Molybdenum Disulfide/Nitrogen-Doped Reduced Graphene Oxide Nanocomposite with Enlarged Interlayer Spacing for Electrocatalytic Hydrogen Evolution

Facile design of low‐cost and highly active catalysts from earth‐abundant elements is favorable for the industrial application of water splitting. Here, a simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen‐doped reduced graphene oxide (MoS2/N‐RGO‐180) nanocomposite with the enl...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 6; no. 12; pp. np - n/a
Main Authors Tang, Yu-Jia, Wang, Yu, Wang, Xiao-Li, Li, Shun-Li, Huang, Wei, Dong, Long-Zhang, Liu, Chun-Hui, Li, Ya-Fei, Lan, Ya-Qian
Format Journal Article
LanguageEnglish
Published Weinheim Blackwell Publishing Ltd 01.06.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Facile design of low‐cost and highly active catalysts from earth‐abundant elements is favorable for the industrial application of water splitting. Here, a simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen‐doped reduced graphene oxide (MoS2/N‐RGO‐180) nanocomposite with the enlarged interlayer spacing of 9.5 Å by a one‐step hydrothermal method is reported. The synergistic effects between the layered MoS2 nanosheets and N‐doped RGO films contribute to the high activity for hydrogen evolution reaction (HER). MoS2/N‐RGO‐180 exhibits the excellent catalytic activity with a low onset potential of −5 mV versus reversible hydrogen elelctrode (RHE), a small Tafel slope of 41.3 mV dec−1, a high exchange current density of 7.4 × 10−4 A cm−2, and good stability over 5 000 cycles under acidic conditions. The HER performance of MoS2/N‐RGO‐180 nanocomposite is superior to the most reported MoS2‐based catalysts, especially its onset potential and exchange current density. In this work, a novel and simple method to the preparation of low‐cost MoS2‐based electrocatalysts with the extraordinary HER performance is presented. A simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen‐doped reduced graphene oxide (MoS2/N‐RGO‐180) nanocomposite with the enlarged interlayer spacing of 9.5 Å is reported. MoS2/N‐RGO‐180 exhibits excellent hydrogen evolution reaction (HER) catalytic activity with a low onset potential of −5 mV versus RHE, a small Tafel slope of 41.3 mV dec−1 and good stability over 5000 cycles.
AbstractList Facile design of low‐cost and highly active catalysts from earth‐abundant elements is favorable for the industrial application of water splitting. Here, a simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen‐doped reduced graphene oxide (MoS 2 /N‐RGO‐180) nanocomposite with the enlarged interlayer spacing of 9.5 Å by a one‐step hydrothermal method is reported. The synergistic effects between the layered MoS 2 nanosheets and N‐doped RGO films contribute to the high activity for hydrogen evolution reaction (HER). MoS 2 /N‐RGO‐180 exhibits the excellent catalytic activity with a low onset potential of −5 mV versus reversible hydrogen elelctrode (RHE), a small Tafel slope of 41.3 mV dec −1 , a high exchange current density of 7.4 × 10 −4 A cm −2 , and good stability over 5 000 cycles under acidic conditions. The HER performance of MoS 2 /N‐RGO‐180 nanocomposite is superior to the most reported MoS 2 ‐based catalysts, especially its onset potential and exchange current density. In this work, a novel and simple method to the preparation of low‐cost MoS 2 ‐based electrocatalysts with the extraordinary HER performance is presented.
Facile design of low-cost and highly active catalysts from earth-abundant elements is favorable for the industrial application of water splitting. Here, a simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen-doped reduced graphene oxide (MoS2/N-RGO-180) nanocomposite with the enlarged interlayer spacing of 9.5 Å by a one-step hydrothermal method is reported. The synergistic effects between the layered MoS2 nanosheets and N-doped RGO films contribute to the high activity for hydrogen evolution reaction (HER). MoS2/N-RGO-180 exhibits the excellent catalytic activity with a low onset potential of -5 mV versus reversible hydrogen elelctrode (RHE), a small Tafel slope of 41.3 mV dec-1, a high exchange current density of 7.4 × 10-4 A cm-2, and good stability over 5 000 cycles under acidic conditions. The HER performance of MoS2/N-RGO-180 nanocomposite is superior to the most reported MoS2-based catalysts, especially its onset potential and exchange current density. In this work, a novel and simple method to the preparation of low-cost MoS2-based electrocatalysts with the extraordinary HER performance is presented.
Facile design of low‐cost and highly active catalysts from earth‐abundant elements is favorable for the industrial application of water splitting. Here, a simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen‐doped reduced graphene oxide (MoS2/N‐RGO‐180) nanocomposite with the enlarged interlayer spacing of 9.5 Å by a one‐step hydrothermal method is reported. The synergistic effects between the layered MoS2 nanosheets and N‐doped RGO films contribute to the high activity for hydrogen evolution reaction (HER). MoS2/N‐RGO‐180 exhibits the excellent catalytic activity with a low onset potential of −5 mV versus reversible hydrogen elelctrode (RHE), a small Tafel slope of 41.3 mV dec−1, a high exchange current density of 7.4 × 10−4 A cm−2, and good stability over 5 000 cycles under acidic conditions. The HER performance of MoS2/N‐RGO‐180 nanocomposite is superior to the most reported MoS2‐based catalysts, especially its onset potential and exchange current density. In this work, a novel and simple method to the preparation of low‐cost MoS2‐based electrocatalysts with the extraordinary HER performance is presented. A simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen‐doped reduced graphene oxide (MoS2/N‐RGO‐180) nanocomposite with the enlarged interlayer spacing of 9.5 Å is reported. MoS2/N‐RGO‐180 exhibits excellent hydrogen evolution reaction (HER) catalytic activity with a low onset potential of −5 mV versus RHE, a small Tafel slope of 41.3 mV dec−1 and good stability over 5000 cycles.
Facile design of low-cost and highly active catalysts from earth-abundant elements is favorable for the industrial application of water splitting. Here, a simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen-doped reduced graphene oxide (MoS sub(2)/N-RGO-180) nanocomposite with the enlarged interlayer spacing of 9.5 Aa by a one-step hydrothermal method is reported. The synergistic effects between the layered MoS sub(2) nanosheets and N-doped RGO films contribute to the high activity for hydrogen evolution reaction (HER). MoS sub(2)/N-RGO-180 exhibits the excellent catalytic activity with a low onset potential of -5 mV versus reversible hydrogen elelctrode (RHE), a small Tafel slope of 41.3 mV dec super(-1), a high exchange current density of 7.4 10 super(-4) A cm super(-2), and good stability over 5 000 cycles under acidic conditions. The HER performance of MoS sub(2)/N-RGO-180 nanocomposite is superior to the most reported MoS sub(2)-based catalysts, especially its onset potential and exchange current density. In this work, a novel and simple method to the preparation of low-cost MoS sub(2)-based electrocatalysts with the extraordinary HER performance is presented. A simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen-doped reduced graphene oxide (MoS sub(2)/N-RGO-180) nanocomposite with the enlarged interlayer spacing of 9.5 Aa is reported. MoS sub(2)/N-RGO-180 exhibits excellent hydrogen evolution reaction (HER) catalytic activity with a low onset potential of -5 mV versus RHE, a small Tafel slope of 41.3 mV dec super(-1) and good stability over 5000 cycles.
Facile design of low‐cost and highly active catalysts from earth‐abundant elements is favorable for the industrial application of water splitting. Here, a simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen‐doped reduced graphene oxide (MoS2/N‐RGO‐180) nanocomposite with the enlarged interlayer spacing of 9.5 Å by a one‐step hydrothermal method is reported. The synergistic effects between the layered MoS2 nanosheets and N‐doped RGO films contribute to the high activity for hydrogen evolution reaction (HER). MoS2/N‐RGO‐180 exhibits the excellent catalytic activity with a low onset potential of −5 mV versus reversible hydrogen elelctrode (RHE), a small Tafel slope of 41.3 mV dec−1, a high exchange current density of 7.4 × 10−4 A cm−2, and good stability over 5 000 cycles under acidic conditions. The HER performance of MoS2/N‐RGO‐180 nanocomposite is superior to the most reported MoS2‐based catalysts, especially its onset potential and exchange current density. In this work, a novel and simple method to the preparation of low‐cost MoS2‐based electrocatalysts with the extraordinary HER performance is presented.
Author Lan, Ya-Qian
Tang, Yu-Jia
Dong, Long-Zhang
Li, Ya-Fei
Wang, Yu
Li, Shun-Li
Huang, Wei
Wang, Xiao-Li
Liu, Chun-Hui
Author_xml – sequence: 1
  givenname: Yu-Jia
  surname: Tang
  fullname: Tang, Yu-Jia
  organization: Jiangsu Key Laboratory of Biofunctional Materials College of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
– sequence: 2
  givenname: Yu
  surname: Wang
  fullname: Wang, Yu
  organization: Jiangsu Key Laboratory of Biofunctional Materials College of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
– sequence: 3
  givenname: Xiao-Li
  surname: Wang
  fullname: Wang, Xiao-Li
  organization: Jiangsu Key Laboratory of Biofunctional Materials College of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
– sequence: 4
  givenname: Shun-Li
  surname: Li
  fullname: Li, Shun-Li
  organization: Jiangsu Key Laboratory of Biofunctional Materials College of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
– sequence: 5
  givenname: Wei
  surname: Huang
  fullname: Huang, Wei
  organization: Jiangsu Key Laboratory of Biofunctional Materials College of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
– sequence: 6
  givenname: Long-Zhang
  surname: Dong
  fullname: Dong, Long-Zhang
  organization: Jiangsu Key Laboratory of Biofunctional Materials College of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
– sequence: 7
  givenname: Chun-Hui
  surname: Liu
  fullname: Liu, Chun-Hui
  organization: Jiangsu Key Laboratory of Biofunctional Materials College of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
– sequence: 8
  givenname: Ya-Fei
  surname: Li
  fullname: Li, Ya-Fei
  email: liyafei.abc@gmail.com
  organization: Jiangsu Key Laboratory of Biofunctional Materials College of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
– sequence: 9
  givenname: Ya-Qian
  surname: Lan
  fullname: Lan, Ya-Qian
  email: liyafei.abc@gmail.com
  organization: Jiangsu Key Laboratory of Biofunctional Materials College of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
BookMark eNqFkU1v1DAQhiNUJMrSK2dLXLhk6684ybFsw7ZSu5UoiKPldSZbF68dbIc2P4N_TLaLVqgS4Mv48Dwzo3lfZ0fOO8iytwTPCcb0VIHbzikmAmNCxIvsmAjCc1FxfHT4M_oqO4nxHk-P1wQzdpz9vPZ2XLfghi06N3GwnWnhdGVS8Btw-bnvoUWfoB30VJdB9XfgAN08ThRaKee13_Y-mgTowaQ71DirwmZCL12CYNUIAd32Shu3QZ0PqLGgp9ZaJWXHZDS6GNunSaj54e2QjHdvspedshFOftdZ9uVj83lxkV_dLC8XZ1e5LigTuaZAQADXhQBWlm1RAi8KpVS9VpWgHYFqrVXJy5ZjzblYa0o5aztORddqhdkse7_v2wf_fYCY5NZEDdYqB36IklS0KHjJpjPNsnfP0Hs_BDdtJ2ld8boWrCr-RZGyrsopmidqvqd08DEG6GQfzFaFURIsd1HKXZTyEOUk8GeCNkntLpWCMvbvWr3XHoyF8T9D5Fmzuv7TzfeuiQkeD64K36QoWVnIr6ulFAuBefXhVi7ZLzZ9xmM
CitedBy_id crossref_primary_10_1039_C9TA13336D
crossref_primary_10_1021_acs_inorgchem_2c01154
crossref_primary_10_1149_1945_7111_aba970
crossref_primary_10_1016_j_jallcom_2022_167678
crossref_primary_10_1016_j_fuel_2021_120786
crossref_primary_10_1016_j_apsusc_2018_04_276
crossref_primary_10_1063_1_5066332
crossref_primary_10_1016_j_cej_2021_132072
crossref_primary_10_1021_acsanm_2c04849
crossref_primary_10_1021_acsami_1c16284
crossref_primary_10_1016_j_jcis_2021_04_088
crossref_primary_10_1016_j_jpowsour_2019_227319
crossref_primary_10_1021_acsami_7b06075
crossref_primary_10_1039_C7NR08999F
crossref_primary_10_1016_S1872_5813_21_60109_3
crossref_primary_10_1021_acssuschemeng_0c00185
crossref_primary_10_1021_acs_chemmater_7b00114
crossref_primary_10_1002_cctc_202001844
crossref_primary_10_1002_smll_202307241
crossref_primary_10_1016_j_rinp_2019_102564
crossref_primary_10_59717_j_xinn_mater_2024_100060
crossref_primary_10_1016_j_flatc_2021_100242
crossref_primary_10_1002_adma_201803569
crossref_primary_10_1002_aenm_201700571
crossref_primary_10_1016_j_ijhydene_2019_11_190
crossref_primary_10_1016_j_nanoen_2021_106420
crossref_primary_10_1021_acsami_6b15244
crossref_primary_10_1007_s10876_021_02215_0
crossref_primary_10_1016_j_gee_2021_01_011
crossref_primary_10_1002_aenm_201903289
crossref_primary_10_1038_s41578_019_0142_z
crossref_primary_10_1016_j_talanta_2020_121039
crossref_primary_10_1007_s10853_022_07779_4
crossref_primary_10_1016_j_jssc_2022_123238
crossref_primary_10_1021_acsami_0c16537
crossref_primary_10_1007_s12274_017_1684_2
crossref_primary_10_1021_acssuschemeng_8b04335
crossref_primary_10_1016_j_ijhydene_2022_09_189
crossref_primary_10_1002_aenm_202101973
crossref_primary_10_1016_j_cej_2024_153831
crossref_primary_10_1016_j_nantod_2023_101883
crossref_primary_10_1016_j_cej_2022_136618
crossref_primary_10_1016_j_electacta_2017_11_098
crossref_primary_10_1016_j_nanoen_2018_12_044
crossref_primary_10_1016_j_cej_2021_128834
crossref_primary_10_1039_C8TA12293H
crossref_primary_10_1039_C8NR02365D
crossref_primary_10_1021_acsaem_8b00489
crossref_primary_10_1002_slct_201903503
crossref_primary_10_1016_j_apsusc_2022_154066
crossref_primary_10_1002_ejic_202100522
crossref_primary_10_1021_acsami_2c00201
crossref_primary_10_1039_C8TA05818K
crossref_primary_10_1016_j_jcis_2025_137375
crossref_primary_10_1016_j_jallcom_2020_154829
crossref_primary_10_1016_j_rinp_2018_11_066
crossref_primary_10_1016_j_jcis_2020_09_071
crossref_primary_10_1002_celc_202000136
crossref_primary_10_1016_j_apsusc_2021_149013
crossref_primary_10_1016_j_ijhydene_2022_01_031
crossref_primary_10_1021_acs_inorgchem_9b00694
crossref_primary_10_1016_j_cej_2024_149457
crossref_primary_10_1016_j_carbon_2017_02_010
crossref_primary_10_1039_D1TA01136G
crossref_primary_10_1039_D4TA06197G
crossref_primary_10_1039_D3SC01393F
crossref_primary_10_1002_admi_202000795
crossref_primary_10_1039_D4NR00465E
crossref_primary_10_1002_adfm_202425826
crossref_primary_10_1007_s11705_018_1732_9
crossref_primary_10_1002_cctc_202100432
crossref_primary_10_1039_C9NJ05229A
crossref_primary_10_1016_j_apcatb_2021_120560
crossref_primary_10_1016_j_matlet_2022_132746
crossref_primary_10_1021_acssuschemeng_3c05796
crossref_primary_10_1039_D2QI00269H
crossref_primary_10_1016_j_electacta_2023_142119
crossref_primary_10_1016_j_jcis_2024_03_073
crossref_primary_10_3390_molecules28155796
crossref_primary_10_1021_acssuschemeng_9b00817
crossref_primary_10_1002_ange_202313845
crossref_primary_10_1016_j_apsusc_2022_154041
crossref_primary_10_1021_acscatal_8b02904
crossref_primary_10_1016_j_cej_2020_126018
crossref_primary_10_1002_smtd_201800154
crossref_primary_10_1021_acsami_8b12079
crossref_primary_10_1039_C8NA00130H
crossref_primary_10_1002_admi_201801093
crossref_primary_10_1016_j_ceramint_2019_08_077
crossref_primary_10_1002_adfm_201807419
crossref_primary_10_1002_cctc_202100204
crossref_primary_10_1007_s12598_023_02300_5
crossref_primary_10_1016_j_jallcom_2021_159687
crossref_primary_10_1021_acsanm_1c04151
crossref_primary_10_1039_C7QI00044H
crossref_primary_10_1016_j_solener_2024_112906
crossref_primary_10_1016_j_jechem_2020_09_024
crossref_primary_10_1016_j_biomaterials_2025_123284
crossref_primary_10_1016_j_polymertesting_2022_107668
crossref_primary_10_1039_D1QM00051A
crossref_primary_10_1002_adma_202306689
crossref_primary_10_1016_j_molliq_2022_120821
crossref_primary_10_1021_acssuschemeng_8b06717
crossref_primary_10_1038_s41598_021_96536_9
crossref_primary_10_1016_j_ijhydene_2024_05_251
crossref_primary_10_1021_acsaem_0c00045
crossref_primary_10_1016_j_apcatb_2023_123534
crossref_primary_10_1038_s41467_019_09384_7
crossref_primary_10_1557_s43578_024_01361_1
crossref_primary_10_1016_j_cej_2022_138951
crossref_primary_10_1002_admi_202201040
crossref_primary_10_1021_acsomega_3c06718
crossref_primary_10_1016_j_apcatb_2023_122680
crossref_primary_10_1002_slct_202003827
crossref_primary_10_1002_adma_202001167
crossref_primary_10_1016_j_jallcom_2018_07_149
crossref_primary_10_3390_lubricants12030080
crossref_primary_10_1002_adma_202004557
crossref_primary_10_1039_D0NR03794J
crossref_primary_10_1016_j_apsusc_2022_155354
crossref_primary_10_1007_s10934_019_00798_8
crossref_primary_10_1021_acsaem_1c04077
crossref_primary_10_1021_acssuschemeng_0c05459
crossref_primary_10_1016_j_apsusc_2017_09_229
crossref_primary_10_1016_j_ccr_2021_214289
crossref_primary_10_1016_j_ccr_2023_215058
crossref_primary_10_1021_acsami_2c21046
crossref_primary_10_1002_celc_201801469
crossref_primary_10_1016_j_cej_2023_148382
crossref_primary_10_1007_s10853_020_04478_w
crossref_primary_10_1016_j_ijhydene_2022_11_142
crossref_primary_10_1016_j_cej_2020_124204
crossref_primary_10_1002_cctc_202100871
crossref_primary_10_1039_C9TA00423H
crossref_primary_10_1021_acscatal_8b00413
crossref_primary_10_1002_celc_201900783
crossref_primary_10_1039_C7TA00075H
crossref_primary_10_1021_acs_nanolett_7b00603
crossref_primary_10_1002_celc_201801238
crossref_primary_10_1002_adfm_201903542
crossref_primary_10_1016_j_colsurfa_2021_127381
crossref_primary_10_3390_catal12010002
crossref_primary_10_1002_admi_201900372
crossref_primary_10_1021_acs_chemrev_3c00712
crossref_primary_10_1039_C8CP00644J
crossref_primary_10_1016_j_electacta_2022_141052
crossref_primary_10_3390_nano14050442
crossref_primary_10_1016_j_electacta_2019_04_036
crossref_primary_10_1002_smll_202201927
crossref_primary_10_1021_acsanm_1c03941
crossref_primary_10_1039_C8TA08834A
crossref_primary_10_1021_acs_langmuir_7b00029
crossref_primary_10_1016_j_apsusc_2020_146188
crossref_primary_10_1016_j_ijhydene_2018_04_226
crossref_primary_10_1016_j_jechem_2020_05_048
crossref_primary_10_1039_D3QM01000G
crossref_primary_10_1016_j_cej_2022_140140
crossref_primary_10_1016_j_electacta_2019_135263
crossref_primary_10_1021_acsami_0c04151
crossref_primary_10_1016_j_jpowsour_2017_04_060
crossref_primary_10_1016_j_apcatb_2019_118402
crossref_primary_10_1002_slct_202000195
crossref_primary_10_1002_cssc_201800509
crossref_primary_10_1039_D1RA00506E
crossref_primary_10_1007_s12274_022_4297_3
crossref_primary_10_1002_aenm_202000291
crossref_primary_10_20964_2018_04_31
crossref_primary_10_1039_D4TA07625G
crossref_primary_10_1039_C7NR07213A
crossref_primary_10_1021_acsami_3c12494
crossref_primary_10_1039_C9NR05919A
crossref_primary_10_1002_cctc_202401594
crossref_primary_10_1002_admi_201801838
crossref_primary_10_1002_smll_202207378
crossref_primary_10_1016_j_apsusc_2019_04_165
crossref_primary_10_1039_C9TC03951A
crossref_primary_10_1021_acs_inorgchem_9b01930
crossref_primary_10_1016_j_jcis_2018_10_068
crossref_primary_10_1002_celc_201901870
crossref_primary_10_1002_aenm_201602086
crossref_primary_10_1016_j_jssc_2022_123403
crossref_primary_10_1039_C9TA06920H
crossref_primary_10_1002_smll_202302979
crossref_primary_10_1007_s11581_022_04774_2
crossref_primary_10_3390_nano10122449
crossref_primary_10_1016_j_cej_2021_132126
crossref_primary_10_1002_smll_201703098
crossref_primary_10_1016_j_ijhydene_2024_06_250
crossref_primary_10_1016_j_jechem_2023_09_028
crossref_primary_10_1016_j_carbon_2022_01_037
crossref_primary_10_1088_2053_1583_aa89b3
crossref_primary_10_1016_j_enchem_2019_100021
crossref_primary_10_1021_acs_jpcc_1c06387
crossref_primary_10_1080_00958972_2020_1843024
crossref_primary_10_1016_j_jallcom_2019_151959
crossref_primary_10_1039_C8TA07141A
crossref_primary_10_1002_smll_201700639
crossref_primary_10_1016_j_ijhydene_2023_11_102
crossref_primary_10_1021_acssuschemeng_9b04219
crossref_primary_10_1039_C6CC09187C
crossref_primary_10_1016_j_apsusc_2021_151851
crossref_primary_10_1016_j_ijhydene_2023_12_159
crossref_primary_10_1021_prechem_3c00033
crossref_primary_10_1016_j_nwnano_2025_100089
crossref_primary_10_1016_j_mseb_2023_116684
crossref_primary_10_1002_chem_202003613
crossref_primary_10_1039_C7TA05991D
crossref_primary_10_1007_s40843_020_1370_x
crossref_primary_10_1016_j_cej_2024_159189
crossref_primary_10_1002_smll_202301468
crossref_primary_10_1039_D3CS00445G
crossref_primary_10_1016_j_electacta_2020_137686
crossref_primary_10_1021_acsami_4c07705
crossref_primary_10_1039_D3CE00053B
crossref_primary_10_1002_asia_201801121
crossref_primary_10_1016_j_jelechem_2018_07_027
crossref_primary_10_1016_j_jechem_2021_10_019
crossref_primary_10_1016_j_jcat_2018_12_009
crossref_primary_10_1016_j_jechem_2022_06_031
crossref_primary_10_1039_C9TA06395A
crossref_primary_10_1016_S1872_2067_21_64007_X
crossref_primary_10_1088_2053_1591_ab07ef
crossref_primary_10_1016_j_apcatb_2018_10_054
crossref_primary_10_1016_j_jallcom_2023_172131
crossref_primary_10_1021_acsami_0c05204
crossref_primary_10_1039_D3DT00289F
crossref_primary_10_1016_j_jallcom_2017_02_240
crossref_primary_10_1021_acsnano_1c01879
crossref_primary_10_1016_j_jallcom_2018_10_364
crossref_primary_10_1016_j_mtsust_2023_100433
crossref_primary_10_1021_acscatal_9b01429
crossref_primary_10_1007_s12274_022_4375_6
crossref_primary_10_1016_j_pmatsci_2017_09_001
crossref_primary_10_1016_j_matchemphys_2018_08_048
crossref_primary_10_1016_j_cej_2020_127645
crossref_primary_10_1039_D0TA03622F
crossref_primary_10_1039_C8SC01454J
crossref_primary_10_1002_celc_201800092
crossref_primary_10_1016_j_ijhydene_2017_04_228
crossref_primary_10_1016_j_matchemphys_2020_122642
crossref_primary_10_1016_j_electacta_2020_136339
crossref_primary_10_1039_D3NJ01408H
crossref_primary_10_1021_acsaem_9b01219
crossref_primary_10_1039_D4TA02976C
crossref_primary_10_1016_j_matchemphys_2020_124166
crossref_primary_10_1021_acssuschemeng_8b00994
crossref_primary_10_1002_smll_202208291
crossref_primary_10_1002_er_5691
crossref_primary_10_1002_adma_201807134
crossref_primary_10_1016_j_electacta_2017_06_052
crossref_primary_10_1088_2053_1591_ab4617
crossref_primary_10_1007_s10853_020_05303_0
crossref_primary_10_1002_aenm_201900486
crossref_primary_10_1016_j_ijhydene_2022_05_284
crossref_primary_10_3390_ijms23095220
crossref_primary_10_1002_chem_201703493
crossref_primary_10_1016_j_cej_2020_124956
crossref_primary_10_1016_j_jallcom_2023_171427
crossref_primary_10_1016_j_electacta_2022_141572
crossref_primary_10_1016_j_ijhydene_2020_02_179
crossref_primary_10_1149_2_0841915jes
crossref_primary_10_1016_j_carbon_2019_11_050
crossref_primary_10_1007_s40843_019_9555_0
crossref_primary_10_1039_D4CP00702F
crossref_primary_10_1002_smtd_202000621
crossref_primary_10_1002_celc_202200381
crossref_primary_10_1039_C7NH00079K
crossref_primary_10_1039_C9NR10044J
crossref_primary_10_1016_j_jelechem_2024_118513
crossref_primary_10_1039_D2TA03389E
crossref_primary_10_1016_j_fuel_2025_134386
crossref_primary_10_1039_C8QI01230J
crossref_primary_10_1002_smll_201804545
crossref_primary_10_1007_s12274_019_2604_4
crossref_primary_10_1021_acsnano_0c01072
crossref_primary_10_1007_s10562_020_03428_0
crossref_primary_10_1021_acsami_7b16407
crossref_primary_10_1039_C9NJ00411D
crossref_primary_10_1039_C6TA10439H
crossref_primary_10_1002_inf2_12357
crossref_primary_10_1111_jace_18189
crossref_primary_10_1016_j_apsusc_2022_153896
crossref_primary_10_1039_D0SE01683G
crossref_primary_10_1021_acsami_8b01970
crossref_primary_10_1016_j_cej_2019_122189
crossref_primary_10_1039_C8TA08120D
crossref_primary_10_1021_acs_jpcc_1c06733
crossref_primary_10_1016_j_pmatsci_2020_100637
crossref_primary_10_1002_smll_201803344
crossref_primary_10_1021_acs_energyfuels_0c03482
crossref_primary_10_1016_j_ijhydene_2019_04_108
crossref_primary_10_1021_acs_energyfuels_4c04913
crossref_primary_10_1039_C9TA04281D
crossref_primary_10_1021_acssuschemeng_8b02842
crossref_primary_10_1039_C9SE00244H
crossref_primary_10_1038_s41598_017_09047_x
crossref_primary_10_1039_D0QI00135J
crossref_primary_10_1016_j_jechem_2018_01_022
crossref_primary_10_1021_acs_energyfuels_9b02705
crossref_primary_10_1016_j_est_2021_103654
crossref_primary_10_1016_j_mattod_2016_10_004
crossref_primary_10_1021_acsami_7b01096
crossref_primary_10_1039_C8TA00700D
crossref_primary_10_1016_j_jechem_2019_09_010
crossref_primary_10_1021_acsenergylett_8b00066
crossref_primary_10_1039_D2AY00425A
crossref_primary_10_1016_j_rser_2021_110849
crossref_primary_10_3390_nano12224069
crossref_primary_10_1002_cssc_202101236
crossref_primary_10_1002_smll_201700111
crossref_primary_10_1016_j_ijhydene_2019_12_014
crossref_primary_10_1002_smll_202004047
crossref_primary_10_1016_j_electacta_2019_134942
crossref_primary_10_1039_C6RA28850B
crossref_primary_10_1021_acsanm_2c05350
crossref_primary_10_1002_smll_201803361
crossref_primary_10_1002_adma_201903415
crossref_primary_10_1039_C6QI00596A
crossref_primary_10_1002_adma_201707105
crossref_primary_10_1088_1361_6528_aa8686
crossref_primary_10_1016_j_ijhydene_2019_07_079
crossref_primary_10_1021_acsami_9b20902
crossref_primary_10_1021_acsnano_7b00365
crossref_primary_10_1016_j_msec_2018_01_004
crossref_primary_10_1021_acs_inorgchem_9b02099
crossref_primary_10_1016_j_jelechem_2022_116099
crossref_primary_10_1039_D0NR01070G
crossref_primary_10_1016_j_cej_2020_126962
crossref_primary_10_1002_anie_202313845
crossref_primary_10_1063_5_0049121
crossref_primary_10_1002_slct_202200291
crossref_primary_10_1016_j_ijhydene_2020_07_262
crossref_primary_10_1038_s41467_020_16111_0
crossref_primary_10_1016_j_jallcom_2021_161073
crossref_primary_10_1021_acs_jpcc_0c09268
crossref_primary_10_1002_cssc_201801805
crossref_primary_10_1007_s12274_021_3545_2
crossref_primary_10_1039_D2SE00218C
crossref_primary_10_1016_j_jece_2021_105101
crossref_primary_10_1016_j_fuel_2022_124814
crossref_primary_10_1021_acsami_6b13411
crossref_primary_10_1039_D3AN01355C
crossref_primary_10_1007_s11783_022_1566_z
crossref_primary_10_1016_j_ensm_2017_12_015
crossref_primary_10_1016_j_cej_2020_127804
crossref_primary_10_1016_j_apsusc_2019_143808
crossref_primary_10_1149_1945_7111_ac7172
crossref_primary_10_26599_JAC_2023_9220794
crossref_primary_10_1021_acsami_2c22931
crossref_primary_10_1016_j_jcis_2019_08_041
crossref_primary_10_1016_j_ensm_2020_06_020
crossref_primary_10_1557_s43577_023_00597_2
crossref_primary_10_3390_bios14080387
crossref_primary_10_1016_j_ijhydene_2021_04_122
crossref_primary_10_1007_s10853_020_05588_1
crossref_primary_10_1016_j_cej_2020_127159
crossref_primary_10_1016_j_cej_2024_148776
crossref_primary_10_1016_j_ijhydene_2020_06_114
crossref_primary_10_1002_cey2_26
crossref_primary_10_1016_j_cej_2022_136797
crossref_primary_10_1016_j_jelechem_2017_08_012
crossref_primary_10_1038_s41598_017_12332_4
crossref_primary_10_1002_admi_202101294
crossref_primary_10_1088_2053_1591_ab21fc
crossref_primary_10_3390_catal10111301
crossref_primary_10_1002_aenm_201702909
crossref_primary_10_1021_acsnano_8b07795
crossref_primary_10_1002_adma_202310283
crossref_primary_10_1021_acsanm_3c00297
crossref_primary_10_1039_C7NH00137A
crossref_primary_10_1002_sstr_202200247
crossref_primary_10_1021_acsami_8b00211
crossref_primary_10_1039_C7TA08327K
crossref_primary_10_1088_1402_4896_ad8a04
crossref_primary_10_1007_s00604_023_05668_4
crossref_primary_10_1126_sciadv_adh8083
crossref_primary_10_1007_s40843_017_9112_4
crossref_primary_10_1039_D0CC02139C
crossref_primary_10_1016_j_matchemphys_2020_123244
crossref_primary_10_1002_aenm_201801345
crossref_primary_10_1021_acsenergylett_7b00270
crossref_primary_10_1021_acsanm_3c01163
crossref_primary_10_1016_j_apsusc_2023_159098
crossref_primary_10_1016_j_jcis_2022_06_010
crossref_primary_10_1007_s12274_020_3150_9
crossref_primary_10_3390_catal10090977
crossref_primary_10_1021_acsaem_1c03458
crossref_primary_10_1021_acssuschemeng_9b03994
crossref_primary_10_1021_acs_inorgchem_9b03201
crossref_primary_10_1016_j_jcis_2023_07_101
crossref_primary_10_1002_slct_202001837
crossref_primary_10_1002_smll_201701471
crossref_primary_10_1002_adfm_202103214
crossref_primary_10_20517_energymater_2024_134
crossref_primary_10_1002_admi_201700948
crossref_primary_10_1021_acsami_8b01104
crossref_primary_10_1021_acsami_8b05825
crossref_primary_10_1016_j_bioelechem_2020_107733
crossref_primary_10_1021_acsaem_9b01816
crossref_primary_10_1007_s10008_023_05488_9
crossref_primary_10_1002_cssc_202001580
crossref_primary_10_1016_j_ijhydene_2019_11_167
crossref_primary_10_1016_j_cej_2024_156481
crossref_primary_10_1039_C7RA01605K
crossref_primary_10_1016_j_cej_2022_137683
crossref_primary_10_1016_j_apsusc_2018_05_033
crossref_primary_10_1016_j_physe_2019_113909
crossref_primary_10_3390_nano10091719
crossref_primary_10_1016_j_indcrop_2021_114064
crossref_primary_10_1039_C8NR00925B
crossref_primary_10_1016_j_cej_2019_122202
crossref_primary_10_1039_D0NR01664K
crossref_primary_10_1021_acsami_0c07152
crossref_primary_10_1016_j_cej_2020_128158
crossref_primary_10_1016_j_jcat_2019_10_028
crossref_primary_10_1021_acs_energyfuels_3c02448
crossref_primary_10_1016_j_electacta_2019_01_014
crossref_primary_10_1016_j_fuel_2023_127770
crossref_primary_10_1021_acscatal_9b03030
crossref_primary_10_1002_cctc_201801491
crossref_primary_10_1016_j_carbon_2016_06_074
crossref_primary_10_1016_j_apsusc_2019_05_301
crossref_primary_10_1039_C6TA07904K
crossref_primary_10_1016_j_ijhydene_2019_10_117
crossref_primary_10_1016_j_jcis_2022_05_112
crossref_primary_10_1016_j_mtphys_2018_11_007
crossref_primary_10_1039_C9SE01282F
crossref_primary_10_1016_j_ijhydene_2019_03_209
crossref_primary_10_1002_adfm_202404280
crossref_primary_10_1002_aenm_201800789
crossref_primary_10_1002_ente_201901299
crossref_primary_10_1021_acsanm_4c01222
crossref_primary_10_1039_C9NR07277B
crossref_primary_10_1021_acs_iecr_7b05342
crossref_primary_10_1002_sstr_202200109
crossref_primary_10_3390_catal11030301
crossref_primary_10_1021_acsenergylett_7b00111
crossref_primary_10_1016_j_jallcom_2024_174076
crossref_primary_10_1016_j_cej_2021_131769
crossref_primary_10_1149_1945_7111_ac4b84
crossref_primary_10_1002_aenm_201602684
crossref_primary_10_1039_C7CS00705A
crossref_primary_10_1021_acssuschemeng_0c04089
crossref_primary_10_1016_j_ijhydene_2023_03_095
crossref_primary_10_1371_journal_pone_0177258
crossref_primary_10_1039_D1CE00938A
crossref_primary_10_1016_j_electacta_2021_138257
crossref_primary_10_1021_acsenergylett_8b00110
crossref_primary_10_1016_j_apsusc_2019_07_152
crossref_primary_10_1016_j_jallcom_2020_154635
crossref_primary_10_1021_acs_nanolett_6b05346
crossref_primary_10_1039_C9TA08527K
crossref_primary_10_1002_chem_201904669
crossref_primary_10_1021_acsami_0c09358
crossref_primary_10_1002_cey2_625
crossref_primary_10_1016_j_cej_2017_07_056
Cites_doi 10.1002/adfm.201403633
10.1002/anie.200901678
10.1021/ja404523s
10.1002/anie.201505691
10.1038/nmat3439
10.1002/adma.201401692
10.1016/j.nanoen.2014.09.022
10.1126/science.1141483
10.1039/C3CS60404G
10.1002/anie.201410050
10.1002/adfm.200902323
10.1038/nmat1849
10.1021/ja0504690
10.1002/anie.199100341
10.1021/acscatal.5b01563
10.1021/ar5002022
10.1021/acsnano.5b05891
10.1002/ange.201507529
10.1149/1.1856988
10.1038/ncomms3390
10.1039/b922792j
10.1021/ja302846n
10.1149/1.2428530
10.1021/ja408329q
10.1021/nl403661s
10.1002/adfm.201404078
10.1002/aenm.201501115
10.1021/jacs.5b03590
10.1021/ja405680p
10.1038/nmat1752
10.1149/1.3483106
10.1021/acsami.5b02586
10.1126/science.1103197
10.1038/ncomms8493
10.1038/ncomms4783
10.1021/ja403440e
10.1021/cr1002326
10.1039/b820837a
10.1002/ange.201501419
10.1021/ja201269b
10.1039/C4CS00448E
10.1002/anie.201504376
10.1038/35104599
10.1021/cm500347r
10.1021/cs300451q
10.1038/ncomms6982
10.1002/adma.201302685
10.1021/ja4081056
10.1038/nnano.2012.193
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201600116
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Aerospace Database

Aerospace Database
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 4096461281
10_1002_aenm_201600116
AENM201600116
ark_67375_WNG_6C6048BS_G
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21371099; 21471080; 21522305
– fundername: Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
– fundername: NSF of Jiangsu Province of China
  funderid: BK20130043; BK20141445; BK20150045
– fundername: Jiangsu Planned Projects for Postdoctoral Research Funds
  funderid: 1302020B
– fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
GroupedDBID 05W
0R~
1OC
31~
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
BSCLL
D-A
DCZOG
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
AAHQN
AAMNL
AAYCA
ACYXJ
AFWVQ
ALVPJ
AANHP
AAYXX
ACRPL
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c5236-c2e1e6e4c56e377d57e455aaa9ba862f1e8bca747d40c446bc2243df426fdca03
ISSN 1614-6832
IngestDate Thu Jul 10 22:45:23 EDT 2025
Fri Jul 25 10:47:48 EDT 2025
Fri Jul 25 12:13:29 EDT 2025
Tue Jul 01 01:43:15 EDT 2025
Thu Apr 24 22:54:58 EDT 2025
Wed Jan 22 17:09:34 EST 2025
Wed Oct 30 09:56:13 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5236-c2e1e6e4c56e377d57e455aaa9ba862f1e8bca747d40c446bc2243df426fdca03
Notes National Natural Science Foundation of China - No. 21371099; No. 21471080; No. 21522305
Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
Priority Academic Program Development of Jiangsu Higher Education Institutions
ark:/67375/WNG-6C6048BS-G
istex:20079F9616AFBACBE53F27C05F27DBF8972A925D
ArticleID:AENM201600116
NSF of Jiangsu Province of China - No. BK20130043; No. BK20141445; No. BK20150045
Jiangsu Planned Projects for Postdoctoral Research Funds - No. 1302020B
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1798760085
PQPubID 886389
PageCount 7
ParticipantIDs proquest_miscellaneous_1825547303
proquest_journals_2984996385
proquest_journals_1798760085
crossref_primary_10_1002_aenm_201600116
crossref_citationtrail_10_1002_aenm_201600116
wiley_primary_10_1002_aenm_201600116_AENM201600116
istex_primary_ark_67375_WNG_6C6048BS_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 20160601
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationTitleAlternate Adv. Energy Mater
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, Y. Xie, J. Am. Chem. Soc. 2013, 135, 17881.
J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, J. K. Norskov, Nat. Mater. 2006, 5, 909.
X. Xie, Z. Ao, D. Su, J. Zhang, G. Wang, Adv. Funct. Mater. 2015, 25, 1393.
N. Zhang, S. Gan, T. Wu, W. Ma, D. Han, L. Niu, ACS Appl. Mater. Interfaces 2015, 7, 12193.
J. A. Turner, Science 2004, 305, 972.
H. Yan, C. Tian, L. Wang, A. Wu, M. Meng, L. Zhao, H. Fu, Angew. Chem. Int. Ed. 2015, 127, 6423.
Q. Xiang, J. Yu, M. Jaroniec, J. Am. Chem. Soc. 2012, 134, 6575.
Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto, Nat. Commun. 2013, 4, 2390.
C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj, Angew. Chem. Int. Ed. 2009, 48, 7752.
M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446.
Q. Mahmood, S. K. Park, K. D. Kwon, S.-J. Chang, J.-Y. Hong, G. Shen, Y. M. Jung, T. J. Park, S. W. Khang, W. S. Kim, J. Kong, H. S. Park, Adv. Energy Mater. 2016, 6, 1501115.
S. Chen, J. Duan, Y. Tang, B. Jin, S. Zhang Qiao, Nano Energy 2015, 11, 11.
S. Zhang, B. V. R. Chowdari, Z. Wen, J. Jin, J. Yang, ACS Nano 2015, 9, 12464.
Z. Huang, W. Luo, L. Ma, M. Yu, X. Ren, M. He, S. Polen, K. Click, B. Garrett, J. Lu, K. Amine, C. Hadad, W. Chen, A. Asthagiri, Y. Wu, Angew. Chem. Int. Ed. 2015, 127, 15396.
J. Zhang, L. Dai, ACS Catal. 2015, 5, 7244.
W. Sheng, H. A. Gasteiger, Y. Shao-Horn, J. Electrochem. Soc. 2010, 157, B1529.
A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
D. Zhou, B.-H. Han, Adv. Funct. Mater. 2010, 20, 2717.
M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, J. Am. Chem. Soc. 2013, 135, 10274.
C. G. Morales-Guio, X. Hu, Acc. Chem. Res. 2014, 47, 2671.
E. Antolini, Energy Environ. Sci. 2009, 2, 915.
J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 2005, 152, J23.
N. P. Dasgupta, C. Liu, S. Andrews, F. B. Prinz, P. Yang, J. Am. Chem. Soc. 2013, 135, 12932.
M.-R. Gao, J.-X. Liang, Y.-R. Zheng, Y.-F. Xu, J. Jiang, Q. Gao, J. Li, S.-H. Yu, Nat. Commun. 2015, 6, 5982.
Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 2011, 133, 7296.
M.-R. Gao, M. K. Y. Chan, Y. Sun, Nat. Commun. 2015, 6, 7493.
P. Xiao, X. Ge, H. Wang, Z. Liu, A. Fisher, X. Wang, Adv. Funct. Mater. 2015, 25, 1520.
M. S. Dresselhaus, I. L. Thomas, Nature 2001, 414, 332.
D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nano Lett. 2013, 13, 6222.
T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100.
Q. Yuan, Z. Zhou, J. Zhuang, X. Wang, Chem. Commun. 2010, 46, 1491.
X. Zou, Y. Zhang, Chem. Soc. Rev. 2015, 44, 5148.
C. Tan, H. Zhang, J. Am. Chem. Soc. 2015, 137, 12162.
J. Kibsgaard, Z. Chen, B. N. Reinecke, T. F. Jaramillo, Nat. Mater. 2012, 11, 963.
Z. Xing, Q. Liu, A. M. Asiri, X. Sun, Adv. Mater. 2014, 26, 5702.
M. T. Pope, A. Müller, Angew. Chem. Int. Ed. 1991, 30, 34.
B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Nørskov, J. Am. Chem. Soc. 2005, 127, 5308.
J. D. Benck, Z. Chen, L. Y. Kuritzky, A. J. Forman, T. F. Jaramillo, ACS Catal. 2012, 2, 1916.
D.-Y. Du, J.-S. Qin, S.-L. Li, Z.-M. Su, Y.-Q. Lan, Chem. Soc. Rev. 2014, 43, 4615.
Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S. Z. Qiao, Nat. Commun. 2014, 5, 3783.
E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, R. E. Schaak, J. Am. Chem. Soc. 2013, 135, 9267.
N. Pentland, J. O. M. Bockris, E. Sheldon, J. Electrochem. Soc. 1957, 104, 182.
X. Zheng, J. Xu, K. Yan, H. Wang, Z. Wang, S. Yang, Chem. Mater. 2014, 26, 2344.
B. Cao, G. M. Veith, J. C. Neuefeind, R. R. Adzic, P. G. Khalifah, J. Am. Chem. Soc. 2013, 135, 19186.
Y.-J. Tang, M.-R. Gao, C.-H. Liu, S.-L. Li, H.-L. Jiang, Y.-Q. Lan, M. Han, S.-H. Yu, Angew. Chem. Int. Ed. 2015, 54, 12928.
Y. Ito, W. Cong, T. Fujita, Z. Tang, M. Chen, Angew. Chem. Int. Ed. 2015, 54, 2131.
Y. Liu, G. Yu, G. D. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, Angew. Chem. Int. Ed. 2015, 54, 10752.
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol. 2012, 7, 699.
J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, Y. Xie, Adv. Mater. 2013, 25, 5807.
2015; 6
2015; 5
2013; 25
2013; 4
2005; 152
2015; 127
1957; 104
1991; 30
2015; 11
2015; 54
2014; 26
2014; 47
2006; 5
2015; 9
2004; 305
2012; 11
2015; 7
2009; 48
2011; 133
2014; 43
2016; 6
2015; 25
2010; 20
2014; 5
2012; 2
2007; 317
2012; 134
2010; 46
2015; 137
2013; 13
2015; 44
2005; 127
2010; 157
2010; 110
2007; 6
2013; 135
2009; 2
2012; 7
2001; 414
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
References_xml – reference: Y.-J. Tang, M.-R. Gao, C.-H. Liu, S.-L. Li, H.-L. Jiang, Y.-Q. Lan, M. Han, S.-H. Yu, Angew. Chem. Int. Ed. 2015, 54, 12928.
– reference: P. Xiao, X. Ge, H. Wang, Z. Liu, A. Fisher, X. Wang, Adv. Funct. Mater. 2015, 25, 1520.
– reference: E. Antolini, Energy Environ. Sci. 2009, 2, 915.
– reference: Q. Yuan, Z. Zhou, J. Zhuang, X. Wang, Chem. Commun. 2010, 46, 1491.
– reference: J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 2005, 152, J23.
– reference: H. Yan, C. Tian, L. Wang, A. Wu, M. Meng, L. Zhao, H. Fu, Angew. Chem. Int. Ed. 2015, 127, 6423.
– reference: J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, Y. Xie, Adv. Mater. 2013, 25, 5807.
– reference: Y. Liu, G. Yu, G. D. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, Angew. Chem. Int. Ed. 2015, 54, 10752.
– reference: M.-R. Gao, J.-X. Liang, Y.-R. Zheng, Y.-F. Xu, J. Jiang, Q. Gao, J. Li, S.-H. Yu, Nat. Commun. 2015, 6, 5982.
– reference: J. Zhang, L. Dai, ACS Catal. 2015, 5, 7244.
– reference: C. Tan, H. Zhang, J. Am. Chem. Soc. 2015, 137, 12162.
– reference: Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 2011, 133, 7296.
– reference: S. Zhang, B. V. R. Chowdari, Z. Wen, J. Jin, J. Yang, ACS Nano 2015, 9, 12464.
– reference: D.-Y. Du, J.-S. Qin, S.-L. Li, Z.-M. Su, Y.-Q. Lan, Chem. Soc. Rev. 2014, 43, 4615.
– reference: S. Chen, J. Duan, Y. Tang, B. Jin, S. Zhang Qiao, Nano Energy 2015, 11, 11.
– reference: N. P. Dasgupta, C. Liu, S. Andrews, F. B. Prinz, P. Yang, J. Am. Chem. Soc. 2013, 135, 12932.
– reference: B. Cao, G. M. Veith, J. C. Neuefeind, R. R. Adzic, P. G. Khalifah, J. Am. Chem. Soc. 2013, 135, 19186.
– reference: E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, R. E. Schaak, J. Am. Chem. Soc. 2013, 135, 9267.
– reference: M. T. Pope, A. Müller, Angew. Chem. Int. Ed. 1991, 30, 34.
– reference: M. S. Dresselhaus, I. L. Thomas, Nature 2001, 414, 332.
– reference: J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, Y. Xie, J. Am. Chem. Soc. 2013, 135, 17881.
– reference: C. G. Morales-Guio, X. Hu, Acc. Chem. Res. 2014, 47, 2671.
– reference: D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nano Lett. 2013, 13, 6222.
– reference: W. Sheng, H. A. Gasteiger, Y. Shao-Horn, J. Electrochem. Soc. 2010, 157, B1529.
– reference: M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446.
– reference: X. Zou, Y. Zhang, Chem. Soc. Rev. 2015, 44, 5148.
– reference: Z. Huang, W. Luo, L. Ma, M. Yu, X. Ren, M. He, S. Polen, K. Click, B. Garrett, J. Lu, K. Amine, C. Hadad, W. Chen, A. Asthagiri, Y. Wu, Angew. Chem. Int. Ed. 2015, 127, 15396.
– reference: X. Xie, Z. Ao, D. Su, J. Zhang, G. Wang, Adv. Funct. Mater. 2015, 25, 1393.
– reference: A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
– reference: J. Kibsgaard, Z. Chen, B. N. Reinecke, T. F. Jaramillo, Nat. Mater. 2012, 11, 963.
– reference: B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Nørskov, J. Am. Chem. Soc. 2005, 127, 5308.
– reference: Y. Ito, W. Cong, T. Fujita, Z. Tang, M. Chen, Angew. Chem. Int. Ed. 2015, 54, 2131.
– reference: J. D. Benck, Z. Chen, L. Y. Kuritzky, A. J. Forman, T. F. Jaramillo, ACS Catal. 2012, 2, 1916.
– reference: D. Zhou, B.-H. Han, Adv. Funct. Mater. 2010, 20, 2717.
– reference: Q. Mahmood, S. K. Park, K. D. Kwon, S.-J. Chang, J.-Y. Hong, G. Shen, Y. M. Jung, T. J. Park, S. W. Khang, W. S. Kim, J. Kong, H. S. Park, Adv. Energy Mater. 2016, 6, 1501115.
– reference: Q. Xiang, J. Yu, M. Jaroniec, J. Am. Chem. Soc. 2012, 134, 6575.
– reference: Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S. Z. Qiao, Nat. Commun. 2014, 5, 3783.
– reference: C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj, Angew. Chem. Int. Ed. 2009, 48, 7752.
– reference: N. Zhang, S. Gan, T. Wu, W. Ma, D. Han, L. Niu, ACS Appl. Mater. Interfaces 2015, 7, 12193.
– reference: Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto, Nat. Commun. 2013, 4, 2390.
– reference: J. A. Turner, Science 2004, 305, 972.
– reference: Z. Xing, Q. Liu, A. M. Asiri, X. Sun, Adv. Mater. 2014, 26, 5702.
– reference: M.-R. Gao, M. K. Y. Chan, Y. Sun, Nat. Commun. 2015, 6, 7493.
– reference: M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, J. Am. Chem. Soc. 2013, 135, 10274.
– reference: X. Zheng, J. Xu, K. Yan, H. Wang, Z. Wang, S. Yang, Chem. Mater. 2014, 26, 2344.
– reference: N. Pentland, J. O. M. Bockris, E. Sheldon, J. Electrochem. Soc. 1957, 104, 182.
– reference: J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, J. K. Norskov, Nat. Mater. 2006, 5, 909.
– reference: T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100.
– reference: Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol. 2012, 7, 699.
– volume: 6
  start-page: 5982
  year: 2015
  publication-title: Nat. Commun.
– volume: 11
  start-page: 963
  year: 2012
  publication-title: Nat. Mater.
– volume: 25
  start-page: 1520
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 909
  year: 2006
  publication-title: Nat. Mater.
– volume: 152
  start-page: J23
  year: 2005
  publication-title: J. Electrochem. Soc.
– volume: 44
  start-page: 5148
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 3783
  year: 2014
  publication-title: Nat. Commun.
– volume: 6
  start-page: 1501115
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 2390
  year: 2013
  publication-title: Nat. Commun.
– volume: 6
  start-page: 7493
  year: 2015
  publication-title: Nat. Commun.
– volume: 305
  start-page: 972
  year: 2004
  publication-title: Science
– volume: 157
  start-page: B1529
  year: 2010
  publication-title: J. Electrochem. Soc.
– volume: 30
  start-page: 34
  year: 1991
  publication-title: Angew. Chem. Int. Ed.
– volume: 25
  start-page: 5807
  year: 2013
  publication-title: Adv. Mater.
– volume: 135
  start-page: 9267
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 12932
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 12193
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 915
  year: 2009
  publication-title: Energy Environ. Sci.
– volume: 135
  start-page: 17881
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 10274
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 11
  year: 2015
  publication-title: Nano Energy
– volume: 47
  start-page: 2671
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 25
  start-page: 1393
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 317
  start-page: 100
  year: 2007
  publication-title: Science
– volume: 48
  start-page: 7752
  year: 2009
  publication-title: Angew. Chem. Int. Ed.
– volume: 54
  start-page: 2131
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 7244
  year: 2015
  publication-title: ACS Catal.
– volume: 54
  start-page: 12928
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 134
  start-page: 6575
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 19186
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 699
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 183
  year: 2007
  publication-title: Nat. Mater.
– volume: 26
  start-page: 5702
  year: 2014
  publication-title: Adv. Mater.
– volume: 20
  start-page: 2717
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 127
  start-page: 5308
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 7296
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 127
  start-page: 15396
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 46
  start-page: 1491
  year: 2010
  publication-title: Chem. Commun.
– volume: 2
  start-page: 1916
  year: 2012
  publication-title: ACS Catal.
– volume: 137
  start-page: 12162
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 6222
  year: 2013
  publication-title: Nano Lett.
– volume: 26
  start-page: 2344
  year: 2014
  publication-title: Chem. Mater.
– volume: 54
  start-page: 10752
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 43
  start-page: 4615
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 127
  start-page: 6423
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 110
  start-page: 6446
  year: 2010
  publication-title: Chem. Rev.
– volume: 414
  start-page: 332
  year: 2001
  publication-title: Nature
– volume: 104
  start-page: 182
  year: 1957
  publication-title: J. Electrochem. Soc.
– volume: 9
  start-page: 12464
  year: 2015
  publication-title: ACS Nano
– ident: e_1_2_5_12_1
  doi: 10.1002/adfm.201403633
– ident: e_1_2_5_28_1
  doi: 10.1002/anie.200901678
– ident: e_1_2_5_23_1
  doi: 10.1021/ja404523s
– ident: e_1_2_5_47_1
  doi: 10.1002/anie.201505691
– ident: e_1_2_5_8_1
  doi: 10.1038/nmat3439
– ident: e_1_2_5_10_1
  doi: 10.1002/adma.201401692
– ident: e_1_2_5_39_1
  doi: 10.1016/j.nanoen.2014.09.022
– ident: e_1_2_5_25_1
  doi: 10.1126/science.1141483
– ident: e_1_2_5_36_1
  doi: 10.1039/C3CS60404G
– ident: e_1_2_5_17_1
  doi: 10.1002/anie.201410050
– ident: e_1_2_5_37_1
  doi: 10.1002/adfm.200902323
– ident: e_1_2_5_29_1
  doi: 10.1038/nmat1849
– ident: e_1_2_5_24_1
  doi: 10.1021/ja0504690
– ident: e_1_2_5_35_1
  doi: 10.1002/anie.199100341
– ident: e_1_2_5_34_1
  doi: 10.1021/acscatal.5b01563
– ident: e_1_2_5_9_1
  doi: 10.1021/ar5002022
– ident: e_1_2_5_42_1
  doi: 10.1021/acsnano.5b05891
– ident: e_1_2_5_46_1
  doi: 10.1002/ange.201507529
– ident: e_1_2_5_48_1
  doi: 10.1149/1.1856988
– ident: e_1_2_5_40_1
  doi: 10.1038/ncomms3390
– ident: e_1_2_5_16_1
  doi: 10.1039/b922792j
– ident: e_1_2_5_33_1
  doi: 10.1021/ja302846n
– ident: e_1_2_5_44_1
  doi: 10.1149/1.2428530
– ident: e_1_2_5_26_1
  doi: 10.1021/ja408329q
– ident: e_1_2_5_22_1
  doi: 10.1021/nl403661s
– ident: e_1_2_5_32_1
  doi: 10.1002/adfm.201404078
– ident: e_1_2_5_41_1
  doi: 10.1002/aenm.201501115
– ident: e_1_2_5_19_1
  doi: 10.1021/jacs.5b03590
– ident: e_1_2_5_4_1
  doi: 10.1021/ja405680p
– ident: e_1_2_5_15_1
  doi: 10.1038/nmat1752
– ident: e_1_2_5_45_1
  doi: 10.1149/1.3483106
– ident: e_1_2_5_43_1
  doi: 10.1021/acsami.5b02586
– ident: e_1_2_5_2_1
  doi: 10.1126/science.1103197
– ident: e_1_2_5_27_1
  doi: 10.1038/ncomms8493
– ident: e_1_2_5_18_1
  doi: 10.1038/ncomms4783
– ident: e_1_2_5_11_1
  doi: 10.1021/ja403440e
– ident: e_1_2_5_3_1
  doi: 10.1021/cr1002326
– ident: e_1_2_5_5_1
  doi: 10.1039/b820837a
– ident: e_1_2_5_14_1
  doi: 10.1002/ange.201501419
– ident: e_1_2_5_30_1
  doi: 10.1021/ja201269b
– ident: e_1_2_5_6_1
  doi: 10.1039/C4CS00448E
– ident: e_1_2_5_49_1
  doi: 10.1002/anie.201504376
– ident: e_1_2_5_1_1
  doi: 10.1038/35104599
– ident: e_1_2_5_31_1
  doi: 10.1021/cm500347r
– ident: e_1_2_5_20_1
  doi: 10.1021/cs300451q
– ident: e_1_2_5_7_1
  doi: 10.1038/ncomms6982
– ident: e_1_2_5_38_1
  doi: 10.1002/adma.201302685
– ident: e_1_2_5_13_1
  doi: 10.1021/ja4081056
– ident: e_1_2_5_21_1
  doi: 10.1038/nnano.2012.193
SSID ssj0000491033
Score 2.6315591
Snippet Facile design of low‐cost and highly active catalysts from earth‐abundant elements is favorable for the industrial application of water splitting. Here, a...
Facile design of low-cost and highly active catalysts from earth-abundant elements is favorable for the industrial application of water splitting. Here, a...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage np
SubjectTerms Catalysts
Catalytic activity
Current density
Electrocatalysts
enlarged interlayer spacing
Expansion
Graphene
Hydrogen evolution
hydrogen evolution reaction
Hydrogen evolution reactions
Industrial applications
Interlayers
Molybdenum
Molybdenum disulfide
MoS2/RGO
Nanocomposites
Nitrogen
nitrogen-doped species
Oxides
Synergistic effect
Water splitting
Title Molybdenum Disulfide/Nitrogen-Doped Reduced Graphene Oxide Nanocomposite with Enlarged Interlayer Spacing for Electrocatalytic Hydrogen Evolution
URI https://api.istex.fr/ark:/67375/WNG-6C6048BS-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201600116
https://www.proquest.com/docview/1798760085
https://www.proquest.com/docview/2984996385
https://www.proquest.com/docview/1825547303
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKeoED4lMUBjISgkNllsRJmh7Lmraa2u7QTpST5TiOFlElVdeglf9i_zHPSZykY4jBJWqeXefj_fK-_PyM0IfQ6EnDloJQh_eJDTqQcB54hNIItKfJ3ShQa4dnc3dyYZ-tnFWrddPIWsp2wWfx8851Jf_DVaABX9Uq2X_gbDUoEOA38BeOwGE43ovHs3S9D8I8mX0YX2XrKFZFdEfzeLdN4U9kmG6kWn4YZmqWf6xqU4No655fQz8lV1OVUK6ytmQRj_WTtUoMD4s44ZqDOd5dgFOtsy39Ys-cPOSzV5VeJ_swv1LX_1E-aNPYHej8AlksMATjuHgrdbigkDTfMnIW1_qhot6mrGKekmmsydM8E2FxmSWaWIYvTLdOsyolLtgHxPXKIKds0oo6TlpMu000Wg2Zm2wa2rs4-U0vFHVmuUxU8QHTzaefag2oZ_3n52x0MZ2ypb9aPkBtCzwPEJ3twXA2XVSBO3CpTIPmCzf0retioIZ1cniJA2Onrb7b6wNPpukP5QbN8gl6XHoieFDA6ilqyeQZetSoT_kc3dQAwxXATg7hhUt4YQ0vnMMLH8ALK3hhDS9cwwuX8MIAL3wbXljDC1fweoEuRv7ydELKPTyIcCzqEmFJU7rSFo4raa8XOj1pOw7nvB9wcKYjU3qB4ODThrYhbNsNBNiUNIzAcIxCwQ36Eh0laSJfIWwCWUQB5QLsyh6lgeEYZsBl5IXcln3eQUS_bCbKAvdqn5U1K0pzW0wxh1XM6aBPVf9NUdrljz0_5ryruvHtd5UQ2XPY1_mYuacu6MEvCzbuoGPNXFbKiSumSgKq6W_PubPZ6nt2X6lBaH5fNYOQVzN3PJFpBkN44PnDMxu0g6wcM3-5Yzbw57Pq7PU9Bn6DHtaf5zE62m0z-Rbs7V3wrvwCfgH_pNqO
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molybdenum+Disulfide%2FNitrogen-Doped+Reduced+Graphene+Oxide+Nanocomposite+with+Enlarged+Interlayer+Spacing+for+Electrocatalytic+Hydrogen+Evolution&rft.jtitle=Advanced+energy+materials&rft.au=Tang%2C+Yu-Jia&rft.au=Wang%2C+Yu&rft.au=Wang%2C+Xiao-Li&rft.au=Li%2C+Shun-Li&rft.date=2016-06-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=6&rft.issue=12&rft.spage=np&rft.epage=np&rft_id=info:doi/10.1002%2Faenm.201600116&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon