Functional genomics of intraspecific variation in carbon and phosphorus kinetics in Daphnia

ABSTRACT Understanding how the genome interacts with the environment to produce a diversity of phenotypes is a central challenge in biology. However, we know little about how traits involved in nutrient processing interact with key ecological parameters, such as the supply of mineral nutrients, part...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental zoology. Part A, Ecological genetics and physiology Vol. 321; no. 7; pp. 387 - 398
Main Authors Roy Chowdhury, Priyanka, Lopez, Jacqueline A., Weider, Lawrence J., Colbourne, John K., Jeyasingh, Punidan D.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.08.2014
Subjects
Online AccessGet full text
ISSN1932-5223
1932-5231
1932-5231
DOI10.1002/jez.1869

Cover

Loading…
Abstract ABSTRACT Understanding how the genome interacts with the environment to produce a diversity of phenotypes is a central challenge in biology. However, we know little about how traits involved in nutrient processing interact with key ecological parameters, such as the supply of mineral nutrients, particularly in animals. The framework of ecological stoichiometry uses information on the content of key elements such as carbon (C) and phosphorus (P) in individuals to predict the success of species. Nevertheless, intraspecific variation in content and the underlying mechanisms that generate such variation has been poorly explored. We studied two genotypes (G1 and G2) of Daphnia pulex that exhibit striking genotype × environment (G × E) interaction in response to shifts in dietary stoichiometry (C:P). G1 had higher fitness under C:P ∼ 100 diet, while G2 performed better in C:P ∼ 800. Dual 14C/33P radiotracer assays show that G1 was more efficient in C processing, while G2 was more efficient in P use. Microarrays revealed that after 3 days of incubation, the genotypes differentially expressed ∼25% (7,224) of the total genes on the array under C:P ∼ 100 diet, and ∼30% (8,880) of genes under C:P ∼ 800. These results indicate large differences in C and P use between two coexisting genotypes. Importantly, such physiological differences can arise via differential expression of the genome due to alterations in dietary stoichiometry. Basic frameworks such as ecological stoichiometry enable integration of physiological and transcriptomic data, and represent initial steps toward understanding the interplay between fundamental ecological parameters such as nutrient supply and important evolutionary processes such as G × E interactions. J. Exp. Zool. 321A: 387–398, 2014. © 2014 Wiley Periodicals, Inc.
AbstractList Understanding how the genome interacts with the environment to produce a diversity of phenotypes is a central challenge in biology. However, we know little about how traits involved in nutrient processing interact with key ecological parameters, such as the supply of mineral nutrients, particularly in animals. The framework of ecological stoichiometry uses information on the content of key elements such as carbon (C) and phosphorus (P) in individuals to predict the success of species. Nevertheless, intraspecific variation in content and the underlying mechanisms that generate such variation has been poorly explored. We studied two genotypes (G1 and G2) of Daphnia pulex that exhibit striking genotype × environment (G × E) interaction in response to shifts in dietary stoichiometry (C:P). G1 had higher fitness under C:P ∼ 100 diet, while G2 performed better in C:P ∼ 800. Dual (14) C/(33) P radiotracer assays show that G1 was more efficient in C processing, while G2 was more efficient in P use. Microarrays revealed that after 3 days of incubation, the genotypes differentially expressed ∼ 25% (7,224) of the total genes on the array under C:P ∼ 100 diet, and ∼ 30% (8,880) of genes under C:P ∼ 800. These results indicate large differences in C and P use between two coexisting genotypes. Importantly, such physiological differences can arise via differential expression of the genome due to alterations in dietary stoichiometry. Basic frameworks such as ecological stoichiometry enable integration of physiological and transcriptomic data, and represent initial steps toward understanding the interplay between fundamental ecological parameters such as nutrient supply and important evolutionary processes such as G × E interactions.Understanding how the genome interacts with the environment to produce a diversity of phenotypes is a central challenge in biology. However, we know little about how traits involved in nutrient processing interact with key ecological parameters, such as the supply of mineral nutrients, particularly in animals. The framework of ecological stoichiometry uses information on the content of key elements such as carbon (C) and phosphorus (P) in individuals to predict the success of species. Nevertheless, intraspecific variation in content and the underlying mechanisms that generate such variation has been poorly explored. We studied two genotypes (G1 and G2) of Daphnia pulex that exhibit striking genotype × environment (G × E) interaction in response to shifts in dietary stoichiometry (C:P). G1 had higher fitness under C:P ∼ 100 diet, while G2 performed better in C:P ∼ 800. Dual (14) C/(33) P radiotracer assays show that G1 was more efficient in C processing, while G2 was more efficient in P use. Microarrays revealed that after 3 days of incubation, the genotypes differentially expressed ∼ 25% (7,224) of the total genes on the array under C:P ∼ 100 diet, and ∼ 30% (8,880) of genes under C:P ∼ 800. These results indicate large differences in C and P use between two coexisting genotypes. Importantly, such physiological differences can arise via differential expression of the genome due to alterations in dietary stoichiometry. Basic frameworks such as ecological stoichiometry enable integration of physiological and transcriptomic data, and represent initial steps toward understanding the interplay between fundamental ecological parameters such as nutrient supply and important evolutionary processes such as G × E interactions.
Understanding how the genome interacts with the environment to produce a diversity of phenotypes is a central challenge in biology. However, we know little about how traits involved in nutrient processing interact with key ecological parameters, such as the supply of mineral nutrients, particularly in animals. The framework of ecological stoichiometry uses information on the content of key elements such as carbon (C) and phosphorus (P) in individuals to predict the success of species. Nevertheless, intraspecific variation in content and the underlying mechanisms that generate such variation has been poorly explored. We studied two genotypes (G1 and G2) of Daphnia pulex that exhibit striking genotype × environment (G × E) interaction in response to shifts in dietary stoichiometry (C:P). G1 had higher fitness under C:P ∼ 100 diet, while G2 performed better in C:P ∼ 800. Dual (14) C/(33) P radiotracer assays show that G1 was more efficient in C processing, while G2 was more efficient in P use. Microarrays revealed that after 3 days of incubation, the genotypes differentially expressed ∼ 25% (7,224) of the total genes on the array under C:P ∼ 100 diet, and ∼ 30% (8,880) of genes under C:P ∼ 800. These results indicate large differences in C and P use between two coexisting genotypes. Importantly, such physiological differences can arise via differential expression of the genome due to alterations in dietary stoichiometry. Basic frameworks such as ecological stoichiometry enable integration of physiological and transcriptomic data, and represent initial steps toward understanding the interplay between fundamental ecological parameters such as nutrient supply and important evolutionary processes such as G × E interactions.
ABSTRACT Understanding how the genome interacts with the environment to produce a diversity of phenotypes is a central challenge in biology. However, we know little about how traits involved in nutrient processing interact with key ecological parameters, such as the supply of mineral nutrients, particularly in animals. The framework of ecological stoichiometry uses information on the content of key elements such as carbon (C) and phosphorus (P) in individuals to predict the success of species. Nevertheless, intraspecific variation in content and the underlying mechanisms that generate such variation has been poorly explored. We studied two genotypes (G1 and G2) of Daphnia pulex that exhibit striking genotype × environment (G × E) interaction in response to shifts in dietary stoichiometry (C:P). G1 had higher fitness under C:P ∼ 100 diet, while G2 performed better in C:P ∼ 800. Dual 14C/33P radiotracer assays show that G1 was more efficient in C processing, while G2 was more efficient in P use. Microarrays revealed that after 3 days of incubation, the genotypes differentially expressed ∼25% (7,224) of the total genes on the array under C:P ∼ 100 diet, and ∼30% (8,880) of genes under C:P ∼ 800. These results indicate large differences in C and P use between two coexisting genotypes. Importantly, such physiological differences can arise via differential expression of the genome due to alterations in dietary stoichiometry. Basic frameworks such as ecological stoichiometry enable integration of physiological and transcriptomic data, and represent initial steps toward understanding the interplay between fundamental ecological parameters such as nutrient supply and important evolutionary processes such as G × E interactions. J. Exp. Zool. 321A: 387–398, 2014. © 2014 Wiley Periodicals, Inc.
Author Roy Chowdhury, Priyanka
Weider, Lawrence J.
Lopez, Jacqueline A.
Jeyasingh, Punidan D.
Colbourne, John K.
Author_xml – sequence: 1
  givenname: Priyanka
  surname: Roy Chowdhury
  fullname: Roy Chowdhury, Priyanka
  email: Correspondence to: Priyanka Roy, Chowdhury, 501 Life Sciences West, Oklahoma State University, Stillwater, OK 74078., priyanka.roy_chowdhury@okstate.edu
  organization: Department of Zoology, Oklahoma State University, Oklahoma, Stillwater
– sequence: 2
  givenname: Jacqueline A.
  surname: Lopez
  fullname: Lopez, Jacqueline A.
  organization: Department of Biology, University of Notre Dame, Indiana, South Bend
– sequence: 3
  givenname: Lawrence J.
  surname: Weider
  fullname: Weider, Lawrence J.
  organization: Department of Biology, University of Oklahoma, Oklahoma, Norman
– sequence: 4
  givenname: John K.
  surname: Colbourne
  fullname: Colbourne, John K.
  organization: School of Biosciences, The University of Birmingham, Birmingham, United Kingdom
– sequence: 5
  givenname: Punidan D.
  surname: Jeyasingh
  fullname: Jeyasingh, Punidan D.
  organization: Department of Zoology, Oklahoma State University, Oklahoma, Stillwater
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24838198$$D View this record in MEDLINE/PubMed
BookMark eNp10M9P2zAUB3ALdQIKSPwFKEcu6fwrjXOEjrarqsJhaNI4WI77DIbUyewE1v31c1fohMQOlq2nz3u2v33Uc7UDhE4JHhCM6edH-D0gYljsoUNSMJpmlJHe7kzZAeqH8IhxxnHB99EB5YIJUohDdDfunG5t7VSV3IOrV1aHpDaJda1XoQFtjdXJs_JWbVSsJ1r5Mp6UWybNQx3i8l1InqyDdtMcxRfVPDirjtEno6oAJ6_7EbodX30bTdP59eTr6GKe6vjOImXYUIo1oYaaoeaQ5UrQJTGc4VimUHKRLUuNNRZaMJyDKoENTVHinEFhMDtC59u5ja9_dhBaubJBQ1UpB3UXJMk4o4JwwiM9e6VduYKlbLxdKb-Wb4FEMNgC7esQPBipbfv36zEPW0mC5SZxGROXm8T_Xb5reJv5AU239MVWsP6vk7OrH--9DS382nnln-QwZ3kmvy8m8nI6uZmNF3O5YH8AZZGfBg
CitedBy_id crossref_primary_10_1016_j_pt_2015_04_005
crossref_primary_10_1111_1365_2435_13258
crossref_primary_10_1038_srep28569
crossref_primary_10_1111_ele_14096
crossref_primary_10_3389_fevo_2019_00339
crossref_primary_10_1002_ece3_4894
crossref_primary_10_1002_etc_5901
crossref_primary_10_1002_lno_10763
crossref_primary_10_1111_mec_13009
crossref_primary_10_1186_s12864_016_2998_2
crossref_primary_10_1093_plankt_fbv095
crossref_primary_10_1016_j_aquatox_2017_10_012
crossref_primary_10_1007_s10682_015_9760_0
crossref_primary_10_1016_j_tree_2016_11_006
crossref_primary_10_1111_oik_02388
crossref_primary_10_1242_jeb_132498
crossref_primary_10_1111_1365_2435_12919
crossref_primary_10_1111_1365_2656_13419
crossref_primary_10_1111_fwb_13951
crossref_primary_10_3389_fmicb_2017_00722
crossref_primary_10_1098_rsos_170770
Cites_doi 10.2307/1940075
10.1002/iroh.200811068
10.1093/icb/43.1.3
10.1016/S1369-5266(99)00053-9
10.1111/j.1461-0248.2009.01368.x
10.1002/ece3.950
10.4319/lo.1994.39.5.1228
10.4319/lo.2004.49.4_part_2.1417
10.1111/j.1461-0248.2005.00803.x
10.1515/9780691228198
10.4319/lo.1998.43.6.1147
10.2506/cgbtr-201102
10.1111/j.1365-3040.2006.01608.x
10.1186/1471-2164-12-346
10.2307/1312897
10.1086/286164
10.1038/nrg2339
10.2307/1940703
10.1007/s00442-005-0003-x
10.1111/j.1365-294X.2007.03558.x
10.1126/science.175.4027.1272
10.1007/s00442-003-1283-7
10.1146/annurev.arplant.49.1.281
10.1146/annurev.es.25.110194.000245
10.1111/j.1365-294X.2011.05102.x
10.1248/bpb.35.824
10.1007/s00442-002-0965-x
10.1111/j.0030-1299.2005.14049.x
10.1093/nar/gkh063
10.1186/1741-7007-8-51
10.4319/lo.2008.53.4.1685
10.1016/j.nut.2003.09.026
10.1023/A:1019624425971
10.1093/aob/mch156
10.4319/lo.2007.52.1.0395
10.1186/gb-2004-5-2-r7
10.1128/EC.5.1.26-44.2006
10.1007/BF00043032
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/jez.1869
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1932-5231
EndPage 398
ExternalDocumentID 24838198
10_1002_jez_1869
JEZ1869
ark_67375_WNG_BHGPJFNL_N
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: NSF
  funderid: #0924401; #9977047
GroupedDBID ---
.3N
.GA
.Y3
05W
10A
186
1L6
1OC
31~
33P
3SF
4.4
4ZD
50Y
50Z
51W
51X
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADEOM
ADIZJ
ADMGS
ADOZA
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
J0M
JPC
LATKE
LAW
LEEKS
LH-
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RJQFR
ROL
RWI
RX1
SUPJJ
SV3
TEORI
TN5
UB1
UQL
V2E
W8V
W99
WBKPD
WHG
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZCG
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
AAYXX
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c5239-30f220c12f2f6c4e57a82d1f43020c2eb485dbc0c08c8307eabe36f9b073e9f03
IEDL.DBID DR2
ISSN 1932-5223
1932-5231
IngestDate Thu Jul 10 19:34:16 EDT 2025
Wed Feb 19 01:51:42 EST 2025
Tue Jul 01 04:17:00 EDT 2025
Thu Apr 24 22:59:08 EDT 2025
Wed Jan 22 16:40:25 EST 2025
Wed Oct 30 09:52:43 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5239-30f220c12f2f6c4e57a82d1f43020c2eb485dbc0c08c8307eabe36f9b073e9f03
Notes NSF - No. #0924401; No. #9977047
ArticleID:JEZ1869
ark:/67375/WNG-BHGPJFNL-N
istex:AA2A900E44BE3AAEF218E4831CDA74A5E036FE61
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24838198
PQID 1543281414
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1543281414
pubmed_primary_24838198
crossref_citationtrail_10_1002_jez_1869
crossref_primary_10_1002_jez_1869
wiley_primary_10_1002_jez_1869_JEZ1869
istex_primary_ark_67375_WNG_BHGPJFNL_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2014
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: August 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of experimental zoology. Part A, Ecological genetics and physiology
PublicationTitleAlternate J. Exp. Zool
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Cassab GI. 1998. Plant cell wall proteins. Annu Rev Plant Physiol Plant Mol Biol 49:281-309.
De Meester L. 1993. Genotype, fish-mediated chemical, and phototactic behavior in Daphnia Magna. Ecology 74:1467-1474.
DeMott WR, Gulati RD, Siewertsen K. 1998. Effects of phosphorus-deficient diets on the carbon and phosphorus balance of Daphnia magna. Limnol Oceanogr 43:1147-1161.
Weider LJ, Makino W, Acharya K, et al. 2005. Genotype X environment interactions, stoichiometric food quality effects, and clonal coexistence in Daphnia pulex. Oecologia 143:537-547.
Tollrian R, Harvell CD. 1999. The Ecology and Evolution of Inducible Defenses. Princeton, New Jersey: Princeton University Press.
Jeyasingh PD, Weider LJ. 2005. Phosphorus availability mediates plasticity in life-history traits and predator-prey interactions in Daphnia. Ecol Lett 8:1021-1028.
Jeyasingh PD, Ragavendran A, Paland S, et al. 2011. How do consumers deal with stoichiometric constraints? Lessons from functional genomics using Daphnia pulex, Mol Ecol 20:2341-2352.
Koonin EV, Fedorova ND, Jackson JD, et al. 2004. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol 5:R7.
Sterner RW, Hessen DO. 1994. Algal nutrient limitation and the nutrition of aquatic vertebrates. Ann Rev Ecol Syst 25:1-29.
Weider LJ, Glenn KL, Kyle M, Elser JJ. 2004. Associations among ribosomal (r)DNA intergenic spacer length, growth rate, and C:N:P stoichiometry in the genus Daphnia. Limnol Oceanogr 49:1417-1423.
Tollian R. 1995. Predator-induced morphological defenses: costs, life history shifts, and maternal effects in Daphnia pulex. Ecology 76:1691-1705.
Hessen DO, Anderson TR. 2008. Excess carbon in aquatic organisms and ecosystems: physiological, ecological, and evolutionary implications. Limnol Oceanogr 53:1685-1696.
Liu Y, Sturley SL. 2004. Nutritional genomics in yeast models. Nutrition 20:166-172.
Baeck JH, Lee SY. 2007. Transcriptomics analysis of phosphate starvation response in Escherichia coli. J Microbiol Biotechnol 17:244-252.
Schlichting CD, Smith H. 2002. Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes. Evol Ecol 16:189-211.
Hofmann AA, Willi Y. 2008. Detecting genetic responses to environmental change. Nat Rev Genet 9:421-432.
Levin BR. 1972. Coexistence of two asexual strains on a single resource. Science 175:1272-1274.
Sterner RW, Robinson J. 1994. Thresholds for growth in Daphnia magna with high and low phosphorus diets. Limnol Oceanogr 39:1229-1233.
Hammond JP, Broadley MR, White PJ. 2004. Genetic responses to phosphorus deficiency. Ann Bot 94:323-332.
Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. 2004. The KEGG resource for deciphering the genome. Nucleic Acids Res 32: (Database issue): D277-D280.
Jeyasingh PD, Weider LJ. 2007. Fundamental links between genes and elements: evolutionary implications of ecological stoichiometry. Mol Ecol 16:4649-4661.
Lampert W. 1977. Studies on the Carbon balance of Daphnia pulex as related to environmental conditions. VI. Determination of the "threshold" concentration as a factor controlling abundance of zooplankton species. Archiv fur Hydrobiol (Suppl 48):361-368.
Sterner RW. 2008. On the phosphorus limitation paradigm for lakes. Int Rev Hydrobiol 93:433-445.
Schlesinger WH. 1997. Biogeochemistry: an analysis of global change. MA, USA: Academic Press, Elsevier.
Tollian R, Leese F. 2010. Ecological genomics: steps towards unraveling the genetic basis of inducible defenses in Daphnia. BMC Biol 8:51.
He X, Wang W-X*. 2007. Kinetics of phosphorus in Daphnia at different food concentrations and C:P ratios. Limnol Oceanogr 52:395-406.
Frost PC, Evans-White MA, Finkel ZV, Jensen TC, Matzek V. 2005. Are we what we eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos 109:18-28.
Darchambeau F, Faerøvig PJ, Hessen DO. 2003. How Daphnia copes with excess Carbon in its food. Oecologia 136:336-346.
Jeyasingh PD, Weider LJ, Sterner RW. 2009. Genetically-based trade-offs in response to stoichiometric food quality influence competition in a keystone aquatic herbivore. Ecol Lett 12:1229-1237.
Jeyasingh PD, Cothran RD, Tobler M. 2014. Testing the ecological consequences of evolutionary change using elements. Ecol Evol 4:528-538.
Vermeer JG, Berendse F. 1983. The relationship between nutrient availability, shoot biomass and species richness in grassland and wetland communities. Vegetatio 53:121-126.
Elser JJ, Dobberfuhl D, MacKay NA, Schampel JH. 1996. Organism size, life-history, and N:P stoichiometry: towards a unified view of cellular and ecosystem processes. BioSciences 46:674-684.
Mizutani M. 2012. Impacts of diversification of cytochrome P450 on plant metabolism. Biol Pharm Bull 35:824-832.
Morey E, Kinney A, Beal M, et al. 2011. Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition. BMC Genomics 12:346-372.
Webb EC. 1992. Enzyme nomenclature 1992: recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzymes. San Diego: Published for the International Union of Biochemistry and Molecular Biology by Academic Press.
Sterner RW, Elser JJ. 2002. Ecological stoichiometry: the biology of elements from molecules to biospheres. Princeton, NJ, USA: Princeton University Press.
Fridley J. 2002. Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. Oecologia 132:271-277.
Moseley J, Chang C-W, Grossman AR. 2006. Genome-based approaches to understanding phosphorus deprivation responses and PSR1 control in Chlamydomonas reinhardtii. Eukaryot Cell 5:26-44.
Werner EG. 2003. The origin of metazoan complexity: porifera as integrated animals. Integr Comput Biol 43:3-10.
Grossman AR. 2000. Chlamydomonas reinhardtii and photosynthesis: genetics to genomics. Curr Opin Plant Biol 3:132-137.
Morcuende R, Bari R, Gibon Y, et al. 2007. Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30:85-112.
Boersma M, Spaak P, De Meester L. 1998. Predator-mediated plasticity in morphology, life history, and behavior of Daphnia: the uncoupling of responses. The American Naturalist 152:237-248.
2007; 17
1998; 49
2002; 16
2004; 20
2002; 132
2011
2004; 49
2000; 3
1995; 76
2008; 9
1983; 53
1997
2006; 5
1994; 25
2004; 5
1977; (Suppl 48)
1972; 175
2011; 12
1992
2007; 52
2008; 53
2007; 30
2002
2003; 136
2012; 35
1998; 43
2008; 93
1998; 152
2007; 16
1999
2009; 12
2004; 32
2004; 94
2014; 4
2005; 143
2005; 8
1993; 74
2011; 20
2005; 109
1983
1994; 39
1996; 46
2003; 43
2010; 8
e_1_2_7_6_1
Lampert W (e_1_2_7_23_1) 1977; 48
Sterner RW (e_1_2_7_35_1) 2002
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
Ritchie JT (e_1_2_7_31_1) 1983
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Webb EC (e_1_2_7_42_1) 1992
Schlesinger WH (e_1_2_7_32_1) 1997
Baeck JH (e_1_2_7_2_1) 2007; 17
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – reference: Tollian R. 1995. Predator-induced morphological defenses: costs, life history shifts, and maternal effects in Daphnia pulex. Ecology 76:1691-1705.
– reference: Sterner RW, Elser JJ. 2002. Ecological stoichiometry: the biology of elements from molecules to biospheres. Princeton, NJ, USA: Princeton University Press.
– reference: Jeyasingh PD, Weider LJ. 2007. Fundamental links between genes and elements: evolutionary implications of ecological stoichiometry. Mol Ecol 16:4649-4661.
– reference: Sterner RW, Hessen DO. 1994. Algal nutrient limitation and the nutrition of aquatic vertebrates. Ann Rev Ecol Syst 25:1-29.
– reference: Weider LJ, Makino W, Acharya K, et al. 2005. Genotype X environment interactions, stoichiometric food quality effects, and clonal coexistence in Daphnia pulex. Oecologia 143:537-547.
– reference: Koonin EV, Fedorova ND, Jackson JD, et al. 2004. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol 5:R7.
– reference: Morey E, Kinney A, Beal M, et al. 2011. Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition. BMC Genomics 12:346-372.
– reference: Sterner RW. 2008. On the phosphorus limitation paradigm for lakes. Int Rev Hydrobiol 93:433-445.
– reference: Jeyasingh PD, Cothran RD, Tobler M. 2014. Testing the ecological consequences of evolutionary change using elements. Ecol Evol 4:528-538.
– reference: Lampert W. 1977. Studies on the Carbon balance of Daphnia pulex as related to environmental conditions. VI. Determination of the "threshold" concentration as a factor controlling abundance of zooplankton species. Archiv fur Hydrobiol (Suppl 48):361-368.
– reference: Mizutani M. 2012. Impacts of diversification of cytochrome P450 on plant metabolism. Biol Pharm Bull 35:824-832.
– reference: Jeyasingh PD, Weider LJ. 2005. Phosphorus availability mediates plasticity in life-history traits and predator-prey interactions in Daphnia. Ecol Lett 8:1021-1028.
– reference: Schlichting CD, Smith H. 2002. Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes. Evol Ecol 16:189-211.
– reference: He X, Wang W-X*. 2007. Kinetics of phosphorus in Daphnia at different food concentrations and C:P ratios. Limnol Oceanogr 52:395-406.
– reference: Moseley J, Chang C-W, Grossman AR. 2006. Genome-based approaches to understanding phosphorus deprivation responses and PSR1 control in Chlamydomonas reinhardtii. Eukaryot Cell 5:26-44.
– reference: Schlesinger WH. 1997. Biogeochemistry: an analysis of global change. MA, USA: Academic Press, Elsevier.
– reference: Grossman AR. 2000. Chlamydomonas reinhardtii and photosynthesis: genetics to genomics. Curr Opin Plant Biol 3:132-137.
– reference: Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. 2004. The KEGG resource for deciphering the genome. Nucleic Acids Res 32: (Database issue): D277-D280.
– reference: Frost PC, Evans-White MA, Finkel ZV, Jensen TC, Matzek V. 2005. Are we what we eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos 109:18-28.
– reference: Jeyasingh PD, Ragavendran A, Paland S, et al. 2011. How do consumers deal with stoichiometric constraints? Lessons from functional genomics using Daphnia pulex, Mol Ecol 20:2341-2352.
– reference: Werner EG. 2003. The origin of metazoan complexity: porifera as integrated animals. Integr Comput Biol 43:3-10.
– reference: Elser JJ, Dobberfuhl D, MacKay NA, Schampel JH. 1996. Organism size, life-history, and N:P stoichiometry: towards a unified view of cellular and ecosystem processes. BioSciences 46:674-684.
– reference: Weider LJ, Glenn KL, Kyle M, Elser JJ. 2004. Associations among ribosomal (r)DNA intergenic spacer length, growth rate, and C:N:P stoichiometry in the genus Daphnia. Limnol Oceanogr 49:1417-1423.
– reference: Fridley J. 2002. Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. Oecologia 132:271-277.
– reference: Darchambeau F, Faerøvig PJ, Hessen DO. 2003. How Daphnia copes with excess Carbon in its food. Oecologia 136:336-346.
– reference: Boersma M, Spaak P, De Meester L. 1998. Predator-mediated plasticity in morphology, life history, and behavior of Daphnia: the uncoupling of responses. The American Naturalist 152:237-248.
– reference: Hofmann AA, Willi Y. 2008. Detecting genetic responses to environmental change. Nat Rev Genet 9:421-432.
– reference: Baeck JH, Lee SY. 2007. Transcriptomics analysis of phosphate starvation response in Escherichia coli. J Microbiol Biotechnol 17:244-252.
– reference: Cassab GI. 1998. Plant cell wall proteins. Annu Rev Plant Physiol Plant Mol Biol 49:281-309.
– reference: Vermeer JG, Berendse F. 1983. The relationship between nutrient availability, shoot biomass and species richness in grassland and wetland communities. Vegetatio 53:121-126.
– reference: Liu Y, Sturley SL. 2004. Nutritional genomics in yeast models. Nutrition 20:166-172.
– reference: Hessen DO, Anderson TR. 2008. Excess carbon in aquatic organisms and ecosystems: physiological, ecological, and evolutionary implications. Limnol Oceanogr 53:1685-1696.
– reference: Jeyasingh PD, Weider LJ, Sterner RW. 2009. Genetically-based trade-offs in response to stoichiometric food quality influence competition in a keystone aquatic herbivore. Ecol Lett 12:1229-1237.
– reference: DeMott WR, Gulati RD, Siewertsen K. 1998. Effects of phosphorus-deficient diets on the carbon and phosphorus balance of Daphnia magna. Limnol Oceanogr 43:1147-1161.
– reference: Hammond JP, Broadley MR, White PJ. 2004. Genetic responses to phosphorus deficiency. Ann Bot 94:323-332.
– reference: Webb EC. 1992. Enzyme nomenclature 1992: recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzymes. San Diego: Published for the International Union of Biochemistry and Molecular Biology by Academic Press.
– reference: Sterner RW, Robinson J. 1994. Thresholds for growth in Daphnia magna with high and low phosphorus diets. Limnol Oceanogr 39:1229-1233.
– reference: Morcuende R, Bari R, Gibon Y, et al. 2007. Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30:85-112.
– reference: Levin BR. 1972. Coexistence of two asexual strains on a single resource. Science 175:1272-1274.
– reference: Tollrian R, Harvell CD. 1999. The Ecology and Evolution of Inducible Defenses. Princeton, New Jersey: Princeton University Press.
– reference: De Meester L. 1993. Genotype, fish-mediated chemical, and phototactic behavior in Daphnia Magna. Ecology 74:1467-1474.
– reference: Tollian R, Leese F. 2010. Ecological genomics: steps towards unraveling the genetic basis of inducible defenses in Daphnia. BMC Biol 8:51.
– volume: 94
  start-page: 323
  year: 2004
  end-page: 332
  article-title: Genetic responses to phosphorus deficiency
  publication-title: Ann Bot
– year: 2011
– volume: 4
  start-page: 528
  year: 2014
  end-page: 538
  article-title: Testing the ecological consequences of evolutionary change using elements
  publication-title: Ecol Evol
– volume: 175
  start-page: 1272
  year: 1972
  end-page: 1274
  article-title: Coexistence of two asexual strains on a single resource
  publication-title: Science
– volume: 8
  start-page: 51
  year: 2010
  article-title: Ecological genomics: steps towards unraveling the genetic basis of inducible defenses in
  publication-title: BMC Biol
– volume: 93
  start-page: 433
  year: 2008
  end-page: 445
  article-title: On the phosphorus limitation paradigm for lakes
  publication-title: Int Rev Hydrobiol
– volume: 49
  start-page: 1417
  year: 2004
  end-page: 1423
  article-title: Associations among ribosomal (r)DNA intergenic spacer length, growth rate, and C:N:P stoichiometry in the genus
  publication-title: Limnol Oceanogr
– volume: 17
  start-page: 244
  year: 2007
  end-page: 252
  article-title: Transcriptomics analysis of phosphate starvation response in
  publication-title: J Microbiol Biotechnol
– volume: 49
  start-page: 281
  year: 1998
  end-page: 309
  article-title: Plant cell wall proteins
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
– volume: (Suppl 48)
  start-page: 361
  year: 1977
  end-page: 368
  article-title: Studies on the Carbon balance of as related to environmental conditions. VI. Determination of the “threshold” concentration as a factor controlling abundance of zooplankton species
  publication-title: Archiv fur Hydrobiol
– volume: 143
  start-page: 537
  year: 2005
  end-page: 547
  article-title: Genotype X environment interactions, stoichiometric food quality effects, and clonal coexistence in
  publication-title: Oecologia
– volume: 5
  start-page: R7
  year: 2004
  article-title: A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes
  publication-title: Genome Biol
– volume: 39
  start-page: 1229
  year: 1994
  end-page: 1233
  article-title: Thresholds for growth in with high and low phosphorus diets
  publication-title: Limnol Oceanogr
– volume: 132
  start-page: 271
  year: 2002
  end-page: 277
  article-title: Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities
  publication-title: Oecologia
– volume: 52
  start-page: 395
  year: 2007
  end-page: 406
  article-title: Kinetics of phosphorus in at different food concentrations and C:P ratios
  publication-title: Limnol Oceanogr
– volume: 136
  start-page: 336
  year: 2003
  end-page: 346
  article-title: How copes with excess Carbon in its food
  publication-title: Oecologia
– volume: 12
  start-page: 346
  year: 2011
  end-page: 372
  article-title: Transcriptomic response of the red tide dinoflagellate, , to nitrogen and phosphorus depletion and addition
  publication-title: BMC Genomics
– volume: 9
  start-page: 421
  year: 2008
  end-page: 432
  article-title: Detecting genetic responses to environmental change
  publication-title: Nat Rev Genet
– volume: 16
  start-page: 189
  year: 2002
  end-page: 211
  article-title: Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes
  publication-title: Evol Ecol
– volume: 5
  start-page: 26
  year: 2006
  end-page: 44
  article-title: Genome‐based approaches to understanding phosphorus deprivation responses and PSR1 control in
  publication-title: Eukaryot Cell
– volume: 74
  start-page: 1467
  year: 1993
  end-page: 1474
  article-title: Genotype, fish‐mediated chemical, and phototactic behavior in
  publication-title: Ecology
– year: 1992
– volume: 109
  start-page: 18
  year: 2005
  end-page: 28
  article-title: Are we what we eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world
  publication-title: Oikos
– volume: 30
  start-page: 85
  year: 2007
  end-page: 112
  article-title: Genome‐wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus
  publication-title: Plant Cell Environ
– volume: 43
  start-page: 1147
  year: 1998
  end-page: 1161
  article-title: Effects of phosphorus‐deficient diets on the carbon and phosphorus balance of
  publication-title: Limnol Oceanogr
– volume: 76
  start-page: 1691
  year: 1995
  end-page: 1705
  article-title: Predator‐induced morphological defenses: costs, life history shifts, and maternal effects in
  publication-title: Ecology
– volume: 12
  start-page: 1229
  year: 2009
  end-page: 1237
  article-title: Genetically‐based trade‐offs in response to stoichiometric food quality influence competition in a keystone aquatic herbivore
  publication-title: Ecol Lett
– volume: 16
  start-page: 4649
  year: 2007
  end-page: 4661
  article-title: Fundamental links between genes and elements: evolutionary implications of ecological stoichiometry
  publication-title: Mol Ecol
– volume: 35
  start-page: 824
  year: 2012
  end-page: 832
  article-title: Impacts of diversification of cytochrome P450 on plant metabolism
  publication-title: Biol Pharm Bull
– year: 2002
– volume: 46
  start-page: 674
  year: 1996
  end-page: 684
  article-title: Organism size, life‐history, and N:P stoichiometry: towards a unified view of cellular and ecosystem processes
  publication-title: BioSciences
– volume: 53
  start-page: 121
  year: 1983
  end-page: 126
  article-title: The relationship between nutrient availability, shoot biomass and species richness in grassland and wetland communities
  publication-title: Vegetatio
– year: 1997
– volume: 25
  start-page: 1
  year: 1994
  end-page: 29
  article-title: Algal nutrient limitation and the nutrition of aquatic vertebrates
  publication-title: Ann Rev Ecol Syst
– volume: 32
  start-page: D277
  year: 2004
  end-page: D280
  article-title: The KEGG resource for deciphering the genome
  publication-title: Nucleic Acids Res
– volume: 43
  start-page: 3
  year: 2003
  end-page: 10
  article-title: The origin of metazoan complexity: porifera as integrated animals
  publication-title: Integr Comput Biol
– volume: 53
  start-page: 1685
  year: 2008
  end-page: 1696
  article-title: Excess carbon in aquatic organisms and ecosystems: physiological, ecological, and evolutionary implications
  publication-title: Limnol Oceanogr
– volume: 152
  start-page: 237
  year: 1998
  end-page: 248
  article-title: Predator‐mediated plasticity in morphology, life history, and behavior of Daphnia: the uncoupling of responses
  publication-title: The American Naturalist
– volume: 20
  start-page: 2341
  year: 2011
  end-page: 2352
  article-title: How do consumers deal with stoichiometric constraints? Lessons from functional genomics using
  publication-title: Mol Ecol
– start-page: 29
  year: 1983
  end-page: 44
– volume: 3
  start-page: 132
  year: 2000
  end-page: 137
  article-title: and photosynthesis: genetics to genomics
  publication-title: Curr Opin Plant Biol
– volume: 8
  start-page: 1021
  year: 2005
  end-page: 1028
  article-title: Phosphorus availability mediates plasticity in life‐history traits and predator‐prey interactions in
  publication-title: Ecol Lett
– volume: 20
  start-page: 166
  year: 2004
  end-page: 172
  article-title: Nutritional genomics in yeast models
  publication-title: Nutrition
– year: 1999
– ident: e_1_2_7_6_1
  doi: 10.2307/1940075
– ident: e_1_2_7_34_1
  doi: 10.1002/iroh.200811068
– ident: e_1_2_7_45_1
  doi: 10.1093/icb/43.1.3
– volume-title: Enzyme nomenclature 1992: recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzymes
  year: 1992
  ident: e_1_2_7_42_1
– ident: e_1_2_7_11_1
  doi: 10.1016/S1369-5266(99)00053-9
– ident: e_1_2_7_18_1
  doi: 10.1111/j.1461-0248.2009.01368.x
– ident: e_1_2_7_20_1
  doi: 10.1002/ece3.950
– ident: e_1_2_7_37_1
  doi: 10.4319/lo.1994.39.5.1228
– ident: e_1_2_7_43_1
  doi: 10.4319/lo.2004.49.4_part_2.1417
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1461-0248.2005.00803.x
– ident: e_1_2_7_40_1
  doi: 10.1515/9780691228198
– ident: e_1_2_7_7_1
  doi: 10.4319/lo.1998.43.6.1147
– ident: e_1_2_7_26_1
  doi: 10.2506/cgbtr-201102
– start-page: 29
  volume-title: Limitations to efficient water use in crop production
  year: 1983
  ident: e_1_2_7_31_1
– volume-title: Biogeochemistry: an analysis of global change
  year: 1997
  ident: e_1_2_7_32_1
– ident: e_1_2_7_28_1
  doi: 10.1111/j.1365-3040.2006.01608.x
– ident: e_1_2_7_29_1
  doi: 10.1186/1471-2164-12-346
– ident: e_1_2_7_8_1
  doi: 10.2307/1312897
– ident: e_1_2_7_3_1
  doi: 10.1086/286164
– ident: e_1_2_7_15_1
  doi: 10.1038/nrg2339
– ident: e_1_2_7_38_1
  doi: 10.2307/1940703
– ident: e_1_2_7_44_1
  doi: 10.1007/s00442-005-0003-x
– volume: 17
  start-page: 244
  year: 2007
  ident: e_1_2_7_2_1
  article-title: Transcriptomics analysis of phosphate starvation response in Escherichia coli
  publication-title: J Microbiol Biotechnol
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1365-294X.2007.03558.x
– ident: e_1_2_7_24_1
  doi: 10.1126/science.175.4027.1272
– ident: e_1_2_7_5_1
  doi: 10.1007/s00442-003-1283-7
– ident: e_1_2_7_4_1
  doi: 10.1146/annurev.arplant.49.1.281
– ident: e_1_2_7_36_1
  doi: 10.1146/annurev.es.25.110194.000245
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1365-294X.2011.05102.x
– ident: e_1_2_7_27_1
  doi: 10.1248/bpb.35.824
– ident: e_1_2_7_9_1
  doi: 10.1007/s00442-002-0965-x
– ident: e_1_2_7_10_1
  doi: 10.1111/j.0030-1299.2005.14049.x
– ident: e_1_2_7_21_1
  doi: 10.1093/nar/gkh063
– ident: e_1_2_7_39_1
  doi: 10.1186/1741-7007-8-51
– ident: e_1_2_7_14_1
  doi: 10.4319/lo.2008.53.4.1685
– ident: e_1_2_7_25_1
  doi: 10.1016/j.nut.2003.09.026
– ident: e_1_2_7_33_1
  doi: 10.1023/A:1019624425971
– ident: e_1_2_7_12_1
  doi: 10.1093/aob/mch156
– ident: e_1_2_7_13_1
  doi: 10.4319/lo.2007.52.1.0395
– volume-title: Ecological stoichiometry: the biology of elements from molecules to biospheres
  year: 2002
  ident: e_1_2_7_35_1
– ident: e_1_2_7_22_1
  doi: 10.1186/gb-2004-5-2-r7
– volume: 48
  start-page: 361
  year: 1977
  ident: e_1_2_7_23_1
  article-title: Studies on the Carbon balance of Daphnia pulex as related to environmental conditions. VI. Determination of the “threshold” concentration as a factor controlling abundance of zooplankton species
  publication-title: Archiv fur Hydrobiol
– ident: e_1_2_7_30_1
  doi: 10.1128/EC.5.1.26-44.2006
– ident: e_1_2_7_41_1
  doi: 10.1007/BF00043032
SSID ssj0054094
Score 2.128779
Snippet ABSTRACT Understanding how the genome interacts with the environment to produce a diversity of phenotypes is a central challenge in biology. However, we know...
Understanding how the genome interacts with the environment to produce a diversity of phenotypes is a central challenge in biology. However, we know little...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 387
SubjectTerms Animals
Carbon - metabolism
Daphnia - genetics
Daphnia - metabolism
Genomics
Genotype
Phosphorus - metabolism
Protein Array Analysis
Species Specificity
Transcriptome
Title Functional genomics of intraspecific variation in carbon and phosphorus kinetics in Daphnia
URI https://api.istex.fr/ark:/67375/WNG-BHGPJFNL-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjez.1869
https://www.ncbi.nlm.nih.gov/pubmed/24838198
https://www.proquest.com/docview/1543281414
Volume 321
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swELYm0CRegLEBhW0y0sSeUlLHTp3HsVGqilXTNASCB8t2HFEKSdW0CPHruYubTCCQpj1EiaKL5fh89nf23WdCvggbS5cmPIhdbALe5TbQIBjIGLBzCpaeRJic_HMY90_54FycL6IqMRfG80M0C25oGdV4jQauTXnwlzT02j208TwlGH4xVAvx0O-GOUqg2-I3lNHXYlHNOxuyg_rDJzPRMjbq_Usw8ylqraad3hq5rCvso03G7fnMtO3DMy7H__ujdbK6QKP0m-8-78gbl2-QtxdFtdb-nlz2YNbzi4UUyVxvR7akRUZHuCKMOZoYZ0TvwN2u9AvvqdVTA086T-nkqijhms5LOoa6IR80SvzQk6t8pD-Q097Rn-_9YHEaQ2DBWcUAiYyx0HZYxrLYcie6WrK0k_EIEKdlznApUmNDG0orYeRw2rgozhIDg4hLsjDaJEt5kbttQp0QzAFuE9JaHkmTOG5SBq6fDTWm7rbI11ozyi6oyvHEjBvlSZaZgqZS2FQtstdITjw9xwsy-5VyGwE9HWM4W1eos-GxOuwf_xr0hidqCIXV2ldgZLhzonNXzEsFODNissM7vEW2fLdoSmNcotcLld6vlPtqPdTg6ALvO_8quEtWAJ5xH274kSzNpnP3CSDQzHyuOvsj7nADWw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEB7ShNK-9D62pwslffLGK0temT71yGa73ZhSEhrSgpBkmWw2tZc9Ssmv74y1dklJofTB2JixGGt0fDMafQJ4KWwiXZ7yMHGJCXmf21CjYCgTxM459vQ0ps3J-1kyPOSjI3G0Aa-bvTCeH6INuFHPqMdr6uAUkN75zRp66s67dKDSFdiiA71rf-pzyx0lyHHxS8rkbbG4YZ6N2E7z5YW5aIuq9edlQPMibq0nnsFN-Nao7PNNpt3V0nTt-R9sjv_5T7fgxhqQBm98C7oNG668A1ePqzrcfhe-DnDi8_HCgPhcv0_sIqiKYEJBYdqmSalGwQ_0uGsT4_vA6rnBJ13mweykWuA1Xy2CKSpHlNAk8V7PTsqJvgeHg92Dd8NwfSBDaNFfpRyJgrHI9ljBisRyJ_pasrxX8BhBp2XOcClyYyMbSStx8HDauDgpUoPjiEuLKL4Pm2VVuocQOCGYQ-gmpLU8liZ13OQMvT8badq924FXjWmUXbOV06EZZ8rzLDOFVaWoqjrwopWceYaOS2S2a-u2Ano-pYy2vlBfsj31drj3aTTIxirDwhrzK-xntHiiS1etFgqhZsxkj_d4Bx74dtGWxrgkxxeV3q6t-1c91Gj3mO6P_lXwOVwbHuyP1fhD9vExXEe0xn324RPYXM5X7ikioqV5Vrf8XxLRB3Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgE4gXYOOrbDBPQuMpXerYqfMI67JSRjQhJqbtwbIdRyuFpOoHmvbXcxc3QUNDQjxEiaKL5fjO9u_su58JeSNsLF2e8CB2sQl4n9tAg2AgY8DOOfT0JMLk5E9ZPDzlozNxtoqqxFwYzw_RLrhhz6jHa-zg07zY_00a-s1dd_E8pbtkncehRIsefG6powT6LX5HGZ0tFjXEsyHbb768MRWtY6te3YYzb8LWet5JH5GLpsY-3GTSXS5M117_Qeb4f7_0mDxcwVH6ztvPBrnjyk1y77yqF9ufkIsUpj2_WkiRzfXH2M5pVdAxLgljkiYGGtGf4G_XCob31OqZgSdd5nR6Wc3hmi3ndAJ1Q0JolBjo6WU51k_JaXr45WAYrI5jCCx4qxghUTAW2h4rWBFb7kRfS5b3Ch4B5LTMGS5FbmxoQ2klDB1OGxfFRWJgFHFJEUbPyFpZle4FoU4I5gC4CWktj6RJHDc5A9_PhhpzdzvkbaMZZVdc5XhkxnflWZaZgqZS2FQdsttKTj0_xy0ye7VyWwE9m2A8W1-or9mRej88Ohml2bHKoLBG-wp6GW6d6NJVy7kCoBkx2eM93iHPvVm0pTEu0e2FSu_Vyv1rPdTo8BzvL_9VcIfcPxmk6vhD9nGLPACoxn3o4TZZW8yW7hXAoYV5Xdv9LxrEBi4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+genomics+of+intraspecific+variation+in+carbon+and+phosphorus+kinetics+in+Daphnia&rft.jtitle=Journal+of+experimental+zoology.+Part+A%2C+Ecological+genetics+and+physiology&rft.au=Chowdhury%2C+Priyanka+Roy&rft.au=Lopez%2C+Jacqueline+A&rft.au=Weider%2C+Lawrence+J&rft.au=Colbourne%2C+John+K&rft.date=2014-08-01&rft.issn=1932-5231&rft.eissn=1932-5231&rft.volume=321&rft.issue=7&rft.spage=387&rft_id=info:doi/10.1002%2Fjez.1869&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-5223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-5223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-5223&client=summon