Functional genomics of intraspecific variation in carbon and phosphorus kinetics in Daphnia
ABSTRACT Understanding how the genome interacts with the environment to produce a diversity of phenotypes is a central challenge in biology. However, we know little about how traits involved in nutrient processing interact with key ecological parameters, such as the supply of mineral nutrients, part...
Saved in:
Published in | Journal of experimental zoology. Part A, Ecological genetics and physiology Vol. 321; no. 7; pp. 387 - 398 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.08.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1932-5223 1932-5231 1932-5231 |
DOI | 10.1002/jez.1869 |
Cover
Loading…
Abstract | ABSTRACT
Understanding how the genome interacts with the environment to produce a diversity of phenotypes is a central challenge in biology. However, we know little about how traits involved in nutrient processing interact with key ecological parameters, such as the supply of mineral nutrients, particularly in animals. The framework of ecological stoichiometry uses information on the content of key elements such as carbon (C) and phosphorus (P) in individuals to predict the success of species. Nevertheless, intraspecific variation in content and the underlying mechanisms that generate such variation has been poorly explored. We studied two genotypes (G1 and G2) of Daphnia pulex that exhibit striking genotype × environment (G × E) interaction in response to shifts in dietary stoichiometry (C:P). G1 had higher fitness under C:P ∼ 100 diet, while G2 performed better in C:P ∼ 800. Dual 14C/33P radiotracer assays show that G1 was more efficient in C processing, while G2 was more efficient in P use. Microarrays revealed that after 3 days of incubation, the genotypes differentially expressed ∼25% (7,224) of the total genes on the array under C:P ∼ 100 diet, and ∼30% (8,880) of genes under C:P ∼ 800. These results indicate large differences in C and P use between two coexisting genotypes. Importantly, such physiological differences can arise via differential expression of the genome due to alterations in dietary stoichiometry. Basic frameworks such as ecological stoichiometry enable integration of physiological and transcriptomic data, and represent initial steps toward understanding the interplay between fundamental ecological parameters such as nutrient supply and important evolutionary processes such as G × E interactions. J. Exp. Zool. 321A: 387–398, 2014. © 2014 Wiley Periodicals, Inc. |
---|---|
AbstractList | Understanding how the genome interacts with the environment to produce a diversity of phenotypes is a central challenge in biology. However, we know little about how traits involved in nutrient processing interact with key ecological parameters, such as the supply of mineral nutrients, particularly in animals. The framework of ecological stoichiometry uses information on the content of key elements such as carbon (C) and phosphorus (P) in individuals to predict the success of species. Nevertheless, intraspecific variation in content and the underlying mechanisms that generate such variation has been poorly explored. We studied two genotypes (G1 and G2) of Daphnia pulex that exhibit striking genotype × environment (G × E) interaction in response to shifts in dietary stoichiometry (C:P). G1 had higher fitness under C:P ∼ 100 diet, while G2 performed better in C:P ∼ 800. Dual (14) C/(33) P radiotracer assays show that G1 was more efficient in C processing, while G2 was more efficient in P use. Microarrays revealed that after 3 days of incubation, the genotypes differentially expressed ∼ 25% (7,224) of the total genes on the array under C:P ∼ 100 diet, and ∼ 30% (8,880) of genes under C:P ∼ 800. These results indicate large differences in C and P use between two coexisting genotypes. Importantly, such physiological differences can arise via differential expression of the genome due to alterations in dietary stoichiometry. Basic frameworks such as ecological stoichiometry enable integration of physiological and transcriptomic data, and represent initial steps toward understanding the interplay between fundamental ecological parameters such as nutrient supply and important evolutionary processes such as G × E interactions.Understanding how the genome interacts with the environment to produce a diversity of phenotypes is a central challenge in biology. However, we know little about how traits involved in nutrient processing interact with key ecological parameters, such as the supply of mineral nutrients, particularly in animals. The framework of ecological stoichiometry uses information on the content of key elements such as carbon (C) and phosphorus (P) in individuals to predict the success of species. Nevertheless, intraspecific variation in content and the underlying mechanisms that generate such variation has been poorly explored. We studied two genotypes (G1 and G2) of Daphnia pulex that exhibit striking genotype × environment (G × E) interaction in response to shifts in dietary stoichiometry (C:P). G1 had higher fitness under C:P ∼ 100 diet, while G2 performed better in C:P ∼ 800. Dual (14) C/(33) P radiotracer assays show that G1 was more efficient in C processing, while G2 was more efficient in P use. Microarrays revealed that after 3 days of incubation, the genotypes differentially expressed ∼ 25% (7,224) of the total genes on the array under C:P ∼ 100 diet, and ∼ 30% (8,880) of genes under C:P ∼ 800. These results indicate large differences in C and P use between two coexisting genotypes. Importantly, such physiological differences can arise via differential expression of the genome due to alterations in dietary stoichiometry. Basic frameworks such as ecological stoichiometry enable integration of physiological and transcriptomic data, and represent initial steps toward understanding the interplay between fundamental ecological parameters such as nutrient supply and important evolutionary processes such as G × E interactions. Understanding how the genome interacts with the environment to produce a diversity of phenotypes is a central challenge in biology. However, we know little about how traits involved in nutrient processing interact with key ecological parameters, such as the supply of mineral nutrients, particularly in animals. The framework of ecological stoichiometry uses information on the content of key elements such as carbon (C) and phosphorus (P) in individuals to predict the success of species. Nevertheless, intraspecific variation in content and the underlying mechanisms that generate such variation has been poorly explored. We studied two genotypes (G1 and G2) of Daphnia pulex that exhibit striking genotype × environment (G × E) interaction in response to shifts in dietary stoichiometry (C:P). G1 had higher fitness under C:P ∼ 100 diet, while G2 performed better in C:P ∼ 800. Dual (14) C/(33) P radiotracer assays show that G1 was more efficient in C processing, while G2 was more efficient in P use. Microarrays revealed that after 3 days of incubation, the genotypes differentially expressed ∼ 25% (7,224) of the total genes on the array under C:P ∼ 100 diet, and ∼ 30% (8,880) of genes under C:P ∼ 800. These results indicate large differences in C and P use between two coexisting genotypes. Importantly, such physiological differences can arise via differential expression of the genome due to alterations in dietary stoichiometry. Basic frameworks such as ecological stoichiometry enable integration of physiological and transcriptomic data, and represent initial steps toward understanding the interplay between fundamental ecological parameters such as nutrient supply and important evolutionary processes such as G × E interactions. ABSTRACT Understanding how the genome interacts with the environment to produce a diversity of phenotypes is a central challenge in biology. However, we know little about how traits involved in nutrient processing interact with key ecological parameters, such as the supply of mineral nutrients, particularly in animals. The framework of ecological stoichiometry uses information on the content of key elements such as carbon (C) and phosphorus (P) in individuals to predict the success of species. Nevertheless, intraspecific variation in content and the underlying mechanisms that generate such variation has been poorly explored. We studied two genotypes (G1 and G2) of Daphnia pulex that exhibit striking genotype × environment (G × E) interaction in response to shifts in dietary stoichiometry (C:P). G1 had higher fitness under C:P ∼ 100 diet, while G2 performed better in C:P ∼ 800. Dual 14C/33P radiotracer assays show that G1 was more efficient in C processing, while G2 was more efficient in P use. Microarrays revealed that after 3 days of incubation, the genotypes differentially expressed ∼25% (7,224) of the total genes on the array under C:P ∼ 100 diet, and ∼30% (8,880) of genes under C:P ∼ 800. These results indicate large differences in C and P use between two coexisting genotypes. Importantly, such physiological differences can arise via differential expression of the genome due to alterations in dietary stoichiometry. Basic frameworks such as ecological stoichiometry enable integration of physiological and transcriptomic data, and represent initial steps toward understanding the interplay between fundamental ecological parameters such as nutrient supply and important evolutionary processes such as G × E interactions. J. Exp. Zool. 321A: 387–398, 2014. © 2014 Wiley Periodicals, Inc. |
Author | Roy Chowdhury, Priyanka Weider, Lawrence J. Lopez, Jacqueline A. Jeyasingh, Punidan D. Colbourne, John K. |
Author_xml | – sequence: 1 givenname: Priyanka surname: Roy Chowdhury fullname: Roy Chowdhury, Priyanka email: Correspondence to: Priyanka Roy, Chowdhury, 501 Life Sciences West, Oklahoma State University, Stillwater, OK 74078., priyanka.roy_chowdhury@okstate.edu organization: Department of Zoology, Oklahoma State University, Oklahoma, Stillwater – sequence: 2 givenname: Jacqueline A. surname: Lopez fullname: Lopez, Jacqueline A. organization: Department of Biology, University of Notre Dame, Indiana, South Bend – sequence: 3 givenname: Lawrence J. surname: Weider fullname: Weider, Lawrence J. organization: Department of Biology, University of Oklahoma, Oklahoma, Norman – sequence: 4 givenname: John K. surname: Colbourne fullname: Colbourne, John K. organization: School of Biosciences, The University of Birmingham, Birmingham, United Kingdom – sequence: 5 givenname: Punidan D. surname: Jeyasingh fullname: Jeyasingh, Punidan D. organization: Department of Zoology, Oklahoma State University, Oklahoma, Stillwater |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24838198$$D View this record in MEDLINE/PubMed |
BookMark | eNp10M9P2zAUB3ALdQIKSPwFKEcu6fwrjXOEjrarqsJhaNI4WI77DIbUyewE1v31c1fohMQOlq2nz3u2v33Uc7UDhE4JHhCM6edH-D0gYljsoUNSMJpmlJHe7kzZAeqH8IhxxnHB99EB5YIJUohDdDfunG5t7VSV3IOrV1aHpDaJda1XoQFtjdXJs_JWbVSsJ1r5Mp6UWybNQx3i8l1InqyDdtMcxRfVPDirjtEno6oAJ6_7EbodX30bTdP59eTr6GKe6vjOImXYUIo1oYaaoeaQ5UrQJTGc4VimUHKRLUuNNRZaMJyDKoENTVHinEFhMDtC59u5ja9_dhBaubJBQ1UpB3UXJMk4o4JwwiM9e6VduYKlbLxdKb-Wb4FEMNgC7esQPBipbfv36zEPW0mC5SZxGROXm8T_Xb5reJv5AU239MVWsP6vk7OrH--9DS382nnln-QwZ3kmvy8m8nI6uZmNF3O5YH8AZZGfBg |
CitedBy_id | crossref_primary_10_1016_j_pt_2015_04_005 crossref_primary_10_1111_1365_2435_13258 crossref_primary_10_1038_srep28569 crossref_primary_10_1111_ele_14096 crossref_primary_10_3389_fevo_2019_00339 crossref_primary_10_1002_ece3_4894 crossref_primary_10_1002_etc_5901 crossref_primary_10_1002_lno_10763 crossref_primary_10_1111_mec_13009 crossref_primary_10_1186_s12864_016_2998_2 crossref_primary_10_1093_plankt_fbv095 crossref_primary_10_1016_j_aquatox_2017_10_012 crossref_primary_10_1007_s10682_015_9760_0 crossref_primary_10_1016_j_tree_2016_11_006 crossref_primary_10_1111_oik_02388 crossref_primary_10_1242_jeb_132498 crossref_primary_10_1111_1365_2435_12919 crossref_primary_10_1111_1365_2656_13419 crossref_primary_10_1111_fwb_13951 crossref_primary_10_3389_fmicb_2017_00722 crossref_primary_10_1098_rsos_170770 |
Cites_doi | 10.2307/1940075 10.1002/iroh.200811068 10.1093/icb/43.1.3 10.1016/S1369-5266(99)00053-9 10.1111/j.1461-0248.2009.01368.x 10.1002/ece3.950 10.4319/lo.1994.39.5.1228 10.4319/lo.2004.49.4_part_2.1417 10.1111/j.1461-0248.2005.00803.x 10.1515/9780691228198 10.4319/lo.1998.43.6.1147 10.2506/cgbtr-201102 10.1111/j.1365-3040.2006.01608.x 10.1186/1471-2164-12-346 10.2307/1312897 10.1086/286164 10.1038/nrg2339 10.2307/1940703 10.1007/s00442-005-0003-x 10.1111/j.1365-294X.2007.03558.x 10.1126/science.175.4027.1272 10.1007/s00442-003-1283-7 10.1146/annurev.arplant.49.1.281 10.1146/annurev.es.25.110194.000245 10.1111/j.1365-294X.2011.05102.x 10.1248/bpb.35.824 10.1007/s00442-002-0965-x 10.1111/j.0030-1299.2005.14049.x 10.1093/nar/gkh063 10.1186/1741-7007-8-51 10.4319/lo.2008.53.4.1685 10.1016/j.nut.2003.09.026 10.1023/A:1019624425971 10.1093/aob/mch156 10.4319/lo.2007.52.1.0395 10.1186/gb-2004-5-2-r7 10.1128/EC.5.1.26-44.2006 10.1007/BF00043032 |
ContentType | Journal Article |
Copyright | 2014 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2014 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/jez.1869 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1932-5231 |
EndPage | 398 |
ExternalDocumentID | 24838198 10_1002_jez_1869 JEZ1869 ark_67375_WNG_BHGPJFNL_N |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: NSF funderid: #0924401; #9977047 |
GroupedDBID | --- .3N .GA .Y3 05W 10A 186 1L6 1OC 31~ 33P 3SF 4.4 4ZD 50Y 50Z 51W 51X 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADEOM ADIZJ ADMGS ADOZA AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ J0M JPC LATKE LAW LEEKS LH- LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D Q.N QB0 QRW R.K RJQFR ROL RWI RX1 SUPJJ SV3 TEORI TN5 UB1 UQL V2E W8V W99 WBKPD WHG WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZCG ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ AAYXX AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c5239-30f220c12f2f6c4e57a82d1f43020c2eb485dbc0c08c8307eabe36f9b073e9f03 |
IEDL.DBID | DR2 |
ISSN | 1932-5223 1932-5231 |
IngestDate | Thu Jul 10 19:34:16 EDT 2025 Wed Feb 19 01:51:42 EST 2025 Tue Jul 01 04:17:00 EDT 2025 Thu Apr 24 22:59:08 EDT 2025 Wed Jan 22 16:40:25 EST 2025 Wed Oct 30 09:52:43 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5239-30f220c12f2f6c4e57a82d1f43020c2eb485dbc0c08c8307eabe36f9b073e9f03 |
Notes | NSF - No. #0924401; No. #9977047 ArticleID:JEZ1869 ark:/67375/WNG-BHGPJFNL-N istex:AA2A900E44BE3AAEF218E4831CDA74A5E036FE61 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24838198 |
PQID | 1543281414 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1543281414 pubmed_primary_24838198 crossref_citationtrail_10_1002_jez_1869 crossref_primary_10_1002_jez_1869 wiley_primary_10_1002_jez_1869_JEZ1869 istex_primary_ark_67375_WNG_BHGPJFNL_N |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2014 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: August 2014 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of experimental zoology. Part A, Ecological genetics and physiology |
PublicationTitleAlternate | J. Exp. Zool |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Cassab GI. 1998. Plant cell wall proteins. Annu Rev Plant Physiol Plant Mol Biol 49:281-309. De Meester L. 1993. Genotype, fish-mediated chemical, and phototactic behavior in Daphnia Magna. Ecology 74:1467-1474. DeMott WR, Gulati RD, Siewertsen K. 1998. Effects of phosphorus-deficient diets on the carbon and phosphorus balance of Daphnia magna. Limnol Oceanogr 43:1147-1161. Weider LJ, Makino W, Acharya K, et al. 2005. Genotype X environment interactions, stoichiometric food quality effects, and clonal coexistence in Daphnia pulex. Oecologia 143:537-547. Tollrian R, Harvell CD. 1999. The Ecology and Evolution of Inducible Defenses. Princeton, New Jersey: Princeton University Press. Jeyasingh PD, Weider LJ. 2005. Phosphorus availability mediates plasticity in life-history traits and predator-prey interactions in Daphnia. Ecol Lett 8:1021-1028. Jeyasingh PD, Ragavendran A, Paland S, et al. 2011. How do consumers deal with stoichiometric constraints? Lessons from functional genomics using Daphnia pulex, Mol Ecol 20:2341-2352. Koonin EV, Fedorova ND, Jackson JD, et al. 2004. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol 5:R7. Sterner RW, Hessen DO. 1994. Algal nutrient limitation and the nutrition of aquatic vertebrates. Ann Rev Ecol Syst 25:1-29. Weider LJ, Glenn KL, Kyle M, Elser JJ. 2004. Associations among ribosomal (r)DNA intergenic spacer length, growth rate, and C:N:P stoichiometry in the genus Daphnia. Limnol Oceanogr 49:1417-1423. Tollian R. 1995. Predator-induced morphological defenses: costs, life history shifts, and maternal effects in Daphnia pulex. Ecology 76:1691-1705. Hessen DO, Anderson TR. 2008. Excess carbon in aquatic organisms and ecosystems: physiological, ecological, and evolutionary implications. Limnol Oceanogr 53:1685-1696. Liu Y, Sturley SL. 2004. Nutritional genomics in yeast models. Nutrition 20:166-172. Baeck JH, Lee SY. 2007. Transcriptomics analysis of phosphate starvation response in Escherichia coli. J Microbiol Biotechnol 17:244-252. Schlichting CD, Smith H. 2002. Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes. Evol Ecol 16:189-211. Hofmann AA, Willi Y. 2008. Detecting genetic responses to environmental change. Nat Rev Genet 9:421-432. Levin BR. 1972. Coexistence of two asexual strains on a single resource. Science 175:1272-1274. Sterner RW, Robinson J. 1994. Thresholds for growth in Daphnia magna with high and low phosphorus diets. Limnol Oceanogr 39:1229-1233. Hammond JP, Broadley MR, White PJ. 2004. Genetic responses to phosphorus deficiency. Ann Bot 94:323-332. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. 2004. The KEGG resource for deciphering the genome. Nucleic Acids Res 32: (Database issue): D277-D280. Jeyasingh PD, Weider LJ. 2007. Fundamental links between genes and elements: evolutionary implications of ecological stoichiometry. Mol Ecol 16:4649-4661. Lampert W. 1977. Studies on the Carbon balance of Daphnia pulex as related to environmental conditions. VI. Determination of the "threshold" concentration as a factor controlling abundance of zooplankton species. Archiv fur Hydrobiol (Suppl 48):361-368. Sterner RW. 2008. On the phosphorus limitation paradigm for lakes. Int Rev Hydrobiol 93:433-445. Schlesinger WH. 1997. Biogeochemistry: an analysis of global change. MA, USA: Academic Press, Elsevier. Tollian R, Leese F. 2010. Ecological genomics: steps towards unraveling the genetic basis of inducible defenses in Daphnia. BMC Biol 8:51. He X, Wang W-X*. 2007. Kinetics of phosphorus in Daphnia at different food concentrations and C:P ratios. Limnol Oceanogr 52:395-406. Frost PC, Evans-White MA, Finkel ZV, Jensen TC, Matzek V. 2005. Are we what we eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos 109:18-28. Darchambeau F, Faerøvig PJ, Hessen DO. 2003. How Daphnia copes with excess Carbon in its food. Oecologia 136:336-346. Jeyasingh PD, Weider LJ, Sterner RW. 2009. Genetically-based trade-offs in response to stoichiometric food quality influence competition in a keystone aquatic herbivore. Ecol Lett 12:1229-1237. Jeyasingh PD, Cothran RD, Tobler M. 2014. Testing the ecological consequences of evolutionary change using elements. Ecol Evol 4:528-538. Vermeer JG, Berendse F. 1983. The relationship between nutrient availability, shoot biomass and species richness in grassland and wetland communities. Vegetatio 53:121-126. Elser JJ, Dobberfuhl D, MacKay NA, Schampel JH. 1996. Organism size, life-history, and N:P stoichiometry: towards a unified view of cellular and ecosystem processes. BioSciences 46:674-684. Mizutani M. 2012. Impacts of diversification of cytochrome P450 on plant metabolism. Biol Pharm Bull 35:824-832. Morey E, Kinney A, Beal M, et al. 2011. Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition. BMC Genomics 12:346-372. Webb EC. 1992. Enzyme nomenclature 1992: recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzymes. San Diego: Published for the International Union of Biochemistry and Molecular Biology by Academic Press. Sterner RW, Elser JJ. 2002. Ecological stoichiometry: the biology of elements from molecules to biospheres. Princeton, NJ, USA: Princeton University Press. Fridley J. 2002. Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. Oecologia 132:271-277. Moseley J, Chang C-W, Grossman AR. 2006. Genome-based approaches to understanding phosphorus deprivation responses and PSR1 control in Chlamydomonas reinhardtii. Eukaryot Cell 5:26-44. Werner EG. 2003. The origin of metazoan complexity: porifera as integrated animals. Integr Comput Biol 43:3-10. Grossman AR. 2000. Chlamydomonas reinhardtii and photosynthesis: genetics to genomics. Curr Opin Plant Biol 3:132-137. Morcuende R, Bari R, Gibon Y, et al. 2007. Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30:85-112. Boersma M, Spaak P, De Meester L. 1998. Predator-mediated plasticity in morphology, life history, and behavior of Daphnia: the uncoupling of responses. The American Naturalist 152:237-248. 2007; 17 1998; 49 2002; 16 2004; 20 2002; 132 2011 2004; 49 2000; 3 1995; 76 2008; 9 1983; 53 1997 2006; 5 1994; 25 2004; 5 1977; (Suppl 48) 1972; 175 2011; 12 1992 2007; 52 2008; 53 2007; 30 2002 2003; 136 2012; 35 1998; 43 2008; 93 1998; 152 2007; 16 1999 2009; 12 2004; 32 2004; 94 2014; 4 2005; 143 2005; 8 1993; 74 2011; 20 2005; 109 1983 1994; 39 1996; 46 2003; 43 2010; 8 e_1_2_7_6_1 Lampert W (e_1_2_7_23_1) 1977; 48 Sterner RW (e_1_2_7_35_1) 2002 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 Ritchie JT (e_1_2_7_31_1) 1983 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Webb EC (e_1_2_7_42_1) 1992 Schlesinger WH (e_1_2_7_32_1) 1997 Baeck JH (e_1_2_7_2_1) 2007; 17 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – reference: Tollian R. 1995. Predator-induced morphological defenses: costs, life history shifts, and maternal effects in Daphnia pulex. Ecology 76:1691-1705. – reference: Sterner RW, Elser JJ. 2002. Ecological stoichiometry: the biology of elements from molecules to biospheres. Princeton, NJ, USA: Princeton University Press. – reference: Jeyasingh PD, Weider LJ. 2007. Fundamental links between genes and elements: evolutionary implications of ecological stoichiometry. Mol Ecol 16:4649-4661. – reference: Sterner RW, Hessen DO. 1994. Algal nutrient limitation and the nutrition of aquatic vertebrates. Ann Rev Ecol Syst 25:1-29. – reference: Weider LJ, Makino W, Acharya K, et al. 2005. Genotype X environment interactions, stoichiometric food quality effects, and clonal coexistence in Daphnia pulex. Oecologia 143:537-547. – reference: Koonin EV, Fedorova ND, Jackson JD, et al. 2004. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol 5:R7. – reference: Morey E, Kinney A, Beal M, et al. 2011. Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition. BMC Genomics 12:346-372. – reference: Sterner RW. 2008. On the phosphorus limitation paradigm for lakes. Int Rev Hydrobiol 93:433-445. – reference: Jeyasingh PD, Cothran RD, Tobler M. 2014. Testing the ecological consequences of evolutionary change using elements. Ecol Evol 4:528-538. – reference: Lampert W. 1977. Studies on the Carbon balance of Daphnia pulex as related to environmental conditions. VI. Determination of the "threshold" concentration as a factor controlling abundance of zooplankton species. Archiv fur Hydrobiol (Suppl 48):361-368. – reference: Mizutani M. 2012. Impacts of diversification of cytochrome P450 on plant metabolism. Biol Pharm Bull 35:824-832. – reference: Jeyasingh PD, Weider LJ. 2005. Phosphorus availability mediates plasticity in life-history traits and predator-prey interactions in Daphnia. Ecol Lett 8:1021-1028. – reference: Schlichting CD, Smith H. 2002. Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes. Evol Ecol 16:189-211. – reference: He X, Wang W-X*. 2007. Kinetics of phosphorus in Daphnia at different food concentrations and C:P ratios. Limnol Oceanogr 52:395-406. – reference: Moseley J, Chang C-W, Grossman AR. 2006. Genome-based approaches to understanding phosphorus deprivation responses and PSR1 control in Chlamydomonas reinhardtii. Eukaryot Cell 5:26-44. – reference: Schlesinger WH. 1997. Biogeochemistry: an analysis of global change. MA, USA: Academic Press, Elsevier. – reference: Grossman AR. 2000. Chlamydomonas reinhardtii and photosynthesis: genetics to genomics. Curr Opin Plant Biol 3:132-137. – reference: Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. 2004. The KEGG resource for deciphering the genome. Nucleic Acids Res 32: (Database issue): D277-D280. – reference: Frost PC, Evans-White MA, Finkel ZV, Jensen TC, Matzek V. 2005. Are we what we eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos 109:18-28. – reference: Jeyasingh PD, Ragavendran A, Paland S, et al. 2011. How do consumers deal with stoichiometric constraints? Lessons from functional genomics using Daphnia pulex, Mol Ecol 20:2341-2352. – reference: Werner EG. 2003. The origin of metazoan complexity: porifera as integrated animals. Integr Comput Biol 43:3-10. – reference: Elser JJ, Dobberfuhl D, MacKay NA, Schampel JH. 1996. Organism size, life-history, and N:P stoichiometry: towards a unified view of cellular and ecosystem processes. BioSciences 46:674-684. – reference: Weider LJ, Glenn KL, Kyle M, Elser JJ. 2004. Associations among ribosomal (r)DNA intergenic spacer length, growth rate, and C:N:P stoichiometry in the genus Daphnia. Limnol Oceanogr 49:1417-1423. – reference: Fridley J. 2002. Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. Oecologia 132:271-277. – reference: Darchambeau F, Faerøvig PJ, Hessen DO. 2003. How Daphnia copes with excess Carbon in its food. Oecologia 136:336-346. – reference: Boersma M, Spaak P, De Meester L. 1998. Predator-mediated plasticity in morphology, life history, and behavior of Daphnia: the uncoupling of responses. The American Naturalist 152:237-248. – reference: Hofmann AA, Willi Y. 2008. Detecting genetic responses to environmental change. Nat Rev Genet 9:421-432. – reference: Baeck JH, Lee SY. 2007. Transcriptomics analysis of phosphate starvation response in Escherichia coli. J Microbiol Biotechnol 17:244-252. – reference: Cassab GI. 1998. Plant cell wall proteins. Annu Rev Plant Physiol Plant Mol Biol 49:281-309. – reference: Vermeer JG, Berendse F. 1983. The relationship between nutrient availability, shoot biomass and species richness in grassland and wetland communities. Vegetatio 53:121-126. – reference: Liu Y, Sturley SL. 2004. Nutritional genomics in yeast models. Nutrition 20:166-172. – reference: Hessen DO, Anderson TR. 2008. Excess carbon in aquatic organisms and ecosystems: physiological, ecological, and evolutionary implications. Limnol Oceanogr 53:1685-1696. – reference: Jeyasingh PD, Weider LJ, Sterner RW. 2009. Genetically-based trade-offs in response to stoichiometric food quality influence competition in a keystone aquatic herbivore. Ecol Lett 12:1229-1237. – reference: DeMott WR, Gulati RD, Siewertsen K. 1998. Effects of phosphorus-deficient diets on the carbon and phosphorus balance of Daphnia magna. Limnol Oceanogr 43:1147-1161. – reference: Hammond JP, Broadley MR, White PJ. 2004. Genetic responses to phosphorus deficiency. Ann Bot 94:323-332. – reference: Webb EC. 1992. Enzyme nomenclature 1992: recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzymes. San Diego: Published for the International Union of Biochemistry and Molecular Biology by Academic Press. – reference: Sterner RW, Robinson J. 1994. Thresholds for growth in Daphnia magna with high and low phosphorus diets. Limnol Oceanogr 39:1229-1233. – reference: Morcuende R, Bari R, Gibon Y, et al. 2007. Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30:85-112. – reference: Levin BR. 1972. Coexistence of two asexual strains on a single resource. Science 175:1272-1274. – reference: Tollrian R, Harvell CD. 1999. The Ecology and Evolution of Inducible Defenses. Princeton, New Jersey: Princeton University Press. – reference: De Meester L. 1993. Genotype, fish-mediated chemical, and phototactic behavior in Daphnia Magna. Ecology 74:1467-1474. – reference: Tollian R, Leese F. 2010. Ecological genomics: steps towards unraveling the genetic basis of inducible defenses in Daphnia. BMC Biol 8:51. – volume: 94 start-page: 323 year: 2004 end-page: 332 article-title: Genetic responses to phosphorus deficiency publication-title: Ann Bot – year: 2011 – volume: 4 start-page: 528 year: 2014 end-page: 538 article-title: Testing the ecological consequences of evolutionary change using elements publication-title: Ecol Evol – volume: 175 start-page: 1272 year: 1972 end-page: 1274 article-title: Coexistence of two asexual strains on a single resource publication-title: Science – volume: 8 start-page: 51 year: 2010 article-title: Ecological genomics: steps towards unraveling the genetic basis of inducible defenses in publication-title: BMC Biol – volume: 93 start-page: 433 year: 2008 end-page: 445 article-title: On the phosphorus limitation paradigm for lakes publication-title: Int Rev Hydrobiol – volume: 49 start-page: 1417 year: 2004 end-page: 1423 article-title: Associations among ribosomal (r)DNA intergenic spacer length, growth rate, and C:N:P stoichiometry in the genus publication-title: Limnol Oceanogr – volume: 17 start-page: 244 year: 2007 end-page: 252 article-title: Transcriptomics analysis of phosphate starvation response in publication-title: J Microbiol Biotechnol – volume: 49 start-page: 281 year: 1998 end-page: 309 article-title: Plant cell wall proteins publication-title: Annu Rev Plant Physiol Plant Mol Biol – volume: (Suppl 48) start-page: 361 year: 1977 end-page: 368 article-title: Studies on the Carbon balance of as related to environmental conditions. VI. Determination of the “threshold” concentration as a factor controlling abundance of zooplankton species publication-title: Archiv fur Hydrobiol – volume: 143 start-page: 537 year: 2005 end-page: 547 article-title: Genotype X environment interactions, stoichiometric food quality effects, and clonal coexistence in publication-title: Oecologia – volume: 5 start-page: R7 year: 2004 article-title: A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes publication-title: Genome Biol – volume: 39 start-page: 1229 year: 1994 end-page: 1233 article-title: Thresholds for growth in with high and low phosphorus diets publication-title: Limnol Oceanogr – volume: 132 start-page: 271 year: 2002 end-page: 277 article-title: Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities publication-title: Oecologia – volume: 52 start-page: 395 year: 2007 end-page: 406 article-title: Kinetics of phosphorus in at different food concentrations and C:P ratios publication-title: Limnol Oceanogr – volume: 136 start-page: 336 year: 2003 end-page: 346 article-title: How copes with excess Carbon in its food publication-title: Oecologia – volume: 12 start-page: 346 year: 2011 end-page: 372 article-title: Transcriptomic response of the red tide dinoflagellate, , to nitrogen and phosphorus depletion and addition publication-title: BMC Genomics – volume: 9 start-page: 421 year: 2008 end-page: 432 article-title: Detecting genetic responses to environmental change publication-title: Nat Rev Genet – volume: 16 start-page: 189 year: 2002 end-page: 211 article-title: Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes publication-title: Evol Ecol – volume: 5 start-page: 26 year: 2006 end-page: 44 article-title: Genome‐based approaches to understanding phosphorus deprivation responses and PSR1 control in publication-title: Eukaryot Cell – volume: 74 start-page: 1467 year: 1993 end-page: 1474 article-title: Genotype, fish‐mediated chemical, and phototactic behavior in publication-title: Ecology – year: 1992 – volume: 109 start-page: 18 year: 2005 end-page: 28 article-title: Are we what we eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world publication-title: Oikos – volume: 30 start-page: 85 year: 2007 end-page: 112 article-title: Genome‐wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus publication-title: Plant Cell Environ – volume: 43 start-page: 1147 year: 1998 end-page: 1161 article-title: Effects of phosphorus‐deficient diets on the carbon and phosphorus balance of publication-title: Limnol Oceanogr – volume: 76 start-page: 1691 year: 1995 end-page: 1705 article-title: Predator‐induced morphological defenses: costs, life history shifts, and maternal effects in publication-title: Ecology – volume: 12 start-page: 1229 year: 2009 end-page: 1237 article-title: Genetically‐based trade‐offs in response to stoichiometric food quality influence competition in a keystone aquatic herbivore publication-title: Ecol Lett – volume: 16 start-page: 4649 year: 2007 end-page: 4661 article-title: Fundamental links between genes and elements: evolutionary implications of ecological stoichiometry publication-title: Mol Ecol – volume: 35 start-page: 824 year: 2012 end-page: 832 article-title: Impacts of diversification of cytochrome P450 on plant metabolism publication-title: Biol Pharm Bull – year: 2002 – volume: 46 start-page: 674 year: 1996 end-page: 684 article-title: Organism size, life‐history, and N:P stoichiometry: towards a unified view of cellular and ecosystem processes publication-title: BioSciences – volume: 53 start-page: 121 year: 1983 end-page: 126 article-title: The relationship between nutrient availability, shoot biomass and species richness in grassland and wetland communities publication-title: Vegetatio – year: 1997 – volume: 25 start-page: 1 year: 1994 end-page: 29 article-title: Algal nutrient limitation and the nutrition of aquatic vertebrates publication-title: Ann Rev Ecol Syst – volume: 32 start-page: D277 year: 2004 end-page: D280 article-title: The KEGG resource for deciphering the genome publication-title: Nucleic Acids Res – volume: 43 start-page: 3 year: 2003 end-page: 10 article-title: The origin of metazoan complexity: porifera as integrated animals publication-title: Integr Comput Biol – volume: 53 start-page: 1685 year: 2008 end-page: 1696 article-title: Excess carbon in aquatic organisms and ecosystems: physiological, ecological, and evolutionary implications publication-title: Limnol Oceanogr – volume: 152 start-page: 237 year: 1998 end-page: 248 article-title: Predator‐mediated plasticity in morphology, life history, and behavior of Daphnia: the uncoupling of responses publication-title: The American Naturalist – volume: 20 start-page: 2341 year: 2011 end-page: 2352 article-title: How do consumers deal with stoichiometric constraints? Lessons from functional genomics using publication-title: Mol Ecol – start-page: 29 year: 1983 end-page: 44 – volume: 3 start-page: 132 year: 2000 end-page: 137 article-title: and photosynthesis: genetics to genomics publication-title: Curr Opin Plant Biol – volume: 8 start-page: 1021 year: 2005 end-page: 1028 article-title: Phosphorus availability mediates plasticity in life‐history traits and predator‐prey interactions in publication-title: Ecol Lett – volume: 20 start-page: 166 year: 2004 end-page: 172 article-title: Nutritional genomics in yeast models publication-title: Nutrition – year: 1999 – ident: e_1_2_7_6_1 doi: 10.2307/1940075 – ident: e_1_2_7_34_1 doi: 10.1002/iroh.200811068 – ident: e_1_2_7_45_1 doi: 10.1093/icb/43.1.3 – volume-title: Enzyme nomenclature 1992: recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzymes year: 1992 ident: e_1_2_7_42_1 – ident: e_1_2_7_11_1 doi: 10.1016/S1369-5266(99)00053-9 – ident: e_1_2_7_18_1 doi: 10.1111/j.1461-0248.2009.01368.x – ident: e_1_2_7_20_1 doi: 10.1002/ece3.950 – ident: e_1_2_7_37_1 doi: 10.4319/lo.1994.39.5.1228 – ident: e_1_2_7_43_1 doi: 10.4319/lo.2004.49.4_part_2.1417 – ident: e_1_2_7_16_1 doi: 10.1111/j.1461-0248.2005.00803.x – ident: e_1_2_7_40_1 doi: 10.1515/9780691228198 – ident: e_1_2_7_7_1 doi: 10.4319/lo.1998.43.6.1147 – ident: e_1_2_7_26_1 doi: 10.2506/cgbtr-201102 – start-page: 29 volume-title: Limitations to efficient water use in crop production year: 1983 ident: e_1_2_7_31_1 – volume-title: Biogeochemistry: an analysis of global change year: 1997 ident: e_1_2_7_32_1 – ident: e_1_2_7_28_1 doi: 10.1111/j.1365-3040.2006.01608.x – ident: e_1_2_7_29_1 doi: 10.1186/1471-2164-12-346 – ident: e_1_2_7_8_1 doi: 10.2307/1312897 – ident: e_1_2_7_3_1 doi: 10.1086/286164 – ident: e_1_2_7_15_1 doi: 10.1038/nrg2339 – ident: e_1_2_7_38_1 doi: 10.2307/1940703 – ident: e_1_2_7_44_1 doi: 10.1007/s00442-005-0003-x – volume: 17 start-page: 244 year: 2007 ident: e_1_2_7_2_1 article-title: Transcriptomics analysis of phosphate starvation response in Escherichia coli publication-title: J Microbiol Biotechnol – ident: e_1_2_7_17_1 doi: 10.1111/j.1365-294X.2007.03558.x – ident: e_1_2_7_24_1 doi: 10.1126/science.175.4027.1272 – ident: e_1_2_7_5_1 doi: 10.1007/s00442-003-1283-7 – ident: e_1_2_7_4_1 doi: 10.1146/annurev.arplant.49.1.281 – ident: e_1_2_7_36_1 doi: 10.1146/annurev.es.25.110194.000245 – ident: e_1_2_7_19_1 doi: 10.1111/j.1365-294X.2011.05102.x – ident: e_1_2_7_27_1 doi: 10.1248/bpb.35.824 – ident: e_1_2_7_9_1 doi: 10.1007/s00442-002-0965-x – ident: e_1_2_7_10_1 doi: 10.1111/j.0030-1299.2005.14049.x – ident: e_1_2_7_21_1 doi: 10.1093/nar/gkh063 – ident: e_1_2_7_39_1 doi: 10.1186/1741-7007-8-51 – ident: e_1_2_7_14_1 doi: 10.4319/lo.2008.53.4.1685 – ident: e_1_2_7_25_1 doi: 10.1016/j.nut.2003.09.026 – ident: e_1_2_7_33_1 doi: 10.1023/A:1019624425971 – ident: e_1_2_7_12_1 doi: 10.1093/aob/mch156 – ident: e_1_2_7_13_1 doi: 10.4319/lo.2007.52.1.0395 – volume-title: Ecological stoichiometry: the biology of elements from molecules to biospheres year: 2002 ident: e_1_2_7_35_1 – ident: e_1_2_7_22_1 doi: 10.1186/gb-2004-5-2-r7 – volume: 48 start-page: 361 year: 1977 ident: e_1_2_7_23_1 article-title: Studies on the Carbon balance of Daphnia pulex as related to environmental conditions. VI. Determination of the “threshold” concentration as a factor controlling abundance of zooplankton species publication-title: Archiv fur Hydrobiol – ident: e_1_2_7_30_1 doi: 10.1128/EC.5.1.26-44.2006 – ident: e_1_2_7_41_1 doi: 10.1007/BF00043032 |
SSID | ssj0054094 |
Score | 2.128779 |
Snippet | ABSTRACT
Understanding how the genome interacts with the environment to produce a diversity of phenotypes is a central challenge in biology. However, we know... Understanding how the genome interacts with the environment to produce a diversity of phenotypes is a central challenge in biology. However, we know little... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 387 |
SubjectTerms | Animals Carbon - metabolism Daphnia - genetics Daphnia - metabolism Genomics Genotype Phosphorus - metabolism Protein Array Analysis Species Specificity Transcriptome |
Title | Functional genomics of intraspecific variation in carbon and phosphorus kinetics in Daphnia |
URI | https://api.istex.fr/ark:/67375/WNG-BHGPJFNL-N/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjez.1869 https://www.ncbi.nlm.nih.gov/pubmed/24838198 https://www.proquest.com/docview/1543281414 |
Volume | 321 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swELYm0CRegLEBhW0y0sSeUlLHTp3HsVGqilXTNASCB8t2HFEKSdW0CPHruYubTCCQpj1EiaKL5fh89nf23WdCvggbS5cmPIhdbALe5TbQIBjIGLBzCpaeRJic_HMY90_54FycL6IqMRfG80M0C25oGdV4jQauTXnwlzT02j208TwlGH4xVAvx0O-GOUqg2-I3lNHXYlHNOxuyg_rDJzPRMjbq_Usw8ylqraad3hq5rCvso03G7fnMtO3DMy7H__ujdbK6QKP0m-8-78gbl2-QtxdFtdb-nlz2YNbzi4UUyVxvR7akRUZHuCKMOZoYZ0TvwN2u9AvvqdVTA086T-nkqijhms5LOoa6IR80SvzQk6t8pD-Q097Rn-_9YHEaQ2DBWcUAiYyx0HZYxrLYcie6WrK0k_EIEKdlznApUmNDG0orYeRw2rgozhIDg4hLsjDaJEt5kbttQp0QzAFuE9JaHkmTOG5SBq6fDTWm7rbI11ozyi6oyvHEjBvlSZaZgqZS2FQtstdITjw9xwsy-5VyGwE9HWM4W1eos-GxOuwf_xr0hidqCIXV2ldgZLhzonNXzEsFODNissM7vEW2fLdoSmNcotcLld6vlPtqPdTg6ALvO_8quEtWAJ5xH274kSzNpnP3CSDQzHyuOvsj7nADWw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEB7ShNK-9D62pwslffLGK0temT71yGa73ZhSEhrSgpBkmWw2tZc9Ssmv74y1dklJofTB2JixGGt0fDMafQJ4KWwiXZ7yMHGJCXmf21CjYCgTxM459vQ0ps3J-1kyPOSjI3G0Aa-bvTCeH6INuFHPqMdr6uAUkN75zRp66s67dKDSFdiiA71rf-pzyx0lyHHxS8rkbbG4YZ6N2E7z5YW5aIuq9edlQPMibq0nnsFN-Nao7PNNpt3V0nTt-R9sjv_5T7fgxhqQBm98C7oNG668A1ePqzrcfhe-DnDi8_HCgPhcv0_sIqiKYEJBYdqmSalGwQ_0uGsT4_vA6rnBJ13mweykWuA1Xy2CKSpHlNAk8V7PTsqJvgeHg92Dd8NwfSBDaNFfpRyJgrHI9ljBisRyJ_pasrxX8BhBp2XOcClyYyMbSStx8HDauDgpUoPjiEuLKL4Pm2VVuocQOCGYQ-gmpLU8liZ13OQMvT8badq924FXjWmUXbOV06EZZ8rzLDOFVaWoqjrwopWceYaOS2S2a-u2Ano-pYy2vlBfsj31drj3aTTIxirDwhrzK-xntHiiS1etFgqhZsxkj_d4Bx74dtGWxrgkxxeV3q6t-1c91Gj3mO6P_lXwOVwbHuyP1fhD9vExXEe0xn324RPYXM5X7ikioqV5Vrf8XxLRB3Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgE4gXYOOrbDBPQuMpXerYqfMI67JSRjQhJqbtwbIdRyuFpOoHmvbXcxc3QUNDQjxEiaKL5fjO9u_su58JeSNsLF2e8CB2sQl4n9tAg2AgY8DOOfT0JMLk5E9ZPDzlozNxtoqqxFwYzw_RLrhhz6jHa-zg07zY_00a-s1dd_E8pbtkncehRIsefG6powT6LX5HGZ0tFjXEsyHbb768MRWtY6te3YYzb8LWet5JH5GLpsY-3GTSXS5M117_Qeb4f7_0mDxcwVH6ztvPBrnjyk1y77yqF9ufkIsUpj2_WkiRzfXH2M5pVdAxLgljkiYGGtGf4G_XCob31OqZgSdd5nR6Wc3hmi3ndAJ1Q0JolBjo6WU51k_JaXr45WAYrI5jCCx4qxghUTAW2h4rWBFb7kRfS5b3Ch4B5LTMGS5FbmxoQ2klDB1OGxfFRWJgFHFJEUbPyFpZle4FoU4I5gC4CWktj6RJHDc5A9_PhhpzdzvkbaMZZVdc5XhkxnflWZaZgqZS2FQdsttKTj0_xy0ye7VyWwE9m2A8W1-or9mRej88Ohml2bHKoLBG-wp6GW6d6NJVy7kCoBkx2eM93iHPvVm0pTEu0e2FSu_Vyv1rPdTo8BzvL_9VcIfcPxmk6vhD9nGLPACoxn3o4TZZW8yW7hXAoYV5Xdv9LxrEBi4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+genomics+of+intraspecific+variation+in+carbon+and+phosphorus+kinetics+in+Daphnia&rft.jtitle=Journal+of+experimental+zoology.+Part+A%2C+Ecological+genetics+and+physiology&rft.au=Chowdhury%2C+Priyanka+Roy&rft.au=Lopez%2C+Jacqueline+A&rft.au=Weider%2C+Lawrence+J&rft.au=Colbourne%2C+John+K&rft.date=2014-08-01&rft.issn=1932-5231&rft.eissn=1932-5231&rft.volume=321&rft.issue=7&rft.spage=387&rft_id=info:doi/10.1002%2Fjez.1869&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-5223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-5223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-5223&client=summon |