page: 175
  year: 2023
  ident: 10.1016/j.reth.2023.09.014_bib166
  article-title: Hypoxia-pretreated ADSC-derived exosome-embedded hydrogels promote angiogenesis and accelerate diabetic wound healing
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2022.11.057
– volume: 531
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib140
  article-title: Membrane progesterone receptor α (mPRα/PAQR7) promotes migration, proliferation and BDNF release in human Schwann cell-like differentiated adipose stem cells
  publication-title: Mol Cell Endocrinol
  doi: 10.1016/j.mce.2021.111298
– volume: 110
  start-page: 916
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib63
  article-title: 3D-printed bioresorbable poly(lactic-co-glycolic acid) and quantum-dot nanocomposites: scaffolds for enhanced bone mineralization and inbuilt co-monitoring
  publication-title: J Biomed Mater Res
  doi: 10.1002/jbm.a.37340
– volume: 12
  start-page: 597
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib72
  article-title: MSCs and their exosomes: a rapidly evolving approach in the context of cutaneous wounds therapy
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-021-02662-6
– volume: 422
  start-page: 134
  year: 2019
  ident: 10.1016/j.reth.2023.09.014_bib126
  article-title: The combination of adipose-derived schwann-like cells and acellular nerve allografts promotes sciatic nerve regeneration and repair through the JAK2/STAT3 signaling pathway in rats
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2019.10.018
– volume: 636
  start-page: 96
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib55
  article-title: 3D-printed regenerative polycaprolactone/silk fibroin osteogenic and chondrogenic implant for treatment of hip dysplasia
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2022.10.046
– volume: 14
  start-page: 244
  year: 2019
  ident: 10.1016/j.reth.2023.09.014_bib96
  article-title: Application of cell therapy for anti-aging facial skin
  publication-title: Curr Stem Cell Res Ther
  doi: 10.2174/1574888X13666181113113415
– volume: 2022
  start-page: 6590025
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib99
  article-title: Efficacy of human adipose derived mesenchymal stem cells in promoting skin wound healing
  publication-title: J Healthc Eng
– volume: 7
  start-page: 45
  year: 2019
  ident: 10.1016/j.reth.2023.09.014_bib105
  article-title: Cellulose biomaterials for tissue engineering
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2019.00045
– volume: 98
  start-page: 780
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib152
  article-title: Peripheral nerve injury and myelination: potential therapeutic strategies
  publication-title: J Neurosci Res
  doi: 10.1002/jnr.24538
– volume: 52
  start-page: 93
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib3
  article-title: Mesenchymal stem cells current clinical applications: a systematic review
  publication-title: Arch Med Res
  doi: 10.1016/j.arcmed.2020.08.006
– volume: 82
  start-page: 1336
  year: 2017
  ident: 10.1016/j.reth.2023.09.014_bib60
  article-title: Cathelicidin LL37 promotes epithelial and smooth-muscle-like differentiation of adipose-derived stem cells through the Wnt/β-catenin and NF-κB pathways
  publication-title: Biochemistry (Moscow)
  doi: 10.1134/S0006297917110116
– volume: 681
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib74
  article-title: Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway
  publication-title: Arch Biochem Biophys
  doi: 10.1016/j.abb.2020.108259
– volume: 178
  start-page: 55
  year: 2012
  ident: 10.1016/j.reth.2023.09.014_bib59
  article-title: Differentiation of adipose-derived stem cells promotes regeneration of smooth muscle for ureteral tissue engineering
  publication-title: J Surg Res
  doi: 10.1016/j.jss.2012.01.047
– volume: 12
  start-page: 129
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib101
  article-title: Co-culture of ASCs/EPCs and dermal extracellular matrix hydrogel enhances the repair of full-thickness skin wound by promoting angiogenesis
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-021-02203-1
– volume: 425
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib68
  article-title: MicroRNA-126 from stem cell extracellular vesicles encapsulated in a tri-layer hydrogel scaffold promotes bladder angiogenesis by activating CXCR4/SDF-1α pathway
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.131624
– volume: 217
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib16
  article-title: Biology and therapeutic potential of interleukin-10
  publication-title: J Exp Med
  doi: 10.1084/jem.20190418
– volume: 32
  start-page: 1351
  year: 2018
  ident: 10.1016/j.reth.2023.09.014_bib64
  article-title: [Effects of adipose-derived stem cell released exosomes on proliferation, migration, and tube-like differentiation of human umbilical vein endothelial cells]
  publication-title: Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi
– volume: 125
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib129
  article-title: Icariside II facilitates the differentiation of ADSCs to schwann cells and restores erectile dysfunction through regulation of miR-33/GDNF axis
  publication-title: Biomed Pharmacother
  doi: 10.1016/j.biopha.2020.109888
– volume: 21
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib112
  article-title: Peripheral nerve regeneration and muscle reinnervation
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21228652
– volume: 55
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib137
  article-title: Growth factors-based platelet lysate rejuvenates skin against ageing through NF-κB signalling pathway: in vitro and in vivo mechanistic and clinical studies
  publication-title: Cell Prolif
  doi: 10.1111/cpr.13212
– volume: 10
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib97
  article-title: The use of adipose-derived stem cells (ADSCs) and stromal vascular fraction (SVF) in skin scar treatment-A systematic review of clinical studies
  publication-title: J Clin Med
– volume: 208
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib136
  article-title: Effects of human platelet lysate on the growth of cultured human corneal endothelial cells
  publication-title: Exp Eye Res
  doi: 10.1016/j.exer.2021.108613
– year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib39
  article-title: Aloe polysaccharide promotes osteogenesis potential of adipose-derived stromal cells via BMP-2/Smads and prevents ovariectomized-induced osteoporosis
  publication-title: Mol Biol Rep
  doi: 10.1007/s11033-022-08003-x
– volume: 28
  start-page: 1485
  year: 2019
  ident: 10.1016/j.reth.2023.09.014_bib131
  article-title: Id4 downstream of Notch2 maintains neural stem cell quiescence in the adult Hippocampus
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2019.07.014
– volume: 19
  start-page: 222
  year: 2017
  ident: 10.1016/j.reth.2023.09.014_bib31
  article-title: Overcoming the bottleneck of platelet lysate supply in large-scale clinical expansion of adipose-derived stem cells: a comparison of fresh versus three types of platelet lysates from outdated buffy coat-derived platelet concentrates
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2016.10.014
– year: 2023
  ident: 10.1016/j.reth.2023.09.014_bib23
  article-title: The ins-and-outs of exosome biogenesis, secretion, and internalization
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2023.06.006
– volume: 109
  start-page: 1292
  year: 2004
  ident: 10.1016/j.reth.2023.09.014_bib67
  article-title: Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000121425.42966.F1
– volume: 21
  start-page: 987
  year: 2019
  ident: 10.1016/j.reth.2023.09.014_bib148
  article-title: Differentiated human adipose-derived stromal cells exhibit the phenotypic and functional characteristics of mature Schwann cells through a modified approach
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2019.04.061
– volume: 31
  start-page: 630
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib103
  article-title: Limited efficacy of adipose stromal cell secretome-loaded skin-derived hydrogels to augment skin flap regeneration in rats
  publication-title: Stem Cell Dev
  doi: 10.1089/scd.2022.0003
– volume: 11
  start-page: 532
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib119
  article-title: MiR-218 affects hypertrophic differentiation of human mesenchymal stromal cells during chondrogenesis via targeting RUNX2, MEF2C, and COL10A1
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-020-02026-6
– volume: 15
  start-page: 1399
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib138
  article-title: Human platelet lysate stimulated adipose stem cells exhibit strong neurotrophic potency for nerve tissue engineering applications
  publication-title: Regen Med
  doi: 10.2217/rme-2020-0031
– volume: 6
  start-page: 1576
  year: 2017
  ident: 10.1016/j.reth.2023.09.014_bib56
  article-title: Cranioplasty with adipose-derived stem cells, beta-tricalcium phosphate granules and supporting mesh: six-year clinical follow-up results
  publication-title: Stem Cells Transl Med
  doi: 10.1002/sctm.16-0410
– volume: 11
  start-page: 261
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib93
  article-title: Cutaneous wound healing: canine allogeneic ASC therapy
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-020-01778-5
– volume: 62
  start-page: 75
  year: 2018
  ident: 10.1016/j.reth.2023.09.014_bib29
  article-title: The PDGF/PDGFR pathway as a drug target
  publication-title: Mol Aspect Med
  doi: 10.1016/j.mam.2017.11.007
– volume: 254
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib49
  article-title: Mechanisms of lncRNA/microRNA interactions in angiogenesis
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2019.116900
– volume: 90
  start-page: 75
  year: 2001
  ident: 10.1016/j.reth.2023.09.014_bib149
  article-title: Progesterone stimulates Krox-20 gene expression in Schwann cells
  publication-title: Mol Brain Res
  doi: 10.1016/S0169-328X(01)00094-8
– volume: 10
  start-page: 242
  year: 2019
  ident: 10.1016/j.reth.2023.09.014_bib26
  article-title: The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-019-1358-y
– volume: 55
  start-page: 387
  year: 2019
  ident: 10.1016/j.reth.2023.09.014_bib46
  article-title: Efficacy of mechanical vibration in regulating mesenchymal stem cells gene expression
  publication-title: Vitro Anim Cell Dev Biol
  doi: 10.1007/s11626-019-00340-9
– volume: 17
  year: 2016
  ident: 10.1016/j.reth.2023.09.014_bib37
  article-title: Role of osteogenic growth peptide (OGP) and OGP(10-14) in bone regeneration: a review
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms17111885
– volume: 126
  start-page: 663
  year: 2006
  ident: 10.1016/j.reth.2023.09.014_bib2
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 230
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib43
  article-title: Arginine based poly (ester amide)/hyaluronic acid hybrid hydrogels for bone tissue Engineering
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2019.115640
– volume: 10
  start-page: 875
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib111
  article-title: The Etv1/Er81 transcription factor coordinates myelination-related genes to regulate Schwann cell differentiation and myelination
  publication-title: Ann Transl Med
  doi: 10.21037/atm-22-3489
– volume: 14
  start-page: 2045
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib21
  article-title: The ACE2-ang-(1-7)-mas Axis modulates M1/M2 macrophage polarization to relieve CLP-induced inflammation via TLR4-mediated NF-кb and MAPK pathways
  publication-title: J Inflamm Res
  doi: 10.2147/JIR.S307801
– volume: 33
  start-page: 479
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib65
  article-title: The miR-590-3p/VEGFA axis modulates secretion of VEGFA from adipose-derived stem cells, which acts as a paracrine regulator of human dermal microvascular endothelial cell angiogenesis
  publication-title: Hum Cell
  doi: 10.1007/s13577-019-00315-8
– volume: 22
  start-page: 50
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib127
  article-title: Differential effects of rat ADSCs encapsulation in fibrin matrix and combination delivery of BDNF and Gold nanoparticles on peripheral nerve regeneration
  publication-title: BMC Neurosci
  doi: 10.1186/s12868-021-00655-y
– volume: 13
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib4
  article-title: Bone marrow mesenchymal stem cells in premature ovarian failure: mechanisms and prospects
  publication-title: Front Immunol
– volume: 109
  start-page: 300
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib123
  article-title: Fabrication and in vitro evaluation of 3D composite scaffold based on collagen/hyaluronic acid sponge and electrospun polycaprolactone nanofibers for peripheral nerve regeneration
  publication-title: J Biomed Mater Res
  doi: 10.1002/jbm.a.37023
– volume: 15
  start-page: 2129
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib44
  article-title: FGF2: a key regulator augmenting tendon-to-bone healing and cartilage repair
  publication-title: Regen Med
  doi: 10.2217/rme-2019-0080
– year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib6
  article-title: Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem cells (MSCs) in wound healing
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21041306
– volume: 56
  year: 2018
  ident: 10.1016/j.reth.2023.09.014_bib147
  article-title: Neural crest Notch/Rbpj signaling regulates olfactory gliogenesis and neuronal migration
  publication-title: Genesis
  doi: 10.1002/dvg.23215
– volume: 46
  start-page: 236
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib76
  article-title: The effect of intravenous human adipose-derived stem cells (hADSC) on transforming growth factor β1 (TGF-β1), collagen type 1, and kidney histopathological features in the unilateral ureteropelvic junction obstruction model of wistar rats
  publication-title: Turk J Urol
  doi: 10.5152/tud.2020.20024
– volume: 18
  start-page: 952
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib7
  article-title: Application of ADSCs and their exosomes in scar prevention
  publication-title: Stem Cell Rev Rep
  doi: 10.1007/s12015-021-10252-5
– volume: 22
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib116
  article-title: Effects of a catechol-functionalized hyaluronic acid patch combined with human adipose-derived stem cells in diabetic wound healing
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22052632
– volume: 2022
  start-page: 9483166
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib163
  article-title: Single-cell RNA sequencing reveals the interaction of injected ADSCs with lung-originated cells in mouse pulmonary fibrosis
  publication-title: Stem Cell Int
– volume: 26
  start-page: 548
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib141
  article-title: Let-7a-5p regulated by lncRNA-MEG3 promotes functional differentiation to Schwann cells from adipose derived stem cells via directly inhibiting RBPJ-mediating Notch pathway
  publication-title: Apoptosis
  doi: 10.1007/s10495-021-01685-x
– volume: 28
  start-page: 855
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib84
  article-title: Autologous bilayered adipose-derived mesenchymal cell-gelatin sheets reconstruct ureters in rabbits
  publication-title: Tissue Eng
  doi: 10.1089/ten.tea.2022.0087
– volume: 10
  start-page: 1649
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib109
  article-title: Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration
  publication-title: Theranostics
  doi: 10.7150/thno.40919
– volume: 28
  start-page: 1220
  year: 2019
  ident: 10.1016/j.reth.2023.09.014_bib157
  article-title: Adipose-derived neural stem cells combined with acellular dermal matrix as a neural conduit enhances peripheral nerve repair
  publication-title: Cell Transplant
  doi: 10.1177/0963689719853512
– volume: 27
  start-page: 146
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib159
  article-title: ADSCs enhance VEGFR3-mediated lymphangiogenesis via METTL3-mediated VEGF-C m(6)A modification to improve wound healing of diabetic foot ulcers
  publication-title: Mol Med
  doi: 10.1186/s10020-021-00406-z
– volume: 11
  start-page: 184
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib104
  article-title: Hydrogel scaffolds for tissue engineering: the importance of polymer choice
  publication-title: Polym Chem
  doi: 10.1039/C9PY01021A
– volume: 7
  year: 2018
  ident: 10.1016/j.reth.2023.09.014_bib133
  article-title: FRMD8 promotes inflammatory and growth factor signalling by stabilising the iRhom/ADAM17 sheddase complex
  publication-title: Elife
  doi: 10.7554/eLife.35012
– volume: 285
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib162
  article-title: Optimal intervention time of ADSCs for hepatic ischemia-reperfusion combined with partial resection injury in rats
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2021.119986
– volume: 518
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib28
  article-title: Disorders of IGFs and IGF-1R signaling pathways
  publication-title: Mol Cell Endocrinol
  doi: 10.1016/j.mce.2020.111035
– volume: 13
  start-page: 511
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib5
  article-title: The crosstalk between macrophages and bone marrow mesenchymal stem cells in bone healing
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-022-03199-y
– volume: 97
  start-page: 347
  year: 2018
  ident: 10.1016/j.reth.2023.09.014_bib142
  article-title: Schwann cell phenotype changes in aging human dental pulp
  publication-title: J Dent Res
  doi: 10.1177/0022034517733967
– volume: 68
  start-page: 347
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib151
  article-title: Effective in vitro differentiation of adipose-derived stem cells into Schwann-like cells with folic acid supplementation
  publication-title: J Med Invest
– volume: 2021
  start-page: 5502740
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib62
  article-title: Urethral tissue reconstruction using the acellular dermal matrix patch modified with collagen-binding VEGF in beagle urethral injury models
  publication-title: BioMed Res Int
  doi: 10.1155/2021/5502740
– volume: 191
  start-page: 631
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib71
  article-title: Loss of fibroblast growth factor receptor 2 (FGFR2) leads to defective bladder urothelial regeneration after cyclophosphamide injury
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2020.12.011
– volume: 17
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib52
  article-title: Bone-a-Petite: engineering exosomes towards bone, osteochondral, and cartilage repair
  publication-title: Small
  doi: 10.1002/smll.202101741
– volume: 145
  start-page: 10
  year: 1979
  ident: 10.1016/j.reth.2023.09.014_bib36
  article-title: Bone tissue: composition and function
  publication-title: Johns Hopkins Med J
– volume: 370
  start-page: 333
  year: 2018
  ident: 10.1016/j.reth.2023.09.014_bib86
  article-title: Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2018.06.035
– volume: 18
  start-page: 905
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib54
  article-title: The combination of concentrated growth factor and adipose-derived stem cell sheet repairs skull defects in rats
  publication-title: Tissue Eng Regen Med
  doi: 10.1007/s13770-021-00371-y
– volume: 367
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib25
  article-title: The biology, function, and biomedical applications of exosomes
  publication-title: Science
  doi: 10.1126/science.aau6977
– volume: 47
  start-page: 1722
  year: 2019
  ident: 10.1016/j.reth.2023.09.014_bib34
  article-title: Single-cell profiles and clinically useful properties of human mesenchymal stem cells of adipose and bone marrow origin
  publication-title: Am J Sports Med
  doi: 10.1177/0363546519848678
– volume: 10
  start-page: 95
  year: 2019
  ident: 10.1016/j.reth.2023.09.014_bib161
  article-title: Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-019-1177-1
– volume: 8
  start-page: 94
  year: 2017
  ident: 10.1016/j.reth.2023.09.014_bib51
  article-title: The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-017-0558-6
– volume: 8
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib91
  article-title: Adipose-derived stem cells improve grafted burn wound healing by promoting wound bed blood flow
  publication-title: Burns & Trauma
  doi: 10.1093/burnst/tkaa009
– volume: 94
  start-page: 678
  year: 2004
  ident: 10.1016/j.reth.2023.09.014_bib66
  article-title: Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms
  publication-title: Circ Res
  doi: 10.1161/01.RES.0000118601.37875.AC
– volume: 8
  start-page: e2953
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib155
  article-title: Effect of systemic adipose-derived stem cell therapy on functional nerve regeneration in a rodent model
  publication-title: Plast Reconstr Surg Glob Open
  doi: 10.1097/GOX.0000000000002953
– volume: 23
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib153
  article-title: Peripheral Nerve Injury Treatments and Advances: One Health Perspective
  publication-title: nt J Mol Sci
– volume: 238
  start-page: 659
  year: 2023
  ident: 10.1016/j.reth.2023.09.014_bib13
  article-title: ADSCs-exo attenuates hepatic ischemia-reperfusion injury after hepatectomy by inhibiting endoplasmic reticulum stress and inflammation
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.30968
– volume: 1750
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib128
  article-title: Adipose-derived stem cell transplantation improves learning and memory via releasing neurotrophins in rat model of temporal lobe epilepsy
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2020.147121
– volume: 323
  start-page: 20
  year: 2010
  ident: 10.1016/j.reth.2023.09.014_bib10
  article-title: The development and endocrine functions of adipose tissue
  publication-title: Mol Cell Endocrinol
  doi: 10.1016/j.mce.2009.12.011
– volume: 24
  year: 2019
  ident: 10.1016/j.reth.2023.09.014_bib94
  article-title: Skin tears: prevention and management
  publication-title: Br J Community Nurs
  doi: 10.12968/bjcn.2019.24.Sup9.S12
– volume: 10
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib48
  article-title: Study on exosomes promoting the osteogenic differentiation of ADSCs in graphene porous titanium alloy scaffolds
  publication-title: Front Bioeng Biotechnol
– volume: 463
  start-page: 67
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib118
  article-title: Adipose-derived stem cell-conditioned medium protects fibroblasts at different senescent degrees from UVB irradiation damages
  publication-title: Mol Cell Biochem
  doi: 10.1007/s11010-019-03630-8
– volume: 235
  start-page: 8371
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib45
  article-title: Adipose-derived stem cells: an appropriate selection for osteogenic differentiation
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.29681
– volume: 85
  start-page: 575
  year: 2019
  ident: 10.1016/j.reth.2023.09.014_bib124
  article-title: Cell-Enhanced acellular nerve allografts for peripheral nerve reconstruction: a systematic review and a meta-analysis of the literature
  publication-title: Neurosurgery
  doi: 10.1093/neuros/nyy374
– volume: 176
  start-page: 1248
  year: 2019
  ident: 10.1016/j.reth.2023.09.014_bib19
  article-title: VEGF in signaling and disease: beyond discovery and development
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.021
– volume: 101
  start-page: 1254
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib85
  article-title: Adipose mesenchymal stem cell-derived exosomes accelerate skin wound healing via the lncRNA H19/miR-19b/SOX9 axis
  publication-title: Lab Invest
  doi: 10.1038/s41374-021-00611-8
– volume: 15
  start-page: 1399
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib154
  article-title: Human platelet lysate stimulated adipose stem cells exhibit strong neurotrophic potency for nerve tissue engineering applications
  publication-title: Regen Med
  doi: 10.2217/rme-2020-0031
– volume: 23
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib80
  article-title: Sources, selection, and microenvironmental preconditioning of cells for urethral tissue engineering
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms232214074
– volume: 40
  start-page: 373
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib144
  article-title: Utility of Schwann/2E and Sox10 in distinguishing CD57-negative olfactory groove schwannoma from olfactory ensheathing cell tumor: a case report and review of the literature
  publication-title: Neuropathology
  doi: 10.1111/neup.12650
– volume: 13
  start-page: 19
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib115
  article-title: Engineered adipose-derived stem cells with IGF-1-modified mRNA ameliorates osteoarthritis development
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-021-02695-x
– volume: 152
  year: 2019
  ident: 10.1016/j.reth.2023.09.014_bib27
  article-title: Nuclear action of FGF members in endocrine-related tissues and cancer: interplay with steroid receptor pathways
  publication-title: Steroids
  doi: 10.1016/j.steroids.2019.108492
– volume: 153
  start-page: 28
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib81
  article-title: Silk fibroin for skin injury repair: where do things stand?
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2019.09.003
– volume: 11
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib107
  article-title: Enhanced cellular engraftment of adipose-derived mesenchymal stem cell spheroids by using nanosheets as scaffolds
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-93642-6
– volume: 17
  start-page: 523
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib8
  article-title: Effect of breast cancer and adjuvant therapy on adipose-derived stromal cells: implications for the role of ADSCs in regenerative strategies for breast reconstruction
  publication-title: Stem Cell Rev Rep
  doi: 10.1007/s12015-020-10038-1
– volume: 29
  start-page: 301
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib33
  article-title: [Research advance of on the support effect of adipose tissue-derived stem cell on hematopoietic stem/progenitor cell--review]
  publication-title: Zhongguo Shi Yan Xue Ye Xue Za Zhi
– volume: 23
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib156
  article-title: Adipose tissue uses in peripheral nerve surgery
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms23020644
– volume: 12
  start-page: 10264
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib17
  article-title: VAP-PLGA microspheres (VAP-PLGA) promote adipose-derived stem cells (ADSCs)-induced wound healing in chronic skin ulcers in mice via PI3K/Akt/HIF-1α pathway
  publication-title: Bioengineered
  doi: 10.1080/21655979.2021.1990193
– volume: 9
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib110
  article-title: Schwann cell role in selectivity of nerve regeneration
  publication-title: Cells
  doi: 10.3390/cells9092131
– volume: 42
  start-page: 323
  year: 2014
  ident: 10.1016/j.reth.2023.09.014_bib35
  article-title: Biomaterials for tissue engineering
  publication-title: Ann Biomed Eng
– volume: 149
  start-page: 395
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib122
  article-title: Use of erythropoietin and fibrin glue mixture for peripheral nerve repair
  publication-title: Plast Reconstr Surg
  doi: 10.1097/PRS.0000000000008796
– volume: 2020
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib9
  article-title: Adipose-derived stem cells: current applications and future directions in the regeneration of multiple tissues
  publication-title: Stem Cell Int
– volume: 68
  start-page: 2725
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib145
  article-title: Schwann cell p75 neurotrophin receptor modulates small fiber degeneration in diabetic neuropathy
  publication-title: Glia
  doi: 10.1002/glia.23881
– volume: 327
  start-page: 121785
  year: 2023
  ident: 10.1016/j.reth.2023.09.014_bib32
  article-title: A comprehensive review on therapeutic application of mesenchymal stem cells in neuroregeneration
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2023.121785
– volume: 20
  start-page: 153
  year: 2019
  ident: 10.1016/j.reth.2023.09.014_bib114
  article-title: Adipose-derived mesenchymal stem cell exosomes: a novel pathway for tissues repair
  publication-title: Cell Tissue Bank
  doi: 10.1007/s10561-019-09761-y
– volume: 18
  start-page: 138
  year: 2016
  ident: 10.1016/j.reth.2023.09.014_bib100
  article-title: The efficacy of conditioned media of adipose-derived stem cells combined with ablative carbon dioxide fractional resurfacing for atrophic acne scars and skin rejuvenation
  publication-title: J Cosmet Laser Ther
  doi: 10.3109/14764172.2015.1114638
– volume: 7
  year: 2018
  ident: 10.1016/j.reth.2023.09.014_bib134
  article-title: FRMD8 promotes inflammatory and growth factor signalling by stabilising the iRhom/ADAM17 sheddase complex
  publication-title: Elife
  doi: 10.7554/eLife.35012
– volume: 21
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib79
  article-title: New insight into natural extracellular matrix: genipin cross-linked adipose-derived stem cell extracellular matrix gel for tissue engineering
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21144864
– volume: 29
  start-page: 1026
  year: 2018
  ident: 10.1016/j.reth.2023.09.014_bib120
  article-title: Surface modification of PHBV nanofiber mats for rapid cell cultivation and harvesting
  publication-title: J Biomater Sci Polym Ed
  doi: 10.1080/09205063.2017.1414481
– volume: 9
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib130
  article-title: Modulation of human adipose stem cells' neurotrophic capacity using a variety of growth factors for neural tissue engineering applications: axonal growth, transcriptional, and phosphoproteomic analyses in vitro
  publication-title: Cells
  doi: 10.3390/cells9091939
– volume: 234
  start-page: 10315
  year: 2019
  ident: 10.1016/j.reth.2023.09.014_bib42
  article-title: Adipose-derived stem cells-conditioned medium improved osteogenic differentiation of induced pluripotent stem cells when grown on polycaprolactone nanofibers
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.27697
– volume: 24
  start-page: 7460
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib146
  article-title: Down-regulation of long non-coding RNA MEG3 promotes Schwann cell proliferation and migration and repairs sciatic nerve injury in rats
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.15368
– volume: 9
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib30
  article-title: Adipose-derived stem cell: "treat or trick"
  publication-title: Biomedicines
  doi: 10.3390/biomedicines9111624
– volume: 10
  start-page: 825146
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib135
  article-title: Hypocapnia stimuli-responsive engineered exosomes delivering miR-218 facilitate sciatic nerve regeneration
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2022.825146
– volume: 13
  start-page: 521
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib20
  article-title: Correlation of nuclear pIGF-1R/IGF-1R and YAP/TAZ in a tissue microarray with outcomes in osteosarcoma patients
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.28215
– volume: 12
  start-page: 473
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib11
  article-title: Age-related alteration in characteristics, function, and transcription features of ADSCs
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-021-02509-0
– volume: 7
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib139
  article-title: Ex-vivo stimulation of adipose stem cells by growth factors and fibrin-hydrogel assisted delivery strategies for treating nerve gap-injuries
  publication-title: Bioengineering
  doi: 10.3390/bioengineering7020042
– volume: 11
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib24
  article-title: Therapeutic applications of adipose cell-free derivatives: a review
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-020-01831-3
– volume: 31
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib158
  article-title: Newly generated 3D schwann-like cell spheroids from human adipose-derived stem cells using a modified protocol
  publication-title: Cell Transplant
  doi: 10.1177/09636897221093312
– volume: 22
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib117
  article-title: Adipose-derived stem cells and their derived microvesicles ameliorate detrusor overactivity secondary to bilateral partial iliac arterial occlusion-induced bladder ischemia
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22137000
– start-page: 217
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib15
  article-title: Historical overview of the interleukin-6 family cytokine
  publication-title: J Exp Med
– volume: 180
  start-page: 143
  year: 2018
  ident: 10.1016/j.reth.2023.09.014_bib53
  article-title: Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.07.017
– volume: 86
  start-page: 280
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib14
  article-title: The IL-1 family in tumorigenesis and antitumor immunity
  publication-title: Semin Cancer Biol
  doi: 10.1016/j.semcancer.2022.05.002
– volume: 50
  start-page: 1
  year: 2018
  ident: 10.1016/j.reth.2023.09.014_bib90
  article-title: Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model
  publication-title: Exp Mol Med
– volume: 318
  start-page: 216
  year: 2019
  ident: 10.1016/j.reth.2023.09.014_bib125
  article-title: The accumulation of T cells within acellular nerve allografts is length-dependent and critical for nerve regeneration
  publication-title: Exp Neurol
  doi: 10.1016/j.expneurol.2019.05.009
– volume: 22
  start-page: 107
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib92
  article-title: Roles of exosomes from mesenchymal stem cells in treating osteoarthritis
  publication-title: Cell Reprogr
  doi: 10.1089/cell.2019.0098
– volume: 2021
  start-page: 8307797
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib150
  article-title: ALK5 i II accelerates induction of adipose-derived stem cells toward schwann cells through a non-smad signaling pathway
  publication-title: Stem Cell Int
– volume: 24
  start-page: 12408
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib38
  article-title: Liraglutide regulates proliferation, differentiation, and apoptosis of preosteoblasts through a signaling network of Notch/Wnt/Hedgehog signaling pathways
  publication-title: Eur Rev Med Pharmacol Sci
– volume: 43
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib82
  article-title: Nitric oxide-releasing supramolecular cellulose nanocrystal/silsesquioxane foams
  publication-title: Macromol Rapid Commun
  doi: 10.1002/marc.202100930
– volume: 15
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib40
  article-title: Axial mechanical loading to ex vivo mouse long bone regulates endochondral ossification and endosteal mineralization through activation of the BMP-Smad pathway during postnatal growth
  publication-title: BoneKEy Rep
– volume: 108
  start-page: 1760
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib57
  article-title: Sustained release of stromal cell-derived factor-1 alpha from silk fibroin microfiber promotes urethral reconstruction in rabbits
  publication-title: J Biomed Mater Res
  doi: 10.1002/jbm.a.36943
– volume: 26
  start-page: 518
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib143
  article-title: Activated Schwann cells and increased inflammatory cytokines IL-1β, IL-6, and TNF-α in patients' sural nerve are lack of tight relationship with specific sensory disturbances in Parkinson's disease
  publication-title: CNS Ne-urosci Ther
  doi: 10.1111/cns.13282
– volume: 377
  start-page: 1175
  year: 2011
  ident: 10.1016/j.reth.2023.09.014_bib83
  article-title: Tissue-engineered autologous urethras for patients who need reconstruction: an observational study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)62354-9
– volume: 104
  start-page: 305
  year: 2016
  ident: 10.1016/j.reth.2023.09.014_bib106
  article-title: Preparation and characterization of directed, one-day-self-assembled millimeter-size spheroids of adipose-derived mesenchymal stem cells
  publication-title: J Biomed Mater Res
  doi: 10.1002/jbm.a.35568
– year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib41
  article-title: Stem cell spheroid engineering with osteoinductive and ROS scavenging nanofibers for bone regeneration
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/abd56c
– volume: 94
  start-page: 748
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib75
  article-title: Renal-on-Chip microfluidic platform with a force-sensitive resistor (ROC-FS) for molecular pathogenesis analysis of hydronephrosis
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.1c03155
– volume: 8
  start-page: 94
  year: 2017
  ident: 10.1016/j.reth.2023.09.014_bib164
  article-title: The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-017-0558-6
– volume: 122
  start-page: 5604
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib1
  article-title: Supramolecular adhesive hydrogels for tissue engineering applications
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.1c00815
– volume: 68
  start-page: 837
  year: 2019
  ident: 10.1016/j.reth.2023.09.014_bib98
  article-title: Potential of allogeneic adipose-derived stem cell-hydrogel complex for treating diabetic foot ulcers
  publication-title: Diabetes
  doi: 10.2337/db18-0699
– volume: 24
  start-page: 9590
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib88
  article-title: Extracellular vesicle-enclosed miR-486-5p mediates wound healing with adipose-derived stem cells by promoting angiogenesis
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.15387
– volume: 12
  start-page: 442
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib132
  article-title: Biomimetic nerve guidance conduit containing engineered exosomes of adipose-derived stem cells promotes peripheral nerve regeneration
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-021-02528-x
– volume: 1826
  start-page: 209
  year: 2012
  ident: 10.1016/j.reth.2023.09.014_bib22
  article-title: Adipose tissue cells, lipotransfer and cancer: a challenge for scientists, oncologists and surgeons
  publication-title: Biochim Biophys Acta
– volume: 33
  start-page: 1685
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib113
  article-title: Nonwoven spidroin materials as scaffolds for ex vivo cultivation of aortic fragments and dorsal root ganglia
  publication-title: J Biomater Sci Polym Ed
  doi: 10.1080/09205063.2022.2073426
– volume: 2019
  year: 2019
  ident: 10.1016/j.reth.2023.09.014_bib61
  article-title: A comprehensive review emphasizing anatomy, etiology, diagnosis, and treatment of male urethral stricture disease
  publication-title: BioMed Res Int
  doi: 10.1155/2019/9046430
– volume: 120
  start-page: 10847
  year: 2019
  ident: 10.1016/j.reth.2023.09.014_bib89
  article-title: Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β-catenin signaling in cutaneous wound healing
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.28376
– volume: 177
  start-page: 428
  year: 2019
  ident: 10.1016/j.reth.2023.09.014_bib50
  article-title: Reassessment of exosome composition
  publication-title: Cell
  doi: 10.1016/j.cell.2019.02.029
– volume: 28
  start-page: 1463
  year: 2019
  ident: 10.1016/j.reth.2023.09.014_bib102
  article-title: Multiple injections of autologous adipose-derived stem cells accelerate the burn wound healing process and promote blood vessel regeneration in a rat model
  publication-title: Stem Cell Dev
  doi: 10.1089/scd.2019.0113
– year: 2023
  ident: 10.1016/j.reth.2023.09.014_bib165
  article-title: Extracellular vesicles derived from hypoxia treated human adipose stem cells increase proliferation and angiogenic differentiation in human adipose stem cells
  publication-title: Aesthetic Surg J
  doi: 10.1093/asj/sjad139
– volume: 19
  start-page: 826
  year: 2018
  ident: 10.1016/j.reth.2023.09.014_bib47
  article-title: Applications of metals for bone regeneration
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19030826
– volume: 9
  year: 2019
  ident: 10.1016/j.reth.2023.09.014_bib73
  article-title: Exosomes from adipose-derived stem cells (ADSCs) overexpressing miR-21 promote vascularization of endothelial cells
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-49339-y
– volume: 19
  start-page: 574
  year: 2020
  ident: 10.1016/j.reth.2023.09.014_bib87
  article-title: Prospective application of exosomes derived from adipose-derived stem cells in skin wound healing: a review
  publication-title: J Cosmet Dermatol
  doi: 10.1111/jocd.13215
– volume: 25
  start-page: 177
  year: 2017
  ident: 10.1016/j.reth.2023.09.014_bib95
  article-title: Regeneration of injured skin and peripheral nerves requires control of wound contraction, not scar formation
  publication-title: Wound Repair Regen
  doi: 10.1111/wrr.12516
– volume: 8
  year: 2016
  ident: 10.1016/j.reth.2023.09.014_bib18
  article-title: TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology
  publication-title: Cold Spring Harbor Perspect Biol
  doi: 10.1101/cshperspect.a021873
– volume: 13
  start-page: 448
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib160
  article-title: ADSCs stimulated by VEGF-C alleviate intestinal inflammation via dual mechanisms of enhancing lymphatic drainage by a VEGF-C/VEGFR-3-dependent mechanism and inhibiting the NF-κB pathway by the secretome
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-022-03132-3
– volume: 38
  year: 2022
  ident: 10.1016/j.reth.2023.09.014_bib69
  article-title: Macrophage IL-1β promotes arteriogenesis by autocrine STAT3- and NF-κB-mediated transcription of pro-angiogenic VEGF-A
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2022.110309
– volume: 10
  year: 2021
  ident: 10.1016/j.reth.2023.09.014_bib70
  article-title: The role of fibroblast growth factor (FGF) signaling in tissue repair and regeneration
  publication-title: Cells
  doi: 10.3390/cells10113242
SSID ssj0001851298
Score 2.3916583
SecondaryResourceType review_article
Snippet ADSCs are a large number of mesenchymal stem cells in Adipose tissue, which can be applied to tissue engineering. ADSCs have the potential of multi-directional...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 547
SubjectTerms ADSCs
Exosomes
Mechanism
Review
Tissue repair
Title Adipose stem cells in tissue regeneration and repair: from bench to bedside
URI https://dx.doi.org/10.1016/j.reth.2023.09.014
https://www.proquest.com/docview/2879406887
https://pubmed.ncbi.nlm.nih.gov/PMC10579872
https://doaj.org/article/e5c4ec9a942e4bdd92e09f00837668d8
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp15C2rRk0ySoUHopppYt69HbpnQJDS0UGshN6OXEpbEXr3PIv--M7A3rS3rpxRhJluWZETMjz3xDyPvotQC9IDNfezy6cSyzsc4z5iUrGAefwmHu8Pcf4vKaf7upbnZKfWFM2AgPPBLuU6w8hwmt5kXkLgRdxFzXaDlIIVRIab6g83acqXS6olCRqSlLZgzo6uOAfx-KMgGbMj7TRAmwf6aQdgzOebjkjv5ZHZKDyXCky3HBL8lebF-Ro2ULTvP9I_1AUyhnOiM_IlfL0Ky7TaSI0kzxbH5Dm5YOici0j7cJaxpZQm0boGFtm_4zXfXdPXUgtnd06OAmYCnP1-R69fXXl8tsqpqQeXAqh4y5PMTccsat9VZiDh0o5TI6pbwSDgySyEugUFTSCm9LAT3eM6sr6UJh6_IN2W-7Nh4TGkRlA8tdXcuc15pr5sGAtJoFUTvgxoKwLQWNnyDFsbLFH7ONHfttkOoGqW5ybYDqC_Lx6Zn1CKjx7OgLZMzTSATDTg0gImYSEfMvEVmQastWM9kVo70AUzXPvvzdVgYMbDrklm1j97Ax4GZqjuV65IKomXDMVjrvaZu7BN-NlZW1ksXJ__i2t-QFrngMsDkl-0P_EM_ATBrcedoRcL36qf4CvYITiw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adipose+stem+cells+in+tissue+regeneration+and+repair%3A+From+bench+to+bedside&rft.jtitle=Regenerative+therapy&rft.au=Lei+Dong&rft.au=Xiaoyu+Li&rft.au=Wenyuan+Leng&rft.au=Zhenke+Guo&rft.date=2023-12-01&rft.pub=Elsevier&rft.eissn=2352-3204&rft.volume=24&rft.spage=547&rft.epage=560&rft_id=info:doi/10.1016%2Fj.reth.2023.09.014&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e5c4ec9a942e4bdd92e09f00837668d8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-3204&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-3204&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-3204&client=summon