Hydroxyapatite/chemically reduced graphene oxide composite: Environment-friendly synthesis and high-performance electrochemical sensing for hydrazine

It is unexpectedly found that, the in-situ growth of hydroxyapatite (HAP) on graphene oxide (GO) under a moderate temperature (85°C) can effectively trigger the reduction of GO, which needs neither extra reducing agents nor high-temperature thermal treatment. The transmission electron microscope (TE...

Full description

Saved in:
Bibliographic Details
Published inBiosensors & bioelectronics Vol. 97; pp. 238 - 245
Main Authors Gao, Feng, Wang, Qingxiang, Gao, Ningning, Yang, Yizhen, Cai, Fuxian, Yamane, Mayoka, Gao, Fei, Tanaka, Hidekazu
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 15.11.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is unexpectedly found that, the in-situ growth of hydroxyapatite (HAP) on graphene oxide (GO) under a moderate temperature (85°C) can effectively trigger the reduction of GO, which needs neither extra reducing agents nor high-temperature thermal treatment. The transmission electron microscope (TEM) experiment demonstrates that the rod-like HAP particles are well attached on the surface of reduced GO (rGO) to form the composite. Electrochemical sensing assays show that the synthesized HAP-rGO nanocomposite presents excellent electrocatalytic capacity for the oxidation of a toxic chemical of hydrazine. When the HAP-rGO modified electrode was utilized as an electrochemical sensor for hydrazine detection, outstanding performances in the indexes of low fabrication cost, short response time (~2s), wide linear range, low detection limit (0.43μM), and good selectivity were achieved. The developed sensor also shows satisfactory results for the detection of hydrazine in real industrial wastewater sample were achieved. •In-situ growth of hydroxyapatite (HAP) on graphene oxide (GO) trigger the direct reduction of GO.•HAP-rGO composite exhibits outstanding electrocatalysis for oxidation of hydrazine.•HAP-rGO modified electrode was utilized as an electrochemical sensor for hydrazine.•Wide linear range and low detection limit were achieved for hydrazine analysis.
AbstractList It is unexpectedly found that, the in-situ growth of hydroxyapatite (HAP) on graphene oxide (GO) under a moderate temperature (85°C) can effectively trigger the reduction of GO, which needs neither extra reducing agents nor high-temperature thermal treatment. The transmission electron microscope (TEM) experiment demonstrates that the rod-like HAP particles are well attached on the surface of reduced GO (rGO) to form the composite. Electrochemical sensing assays show that the synthesized HAP-rGO nanocomposite presents excellent electrocatalytic capacity for the oxidation of a toxic chemical of hydrazine. When the HAP-rGO modified electrode was utilized as an electrochemical sensor for hydrazine detection, outstanding performances in the indexes of low fabrication cost, short response time (~2s), wide linear range, low detection limit (0.43μM), and good selectivity were achieved. The developed sensor also shows satisfactory results for the detection of hydrazine in real industrial wastewater sample were achieved.
It is unexpectedly found that, the in-situ growth of hydroxyapatite (HAP) on graphene oxide (GO) under a moderate temperature (85°C) can effectively trigger the reduction of GO, which needs neither extra reducing agents nor high-temperature thermal treatment. The transmission electron microscope (TEM) experiment demonstrates that the rod-like HAP particles are well attached on the surface of reduced GO (rGO) to form the composite. Electrochemical sensing assays show that the synthesized HAP-rGO nanocomposite presents excellent electrocatalytic capacity for the oxidation of a toxic chemical of hydrazine. When the HAP-rGO modified electrode was utilized as an electrochemical sensor for hydrazine detection, outstanding performances in the indexes of low fabrication cost, short response time (~2s), wide linear range, low detection limit (0.43μM), and good selectivity were achieved. The developed sensor also shows satisfactory results for the detection of hydrazine in real industrial wastewater sample were achieved.It is unexpectedly found that, the in-situ growth of hydroxyapatite (HAP) on graphene oxide (GO) under a moderate temperature (85°C) can effectively trigger the reduction of GO, which needs neither extra reducing agents nor high-temperature thermal treatment. The transmission electron microscope (TEM) experiment demonstrates that the rod-like HAP particles are well attached on the surface of reduced GO (rGO) to form the composite. Electrochemical sensing assays show that the synthesized HAP-rGO nanocomposite presents excellent electrocatalytic capacity for the oxidation of a toxic chemical of hydrazine. When the HAP-rGO modified electrode was utilized as an electrochemical sensor for hydrazine detection, outstanding performances in the indexes of low fabrication cost, short response time (~2s), wide linear range, low detection limit (0.43μM), and good selectivity were achieved. The developed sensor also shows satisfactory results for the detection of hydrazine in real industrial wastewater sample were achieved.
It is unexpectedly found that, the in-situ growth of hydroxyapatite (HAP) on graphene oxide (GO) under a moderate temperature (85°C) can effectively trigger the reduction of GO, which needs neither extra reducing agents nor high-temperature thermal treatment. The transmission electron microscope (TEM) experiment demonstrates that the rod-like HAP particles are well attached on the surface of reduced GO (rGO) to form the composite. Electrochemical sensing assays show that the synthesized HAP-rGO nanocomposite presents excellent electrocatalytic capacity for the oxidation of a toxic chemical of hydrazine. When the HAP-rGO modified electrode was utilized as an electrochemical sensor for hydrazine detection, outstanding performances in the indexes of low fabrication cost, short response time (~2s), wide linear range, low detection limit (0.43μM), and good selectivity were achieved. The developed sensor also shows satisfactory results for the detection of hydrazine in real industrial wastewater sample were achieved. •In-situ growth of hydroxyapatite (HAP) on graphene oxide (GO) trigger the direct reduction of GO.•HAP-rGO composite exhibits outstanding electrocatalysis for oxidation of hydrazine.•HAP-rGO modified electrode was utilized as an electrochemical sensor for hydrazine.•Wide linear range and low detection limit were achieved for hydrazine analysis.
Author Yang, Yizhen
Gao, Fei
Gao, Ningning
Gao, Feng
Cai, Fuxian
Wang, Qingxiang
Tanaka, Hidekazu
Yamane, Mayoka
Author_xml – sequence: 1
  givenname: Feng
  surname: Gao
  fullname: Gao, Feng
  organization: College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
– sequence: 2
  givenname: Qingxiang
  surname: Wang
  fullname: Wang, Qingxiang
  email: axiang236@126.com
  organization: College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
– sequence: 3
  givenname: Ningning
  surname: Gao
  fullname: Gao, Ningning
  organization: College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
– sequence: 4
  givenname: Yizhen
  surname: Yang
  fullname: Yang, Yizhen
  organization: College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
– sequence: 5
  givenname: Fuxian
  surname: Cai
  fullname: Cai, Fuxian
  organization: College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
– sequence: 6
  givenname: Mayoka
  surname: Yamane
  fullname: Yamane, Mayoka
  organization: Department of Chemistry, Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
– sequence: 7
  givenname: Fei
  surname: Gao
  fullname: Gao, Fei
  organization: College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
– sequence: 8
  givenname: Hidekazu
  surname: Tanaka
  fullname: Tanaka, Hidekazu
  email: hidekazu@riko.shimane-u.ac.jp
  organization: Department of Chemistry, Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
BackLink https://cir.nii.ac.jp/crid/1874242817959204352$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/28601789$$D View this record in MEDLINE/PubMed
BookMark eNqFkr1uFDEUhS0URDaBF6BALihoZnPt8fwY0aAoIUiRaKC2vPadHa9m7MGejbK8B-8bjzbbUITGbr5zz9U594Kc-eCRkPcM1gxYfbVbb1xIaw6sWUO9BqhekRVrm7IQvKzOyApkVRdVXZfn5CKlHQA0TMIbcs7bOotauSJ_7w42hseDnvTsZrwyPY7O6GE40Ih2b9DSbdRTjx5peHQWqQnjFFJmP9Mb_-Bi8CP6ueiiQ2-zLB383GNyiWpvae-2fTFh7EIctTdIcUAzx3DyoQl9cn5LM0D7vIv-4zy-Ja87PSR89_xfkl-3Nz-v74r7H9--X3-9L0zFy7lgmqFopOSVbiRjGmzdMNMxzuTGCgYoNm1phEFmQUphQAjERtTQoTVCsPKSfDrOnWL4vcc0q9Elg8OgPYZ9UjxHJlrgXP4XzcG2jax4wzP64Rndb0a0aopu1PGgTqlnoD0CJoaUInbKuDnnH_wctRsUA7UUrHZqKVgtBSuoVS44S_k_0tP0F0UfjyLvXLZa3nwmggvesryz5CDKatn7yxHDHPmDw6iSyaXmG3Axl6ZscC-5PAHRxMyq
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2021_02_024
crossref_primary_10_1039_D0TB02063J
crossref_primary_10_1021_acsanm_1c01845
crossref_primary_10_1039_D4RA06525E
crossref_primary_10_1016_j_dyepig_2018_07_057
crossref_primary_10_3390_nano9101435
crossref_primary_10_1016_j_saa_2018_01_033
crossref_primary_10_1016_j_jcis_2019_04_063
crossref_primary_10_1016_j_ab_2017_10_018
crossref_primary_10_1016_j_ceramint_2018_12_002
crossref_primary_10_1021_acs_iecr_9b04413
crossref_primary_10_1007_s12010_023_04785_3
crossref_primary_10_1039_C8CS00417J
crossref_primary_10_1002_slct_202204585
crossref_primary_10_1016_j_matpr_2020_04_861
crossref_primary_10_1021_acsanm_0c01322
crossref_primary_10_1016_j_jtice_2019_06_004
crossref_primary_10_1016_j_aca_2018_03_064
crossref_primary_10_1016_j_microc_2021_106521
crossref_primary_10_1149_2162_8777_ad586a
crossref_primary_10_1016_j_solidstatesciences_2019_106067
crossref_primary_10_1016_j_colsurfa_2023_131780
crossref_primary_10_1016_j_aac_2022_08_003
crossref_primary_10_31590_ejosat_932703
crossref_primary_10_1016_j_jelechem_2018_01_038
crossref_primary_10_1039_C8RA03049A
crossref_primary_10_1007_s10008_020_04856_z
crossref_primary_10_1016_j_jece_2022_107458
crossref_primary_10_1016_j_talanta_2024_127036
crossref_primary_10_1016_j_jhazmat_2019_120983
crossref_primary_10_1007_s00604_019_3853_3
crossref_primary_10_1016_j_matchemphys_2025_130536
crossref_primary_10_1016_j_jcis_2021_08_154
crossref_primary_10_1016_j_apsusc_2020_145518
crossref_primary_10_3390_nano9091201
crossref_primary_10_1007_s41779_019_00307_9
crossref_primary_10_1149_1945_7111_ad7325
crossref_primary_10_1007_s00604_019_3650_z
crossref_primary_10_1002_bio_3505
crossref_primary_10_1016_j_microc_2022_107586
crossref_primary_10_1016_j_mtcomm_2022_104870
crossref_primary_10_20964_2018_08_77
crossref_primary_10_1016_j_snb_2019_01_105
crossref_primary_10_1021_acsomega_9b02151
crossref_primary_10_1080_03067319_2024_2351193
crossref_primary_10_1039_D1NJ03569J
crossref_primary_10_1080_21691401_2019_1637883
crossref_primary_10_1039_C8NJ02134A
crossref_primary_10_1016_j_saa_2020_118075
crossref_primary_10_1149_2_0531915jes
crossref_primary_10_1177_08853282211067646
crossref_primary_10_1016_j_bios_2019_111927
crossref_primary_10_1016_j_jelechem_2017_12_003
crossref_primary_10_1016_j_surfin_2023_103535
crossref_primary_10_1021_acsanm_3c00951
crossref_primary_10_1021_acs_iecr_3c02669
crossref_primary_10_1021_acsomega_9b01487
crossref_primary_10_1039_D1NJ02661E
crossref_primary_10_1016_j_saa_2022_121406
crossref_primary_10_1088_2053_1591_aae29c
crossref_primary_10_1021_acs_jpclett_1c01955
crossref_primary_10_3390_ma15124262
crossref_primary_10_1016_j_saa_2021_119510
crossref_primary_10_1016_j_aca_2020_08_032
crossref_primary_10_1016_j_apsusc_2020_145396
crossref_primary_10_1039_D0MH01358G
crossref_primary_10_1039_D0TA08078K
crossref_primary_10_3390_coatings12040420
crossref_primary_10_1142_S1793292023500935
crossref_primary_10_1002_er_6597
crossref_primary_10_1002_app_52866
crossref_primary_10_1016_j_electacta_2020_136611
crossref_primary_10_1016_j_jare_2021_03_009
Cites_doi 10.1021/acsami.5b04427
10.1016/j.colsurfb.2007.02.014
10.1016/j.nanoen.2015.07.014
10.1021/jp710931h
10.1007/s13361-011-0231-8
10.1166/jnn.2015.9731
10.1016/S0022-0728(02)01480-8
10.1016/j.jelechem.2016.10.010
10.1016/j.msec.2013.10.024
10.1016/j.apsusc.2016.02.013
10.1016/j.carbon.2009.11.037
10.1039/B711215G
10.1021/jp200580u
10.1021/acsami.5b10234
10.1039/c3tb00531c
10.1016/j.apcatb.2010.05.005
10.1021/cm902635j
10.1016/j.snb.2013.06.095
10.1016/j.talanta.2011.07.089
10.1039/an9881301481
10.1021/acsami.5b07757
10.1021/tx0498915
10.1016/j.biomaterials.2016.04.006
10.1038/srep23238
10.1039/C2CS35335K
10.1016/S1872-2067(15)61046-4
10.1016/j.jelechem.2016.05.032
10.1126/science.1102896
10.1002/ange.201406281
10.1021/jp107131v
10.1021/jp507227z
10.1016/j.ccr.2012.04.007
10.1016/j.snb.2013.06.020
10.1021/acsami.6b02790
10.1002/celc.201500487
10.1021/jp2102226
10.1039/C5AY02617B
10.1038/nnano.2007.451
10.1016/j.snb.2015.09.016
10.1016/j.matlet.2015.09.089
10.1021/cm300382b
10.1016/j.apt.2016.02.016
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bios.2017.06.005
DatabaseName CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1873-4235
EndPage 245
ExternalDocumentID 28601789
10_1016_j_bios_2017_06_005
S0956566317303792
Genre Evaluation Studies
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LX3
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SST
SSU
SSZ
T5K
TN5
XPP
Y6R
YK3
ZMT
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGCQF
AGRNS
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
RYH
SSH
.HR
53G
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFFNX
AFJKZ
AGQPQ
AGRDE
AHHHB
AIGII
AJQLL
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLW
HMU
HVGLF
HZ~
R2-
SBG
SCB
SCH
SEW
WUQ
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c523t-1a1e479925a7911a0d671cf1219bd410e4b83c4ce1d0994c044ee7460fedc4413
IEDL.DBID .~1
ISSN 0956-5663
1873-4235
IngestDate Thu Jul 10 18:16:18 EDT 2025
Fri Jul 11 06:25:59 EDT 2025
Mon Jul 21 06:02:36 EDT 2025
Tue Jul 01 02:51:28 EDT 2025
Thu Apr 24 23:11:50 EDT 2025
Thu Jun 26 22:17:33 EDT 2025
Fri Feb 23 02:27:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Chemically-reduced
Hydroxyapatite
In-situ growth
Graphene oxide
Hydrazine sensor
Modified electrode
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c523t-1a1e479925a7911a0d671cf1219bd410e4b83c4ce1d0994c044ee7460fedc4413
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 28601789
PQID 1908795272
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2000480229
proquest_miscellaneous_1908795272
pubmed_primary_28601789
crossref_citationtrail_10_1016_j_bios_2017_06_005
crossref_primary_10_1016_j_bios_2017_06_005
nii_cinii_1874242817959204352
elsevier_sciencedirect_doi_10_1016_j_bios_2017_06_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-15
PublicationDateYYYYMMDD 2017-11-15
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biosensors & bioelectronics
PublicationTitleAlternate Biosens Bioelectron
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Socrates, Sakthivel, Rajaram, Ramamoorthy, Kalkura (bib35) 2015; 161
Wang, Yang, Park, Gou, Wang, Liu, Yao (bib40) 2008; 112
Kalluru, Vankayala, Chiang, Hwang (bib18) 2016; 95
Chen, Yan, Bangal (bib7) 2010; 114
Zhai, Zhang, Li, Xu, Tang (bib42) 2016; 8
Gao, Cai, Wang, Gao, Liu, Gao, Wang (bib12) 2013; 186
Zhu, Sigdel, Zhang, Su, Xi, Li, Sun (bib44) 2014; 126
Kanchana, Radhakrishnan, Navaneethan, Arivanandhan, Hayakawa, Sekar (bib19) 2015; 15
Chen, Yan, Bangal (bib6) 2010; 48
Gao, Liu, Liu, Ma, Wang, Zhang (bib15) 2010; 22
Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (bib29) 2004; 306
Umar, Kansal, Mehta (bib37) 2013; 188
Umar, Rahman, Kim, Hahn (bib38) 2008; 2
Pournaghi–Azar, Sabzi (bib31) 2003; 543
Gao, Gao, Nishitani, Tanaka (bib14) 2016; 775
Liu, Huang, Li (bib25) 2013; 1
Benvidi, r Jahanbani, Mirjalili, Zare (bib4) 2016; 37
Bard, A.J., Faulkner, L.R., 2001. Wiley, New York, 28-26.
Ciobanu, Ilisei, Luca (bib8) 2014; 35
Mehta, Umar (bib27) 2011; 85
Ghorai, Mondal, Bhattacharya, Patra (bib39) 2015; 7
Garrod, Bollard, Nicholls, Connor, Connelly, Nicholson, Holmes (bib16) 2005; 18
Amlathe, Gupta (bib2) 1988; 113
Qiu, Wang, Liang, Xia, Yu (bib32) 2011; 115
Kumar, Shanmugam, Vishnu, Pillai, Kamaraj (bib21) 2016; 782
Li, Muller, Gilje, Kaner, Wallace (bib22) 2008; 3
Dubacheva, Liang, Bassani (bib10) 2012; 256
Serov, Kwak (bib34) 2010; 98
Liu, Li, Liu, Deng, Zhang (bib26) 2011; 22
Olejnik, Świetlikowska, Gniadek, Pałys (bib30) 2014; 118
Wu, Zhou, Wang, Umar (bib41) 2016; 224
Kandori, Tsuyama, Tanaka, Ishikawa (bib20) 2007; 58
Zhao, Wang, Wang, Han, Xu (bib43) 2016; 369
Ambrosi, Chua, Bonanni, Pumera (bib1) 2012; 24
Li, Jiang, Zhao, Zhang (bib23) 2015; 16
Jariwala, Sangwan, Lauhon, Marks, Hersam (bib17) 2013; 42
Safavi, Abbaspour, Sorouri, Mohammadi (bib33) 2016; 3
Stebunov, Aftenieva, Arsenin, Volkov (bib36) 2015; 7
Nasrollahi, Varshosaz, Khodadadi, Lim, Najafabadi (bib28) 2016; 8
Liu, Xi, Xie, Shi, Hou, Huang, Chen, Zeng, Shao, Wang (bib24) 2012; 116
Du, Li, Ouyang (bib9) 2015; 7
Funao, Nagai, Sasaki, Hoshikawa, Tsuji, Okada, Koyasu, Toyama, Nakamura, Aizawa, Matsumoto, Ishii (bib11) 2016; 6
Gao, Chen, Tanaka, Nishitani, Wang (bib13) 2016; 27
Brodie (bib5) 1860; 59
Benvidi (10.1016/j.bios.2017.06.005_bib4) 2016; 37
Jariwala (10.1016/j.bios.2017.06.005_bib17) 2013; 42
Ghorai (10.1016/j.bios.2017.06.005_bib39) 2015; 7
Umar (10.1016/j.bios.2017.06.005_bib37) 2013; 188
Ambrosi (10.1016/j.bios.2017.06.005_bib1) 2012; 24
Umar (10.1016/j.bios.2017.06.005_bib38) 2008; 2
Zhao (10.1016/j.bios.2017.06.005_bib43) 2016; 369
Qiu (10.1016/j.bios.2017.06.005_bib32) 2011; 115
Gao (10.1016/j.bios.2017.06.005_bib14) 2016; 775
Socrates (10.1016/j.bios.2017.06.005_bib35) 2015; 161
Garrod (10.1016/j.bios.2017.06.005_bib16) 2005; 18
Kanchana (10.1016/j.bios.2017.06.005_bib19) 2015; 15
Kumar (10.1016/j.bios.2017.06.005_bib21) 2016; 782
10.1016/j.bios.2017.06.005_bib3
Liu (10.1016/j.bios.2017.06.005_bib25) 2013; 1
Gao (10.1016/j.bios.2017.06.005_bib12) 2013; 186
Pournaghi–Azar (10.1016/j.bios.2017.06.005_bib31) 2003; 543
Kalluru (10.1016/j.bios.2017.06.005_bib18) 2016; 95
Ciobanu (10.1016/j.bios.2017.06.005_bib8) 2014; 35
Li (10.1016/j.bios.2017.06.005_bib23) 2015; 16
Safavi (10.1016/j.bios.2017.06.005_bib33) 2016; 3
Chen (10.1016/j.bios.2017.06.005_bib7) 2010; 114
Dubacheva (10.1016/j.bios.2017.06.005_bib10) 2012; 256
Liu (10.1016/j.bios.2017.06.005_bib26) 2011; 22
Olejnik (10.1016/j.bios.2017.06.005_bib30) 2014; 118
Kandori (10.1016/j.bios.2017.06.005_bib20) 2007; 58
Zhu (10.1016/j.bios.2017.06.005_bib44) 2014; 126
Novoselov (10.1016/j.bios.2017.06.005_bib29) 2004; 306
Liu (10.1016/j.bios.2017.06.005_bib24) 2012; 116
Nasrollahi (10.1016/j.bios.2017.06.005_bib28) 2016; 8
Chen (10.1016/j.bios.2017.06.005_bib6) 2010; 48
Li (10.1016/j.bios.2017.06.005_bib22) 2008; 3
Gao (10.1016/j.bios.2017.06.005_bib13) 2016; 27
Zhai (10.1016/j.bios.2017.06.005_bib42) 2016; 8
Serov (10.1016/j.bios.2017.06.005_bib34) 2010; 98
Mehta (10.1016/j.bios.2017.06.005_bib27) 2011; 85
Brodie (10.1016/j.bios.2017.06.005_bib5) 1860; 59
Amlathe (10.1016/j.bios.2017.06.005_bib2) 1988; 113
Stebunov (10.1016/j.bios.2017.06.005_bib36) 2015; 7
Du (10.1016/j.bios.2017.06.005_bib9) 2015; 7
Wu (10.1016/j.bios.2017.06.005_bib41) 2016; 224
Wang (10.1016/j.bios.2017.06.005_bib40) 2008; 112
Gao (10.1016/j.bios.2017.06.005_bib15) 2010; 22
Funao (10.1016/j.bios.2017.06.005_bib11) 2016; 6
References_xml – volume: 115
  start-page: 15639
  year: 2011
  end-page: 15645
  ident: bib32
  publication-title: J. Phys. Chem. C
– volume: 116
  start-page: 3334
  year: 2012
  end-page: 3341
  ident: bib24
  publication-title: J. Phys. Chem. C
– volume: 114
  start-page: 19885
  year: 2010
  end-page: 19890
  ident: bib7
  publication-title: J. Phys. Chem. C
– volume: 15
  start-page: 1
  year: 2015
  end-page: 8
  ident: bib19
  publication-title: J. Nanosci. Nanotechnol.
– volume: 543
  start-page: 115
  year: 2003
  end-page: 125
  ident: bib31
  publication-title: J. Electroanal. Chem.
– volume: 8
  start-page: 13282
  year: 2016
  end-page: 13293
  ident: bib28
  publication-title: J. ACS Appl. Mater. Interface
– volume: 22
  start-page: 2213
  year: 2010
  end-page: 2218
  ident: bib15
  publication-title: Chem. Mater.
– volume: 161
  start-page: 759
  year: 2015
  end-page: 762
  ident: bib35
  publication-title: Mater. Lett.
– volume: 22
  start-page: 2188
  year: 2011
  end-page: 2198
  ident: bib26
  publication-title: J. Am. Soc. Mass. Spectr.
– volume: 7
  start-page: 21727
  year: 2015
  end-page: 21734
  ident: bib36
  publication-title: ACS Appl. Mater. Interfaces
– volume: 224
  start-page: 878
  year: 2016
  end-page: 884
  ident: bib41
  publication-title: Sens. Actuators B Chem.
– volume: 58
  start-page: 98
  year: 2007
  end-page: 104
  ident: bib20
  publication-title: Colloid Surf. B.
– volume: 2
  start-page: 166
  year: 2008
  end-page: 168
  ident: bib38
  publication-title: Chem. Commun.
– volume: 35
  start-page: 36
  year: 2014
  end-page: 42
  ident: bib8
  publication-title: Mater. Sci. Eng. C
– volume: 95
  start-page: 1
  year: 2016
  end-page: 10
  ident: bib18
  publication-title: Biomaterials
– volume: 188
  start-page: 372
  year: 2013
  end-page: 377
  ident: bib37
  publication-title: Sens. Actuators B: Chem.
– volume: 369
  start-page: 36
  year: 2016
  end-page: 42
  ident: bib43
  publication-title: Appl. Surf. Sci.
– volume: 118
  start-page: 29731
  year: 2014
  end-page: 29738
  ident: bib30
  publication-title: Phys. Chem. C
– volume: 27
  start-page: 921
  year: 2016
  end-page: 928
  ident: bib13
  publication-title: Adv. Powder Technol.
– volume: 256
  start-page: 2628
  year: 2012
  end-page: 2639
  ident: bib10
  publication-title: Coord. Chem. Rev.
– volume: 18
  start-page: 115
  year: 2005
  end-page: 122
  ident: bib16
  publication-title: Chem. Res. Toxicol.
– volume: 126
  start-page: 12716
  year: 2014
  end-page: 12720
  ident: bib44
  publication-title: Angew. Chem.
– reference: Bard, A.J., Faulkner, L.R., 2001. Wiley, New York, 28-26.
– volume: 24
  start-page: 2292
  year: 2012
  end-page: 2298
  ident: bib1
  publication-title: Chem. Mater.
– volume: 6
  start-page: 23238
  year: 2016
  ident: bib11
  publication-title: Sci. Rep.
– volume: 3
  start-page: 101
  year: 2008
  end-page: 105
  ident: bib22
  publication-title: Nat. Nanotechnol.
– volume: 112
  start-page: 8192
  year: 2008
  end-page: 8195
  ident: bib40
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 10385
  year: 2015
  end-page: 10393
  ident: bib39
  publication-title: Anal. Methods
– volume: 782
  start-page: 215
  year: 2016
  end-page: 224
  ident: bib21
  publication-title: J. Electroanal. Chem.
– volume: 186
  start-page: 380
  year: 2013
  end-page: 387
  ident: bib12
  publication-title: Sens. Actuators B: Chem.
– volume: 59
  start-page: 466
  year: 1860
  end-page: 472
  ident: bib5
  publication-title: Ann. Chim. Phys.
– volume: 113
  start-page: 1481
  year: 1988
  end-page: 1483
  ident: bib2
  publication-title: Analyst
– volume: 1
  start-page: 1826
  year: 2013
  end-page: 1834
  ident: bib25
  publication-title: J. Mater. Chem. B
– volume: 85
  start-page: 2411
  year: 2011
  end-page: 2416
  ident: bib27
  publication-title: Talanta
– volume: 42
  start-page: 2824
  year: 2013
  end-page: 2860
  ident: bib17
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 26952
  year: 2015
  end-page: 26958
  ident: bib9
  publication-title: ACS Appl. Mater. Interfaces
– volume: 775
  start-page: 212
  year: 2016
  end-page: 218
  ident: bib14
  publication-title: J. Electroanal. Chem.
– volume: 3
  start-page: 558
  year: 2016
  end-page: 564
  ident: bib33
  publication-title: ChemElectroChem
– volume: 306
  start-page: 666
  year: 2004
  end-page: 669
  ident: bib29
  publication-title: Science
– volume: 37
  start-page: 549
  year: 2016
  end-page: 560
  ident: bib4
  publication-title: Chin. J. Catal.
– volume: 48
  start-page: 1146
  year: 2010
  end-page: 1152
  ident: bib6
  publication-title: Carbon
– volume: 16
  start-page: 488
  year: 2015
  end-page: 515
  ident: bib23
  publication-title: Nano Energy
– volume: 98
  start-page: 1
  year: 2010
  end-page: 9
  ident: bib34
  publication-title: Appl. Catal. B: Environ.
– volume: 8
  start-page: 29997
  year: 2016
  end-page: 30004
  ident: bib42
  publication-title: ACS Appl. Mater. Interface
– volume: 7
  start-page: 21727
  year: 2015
  ident: 10.1016/j.bios.2017.06.005_bib36
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b04427
– volume: 58
  start-page: 98
  year: 2007
  ident: 10.1016/j.bios.2017.06.005_bib20
  publication-title: Colloid Surf. B.
  doi: 10.1016/j.colsurfb.2007.02.014
– volume: 16
  start-page: 488
  year: 2015
  ident: 10.1016/j.bios.2017.06.005_bib23
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.07.014
– volume: 112
  start-page: 8192
  year: 2008
  ident: 10.1016/j.bios.2017.06.005_bib40
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp710931h
– volume: 22
  start-page: 2188
  year: 2011
  ident: 10.1016/j.bios.2017.06.005_bib26
  publication-title: J. Am. Soc. Mass. Spectr.
  doi: 10.1007/s13361-011-0231-8
– volume: 15
  start-page: 1
  year: 2015
  ident: 10.1016/j.bios.2017.06.005_bib19
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2015.9731
– volume: 543
  start-page: 115
  year: 2003
  ident: 10.1016/j.bios.2017.06.005_bib31
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(02)01480-8
– volume: 782
  start-page: 215
  year: 2016
  ident: 10.1016/j.bios.2017.06.005_bib21
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.10.010
– volume: 35
  start-page: 36
  year: 2014
  ident: 10.1016/j.bios.2017.06.005_bib8
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2013.10.024
– volume: 369
  start-page: 36
  year: 2016
  ident: 10.1016/j.bios.2017.06.005_bib43
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.02.013
– volume: 48
  start-page: 1146
  year: 2010
  ident: 10.1016/j.bios.2017.06.005_bib6
  publication-title: Carbon
  doi: 10.1016/j.carbon.2009.11.037
– volume: 2
  start-page: 166
  year: 2008
  ident: 10.1016/j.bios.2017.06.005_bib38
  publication-title: Chem. Commun.
  doi: 10.1039/B711215G
– ident: 10.1016/j.bios.2017.06.005_bib3
– volume: 115
  start-page: 15639
  year: 2011
  ident: 10.1016/j.bios.2017.06.005_bib32
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp200580u
– volume: 8
  start-page: 29997
  year: 2016
  ident: 10.1016/j.bios.2017.06.005_bib42
  publication-title: ACS Appl. Mater. Interface
  doi: 10.1021/acsami.5b10234
– volume: 1
  start-page: 1826
  year: 2013
  ident: 10.1016/j.bios.2017.06.005_bib25
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c3tb00531c
– volume: 98
  start-page: 1
  year: 2010
  ident: 10.1016/j.bios.2017.06.005_bib34
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2010.05.005
– volume: 22
  start-page: 2213
  year: 2010
  ident: 10.1016/j.bios.2017.06.005_bib15
  publication-title: Chem. Mater.
  doi: 10.1021/cm902635j
– volume: 188
  start-page: 372
  year: 2013
  ident: 10.1016/j.bios.2017.06.005_bib37
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2013.06.095
– volume: 85
  start-page: 2411
  year: 2011
  ident: 10.1016/j.bios.2017.06.005_bib27
  publication-title: Talanta
  doi: 10.1016/j.talanta.2011.07.089
– volume: 113
  start-page: 1481
  year: 1988
  ident: 10.1016/j.bios.2017.06.005_bib2
  publication-title: Analyst
  doi: 10.1039/an9881301481
– volume: 7
  start-page: 26952
  year: 2015
  ident: 10.1016/j.bios.2017.06.005_bib9
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07757
– volume: 18
  start-page: 115
  year: 2005
  ident: 10.1016/j.bios.2017.06.005_bib16
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx0498915
– volume: 95
  start-page: 1
  year: 2016
  ident: 10.1016/j.bios.2017.06.005_bib18
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.04.006
– volume: 6
  start-page: 23238
  year: 2016
  ident: 10.1016/j.bios.2017.06.005_bib11
  publication-title: Sci. Rep.
  doi: 10.1038/srep23238
– volume: 42
  start-page: 2824
  year: 2013
  ident: 10.1016/j.bios.2017.06.005_bib17
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35335K
– volume: 37
  start-page: 549
  year: 2016
  ident: 10.1016/j.bios.2017.06.005_bib4
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(15)61046-4
– volume: 775
  start-page: 212
  year: 2016
  ident: 10.1016/j.bios.2017.06.005_bib14
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.05.032
– volume: 306
  start-page: 666
  year: 2004
  ident: 10.1016/j.bios.2017.06.005_bib29
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 126
  start-page: 12716
  year: 2014
  ident: 10.1016/j.bios.2017.06.005_bib44
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201406281
– volume: 114
  start-page: 19885
  year: 2010
  ident: 10.1016/j.bios.2017.06.005_bib7
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp107131v
– volume: 118
  start-page: 29731
  year: 2014
  ident: 10.1016/j.bios.2017.06.005_bib30
  publication-title: Phys. Chem. C
  doi: 10.1021/jp507227z
– volume: 256
  start-page: 2628
  year: 2012
  ident: 10.1016/j.bios.2017.06.005_bib10
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2012.04.007
– volume: 186
  start-page: 380
  year: 2013
  ident: 10.1016/j.bios.2017.06.005_bib12
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2013.06.020
– volume: 8
  start-page: 13282
  year: 2016
  ident: 10.1016/j.bios.2017.06.005_bib28
  publication-title: J. ACS Appl. Mater. Interface
  doi: 10.1021/acsami.6b02790
– volume: 3
  start-page: 558
  year: 2016
  ident: 10.1016/j.bios.2017.06.005_bib33
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201500487
– volume: 116
  start-page: 3334
  year: 2012
  ident: 10.1016/j.bios.2017.06.005_bib24
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2102226
– volume: 7
  start-page: 10385
  year: 2015
  ident: 10.1016/j.bios.2017.06.005_bib39
  publication-title: Anal. Methods
  doi: 10.1039/C5AY02617B
– volume: 3
  start-page: 101
  year: 2008
  ident: 10.1016/j.bios.2017.06.005_bib22
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.451
– volume: 224
  start-page: 878
  year: 2016
  ident: 10.1016/j.bios.2017.06.005_bib41
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2015.09.016
– volume: 161
  start-page: 759
  year: 2015
  ident: 10.1016/j.bios.2017.06.005_bib35
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2015.09.089
– volume: 24
  start-page: 2292
  year: 2012
  ident: 10.1016/j.bios.2017.06.005_bib1
  publication-title: Chem. Mater.
  doi: 10.1021/cm300382b
– volume: 59
  start-page: 466
  year: 1860
  ident: 10.1016/j.bios.2017.06.005_bib5
  publication-title: Ann. Chim. Phys.
– volume: 27
  start-page: 921
  year: 2016
  ident: 10.1016/j.bios.2017.06.005_bib13
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2016.02.016
SSID ssj0007190
ssib006546448
Score 2.5061517
Snippet It is unexpectedly found that, the in-situ growth of hydroxyapatite (HAP) on graphene oxide (GO) under a moderate temperature (85°C) can effectively trigger...
SourceID proquest
pubmed
crossref
nii
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 238
SubjectTerms biosensors
Chemically-reduced
Durapatite
Durapatite - chemistry
Electrochemical Techniques
Electrochemical Techniques - methods
electrochemistry
Electrodes
Graphene oxide
Graphite
Graphite - chemistry
heat treatment
hydrazine
Hydrazine sensor
Hydrazines
Hydrazines - analysis
Hydroxyapatite
In-situ growth
Limit of Detection
Modified electrode
nanocomposites
oxidation
Oxidation-Reduction
Oxides
Oxides - chemistry
reducing agents
temperature
toxic substances
transmission electron microscopes
transmission electron microscopy
Waste Water - analysis
Wastewater
Water Pollutants, Chemical
Water Pollutants, Chemical - analysis
Title Hydroxyapatite/chemically reduced graphene oxide composite: Environment-friendly synthesis and high-performance electrochemical sensing for hydrazine
URI https://dx.doi.org/10.1016/j.bios.2017.06.005
https://cir.nii.ac.jp/crid/1874242817959204352
https://www.ncbi.nlm.nih.gov/pubmed/28601789
https://www.proquest.com/docview/1908795272
https://www.proquest.com/docview/2000480229
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIiQ4IChfS2llJG7IbOw4cdJbVbVaQPQClXqzHNuhQVV21Wwl9sK_4P8ykzhdKpU9cImUyE6ceDLznLx5A_BOl5pwd8YrhA8c43XFi9xZnsvKVRhja9WL6Xw5zWdn6tN5dr4FR2MuDNEqo-8ffHrvreORaXya00XTTL-ShB6CEQyA6IZ1SX5YKU1W_uHXmuahxfCdhfT2qHVMnBk4XlUzJ8luoXsNTyphd3dwutc2zb8haB-KTp7A44gh2eEwzKewFdodeDBUlVztwKO_NAafwe_ZyhNVxRJ1ehmmLioEXK7YFcm2Bs960Wr0eWz-s_GBEcucqFzhgB2v0-B4TYrIHrt1qxZRY9d0zLaekd4xX6zTD1gsrDNeh3VEkW-_M2zALnAsvZ71czg7Of52NOOxFgN3uFRdcmFFULosZWY1-keb-FwLVwt0eJVXIgmqKlKnXBAeMadyiVIhaJUndfAOIVf6ArbbeRteAXOpT0NpEbkltfJWlnjuTDlc-tUhzb2dgBgnwbgoVE71Mi7NyEj7YWjiDE2c6Wl52QTe3_RZDDIdG1tn49yaW8ZmMI5s7LeHhoCDoi0VM0R8Uwiq1k4ZxpmcwNvRRAy-pfTrxbZhft0ZNEKq6i71hjZySPCXspzAy8G-bu5FFrhw1kX5-j9HvgsPaY-SKEX2BraXV9dhD9HUstrvX5d9uH_48fPs9A-Boh4Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH5iRdPYYdrYD7rB5km7TVHjxImT3RAChQG9DCRulmM7LBNKK1Kk9Q_Z_7v3EqcwCXrYpYfWbt365Xuf0-99D-CLzCXx7iQokT4EmK_LIEuNDtKoNCXm2Ep0Zjpn07S4EN8vk8sNOBhqYUhW6bG_x_QOrf0zE_9rTuZ1PflBFnpIRjABIgzLHHF4k9ypkhFs7h-fFNMVIEve32ohyz2a4GtneplXWc_ItZvLzsaTutg9nJ-eNHX9OAvtstHRS3jhaSTb71f6CjZcsw1P-8aSy214fs9m8DX8KZaW1Cqa1NMLNzHeJOB6yW7IudVZ1vlWI-yx2e_aOkZCc1JzuW_s8K4SLqjIFNnitHbZIHFs65bpxjKyPA7mdxUIzPfWGT6HtaSSb64YDmA_cS2dpfUbuDg6PD8oAt-OITB4Wl0EXHMnZJ5HiZYIkTq0qeSm4oh5pRU8dKLMYiOM4xZppzChEM5JkYaVswZZV_wWRs2scTvATGxjl2skb2ElrI5yfO9EGDz9VS5OrR4DHzZBGe9VTi0zrtUgSvulaOMUbZzqlHnJGL6u5sx7p461o5Nhb9U_8aYwlaydt4eBgIuiR-pniBQn49SwnYqMk2gMn4cQUXih0r8vunGz21ZhEFJj90iuGRP1Nf5RlI_hXR9fq-8SZXh2lln-_j9X_gmeFednp-r0eHryAbboFaqp5MkujBY3t24PydWi_Ogvnr87SyDB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydroxyapatite%2Fchemically+reduced+graphene+oxide+composite%3A+Environment-friendly+synthesis+and+high-performance+electrochemical+sensing+for+hydrazine&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Gao%2C+Feng&rft.au=Wang%2C+Qingxiang&rft.au=Gao%2C+Ningning&rft.au=Yang%2C+Yizhen&rft.date=2017-11-15&rft.issn=0956-5663&rft.volume=97&rft.spage=238&rft.epage=245&rft_id=info:doi/10.1016%2Fj.bios.2017.06.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bios_2017_06_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon