Molybdenum Disulfide/Nitrogen-Doped Reduced Graphene Oxide Nanocomposite with Enlarged Interlayer Spacing for Electrocatalytic Hydrogen Evolution
Facile design of low‐cost and highly active catalysts from earth‐abundant elements is favorable for the industrial application of water splitting. Here, a simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen‐doped reduced graphene oxide (MoS2/N‐RGO‐180) nanocomposite with the enl...
Saved in:
Published in | Advanced energy materials Vol. 6; no. 12; pp. np - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Blackwell Publishing Ltd
01.06.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Facile design of low‐cost and highly active catalysts from earth‐abundant elements is favorable for the industrial application of water splitting. Here, a simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen‐doped reduced graphene oxide (MoS2/N‐RGO‐180) nanocomposite with the enlarged interlayer spacing of 9.5 Å by a one‐step hydrothermal method is reported. The synergistic effects between the layered MoS2 nanosheets and N‐doped RGO films contribute to the high activity for hydrogen evolution reaction (HER). MoS2/N‐RGO‐180 exhibits the excellent catalytic activity with a low onset potential of −5 mV versus reversible hydrogen elelctrode (RHE), a small Tafel slope of 41.3 mV dec−1, a high exchange current density of 7.4 × 10−4 A cm−2, and good stability over 5 000 cycles under acidic conditions. The HER performance of MoS2/N‐RGO‐180 nanocomposite is superior to the most reported MoS2‐based catalysts, especially its onset potential and exchange current density. In this work, a novel and simple method to the preparation of low‐cost MoS2‐based electrocatalysts with the extraordinary HER performance is presented.
A simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen‐doped reduced graphene oxide (MoS2/N‐RGO‐180) nanocomposite with the enlarged interlayer spacing of 9.5 Å is reported. MoS2/N‐RGO‐180 exhibits excellent hydrogen evolution reaction (HER) catalytic activity with a low onset potential of −5 mV versus RHE, a small Tafel slope of 41.3 mV dec−1 and good stability over 5000 cycles. |
---|---|
AbstractList | Facile design of low‐cost and highly active catalysts from earth‐abundant elements is favorable for the industrial application of water splitting. Here, a simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen‐doped reduced graphene oxide (MoS
2
/N‐RGO‐180) nanocomposite with the enlarged interlayer spacing of 9.5 Å by a one‐step hydrothermal method is reported. The synergistic effects between the layered MoS
2
nanosheets and N‐doped RGO films contribute to the high activity for hydrogen evolution reaction (HER). MoS
2
/N‐RGO‐180 exhibits the excellent catalytic activity with a low onset potential of −5 mV versus reversible hydrogen elelctrode (RHE), a small Tafel slope of 41.3 mV dec
−1
, a high exchange current density of 7.4 × 10
−4
A cm
−2
, and good stability over 5 000 cycles under acidic conditions. The HER performance of MoS
2
/N‐RGO‐180 nanocomposite is superior to the most reported MoS
2
‐based catalysts, especially its onset potential and exchange current density. In this work, a novel and simple method to the preparation of low‐cost MoS
2
‐based electrocatalysts with the extraordinary HER performance is presented. Facile design of low-cost and highly active catalysts from earth-abundant elements is favorable for the industrial application of water splitting. Here, a simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen-doped reduced graphene oxide (MoS2/N-RGO-180) nanocomposite with the enlarged interlayer spacing of 9.5 Å by a one-step hydrothermal method is reported. The synergistic effects between the layered MoS2 nanosheets and N-doped RGO films contribute to the high activity for hydrogen evolution reaction (HER). MoS2/N-RGO-180 exhibits the excellent catalytic activity with a low onset potential of -5 mV versus reversible hydrogen elelctrode (RHE), a small Tafel slope of 41.3 mV dec-1, a high exchange current density of 7.4 × 10-4 A cm-2, and good stability over 5 000 cycles under acidic conditions. The HER performance of MoS2/N-RGO-180 nanocomposite is superior to the most reported MoS2-based catalysts, especially its onset potential and exchange current density. In this work, a novel and simple method to the preparation of low-cost MoS2-based electrocatalysts with the extraordinary HER performance is presented. Facile design of low‐cost and highly active catalysts from earth‐abundant elements is favorable for the industrial application of water splitting. Here, a simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen‐doped reduced graphene oxide (MoS2/N‐RGO‐180) nanocomposite with the enlarged interlayer spacing of 9.5 Å by a one‐step hydrothermal method is reported. The synergistic effects between the layered MoS2 nanosheets and N‐doped RGO films contribute to the high activity for hydrogen evolution reaction (HER). MoS2/N‐RGO‐180 exhibits the excellent catalytic activity with a low onset potential of −5 mV versus reversible hydrogen elelctrode (RHE), a small Tafel slope of 41.3 mV dec−1, a high exchange current density of 7.4 × 10−4 A cm−2, and good stability over 5 000 cycles under acidic conditions. The HER performance of MoS2/N‐RGO‐180 nanocomposite is superior to the most reported MoS2‐based catalysts, especially its onset potential and exchange current density. In this work, a novel and simple method to the preparation of low‐cost MoS2‐based electrocatalysts with the extraordinary HER performance is presented. A simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen‐doped reduced graphene oxide (MoS2/N‐RGO‐180) nanocomposite with the enlarged interlayer spacing of 9.5 Å is reported. MoS2/N‐RGO‐180 exhibits excellent hydrogen evolution reaction (HER) catalytic activity with a low onset potential of −5 mV versus RHE, a small Tafel slope of 41.3 mV dec−1 and good stability over 5000 cycles. Facile design of low-cost and highly active catalysts from earth-abundant elements is favorable for the industrial application of water splitting. Here, a simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen-doped reduced graphene oxide (MoS sub(2)/N-RGO-180) nanocomposite with the enlarged interlayer spacing of 9.5 Aa by a one-step hydrothermal method is reported. The synergistic effects between the layered MoS sub(2) nanosheets and N-doped RGO films contribute to the high activity for hydrogen evolution reaction (HER). MoS sub(2)/N-RGO-180 exhibits the excellent catalytic activity with a low onset potential of -5 mV versus reversible hydrogen elelctrode (RHE), a small Tafel slope of 41.3 mV dec super(-1), a high exchange current density of 7.4 10 super(-4) A cm super(-2), and good stability over 5 000 cycles under acidic conditions. The HER performance of MoS sub(2)/N-RGO-180 nanocomposite is superior to the most reported MoS sub(2)-based catalysts, especially its onset potential and exchange current density. In this work, a novel and simple method to the preparation of low-cost MoS sub(2)-based electrocatalysts with the extraordinary HER performance is presented. A simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen-doped reduced graphene oxide (MoS sub(2)/N-RGO-180) nanocomposite with the enlarged interlayer spacing of 9.5 Aa is reported. MoS sub(2)/N-RGO-180 exhibits excellent hydrogen evolution reaction (HER) catalytic activity with a low onset potential of -5 mV versus RHE, a small Tafel slope of 41.3 mV dec super(-1) and good stability over 5000 cycles. Facile design of low‐cost and highly active catalysts from earth‐abundant elements is favorable for the industrial application of water splitting. Here, a simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen‐doped reduced graphene oxide (MoS2/N‐RGO‐180) nanocomposite with the enlarged interlayer spacing of 9.5 Å by a one‐step hydrothermal method is reported. The synergistic effects between the layered MoS2 nanosheets and N‐doped RGO films contribute to the high activity for hydrogen evolution reaction (HER). MoS2/N‐RGO‐180 exhibits the excellent catalytic activity with a low onset potential of −5 mV versus reversible hydrogen elelctrode (RHE), a small Tafel slope of 41.3 mV dec−1, a high exchange current density of 7.4 × 10−4 A cm−2, and good stability over 5 000 cycles under acidic conditions. The HER performance of MoS2/N‐RGO‐180 nanocomposite is superior to the most reported MoS2‐based catalysts, especially its onset potential and exchange current density. In this work, a novel and simple method to the preparation of low‐cost MoS2‐based electrocatalysts with the extraordinary HER performance is presented. |
Author | Lan, Ya-Qian Tang, Yu-Jia Dong, Long-Zhang Li, Ya-Fei Wang, Yu Li, Shun-Li Huang, Wei Wang, Xiao-Li Liu, Chun-Hui |
Author_xml | – sequence: 1 givenname: Yu-Jia surname: Tang fullname: Tang, Yu-Jia organization: Jiangsu Key Laboratory of Biofunctional Materials College of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China – sequence: 2 givenname: Yu surname: Wang fullname: Wang, Yu organization: Jiangsu Key Laboratory of Biofunctional Materials College of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China – sequence: 3 givenname: Xiao-Li surname: Wang fullname: Wang, Xiao-Li organization: Jiangsu Key Laboratory of Biofunctional Materials College of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China – sequence: 4 givenname: Shun-Li surname: Li fullname: Li, Shun-Li organization: Jiangsu Key Laboratory of Biofunctional Materials College of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China – sequence: 5 givenname: Wei surname: Huang fullname: Huang, Wei organization: Jiangsu Key Laboratory of Biofunctional Materials College of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China – sequence: 6 givenname: Long-Zhang surname: Dong fullname: Dong, Long-Zhang organization: Jiangsu Key Laboratory of Biofunctional Materials College of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China – sequence: 7 givenname: Chun-Hui surname: Liu fullname: Liu, Chun-Hui organization: Jiangsu Key Laboratory of Biofunctional Materials College of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China – sequence: 8 givenname: Ya-Fei surname: Li fullname: Li, Ya-Fei email: liyafei.abc@gmail.com organization: Jiangsu Key Laboratory of Biofunctional Materials College of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China – sequence: 9 givenname: Ya-Qian surname: Lan fullname: Lan, Ya-Qian email: liyafei.abc@gmail.com organization: Jiangsu Key Laboratory of Biofunctional Materials College of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China |
BookMark | eNqFkU1v1DAQhiNUJMrSK2dLXLhk6684ybFsw7ZSu5UoiKPldSZbF68dbIc2P4N_TLaLVqgS4Mv48Dwzo3lfZ0fOO8iytwTPCcb0VIHbzikmAmNCxIvsmAjCc1FxfHT4M_oqO4nxHk-P1wQzdpz9vPZ2XLfghi06N3GwnWnhdGVS8Btw-bnvoUWfoB30VJdB9XfgAN08ThRaKee13_Y-mgTowaQ71DirwmZCL12CYNUIAd32Shu3QZ0PqLGgp9ZaJWXHZDS6GNunSaj54e2QjHdvspedshFOftdZ9uVj83lxkV_dLC8XZ1e5LigTuaZAQADXhQBWlm1RAi8KpVS9VpWgHYFqrVXJy5ZjzblYa0o5aztORddqhdkse7_v2wf_fYCY5NZEDdYqB36IklS0KHjJpjPNsnfP0Hs_BDdtJ2ld8boWrCr-RZGyrsopmidqvqd08DEG6GQfzFaFURIsd1HKXZTyEOUk8GeCNkntLpWCMvbvWr3XHoyF8T9D5Fmzuv7TzfeuiQkeD64K36QoWVnIr6ulFAuBefXhVi7ZLzZ9xmM |
CitedBy_id | crossref_primary_10_1039_C9TA13336D crossref_primary_10_1021_acs_inorgchem_2c01154 crossref_primary_10_1149_1945_7111_aba970 crossref_primary_10_1016_j_jallcom_2022_167678 crossref_primary_10_1016_j_fuel_2021_120786 crossref_primary_10_1016_j_apsusc_2018_04_276 crossref_primary_10_1063_1_5066332 crossref_primary_10_1016_j_cej_2021_132072 crossref_primary_10_1021_acsanm_2c04849 crossref_primary_10_1021_acsami_1c16284 crossref_primary_10_1016_j_jcis_2021_04_088 crossref_primary_10_1016_j_jpowsour_2019_227319 crossref_primary_10_1021_acsami_7b06075 crossref_primary_10_1039_C7NR08999F crossref_primary_10_1016_S1872_5813_21_60109_3 crossref_primary_10_1021_acssuschemeng_0c00185 crossref_primary_10_1021_acs_chemmater_7b00114 crossref_primary_10_1002_cctc_202001844 crossref_primary_10_1002_smll_202307241 crossref_primary_10_1016_j_rinp_2019_102564 crossref_primary_10_59717_j_xinn_mater_2024_100060 crossref_primary_10_1016_j_flatc_2021_100242 crossref_primary_10_1002_adma_201803569 crossref_primary_10_1002_aenm_201700571 crossref_primary_10_1016_j_ijhydene_2019_11_190 crossref_primary_10_1016_j_nanoen_2021_106420 crossref_primary_10_1021_acsami_6b15244 crossref_primary_10_1007_s10876_021_02215_0 crossref_primary_10_1016_j_gee_2021_01_011 crossref_primary_10_1002_aenm_201903289 crossref_primary_10_1038_s41578_019_0142_z crossref_primary_10_1016_j_talanta_2020_121039 crossref_primary_10_1007_s10853_022_07779_4 crossref_primary_10_1016_j_jssc_2022_123238 crossref_primary_10_1021_acsami_0c16537 crossref_primary_10_1007_s12274_017_1684_2 crossref_primary_10_1021_acssuschemeng_8b04335 crossref_primary_10_1016_j_ijhydene_2022_09_189 crossref_primary_10_1002_aenm_202101973 crossref_primary_10_1016_j_cej_2024_153831 crossref_primary_10_1016_j_nantod_2023_101883 crossref_primary_10_1016_j_cej_2022_136618 crossref_primary_10_1016_j_electacta_2017_11_098 crossref_primary_10_1016_j_nanoen_2018_12_044 crossref_primary_10_1016_j_cej_2021_128834 crossref_primary_10_1039_C8TA12293H crossref_primary_10_1039_C8NR02365D crossref_primary_10_1021_acsaem_8b00489 crossref_primary_10_1002_slct_201903503 crossref_primary_10_1016_j_apsusc_2022_154066 crossref_primary_10_1002_ejic_202100522 crossref_primary_10_1021_acsami_2c00201 crossref_primary_10_1039_C8TA05818K crossref_primary_10_1016_j_jcis_2025_137375 crossref_primary_10_1016_j_jallcom_2020_154829 crossref_primary_10_1016_j_rinp_2018_11_066 crossref_primary_10_1016_j_jcis_2020_09_071 crossref_primary_10_1002_celc_202000136 crossref_primary_10_1016_j_apsusc_2021_149013 crossref_primary_10_1016_j_ijhydene_2022_01_031 crossref_primary_10_1021_acs_inorgchem_9b00694 crossref_primary_10_1016_j_cej_2024_149457 crossref_primary_10_1016_j_carbon_2017_02_010 crossref_primary_10_1039_D1TA01136G crossref_primary_10_1039_D4TA06197G crossref_primary_10_1039_D3SC01393F crossref_primary_10_1002_admi_202000795 crossref_primary_10_1039_D4NR00465E crossref_primary_10_1002_adfm_202425826 crossref_primary_10_1007_s11705_018_1732_9 crossref_primary_10_1002_cctc_202100432 crossref_primary_10_1039_C9NJ05229A crossref_primary_10_1016_j_apcatb_2021_120560 crossref_primary_10_1016_j_matlet_2022_132746 crossref_primary_10_1021_acssuschemeng_3c05796 crossref_primary_10_1039_D2QI00269H crossref_primary_10_1016_j_electacta_2023_142119 crossref_primary_10_1016_j_jcis_2024_03_073 crossref_primary_10_3390_molecules28155796 crossref_primary_10_1021_acssuschemeng_9b00817 crossref_primary_10_1002_ange_202313845 crossref_primary_10_1016_j_apsusc_2022_154041 crossref_primary_10_1021_acscatal_8b02904 crossref_primary_10_1016_j_cej_2020_126018 crossref_primary_10_1002_smtd_201800154 crossref_primary_10_1021_acsami_8b12079 crossref_primary_10_1039_C8NA00130H crossref_primary_10_1002_admi_201801093 crossref_primary_10_1016_j_ceramint_2019_08_077 crossref_primary_10_1002_adfm_201807419 crossref_primary_10_1002_cctc_202100204 crossref_primary_10_1007_s12598_023_02300_5 crossref_primary_10_1016_j_jallcom_2021_159687 crossref_primary_10_1021_acsanm_1c04151 crossref_primary_10_1039_C7QI00044H crossref_primary_10_1016_j_solener_2024_112906 crossref_primary_10_1016_j_jechem_2020_09_024 crossref_primary_10_1016_j_biomaterials_2025_123284 crossref_primary_10_1016_j_polymertesting_2022_107668 crossref_primary_10_1039_D1QM00051A crossref_primary_10_1002_adma_202306689 crossref_primary_10_1016_j_molliq_2022_120821 crossref_primary_10_1021_acssuschemeng_8b06717 crossref_primary_10_1038_s41598_021_96536_9 crossref_primary_10_1016_j_ijhydene_2024_05_251 crossref_primary_10_1021_acsaem_0c00045 crossref_primary_10_1016_j_apcatb_2023_123534 crossref_primary_10_1038_s41467_019_09384_7 crossref_primary_10_1557_s43578_024_01361_1 crossref_primary_10_1016_j_cej_2022_138951 crossref_primary_10_1002_admi_202201040 crossref_primary_10_1021_acsomega_3c06718 crossref_primary_10_1016_j_apcatb_2023_122680 crossref_primary_10_1002_slct_202003827 crossref_primary_10_1002_adma_202001167 crossref_primary_10_1016_j_jallcom_2018_07_149 crossref_primary_10_3390_lubricants12030080 crossref_primary_10_1002_adma_202004557 crossref_primary_10_1039_D0NR03794J crossref_primary_10_1016_j_apsusc_2022_155354 crossref_primary_10_1007_s10934_019_00798_8 crossref_primary_10_1021_acsaem_1c04077 crossref_primary_10_1021_acssuschemeng_0c05459 crossref_primary_10_1016_j_apsusc_2017_09_229 crossref_primary_10_1016_j_ccr_2021_214289 crossref_primary_10_1016_j_ccr_2023_215058 crossref_primary_10_1021_acsami_2c21046 crossref_primary_10_1002_celc_201801469 crossref_primary_10_1016_j_cej_2023_148382 crossref_primary_10_1007_s10853_020_04478_w crossref_primary_10_1016_j_ijhydene_2022_11_142 crossref_primary_10_1016_j_cej_2020_124204 crossref_primary_10_1002_cctc_202100871 crossref_primary_10_1039_C9TA00423H crossref_primary_10_1021_acscatal_8b00413 crossref_primary_10_1002_celc_201900783 crossref_primary_10_1039_C7TA00075H crossref_primary_10_1021_acs_nanolett_7b00603 crossref_primary_10_1002_celc_201801238 crossref_primary_10_1002_adfm_201903542 crossref_primary_10_1016_j_colsurfa_2021_127381 crossref_primary_10_3390_catal12010002 crossref_primary_10_1002_admi_201900372 crossref_primary_10_1021_acs_chemrev_3c00712 crossref_primary_10_1039_C8CP00644J crossref_primary_10_1016_j_electacta_2022_141052 crossref_primary_10_3390_nano14050442 crossref_primary_10_1016_j_electacta_2019_04_036 crossref_primary_10_1002_smll_202201927 crossref_primary_10_1021_acsanm_1c03941 crossref_primary_10_1039_C8TA08834A crossref_primary_10_1021_acs_langmuir_7b00029 crossref_primary_10_1016_j_apsusc_2020_146188 crossref_primary_10_1016_j_ijhydene_2018_04_226 crossref_primary_10_1016_j_jechem_2020_05_048 crossref_primary_10_1039_D3QM01000G crossref_primary_10_1016_j_cej_2022_140140 crossref_primary_10_1016_j_electacta_2019_135263 crossref_primary_10_1021_acsami_0c04151 crossref_primary_10_1016_j_jpowsour_2017_04_060 crossref_primary_10_1016_j_apcatb_2019_118402 crossref_primary_10_1002_slct_202000195 crossref_primary_10_1002_cssc_201800509 crossref_primary_10_1039_D1RA00506E crossref_primary_10_1007_s12274_022_4297_3 crossref_primary_10_1002_aenm_202000291 crossref_primary_10_20964_2018_04_31 crossref_primary_10_1039_D4TA07625G crossref_primary_10_1039_C7NR07213A crossref_primary_10_1021_acsami_3c12494 crossref_primary_10_1039_C9NR05919A crossref_primary_10_1002_cctc_202401594 crossref_primary_10_1002_admi_201801838 crossref_primary_10_1002_smll_202207378 crossref_primary_10_1016_j_apsusc_2019_04_165 crossref_primary_10_1039_C9TC03951A crossref_primary_10_1021_acs_inorgchem_9b01930 crossref_primary_10_1016_j_jcis_2018_10_068 crossref_primary_10_1002_celc_201901870 crossref_primary_10_1002_aenm_201602086 crossref_primary_10_1016_j_jssc_2022_123403 crossref_primary_10_1039_C9TA06920H crossref_primary_10_1002_smll_202302979 crossref_primary_10_1007_s11581_022_04774_2 crossref_primary_10_3390_nano10122449 crossref_primary_10_1016_j_cej_2021_132126 crossref_primary_10_1002_smll_201703098 crossref_primary_10_1016_j_ijhydene_2024_06_250 crossref_primary_10_1016_j_jechem_2023_09_028 crossref_primary_10_1016_j_carbon_2022_01_037 crossref_primary_10_1088_2053_1583_aa89b3 crossref_primary_10_1016_j_enchem_2019_100021 crossref_primary_10_1021_acs_jpcc_1c06387 crossref_primary_10_1080_00958972_2020_1843024 crossref_primary_10_1016_j_jallcom_2019_151959 crossref_primary_10_1039_C8TA07141A crossref_primary_10_1002_smll_201700639 crossref_primary_10_1016_j_ijhydene_2023_11_102 crossref_primary_10_1021_acssuschemeng_9b04219 crossref_primary_10_1039_C6CC09187C crossref_primary_10_1016_j_apsusc_2021_151851 crossref_primary_10_1016_j_ijhydene_2023_12_159 crossref_primary_10_1021_prechem_3c00033 crossref_primary_10_1016_j_nwnano_2025_100089 crossref_primary_10_1016_j_mseb_2023_116684 crossref_primary_10_1002_chem_202003613 crossref_primary_10_1039_C7TA05991D crossref_primary_10_1007_s40843_020_1370_x crossref_primary_10_1016_j_cej_2024_159189 crossref_primary_10_1002_smll_202301468 crossref_primary_10_1039_D3CS00445G crossref_primary_10_1016_j_electacta_2020_137686 crossref_primary_10_1021_acsami_4c07705 crossref_primary_10_1039_D3CE00053B crossref_primary_10_1002_asia_201801121 crossref_primary_10_1016_j_jelechem_2018_07_027 crossref_primary_10_1016_j_jechem_2021_10_019 crossref_primary_10_1016_j_jcat_2018_12_009 crossref_primary_10_1016_j_jechem_2022_06_031 crossref_primary_10_1039_C9TA06395A crossref_primary_10_1016_S1872_2067_21_64007_X crossref_primary_10_1088_2053_1591_ab07ef crossref_primary_10_1016_j_apcatb_2018_10_054 crossref_primary_10_1016_j_jallcom_2023_172131 crossref_primary_10_1021_acsami_0c05204 crossref_primary_10_1039_D3DT00289F crossref_primary_10_1016_j_jallcom_2017_02_240 crossref_primary_10_1021_acsnano_1c01879 crossref_primary_10_1016_j_jallcom_2018_10_364 crossref_primary_10_1016_j_mtsust_2023_100433 crossref_primary_10_1021_acscatal_9b01429 crossref_primary_10_1007_s12274_022_4375_6 crossref_primary_10_1016_j_pmatsci_2017_09_001 crossref_primary_10_1016_j_matchemphys_2018_08_048 crossref_primary_10_1016_j_cej_2020_127645 crossref_primary_10_1039_D0TA03622F crossref_primary_10_1039_C8SC01454J crossref_primary_10_1002_celc_201800092 crossref_primary_10_1016_j_ijhydene_2017_04_228 crossref_primary_10_1016_j_matchemphys_2020_122642 crossref_primary_10_1016_j_electacta_2020_136339 crossref_primary_10_1039_D3NJ01408H crossref_primary_10_1021_acsaem_9b01219 crossref_primary_10_1039_D4TA02976C crossref_primary_10_1016_j_matchemphys_2020_124166 crossref_primary_10_1021_acssuschemeng_8b00994 crossref_primary_10_1002_smll_202208291 crossref_primary_10_1002_er_5691 crossref_primary_10_1002_adma_201807134 crossref_primary_10_1016_j_electacta_2017_06_052 crossref_primary_10_1088_2053_1591_ab4617 crossref_primary_10_1007_s10853_020_05303_0 crossref_primary_10_1002_aenm_201900486 crossref_primary_10_1016_j_ijhydene_2022_05_284 crossref_primary_10_3390_ijms23095220 crossref_primary_10_1002_chem_201703493 crossref_primary_10_1016_j_cej_2020_124956 crossref_primary_10_1016_j_jallcom_2023_171427 crossref_primary_10_1016_j_electacta_2022_141572 crossref_primary_10_1016_j_ijhydene_2020_02_179 crossref_primary_10_1149_2_0841915jes crossref_primary_10_1016_j_carbon_2019_11_050 crossref_primary_10_1007_s40843_019_9555_0 crossref_primary_10_1039_D4CP00702F crossref_primary_10_1002_smtd_202000621 crossref_primary_10_1002_celc_202200381 crossref_primary_10_1039_C7NH00079K crossref_primary_10_1039_C9NR10044J crossref_primary_10_1016_j_jelechem_2024_118513 crossref_primary_10_1039_D2TA03389E crossref_primary_10_1016_j_fuel_2025_134386 crossref_primary_10_1039_C8QI01230J crossref_primary_10_1002_smll_201804545 crossref_primary_10_1007_s12274_019_2604_4 crossref_primary_10_1021_acsnano_0c01072 crossref_primary_10_1007_s10562_020_03428_0 crossref_primary_10_1021_acsami_7b16407 crossref_primary_10_1039_C9NJ00411D crossref_primary_10_1039_C6TA10439H crossref_primary_10_1002_inf2_12357 crossref_primary_10_1111_jace_18189 crossref_primary_10_1016_j_apsusc_2022_153896 crossref_primary_10_1039_D0SE01683G crossref_primary_10_1021_acsami_8b01970 crossref_primary_10_1016_j_cej_2019_122189 crossref_primary_10_1039_C8TA08120D crossref_primary_10_1021_acs_jpcc_1c06733 crossref_primary_10_1016_j_pmatsci_2020_100637 crossref_primary_10_1002_smll_201803344 crossref_primary_10_1021_acs_energyfuels_0c03482 crossref_primary_10_1016_j_ijhydene_2019_04_108 crossref_primary_10_1021_acs_energyfuels_4c04913 crossref_primary_10_1039_C9TA04281D crossref_primary_10_1021_acssuschemeng_8b02842 crossref_primary_10_1039_C9SE00244H crossref_primary_10_1038_s41598_017_09047_x crossref_primary_10_1039_D0QI00135J crossref_primary_10_1016_j_jechem_2018_01_022 crossref_primary_10_1021_acs_energyfuels_9b02705 crossref_primary_10_1016_j_est_2021_103654 crossref_primary_10_1016_j_mattod_2016_10_004 crossref_primary_10_1021_acsami_7b01096 crossref_primary_10_1039_C8TA00700D crossref_primary_10_1016_j_jechem_2019_09_010 crossref_primary_10_1021_acsenergylett_8b00066 crossref_primary_10_1039_D2AY00425A crossref_primary_10_1016_j_rser_2021_110849 crossref_primary_10_3390_nano12224069 crossref_primary_10_1002_cssc_202101236 crossref_primary_10_1002_smll_201700111 crossref_primary_10_1016_j_ijhydene_2019_12_014 crossref_primary_10_1002_smll_202004047 crossref_primary_10_1016_j_electacta_2019_134942 crossref_primary_10_1039_C6RA28850B crossref_primary_10_1021_acsanm_2c05350 crossref_primary_10_1002_smll_201803361 crossref_primary_10_1002_adma_201903415 crossref_primary_10_1039_C6QI00596A crossref_primary_10_1002_adma_201707105 crossref_primary_10_1088_1361_6528_aa8686 crossref_primary_10_1016_j_ijhydene_2019_07_079 crossref_primary_10_1021_acsami_9b20902 crossref_primary_10_1021_acsnano_7b00365 crossref_primary_10_1016_j_msec_2018_01_004 crossref_primary_10_1021_acs_inorgchem_9b02099 crossref_primary_10_1016_j_jelechem_2022_116099 crossref_primary_10_1039_D0NR01070G crossref_primary_10_1016_j_cej_2020_126962 crossref_primary_10_1002_anie_202313845 crossref_primary_10_1063_5_0049121 crossref_primary_10_1002_slct_202200291 crossref_primary_10_1016_j_ijhydene_2020_07_262 crossref_primary_10_1038_s41467_020_16111_0 crossref_primary_10_1016_j_jallcom_2021_161073 crossref_primary_10_1021_acs_jpcc_0c09268 crossref_primary_10_1002_cssc_201801805 crossref_primary_10_1007_s12274_021_3545_2 crossref_primary_10_1039_D2SE00218C crossref_primary_10_1016_j_jece_2021_105101 crossref_primary_10_1016_j_fuel_2022_124814 crossref_primary_10_1021_acsami_6b13411 crossref_primary_10_1039_D3AN01355C crossref_primary_10_1007_s11783_022_1566_z crossref_primary_10_1016_j_ensm_2017_12_015 crossref_primary_10_1016_j_cej_2020_127804 crossref_primary_10_1016_j_apsusc_2019_143808 crossref_primary_10_1149_1945_7111_ac7172 crossref_primary_10_26599_JAC_2023_9220794 crossref_primary_10_1021_acsami_2c22931 crossref_primary_10_1016_j_jcis_2019_08_041 crossref_primary_10_1016_j_ensm_2020_06_020 crossref_primary_10_1557_s43577_023_00597_2 crossref_primary_10_3390_bios14080387 crossref_primary_10_1016_j_ijhydene_2021_04_122 crossref_primary_10_1007_s10853_020_05588_1 crossref_primary_10_1016_j_cej_2020_127159 crossref_primary_10_1016_j_cej_2024_148776 crossref_primary_10_1016_j_ijhydene_2020_06_114 crossref_primary_10_1002_cey2_26 crossref_primary_10_1016_j_cej_2022_136797 crossref_primary_10_1016_j_jelechem_2017_08_012 crossref_primary_10_1038_s41598_017_12332_4 crossref_primary_10_1002_admi_202101294 crossref_primary_10_1088_2053_1591_ab21fc crossref_primary_10_3390_catal10111301 crossref_primary_10_1002_aenm_201702909 crossref_primary_10_1021_acsnano_8b07795 crossref_primary_10_1002_adma_202310283 crossref_primary_10_1021_acsanm_3c00297 crossref_primary_10_1039_C7NH00137A crossref_primary_10_1002_sstr_202200247 crossref_primary_10_1021_acsami_8b00211 crossref_primary_10_1039_C7TA08327K crossref_primary_10_1088_1402_4896_ad8a04 crossref_primary_10_1007_s00604_023_05668_4 crossref_primary_10_1126_sciadv_adh8083 crossref_primary_10_1007_s40843_017_9112_4 crossref_primary_10_1039_D0CC02139C crossref_primary_10_1016_j_matchemphys_2020_123244 crossref_primary_10_1002_aenm_201801345 crossref_primary_10_1021_acsenergylett_7b00270 crossref_primary_10_1021_acsanm_3c01163 crossref_primary_10_1016_j_apsusc_2023_159098 crossref_primary_10_1016_j_jcis_2022_06_010 crossref_primary_10_1007_s12274_020_3150_9 crossref_primary_10_3390_catal10090977 crossref_primary_10_1021_acsaem_1c03458 crossref_primary_10_1021_acssuschemeng_9b03994 crossref_primary_10_1021_acs_inorgchem_9b03201 crossref_primary_10_1016_j_jcis_2023_07_101 crossref_primary_10_1002_slct_202001837 crossref_primary_10_1002_smll_201701471 crossref_primary_10_1002_adfm_202103214 crossref_primary_10_20517_energymater_2024_134 crossref_primary_10_1002_admi_201700948 crossref_primary_10_1021_acsami_8b01104 crossref_primary_10_1021_acsami_8b05825 crossref_primary_10_1016_j_bioelechem_2020_107733 crossref_primary_10_1021_acsaem_9b01816 crossref_primary_10_1007_s10008_023_05488_9 crossref_primary_10_1002_cssc_202001580 crossref_primary_10_1016_j_ijhydene_2019_11_167 crossref_primary_10_1016_j_cej_2024_156481 crossref_primary_10_1039_C7RA01605K crossref_primary_10_1016_j_cej_2022_137683 crossref_primary_10_1016_j_apsusc_2018_05_033 crossref_primary_10_1016_j_physe_2019_113909 crossref_primary_10_3390_nano10091719 crossref_primary_10_1016_j_indcrop_2021_114064 crossref_primary_10_1039_C8NR00925B crossref_primary_10_1016_j_cej_2019_122202 crossref_primary_10_1039_D0NR01664K crossref_primary_10_1021_acsami_0c07152 crossref_primary_10_1016_j_cej_2020_128158 crossref_primary_10_1016_j_jcat_2019_10_028 crossref_primary_10_1021_acs_energyfuels_3c02448 crossref_primary_10_1016_j_electacta_2019_01_014 crossref_primary_10_1016_j_fuel_2023_127770 crossref_primary_10_1021_acscatal_9b03030 crossref_primary_10_1002_cctc_201801491 crossref_primary_10_1016_j_carbon_2016_06_074 crossref_primary_10_1016_j_apsusc_2019_05_301 crossref_primary_10_1039_C6TA07904K crossref_primary_10_1016_j_ijhydene_2019_10_117 crossref_primary_10_1016_j_jcis_2022_05_112 crossref_primary_10_1016_j_mtphys_2018_11_007 crossref_primary_10_1039_C9SE01282F crossref_primary_10_1016_j_ijhydene_2019_03_209 crossref_primary_10_1002_adfm_202404280 crossref_primary_10_1002_aenm_201800789 crossref_primary_10_1002_ente_201901299 crossref_primary_10_1021_acsanm_4c01222 crossref_primary_10_1039_C9NR07277B crossref_primary_10_1021_acs_iecr_7b05342 crossref_primary_10_1002_sstr_202200109 crossref_primary_10_3390_catal11030301 crossref_primary_10_1021_acsenergylett_7b00111 crossref_primary_10_1016_j_jallcom_2024_174076 crossref_primary_10_1016_j_cej_2021_131769 crossref_primary_10_1149_1945_7111_ac4b84 crossref_primary_10_1002_aenm_201602684 crossref_primary_10_1039_C7CS00705A crossref_primary_10_1021_acssuschemeng_0c04089 crossref_primary_10_1016_j_ijhydene_2023_03_095 crossref_primary_10_1371_journal_pone_0177258 crossref_primary_10_1039_D1CE00938A crossref_primary_10_1016_j_electacta_2021_138257 crossref_primary_10_1021_acsenergylett_8b00110 crossref_primary_10_1016_j_apsusc_2019_07_152 crossref_primary_10_1016_j_jallcom_2020_154635 crossref_primary_10_1021_acs_nanolett_6b05346 crossref_primary_10_1039_C9TA08527K crossref_primary_10_1002_chem_201904669 crossref_primary_10_1021_acsami_0c09358 crossref_primary_10_1002_cey2_625 crossref_primary_10_1016_j_cej_2017_07_056 |
Cites_doi | 10.1002/adfm.201403633 10.1002/anie.200901678 10.1021/ja404523s 10.1002/anie.201505691 10.1038/nmat3439 10.1002/adma.201401692 10.1016/j.nanoen.2014.09.022 10.1126/science.1141483 10.1039/C3CS60404G 10.1002/anie.201410050 10.1002/adfm.200902323 10.1038/nmat1849 10.1021/ja0504690 10.1002/anie.199100341 10.1021/acscatal.5b01563 10.1021/ar5002022 10.1021/acsnano.5b05891 10.1002/ange.201507529 10.1149/1.1856988 10.1038/ncomms3390 10.1039/b922792j 10.1021/ja302846n 10.1149/1.2428530 10.1021/ja408329q 10.1021/nl403661s 10.1002/adfm.201404078 10.1002/aenm.201501115 10.1021/jacs.5b03590 10.1021/ja405680p 10.1038/nmat1752 10.1149/1.3483106 10.1021/acsami.5b02586 10.1126/science.1103197 10.1038/ncomms8493 10.1038/ncomms4783 10.1021/ja403440e 10.1021/cr1002326 10.1039/b820837a 10.1002/ange.201501419 10.1021/ja201269b 10.1039/C4CS00448E 10.1002/anie.201504376 10.1038/35104599 10.1021/cm500347r 10.1021/cs300451q 10.1038/ncomms6982 10.1002/adma.201302685 10.1021/ja4081056 10.1038/nnano.2012.193 |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201600116 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 4096461281 10_1002_aenm_201600116 AENM201600116 ark_67375_WNG_6C6048BS_G |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21371099; 21471080; 21522305 – fundername: Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materials – fundername: NSF of Jiangsu Province of China funderid: BK20130043; BK20141445; BK20150045 – fundername: Jiangsu Planned Projects for Postdoctoral Research Funds funderid: 1302020B – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BRXPI BSCLL D-A DCZOG EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- AAHQN AAMNL AAYCA ACYXJ AFWVQ ALVPJ AANHP AAYXX ACRPL ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG CITATION 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c5236-c2e1e6e4c56e377d57e455aaa9ba862f1e8bca747d40c446bc2243df426fdca03 |
ISSN | 1614-6832 |
IngestDate | Thu Jul 10 22:45:23 EDT 2025 Fri Jul 25 10:47:48 EDT 2025 Fri Jul 25 12:13:29 EDT 2025 Tue Jul 01 01:43:15 EDT 2025 Thu Apr 24 22:54:58 EDT 2025 Wed Jan 22 17:09:34 EST 2025 Wed Oct 30 09:56:13 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5236-c2e1e6e4c56e377d57e455aaa9ba862f1e8bca747d40c446bc2243df426fdca03 |
Notes | National Natural Science Foundation of China - No. 21371099; No. 21471080; No. 21522305 Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Priority Academic Program Development of Jiangsu Higher Education Institutions ark:/67375/WNG-6C6048BS-G istex:20079F9616AFBACBE53F27C05F27DBF8972A925D ArticleID:AENM201600116 NSF of Jiangsu Province of China - No. BK20130043; No. BK20141445; No. BK20150045 Jiangsu Planned Projects for Postdoctoral Research Funds - No. 1302020B ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1798760085 |
PQPubID | 886389 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1825547303 proquest_journals_2984996385 proquest_journals_1798760085 crossref_primary_10_1002_aenm_201600116 crossref_citationtrail_10_1002_aenm_201600116 wiley_primary_10_1002_aenm_201600116_AENM201600116 istex_primary_ark_67375_WNG_6C6048BS_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160601 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 20160601 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationTitleAlternate | Adv. Energy Mater |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, Y. Xie, J. Am. Chem. Soc. 2013, 135, 17881. J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, J. K. Norskov, Nat. Mater. 2006, 5, 909. X. Xie, Z. Ao, D. Su, J. Zhang, G. Wang, Adv. Funct. Mater. 2015, 25, 1393. N. Zhang, S. Gan, T. Wu, W. Ma, D. Han, L. Niu, ACS Appl. Mater. Interfaces 2015, 7, 12193. J. A. Turner, Science 2004, 305, 972. H. Yan, C. Tian, L. Wang, A. Wu, M. Meng, L. Zhao, H. Fu, Angew. Chem. Int. Ed. 2015, 127, 6423. Q. Xiang, J. Yu, M. Jaroniec, J. Am. Chem. Soc. 2012, 134, 6575. Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto, Nat. Commun. 2013, 4, 2390. C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj, Angew. Chem. Int. Ed. 2009, 48, 7752. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446. Q. Mahmood, S. K. Park, K. D. Kwon, S.-J. Chang, J.-Y. Hong, G. Shen, Y. M. Jung, T. J. Park, S. W. Khang, W. S. Kim, J. Kong, H. S. Park, Adv. Energy Mater. 2016, 6, 1501115. S. Chen, J. Duan, Y. Tang, B. Jin, S. Zhang Qiao, Nano Energy 2015, 11, 11. S. Zhang, B. V. R. Chowdari, Z. Wen, J. Jin, J. Yang, ACS Nano 2015, 9, 12464. Z. Huang, W. Luo, L. Ma, M. Yu, X. Ren, M. He, S. Polen, K. Click, B. Garrett, J. Lu, K. Amine, C. Hadad, W. Chen, A. Asthagiri, Y. Wu, Angew. Chem. Int. Ed. 2015, 127, 15396. J. Zhang, L. Dai, ACS Catal. 2015, 5, 7244. W. Sheng, H. A. Gasteiger, Y. Shao-Horn, J. Electrochem. Soc. 2010, 157, B1529. A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183. D. Zhou, B.-H. Han, Adv. Funct. Mater. 2010, 20, 2717. M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, J. Am. Chem. Soc. 2013, 135, 10274. C. G. Morales-Guio, X. Hu, Acc. Chem. Res. 2014, 47, 2671. E. Antolini, Energy Environ. Sci. 2009, 2, 915. J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 2005, 152, J23. N. P. Dasgupta, C. Liu, S. Andrews, F. B. Prinz, P. Yang, J. Am. Chem. Soc. 2013, 135, 12932. M.-R. Gao, J.-X. Liang, Y.-R. Zheng, Y.-F. Xu, J. Jiang, Q. Gao, J. Li, S.-H. Yu, Nat. Commun. 2015, 6, 5982. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 2011, 133, 7296. M.-R. Gao, M. K. Y. Chan, Y. Sun, Nat. Commun. 2015, 6, 7493. P. Xiao, X. Ge, H. Wang, Z. Liu, A. Fisher, X. Wang, Adv. Funct. Mater. 2015, 25, 1520. M. S. Dresselhaus, I. L. Thomas, Nature 2001, 414, 332. D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nano Lett. 2013, 13, 6222. T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100. Q. Yuan, Z. Zhou, J. Zhuang, X. Wang, Chem. Commun. 2010, 46, 1491. X. Zou, Y. Zhang, Chem. Soc. Rev. 2015, 44, 5148. C. Tan, H. Zhang, J. Am. Chem. Soc. 2015, 137, 12162. J. Kibsgaard, Z. Chen, B. N. Reinecke, T. F. Jaramillo, Nat. Mater. 2012, 11, 963. Z. Xing, Q. Liu, A. M. Asiri, X. Sun, Adv. Mater. 2014, 26, 5702. M. T. Pope, A. Müller, Angew. Chem. Int. Ed. 1991, 30, 34. B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Nørskov, J. Am. Chem. Soc. 2005, 127, 5308. J. D. Benck, Z. Chen, L. Y. Kuritzky, A. J. Forman, T. F. Jaramillo, ACS Catal. 2012, 2, 1916. D.-Y. Du, J.-S. Qin, S.-L. Li, Z.-M. Su, Y.-Q. Lan, Chem. Soc. Rev. 2014, 43, 4615. Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S. Z. Qiao, Nat. Commun. 2014, 5, 3783. E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, R. E. Schaak, J. Am. Chem. Soc. 2013, 135, 9267. N. Pentland, J. O. M. Bockris, E. Sheldon, J. Electrochem. Soc. 1957, 104, 182. X. Zheng, J. Xu, K. Yan, H. Wang, Z. Wang, S. Yang, Chem. Mater. 2014, 26, 2344. B. Cao, G. M. Veith, J. C. Neuefeind, R. R. Adzic, P. G. Khalifah, J. Am. Chem. Soc. 2013, 135, 19186. Y.-J. Tang, M.-R. Gao, C.-H. Liu, S.-L. Li, H.-L. Jiang, Y.-Q. Lan, M. Han, S.-H. Yu, Angew. Chem. Int. Ed. 2015, 54, 12928. Y. Ito, W. Cong, T. Fujita, Z. Tang, M. Chen, Angew. Chem. Int. Ed. 2015, 54, 2131. Y. Liu, G. Yu, G. D. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, Angew. Chem. Int. Ed. 2015, 54, 10752. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol. 2012, 7, 699. J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, Y. Xie, Adv. Mater. 2013, 25, 5807. 2015; 6 2015; 5 2013; 25 2013; 4 2005; 152 2015; 127 1957; 104 1991; 30 2015; 11 2015; 54 2014; 26 2014; 47 2006; 5 2015; 9 2004; 305 2012; 11 2015; 7 2009; 48 2011; 133 2014; 43 2016; 6 2015; 25 2010; 20 2014; 5 2012; 2 2007; 317 2012; 134 2010; 46 2015; 137 2013; 13 2015; 44 2005; 127 2010; 157 2010; 110 2007; 6 2013; 135 2009; 2 2012; 7 2001; 414 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 |
References_xml | – reference: Y.-J. Tang, M.-R. Gao, C.-H. Liu, S.-L. Li, H.-L. Jiang, Y.-Q. Lan, M. Han, S.-H. Yu, Angew. Chem. Int. Ed. 2015, 54, 12928. – reference: P. Xiao, X. Ge, H. Wang, Z. Liu, A. Fisher, X. Wang, Adv. Funct. Mater. 2015, 25, 1520. – reference: E. Antolini, Energy Environ. Sci. 2009, 2, 915. – reference: Q. Yuan, Z. Zhou, J. Zhuang, X. Wang, Chem. Commun. 2010, 46, 1491. – reference: J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 2005, 152, J23. – reference: H. Yan, C. Tian, L. Wang, A. Wu, M. Meng, L. Zhao, H. Fu, Angew. Chem. Int. Ed. 2015, 127, 6423. – reference: J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, Y. Xie, Adv. Mater. 2013, 25, 5807. – reference: Y. Liu, G. Yu, G. D. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, Angew. Chem. Int. Ed. 2015, 54, 10752. – reference: M.-R. Gao, J.-X. Liang, Y.-R. Zheng, Y.-F. Xu, J. Jiang, Q. Gao, J. Li, S.-H. Yu, Nat. Commun. 2015, 6, 5982. – reference: J. Zhang, L. Dai, ACS Catal. 2015, 5, 7244. – reference: C. Tan, H. Zhang, J. Am. Chem. Soc. 2015, 137, 12162. – reference: Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 2011, 133, 7296. – reference: S. Zhang, B. V. R. Chowdari, Z. Wen, J. Jin, J. Yang, ACS Nano 2015, 9, 12464. – reference: D.-Y. Du, J.-S. Qin, S.-L. Li, Z.-M. Su, Y.-Q. Lan, Chem. Soc. Rev. 2014, 43, 4615. – reference: S. Chen, J. Duan, Y. Tang, B. Jin, S. Zhang Qiao, Nano Energy 2015, 11, 11. – reference: N. P. Dasgupta, C. Liu, S. Andrews, F. B. Prinz, P. Yang, J. Am. Chem. Soc. 2013, 135, 12932. – reference: B. Cao, G. M. Veith, J. C. Neuefeind, R. R. Adzic, P. G. Khalifah, J. Am. Chem. Soc. 2013, 135, 19186. – reference: E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, R. E. Schaak, J. Am. Chem. Soc. 2013, 135, 9267. – reference: M. T. Pope, A. Müller, Angew. Chem. Int. Ed. 1991, 30, 34. – reference: M. S. Dresselhaus, I. L. Thomas, Nature 2001, 414, 332. – reference: J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, Y. Xie, J. Am. Chem. Soc. 2013, 135, 17881. – reference: C. G. Morales-Guio, X. Hu, Acc. Chem. Res. 2014, 47, 2671. – reference: D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nano Lett. 2013, 13, 6222. – reference: W. Sheng, H. A. Gasteiger, Y. Shao-Horn, J. Electrochem. Soc. 2010, 157, B1529. – reference: M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446. – reference: X. Zou, Y. Zhang, Chem. Soc. Rev. 2015, 44, 5148. – reference: Z. Huang, W. Luo, L. Ma, M. Yu, X. Ren, M. He, S. Polen, K. Click, B. Garrett, J. Lu, K. Amine, C. Hadad, W. Chen, A. Asthagiri, Y. Wu, Angew. Chem. Int. Ed. 2015, 127, 15396. – reference: X. Xie, Z. Ao, D. Su, J. Zhang, G. Wang, Adv. Funct. Mater. 2015, 25, 1393. – reference: A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183. – reference: J. Kibsgaard, Z. Chen, B. N. Reinecke, T. F. Jaramillo, Nat. Mater. 2012, 11, 963. – reference: B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Nørskov, J. Am. Chem. Soc. 2005, 127, 5308. – reference: Y. Ito, W. Cong, T. Fujita, Z. Tang, M. Chen, Angew. Chem. Int. Ed. 2015, 54, 2131. – reference: J. D. Benck, Z. Chen, L. Y. Kuritzky, A. J. Forman, T. F. Jaramillo, ACS Catal. 2012, 2, 1916. – reference: D. Zhou, B.-H. Han, Adv. Funct. Mater. 2010, 20, 2717. – reference: Q. Mahmood, S. K. Park, K. D. Kwon, S.-J. Chang, J.-Y. Hong, G. Shen, Y. M. Jung, T. J. Park, S. W. Khang, W. S. Kim, J. Kong, H. S. Park, Adv. Energy Mater. 2016, 6, 1501115. – reference: Q. Xiang, J. Yu, M. Jaroniec, J. Am. Chem. Soc. 2012, 134, 6575. – reference: Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S. Z. Qiao, Nat. Commun. 2014, 5, 3783. – reference: C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj, Angew. Chem. Int. Ed. 2009, 48, 7752. – reference: N. Zhang, S. Gan, T. Wu, W. Ma, D. Han, L. Niu, ACS Appl. Mater. Interfaces 2015, 7, 12193. – reference: Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto, Nat. Commun. 2013, 4, 2390. – reference: J. A. Turner, Science 2004, 305, 972. – reference: Z. Xing, Q. Liu, A. M. Asiri, X. Sun, Adv. Mater. 2014, 26, 5702. – reference: M.-R. Gao, M. K. Y. Chan, Y. Sun, Nat. Commun. 2015, 6, 7493. – reference: M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, J. Am. Chem. Soc. 2013, 135, 10274. – reference: X. Zheng, J. Xu, K. Yan, H. Wang, Z. Wang, S. Yang, Chem. Mater. 2014, 26, 2344. – reference: N. Pentland, J. O. M. Bockris, E. Sheldon, J. Electrochem. Soc. 1957, 104, 182. – reference: J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, J. K. Norskov, Nat. Mater. 2006, 5, 909. – reference: T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100. – reference: Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol. 2012, 7, 699. – volume: 6 start-page: 5982 year: 2015 publication-title: Nat. Commun. – volume: 11 start-page: 963 year: 2012 publication-title: Nat. Mater. – volume: 25 start-page: 1520 year: 2015 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 909 year: 2006 publication-title: Nat. Mater. – volume: 152 start-page: J23 year: 2005 publication-title: J. Electrochem. Soc. – volume: 44 start-page: 5148 year: 2015 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 3783 year: 2014 publication-title: Nat. Commun. – volume: 6 start-page: 1501115 year: 2016 publication-title: Adv. Energy Mater. – volume: 4 start-page: 2390 year: 2013 publication-title: Nat. Commun. – volume: 6 start-page: 7493 year: 2015 publication-title: Nat. Commun. – volume: 305 start-page: 972 year: 2004 publication-title: Science – volume: 157 start-page: B1529 year: 2010 publication-title: J. Electrochem. Soc. – volume: 30 start-page: 34 year: 1991 publication-title: Angew. Chem. Int. Ed. – volume: 25 start-page: 5807 year: 2013 publication-title: Adv. Mater. – volume: 135 start-page: 9267 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 12932 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 12193 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 915 year: 2009 publication-title: Energy Environ. Sci. – volume: 135 start-page: 17881 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 10274 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 11 year: 2015 publication-title: Nano Energy – volume: 47 start-page: 2671 year: 2014 publication-title: Acc. Chem. Res. – volume: 25 start-page: 1393 year: 2015 publication-title: Adv. Funct. Mater. – volume: 317 start-page: 100 year: 2007 publication-title: Science – volume: 48 start-page: 7752 year: 2009 publication-title: Angew. Chem. Int. Ed. – volume: 54 start-page: 2131 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 7244 year: 2015 publication-title: ACS Catal. – volume: 54 start-page: 12928 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 134 start-page: 6575 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 19186 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 699 year: 2012 publication-title: Nat. Nanotechnol. – volume: 6 start-page: 183 year: 2007 publication-title: Nat. Mater. – volume: 26 start-page: 5702 year: 2014 publication-title: Adv. Mater. – volume: 20 start-page: 2717 year: 2010 publication-title: Adv. Funct. Mater. – volume: 127 start-page: 5308 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 7296 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 127 start-page: 15396 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 46 start-page: 1491 year: 2010 publication-title: Chem. Commun. – volume: 2 start-page: 1916 year: 2012 publication-title: ACS Catal. – volume: 137 start-page: 12162 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 6222 year: 2013 publication-title: Nano Lett. – volume: 26 start-page: 2344 year: 2014 publication-title: Chem. Mater. – volume: 54 start-page: 10752 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 43 start-page: 4615 year: 2014 publication-title: Chem. Soc. Rev. – volume: 127 start-page: 6423 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 110 start-page: 6446 year: 2010 publication-title: Chem. Rev. – volume: 414 start-page: 332 year: 2001 publication-title: Nature – volume: 104 start-page: 182 year: 1957 publication-title: J. Electrochem. Soc. – volume: 9 start-page: 12464 year: 2015 publication-title: ACS Nano – ident: e_1_2_5_12_1 doi: 10.1002/adfm.201403633 – ident: e_1_2_5_28_1 doi: 10.1002/anie.200901678 – ident: e_1_2_5_23_1 doi: 10.1021/ja404523s – ident: e_1_2_5_47_1 doi: 10.1002/anie.201505691 – ident: e_1_2_5_8_1 doi: 10.1038/nmat3439 – ident: e_1_2_5_10_1 doi: 10.1002/adma.201401692 – ident: e_1_2_5_39_1 doi: 10.1016/j.nanoen.2014.09.022 – ident: e_1_2_5_25_1 doi: 10.1126/science.1141483 – ident: e_1_2_5_36_1 doi: 10.1039/C3CS60404G – ident: e_1_2_5_17_1 doi: 10.1002/anie.201410050 – ident: e_1_2_5_37_1 doi: 10.1002/adfm.200902323 – ident: e_1_2_5_29_1 doi: 10.1038/nmat1849 – ident: e_1_2_5_24_1 doi: 10.1021/ja0504690 – ident: e_1_2_5_35_1 doi: 10.1002/anie.199100341 – ident: e_1_2_5_34_1 doi: 10.1021/acscatal.5b01563 – ident: e_1_2_5_9_1 doi: 10.1021/ar5002022 – ident: e_1_2_5_42_1 doi: 10.1021/acsnano.5b05891 – ident: e_1_2_5_46_1 doi: 10.1002/ange.201507529 – ident: e_1_2_5_48_1 doi: 10.1149/1.1856988 – ident: e_1_2_5_40_1 doi: 10.1038/ncomms3390 – ident: e_1_2_5_16_1 doi: 10.1039/b922792j – ident: e_1_2_5_33_1 doi: 10.1021/ja302846n – ident: e_1_2_5_44_1 doi: 10.1149/1.2428530 – ident: e_1_2_5_26_1 doi: 10.1021/ja408329q – ident: e_1_2_5_22_1 doi: 10.1021/nl403661s – ident: e_1_2_5_32_1 doi: 10.1002/adfm.201404078 – ident: e_1_2_5_41_1 doi: 10.1002/aenm.201501115 – ident: e_1_2_5_19_1 doi: 10.1021/jacs.5b03590 – ident: e_1_2_5_4_1 doi: 10.1021/ja405680p – ident: e_1_2_5_15_1 doi: 10.1038/nmat1752 – ident: e_1_2_5_45_1 doi: 10.1149/1.3483106 – ident: e_1_2_5_43_1 doi: 10.1021/acsami.5b02586 – ident: e_1_2_5_2_1 doi: 10.1126/science.1103197 – ident: e_1_2_5_27_1 doi: 10.1038/ncomms8493 – ident: e_1_2_5_18_1 doi: 10.1038/ncomms4783 – ident: e_1_2_5_11_1 doi: 10.1021/ja403440e – ident: e_1_2_5_3_1 doi: 10.1021/cr1002326 – ident: e_1_2_5_5_1 doi: 10.1039/b820837a – ident: e_1_2_5_14_1 doi: 10.1002/ange.201501419 – ident: e_1_2_5_30_1 doi: 10.1021/ja201269b – ident: e_1_2_5_6_1 doi: 10.1039/C4CS00448E – ident: e_1_2_5_49_1 doi: 10.1002/anie.201504376 – ident: e_1_2_5_1_1 doi: 10.1038/35104599 – ident: e_1_2_5_31_1 doi: 10.1021/cm500347r – ident: e_1_2_5_20_1 doi: 10.1021/cs300451q – ident: e_1_2_5_7_1 doi: 10.1038/ncomms6982 – ident: e_1_2_5_38_1 doi: 10.1002/adma.201302685 – ident: e_1_2_5_13_1 doi: 10.1021/ja4081056 – ident: e_1_2_5_21_1 doi: 10.1038/nnano.2012.193 |
SSID | ssj0000491033 |
Score | 2.6315591 |
Snippet | Facile design of low‐cost and highly active catalysts from earth‐abundant elements is favorable for the industrial application of water splitting. Here, a... Facile design of low-cost and highly active catalysts from earth-abundant elements is favorable for the industrial application of water splitting. Here, a... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | np |
SubjectTerms | Catalysts Catalytic activity Current density Electrocatalysts enlarged interlayer spacing Expansion Graphene Hydrogen evolution hydrogen evolution reaction Hydrogen evolution reactions Industrial applications Interlayers Molybdenum Molybdenum disulfide MoS2/RGO Nanocomposites Nitrogen nitrogen-doped species Oxides Synergistic effect Water splitting |
Title | Molybdenum Disulfide/Nitrogen-Doped Reduced Graphene Oxide Nanocomposite with Enlarged Interlayer Spacing for Electrocatalytic Hydrogen Evolution |
URI | https://api.istex.fr/ark:/67375/WNG-6C6048BS-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201600116 https://www.proquest.com/docview/1798760085 https://www.proquest.com/docview/2984996385 https://www.proquest.com/docview/1825547303 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKeoED4lMUBjISgkNllsRJmh7Lmraa2u7QTpST5TiOFlElVdeglf9i_zHPSZykY4jBJWqeXefj_fK-_PyM0IfQ6EnDloJQh_eJDTqQcB54hNIItKfJ3ShQa4dnc3dyYZ-tnFWrddPIWsp2wWfx8851Jf_DVaABX9Uq2X_gbDUoEOA38BeOwGE43ovHs3S9D8I8mX0YX2XrKFZFdEfzeLdN4U9kmG6kWn4YZmqWf6xqU4No655fQz8lV1OVUK6ytmQRj_WTtUoMD4s44ZqDOd5dgFOtsy39Ys-cPOSzV5VeJ_swv1LX_1E-aNPYHej8AlksMATjuHgrdbigkDTfMnIW1_qhot6mrGKekmmsydM8E2FxmSWaWIYvTLdOsyolLtgHxPXKIKds0oo6TlpMu000Wg2Zm2wa2rs4-U0vFHVmuUxU8QHTzaefag2oZ_3n52x0MZ2ypb9aPkBtCzwPEJ3twXA2XVSBO3CpTIPmCzf0retioIZ1cniJA2Onrb7b6wNPpukP5QbN8gl6XHoieFDA6ilqyeQZetSoT_kc3dQAwxXATg7hhUt4YQ0vnMMLH8ALK3hhDS9cwwuX8MIAL3wbXljDC1fweoEuRv7ydELKPTyIcCzqEmFJU7rSFo4raa8XOj1pOw7nvB9wcKYjU3qB4ODThrYhbNsNBNiUNIzAcIxCwQ36Eh0laSJfIWwCWUQB5QLsyh6lgeEYZsBl5IXcln3eQUS_bCbKAvdqn5U1K0pzW0wxh1XM6aBPVf9NUdrljz0_5ryruvHtd5UQ2XPY1_mYuacu6MEvCzbuoGPNXFbKiSumSgKq6W_PubPZ6nt2X6lBaH5fNYOQVzN3PJFpBkN44PnDMxu0g6wcM3-5Yzbw57Pq7PU9Bn6DHtaf5zE62m0z-Rbs7V3wrvwCfgH_pNqO |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molybdenum+Disulfide%2FNitrogen-Doped+Reduced+Graphene+Oxide+Nanocomposite+with+Enlarged+Interlayer+Spacing+for+Electrocatalytic+Hydrogen+Evolution&rft.jtitle=Advanced+energy+materials&rft.au=Tang%2C+Yu-Jia&rft.au=Wang%2C+Yu&rft.au=Wang%2C+Xiao-Li&rft.au=Li%2C+Shun-Li&rft.date=2016-06-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=6&rft.issue=12&rft.spage=np&rft.epage=np&rft_id=info:doi/10.1002%2Faenm.201600116&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |