Determination of cranio-spinal canal compliance distribution by MRI: Methodology and early application in idiopathic intracranial hypertension

Purpose: To develop a method for derivation of the cranial‐spinal compliance distribution, assess its reliability, and apply to obese female patients with a diagnosis of idiopathic intracranial hypertension (IIH). Materials and Methods: Phase contrast‐based measurements of blood and cerebrospinal fl...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 34; no. 6; pp. 1397 - 1404
Main Authors Tain, Rong-Wen, Bagci, Ahmet M., Lam, Byron L., Sklar, Evelyn M., Ertl-Wagner, Birgit, Alperin, Noam
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.12.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose: To develop a method for derivation of the cranial‐spinal compliance distribution, assess its reliability, and apply to obese female patients with a diagnosis of idiopathic intracranial hypertension (IIH). Materials and Methods: Phase contrast‐based measurements of blood and cerebrospinal fluid (CSF) flows to, from, and between the cranial and spinal canal compartments were used with lumped‐parameter modeling to estimate systolic volume and pressure changes from which cranial and spinal compliance indices are obtained. The proposed MRI indices are analogous to pressure volume indices (PVI) currently being measured invasively with infusion‐based techniques. The consistency of the proposed method was assessed using MRI data from seven aged healthy subjects. Measurement reproducibility was assessed using five repeated MR scans from one subject. The method was then applied to compare spinal canal compliance contribution in seven IIH patients and six matched healthy controls. Results: In the healthy subjects, as expected, spinal canal contribution was consistently larger than the cranial contribution (average value of 69%). Measurement variability was 8%. In IIH, the spinal canal contribution is significantly smaller than normal controls (60 versus 78%, P < 0.03). Conclusion: An MRI‐based method for derivation of compliance indices analogous to PVI has been implemented and applied to healthy subjects. The application of the method to obese IIH patients suggests a spinal canal involvement in the pathophysiology of IIH. J. Magn. Reson. Imaging 2011;. © 2011 Wiley Periodicals, Inc.
AbstractList To develop a method for derivation of the cranial-spinal compliance distribution, assess its reliability, and apply to obese female patients with a diagnosis of idiopathic intracranial hypertension (IIH). Phase contrast-based measurements of blood and cerebrospinal fluid (CSF) flows to, from, and between the cranial and spinal canal compartments were used with lumped-parameter modeling to estimate systolic volume and pressure changes from which cranial and spinal compliance indices are obtained. The proposed MRI indices are analogous to pressure volume indices (PVI) currently being measured invasively with infusion-based techniques. The consistency of the proposed method was assessed using MRI data from seven aged healthy subjects. Measurement reproducibility was assessed using five repeated MR scans from one subject. The method was then applied to compare spinal canal compliance contribution in seven IIH patients and six matched healthy controls. In the healthy subjects, as expected, spinal canal contribution was consistently larger than the cranial contribution (average value of 69%). Measurement variability was 8%. In IIH, the spinal canal contribution is significantly smaller than normal controls (60 versus 78%, P < 0.03). An MRI-based method for derivation of compliance indices analogous to PVI has been implemented and applied to healthy subjects. The application of the method to obese IIH patients suggests a spinal canal involvement in the pathophysiology of IIH.
To develop a method for derivation of the cranial-spinal compliance distribution, assess its reliability, and apply to obese female patients with a diagnosis of idiopathic intracranial hypertension (IIH).PURPOSETo develop a method for derivation of the cranial-spinal compliance distribution, assess its reliability, and apply to obese female patients with a diagnosis of idiopathic intracranial hypertension (IIH).Phase contrast-based measurements of blood and cerebrospinal fluid (CSF) flows to, from, and between the cranial and spinal canal compartments were used with lumped-parameter modeling to estimate systolic volume and pressure changes from which cranial and spinal compliance indices are obtained. The proposed MRI indices are analogous to pressure volume indices (PVI) currently being measured invasively with infusion-based techniques. The consistency of the proposed method was assessed using MRI data from seven aged healthy subjects. Measurement reproducibility was assessed using five repeated MR scans from one subject. The method was then applied to compare spinal canal compliance contribution in seven IIH patients and six matched healthy controls.MATERIALS AND METHODSPhase contrast-based measurements of blood and cerebrospinal fluid (CSF) flows to, from, and between the cranial and spinal canal compartments were used with lumped-parameter modeling to estimate systolic volume and pressure changes from which cranial and spinal compliance indices are obtained. The proposed MRI indices are analogous to pressure volume indices (PVI) currently being measured invasively with infusion-based techniques. The consistency of the proposed method was assessed using MRI data from seven aged healthy subjects. Measurement reproducibility was assessed using five repeated MR scans from one subject. The method was then applied to compare spinal canal compliance contribution in seven IIH patients and six matched healthy controls.In the healthy subjects, as expected, spinal canal contribution was consistently larger than the cranial contribution (average value of 69%). Measurement variability was 8%. In IIH, the spinal canal contribution is significantly smaller than normal controls (60 versus 78%, P < 0.03).RESULTSIn the healthy subjects, as expected, spinal canal contribution was consistently larger than the cranial contribution (average value of 69%). Measurement variability was 8%. In IIH, the spinal canal contribution is significantly smaller than normal controls (60 versus 78%, P < 0.03).An MRI-based method for derivation of compliance indices analogous to PVI has been implemented and applied to healthy subjects. The application of the method to obese IIH patients suggests a spinal canal involvement in the pathophysiology of IIH.CONCLUSIONAn MRI-based method for derivation of compliance indices analogous to PVI has been implemented and applied to healthy subjects. The application of the method to obese IIH patients suggests a spinal canal involvement in the pathophysiology of IIH.
Purpose: To develop a method for derivation of the cranial‐spinal compliance distribution, assess its reliability, and apply to obese female patients with a diagnosis of idiopathic intracranial hypertension (IIH). Materials and Methods: Phase contrast‐based measurements of blood and cerebrospinal fluid (CSF) flows to, from, and between the cranial and spinal canal compartments were used with lumped‐parameter modeling to estimate systolic volume and pressure changes from which cranial and spinal compliance indices are obtained. The proposed MRI indices are analogous to pressure volume indices (PVI) currently being measured invasively with infusion‐based techniques. The consistency of the proposed method was assessed using MRI data from seven aged healthy subjects. Measurement reproducibility was assessed using five repeated MR scans from one subject. The method was then applied to compare spinal canal compliance contribution in seven IIH patients and six matched healthy controls. Results: In the healthy subjects, as expected, spinal canal contribution was consistently larger than the cranial contribution (average value of 69%). Measurement variability was 8%. In IIH, the spinal canal contribution is significantly smaller than normal controls (60 versus 78%, P < 0.03). Conclusion: An MRI‐based method for derivation of compliance indices analogous to PVI has been implemented and applied to healthy subjects. The application of the method to obese IIH patients suggests a spinal canal involvement in the pathophysiology of IIH. J. Magn. Reson. Imaging 2011;. © 2011 Wiley Periodicals, Inc.
Author Sklar, Evelyn M.
Tain, Rong-Wen
Ertl-Wagner, Birgit
Alperin, Noam
Lam, Byron L.
Bagci, Ahmet M.
AuthorAffiliation 3 Bascom Palmer Eye Institute, University of Miami
1 Department of Radiology, University of Miami
2 Department of Biomedical Engineering, University of Miami
4 Department of Radiology, University of Munich, Germany
AuthorAffiliation_xml – name: 3 Bascom Palmer Eye Institute, University of Miami
– name: 2 Department of Biomedical Engineering, University of Miami
– name: 1 Department of Radiology, University of Miami
– name: 4 Department of Radiology, University of Munich, Germany
Author_xml – sequence: 1
  givenname: Rong-Wen
  surname: Tain
  fullname: Tain, Rong-Wen
  organization: Department of Radiology, University of Miami, Miami, Florida, USA
– sequence: 2
  givenname: Ahmet M.
  surname: Bagci
  fullname: Bagci, Ahmet M.
  organization: Department of Radiology, University of Miami, Miami, Florida, USA
– sequence: 3
  givenname: Byron L.
  surname: Lam
  fullname: Lam, Byron L.
  organization: Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
– sequence: 4
  givenname: Evelyn M.
  surname: Sklar
  fullname: Sklar, Evelyn M.
  organization: Department of Radiology, University of Miami, Miami, Florida, USA
– sequence: 5
  givenname: Birgit
  surname: Ertl-Wagner
  fullname: Ertl-Wagner, Birgit
  organization: Department of Radiology, University of Munich, Germany
– sequence: 6
  givenname: Noam
  surname: Alperin
  fullname: Alperin, Noam
  email: nalperin@med.miami.edu
  organization: Department of Radiology, University of Miami, Miami, Florida, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21972076$$D View this record in MEDLINE/PubMed
BookMark eNp9Ud1qFDEUDlKxP3rjA8jcCcK0SWYzyXghyKptZVuhFL0MmeRMNzUzGZNZdV7CZ252pl1URAjJSfL9HM53iPY63wFCzwk-JhjTk9s22GNKeVU9QgeEUZpTJsq9VGNW5ERgvo8OY7zFGFfVgj1B-5RUnGJeHqBf72CA0NpODdZ3mW8yHVRnfR779OYyrabdt72zqtOQGRuHYOvNBK_H7OLq_HV2AcPaG-_8zZipzmSggktVn0h6FrZpGet7NaytTrchqMkoia_HHsIAXUy4p-hxo1yEZ_fnEbr-8P56eZavPp2eL9-ucs1oUeXMCN1AVRpsamYwKLUgNUsl8KoBbkDXWC8aJcqaGiw0UFVQAaVIIwCGiyP0ZpbtN3ULRsO2Hyf7YFsVRumVlX_-dHYtb_x3WVBKRCmSwMt7geC_bSAOsrVRg3OqA7-JssKsFJTjrdWL3612Hg8RJMCrGaCDjzFAs4MQLLf5ym2-cso3gfFfYG2HacKpTev-TSEz5Yd1MP5HXH5MWT5w8pmTwoafO44KX2XJC87kl8tTSZZ8dfX5ciHPijvmW82B
CitedBy_id crossref_primary_10_1002_jmri_25976
crossref_primary_10_1002_cnm_3532
crossref_primary_10_1212_WNL_0000000000201527
crossref_primary_10_3171_2013_7_JNS13390
crossref_primary_10_1007_s00701_016_2979_x
crossref_primary_10_3389_fneur_2024_1479545
crossref_primary_10_1002_jmri_24923
crossref_primary_10_3174_ajnr_A4837
crossref_primary_10_1148_radiol_2017161981
crossref_primary_10_3390_jcm12093287
crossref_primary_10_23736_S0390_5616_20_04927_9
crossref_primary_10_3174_ajnr_A4689
crossref_primary_10_1002_jmri_27505
crossref_primary_10_1007_s00701_024_05897_3
crossref_primary_10_1186_s12987_018_0115_4
crossref_primary_10_1038_s41598_024_55860_6
crossref_primary_10_1016_j_bspc_2025_107854
crossref_primary_10_1002_nbm_5013
crossref_primary_10_1016_j_nicl_2023_103334
crossref_primary_10_1590_acb396424
crossref_primary_10_1016_j_ejro_2014_09_005
crossref_primary_10_1007_s10527_021_10044_8
crossref_primary_10_1097_WNO_0000000000000448
crossref_primary_10_1186_s12987_018_0106_5
crossref_primary_10_1152_physrev_00017_2016
crossref_primary_10_1016_j_jbiomech_2015_02_018
crossref_primary_10_4103_JOACC_JOACC_21_24
crossref_primary_10_1002_nbm_5082
crossref_primary_10_3390_app9102131
crossref_primary_10_1152_japplphysiol_00370_2015
crossref_primary_10_1016_j_mri_2024_110315
crossref_primary_10_14814_phy2_14001
crossref_primary_10_1007_s00381_022_05693_3
crossref_primary_10_3174_ajnr_A3171
crossref_primary_10_1109_RBME_2016_2620493
crossref_primary_10_3174_ajnr_A7018
crossref_primary_10_3390_life4040621
crossref_primary_10_1186_s12987_022_00376_2
crossref_primary_10_1002_ana_24171
crossref_primary_10_1186_s12987_019_0131_z
crossref_primary_10_1111_head_13328
crossref_primary_10_1186_s12987_022_00366_4
crossref_primary_10_3174_ajnr_A5486
crossref_primary_10_1007_s10334_020_00880_2
crossref_primary_10_3174_ajnr_A5642
crossref_primary_10_3390_diagnostics10060387
crossref_primary_10_3389_fbioe_2022_1040517
crossref_primary_10_1038_s41433_024_03547_7
crossref_primary_10_1002_jmri_25781
crossref_primary_10_1186_s12987_024_00570_4
crossref_primary_10_1097_WNO_0000000000000303
Cites_doi 10.1148/radiology.217.3.r00dc42877
10.3171/jns.1978.48.3.0332
10.1111/j.1600-0404.1973.tb01331.x
10.1002/jmri.21925
10.1111/j.1748-1716.1969.tb04477.x
10.1002/ana.410030212
10.1007/BF01669992
10.1109/TBME.2007.900552
10.1007/s007010050263
10.1038/sj.sc.3101538
10.1002/ana.410070603
10.1080/02688690601047312
10.1212/01.wnl.0000250270.54587.71
10.3174/ajnr.A0537
10.1002/jmri.20999
10.3174/ajnr.A2166
10.1115/1.1336144
10.1109/TBME.2008.2006010
10.3171/jns.1975.43.5.0523
10.3171/jns.1987.67.6.0832
10.1111/j.1600-0404.1973.tb01330.x
10.3109/02688698908992689
10.1136/jnnp.40.2.105
10.2174/157340506775541622
10.1097/00000542-199606000-00010
10.1097/00007632-200105150-00016
10.1002/jmri.10133
10.1111/j.1600-0404.2009.01172.x
10.1212/WNL.46.1.198
10.1002/jmri.20427
10.1007/BF01403461
ContentType Journal Article
Copyright Copyright © 2011 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2011 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/jmri.22799
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 1404
ExternalDocumentID PMC3221868
21972076
10_1002_jmri_22799
JMRI22799
ark_67375_WNG_1C7LRVN4_H
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Neurological Disorders and Stroke
  funderid: R01 NS052122 NA
– fundername: NINDS NIH HHS
  grantid: R01 NS052122 NA
– fundername: NINDS NIH HHS
  grantid: R01 NS052122
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c5239-5d8cfe96d0db5d0eaa41b5b5de79fe7decb0c4fa86b2d08ce2a328e68000e503
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Thu Aug 21 17:49:41 EDT 2025
Thu Jul 10 22:19:52 EDT 2025
Mon Jul 21 06:03:10 EDT 2025
Tue Jul 01 03:56:23 EDT 2025
Thu Apr 24 23:11:25 EDT 2025
Wed Aug 20 07:26:05 EDT 2025
Wed Oct 30 09:50:46 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2011 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5239-5d8cfe96d0db5d0eaa41b5b5de79fe7decb0c4fa86b2d08ce2a328e68000e503
Notes National Institute of Neurological Disorders and Stroke - No. R01 NS052122 NA
ark:/67375/WNG-1C7LRVN4-H
istex:6980EA510325B4851A99A6AE6D765E4B7927995C
ArticleID:JMRI22799
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.22799
PMID 21972076
PQID 905682700
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3221868
proquest_miscellaneous_905682700
pubmed_primary_21972076
crossref_primary_10_1002_jmri_22799
crossref_citationtrail_10_1002_jmri_22799
wiley_primary_10_1002_jmri_22799_JMRI22799
istex_primary_ark_67375_WNG_1C7LRVN4_H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2011
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: December 2011
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J. Magn. Reson. Imaging
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Mann J, Butler A, Rosenthal J, Maffeo C, Johnson R, Bass N. Regulation of intracranial pressure in rat, dog, and man. Ann Neurol 1978; 3: 156-165.
Tain R, Ertl-Wagner B, Alperin N. Influence of the compliance of the neck arteries and veins on the measurement of intracranial volume change by phase-contrast MRI. J Magn Reson Imaging 2009; 30: 878-883.
Shapiro K, Marmarou A, Shulman K. Characterization of clinical CSF dynamics and neural axis compliance using the pressure-volume index: I. The normal pressure-volume index. Ann Neurol 1980; 7: 508-514.
Wåhlin A, Ambarki K, Birgander R, Alperin N, Malm J, Eklund A. Assessment of craniospinal pressure-volume indices. AJNR Am J Neuroradiol 2010; 31: 1645-1650.
Lenfeldt N, Koskinen L, Bergenheim A, Malm J, Eklund A. CSF pressure assessed by lumbar puncture agrees with intracranial pressure. Neurology 2007; 68: 155-158.
Löfgren J, von Essen C, Zwetnow N. The pressure-volume curve of the cerebrospinal fluid space in dogs. Acta Neurol Scand 1973; 49: 557-574.
Löfgren J, Zwetnow N. Cranial and spinal components of the cerebrospinal fluid pressure-volume curve. Acta Neurol Scand 1973; 49: 575-585.
Hogan Q, Prost R, Kulier A, Taylor M, Liu S, Mark L. Magnetic resonance imaging of cerebrospinal fluid volume and the influence of body habitus and abdominal pressure. Anesthesiology 1996; 84: 1341-1349.
Stevens SA, Stimpson J, Lakin WD, Thakore NJ, Penar PL. A model for idiopathic intracranial hypertension and associated pathological ICP wave-forms. IEEE Trans Biomed Eng 2008; 55: 388-398.
Marmarou A, Shulman K, LaMorgese J. Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg 1975; 43: 523-534.
Raabe A, Czosnyka M, Piper I, Seifert V. Monitoring of intracranial compliance: correction for a change in body position. Acta Neurochir (Wien) 1999; 141: 31-36; discussion 35-36.
Maset AL, Marmarou A, Ward JD, et al. Pressure-volume index in head injury. J Neurosurg 1987; 67: 832-840.
Lee R, Abraham R, Quinn C. Dynamic physiologic changes in lumbar CSF volume quantitatively measured by three-dimensional fast spin-echo MRI. Spine (Phila Pa 1976) 2001; 26: 1172- 1178.
Ko H, Park J, Shin Y, Baek S. Gross quantitative measurements of spinal cord segments in human. Spinal Cord 2004; 42: 35-40.
Tain R, Alperin N. Noninvasive intracranial compliance from MRI-based measurements of transcranial blood and CSF flows: indirect versus direct approach. IEEE Trans Biomed Eng 2009; 56: 544-551.
Miyati T, Mase M, Kasai H, et al. Noninvasive MRI assessment of intracranial compliance in idiopathic normal pressure hydrocephalus. J Magn Reson Imaging 2007; 26: 274-278.
Steen R, Hamer R, Lieberman J. Measuring brain volume by MR imaging: impact of measurement precision and natural variation on sample size requirements. AJNR Am J Neuroradiol 2007; 28: 1119-1125.
Avezaat C, van Eijndhoven J. Clinical observations on the relationship between cerebrospinal fluid pulse pressure and intracranial pressure. Acta Neurochir (Wien) 1986; 79: 13-29.
Alperin N, Mazda M, Lichtor T, Lee SH. From cerebrospinal fluid pulsation to noninvasive intracranial compliance and pressure measured by MRI flow studies. Curr Med Imaging Rev 2006; 2: 117-130.
Magnaes B. Clinical studies of cranial and spinal compliance and the craniospinal flow of cerebrospinal fluid. Br J Neurosurg 1989; 3: 659-668.
Ekstedt J. CSF hydrodynamic studies in man. 1. Method of constant pressure CSF infusion. J Neurol Neurosurg Psychiatry 1977; 40: 105-119.
Dhungana S, Sharrack B, Woodroofe N. Idiopathic intracranial hypertension. Acta Neurol Scand 2010; 121: 71-82.
Karahalios DG, Rekate HL, Khayata MH, Apostolides PJ. Elevated intracranial venous pressure as a universal mechanism in pseudotumor cerebri of varying etiologies. Neurology 1996; 46: 198- 202.
Eide P, Brean A. Lumbar cerebrospinal fluid pressure waves versus intracranial pressure waves in idiopathic normal pressure hydrocephalus. Br J Neurosurg 2006; 20: 407-414.
Loth F, Yardimci M, Alperin N. Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity. J Biomech Eng 2001; 123: 71-79.
Spilt A, Box FM, van der Geest RJ, et al. Reproducibility of total cerebral blood flow measurements using phase contrast magnetic resonance imaging. J Magn Reson Imaging 2002; 16: 1-5.
Alperin N, Lee S, Loth F, Raksin P, Lichtor T. MR-Intracranial pressure (ICP): a method to measure intracranial elastance and pressure noninvasively by means of MR imaging: baboon and human study. Radiology 2000; 217: 877-885.
Marmarou A, Shulman K, Rosende R. A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics. J Neurosurg 1978; 48: 332-344.
Alperin N, Lee S, Sivaramakrishnan A, Hushek S. Quantifying the effect of posture on intracranial physiology in humans by MRI flow studies. J Magn Reson Imaging 2005; 22: 591-596.
Lindgren S, Rinder L. Production and distribution of intracranial and intraspinal pressure changes at sudden extradural fluid volume input in rabbits. Acta Physiol Scand 1969; 76: 340-351.
Czosnyka M, Batorski L, Laniewski P, Maksymowicz W, Koszewski W, Zaworski W. A computer system for the identification of the cerebrospinal compensatory model. Acta Neurochir (Wien) 1990; 105: 112-116.
1989; 3
2002; 16
2010; 31
2001; 123
2004; 42
1990; 105
1986; 79
2000; 217
1969; 76
1977; 40
2010; 121
1978; 3
1999; 141
2001; 26
2008; 55
2006; 2
2005; 22
2009; 56
2007; 28
1987; 67
2009; 30
2006; 20
1973; 49
1980; 7
1996; 84
1978; 48
1975; 43
1996; 46
2007; 68
2007; 26
e_1_2_6_31_2
e_1_2_6_30_2
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_13_2
e_1_2_6_10_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_15_2
e_1_2_6_20_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – reference: Avezaat C, van Eijndhoven J. Clinical observations on the relationship between cerebrospinal fluid pulse pressure and intracranial pressure. Acta Neurochir (Wien) 1986; 79: 13-29.
– reference: Hogan Q, Prost R, Kulier A, Taylor M, Liu S, Mark L. Magnetic resonance imaging of cerebrospinal fluid volume and the influence of body habitus and abdominal pressure. Anesthesiology 1996; 84: 1341-1349.
– reference: Mann J, Butler A, Rosenthal J, Maffeo C, Johnson R, Bass N. Regulation of intracranial pressure in rat, dog, and man. Ann Neurol 1978; 3: 156-165.
– reference: Stevens SA, Stimpson J, Lakin WD, Thakore NJ, Penar PL. A model for idiopathic intracranial hypertension and associated pathological ICP wave-forms. IEEE Trans Biomed Eng 2008; 55: 388-398.
– reference: Löfgren J, Zwetnow N. Cranial and spinal components of the cerebrospinal fluid pressure-volume curve. Acta Neurol Scand 1973; 49: 575-585.
– reference: Loth F, Yardimci M, Alperin N. Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity. J Biomech Eng 2001; 123: 71-79.
– reference: Spilt A, Box FM, van der Geest RJ, et al. Reproducibility of total cerebral blood flow measurements using phase contrast magnetic resonance imaging. J Magn Reson Imaging 2002; 16: 1-5.
– reference: Marmarou A, Shulman K, LaMorgese J. Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg 1975; 43: 523-534.
– reference: Lenfeldt N, Koskinen L, Bergenheim A, Malm J, Eklund A. CSF pressure assessed by lumbar puncture agrees with intracranial pressure. Neurology 2007; 68: 155-158.
– reference: Wåhlin A, Ambarki K, Birgander R, Alperin N, Malm J, Eklund A. Assessment of craniospinal pressure-volume indices. AJNR Am J Neuroradiol 2010; 31: 1645-1650.
– reference: Dhungana S, Sharrack B, Woodroofe N. Idiopathic intracranial hypertension. Acta Neurol Scand 2010; 121: 71-82.
– reference: Eide P, Brean A. Lumbar cerebrospinal fluid pressure waves versus intracranial pressure waves in idiopathic normal pressure hydrocephalus. Br J Neurosurg 2006; 20: 407-414.
– reference: Maset AL, Marmarou A, Ward JD, et al. Pressure-volume index in head injury. J Neurosurg 1987; 67: 832-840.
– reference: Shapiro K, Marmarou A, Shulman K. Characterization of clinical CSF dynamics and neural axis compliance using the pressure-volume index: I. The normal pressure-volume index. Ann Neurol 1980; 7: 508-514.
– reference: Ekstedt J. CSF hydrodynamic studies in man. 1. Method of constant pressure CSF infusion. J Neurol Neurosurg Psychiatry 1977; 40: 105-119.
– reference: Ko H, Park J, Shin Y, Baek S. Gross quantitative measurements of spinal cord segments in human. Spinal Cord 2004; 42: 35-40.
– reference: Raabe A, Czosnyka M, Piper I, Seifert V. Monitoring of intracranial compliance: correction for a change in body position. Acta Neurochir (Wien) 1999; 141: 31-36; discussion 35-36.
– reference: Marmarou A, Shulman K, Rosende R. A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics. J Neurosurg 1978; 48: 332-344.
– reference: Miyati T, Mase M, Kasai H, et al. Noninvasive MRI assessment of intracranial compliance in idiopathic normal pressure hydrocephalus. J Magn Reson Imaging 2007; 26: 274-278.
– reference: Alperin N, Mazda M, Lichtor T, Lee SH. From cerebrospinal fluid pulsation to noninvasive intracranial compliance and pressure measured by MRI flow studies. Curr Med Imaging Rev 2006; 2: 117-130.
– reference: Steen R, Hamer R, Lieberman J. Measuring brain volume by MR imaging: impact of measurement precision and natural variation on sample size requirements. AJNR Am J Neuroradiol 2007; 28: 1119-1125.
– reference: Tain R, Ertl-Wagner B, Alperin N. Influence of the compliance of the neck arteries and veins on the measurement of intracranial volume change by phase-contrast MRI. J Magn Reson Imaging 2009; 30: 878-883.
– reference: Lindgren S, Rinder L. Production and distribution of intracranial and intraspinal pressure changes at sudden extradural fluid volume input in rabbits. Acta Physiol Scand 1969; 76: 340-351.
– reference: Lee R, Abraham R, Quinn C. Dynamic physiologic changes in lumbar CSF volume quantitatively measured by three-dimensional fast spin-echo MRI. Spine (Phila Pa 1976) 2001; 26: 1172- 1178.
– reference: Alperin N, Lee S, Sivaramakrishnan A, Hushek S. Quantifying the effect of posture on intracranial physiology in humans by MRI flow studies. J Magn Reson Imaging 2005; 22: 591-596.
– reference: Tain R, Alperin N. Noninvasive intracranial compliance from MRI-based measurements of transcranial blood and CSF flows: indirect versus direct approach. IEEE Trans Biomed Eng 2009; 56: 544-551.
– reference: Alperin N, Lee S, Loth F, Raksin P, Lichtor T. MR-Intracranial pressure (ICP): a method to measure intracranial elastance and pressure noninvasively by means of MR imaging: baboon and human study. Radiology 2000; 217: 877-885.
– reference: Karahalios DG, Rekate HL, Khayata MH, Apostolides PJ. Elevated intracranial venous pressure as a universal mechanism in pseudotumor cerebri of varying etiologies. Neurology 1996; 46: 198- 202.
– reference: Löfgren J, von Essen C, Zwetnow N. The pressure-volume curve of the cerebrospinal fluid space in dogs. Acta Neurol Scand 1973; 49: 557-574.
– reference: Magnaes B. Clinical studies of cranial and spinal compliance and the craniospinal flow of cerebrospinal fluid. Br J Neurosurg 1989; 3: 659-668.
– reference: Czosnyka M, Batorski L, Laniewski P, Maksymowicz W, Koszewski W, Zaworski W. A computer system for the identification of the cerebrospinal compensatory model. Acta Neurochir (Wien) 1990; 105: 112-116.
– volume: 31
  start-page: 1645
  year: 2010
  end-page: 1650
  article-title: Assessment of craniospinal pressure‐volume indices
  publication-title: AJNR Am J Neuroradiol
– volume: 26
  start-page: 274
  year: 2007
  end-page: 278
  article-title: Noninvasive MRI assessment of intracranial compliance in idiopathic normal pressure hydrocephalus
  publication-title: J Magn Reson Imaging
– volume: 22
  start-page: 591
  year: 2005
  end-page: 596
  article-title: Quantifying the effect of posture on intracranial physiology in humans by MRI flow studies
  publication-title: J Magn Reson Imaging
– volume: 49
  start-page: 557
  year: 1973
  end-page: 574
  article-title: The pressure‐volume curve of the cerebrospinal fluid space in dogs
  publication-title: Acta Neurol Scand
– volume: 42
  start-page: 35
  year: 2004
  end-page: 40
  article-title: Gross quantitative measurements of spinal cord segments in human
  publication-title: Spinal Cord
– volume: 55
  start-page: 388
  year: 2008
  end-page: 398
  article-title: A model for idiopathic intracranial hypertension and associated pathological ICP wave‐forms
  publication-title: IEEE Trans Biomed Eng
– volume: 43
  start-page: 523
  year: 1975
  end-page: 534
  article-title: Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system
  publication-title: J Neurosurg
– volume: 26
  start-page: 1172
  year: 2001
  end-page: 1178
  article-title: Dynamic physiologic changes in lumbar CSF volume quantitatively measured by three‐dimensional fast spin‐echo MRI
  publication-title: Spine (Phila Pa 1976)
– volume: 68
  start-page: 155
  year: 2007
  end-page: 158
  article-title: CSF pressure assessed by lumbar puncture agrees with intracranial pressure
  publication-title: Neurology
– volume: 141
  start-page: 31
  year: 1999
  end-page: 36
  article-title: Monitoring of intracranial compliance: correction for a change in body position
  publication-title: Acta Neurochir (Wien)
– volume: 40
  start-page: 105
  year: 1977
  end-page: 119
  article-title: CSF hydrodynamic studies in man. 1. Method of constant pressure CSF infusion
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 67
  start-page: 832
  year: 1987
  end-page: 840
  article-title: Pressure‐volume index in head injury
  publication-title: J Neurosurg
– volume: 79
  start-page: 13
  year: 1986
  end-page: 29
  article-title: Clinical observations on the relationship between cerebrospinal fluid pulse pressure and intracranial pressure
  publication-title: Acta Neurochir (Wien)
– volume: 16
  start-page: 1
  year: 2002
  end-page: 5
  article-title: Reproducibility of total cerebral blood flow measurements using phase contrast magnetic resonance imaging
  publication-title: J Magn Reson Imaging
– volume: 7
  start-page: 508
  year: 1980
  end-page: 514
  article-title: Characterization of clinical CSF dynamics and neural axis compliance using the pressure‐volume index: I. The normal pressure‐volume index
  publication-title: Ann Neurol
– volume: 76
  start-page: 340
  year: 1969
  end-page: 351
  article-title: Production and distribution of intracranial and intraspinal pressure changes at sudden extradural fluid volume input in rabbits
  publication-title: Acta Physiol Scand
– volume: 84
  start-page: 1341
  year: 1996
  end-page: 1349
  article-title: Magnetic resonance imaging of cerebrospinal fluid volume and the influence of body habitus and abdominal pressure
  publication-title: Anesthesiology
– volume: 2
  start-page: 117
  year: 2006
  end-page: 130
  article-title: From cerebrospinal fluid pulsation to noninvasive intracranial compliance and pressure measured by MRI flow studies
  publication-title: Curr Med Imaging Rev
– volume: 30
  start-page: 878
  year: 2009
  end-page: 883
  article-title: Influence of the compliance of the neck arteries and veins on the measurement of intracranial volume change by phase‐contrast MRI
  publication-title: J Magn Reson Imaging
– volume: 3
  start-page: 659
  year: 1989
  end-page: 668
  article-title: Clinical studies of cranial and spinal compliance and the craniospinal flow of cerebrospinal fluid
  publication-title: Br J Neurosurg
– volume: 217
  start-page: 877
  year: 2000
  end-page: 885
  article-title: MR‐Intracranial pressure (ICP): a method to measure intracranial elastance and pressure noninvasively by means of MR imaging: baboon and human study
  publication-title: Radiology
– volume: 20
  start-page: 407
  year: 2006
  end-page: 414
  article-title: Lumbar cerebrospinal fluid pressure waves versus intracranial pressure waves in idiopathic normal pressure hydrocephalus
  publication-title: Br J Neurosurg
– volume: 56
  start-page: 544
  year: 2009
  end-page: 551
  article-title: Noninvasive intracranial compliance from MRI‐based measurements of transcranial blood and CSF flows: indirect versus direct approach
  publication-title: IEEE Trans Biomed Eng
– volume: 121
  start-page: 71
  year: 2010
  end-page: 82
  article-title: Idiopathic intracranial hypertension
  publication-title: Acta Neurol Scand
– volume: 48
  start-page: 332
  year: 1978
  end-page: 344
  article-title: A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics
  publication-title: J Neurosurg
– volume: 46
  start-page: 198
  year: 1996
  end-page: 202
  article-title: Elevated intracranial venous pressure as a universal mechanism in pseudotumor cerebri of varying etiologies
  publication-title: Neurology
– volume: 3
  start-page: 156
  year: 1978
  end-page: 165
  article-title: Regulation of intracranial pressure in rat, dog, and man
  publication-title: Ann Neurol
– volume: 49
  start-page: 575
  year: 1973
  end-page: 585
  article-title: Cranial and spinal components of the cerebrospinal fluid pressure‐volume curve
  publication-title: Acta Neurol Scand
– volume: 123
  start-page: 71
  year: 2001
  end-page: 79
  article-title: Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity
  publication-title: J Biomech Eng
– volume: 105
  start-page: 112
  year: 1990
  end-page: 116
  article-title: A computer system for the identification of the cerebrospinal compensatory model
  publication-title: Acta Neurochir (Wien)
– volume: 28
  start-page: 1119
  year: 2007
  end-page: 1125
  article-title: Measuring brain volume by MR imaging: impact of measurement precision and natural variation on sample size requirements
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_6_16_2
  doi: 10.1148/radiology.217.3.r00dc42877
– ident: e_1_2_6_19_2
  doi: 10.3171/jns.1978.48.3.0332
– ident: e_1_2_6_8_2
  doi: 10.1111/j.1600-0404.1973.tb01331.x
– ident: e_1_2_6_18_2
  doi: 10.1002/jmri.21925
– ident: e_1_2_6_25_2
  doi: 10.1111/j.1748-1716.1969.tb04477.x
– ident: e_1_2_6_9_2
  doi: 10.1002/ana.410030212
– ident: e_1_2_6_12_2
  doi: 10.1007/BF01669992
– ident: e_1_2_6_30_2
  doi: 10.1109/TBME.2007.900552
– ident: e_1_2_6_13_2
  doi: 10.1007/s007010050263
– ident: e_1_2_6_31_2
  doi: 10.1038/sj.sc.3101538
– ident: e_1_2_6_10_2
  doi: 10.1002/ana.410070603
– ident: e_1_2_6_26_2
  doi: 10.1080/02688690601047312
– ident: e_1_2_6_21_2
  doi: 10.1212/01.wnl.0000250270.54587.71
– ident: e_1_2_6_32_2
  doi: 10.3174/ajnr.A0537
– ident: e_1_2_6_7_2
  doi: 10.1002/jmri.20999
– ident: e_1_2_6_14_2
  doi: 10.3174/ajnr.A2166
– ident: e_1_2_6_20_2
  doi: 10.1115/1.1336144
– ident: e_1_2_6_17_2
  doi: 10.1109/TBME.2008.2006010
– ident: e_1_2_6_3_2
  doi: 10.3171/jns.1975.43.5.0523
– ident: e_1_2_6_6_2
  doi: 10.3171/jns.1987.67.6.0832
– ident: e_1_2_6_2_2
  doi: 10.1111/j.1600-0404.1973.tb01330.x
– ident: e_1_2_6_4_2
  doi: 10.3109/02688698908992689
– ident: e_1_2_6_15_2
  doi: 10.1136/jnnp.40.2.105
– ident: e_1_2_6_23_2
  doi: 10.2174/157340506775541622
– ident: e_1_2_6_22_2
  doi: 10.1097/00000542-199606000-00010
– ident: e_1_2_6_29_2
  doi: 10.1097/00007632-200105150-00016
– ident: e_1_2_6_24_2
  doi: 10.1002/jmri.10133
– ident: e_1_2_6_27_2
  doi: 10.1111/j.1600-0404.2009.01172.x
– ident: e_1_2_6_28_2
  doi: 10.1212/WNL.46.1.198
– ident: e_1_2_6_5_2
  doi: 10.1002/jmri.20427
– ident: e_1_2_6_11_2
  doi: 10.1007/BF01403461
SSID ssj0009945
Score 2.2662237
Snippet Purpose: To develop a method for derivation of the cranial‐spinal compliance distribution, assess its reliability, and apply to obese female patients with a...
To develop a method for derivation of the cranial-spinal compliance distribution, assess its reliability, and apply to obese female patients with a diagnosis...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1397
SubjectTerms Adult
Aged
Cerebrospinal Fluid - physiology
Compliance
cranio-spinal compliance
CSF and blood flows
Female
Humans
intracranial pressure
lumped parameter modeling
Magnetic Resonance Imaging - methods
Male
Middle Aged
Models, Theoretical
phase contrast
Pseudotumor Cerebri - physiopathology
Regional Blood Flow - physiology
Reproducibility of Results
Skull - physiology
Spinal Canal - physiology
spinal canal compliance
Title Determination of cranio-spinal canal compliance distribution by MRI: Methodology and early application in idiopathic intracranial hypertension
URI https://api.istex.fr/ark:/67375/WNG-1C7LRVN4-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.22799
https://www.ncbi.nlm.nih.gov/pubmed/21972076
https://www.proquest.com/docview/905682700
https://pubmed.ncbi.nlm.nih.gov/PMC3221868
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lgvjiXTttlYAiKMx27smIL1Kta3H3YanaFwm5DR3bzpS9QPXJn9Df6C_xnMxlu1oEhWHJsmdmNslJcpJ8-T5CnppIF5zHxpcKj-TYUPs5N8yXMBnK4yzV3GksjcbZ8GOyf5gerpFX3VmYhh-iX3DDluH6a2zgUs12lqShX0-n5QD57_D0HoK1MCKaLLmj8twpFEP8EPshD1jPTRrtLG9dGY2uYcGeXxVq_omYvBzJuqFo7xb50mWiQaAcDxZzNdDff-N3_N9c3iY32xiVvm6c6g5Zs9Vdcn3U7sLfIxdvOgwN1iqtC6phxCvrnz8uZmeoskURSgafDq6ObkUN8vO20lpUfaOjyfuXdOTUq926PpWVoRbJlumlLXVawmXK2skma_gGpeJeBQ8_ggn01MHv6-o-Odh7e7A79FtlB1_DxDf3U8N1YfPMBEalJrBSJqFKIWlZXlhmrFaBTgrJMxWZgKNoWRxxm0F0G9g0iB-Q9aqu7AahzMaJVDrQJikSHUaQzHTBilRxXuQy88jzroKFblnPUXzjRDR8zZHAEhauhD3ypLc9a7g-rrR65vykN5HTY0THsVR8Hr8T4S77MPk0TsTQI7RzJAFtFjdiZGXrxUzkEHVy3PH3yMPGr_qHRSgDFzD432zF43oDpANf_aUqjxwtOHTNqH3gkRfOof6SBbEPtexSm_9ivEVuuBV1B-bZJuvz6cI-gpBsrh67pvcLIFA6SQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZbtQwFLWglYAX9kJYLYGQQMo0e2zeUKFMy8w8jAbom-UtamibVLNIwBOf0G_kS_C9yWQ6UCGBFEWOcrPZ1_a1fXIOIc9NpAvGYuNLBb_k2FD7nJncl24wxOMs1Qw1loajrP8x2T9ID1psDvwL0_BDdBNuUDOwvYYKDhPS2yvW0C8n07IHBHj8MtkESW8cUY1X7FGco0axiyBiP2RB3rGTRtura9f6o03I2q8XBZt_YibPx7LYGe3eaBRXZ8hhCBiUo95irnr6-28Mj__9nTfJ9TZMpW8av7pFLtnqNrkybBfi75Czt0sYDRQsrQuqXadX1j9_nM1OQWiLAprM7RGxDp5FDVD0tupaVH2jw_HeazpEAWuc2qeyMtQC3zI9t6pOS7eZskblZO2OXLbgo9zND90YeooI_Lq6Sya77yY7fb8Vd_C1G_tyPzVMF5ZnJjAqNYGVMglV6pI254XNjdUq0EkhWaYiEzDQLYsjZjMX4AY2DeItslHVlb1PaG7jRCodaJMUiQ4jl8x0kRepYqzgMvPIy2UJC90Sn4P-xrFoKJsjATksMIc98qyzPW3oPi60eoGO0pnI6REA5PJUfB69F-FOPhh_GiWi7xG69CThqi2sxcjK1ouZ4C7wZLDo75F7jWN1N4tACS7I3Xvnay7XGQAj-PqZqjxEZnDXOoP8gUdeoUf95RPEvitlTD34F-On5Gp_MhyIwd7ow0NyDSfYEdvziGzMpwv72EVoc_UE6-Evfus-ZA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4amzTxwv0SrpZASCClc-424gWtlG6sFaoG7AVZie1oYVtSda0EPPET9hv5Jfg4l64wIYEURY5y4sTHx_axffJ9AE-VL3PGAuWmGf6Soz3pcqYSNzWTIR7EkWSWY2k0jocfwt2D6GANXrX_wtT4EN2CG7YM219jA5-qfGsJGvrlZFb0EP-OX4KNMKYMbbo_WYJHcW4pio0DEbgeo0kHTupvLZ9dGY42ULNfL_I1_wyZPO_K2rFocBU-t6WoQ1COeot51pPffwN4_N9iXoMrjZNKXtdWdR3WdHkDNkfNNvxNOOu3QTRYraTKiTRDXlH9_HF2OkWaLYKxZOZs49XRrohCgN6GW4tk38hosvOSjCx9tV3YJ2mpiEa0ZXJuT50U5lBFZXmTpbkyWrGvMpkfmhn0zMbfV-Ut2B-82d8eug21gyvNzJe7kWIy1zxWVGWRojpNQy-LTFInPNeJ0jKjMsxTFme-ogxZywKf6di4t1RHNLgN62VV6rtAEh2EaSapVGEeSs83yVjmSR5ljOU8jR143lawkA3sObJvHIsasNkXqGFhNezAk052WoN9XCj1zNpJJ5LOjjA8LonEp_Fb4W0ne5OP41AMHSCtIQnTaHEnJi11tTgV3LidDLf8HbhT21WXmY88cDQx352sWFwngHjgq3fK4tDigpu-GckPHHhhDeovRRC7ppZt6t6_CD-Gzff9gdjbGb-7D5ft6roN7HkA6_PZQj807tk8e2Rb4S_PNj0c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determination+of+cranio-spinal+canal+compliance+distribution+by+MRI%3A+Methodology+and+early+application+in+idiopathic+intracranial+hypertension&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Tain%2C+Rong-Wen&rft.au=Bagci%2C+Ahmet+M&rft.au=Lam%2C+Byron+L&rft.au=Sklar%2C+Evelyn+M&rft.date=2011-12-01&rft.eissn=1522-2586&rft.volume=34&rft.issue=6&rft.spage=1397&rft_id=info:doi/10.1002%2Fjmri.22799&rft_id=info%3Apmid%2F21972076&rft.externalDocID=21972076
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon