Accurate grading of brain gliomas by soft independent modeling of class analogy based on non-negative matrix factorization of proton magnetic resonance spectra
Hydrogen magnetic resonance spectroscopy (1H‐MRS) is a non‐invasive technique which provides a ‘frequency‐signal intensity’ spectrum of biochemical compounds of tissues in the body. Although this method is currently used in human brain studies, accurate classification of in‐vivo 1H‐MRS is a challeng...
Saved in:
Published in | Magnetic resonance in chemistry Vol. 54; no. 2; pp. 119 - 125 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.02.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0749-1581 1097-458X 1097-458X |
DOI | 10.1002/mrc.4326 |
Cover
Loading…
Abstract | Hydrogen magnetic resonance spectroscopy (1H‐MRS) is a non‐invasive technique which provides a ‘frequency‐signal intensity’ spectrum of biochemical compounds of tissues in the body. Although this method is currently used in human brain studies, accurate classification of in‐vivo 1H‐MRS is a challenging task in the diagnosis of brain tumors. Problems such as overlapping metabolite peaks, incomplete information on background component and low signal‐to‐noise ratio disturb classification results of this spectroscopic method. This study presents an alternative approach to the soft independent modeling of class analogy (SIMCA) technique, using non‐negative matrix factorization (NMF) for dimensionality reduction. In the adopted strategy, the performance of SIMCA was improved by application of a robust algorithm for classification in the presence of noisy measurements. Total of 219 spectra from two databases were taken by water‐suppressed short echo‐time 1H‐MRS, acquired from different subjects with different stages of glial brain tumors (Grade II (26 cases), grade III (24 cases), grade IV (41 cases), as well as 25 healthy cases). The SIMCA was performed using two approaches: (i) principal component analysis (PCA) and (ii) non‐negative matrix factorization (NMF), as a modified approach. Square prediction error was considered to assess the class membership of the external validation set. Finally, several figures of merit such as the correct classification rate (CCR), sensitivity and specificity were calculated. Results of SIMCA based on NMF showed significant improvement in percentage of correctly classified samples, 91.4% versus 83.5% for PCA‐based model in an independent test set. Copyright © 2015 John Wiley & Sons, Ltd.
1H‐MRS is a non‐invasive technique in assessment of brain's metabolites. The performance of Soft Modeling Class Analogy (SIMCA) classifier was improved by application of non‐negative matrix factorization for accurate grading of brain glioma. |
---|---|
AbstractList | Hydrogen magnetic resonance spectroscopy (1H‐MRS) is a non‐invasive technique which provides a ‘frequency‐signal intensity’ spectrum of biochemical compounds of tissues in the body. Although this method is currently used in human brain studies, accurate classification of in‐vivo 1H‐MRS is a challenging task in the diagnosis of brain tumors. Problems such as overlapping metabolite peaks, incomplete information on background component and low signal‐to‐noise ratio disturb classification results of this spectroscopic method. This study presents an alternative approach to the soft independent modeling of class analogy (SIMCA) technique, using non‐negative matrix factorization (NMF) for dimensionality reduction. In the adopted strategy, the performance of SIMCA was improved by application of a robust algorithm for classification in the presence of noisy measurements. Total of 219 spectra from two databases were taken by water‐suppressed short echo‐time 1H‐MRS, acquired from different subjects with different stages of glial brain tumors (Grade II (26 cases), grade III (24 cases), grade IV (41 cases), as well as 25 healthy cases). The SIMCA was performed using two approaches: (i) principal component analysis (PCA) and (ii) non‐negative matrix factorization (NMF), as a modified approach. Square prediction error was considered to assess the class membership of the external validation set. Finally, several figures of merit such as the correct classification rate (CCR), sensitivity and specificity were calculated. Results of SIMCA based on NMF showed significant improvement in percentage of correctly classified samples, 91.4% versus 83.5% for PCA‐based model in an independent test set. Copyright © 2015 John Wiley & Sons, Ltd.
1H‐MRS is a non‐invasive technique in assessment of brain's metabolites. The performance of Soft Modeling Class Analogy (SIMCA) classifier was improved by application of non‐negative matrix factorization for accurate grading of brain glioma. Hydrogen magnetic resonance spectroscopy ( super(1)H-MRS) is a non-invasive technique which provides a 'frequency-signal intensity' spectrum of biochemical compounds of tissues in the body. Although this method is currently used in human brain studies, accurate classification of in-vivo super(1)H-MRS is a challenging task in the diagnosis of brain tumors. Problems such as overlapping metabolite peaks, incomplete information on background component and low signal-to-noise ratio disturb classification results of this spectroscopic method. This study presents an alternative approach to the soft independent modeling of class analogy (SIMCA) technique, using non-negative matrix factorization (NMF) for dimensionality reduction. In the adopted strategy, the performance of SIMCA was improved by application of a robust algorithm for classification in the presence of noisy measurements. Total of 219 spectra from two databases were taken by water-suppressed short echo-time super(1)H-MRS, acquired from different subjects with different stages of glial brain tumors (Grade II (26 cases), grade III (24 cases), grade IV (41 cases), as well as 25 healthy cases). The SIMCA was performed using two approaches: (i) principal component analysis (PCA) and (ii) non-negative matrix factorization (NMF), as a modified approach. Square prediction error was considered to assess the class membership of the external validation set. Finally, several figures of merit such as the correct classification rate (CCR), sensitivity and specificity were calculated. Results of SIMCA based on NMF showed significant improvement in percentage of correctly classified samples, 91.4% versus 83.5% for PCA-based model in an independent test set. super(1)H-MRS is a non-invasive technique in assessment of brain's metabolites. The performance of Soft Modeling Class Analogy (SIMCA) classifier was improved by application of non-negative matrix factorization for accurate grading of brain glioma. Hydrogen magnetic resonance spectroscopy ((1) H-MRS) is a non-invasive technique which provides a 'frequency-signal intensity' spectrum of biochemical compounds of tissues in the body. Although this method is currently used in human brain studies, accurate classification of in-vivo (1) H-MRS is a challenging task in the diagnosis of brain tumors. Problems such as overlapping metabolite peaks, incomplete information on background component and low signal-to-noise ratio disturb classification results of this spectroscopic method. This study presents an alternative approach to the soft independent modeling of class analogy (SIMCA) technique, using non-negative matrix factorization (NMF) for dimensionality reduction. In the adopted strategy, the performance of SIMCA was improved by application of a robust algorithm for classification in the presence of noisy measurements. Total of 219 spectra from two databases were taken by water-suppressed short echo-time (1) H-MRS, acquired from different subjects with different stages of glial brain tumors (Grade II (26 cases), grade III (24 cases), grade IV (41 cases), as well as 25 healthy cases). The SIMCA was performed using two approaches: (i) principal component analysis (PCA) and (ii) non-negative matrix factorization (NMF), as a modified approach. Square prediction error was considered to assess the class membership of the external validation set. Finally, several figures of merit such as the correct classification rate (CCR), sensitivity and specificity were calculated. Results of SIMCA based on NMF showed significant improvement in percentage of correctly classified samples, 91.4% versus 83.5% for PCA-based model in an independent test set. Hydrogen magnetic resonance spectroscopy (1H-MRS) is a non-invasive technique which provides a 'frequency-signal intensity' spectrum of biochemical compounds of tissues in the body. Although this method is currently used in human brain studies, accurate classification of in-vivo 1H-MRS is a challenging task in the diagnosis of brain tumors. Problems such as overlapping metabolite peaks, incomplete information on background component and low signal-to-noise ratio disturb classification results of this spectroscopic method. This study presents an alternative approach to the soft independent modeling of class analogy (SIMCA) technique, using non-negative matrix factorization (NMF) for dimensionality reduction. In the adopted strategy, the performance of SIMCA was improved by application of a robust algorithm for classification in the presence of noisy measurements. Total of 219 spectra from two databases were taken by water-suppressed short echo-time 1H-MRS, acquired from different subjects with different stages of glial brain tumors (Grade II (26 cases), grade III (24 cases), grade IV (41 cases), as well as 25 healthy cases). The SIMCA was performed using two approaches: (i) principal component analysis (PCA) and (ii) non-negative matrix factorization (NMF), as a modified approach. Square prediction error was considered to assess the class membership of the external validation set. Finally, several figures of merit such as the correct classification rate (CCR), sensitivity and specificity were calculated. Results of SIMCA based on NMF showed significant improvement in percentage of correctly classified samples, 91.4% versus 83.5% for PCA-based model in an independent test set. Copyright © 2015 John Wiley & Sons, Ltd. Hydrogen magnetic resonance spectroscopy ((1) H-MRS) is a non-invasive technique which provides a 'frequency-signal intensity' spectrum of biochemical compounds of tissues in the body. Although this method is currently used in human brain studies, accurate classification of in-vivo (1) H-MRS is a challenging task in the diagnosis of brain tumors. Problems such as overlapping metabolite peaks, incomplete information on background component and low signal-to-noise ratio disturb classification results of this spectroscopic method. This study presents an alternative approach to the soft independent modeling of class analogy (SIMCA) technique, using non-negative matrix factorization (NMF) for dimensionality reduction. In the adopted strategy, the performance of SIMCA was improved by application of a robust algorithm for classification in the presence of noisy measurements. Total of 219 spectra from two databases were taken by water-suppressed short echo-time (1) H-MRS, acquired from different subjects with different stages of glial brain tumors (Grade II (26 cases), grade III (24 cases), grade IV (41 cases), as well as 25 healthy cases). The SIMCA was performed using two approaches: (i) principal component analysis (PCA) and (ii) non-negative matrix factorization (NMF), as a modified approach. Square prediction error was considered to assess the class membership of the external validation set. Finally, several figures of merit such as the correct classification rate (CCR), sensitivity and specificity were calculated. Results of SIMCA based on NMF showed significant improvement in percentage of correctly classified samples, 91.4% versus 83.5% for PCA-based model in an independent test set.Hydrogen magnetic resonance spectroscopy ((1) H-MRS) is a non-invasive technique which provides a 'frequency-signal intensity' spectrum of biochemical compounds of tissues in the body. Although this method is currently used in human brain studies, accurate classification of in-vivo (1) H-MRS is a challenging task in the diagnosis of brain tumors. Problems such as overlapping metabolite peaks, incomplete information on background component and low signal-to-noise ratio disturb classification results of this spectroscopic method. This study presents an alternative approach to the soft independent modeling of class analogy (SIMCA) technique, using non-negative matrix factorization (NMF) for dimensionality reduction. In the adopted strategy, the performance of SIMCA was improved by application of a robust algorithm for classification in the presence of noisy measurements. Total of 219 spectra from two databases were taken by water-suppressed short echo-time (1) H-MRS, acquired from different subjects with different stages of glial brain tumors (Grade II (26 cases), grade III (24 cases), grade IV (41 cases), as well as 25 healthy cases). The SIMCA was performed using two approaches: (i) principal component analysis (PCA) and (ii) non-negative matrix factorization (NMF), as a modified approach. Square prediction error was considered to assess the class membership of the external validation set. Finally, several figures of merit such as the correct classification rate (CCR), sensitivity and specificity were calculated. Results of SIMCA based on NMF showed significant improvement in percentage of correctly classified samples, 91.4% versus 83.5% for PCA-based model in an independent test set. Hydrogen magnetic resonance spectroscopy ( 1 H‐MRS) is a non‐invasive technique which provides a ‘frequency‐signal intensity’ spectrum of biochemical compounds of tissues in the body. Although this method is currently used in human brain studies, accurate classification of in‐vivo 1 H‐MRS is a challenging task in the diagnosis of brain tumors. Problems such as overlapping metabolite peaks, incomplete information on background component and low signal‐to‐noise ratio disturb classification results of this spectroscopic method. This study presents an alternative approach to the soft independent modeling of class analogy (SIMCA) technique, using non‐negative matrix factorization (NMF) for dimensionality reduction. In the adopted strategy, the performance of SIMCA was improved by application of a robust algorithm for classification in the presence of noisy measurements. Total of 219 spectra from two databases were taken by water‐suppressed short echo‐time 1 H‐MRS, acquired from different subjects with different stages of glial brain tumors (Grade II (26 cases), grade III (24 cases), grade IV (41 cases), as well as 25 healthy cases). The SIMCA was performed using two approaches: (i) principal component analysis (PCA) and (ii) non‐negative matrix factorization (NMF), as a modified approach. Square prediction error was considered to assess the class membership of the external validation set. Finally, several figures of merit such as the correct classification rate (CCR), sensitivity and specificity were calculated. Results of SIMCA based on NMF showed significant improvement in percentage of correctly classified samples, 91.4% versus 83.5% for PCA‐based model in an independent test set. Copyright © 2015 John Wiley & Sons, Ltd. |
Author | Saligheh Rad, H. Khanmohammadi, M. Ghasemi, K. |
Author_xml | – sequence: 1 givenname: K. surname: Ghasemi fullname: Ghasemi, K. organization: Chemistry Department, Faculty of Science, Imam Khomeini International University, Qazvin, Iran – sequence: 2 givenname: M. surname: Khanmohammadi fullname: Khanmohammadi, M. email: mrkhanmohammadi@gmail.com organization: Chemistry Department, Faculty of Science, Imam Khomeini International University, Qazvin, Iran – sequence: 3 givenname: H. surname: Saligheh Rad fullname: Saligheh Rad, H. organization: Tehran University of Medical Sciences, Medical Physics and Biomedical Engineering Department, Keshavarz Boulevard, Tehran, Iran |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26332515$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0s1u1DAQAOAIFdFtQeIJkCUuXLLYcRzHx2qBLVL5UQHRmzVxJpFLYm9tL3R5GV6VLLstAoF6sS3rG3s8nqPswHmHWfaY0TmjtHg-BjMveVHdy2aMKpmXor44yGZUlipnomaH2VGMl5RSpSR_kB0WFeeFYGKW_TgxZh0gIekDtNb1xHekCWAd6QfrR4ik2ZDou0Ssa3GF0-ASGX2Lw16bAWIk4GDw_YY0ELEl3pEpxdxhD8l-RTJCCvaadGCSD_b7tDmJKXYVfJpWI_QOkzUkYPQOnEESV2hSgIfZ_Q6GiI_283H26dXLj4vT_Ozd8vXi5Cw3ouBVDgyggaoWIDouDSukErVpJHKhWNGhZNBWUKiGSgWsqsuScqRFZdqmQQmSH2fPdudOGV2tMSY92mhwGMChX0fNFFOqqmvK7qY1paVivC7vprKidVUWYkuf_kUv_TpMRd0qMT1HKb69-8lerZsRW70KdoSw0TcfOoH5DpjgYwzYaWPTr3JPxbSDZlRvO0ZPHaO3HfM7xduAmzP_QfMd_WYH3PzX6Tfniz-9jQmvbz2EL7qSXAr9-e1SX5y-X76QHwp9zn8CVNjfsw |
CitedBy_id | crossref_primary_10_1002_mrc_4532 crossref_primary_10_1002_nbm_4193 crossref_primary_10_1016_j_cmpb_2017_01_006 crossref_primary_10_1007_s11947_018_2216_0 crossref_primary_10_1002_nbm_4234 crossref_primary_10_1016_j_infrared_2020_103543 |
Cites_doi | 10.1016/j.artmed.2007.02.002 10.1007/s12032-008-9118-3 10.1002/(SICI)1099-128X(199609)10:5/6<669::AID-CEM467>3.0.CO;2-Q 10.1002/cem.800 10.1002/nbm.1016 10.1002/nbm.1147 10.1080/00401706.1969.10490666 10.1016/j.aca.2010.03.030 10.1016/j.ejca.2012.09.003 10.1080/00401706.1995.10485888 10.1002/nbm.2895 10.1038/44565 10.1002/mrm.21533 10.1002/nbm.919 10.1002/jmri.20668 10.1088/0957-0233/22/11/114019 10.1093/chrsci/49.3.189 10.1007/s00432-007-0286-x 10.1002/env.3170050203 10.1016/j.clineuro.2012.11.002 10.1016/j.microc.2012.05.006 10.1016/j.compbiomed.2010.12.003 10.1371/journal.pone.0083773 10.1002/cem.1147 10.1007/s11306-011-0350-z 10.1016/S0169-7439(98)00159-2 10.1002/1099-1492(200005)13:3<129::AID-NBM619>3.0.CO;2-V 10.1016/j.aca.2013.04.007 10.1016/j.asoc.2007.06.006 10.1016/S0003-2670(00)86468-5 10.1002/nbm.1753 10.1142/S0129065711002626 10.1016/0031-3203(76)90014-5 10.1002/cem.1397 10.1016/j.neucom.2009.07.018 10.1021/ac034541t 10.1016/S0169-7439(01)00119-8 10.1016/j.neucom.2013.04.042 10.1109/TPAMI.2008.277 10.1016/j.chemolab.2005.03.002 10.1021/cr900250y 10.1021/ac0519312 10.1002/mrm.10315 |
ContentType | Journal Article |
Copyright | Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons, Ltd. – notice: Copyright © 2016 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 JQ2 K9. L7M 7X8 7TK |
DOI | 10.1002/mrc.4326 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | Materials Research Database MEDLINE Neurosciences Abstracts Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1097-458X |
EndPage | 125 |
ExternalDocumentID | 3925244571 26332515 10_1002_mrc_4326 MRC4326 ark_67375_WNG_XHPGD7S2_R |
Genre | article Journal Article |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABIJN ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AQPKS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH5 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RNS ROL RWI RX1 RYL SAMSI SUPJJ TUS TWZ UB1 V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WRJ WXSBR WYISQ XG1 XPP XV2 YNT YQT ZCG ZY4 ZZTAW ~IA ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADMLS ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 JQ2 K9. L7M 7X8 7TK |
ID | FETCH-LOGICAL-c5236-a1aaba685a5f37c127958cb7e35912fe71ad6a29b079a1684403e026cdbbe7a73 |
IEDL.DBID | DR2 |
ISSN | 0749-1581 1097-458X |
IngestDate | Fri Jul 11 16:33:46 EDT 2025 Fri Jul 11 04:50:06 EDT 2025 Fri Jul 11 00:17:33 EDT 2025 Fri Jul 25 12:10:42 EDT 2025 Thu Apr 03 07:06:11 EDT 2025 Thu Apr 24 23:08:30 EDT 2025 Tue Jul 01 03:42:00 EDT 2025 Wed Aug 20 07:26:47 EDT 2025 Wed Oct 30 09:53:00 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | glioma brain tumors NMF SIMCA 1H-magnetic resonance spectroscopy PCA |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2015 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5236-a1aaba685a5f37c127958cb7e35912fe71ad6a29b079a1684403e026cdbbe7a73 |
Notes | istex:B62655062A9352C8BA8ED74DFDB4846464F97315 ark:/67375/WNG-XHPGD7S2-R ArticleID:MRC4326 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26332515 |
PQID | 1757959931 |
PQPubID | 1016392 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1919968801 proquest_miscellaneous_1800491384 proquest_miscellaneous_1760864254 proquest_journals_1757959931 pubmed_primary_26332515 crossref_citationtrail_10_1002_mrc_4326 crossref_primary_10_1002_mrc_4326 wiley_primary_10_1002_mrc_4326_MRC4326 istex_primary_ark_67375_WNG_XHPGD7S2_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2016 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: February 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bognor Regis |
PublicationSubtitle | MRC |
PublicationTitle | Magnetic resonance in chemistry |
PublicationTitleAlternate | Magn. Reson. Chem |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | S. Wold. Pattern Recognit. 1976, 8, 127. J. Luts, A. Heerschap, J. A. Suykens, S. Van Huffel. Artif. Intell. Med. 2007, 40, 87. K. Vanden Branden, M. Hubert. Chemom. Intell. Lab. Syst. 2005, 79, 10. M. Khanmohammadi, A. B. Garmarudi, M. Ramin, K. Ghasemi. Microchem. J. 2013, 106, 67. T. E. Morud. J. Chemometr. 1996, 10, 669. E. Goebell, J. Fiehler, X.-Q. Ding, S. Paustenbach, S. Nietz, O. Heese, T. Kucinski, C. Hagel, M. Westphal, H. Zeumer. Am. J. Neuroradiol. 2006, 27, 1426. J. M. García-Gómez, Tumors of the Central Nervous system, vol. 3, Springer, Union NJ, USA, 2011, pp. 5. D. D. Lee, H. S. Seung, Adv. Neural Inf. Process Syst. 2001, 556. M. Bulik, R. Jancalek, J. Vanicek, A. Skoch, M. Mechl. Clin. Neurol. Neurosurg. 2013, 115, 146. M. Rezghi. Expert Syst. Appl. 2014. M. Khanmohammadi, R. Nasiri, K. Ghasemi, S. Samani, A. B. Garmarudi. J. Cancer Res. Clin. Oncol. 2007, 133, 1001. J. M. García-Gómez, J. Luts, M. Julià-Sapé, P. Krooshof, S. Tortajada, J. V. Robledo, W. Melssen, E. Fuster-García, I. Olier, G. Postma. Biol. Med. 2009, 22, 5. R. G. Brereton. J. Chemometr. 2011, 25, 225. X. Deng, X. Tian. Neurocomput 2013, 121, 298. F. F. González-Navarro, L. A. Belanche-Muñoz, E. Romero, A. Vellido, M. Julià-Sapé, C. Arús. Neurocomput 2010, 73, 622. S. M. Kohl, M. S. Klein, J. Hochrein, P. J. Oefner, R. Spang, W. Gronwald. Metabolomics 2012, 8, 146. R. De Maesschalck, A. Candolfi, D. Massart, S. Heuerding. Chemom. Intell. Lab. Syst. 1999, 47, 65. S. Joe Qin. J. Chemometr. 2003, 17, 480. P. Paatero, U. Tapper. Environmetrics 1994, 5, 111. A. J. Wright, C. Arús, J. P. Wijnen, A. Moreno-Torres, J. R. Griffiths, B. Celda, F. A. Howe. Magn. Reson. Med. 2008, 59, 1274. D. D. Lee, H. S. Seung. Nature 1999, 401, 788. N. Japkowicz, Concept-Learning in the Absence of Counter-Examples: An Auto Association-based Approach to Classification, The State University of New Jersey, Rutgers, 1999. E. Papageorgiou, P. Spyridonos, D. T. Glotsos, C. D. Stylios, P. Ravazoula, G. Nikiforidis, P. P. Groumpos. Appl. Soft Comput. 2008, 8, 820. P. Nomikos, J. F. MacGregor. Technometrics 1995, 37, 41. J. Vicente, E. Fuster-Garcia, S. Tortajada, J. M. García-Gómez, N. Davies, K. Natarajan, M. Wilson, R. G. Grundy, P. Wesseling, D. Monleón. Eur. J. Cancer 2013, 49, 658. E. Fuster-Garcia, S. Tortajada, J. Vicente, M. Robles, J. M. García-Gómez. NMR Biomed. 2013, 26, 578. S. Ortega-Martorell, H. Ruiz, A. Vellido, I. Olier, E. Romero, M. Julià-Sapé, J. D. Martín, I. H. Jarman, C. Arús, P. J. Lisboa. PLoS One 2013, 8, e83773. E. Fuster-Garcia, C. Navarro, J. Vicente, S. Tortajada, J. M. García-Gómez, C. Sáez, J. Calvar, J. Griffiths, M. Julià-Sapé, F. A. Howe. Biol. Med. 2011, 24, 35. A. R. Tate, C. Majos, A. Moreno, F. A. Howe, J. R. Griffiths, C. Arús. Magn. Reson. Med. 2003, 49, 29. R. Cruz-Barbosa, A. Vellido. Int. J. Neural Syst. 2011, 21, 17. F. Raschke, E. Fuster-Garcia, K. Opstad, F. Howe. NMR Biomed. 2012, 25, 322. M. C. U. Araújo, T. C. B. Saldanha, R. K. H. Galvão, T. Yoneyama, H. C. Chame, V. Visani. Chemom. Intell. Lab. Syst. 2001, 57, 65. P. O. Hoyer. J. Mach. Learn. Res. 2004, 5, 1457. C. Ding, T. Li, M. I. Jordan. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 45. G. M. Kirwan, T. Hancock, K. Hassell, J. O. Niere, D. Nugegoda, S. Goto, M. J. Adams. Anal. Chim. Acta 2013, 781, 33. A. L. Pomerantsev. J. Chemometr. 2008, 22, 601. A. R. Tate, J. Underwood, D. M. Acosta, M. Julià-Sapé, C. Majós, À. Moreno-Torres, F. A. Howe, M. Van Der Graaf, V. Lefournier, M. M. Murphy. NMR Biomed. 2006, 19, 411. G. J. Postma, J. Luts, A. J. Idema, M. Julià-Sapé, Á. Moreno-Torres, W. Gajewicz, J. A. Suykens, A. Heerschap, S. Van Huffel, L. Buydens. Comput. Biol. Med. 2011, 41, 87. A. Craig, O. Cloarec, E. Holmes, J. K. Nicholson, J. C. Lindon. Anal. Chem. 2006, 78, 2262. V. Govindaraju, K. Young, A. A. Maudsley. NMR Biomed. 2000, 13, 129. C. Majós, M. Julià-Sapé, J. Alonso, M. Serrallonga, C. Aguilera, J. J. Acebes, C. Arús, J. Gili. Am. J. Neuroradiol. 2004, 25, 1696. M. Kounelakis, M. Zervakis, G. Giakos, G. Postma, L. Buydens, X. Kotsiakis. Meas. Sci. Technol. 2011, 22, 114019. K. Opstad, C. Ladroue, B. Bell, J. Griffiths, F. Howe. NMR Biomed. 2007, 20, 763. R. W. Kennard, L. A. Stone. Technometrics 1969, 11, 137. A. W. Simonetti, W. J. Melssen, M. van der Graaf, G. J. Postma, A. Heerschap, L. M. Buydens. Anal. Chem. 2003, 75, 5352. J. Luts, F. Ojeda, R. Van de Plas, B. De Moor, S. Van Huffel, J. A. Suykens. Anal. Chim. Acta 2010, 665, 129. E. Saraf-Lavi, B. C. Bowen, P. M. Pattany, E. M. Sklar, J. B. Murdoch, C. K. Petito. Am. J. Neuroradiol. 2003, 24, 946. C. Mountford, C. Lean, P. Malycha, P. Russell. J. Magn. Reson. Imaging 2006, 24, 459. A. Londoño, M. Castillo, D. Armao, L. Kwock, K. Suzuki. Am. J. Neuroradiol. 2003, 24, 942. B. Qu, Y. Hu. J. Chromatogr. Sci. 2011, 49, 189. M. Derde, D. Massart. Anal. Chim. Acta 1986, 184, 33. C. E. Mountford, P. Stanwell, A. Lin, S. Ramadan, B. Ross. Chem. Rev. 2010, 110, 3060. A. W. Simonetti, W. J. Melssen, F. S. D. Edelenyi, J. J. van Asten, A. Heerschap, L. Buydens. NMR Biomed. 2005, 18, 34. M. Khanmohammadi, A. B. Garmarudi, K. Ghasemi, H. K. Jaliseh, A. Kaviani. Med. Oncol. 2009, 26, 292. 2013; 26 2006; 78 1995; 37 2004; 25 2010; 665 1999; 47 2008; 8 2004; 5 2003; 17 2013; 121 2013; 8 1999; 401 2001 2006; 24 2000; 13 2006; 27 2007; 133 2013; 115 1986; 184 2010; 110 2011; 22 2003; 49 2011; 21 2011; 24 2008; 22 2011; 25 2012; 25 2007; 20 2001; 57 2010; 73 2005; 79 2009; 22 2010; 32 2013; 49 2013; 106 2008; 59 1969; 11 2006; 19 2013; 781 2011; 3 1976; 8 2003; 75 1996; 10 2009; 26 1999 2003; 24 2011; 41 2007; 40 2014 2011; 49 2005; 18 1994; 5 2012; 8 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_15_1 e_1_2_6_38_1 García‐Gómez J. M. (e_1_2_6_9_1) 2011 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 Lee D. D. (e_1_2_6_34_1) 2001 Goebell E. (e_1_2_6_52_1) 2006; 27 Londoño A. (e_1_2_6_54_1) 2003; 24 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 Saraf‐Lavi E. (e_1_2_6_55_1) 2003; 24 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 Majós C. (e_1_2_6_17_1) 2004; 25 e_1_2_6_26_1 e_1_2_6_47_1 Rezghi M. (e_1_2_6_31_1) 2014 García‐Gómez J. M. (e_1_2_6_35_1) 2009; 22 Japkowicz N. (e_1_2_6_39_1) 1999 Hoyer P. O. (e_1_2_6_50_1) 2004; 5 e_1_2_6_14_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_16_1 e_1_2_6_37_1 Fuster‐Garcia E. (e_1_2_6_10_1) 2011; 24 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: N. Japkowicz, Concept-Learning in the Absence of Counter-Examples: An Auto Association-based Approach to Classification, The State University of New Jersey, Rutgers, 1999. – reference: V. Govindaraju, K. Young, A. A. Maudsley. NMR Biomed. 2000, 13, 129. – reference: A. Londoño, M. Castillo, D. Armao, L. Kwock, K. Suzuki. Am. J. Neuroradiol. 2003, 24, 942. – reference: C. Ding, T. Li, M. I. Jordan. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 45. – reference: J. M. García-Gómez, Tumors of the Central Nervous system, vol. 3, Springer, Union NJ, USA, 2011, pp. 5. – reference: S. M. Kohl, M. S. Klein, J. Hochrein, P. J. Oefner, R. Spang, W. Gronwald. Metabolomics 2012, 8, 146. – reference: P. Paatero, U. Tapper. Environmetrics 1994, 5, 111. – reference: M. Kounelakis, M. Zervakis, G. Giakos, G. Postma, L. Buydens, X. Kotsiakis. Meas. Sci. Technol. 2011, 22, 114019. – reference: M. Khanmohammadi, A. B. Garmarudi, M. Ramin, K. Ghasemi. Microchem. J. 2013, 106, 67. – reference: S. Wold. Pattern Recognit. 1976, 8, 127. – reference: B. Qu, Y. Hu. J. Chromatogr. Sci. 2011, 49, 189. – reference: M. Derde, D. Massart. Anal. Chim. Acta 1986, 184, 33. – reference: M. Khanmohammadi, A. B. Garmarudi, K. Ghasemi, H. K. Jaliseh, A. Kaviani. Med. Oncol. 2009, 26, 292. – reference: M. Rezghi. Expert Syst. Appl. 2014. – reference: R. Cruz-Barbosa, A. Vellido. Int. J. Neural Syst. 2011, 21, 17. – reference: P. O. Hoyer. J. Mach. Learn. Res. 2004, 5, 1457. – reference: J. Vicente, E. Fuster-Garcia, S. Tortajada, J. M. García-Gómez, N. Davies, K. Natarajan, M. Wilson, R. G. Grundy, P. Wesseling, D. Monleón. Eur. J. Cancer 2013, 49, 658. – reference: E. Papageorgiou, P. Spyridonos, D. T. Glotsos, C. D. Stylios, P. Ravazoula, G. Nikiforidis, P. P. Groumpos. Appl. Soft Comput. 2008, 8, 820. – reference: A. R. Tate, C. Majos, A. Moreno, F. A. Howe, J. R. Griffiths, C. Arús. Magn. Reson. Med. 2003, 49, 29. – reference: A. R. Tate, J. Underwood, D. M. Acosta, M. Julià-Sapé, C. Majós, À. Moreno-Torres, F. A. Howe, M. Van Der Graaf, V. Lefournier, M. M. Murphy. NMR Biomed. 2006, 19, 411. – reference: E. Fuster-Garcia, C. Navarro, J. Vicente, S. Tortajada, J. M. García-Gómez, C. Sáez, J. Calvar, J. Griffiths, M. Julià-Sapé, F. A. Howe. Biol. Med. 2011, 24, 35. – reference: F. Raschke, E. Fuster-Garcia, K. Opstad, F. Howe. NMR Biomed. 2012, 25, 322. – reference: M. C. U. Araújo, T. C. B. Saldanha, R. K. H. Galvão, T. Yoneyama, H. C. Chame, V. Visani. Chemom. Intell. Lab. Syst. 2001, 57, 65. – reference: K. Vanden Branden, M. Hubert. Chemom. Intell. Lab. Syst. 2005, 79, 10. – reference: E. Fuster-Garcia, S. Tortajada, J. Vicente, M. Robles, J. M. García-Gómez. NMR Biomed. 2013, 26, 578. – reference: S. Joe Qin. J. Chemometr. 2003, 17, 480. – reference: D. D. Lee, H. S. Seung, Adv. Neural Inf. Process Syst. 2001, 556. – reference: R. W. Kennard, L. A. Stone. Technometrics 1969, 11, 137. – reference: A. Craig, O. Cloarec, E. Holmes, J. K. Nicholson, J. C. Lindon. Anal. Chem. 2006, 78, 2262. – reference: A. W. Simonetti, W. J. Melssen, F. S. D. Edelenyi, J. J. van Asten, A. Heerschap, L. Buydens. NMR Biomed. 2005, 18, 34. – reference: D. D. Lee, H. S. Seung. Nature 1999, 401, 788. – reference: J. M. García-Gómez, J. Luts, M. Julià-Sapé, P. Krooshof, S. Tortajada, J. V. Robledo, W. Melssen, E. Fuster-García, I. Olier, G. Postma. Biol. Med. 2009, 22, 5. – reference: S. Ortega-Martorell, H. Ruiz, A. Vellido, I. Olier, E. Romero, M. Julià-Sapé, J. D. Martín, I. H. Jarman, C. Arús, P. J. Lisboa. PLoS One 2013, 8, e83773. – reference: M. Khanmohammadi, R. Nasiri, K. Ghasemi, S. Samani, A. B. Garmarudi. J. Cancer Res. Clin. Oncol. 2007, 133, 1001. – reference: E. Goebell, J. Fiehler, X.-Q. Ding, S. Paustenbach, S. Nietz, O. Heese, T. Kucinski, C. Hagel, M. Westphal, H. Zeumer. Am. J. Neuroradiol. 2006, 27, 1426. – reference: C. E. Mountford, P. Stanwell, A. Lin, S. Ramadan, B. Ross. Chem. Rev. 2010, 110, 3060. – reference: R. G. Brereton. J. Chemometr. 2011, 25, 225. – reference: A. J. Wright, C. Arús, J. P. Wijnen, A. Moreno-Torres, J. R. Griffiths, B. Celda, F. A. Howe. Magn. Reson. Med. 2008, 59, 1274. – reference: M. Bulik, R. Jancalek, J. Vanicek, A. Skoch, M. Mechl. Clin. Neurol. Neurosurg. 2013, 115, 146. – reference: G. M. Kirwan, T. Hancock, K. Hassell, J. O. Niere, D. Nugegoda, S. Goto, M. J. Adams. Anal. Chim. Acta 2013, 781, 33. – reference: A. L. Pomerantsev. J. Chemometr. 2008, 22, 601. – reference: T. E. Morud. J. Chemometr. 1996, 10, 669. – reference: R. De Maesschalck, A. Candolfi, D. Massart, S. Heuerding. Chemom. Intell. Lab. Syst. 1999, 47, 65. – reference: J. Luts, A. Heerschap, J. A. Suykens, S. Van Huffel. Artif. Intell. Med. 2007, 40, 87. – reference: G. J. Postma, J. Luts, A. J. Idema, M. Julià-Sapé, Á. Moreno-Torres, W. Gajewicz, J. A. Suykens, A. Heerschap, S. Van Huffel, L. Buydens. Comput. Biol. Med. 2011, 41, 87. – reference: P. Nomikos, J. F. MacGregor. Technometrics 1995, 37, 41. – reference: K. Opstad, C. Ladroue, B. Bell, J. Griffiths, F. Howe. NMR Biomed. 2007, 20, 763. – reference: X. Deng, X. Tian. Neurocomput 2013, 121, 298. – reference: C. Mountford, C. Lean, P. Malycha, P. Russell. J. Magn. Reson. Imaging 2006, 24, 459. – reference: A. W. Simonetti, W. J. Melssen, M. van der Graaf, G. J. Postma, A. Heerschap, L. M. Buydens. Anal. Chem. 2003, 75, 5352. – reference: C. Majós, M. Julià-Sapé, J. Alonso, M. Serrallonga, C. Aguilera, J. J. Acebes, C. Arús, J. Gili. Am. J. Neuroradiol. 2004, 25, 1696. – reference: F. F. González-Navarro, L. A. Belanche-Muñoz, E. Romero, A. Vellido, M. Julià-Sapé, C. Arús. Neurocomput 2010, 73, 622. – reference: J. Luts, F. Ojeda, R. Van de Plas, B. De Moor, S. Van Huffel, J. A. Suykens. Anal. Chim. Acta 2010, 665, 129. – reference: E. Saraf-Lavi, B. C. Bowen, P. M. Pattany, E. M. Sklar, J. B. Murdoch, C. K. Petito. Am. J. Neuroradiol. 2003, 24, 946. – volume: 20 start-page: 763 year: 2007 publication-title: NMR Biomed. – volume: 8 start-page: 127 year: 1976 publication-title: Pattern Recognit. – volume: 19 start-page: 411 year: 2006 publication-title: NMR Biomed. – volume: 24 start-page: 459 year: 2006 publication-title: J. Magn. Reson. Imaging – volume: 8 start-page: 820 year: 2008 publication-title: Appl. Soft Comput. – volume: 26 start-page: 578 year: 2013 publication-title: NMR Biomed. – start-page: 556 year: 2001 – volume: 13 start-page: 129 year: 2000 publication-title: NMR Biomed. – volume: 8 year: 2013 publication-title: PLoS One – volume: 665 start-page: 129 year: 2010 publication-title: Anal. Chim. Acta – volume: 37 start-page: 41 year: 1995 publication-title: Technometrics – volume: 24 start-page: 35 year: 2011 publication-title: Biol. Med. – volume: 75 start-page: 5352 year: 2003 publication-title: Anal. Chem. – volume: 26 start-page: 292 year: 2009 publication-title: Med. Oncol. – volume: 401 start-page: 788 year: 1999 publication-title: Nature – volume: 47 start-page: 65 year: 1999 publication-title: Chemom. Intell. Lab. Syst. – volume: 24 start-page: 946 year: 2003 publication-title: Am. J. Neuroradiol. – volume: 24 start-page: 942 year: 2003 publication-title: Am. J. Neuroradiol. – volume: 40 start-page: 87 year: 2007 publication-title: Artif. Intell. Med. – volume: 49 start-page: 29 year: 2003 publication-title: Magn. Reson. Med. – volume: 11 start-page: 137 year: 1969 publication-title: Technometrics – volume: 17 start-page: 480 year: 2003 publication-title: J. Chemometr. – volume: 121 start-page: 298 year: 2013 publication-title: Neurocomput – volume: 3 start-page: 5 year: 2011 – volume: 25 start-page: 1696 year: 2004 publication-title: Am. J. Neuroradiol. – volume: 21 start-page: 17 year: 2011 publication-title: Int. J. Neural Syst. – volume: 184 start-page: 33 year: 1986 publication-title: Anal. Chim. Acta – volume: 22 start-page: 5 year: 2009 publication-title: Biol. Med. – volume: 57 start-page: 65 year: 2001 publication-title: Chemom. Intell. Lab. Syst. – volume: 25 start-page: 225 year: 2011 publication-title: J. Chemometr. – volume: 59 start-page: 1274 year: 2008 publication-title: Magn. Reson. Med. – volume: 5 start-page: 111 year: 1994 publication-title: Environmetrics – volume: 22 start-page: 114019 year: 2011 publication-title: Meas. Sci. Technol. – volume: 115 start-page: 146 year: 2013 publication-title: Clin. Neurol. Neurosurg. – volume: 49 start-page: 658 year: 2013 publication-title: Eur. J. Cancer – volume: 41 start-page: 87 year: 2011 publication-title: Comput. Biol. Med. – volume: 133 start-page: 1001 year: 2007 publication-title: J. Cancer Res. Clin. Oncol. – volume: 73 start-page: 622 year: 2010 publication-title: Neurocomput – volume: 78 start-page: 2262 year: 2006 publication-title: Anal. Chem. – volume: 32 start-page: 45 year: 2010 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 110 start-page: 3060 year: 2010 publication-title: Chem. Rev. – volume: 25 start-page: 322 year: 2012 publication-title: NMR Biomed. – volume: 106 start-page: 67 year: 2013 publication-title: Microchem. J. – volume: 10 start-page: 669 year: 1996 publication-title: J. Chemometr. – volume: 79 start-page: 10 year: 2005 publication-title: Chemom. Intell. Lab. Syst. – year: 2014 publication-title: Expert Syst. Appl. – volume: 18 start-page: 34 year: 2005 publication-title: NMR Biomed. – volume: 5 start-page: 1457 year: 2004 publication-title: J. Mach. Learn. Res. – volume: 27 start-page: 1426 year: 2006 publication-title: Am. J. Neuroradiol. – volume: 781 start-page: 33 year: 2013 publication-title: Anal. Chim. Acta – volume: 49 start-page: 189 year: 2011 publication-title: J. Chromatogr. Sci. – volume: 8 start-page: 146 year: 2012 publication-title: Metabolomics – volume: 22 start-page: 601 year: 2008 publication-title: J. Chemometr. – year: 1999 – ident: e_1_2_6_20_1 doi: 10.1016/j.artmed.2007.02.002 – ident: e_1_2_6_26_1 doi: 10.1007/s12032-008-9118-3 – ident: e_1_2_6_44_1 doi: 10.1002/(SICI)1099-128X(199609)10:5/6<669::AID-CEM467>3.0.CO;2-Q – ident: e_1_2_6_45_1 doi: 10.1002/cem.800 – ident: e_1_2_6_19_1 doi: 10.1002/nbm.1016 – ident: e_1_2_6_16_1 doi: 10.1002/nbm.1147 – ident: e_1_2_6_38_1 doi: 10.1080/00401706.1969.10490666 – volume-title: Concept‐Learning in the Absence of Counter‐Examples: An Auto Association‐based Approach to Classification year: 1999 ident: e_1_2_6_39_1 – ident: e_1_2_6_21_1 doi: 10.1016/j.aca.2010.03.030 – volume: 5 start-page: 1457 year: 2004 ident: e_1_2_6_50_1 publication-title: J. Mach. Learn. Res. – ident: e_1_2_6_11_1 doi: 10.1016/j.ejca.2012.09.003 – start-page: 556 volume-title: Adv. Neural Inf. Process Syst. year: 2001 ident: e_1_2_6_34_1 – ident: e_1_2_6_43_1 doi: 10.1080/00401706.1995.10485888 – ident: e_1_2_6_22_1 doi: 10.1002/nbm.2895 – ident: e_1_2_6_33_1 doi: 10.1038/44565 – ident: e_1_2_6_5_1 doi: 10.1002/mrm.21533 – ident: e_1_2_6_14_1 doi: 10.1002/nbm.919 – ident: e_1_2_6_3_1 doi: 10.1002/jmri.20668 – ident: e_1_2_6_8_1 doi: 10.1088/0957-0233/22/11/114019 – ident: e_1_2_6_32_1 doi: 10.1093/chrsci/49.3.189 – volume: 24 start-page: 942 year: 2003 ident: e_1_2_6_54_1 publication-title: Am. J. Neuroradiol. – ident: e_1_2_6_27_1 doi: 10.1007/s00432-007-0286-x – volume: 27 start-page: 1426 year: 2006 ident: e_1_2_6_52_1 publication-title: Am. J. Neuroradiol. – ident: e_1_2_6_49_1 doi: 10.1002/env.3170050203 – ident: e_1_2_6_53_1 doi: 10.1016/j.clineuro.2012.11.002 – ident: e_1_2_6_28_1 doi: 10.1016/j.microc.2012.05.006 – ident: e_1_2_6_7_1 doi: 10.1016/j.compbiomed.2010.12.003 – volume: 24 start-page: 35 year: 2011 ident: e_1_2_6_10_1 publication-title: Biol. Med. – ident: e_1_2_6_24_1 doi: 10.1371/journal.pone.0083773 – ident: e_1_2_6_41_1 doi: 10.1002/cem.1147 – ident: e_1_2_6_36_1 doi: 10.1007/s11306-011-0350-z – ident: e_1_2_6_46_1 doi: 10.1016/S0169-7439(98)00159-2 – ident: e_1_2_6_2_1 doi: 10.1002/1099-1492(200005)13:3<129::AID-NBM619>3.0.CO;2-V – ident: e_1_2_6_29_1 doi: 10.1016/j.aca.2013.04.007 – volume: 22 start-page: 5 year: 2009 ident: e_1_2_6_35_1 publication-title: Biol. Med. – ident: e_1_2_6_6_1 doi: 10.1016/j.asoc.2007.06.006 – ident: e_1_2_6_42_1 doi: 10.1016/S0003-2670(00)86468-5 – volume: 24 start-page: 946 year: 2003 ident: e_1_2_6_55_1 publication-title: Am. J. Neuroradiol. – ident: e_1_2_6_12_1 doi: 10.1002/nbm.1753 – ident: e_1_2_6_25_1 doi: 10.1142/S0129065711002626 – ident: e_1_2_6_40_1 doi: 10.1016/0031-3203(76)90014-5 – year: 2014 ident: e_1_2_6_31_1 publication-title: Expert Syst. Appl. – ident: e_1_2_6_48_1 doi: 10.1002/cem.1397 – start-page: 5 volume-title: Tumors of the Central Nervous system year: 2011 ident: e_1_2_6_9_1 – ident: e_1_2_6_23_1 doi: 10.1016/j.neucom.2009.07.018 – ident: e_1_2_6_13_1 doi: 10.1021/ac034541t – ident: e_1_2_6_15_1 doi: 10.1016/S0169-7439(01)00119-8 – volume: 25 start-page: 1696 year: 2004 ident: e_1_2_6_17_1 publication-title: Am. J. Neuroradiol. – ident: e_1_2_6_30_1 doi: 10.1016/j.neucom.2013.04.042 – ident: e_1_2_6_51_1 doi: 10.1109/TPAMI.2008.277 – ident: e_1_2_6_47_1 doi: 10.1016/j.chemolab.2005.03.002 – ident: e_1_2_6_4_1 doi: 10.1021/cr900250y – ident: e_1_2_6_37_1 doi: 10.1021/ac0519312 – ident: e_1_2_6_18_1 doi: 10.1002/mrm.10315 |
SSID | ssj0009973 |
Score | 2.1230307 |
Snippet | Hydrogen magnetic resonance spectroscopy (1H‐MRS) is a non‐invasive technique which provides a ‘frequency‐signal intensity’ spectrum of biochemical compounds... Hydrogen magnetic resonance spectroscopy ( 1 H‐MRS) is a non‐invasive technique which provides a ‘frequency‐signal intensity’ spectrum of biochemical compounds... Hydrogen magnetic resonance spectroscopy ((1) H-MRS) is a non-invasive technique which provides a 'frequency-signal intensity' spectrum of biochemical... Hydrogen magnetic resonance spectroscopy (1H-MRS) is a non-invasive technique which provides a 'frequency-signal intensity' spectrum of biochemical compounds... Hydrogen magnetic resonance spectroscopy ( super(1)H-MRS) is a non-invasive technique which provides a 'frequency-signal intensity' spectrum of biochemical... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 119 |
SubjectTerms | 1H-magnetic resonance spectroscopy Algorithms Analogies Aspartic Acid - analogs & derivatives Aspartic Acid - analysis Brain Brain Neoplasms - diagnosis Brain Neoplasms - pathology brain tumors Choline - analysis Classification Creatine - analysis Factorization glioma Glioma - diagnosis Glioma - pathology Glycine - analysis Humans Magnetic resonance Metabolites Modelling Neoplasm Grading NMF PCA Principal Component Analysis Proton Magnetic Resonance Spectroscopy - methods Quality SIMCA |
Title | Accurate grading of brain gliomas by soft independent modeling of class analogy based on non-negative matrix factorization of proton magnetic resonance spectra |
URI | https://api.istex.fr/ark:/67375/WNG-XHPGD7S2-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrc.4326 https://www.ncbi.nlm.nih.gov/pubmed/26332515 https://www.proquest.com/docview/1757959931 https://www.proquest.com/docview/1760864254 https://www.proquest.com/docview/1800491384 https://www.proquest.com/docview/1919968801 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELZQe4ALlP_QUhkJwWnT9Xq9Xh_TlDRCaoUCFZE4WLbXG1VtNmiTSC0nHoFX4NV4Emb2ryoqFeKUSJnV2t7x-JvNzPcR8hpPaeUECwTPZRB75IAUWOTouUttLOIsxG7ko-NkfBK_n4ppU1WJvTA1P0T3wg13RhWvcYMbu9y7Ig2dl64fA_iA8IulWoiHJlfMUUrJhoFTBUykrOWdDaO99sJrJ9EmLurFTTDzOmqtjp3RA_KlHXBdbXLWX69s3337g8vx_2a0Re43aJQOavd5SO744hG5O2xF4B6TnwPn1sgmQWdlVW1PFzm1KCtBZ-enWFtE7SVdQiynp52g7opW-jqNtUN8Tk2Bb4kuKZ6aGV0UtFgUv77_KPysYh6nc5QKuKC1_E_TG4pXI48EfJubWYHtlrT0mDuAp9KqR7Q0T8jJ6N2n4ThoVB0CB0lvEhhmjDVJKozIuXQskkqkzkrPhWJR7iUzWWIiZUOpDEvSOA65h0zRZdZ6aSR_SjZgiP45obFA2mHv80gaSExDk2eokuhyE0rDw7RH3rZPWLuG8hyVN851TdYcaVhyjUveI686y681zccNNm8qJ-kMTHmGZXFS6M_Hh3o6_nB4ID9GetIjO60X6SYiLDXANJR1V5zBvbqf4WniHzSm8Is12iSQYUIUjW-xSTGpYzy9zUZhbTlEZrjXs9qLu0FHCeeAaQXMpvLFv05XH02G-PniXw23yT1Ak01J-w7ZWJVr_xIQ28ruks3B_sH-aLfao78B-3JBLg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKeygX3o-FAkZCcMo2juM4FqdqS7tAd4WWVuyhkmV7nVXVbhalu1LLiZ_AX-Cv8UuYyasqKhXilEiZKH6MxzPOzPcR8gp3aeUECwTPZBB7xIAUmOTouUttLOJJiNXIg2HSP4g_jMV4hbxtamEqfIj2wA1XRmmvcYHjgfTmBWrorHDdGLyPG2QNCb1xVW6PLrCjlJI1BqcKmEhZgzwbRpvNm5f2ojUc1rOrHM3Lfmu58ezcJodNk6t8k-PucmG77tsfaI7_2ac75FbtkNKtSoPukhWf3yPrvYYH7j75ueXcEgEl6LQoE-7pPKMWmSXo9OQI04uoPaenYM7pUcupu6AlxU4t7dBFpybHg6JzihvnhM5zms_zX99_5H5ago_TGbIFnNGKAaguD8W3EUoC7mZmmmPFJS08hg-grLQsEy3MA3Kw826_1w9qYofAQdybBIYZY02SCiMyLh2LpBKps9JzoViUecnMJDGRsqFUhiVpHIfcQ7DoJtZ6aSR_SFahif4xobFA5GHvs0gaiE1Dk02QKNFlJpSGh2mHvGmmWLsa9RzJN050hdccaRhyjUPeIS9bya8V0scVMq9LLWkFTHGMmXFS6C_DXT3uf9rdlp8jPeqQjUaNdG0UTjV4asjsrjiDb7WPYTbxH43J_XyJMgkEmWBI42tkUozrGE-vk1GYXg7GGb71qFLjttFRwjm4tQJ6UyrjX7urB6MeXp_8q-ALst7fH-zpvffDj0_JTXAu6wz3DbK6KJb-GThwC_u8XKi_AbVtQ9U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbGJgE3MP4LA4yE4CpdHNtxfDm1dOVn1VSYqLQLy3acatqaTlkrbVzxCLwCr7YnmU_-pqExIa4SKSeK7Rzb30nO-T6E3sIuLS0nAaeZCJgDDkgOSY6O2sQwztIQqpF3RvFwj32a8EmdVQm1MBU_RPvBDWZGuV7DBD9Os81L0tBZYbvMg49baI3FYQKBV398SR0lpagpOGVAeEIa4tkw2mzuvLIVrcGonl6HM6_C1nLfGdxH-02Lq3STw-5yYbr2xx9kjv_XpXV0r4ajeKvynwdoxeUP0Z1eowL3CP3esnYJdBJ4WpTp9nieYQO6Enh6dADJRdic4RO_mOODVlF3gUuBndraAkDHOofPRGcYts0Uz3Ocz_Pzn79yNy2px_EMtAJOcaX_UxeHwt1AJOHPZnqaQ70lLhwED95VcVkkWujHaG_w4VtvGNSyDoH1UW8caKK10XHCNc-osCQSkifWCEe5JFHmBNFprCNpQiE1iRPGQup8qGhTY5zQgj5Bq76J7hnCjAPvsHNZJLSPTEOdpSCTaDMdCk3DpIPeN29Y2ZrzHKQ3jlTF1hwpP-QKhryD3rSWxxXPxzU270onaQ10cQh5cYKr76NtNRnubvfF10iNO2ij8SJVLwknyuM00HWXlPhntZf924Q_NDp38yXYeE_2ESFnN9gkENURmtxkIyG53C_N_llPKy9uGx3FlHpQy31vSl_8a3fVzrgHx-f_avga3d7tD9SXj6PPL9Bdjyzr9PYNtLoolu6lR28L86qcphfiVEKN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+grading+of+brain+gliomas+by+soft+independent+modeling+of+class+analogy+based+on+non%E2%80%90negative+matrix+factorization+of+proton+magnetic+resonance+spectra&rft.jtitle=Magnetic+resonance+in+chemistry&rft.au=Ghasemi%2C+K.&rft.au=Khanmohammadi%2C+M.&rft.au=Saligheh+Rad%2C+H.&rft.date=2016-02-01&rft.issn=0749-1581&rft.eissn=1097-458X&rft.volume=54&rft.issue=2&rft.spage=119&rft.epage=125&rft_id=info:doi/10.1002%2Fmrc.4326&rft.externalDBID=10.1002%252Fmrc.4326&rft.externalDocID=MRC4326 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-1581&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-1581&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-1581&client=summon |