Accurate grading of brain gliomas by soft independent modeling of class analogy based on non-negative matrix factorization of proton magnetic resonance spectra

Hydrogen magnetic resonance spectroscopy (1H‐MRS) is a non‐invasive technique which provides a ‘frequency‐signal intensity’ spectrum of biochemical compounds of tissues in the body. Although this method is currently used in human brain studies, accurate classification of in‐vivo 1H‐MRS is a challeng...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in chemistry Vol. 54; no. 2; pp. 119 - 125
Main Authors Ghasemi, K., Khanmohammadi, M., Saligheh Rad, H.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.02.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0749-1581
1097-458X
1097-458X
DOI10.1002/mrc.4326

Cover

Loading…
Abstract Hydrogen magnetic resonance spectroscopy (1H‐MRS) is a non‐invasive technique which provides a ‘frequency‐signal intensity’ spectrum of biochemical compounds of tissues in the body. Although this method is currently used in human brain studies, accurate classification of in‐vivo 1H‐MRS is a challenging task in the diagnosis of brain tumors. Problems such as overlapping metabolite peaks, incomplete information on background component and low signal‐to‐noise ratio disturb classification results of this spectroscopic method. This study presents an alternative approach to the soft independent modeling of class analogy (SIMCA) technique, using non‐negative matrix factorization (NMF) for dimensionality reduction. In the adopted strategy, the performance of SIMCA was improved by application of a robust algorithm for classification in the presence of noisy measurements. Total of 219 spectra from two databases were taken by water‐suppressed short echo‐time 1H‐MRS, acquired from different subjects with different stages of glial brain tumors (Grade II (26 cases), grade III (24 cases), grade IV (41 cases), as well as 25 healthy cases). The SIMCA was performed using two approaches: (i) principal component analysis (PCA) and (ii) non‐negative matrix factorization (NMF), as a modified approach. Square prediction error was considered to assess the class membership of the external validation set. Finally, several figures of merit such as the correct classification rate (CCR), sensitivity and specificity were calculated. Results of SIMCA based on NMF showed significant improvement in percentage of correctly classified samples, 91.4% versus 83.5% for PCA‐based model in an independent test set. Copyright © 2015 John Wiley & Sons, Ltd. 1H‐MRS is a non‐invasive technique in assessment of brain's metabolites. The performance of Soft Modeling Class Analogy (SIMCA) classifier was improved by application of non‐negative matrix factorization for accurate grading of brain glioma.
AbstractList Hydrogen magnetic resonance spectroscopy (1H‐MRS) is a non‐invasive technique which provides a ‘frequency‐signal intensity’ spectrum of biochemical compounds of tissues in the body. Although this method is currently used in human brain studies, accurate classification of in‐vivo 1H‐MRS is a challenging task in the diagnosis of brain tumors. Problems such as overlapping metabolite peaks, incomplete information on background component and low signal‐to‐noise ratio disturb classification results of this spectroscopic method. This study presents an alternative approach to the soft independent modeling of class analogy (SIMCA) technique, using non‐negative matrix factorization (NMF) for dimensionality reduction. In the adopted strategy, the performance of SIMCA was improved by application of a robust algorithm for classification in the presence of noisy measurements. Total of 219 spectra from two databases were taken by water‐suppressed short echo‐time 1H‐MRS, acquired from different subjects with different stages of glial brain tumors (Grade II (26 cases), grade III (24 cases), grade IV (41 cases), as well as 25 healthy cases). The SIMCA was performed using two approaches: (i) principal component analysis (PCA) and (ii) non‐negative matrix factorization (NMF), as a modified approach. Square prediction error was considered to assess the class membership of the external validation set. Finally, several figures of merit such as the correct classification rate (CCR), sensitivity and specificity were calculated. Results of SIMCA based on NMF showed significant improvement in percentage of correctly classified samples, 91.4% versus 83.5% for PCA‐based model in an independent test set. Copyright © 2015 John Wiley & Sons, Ltd. 1H‐MRS is a non‐invasive technique in assessment of brain's metabolites. The performance of Soft Modeling Class Analogy (SIMCA) classifier was improved by application of non‐negative matrix factorization for accurate grading of brain glioma.
Hydrogen magnetic resonance spectroscopy ( super(1)H-MRS) is a non-invasive technique which provides a 'frequency-signal intensity' spectrum of biochemical compounds of tissues in the body. Although this method is currently used in human brain studies, accurate classification of in-vivo super(1)H-MRS is a challenging task in the diagnosis of brain tumors. Problems such as overlapping metabolite peaks, incomplete information on background component and low signal-to-noise ratio disturb classification results of this spectroscopic method. This study presents an alternative approach to the soft independent modeling of class analogy (SIMCA) technique, using non-negative matrix factorization (NMF) for dimensionality reduction. In the adopted strategy, the performance of SIMCA was improved by application of a robust algorithm for classification in the presence of noisy measurements. Total of 219 spectra from two databases were taken by water-suppressed short echo-time super(1)H-MRS, acquired from different subjects with different stages of glial brain tumors (Grade II (26 cases), grade III (24 cases), grade IV (41 cases), as well as 25 healthy cases). The SIMCA was performed using two approaches: (i) principal component analysis (PCA) and (ii) non-negative matrix factorization (NMF), as a modified approach. Square prediction error was considered to assess the class membership of the external validation set. Finally, several figures of merit such as the correct classification rate (CCR), sensitivity and specificity were calculated. Results of SIMCA based on NMF showed significant improvement in percentage of correctly classified samples, 91.4% versus 83.5% for PCA-based model in an independent test set. super(1)H-MRS is a non-invasive technique in assessment of brain's metabolites. The performance of Soft Modeling Class Analogy (SIMCA) classifier was improved by application of non-negative matrix factorization for accurate grading of brain glioma.
Hydrogen magnetic resonance spectroscopy ((1) H-MRS) is a non-invasive technique which provides a 'frequency-signal intensity' spectrum of biochemical compounds of tissues in the body. Although this method is currently used in human brain studies, accurate classification of in-vivo (1) H-MRS is a challenging task in the diagnosis of brain tumors. Problems such as overlapping metabolite peaks, incomplete information on background component and low signal-to-noise ratio disturb classification results of this spectroscopic method. This study presents an alternative approach to the soft independent modeling of class analogy (SIMCA) technique, using non-negative matrix factorization (NMF) for dimensionality reduction. In the adopted strategy, the performance of SIMCA was improved by application of a robust algorithm for classification in the presence of noisy measurements. Total of 219 spectra from two databases were taken by water-suppressed short echo-time (1) H-MRS, acquired from different subjects with different stages of glial brain tumors (Grade II (26 cases), grade III (24 cases), grade IV (41 cases), as well as 25 healthy cases). The SIMCA was performed using two approaches: (i) principal component analysis (PCA) and (ii) non-negative matrix factorization (NMF), as a modified approach. Square prediction error was considered to assess the class membership of the external validation set. Finally, several figures of merit such as the correct classification rate (CCR), sensitivity and specificity were calculated. Results of SIMCA based on NMF showed significant improvement in percentage of correctly classified samples, 91.4% versus 83.5% for PCA-based model in an independent test set.
Hydrogen magnetic resonance spectroscopy (1H-MRS) is a non-invasive technique which provides a 'frequency-signal intensity' spectrum of biochemical compounds of tissues in the body. Although this method is currently used in human brain studies, accurate classification of in-vivo 1H-MRS is a challenging task in the diagnosis of brain tumors. Problems such as overlapping metabolite peaks, incomplete information on background component and low signal-to-noise ratio disturb classification results of this spectroscopic method. This study presents an alternative approach to the soft independent modeling of class analogy (SIMCA) technique, using non-negative matrix factorization (NMF) for dimensionality reduction. In the adopted strategy, the performance of SIMCA was improved by application of a robust algorithm for classification in the presence of noisy measurements. Total of 219 spectra from two databases were taken by water-suppressed short echo-time 1H-MRS, acquired from different subjects with different stages of glial brain tumors (Grade II (26 cases), grade III (24 cases), grade IV (41 cases), as well as 25 healthy cases). The SIMCA was performed using two approaches: (i) principal component analysis (PCA) and (ii) non-negative matrix factorization (NMF), as a modified approach. Square prediction error was considered to assess the class membership of the external validation set. Finally, several figures of merit such as the correct classification rate (CCR), sensitivity and specificity were calculated. Results of SIMCA based on NMF showed significant improvement in percentage of correctly classified samples, 91.4% versus 83.5% for PCA-based model in an independent test set. Copyright © 2015 John Wiley & Sons, Ltd.
Hydrogen magnetic resonance spectroscopy ((1) H-MRS) is a non-invasive technique which provides a 'frequency-signal intensity' spectrum of biochemical compounds of tissues in the body. Although this method is currently used in human brain studies, accurate classification of in-vivo (1) H-MRS is a challenging task in the diagnosis of brain tumors. Problems such as overlapping metabolite peaks, incomplete information on background component and low signal-to-noise ratio disturb classification results of this spectroscopic method. This study presents an alternative approach to the soft independent modeling of class analogy (SIMCA) technique, using non-negative matrix factorization (NMF) for dimensionality reduction. In the adopted strategy, the performance of SIMCA was improved by application of a robust algorithm for classification in the presence of noisy measurements. Total of 219 spectra from two databases were taken by water-suppressed short echo-time (1) H-MRS, acquired from different subjects with different stages of glial brain tumors (Grade II (26 cases), grade III (24 cases), grade IV (41 cases), as well as 25 healthy cases). The SIMCA was performed using two approaches: (i) principal component analysis (PCA) and (ii) non-negative matrix factorization (NMF), as a modified approach. Square prediction error was considered to assess the class membership of the external validation set. Finally, several figures of merit such as the correct classification rate (CCR), sensitivity and specificity were calculated. Results of SIMCA based on NMF showed significant improvement in percentage of correctly classified samples, 91.4% versus 83.5% for PCA-based model in an independent test set.Hydrogen magnetic resonance spectroscopy ((1) H-MRS) is a non-invasive technique which provides a 'frequency-signal intensity' spectrum of biochemical compounds of tissues in the body. Although this method is currently used in human brain studies, accurate classification of in-vivo (1) H-MRS is a challenging task in the diagnosis of brain tumors. Problems such as overlapping metabolite peaks, incomplete information on background component and low signal-to-noise ratio disturb classification results of this spectroscopic method. This study presents an alternative approach to the soft independent modeling of class analogy (SIMCA) technique, using non-negative matrix factorization (NMF) for dimensionality reduction. In the adopted strategy, the performance of SIMCA was improved by application of a robust algorithm for classification in the presence of noisy measurements. Total of 219 spectra from two databases were taken by water-suppressed short echo-time (1) H-MRS, acquired from different subjects with different stages of glial brain tumors (Grade II (26 cases), grade III (24 cases), grade IV (41 cases), as well as 25 healthy cases). The SIMCA was performed using two approaches: (i) principal component analysis (PCA) and (ii) non-negative matrix factorization (NMF), as a modified approach. Square prediction error was considered to assess the class membership of the external validation set. Finally, several figures of merit such as the correct classification rate (CCR), sensitivity and specificity were calculated. Results of SIMCA based on NMF showed significant improvement in percentage of correctly classified samples, 91.4% versus 83.5% for PCA-based model in an independent test set.
Hydrogen magnetic resonance spectroscopy ( 1 H‐MRS) is a non‐invasive technique which provides a ‘frequency‐signal intensity’ spectrum of biochemical compounds of tissues in the body. Although this method is currently used in human brain studies, accurate classification of in‐vivo 1 H‐MRS is a challenging task in the diagnosis of brain tumors. Problems such as overlapping metabolite peaks, incomplete information on background component and low signal‐to‐noise ratio disturb classification results of this spectroscopic method. This study presents an alternative approach to the soft independent modeling of class analogy (SIMCA) technique, using non‐negative matrix factorization (NMF) for dimensionality reduction. In the adopted strategy, the performance of SIMCA was improved by application of a robust algorithm for classification in the presence of noisy measurements. Total of 219 spectra from two databases were taken by water‐suppressed short echo‐time 1 H‐MRS, acquired from different subjects with different stages of glial brain tumors (Grade II (26 cases), grade III (24 cases), grade IV (41 cases), as well as 25 healthy cases). The SIMCA was performed using two approaches: (i) principal component analysis (PCA) and (ii) non‐negative matrix factorization (NMF), as a modified approach. Square prediction error was considered to assess the class membership of the external validation set. Finally, several figures of merit such as the correct classification rate (CCR), sensitivity and specificity were calculated. Results of SIMCA based on NMF showed significant improvement in percentage of correctly classified samples, 91.4% versus 83.5% for PCA‐based model in an independent test set. Copyright © 2015 John Wiley & Sons, Ltd.
Author Saligheh Rad, H.
Khanmohammadi, M.
Ghasemi, K.
Author_xml – sequence: 1
  givenname: K.
  surname: Ghasemi
  fullname: Ghasemi, K.
  organization: Chemistry Department, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
– sequence: 2
  givenname: M.
  surname: Khanmohammadi
  fullname: Khanmohammadi, M.
  email: mrkhanmohammadi@gmail.com
  organization: Chemistry Department, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
– sequence: 3
  givenname: H.
  surname: Saligheh Rad
  fullname: Saligheh Rad, H.
  organization: Tehran University of Medical Sciences, Medical Physics and Biomedical Engineering Department, Keshavarz Boulevard, Tehran, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26332515$$D View this record in MEDLINE/PubMed
BookMark eNqF0s1u1DAQAOAIFdFtQeIJkCUuXLLYcRzHx2qBLVL5UQHRmzVxJpFLYm9tL3R5GV6VLLstAoF6sS3rG3s8nqPswHmHWfaY0TmjtHg-BjMveVHdy2aMKpmXor44yGZUlipnomaH2VGMl5RSpSR_kB0WFeeFYGKW_TgxZh0gIekDtNb1xHekCWAd6QfrR4ik2ZDou0Ssa3GF0-ASGX2Lw16bAWIk4GDw_YY0ELEl3pEpxdxhD8l-RTJCCvaadGCSD_b7tDmJKXYVfJpWI_QOkzUkYPQOnEESV2hSgIfZ_Q6GiI_283H26dXLj4vT_Ozd8vXi5Cw3ouBVDgyggaoWIDouDSukErVpJHKhWNGhZNBWUKiGSgWsqsuScqRFZdqmQQmSH2fPdudOGV2tMSY92mhwGMChX0fNFFOqqmvK7qY1paVivC7vprKidVUWYkuf_kUv_TpMRd0qMT1HKb69-8lerZsRW70KdoSw0TcfOoH5DpjgYwzYaWPTr3JPxbSDZlRvO0ZPHaO3HfM7xduAmzP_QfMd_WYH3PzX6Tfniz-9jQmvbz2EL7qSXAr9-e1SX5y-X76QHwp9zn8CVNjfsw
CitedBy_id crossref_primary_10_1002_mrc_4532
crossref_primary_10_1002_nbm_4193
crossref_primary_10_1016_j_cmpb_2017_01_006
crossref_primary_10_1007_s11947_018_2216_0
crossref_primary_10_1002_nbm_4234
crossref_primary_10_1016_j_infrared_2020_103543
Cites_doi 10.1016/j.artmed.2007.02.002
10.1007/s12032-008-9118-3
10.1002/(SICI)1099-128X(199609)10:5/6<669::AID-CEM467>3.0.CO;2-Q
10.1002/cem.800
10.1002/nbm.1016
10.1002/nbm.1147
10.1080/00401706.1969.10490666
10.1016/j.aca.2010.03.030
10.1016/j.ejca.2012.09.003
10.1080/00401706.1995.10485888
10.1002/nbm.2895
10.1038/44565
10.1002/mrm.21533
10.1002/nbm.919
10.1002/jmri.20668
10.1088/0957-0233/22/11/114019
10.1093/chrsci/49.3.189
10.1007/s00432-007-0286-x
10.1002/env.3170050203
10.1016/j.clineuro.2012.11.002
10.1016/j.microc.2012.05.006
10.1016/j.compbiomed.2010.12.003
10.1371/journal.pone.0083773
10.1002/cem.1147
10.1007/s11306-011-0350-z
10.1016/S0169-7439(98)00159-2
10.1002/1099-1492(200005)13:3<129::AID-NBM619>3.0.CO;2-V
10.1016/j.aca.2013.04.007
10.1016/j.asoc.2007.06.006
10.1016/S0003-2670(00)86468-5
10.1002/nbm.1753
10.1142/S0129065711002626
10.1016/0031-3203(76)90014-5
10.1002/cem.1397
10.1016/j.neucom.2009.07.018
10.1021/ac034541t
10.1016/S0169-7439(01)00119-8
10.1016/j.neucom.2013.04.042
10.1109/TPAMI.2008.277
10.1016/j.chemolab.2005.03.002
10.1021/cr900250y
10.1021/ac0519312
10.1002/mrm.10315
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright © 2016 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
– notice: Copyright © 2016 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
JQ2
K9.
L7M
7X8
7TK
DOI 10.1002/mrc.4326
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
Materials Research Database
MEDLINE
Neurosciences Abstracts
Materials Research Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1097-458X
EndPage 125
ExternalDocumentID 3925244571
26332515
10_1002_mrc_4326
MRC4326
ark_67375_WNG_XHPGD7S2_R
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABIJN
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
TWZ
UB1
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
YNT
YQT
ZCG
ZY4
ZZTAW
~IA
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
JQ2
K9.
L7M
7X8
7TK
ID FETCH-LOGICAL-c5236-a1aaba685a5f37c127958cb7e35912fe71ad6a29b079a1684403e026cdbbe7a73
IEDL.DBID DR2
ISSN 0749-1581
1097-458X
IngestDate Fri Jul 11 16:33:46 EDT 2025
Fri Jul 11 04:50:06 EDT 2025
Fri Jul 11 00:17:33 EDT 2025
Fri Jul 25 12:10:42 EDT 2025
Thu Apr 03 07:06:11 EDT 2025
Thu Apr 24 23:08:30 EDT 2025
Tue Jul 01 03:42:00 EDT 2025
Wed Aug 20 07:26:47 EDT 2025
Wed Oct 30 09:53:00 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords glioma
brain tumors
NMF
SIMCA
1H-magnetic resonance spectroscopy
PCA
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2015 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5236-a1aaba685a5f37c127958cb7e35912fe71ad6a29b079a1684403e026cdbbe7a73
Notes istex:B62655062A9352C8BA8ED74DFDB4846464F97315
ark:/67375/WNG-XHPGD7S2-R
ArticleID:MRC4326
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26332515
PQID 1757959931
PQPubID 1016392
PageCount 7
ParticipantIDs proquest_miscellaneous_1919968801
proquest_miscellaneous_1800491384
proquest_miscellaneous_1760864254
proquest_journals_1757959931
pubmed_primary_26332515
crossref_citationtrail_10_1002_mrc_4326
crossref_primary_10_1002_mrc_4326
wiley_primary_10_1002_mrc_4326_MRC4326
istex_primary_ark_67375_WNG_XHPGD7S2_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2016
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: February 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
PublicationSubtitle MRC
PublicationTitle Magnetic resonance in chemistry
PublicationTitleAlternate Magn. Reson. Chem
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References S. Wold. Pattern Recognit. 1976, 8, 127.
J. Luts, A. Heerschap, J. A. Suykens, S. Van Huffel. Artif. Intell. Med. 2007, 40, 87.
K. Vanden Branden, M. Hubert. Chemom. Intell. Lab. Syst. 2005, 79, 10.
M. Khanmohammadi, A. B. Garmarudi, M. Ramin, K. Ghasemi. Microchem. J. 2013, 106, 67.
T. E. Morud. J. Chemometr. 1996, 10, 669.
E. Goebell, J. Fiehler, X.-Q. Ding, S. Paustenbach, S. Nietz, O. Heese, T. Kucinski, C. Hagel, M. Westphal, H. Zeumer. Am. J. Neuroradiol. 2006, 27, 1426.
J. M. García-Gómez, Tumors of the Central Nervous system, vol. 3, Springer, Union NJ, USA, 2011, pp. 5.
D. D. Lee, H. S. Seung, Adv. Neural Inf. Process Syst. 2001, 556.
M. Bulik, R. Jancalek, J. Vanicek, A. Skoch, M. Mechl. Clin. Neurol. Neurosurg. 2013, 115, 146.
M. Rezghi. Expert Syst. Appl. 2014.
M. Khanmohammadi, R. Nasiri, K. Ghasemi, S. Samani, A. B. Garmarudi. J. Cancer Res. Clin. Oncol. 2007, 133, 1001.
J. M. García-Gómez, J. Luts, M. Julià-Sapé, P. Krooshof, S. Tortajada, J. V. Robledo, W. Melssen, E. Fuster-García, I. Olier, G. Postma. Biol. Med. 2009, 22, 5.
R. G. Brereton. J. Chemometr. 2011, 25, 225.
X. Deng, X. Tian. Neurocomput 2013, 121, 298.
F. F. González-Navarro, L. A. Belanche-Muñoz, E. Romero, A. Vellido, M. Julià-Sapé, C. Arús. Neurocomput 2010, 73, 622.
S. M. Kohl, M. S. Klein, J. Hochrein, P. J. Oefner, R. Spang, W. Gronwald. Metabolomics 2012, 8, 146.
R. De Maesschalck, A. Candolfi, D. Massart, S. Heuerding. Chemom. Intell. Lab. Syst. 1999, 47, 65.
S. Joe Qin. J. Chemometr. 2003, 17, 480.
P. Paatero, U. Tapper. Environmetrics 1994, 5, 111.
A. J. Wright, C. Arús, J. P. Wijnen, A. Moreno-Torres, J. R. Griffiths, B. Celda, F. A. Howe. Magn. Reson. Med. 2008, 59, 1274.
D. D. Lee, H. S. Seung. Nature 1999, 401, 788.
N. Japkowicz, Concept-Learning in the Absence of Counter-Examples: An Auto Association-based Approach to Classification, The State University of New Jersey, Rutgers, 1999.
E. Papageorgiou, P. Spyridonos, D. T. Glotsos, C. D. Stylios, P. Ravazoula, G. Nikiforidis, P. P. Groumpos. Appl. Soft Comput. 2008, 8, 820.
P. Nomikos, J. F. MacGregor. Technometrics 1995, 37, 41.
J. Vicente, E. Fuster-Garcia, S. Tortajada, J. M. García-Gómez, N. Davies, K. Natarajan, M. Wilson, R. G. Grundy, P. Wesseling, D. Monleón. Eur. J. Cancer 2013, 49, 658.
E. Fuster-Garcia, S. Tortajada, J. Vicente, M. Robles, J. M. García-Gómez. NMR Biomed. 2013, 26, 578.
S. Ortega-Martorell, H. Ruiz, A. Vellido, I. Olier, E. Romero, M. Julià-Sapé, J. D. Martín, I. H. Jarman, C. Arús, P. J. Lisboa. PLoS One 2013, 8, e83773.
E. Fuster-Garcia, C. Navarro, J. Vicente, S. Tortajada, J. M. García-Gómez, C. Sáez, J. Calvar, J. Griffiths, M. Julià-Sapé, F. A. Howe. Biol. Med. 2011, 24, 35.
A. R. Tate, C. Majos, A. Moreno, F. A. Howe, J. R. Griffiths, C. Arús. Magn. Reson. Med. 2003, 49, 29.
R. Cruz-Barbosa, A. Vellido. Int. J. Neural Syst. 2011, 21, 17.
F. Raschke, E. Fuster-Garcia, K. Opstad, F. Howe. NMR Biomed. 2012, 25, 322.
M. C. U. Araújo, T. C. B. Saldanha, R. K. H. Galvão, T. Yoneyama, H. C. Chame, V. Visani. Chemom. Intell. Lab. Syst. 2001, 57, 65.
P. O. Hoyer. J. Mach. Learn. Res. 2004, 5, 1457.
C. Ding, T. Li, M. I. Jordan. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 45.
G. M. Kirwan, T. Hancock, K. Hassell, J. O. Niere, D. Nugegoda, S. Goto, M. J. Adams. Anal. Chim. Acta 2013, 781, 33.
A. L. Pomerantsev. J. Chemometr. 2008, 22, 601.
A. R. Tate, J. Underwood, D. M. Acosta, M. Julià-Sapé, C. Majós, À. Moreno-Torres, F. A. Howe, M. Van Der Graaf, V. Lefournier, M. M. Murphy. NMR Biomed. 2006, 19, 411.
G. J. Postma, J. Luts, A. J. Idema, M. Julià-Sapé, Á. Moreno-Torres, W. Gajewicz, J. A. Suykens, A. Heerschap, S. Van Huffel, L. Buydens. Comput. Biol. Med. 2011, 41, 87.
A. Craig, O. Cloarec, E. Holmes, J. K. Nicholson, J. C. Lindon. Anal. Chem. 2006, 78, 2262.
V. Govindaraju, K. Young, A. A. Maudsley. NMR Biomed. 2000, 13, 129.
C. Majós, M. Julià-Sapé, J. Alonso, M. Serrallonga, C. Aguilera, J. J. Acebes, C. Arús, J. Gili. Am. J. Neuroradiol. 2004, 25, 1696.
M. Kounelakis, M. Zervakis, G. Giakos, G. Postma, L. Buydens, X. Kotsiakis. Meas. Sci. Technol. 2011, 22, 114019.
K. Opstad, C. Ladroue, B. Bell, J. Griffiths, F. Howe. NMR Biomed. 2007, 20, 763.
R. W. Kennard, L. A. Stone. Technometrics 1969, 11, 137.
A. W. Simonetti, W. J. Melssen, M. van der Graaf, G. J. Postma, A. Heerschap, L. M. Buydens. Anal. Chem. 2003, 75, 5352.
J. Luts, F. Ojeda, R. Van de Plas, B. De Moor, S. Van Huffel, J. A. Suykens. Anal. Chim. Acta 2010, 665, 129.
E. Saraf-Lavi, B. C. Bowen, P. M. Pattany, E. M. Sklar, J. B. Murdoch, C. K. Petito. Am. J. Neuroradiol. 2003, 24, 946.
C. Mountford, C. Lean, P. Malycha, P. Russell. J. Magn. Reson. Imaging 2006, 24, 459.
A. Londoño, M. Castillo, D. Armao, L. Kwock, K. Suzuki. Am. J. Neuroradiol. 2003, 24, 942.
B. Qu, Y. Hu. J. Chromatogr. Sci. 2011, 49, 189.
M. Derde, D. Massart. Anal. Chim. Acta 1986, 184, 33.
C. E. Mountford, P. Stanwell, A. Lin, S. Ramadan, B. Ross. Chem. Rev. 2010, 110, 3060.
A. W. Simonetti, W. J. Melssen, F. S. D. Edelenyi, J. J. van Asten, A. Heerschap, L. Buydens. NMR Biomed. 2005, 18, 34.
M. Khanmohammadi, A. B. Garmarudi, K. Ghasemi, H. K. Jaliseh, A. Kaviani. Med. Oncol. 2009, 26, 292.
2013; 26
2006; 78
1995; 37
2004; 25
2010; 665
1999; 47
2008; 8
2004; 5
2003; 17
2013; 121
2013; 8
1999; 401
2001
2006; 24
2000; 13
2006; 27
2007; 133
2013; 115
1986; 184
2010; 110
2011; 22
2003; 49
2011; 21
2011; 24
2008; 22
2011; 25
2012; 25
2007; 20
2001; 57
2010; 73
2005; 79
2009; 22
2010; 32
2013; 49
2013; 106
2008; 59
1969; 11
2006; 19
2013; 781
2011; 3
1976; 8
2003; 75
1996; 10
2009; 26
1999
2003; 24
2011; 41
2007; 40
2014
2011; 49
2005; 18
1994; 5
2012; 8
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_15_1
e_1_2_6_38_1
García‐Gómez J. M. (e_1_2_6_9_1) 2011
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
Lee D. D. (e_1_2_6_34_1) 2001
Goebell E. (e_1_2_6_52_1) 2006; 27
Londoño A. (e_1_2_6_54_1) 2003; 24
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
Saraf‐Lavi E. (e_1_2_6_55_1) 2003; 24
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
Majós C. (e_1_2_6_17_1) 2004; 25
e_1_2_6_26_1
e_1_2_6_47_1
Rezghi M. (e_1_2_6_31_1) 2014
García‐Gómez J. M. (e_1_2_6_35_1) 2009; 22
Japkowicz N. (e_1_2_6_39_1) 1999
Hoyer P. O. (e_1_2_6_50_1) 2004; 5
e_1_2_6_14_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_16_1
e_1_2_6_37_1
Fuster‐Garcia E. (e_1_2_6_10_1) 2011; 24
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: N. Japkowicz, Concept-Learning in the Absence of Counter-Examples: An Auto Association-based Approach to Classification, The State University of New Jersey, Rutgers, 1999.
– reference: V. Govindaraju, K. Young, A. A. Maudsley. NMR Biomed. 2000, 13, 129.
– reference: A. Londoño, M. Castillo, D. Armao, L. Kwock, K. Suzuki. Am. J. Neuroradiol. 2003, 24, 942.
– reference: C. Ding, T. Li, M. I. Jordan. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 45.
– reference: J. M. García-Gómez, Tumors of the Central Nervous system, vol. 3, Springer, Union NJ, USA, 2011, pp. 5.
– reference: S. M. Kohl, M. S. Klein, J. Hochrein, P. J. Oefner, R. Spang, W. Gronwald. Metabolomics 2012, 8, 146.
– reference: P. Paatero, U. Tapper. Environmetrics 1994, 5, 111.
– reference: M. Kounelakis, M. Zervakis, G. Giakos, G. Postma, L. Buydens, X. Kotsiakis. Meas. Sci. Technol. 2011, 22, 114019.
– reference: M. Khanmohammadi, A. B. Garmarudi, M. Ramin, K. Ghasemi. Microchem. J. 2013, 106, 67.
– reference: S. Wold. Pattern Recognit. 1976, 8, 127.
– reference: B. Qu, Y. Hu. J. Chromatogr. Sci. 2011, 49, 189.
– reference: M. Derde, D. Massart. Anal. Chim. Acta 1986, 184, 33.
– reference: M. Khanmohammadi, A. B. Garmarudi, K. Ghasemi, H. K. Jaliseh, A. Kaviani. Med. Oncol. 2009, 26, 292.
– reference: M. Rezghi. Expert Syst. Appl. 2014.
– reference: R. Cruz-Barbosa, A. Vellido. Int. J. Neural Syst. 2011, 21, 17.
– reference: P. O. Hoyer. J. Mach. Learn. Res. 2004, 5, 1457.
– reference: J. Vicente, E. Fuster-Garcia, S. Tortajada, J. M. García-Gómez, N. Davies, K. Natarajan, M. Wilson, R. G. Grundy, P. Wesseling, D. Monleón. Eur. J. Cancer 2013, 49, 658.
– reference: E. Papageorgiou, P. Spyridonos, D. T. Glotsos, C. D. Stylios, P. Ravazoula, G. Nikiforidis, P. P. Groumpos. Appl. Soft Comput. 2008, 8, 820.
– reference: A. R. Tate, C. Majos, A. Moreno, F. A. Howe, J. R. Griffiths, C. Arús. Magn. Reson. Med. 2003, 49, 29.
– reference: A. R. Tate, J. Underwood, D. M. Acosta, M. Julià-Sapé, C. Majós, À. Moreno-Torres, F. A. Howe, M. Van Der Graaf, V. Lefournier, M. M. Murphy. NMR Biomed. 2006, 19, 411.
– reference: E. Fuster-Garcia, C. Navarro, J. Vicente, S. Tortajada, J. M. García-Gómez, C. Sáez, J. Calvar, J. Griffiths, M. Julià-Sapé, F. A. Howe. Biol. Med. 2011, 24, 35.
– reference: F. Raschke, E. Fuster-Garcia, K. Opstad, F. Howe. NMR Biomed. 2012, 25, 322.
– reference: M. C. U. Araújo, T. C. B. Saldanha, R. K. H. Galvão, T. Yoneyama, H. C. Chame, V. Visani. Chemom. Intell. Lab. Syst. 2001, 57, 65.
– reference: K. Vanden Branden, M. Hubert. Chemom. Intell. Lab. Syst. 2005, 79, 10.
– reference: E. Fuster-Garcia, S. Tortajada, J. Vicente, M. Robles, J. M. García-Gómez. NMR Biomed. 2013, 26, 578.
– reference: S. Joe Qin. J. Chemometr. 2003, 17, 480.
– reference: D. D. Lee, H. S. Seung, Adv. Neural Inf. Process Syst. 2001, 556.
– reference: R. W. Kennard, L. A. Stone. Technometrics 1969, 11, 137.
– reference: A. Craig, O. Cloarec, E. Holmes, J. K. Nicholson, J. C. Lindon. Anal. Chem. 2006, 78, 2262.
– reference: A. W. Simonetti, W. J. Melssen, F. S. D. Edelenyi, J. J. van Asten, A. Heerschap, L. Buydens. NMR Biomed. 2005, 18, 34.
– reference: D. D. Lee, H. S. Seung. Nature 1999, 401, 788.
– reference: J. M. García-Gómez, J. Luts, M. Julià-Sapé, P. Krooshof, S. Tortajada, J. V. Robledo, W. Melssen, E. Fuster-García, I. Olier, G. Postma. Biol. Med. 2009, 22, 5.
– reference: S. Ortega-Martorell, H. Ruiz, A. Vellido, I. Olier, E. Romero, M. Julià-Sapé, J. D. Martín, I. H. Jarman, C. Arús, P. J. Lisboa. PLoS One 2013, 8, e83773.
– reference: M. Khanmohammadi, R. Nasiri, K. Ghasemi, S. Samani, A. B. Garmarudi. J. Cancer Res. Clin. Oncol. 2007, 133, 1001.
– reference: E. Goebell, J. Fiehler, X.-Q. Ding, S. Paustenbach, S. Nietz, O. Heese, T. Kucinski, C. Hagel, M. Westphal, H. Zeumer. Am. J. Neuroradiol. 2006, 27, 1426.
– reference: C. E. Mountford, P. Stanwell, A. Lin, S. Ramadan, B. Ross. Chem. Rev. 2010, 110, 3060.
– reference: R. G. Brereton. J. Chemometr. 2011, 25, 225.
– reference: A. J. Wright, C. Arús, J. P. Wijnen, A. Moreno-Torres, J. R. Griffiths, B. Celda, F. A. Howe. Magn. Reson. Med. 2008, 59, 1274.
– reference: M. Bulik, R. Jancalek, J. Vanicek, A. Skoch, M. Mechl. Clin. Neurol. Neurosurg. 2013, 115, 146.
– reference: G. M. Kirwan, T. Hancock, K. Hassell, J. O. Niere, D. Nugegoda, S. Goto, M. J. Adams. Anal. Chim. Acta 2013, 781, 33.
– reference: A. L. Pomerantsev. J. Chemometr. 2008, 22, 601.
– reference: T. E. Morud. J. Chemometr. 1996, 10, 669.
– reference: R. De Maesschalck, A. Candolfi, D. Massart, S. Heuerding. Chemom. Intell. Lab. Syst. 1999, 47, 65.
– reference: J. Luts, A. Heerschap, J. A. Suykens, S. Van Huffel. Artif. Intell. Med. 2007, 40, 87.
– reference: G. J. Postma, J. Luts, A. J. Idema, M. Julià-Sapé, Á. Moreno-Torres, W. Gajewicz, J. A. Suykens, A. Heerschap, S. Van Huffel, L. Buydens. Comput. Biol. Med. 2011, 41, 87.
– reference: P. Nomikos, J. F. MacGregor. Technometrics 1995, 37, 41.
– reference: K. Opstad, C. Ladroue, B. Bell, J. Griffiths, F. Howe. NMR Biomed. 2007, 20, 763.
– reference: X. Deng, X. Tian. Neurocomput 2013, 121, 298.
– reference: C. Mountford, C. Lean, P. Malycha, P. Russell. J. Magn. Reson. Imaging 2006, 24, 459.
– reference: A. W. Simonetti, W. J. Melssen, M. van der Graaf, G. J. Postma, A. Heerschap, L. M. Buydens. Anal. Chem. 2003, 75, 5352.
– reference: C. Majós, M. Julià-Sapé, J. Alonso, M. Serrallonga, C. Aguilera, J. J. Acebes, C. Arús, J. Gili. Am. J. Neuroradiol. 2004, 25, 1696.
– reference: F. F. González-Navarro, L. A. Belanche-Muñoz, E. Romero, A. Vellido, M. Julià-Sapé, C. Arús. Neurocomput 2010, 73, 622.
– reference: J. Luts, F. Ojeda, R. Van de Plas, B. De Moor, S. Van Huffel, J. A. Suykens. Anal. Chim. Acta 2010, 665, 129.
– reference: E. Saraf-Lavi, B. C. Bowen, P. M. Pattany, E. M. Sklar, J. B. Murdoch, C. K. Petito. Am. J. Neuroradiol. 2003, 24, 946.
– volume: 20
  start-page: 763
  year: 2007
  publication-title: NMR Biomed.
– volume: 8
  start-page: 127
  year: 1976
  publication-title: Pattern Recognit.
– volume: 19
  start-page: 411
  year: 2006
  publication-title: NMR Biomed.
– volume: 24
  start-page: 459
  year: 2006
  publication-title: J. Magn. Reson. Imaging
– volume: 8
  start-page: 820
  year: 2008
  publication-title: Appl. Soft Comput.
– volume: 26
  start-page: 578
  year: 2013
  publication-title: NMR Biomed.
– start-page: 556
  year: 2001
– volume: 13
  start-page: 129
  year: 2000
  publication-title: NMR Biomed.
– volume: 8
  year: 2013
  publication-title: PLoS One
– volume: 665
  start-page: 129
  year: 2010
  publication-title: Anal. Chim. Acta
– volume: 37
  start-page: 41
  year: 1995
  publication-title: Technometrics
– volume: 24
  start-page: 35
  year: 2011
  publication-title: Biol. Med.
– volume: 75
  start-page: 5352
  year: 2003
  publication-title: Anal. Chem.
– volume: 26
  start-page: 292
  year: 2009
  publication-title: Med. Oncol.
– volume: 401
  start-page: 788
  year: 1999
  publication-title: Nature
– volume: 47
  start-page: 65
  year: 1999
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 24
  start-page: 946
  year: 2003
  publication-title: Am. J. Neuroradiol.
– volume: 24
  start-page: 942
  year: 2003
  publication-title: Am. J. Neuroradiol.
– volume: 40
  start-page: 87
  year: 2007
  publication-title: Artif. Intell. Med.
– volume: 49
  start-page: 29
  year: 2003
  publication-title: Magn. Reson. Med.
– volume: 11
  start-page: 137
  year: 1969
  publication-title: Technometrics
– volume: 17
  start-page: 480
  year: 2003
  publication-title: J. Chemometr.
– volume: 121
  start-page: 298
  year: 2013
  publication-title: Neurocomput
– volume: 3
  start-page: 5
  year: 2011
– volume: 25
  start-page: 1696
  year: 2004
  publication-title: Am. J. Neuroradiol.
– volume: 21
  start-page: 17
  year: 2011
  publication-title: Int. J. Neural Syst.
– volume: 184
  start-page: 33
  year: 1986
  publication-title: Anal. Chim. Acta
– volume: 22
  start-page: 5
  year: 2009
  publication-title: Biol. Med.
– volume: 57
  start-page: 65
  year: 2001
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 25
  start-page: 225
  year: 2011
  publication-title: J. Chemometr.
– volume: 59
  start-page: 1274
  year: 2008
  publication-title: Magn. Reson. Med.
– volume: 5
  start-page: 111
  year: 1994
  publication-title: Environmetrics
– volume: 22
  start-page: 114019
  year: 2011
  publication-title: Meas. Sci. Technol.
– volume: 115
  start-page: 146
  year: 2013
  publication-title: Clin. Neurol. Neurosurg.
– volume: 49
  start-page: 658
  year: 2013
  publication-title: Eur. J. Cancer
– volume: 41
  start-page: 87
  year: 2011
  publication-title: Comput. Biol. Med.
– volume: 133
  start-page: 1001
  year: 2007
  publication-title: J. Cancer Res. Clin. Oncol.
– volume: 73
  start-page: 622
  year: 2010
  publication-title: Neurocomput
– volume: 78
  start-page: 2262
  year: 2006
  publication-title: Anal. Chem.
– volume: 32
  start-page: 45
  year: 2010
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 110
  start-page: 3060
  year: 2010
  publication-title: Chem. Rev.
– volume: 25
  start-page: 322
  year: 2012
  publication-title: NMR Biomed.
– volume: 106
  start-page: 67
  year: 2013
  publication-title: Microchem. J.
– volume: 10
  start-page: 669
  year: 1996
  publication-title: J. Chemometr.
– volume: 79
  start-page: 10
  year: 2005
  publication-title: Chemom. Intell. Lab. Syst.
– year: 2014
  publication-title: Expert Syst. Appl.
– volume: 18
  start-page: 34
  year: 2005
  publication-title: NMR Biomed.
– volume: 5
  start-page: 1457
  year: 2004
  publication-title: J. Mach. Learn. Res.
– volume: 27
  start-page: 1426
  year: 2006
  publication-title: Am. J. Neuroradiol.
– volume: 781
  start-page: 33
  year: 2013
  publication-title: Anal. Chim. Acta
– volume: 49
  start-page: 189
  year: 2011
  publication-title: J. Chromatogr. Sci.
– volume: 8
  start-page: 146
  year: 2012
  publication-title: Metabolomics
– volume: 22
  start-page: 601
  year: 2008
  publication-title: J. Chemometr.
– year: 1999
– ident: e_1_2_6_20_1
  doi: 10.1016/j.artmed.2007.02.002
– ident: e_1_2_6_26_1
  doi: 10.1007/s12032-008-9118-3
– ident: e_1_2_6_44_1
  doi: 10.1002/(SICI)1099-128X(199609)10:5/6<669::AID-CEM467>3.0.CO;2-Q
– ident: e_1_2_6_45_1
  doi: 10.1002/cem.800
– ident: e_1_2_6_19_1
  doi: 10.1002/nbm.1016
– ident: e_1_2_6_16_1
  doi: 10.1002/nbm.1147
– ident: e_1_2_6_38_1
  doi: 10.1080/00401706.1969.10490666
– volume-title: Concept‐Learning in the Absence of Counter‐Examples: An Auto Association‐based Approach to Classification
  year: 1999
  ident: e_1_2_6_39_1
– ident: e_1_2_6_21_1
  doi: 10.1016/j.aca.2010.03.030
– volume: 5
  start-page: 1457
  year: 2004
  ident: e_1_2_6_50_1
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_6_11_1
  doi: 10.1016/j.ejca.2012.09.003
– start-page: 556
  volume-title: Adv. Neural Inf. Process Syst.
  year: 2001
  ident: e_1_2_6_34_1
– ident: e_1_2_6_43_1
  doi: 10.1080/00401706.1995.10485888
– ident: e_1_2_6_22_1
  doi: 10.1002/nbm.2895
– ident: e_1_2_6_33_1
  doi: 10.1038/44565
– ident: e_1_2_6_5_1
  doi: 10.1002/mrm.21533
– ident: e_1_2_6_14_1
  doi: 10.1002/nbm.919
– ident: e_1_2_6_3_1
  doi: 10.1002/jmri.20668
– ident: e_1_2_6_8_1
  doi: 10.1088/0957-0233/22/11/114019
– ident: e_1_2_6_32_1
  doi: 10.1093/chrsci/49.3.189
– volume: 24
  start-page: 942
  year: 2003
  ident: e_1_2_6_54_1
  publication-title: Am. J. Neuroradiol.
– ident: e_1_2_6_27_1
  doi: 10.1007/s00432-007-0286-x
– volume: 27
  start-page: 1426
  year: 2006
  ident: e_1_2_6_52_1
  publication-title: Am. J. Neuroradiol.
– ident: e_1_2_6_49_1
  doi: 10.1002/env.3170050203
– ident: e_1_2_6_53_1
  doi: 10.1016/j.clineuro.2012.11.002
– ident: e_1_2_6_28_1
  doi: 10.1016/j.microc.2012.05.006
– ident: e_1_2_6_7_1
  doi: 10.1016/j.compbiomed.2010.12.003
– volume: 24
  start-page: 35
  year: 2011
  ident: e_1_2_6_10_1
  publication-title: Biol. Med.
– ident: e_1_2_6_24_1
  doi: 10.1371/journal.pone.0083773
– ident: e_1_2_6_41_1
  doi: 10.1002/cem.1147
– ident: e_1_2_6_36_1
  doi: 10.1007/s11306-011-0350-z
– ident: e_1_2_6_46_1
  doi: 10.1016/S0169-7439(98)00159-2
– ident: e_1_2_6_2_1
  doi: 10.1002/1099-1492(200005)13:3<129::AID-NBM619>3.0.CO;2-V
– ident: e_1_2_6_29_1
  doi: 10.1016/j.aca.2013.04.007
– volume: 22
  start-page: 5
  year: 2009
  ident: e_1_2_6_35_1
  publication-title: Biol. Med.
– ident: e_1_2_6_6_1
  doi: 10.1016/j.asoc.2007.06.006
– ident: e_1_2_6_42_1
  doi: 10.1016/S0003-2670(00)86468-5
– volume: 24
  start-page: 946
  year: 2003
  ident: e_1_2_6_55_1
  publication-title: Am. J. Neuroradiol.
– ident: e_1_2_6_12_1
  doi: 10.1002/nbm.1753
– ident: e_1_2_6_25_1
  doi: 10.1142/S0129065711002626
– ident: e_1_2_6_40_1
  doi: 10.1016/0031-3203(76)90014-5
– year: 2014
  ident: e_1_2_6_31_1
  publication-title: Expert Syst. Appl.
– ident: e_1_2_6_48_1
  doi: 10.1002/cem.1397
– start-page: 5
  volume-title: Tumors of the Central Nervous system
  year: 2011
  ident: e_1_2_6_9_1
– ident: e_1_2_6_23_1
  doi: 10.1016/j.neucom.2009.07.018
– ident: e_1_2_6_13_1
  doi: 10.1021/ac034541t
– ident: e_1_2_6_15_1
  doi: 10.1016/S0169-7439(01)00119-8
– volume: 25
  start-page: 1696
  year: 2004
  ident: e_1_2_6_17_1
  publication-title: Am. J. Neuroradiol.
– ident: e_1_2_6_30_1
  doi: 10.1016/j.neucom.2013.04.042
– ident: e_1_2_6_51_1
  doi: 10.1109/TPAMI.2008.277
– ident: e_1_2_6_47_1
  doi: 10.1016/j.chemolab.2005.03.002
– ident: e_1_2_6_4_1
  doi: 10.1021/cr900250y
– ident: e_1_2_6_37_1
  doi: 10.1021/ac0519312
– ident: e_1_2_6_18_1
  doi: 10.1002/mrm.10315
SSID ssj0009973
Score 2.1230307
Snippet Hydrogen magnetic resonance spectroscopy (1H‐MRS) is a non‐invasive technique which provides a ‘frequency‐signal intensity’ spectrum of biochemical compounds...
Hydrogen magnetic resonance spectroscopy ( 1 H‐MRS) is a non‐invasive technique which provides a ‘frequency‐signal intensity’ spectrum of biochemical compounds...
Hydrogen magnetic resonance spectroscopy ((1) H-MRS) is a non-invasive technique which provides a 'frequency-signal intensity' spectrum of biochemical...
Hydrogen magnetic resonance spectroscopy (1H-MRS) is a non-invasive technique which provides a 'frequency-signal intensity' spectrum of biochemical compounds...
Hydrogen magnetic resonance spectroscopy ( super(1)H-MRS) is a non-invasive technique which provides a 'frequency-signal intensity' spectrum of biochemical...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119
SubjectTerms 1H-magnetic resonance spectroscopy
Algorithms
Analogies
Aspartic Acid - analogs & derivatives
Aspartic Acid - analysis
Brain
Brain Neoplasms - diagnosis
Brain Neoplasms - pathology
brain tumors
Choline - analysis
Classification
Creatine - analysis
Factorization
glioma
Glioma - diagnosis
Glioma - pathology
Glycine - analysis
Humans
Magnetic resonance
Metabolites
Modelling
Neoplasm Grading
NMF
PCA
Principal Component Analysis
Proton Magnetic Resonance Spectroscopy - methods
Quality
SIMCA
Title Accurate grading of brain gliomas by soft independent modeling of class analogy based on non-negative matrix factorization of proton magnetic resonance spectra
URI https://api.istex.fr/ark:/67375/WNG-XHPGD7S2-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrc.4326
https://www.ncbi.nlm.nih.gov/pubmed/26332515
https://www.proquest.com/docview/1757959931
https://www.proquest.com/docview/1760864254
https://www.proquest.com/docview/1800491384
https://www.proquest.com/docview/1919968801
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELZQe4ALlP_QUhkJwWnT9Xq9Xh_TlDRCaoUCFZE4WLbXG1VtNmiTSC0nHoFX4NV4Emb2ryoqFeKUSJnV2t7x-JvNzPcR8hpPaeUECwTPZRB75IAUWOTouUttLOIsxG7ko-NkfBK_n4ppU1WJvTA1P0T3wg13RhWvcYMbu9y7Ig2dl64fA_iA8IulWoiHJlfMUUrJhoFTBUykrOWdDaO99sJrJ9EmLurFTTDzOmqtjp3RA_KlHXBdbXLWX69s3337g8vx_2a0Re43aJQOavd5SO744hG5O2xF4B6TnwPn1sgmQWdlVW1PFzm1KCtBZ-enWFtE7SVdQiynp52g7opW-jqNtUN8Tk2Bb4kuKZ6aGV0UtFgUv77_KPysYh6nc5QKuKC1_E_TG4pXI48EfJubWYHtlrT0mDuAp9KqR7Q0T8jJ6N2n4ThoVB0CB0lvEhhmjDVJKozIuXQskkqkzkrPhWJR7iUzWWIiZUOpDEvSOA65h0zRZdZ6aSR_SjZgiP45obFA2mHv80gaSExDk2eokuhyE0rDw7RH3rZPWLuG8hyVN851TdYcaVhyjUveI686y681zccNNm8qJ-kMTHmGZXFS6M_Hh3o6_nB4ID9GetIjO60X6SYiLDXANJR1V5zBvbqf4WniHzSm8Is12iSQYUIUjW-xSTGpYzy9zUZhbTlEZrjXs9qLu0FHCeeAaQXMpvLFv05XH02G-PniXw23yT1Ak01J-w7ZWJVr_xIQ28ruks3B_sH-aLfao78B-3JBLg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKeygX3o-FAkZCcMo2juM4FqdqS7tAd4WWVuyhkmV7nVXVbhalu1LLiZ_AX-Cv8UuYyasqKhXilEiZKH6MxzPOzPcR8gp3aeUECwTPZBB7xIAUmOTouUttLOJJiNXIg2HSP4g_jMV4hbxtamEqfIj2wA1XRmmvcYHjgfTmBWrorHDdGLyPG2QNCb1xVW6PLrCjlJI1BqcKmEhZgzwbRpvNm5f2ojUc1rOrHM3Lfmu58ezcJodNk6t8k-PucmG77tsfaI7_2ac75FbtkNKtSoPukhWf3yPrvYYH7j75ueXcEgEl6LQoE-7pPKMWmSXo9OQI04uoPaenYM7pUcupu6AlxU4t7dBFpybHg6JzihvnhM5zms_zX99_5H5ago_TGbIFnNGKAaguD8W3EUoC7mZmmmPFJS08hg-grLQsEy3MA3Kw826_1w9qYofAQdybBIYZY02SCiMyLh2LpBKps9JzoViUecnMJDGRsqFUhiVpHIfcQ7DoJtZ6aSR_SFahif4xobFA5GHvs0gaiE1Dk02QKNFlJpSGh2mHvGmmWLsa9RzJN050hdccaRhyjUPeIS9bya8V0scVMq9LLWkFTHGMmXFS6C_DXT3uf9rdlp8jPeqQjUaNdG0UTjV4asjsrjiDb7WPYTbxH43J_XyJMgkEmWBI42tkUozrGE-vk1GYXg7GGb71qFLjttFRwjm4tQJ6UyrjX7urB6MeXp_8q-ALst7fH-zpvffDj0_JTXAu6wz3DbK6KJb-GThwC_u8XKi_AbVtQ9U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbGJgE3MP4LA4yE4CpdHNtxfDm1dOVn1VSYqLQLy3acatqaTlkrbVzxCLwCr7YnmU_-pqExIa4SKSeK7Rzb30nO-T6E3sIuLS0nAaeZCJgDDkgOSY6O2sQwztIQqpF3RvFwj32a8EmdVQm1MBU_RPvBDWZGuV7DBD9Os81L0tBZYbvMg49baI3FYQKBV398SR0lpagpOGVAeEIa4tkw2mzuvLIVrcGonl6HM6_C1nLfGdxH-02Lq3STw-5yYbr2xx9kjv_XpXV0r4ajeKvynwdoxeUP0Z1eowL3CP3esnYJdBJ4WpTp9nieYQO6Enh6dADJRdic4RO_mOODVlF3gUuBndraAkDHOofPRGcYts0Uz3Ocz_Pzn79yNy2px_EMtAJOcaX_UxeHwt1AJOHPZnqaQ70lLhwED95VcVkkWujHaG_w4VtvGNSyDoH1UW8caKK10XHCNc-osCQSkifWCEe5JFHmBNFprCNpQiE1iRPGQup8qGhTY5zQgj5Bq76J7hnCjAPvsHNZJLSPTEOdpSCTaDMdCk3DpIPeN29Y2ZrzHKQ3jlTF1hwpP-QKhryD3rSWxxXPxzU270onaQ10cQh5cYKr76NtNRnubvfF10iNO2ij8SJVLwknyuM00HWXlPhntZf924Q_NDp38yXYeE_2ESFnN9gkENURmtxkIyG53C_N_llPKy9uGx3FlHpQy31vSl_8a3fVzrgHx-f_avga3d7tD9SXj6PPL9Bdjyzr9PYNtLoolu6lR28L86qcphfiVEKN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+grading+of+brain+gliomas+by+soft+independent+modeling+of+class+analogy+based+on+non%E2%80%90negative+matrix+factorization+of+proton+magnetic+resonance+spectra&rft.jtitle=Magnetic+resonance+in+chemistry&rft.au=Ghasemi%2C+K.&rft.au=Khanmohammadi%2C+M.&rft.au=Saligheh+Rad%2C+H.&rft.date=2016-02-01&rft.issn=0749-1581&rft.eissn=1097-458X&rft.volume=54&rft.issue=2&rft.spage=119&rft.epage=125&rft_id=info:doi/10.1002%2Fmrc.4326&rft.externalDBID=10.1002%252Fmrc.4326&rft.externalDocID=MRC4326
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-1581&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-1581&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-1581&client=summon