Highly Concentrated Electrolyte towards Enhanced Energy Density and Cycling Life of Dual‐Ion Battery

Dual‐ion batteries (DIBs) have attracted much attention owing to their low cost, high voltage, and environmental friendliness. As the source of active ions during the charging/discharging process, the electrolyte plays a critical role in the performance of DIBs, including capacity, energy density, a...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 41; pp. 17924 - 17930
Main Authors Xiang, Li, Ou, Xuewu, Wang, Xingyong, Zhou, Zhiming, Li, Xiang, Tang, Yongbing
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 05.10.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dual‐ion batteries (DIBs) have attracted much attention owing to their low cost, high voltage, and environmental friendliness. As the source of active ions during the charging/discharging process, the electrolyte plays a critical role in the performance of DIBs, including capacity, energy density, and cycling life. However, most used electrolyte systems based on the LiPF6 salt demonstrate unsatisfactory performance in DIBs. We have successfully developed a 7.5 mol kg−1 lithium bis(fluorosulfonyl)imide (LiFSI) in a carbonate electrolyte system. Compared with diluted electrolytes, this highly concentrated electrolyte exhibits several advantages: 1) enhanced intercalation capacity and cycling stability of the graphite cathode, 2) optimized structural stability of the Al anode, and 3) significantly increased battery energy density. A proof‐of‐concept DIB based on this concentrated electrolyte exhibits a discharge capacity of 94.0 mAh g−1 at 200 mA g−1 and 96.8 % capacity retention after 500 cycles. By counting both the electrode materials and electrolyte, the energy density of this DIB reaches up to ≈180 Wh kg−1, which is among the best performances of DIBs reported to date. A 7.5 mol kg−1 LiFSI highly concentrated electrolyte was developed for a dual‐ion battery (DIB). A proof‐of‐concept DIB based on this concentrated electrolyte exhibits a discharge capacity of 94.0 mAh g−1 at 200 mA g−1, 96.8 % capacity retention after 500 cycles, and an energy density up to approximately 180 Wh kg−1 based on the electrode materials and electrolyte, which is among the best performances of previously reported DIBs.
AbstractList Dual‐ion batteries (DIBs) have attracted much attention owing to their low cost, high voltage, and environmental friendliness. As the source of active ions during the charging/discharging process, the electrolyte plays a critical role in the performance of DIBs, including capacity, energy density, and cycling life. However, most used electrolyte systems based on the LiPF6 salt demonstrate unsatisfactory performance in DIBs. We have successfully developed a 7.5 mol kg−1 lithium bis(fluorosulfonyl)imide (LiFSI) in a carbonate electrolyte system. Compared with diluted electrolytes, this highly concentrated electrolyte exhibits several advantages: 1) enhanced intercalation capacity and cycling stability of the graphite cathode, 2) optimized structural stability of the Al anode, and 3) significantly increased battery energy density. A proof‐of‐concept DIB based on this concentrated electrolyte exhibits a discharge capacity of 94.0 mAh g−1 at 200 mA g−1 and 96.8 % capacity retention after 500 cycles. By counting both the electrode materials and electrolyte, the energy density of this DIB reaches up to ≈180 Wh kg−1, which is among the best performances of DIBs reported to date. A 7.5 mol kg−1 LiFSI highly concentrated electrolyte was developed for a dual‐ion battery (DIB). A proof‐of‐concept DIB based on this concentrated electrolyte exhibits a discharge capacity of 94.0 mAh g−1 at 200 mA g−1, 96.8 % capacity retention after 500 cycles, and an energy density up to approximately 180 Wh kg−1 based on the electrode materials and electrolyte, which is among the best performances of previously reported DIBs.
Dual‐ion batteries (DIBs) have attracted much attention owing to their low cost, high voltage, and environmental friendliness. As the source of active ions during the charging/discharging process, the electrolyte plays a critical role in the performance of DIBs, including capacity, energy density, and cycling life. However, most used electrolyte systems based on the LiPF 6 salt demonstrate unsatisfactory performance in DIBs. We have successfully developed a 7.5 mol kg −1 lithium bis(fluorosulfonyl)imide (LiFSI) in a carbonate electrolyte system. Compared with diluted electrolytes, this highly concentrated electrolyte exhibits several advantages: 1) enhanced intercalation capacity and cycling stability of the graphite cathode, 2) optimized structural stability of the Al anode, and 3) significantly increased battery energy density. A proof‐of‐concept DIB based on this concentrated electrolyte exhibits a discharge capacity of 94.0 mAh g −1 at 200 mA g −1 and 96.8 % capacity retention after 500 cycles. By counting both the electrode materials and electrolyte, the energy density of this DIB reaches up to ≈180 Wh kg −1 , which is among the best performances of DIBs reported to date.
Dual-ion batteries (DIBs) have attracted much attention owing to their low cost, high voltage, and environmental friendliness. As the source of active ions during the charging/discharging process, the electrolyte plays a critical role in the performance of DIBs, including capacity, energy density, and cycling life. However, most used electrolyte systems based on the LiPF6 salt demonstrate unsatisfactory performance in DIBs. We have successfully developed a 7.5 mol kg-1 lithium bis(fluorosulfonyl)imide (LiFSI) in a carbonate electrolyte system. Compared with diluted electrolytes, this highly concentrated electrolyte exhibits several advantages: 1) enhanced intercalation capacity and cycling stability of the graphite cathode, 2) optimized structural stability of the Al anode, and 3) significantly increased battery energy density. A proof-of-concept DIB based on this concentrated electrolyte exhibits a discharge capacity of 94.0 mAh g-1 at 200 mA g-1 and 96.8 % capacity retention after 500 cycles. By counting both the electrode materials and electrolyte, the energy density of this DIB reaches up to ≈180 Wh kg-1 , which is among the best performances of DIBs reported to date.Dual-ion batteries (DIBs) have attracted much attention owing to their low cost, high voltage, and environmental friendliness. As the source of active ions during the charging/discharging process, the electrolyte plays a critical role in the performance of DIBs, including capacity, energy density, and cycling life. However, most used electrolyte systems based on the LiPF6 salt demonstrate unsatisfactory performance in DIBs. We have successfully developed a 7.5 mol kg-1 lithium bis(fluorosulfonyl)imide (LiFSI) in a carbonate electrolyte system. Compared with diluted electrolytes, this highly concentrated electrolyte exhibits several advantages: 1) enhanced intercalation capacity and cycling stability of the graphite cathode, 2) optimized structural stability of the Al anode, and 3) significantly increased battery energy density. A proof-of-concept DIB based on this concentrated electrolyte exhibits a discharge capacity of 94.0 mAh g-1 at 200 mA g-1 and 96.8 % capacity retention after 500 cycles. By counting both the electrode materials and electrolyte, the energy density of this DIB reaches up to ≈180 Wh kg-1 , which is among the best performances of DIBs reported to date.
Dual‐ion batteries (DIBs) have attracted much attention owing to their low cost, high voltage, and environmental friendliness. As the source of active ions during the charging/discharging process, the electrolyte plays a critical role in the performance of DIBs, including capacity, energy density, and cycling life. However, most used electrolyte systems based on the LiPF6 salt demonstrate unsatisfactory performance in DIBs. We have successfully developed a 7.5 mol kg−1 lithium bis(fluorosulfonyl)imide (LiFSI) in a carbonate electrolyte system. Compared with diluted electrolytes, this highly concentrated electrolyte exhibits several advantages: 1) enhanced intercalation capacity and cycling stability of the graphite cathode, 2) optimized structural stability of the Al anode, and 3) significantly increased battery energy density. A proof‐of‐concept DIB based on this concentrated electrolyte exhibits a discharge capacity of 94.0 mAh g−1 at 200 mA g−1 and 96.8 % capacity retention after 500 cycles. By counting both the electrode materials and electrolyte, the energy density of this DIB reaches up to ≈180 Wh kg−1, which is among the best performances of DIBs reported to date.
Author Xiang, Li
Zhou, Zhiming
Wang, Xingyong
Li, Xiang
Tang, Yongbing
Ou, Xuewu
Author_xml – sequence: 1
  givenname: Li
  surname: Xiang
  fullname: Xiang, Li
  organization: Chongqing University of Technology
– sequence: 2
  givenname: Xuewu
  surname: Ou
  fullname: Ou, Xuewu
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Xingyong
  surname: Wang
  fullname: Wang, Xingyong
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Zhiming
  surname: Zhou
  fullname: Zhou, Zhiming
  email: zhouzhiming@cqut.edu.cn
  organization: Chongqing University of Technology
– sequence: 5
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Yongbing
  orcidid: 0000-0003-2705-4618
  surname: Tang
  fullname: Tang, Yongbing
  email: tangyb@siat.ac.cn
  organization: Chinese Academy of Sciences
BookMark eNqFkMtqGzEUQEVIII9227Wgm27GkWb08tJ1nNhg0k26HjTyHVtGkVxJJsyun9BvzJdExiUBQ-lKgnuOdDnX6NwHDwh9oWRECalvtbcwqklNiOBjfoauKK9p1UjZnJc7a5pKKk4v0XVK28IrRcQV6ud2vXEDngZvwOeoM6zwzIHJMbghA87hRcdVwjO_0QUpQw9xPeA78MnmAWu_wtPBOOvXeGl7wKHHd3vtXn__WQSPv-ucIQ6f0EWvXYLPf88b9PN-9jSdV8sfD4vpZFkZXje86oSSkqwkFcpo3neEdLqnTBpuQPBGlQlnTKsxYWpslK47DlLLWhnohDSsuUHfju_uYvi1h5TbZ5sMOKc9hH1qa1aiqIYIUtCvJ-g27KMv2xWKCUkVk6JQoyNlYkgpQt_uon3WcWgpaQ_Z20P29j17EdiJYGzW2YZDXOv-rY2P2ot1MPznk3byuJh9uG_pg5oc
CitedBy_id crossref_primary_10_1039_D4EE04063E
crossref_primary_10_1007_s41918_022_00167_1
crossref_primary_10_1016_j_isci_2024_110491
crossref_primary_10_1002_aenm_202102498
crossref_primary_10_1016_j_matchemphys_2022_126468
crossref_primary_10_1039_D2SE00636G
crossref_primary_10_1002_batt_202100124
crossref_primary_10_1021_acs_chemrev_3c00826
crossref_primary_10_1016_j_est_2024_113884
crossref_primary_10_1021_acsaem_0c02694
crossref_primary_10_1016_j_powera_2021_100075
crossref_primary_10_1016_j_jechem_2023_06_008
crossref_primary_10_1002_ange_202300057
crossref_primary_10_1021_acsami_0c12389
crossref_primary_10_1002_adfm_202300305
crossref_primary_10_1002_ange_202016233
crossref_primary_10_1002_ange_202406182
crossref_primary_10_1021_acs_jpclett_1c01340
crossref_primary_10_1002_smll_202401200
crossref_primary_10_1002_adma_202203194
crossref_primary_10_1016_j_ensm_2023_102922
crossref_primary_10_2139_ssrn_4118513
crossref_primary_10_1002_aenm_202103589
crossref_primary_10_1149_1945_7111_acaad1
crossref_primary_10_1016_j_jpowsour_2021_230741
crossref_primary_10_1016_j_ensm_2024_103713
crossref_primary_10_1016_j_ceramint_2023_11_332
crossref_primary_10_1002_aenm_202003714
crossref_primary_10_1002_celc_202200054
crossref_primary_10_1002_smll_202401857
crossref_primary_10_1016_j_mtsust_2022_100188
crossref_primary_10_1002_bte2_20230009
crossref_primary_10_1021_acs_nanolett_4c01288
crossref_primary_10_1038_s41570_023_00506_w
crossref_primary_10_1039_D5CC00366K
crossref_primary_10_1002_adfm_202010958
crossref_primary_10_1002_anie_202212191
crossref_primary_10_1002_aenm_202103360
crossref_primary_10_1007_s40820_024_01470_w
crossref_primary_10_1016_j_jpowsour_2024_235565
crossref_primary_10_1039_D4GC03426K
crossref_primary_10_1002_sstr_202100217
crossref_primary_10_3389_fenrg_2021_599846
crossref_primary_10_1016_j_ensm_2022_02_053
crossref_primary_10_1021_acsaem_2c03050
crossref_primary_10_1134_S003602442205017X
crossref_primary_10_1002_cssc_202201561
crossref_primary_10_1016_j_ensm_2021_11_048
crossref_primary_10_1002_smtd_202300249
crossref_primary_10_1016_j_mattod_2021_11_008
crossref_primary_10_1021_acs_langmuir_4c01150
crossref_primary_10_1039_D0CS00721H
crossref_primary_10_1002_ange_202420160
crossref_primary_10_1016_j_electacta_2022_141754
crossref_primary_10_1002_adfm_202310449
crossref_primary_10_1002_aenm_202202253
crossref_primary_10_1002_anie_202420160
crossref_primary_10_1016_j_est_2024_114402
crossref_primary_10_1016_j_nanoen_2020_105539
crossref_primary_10_1016_j_jechem_2021_01_023
crossref_primary_10_1002_cey2_425
crossref_primary_10_1016_j_xcrp_2021_100693
crossref_primary_10_1002_anie_202406182
crossref_primary_10_1002_cssc_202101227
crossref_primary_10_1016_j_jcis_2021_09_139
crossref_primary_10_1002_smll_202400389
crossref_primary_10_1002_anie_202016233
crossref_primary_10_1002_aenm_202100151
crossref_primary_10_1016_j_nanoen_2020_105643
crossref_primary_10_20517_energymater_2023_75
crossref_primary_10_1002_cey2_275
crossref_primary_10_1002_cssc_202300671
crossref_primary_10_1002_smll_202006627
crossref_primary_10_1016_j_electacta_2023_142517
crossref_primary_10_1021_acsami_2c14206
crossref_primary_10_1016_j_cej_2024_152602
crossref_primary_10_1002_adma_202100793
crossref_primary_10_1021_acsami_1c05476
crossref_primary_10_1021_acssuschemeng_4c04793
crossref_primary_10_1038_s41467_021_23369_5
crossref_primary_10_1002_cssc_202201583
crossref_primary_10_1016_j_electacta_2023_142483
crossref_primary_10_1002_anie_202412753
crossref_primary_10_1038_s41467_021_26073_6
crossref_primary_10_1002_ange_202212191
crossref_primary_10_1016_j_mattod_2022_01_020
crossref_primary_10_1007_s41918_024_00226_9
crossref_primary_10_1007_s40820_023_01086_6
crossref_primary_10_1016_j_nanoen_2021_106744
crossref_primary_10_1016_j_cej_2024_149037
crossref_primary_10_1002_anie_202300057
crossref_primary_10_1002_asia_202300492
crossref_primary_10_1016_j_ensm_2021_08_017
crossref_primary_10_1016_j_jcis_2021_03_182
crossref_primary_10_1246_cl_220033
crossref_primary_10_1002_aesr_202100074
crossref_primary_10_1016_j_cej_2021_129385
crossref_primary_10_1002_cssc_202201375
crossref_primary_10_1002_eem2_12288
crossref_primary_10_1002_adfm_202107830
crossref_primary_10_1002_adfm_202103912
crossref_primary_10_2139_ssrn_4008695
crossref_primary_10_1016_j_cej_2021_134353
crossref_primary_10_1016_j_cej_2022_136259
crossref_primary_10_1002_cssc_202301468
crossref_primary_10_1021_acssuschemeng_3c03195
crossref_primary_10_1002_cssc_202301223
crossref_primary_10_1039_D0EE03356A
crossref_primary_10_1002_adma_202302086
crossref_primary_10_1149_1945_7111_ac51f4
crossref_primary_10_1039_D2QI02080G
crossref_primary_10_1016_j_chempr_2021_02_004
crossref_primary_10_1007_s11814_024_00255_6
crossref_primary_10_1016_j_esci_2022_10_003
crossref_primary_10_1016_j_ensm_2025_104052
crossref_primary_10_1021_acs_jpclett_4c01595
crossref_primary_10_1002_adfm_202212287
crossref_primary_10_1002_adma_202300917
crossref_primary_10_1002_aenm_202202450
crossref_primary_10_1016_j_jpowsour_2023_233953
crossref_primary_10_1002_elsa_202100127
crossref_primary_10_1002_ange_202412753
crossref_primary_10_1002_adfm_202316341
Cites_doi 10.1021/acsaem.8b01764
10.1002/ange.201602397
10.1002/celc.201801108
10.1021/acsenergylett.7b00321
10.1002/aenm.201801219
10.1002/advs.201700146
10.1016/j.carbon.2018.10.053
10.1002/adfm.202001440
10.1002/anie.201814294
10.1002/aenm.201502588
10.1021/jp5115465
10.1002/ange.201711328
10.1007/s40242-020-0091-5
10.1016/j.ensm.2019.03.005
10.1038/ncomms12032
10.1021/acsami.8b11824
10.1002/ange.201712907
10.1002/anie.201901040
10.1002/cssc.201900597
10.1002/batt.201800138
10.1002/adfm.201806722
10.1002/anie.201915666
10.1149/1.1392609
10.1002/adma.201900826
10.1002/batt.201800118
10.1016/j.joule.2018.05.002
10.1002/ange.201902085
10.1021/acsami.9b02813
10.1016/j.ssi.2016.12.032
10.1002/aenm.201901663
10.1002/batt.201900229
10.1002/anie.201711328
10.1021/cr500003w
10.1016/j.ensm.2019.10.027
10.1002/batt.202000003
10.1039/D0TA01239D
10.1002/ange.201811955
10.1002/aenm.201802176
10.1038/s41467-020-15044-y
10.1126/science.aab1595
10.1002/ange.201904258
10.1038/s41560-019-0464-5
10.1021/acs.nanolett.8b03227
10.1002/ange.201801737
10.1149/2.0581910jes
10.1002/batt.201900148
10.1002/anie.201810575
10.1038/s41565-018-0183-2
10.1002/adfm.201907343
10.1002/aenm.201801120
10.1002/ange.201912272
10.1016/j.jechem.2020.03.043
10.1002/anie.201912167
10.1016/j.ensm.2019.11.003
10.1002/adma.201605958
10.1002/ange.201901040
10.1002/ange.201810575
10.1016/j.ensm.2020.04.025
10.1038/ncomms8872
10.1016/j.ensm.2020.03.021
10.1002/anie.201710806
10.1021/acsami.9b05053
10.1038/s41557-018-0045-4
10.1002/adma.201604219
10.1039/C9EE00141G
10.1016/j.jechem.2019.08.013
10.1021/acsami.8b08358
10.1002/ange.201912167
10.1002/aenm.201801439
10.1002/ange.201814646
10.1038/s41586-019-1281-5
10.1002/anie.201602397
10.1002/adma.201908470
10.1002/ange.201814294
10.1021/nl202088h
10.1002/anie.201712907
10.1016/j.nanoen.2019.03.062
10.1002/anie.201814646
10.1002/batt.201900191
10.1039/C9CS00162J
10.1002/adma.201804766
10.1016/j.ensm.2018.03.011
10.1002/adma.201606349
10.1002/anie.201902085
10.1002/aenm.201903277
10.1038/s41467-018-06923-6
10.1002/anie.201912272
10.1002/ange.201710806
10.1021/acs.nanolett.6b04766
10.1002/anie.201811955
10.1002/anie.201904258
10.1016/j.electacta.2007.01.069
10.1002/smll.201801836
10.1038/s41467-019-11077-0
10.1002/anie.201801737
10.1002/aenm.201901749
10.1002/adma.201802949
10.1038/s41467-019-13436-3
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202006595
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 17930
ExternalDocumentID 10_1002_anie_202006595
ANIE202006595
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51822210, 51972329
– fundername: Key-Area Research and Development Program of Guangdong Province
  funderid: 2019B090914003
– fundername: Science and Technology Planning Project of Guangdong Province
  funderid: 2019A1515110445, 2018A050506066
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c5235-b68770d7168ca5fb00baf147c5ce6538d71544a890489c8a2b5e7a728ceb67c43
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 18:11:14 EDT 2025
Fri Jul 25 10:21:17 EDT 2025
Thu Apr 24 23:05:21 EDT 2025
Tue Jul 01 01:17:42 EDT 2025
Wed Jan 22 16:33:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5235-b68770d7168ca5fb00baf147c5ce6538d71544a890489c8a2b5e7a728ceb67c43
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2705-4618
PQID 2446718476
PQPubID 946352
PageCount 7
ParticipantIDs proquest_miscellaneous_2415283060
proquest_journals_2446718476
crossref_primary_10_1002_anie_202006595
crossref_citationtrail_10_1002_anie_202006595
wiley_primary_10_1002_anie_202006595_ANIE202006595
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 5, 2020
PublicationDateYYYYMMDD 2020-10-05
PublicationDate_xml – month: 10
  year: 2020
  text: October 5, 2020
  day: 05
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 2
2017; 4
2019; 11
2019; 10
2019; 12
2020 2020; 59 132
2020; 59
2011; 11
2020; 11
2020; 10
2019; 166
2020; 8
2018; 9
2018; 8
2019; 60
2020; 3
2018; 2
2018; 5
2020; 50
2018 2018; 57 130
2019; 23
2020; 9
2019; 29
2018; 30
2020; 43
2019; 9
2015; 6
2019; 4
2019; 31
2019; 2
2020; 36
1999; 146
2017; 29
2020; 32
2007; 53
2014; 114
2019 2019; 58 131
2019; 142
2015; 350
2016; 6
2018; 18
2016; 7
2016 2016; 55 128
2020; 30
2017; 17
2020
2019; 48
2020; 28
2020; 25
2015; 119
2019; 570
2018; 10
2017; 300
2018; 15
2018; 14
2018; 13
e_1_2_6_72_2
e_1_2_6_95_1
e_1_2_6_53_2
e_1_2_6_91_3
e_1_2_6_30_2
e_1_2_6_91_2
Zhou X. (e_1_2_6_50_2) 2020; 9
e_1_2_6_19_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_38_3
e_1_2_6_76_3
e_1_2_6_38_2
e_1_2_6_76_2
e_1_2_6_15_2
e_1_2_6_57_2
e_1_2_6_99_2
e_1_2_6_102_2
e_1_2_6_87_1
e_1_2_6_64_2
e_1_2_6_41_2
e_1_2_6_83_1
e_1_2_6_60_2
e_1_2_6_9_2
e_1_2_6_5_1
e_1_2_6_1_1
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_64_3
e_1_2_6_45_1
e_1_2_6_26_2
e_1_2_6_68_2
e_1_2_6_73_1
e_1_2_6_96_1
e_1_2_6_31_2
e_1_2_6_92_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_77_1
e_1_2_6_61_2
e_1_2_6_84_2
e_1_2_6_101_3
e_1_2_6_61_3
e_1_2_6_42_2
e_1_2_6_105_2
e_1_2_6_80_2
e_1_2_6_101_2
e_1_2_6_6_2
e_1_2_6_46_3
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_65_2
e_1_2_6_88_2
e_1_2_6_27_2
e_1_2_6_69_1
e_1_2_6_46_2
e_1_2_6_51_1
e_1_2_6_97_2
e_1_2_6_74_2
e_1_2_6_93_2
e_1_2_6_70_2
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_13_2
e_1_2_6_32_2
e_1_2_6_17_1
e_1_2_6_78_1
e_1_2_6_55_2
Liu Z. (e_1_2_6_98_2) 2020
e_1_2_6_62_2
e_1_2_6_104_2
e_1_2_6_85_2
e_1_2_6_20_2
e_1_2_6_81_3
e_1_2_6_81_2
e_1_2_6_100_1
e_1_2_6_7_2
e_1_2_6_3_3
e_1_2_6_3_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_43_2
e_1_2_6_28_1
e_1_2_6_66_2
e_1_2_6_24_3
e_1_2_6_89_2
e_1_2_6_52_2
e_1_2_6_75_2
e_1_2_6_94_1
e_1_2_6_71_2
e_1_2_6_90_1
e_1_2_6_18_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_37_3
e_1_2_6_56_1
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_79_2
e_1_2_6_103_2
e_1_2_6_63_2
e_1_2_6_103_3
e_1_2_6_86_1
e_1_2_6_40_2
e_1_2_6_82_1
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_21_3
e_1_2_6_21_2
e_1_2_6_44_2
e_1_2_6_67_2
e_1_2_6_67_3
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 796
  year: 2019
  end-page: 805
  publication-title: Nat. Energy
– volume: 58 131
  start-page: 1094 1106
  year: 2019 2019
  end-page: 1099 1111
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 166
  start-page: A1867
  year: 2019
  end-page: A1874
  publication-title: J. Electrochem. Soc.
– volume: 2
  start-page: 1762
  year: 2017
  end-page: 1770
  publication-title: ACS Energy Lett.
– volume: 350
  start-page: 938
  year: 2015
  end-page: 943
  publication-title: Science
– year: 2020
  publication-title: Sci. Bull.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 57 130
  start-page: 5072 5166
  year: 2018 2018
  end-page: 5075 5169
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 13
  start-page: 715
  year: 2018
  end-page: 722
  publication-title: Nat. Nanotechnol.
– volume: 2
  start-page: 128
  year: 2019
  end-page: 131
  publication-title: Batteries Supercaps
– volume: 2
  start-page: 440
  year: 2019
  end-page: 447
  publication-title: Batteries Supercaps
– volume: 57 130
  start-page: 1898 1916
  year: 2018 2018
  end-page: 1902 1920
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  start-page: 22
  year: 2018
  end-page: 30
  publication-title: Energy Storage Mater.
– volume: 10
  start-page: 5374
  year: 2019
  publication-title: Nat. Commun.
– volume: 2
  start-page: 1548
  year: 2018
  end-page: 1558
  publication-title: Joule
– volume: 3
  start-page: 323
  year: 2020
  end-page: 330
  publication-title: Batteries Supercaps
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 57 130
  start-page: 3656 3718
  year: 2018 2018
  end-page: 3660 3722
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 2609
  year: 2019
  end-page: 2619
  publication-title: ChemSusChem
– volume: 25
  start-page: 93
  year: 2020
  end-page: 99
  publication-title: Energy Storage Mater.
– volume: 60
  start-page: 285
  year: 2019
  end-page: 293
  publication-title: Nano Energy
– volume: 10
  start-page: 29486
  year: 2018
  end-page: 29495
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 1
  year: 2020
  end-page: 32
  publication-title: Energy Storage Mater.
– volume: 11
  start-page: 1225
  year: 2020
  publication-title: Nat. Commun.
– volume: 58 131
  start-page: 5286 5340
  year: 2019 2019
  end-page: 5291 5345
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 17
  start-page: 1602
  year: 2017
  end-page: 1609
  publication-title: Nano Lett.
– volume: 11
  start-page: 15656
  year: 2019
  end-page: 15661
  publication-title: ACS Appl. Mater. Interfaces
– volume: 119
  start-page: 8438
  year: 2015
  end-page: 8446
  publication-title: J. Phys. Chem. C
– volume: 3
  start-page: 261
  year: 2020
  end-page: 267
  publication-title: Batteries Supercaps
– volume: 146
  start-page: 4172
  year: 1999
  end-page: 4178
  publication-title: J. Electrochem. Soc.
– volume: 3
  start-page: 331
  year: 2020
  end-page: 335
  publication-title: Batteries Supercaps
– volume: 2
  start-page: 201
  year: 2019
  end-page: 206
  publication-title: ACS Appl. Energy Mater.
– volume: 58 131
  start-page: 10500 10610
  year: 2019 2019
  end-page: 10505 10615
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 48
  start-page: 4655
  year: 2019
  end-page: 4687
  publication-title: Chem. Soc. Rev.
– volume: 53
  start-page: 1074
  year: 2007
  end-page: 1082
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 3612
  year: 2018
  end-page: 3618
  publication-title: ChemElectroChem
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 10
  start-page: 35978
  year: 2018
  end-page: 35983
  publication-title: ACS Appl. Mater. Interfaces
– volume: 57 130
  start-page: 1505 1521
  year: 2018 2018
  end-page: 1509 1525
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 667
  year: 2018
  publication-title: Nat. Chem.
– volume: 3
  start-page: 212
  year: 2020
  end-page: 213
  publication-title: Batteries Supercaps
– volume: 7
  start-page: 12032
  year: 2016
  publication-title: Nat. Commun.
– volume: 18
  start-page: 7155
  year: 2018
  end-page: 7164
  publication-title: Nano Lett.
– volume: 43
  start-page: 129
  year: 2020
  end-page: 138
  publication-title: J. Energy Chem.
– volume: 30
  start-page: 34
  year: 2020
  end-page: 41
  publication-title: Energy Storage Mater.
– volume: 114
  start-page: 11503
  year: 2014
  end-page: 11618
  publication-title: Chem. Rev.
– volume: 58 131
  start-page: 18892 19068
  year: 2019 2019
  end-page: 18897 19073
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 12
  start-page: 1249
  year: 2019
  end-page: 1254
  publication-title: Energy Environ. Sci.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 551
  year: 2020
  end-page: 568
  publication-title: Energy Storage Sci. Technol.
– volume: 59 132
  start-page: 110 112
  year: 2020 2020
  end-page: 135 138
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 7136 7252
  year: 2016 2016
  end-page: 7141 7257
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 4188
  year: 2011
  end-page: 4194
  publication-title: Nano Lett.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 36
  start-page: 402
  year: 2020
  end-page: 409
  publication-title: Chem. Res. Chin. Univ.
– volume: 9
  start-page: 4469
  year: 2018
  publication-title: Nat. Commun.
– volume: 142
  start-page: 401
  year: 2019
  end-page: 410
  publication-title: Carbon
– volume: 8
  start-page: 9128
  year: 2020
  end-page: 9136
  publication-title: J. Mater. Chem. A
– volume: 59
  start-page: 9255
  year: 2020
  end-page: 9262
  publication-title: Angew. Chem. Int. Ed.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 11
  start-page: 18504
  year: 2019
  end-page: 18510
  publication-title: ACS Appl. Mater. Interfaces
– volume: 58 131
  start-page: 9902 10007
  year: 2019 2019
  end-page: 9906 10011
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 16370 16608
  year: 2018 2018
  end-page: 16374 16612
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 23
  start-page: 646
  year: 2019
  end-page: 652
  publication-title: Energy Storage Mater.
– volume: 28
  start-page: 357
  year: 2020
  end-page: 363
  publication-title: Energy Storage Mater.
– volume: 10
  start-page: 3483
  year: 2019
  publication-title: Nat. Commun.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 6
  start-page: 7872
  year: 2015
  publication-title: Nat. Commun.
– volume: 570
  start-page: E65
  year: 2019
  end-page: E65
  publication-title: Nature
– volume: 59 132
  start-page: 3802 3830
  year: 2020 2020
  end-page: 3832 3861
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50
  start-page: 416
  year: 2020
  end-page: 423
  publication-title: J. Energy Chem.
– volume: 59 132
  start-page: 740 750
  year: 2020 2020
  end-page: 745 755
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 300
  start-page: 169
  year: 2017
  end-page: 174
  publication-title: Solid State Ionics
– ident: e_1_2_6_13_2
  doi: 10.1021/acsaem.8b01764
– ident: e_1_2_6_64_3
  doi: 10.1002/ange.201602397
– year: 2020
  ident: e_1_2_6_98_2
  publication-title: Sci. Bull.
– ident: e_1_2_6_39_2
  doi: 10.1002/celc.201801108
– ident: e_1_2_6_2_2
  doi: 10.1021/acsenergylett.7b00321
– ident: e_1_2_6_10_2
  doi: 10.1002/aenm.201801219
– ident: e_1_2_6_85_2
  doi: 10.1002/advs.201700146
– ident: e_1_2_6_45_1
– ident: e_1_2_6_32_2
  doi: 10.1016/j.carbon.2018.10.053
– ident: e_1_2_6_47_2
  doi: 10.1002/adfm.202001440
– ident: e_1_2_6_3_2
  doi: 10.1002/anie.201814294
– ident: e_1_2_6_6_2
  doi: 10.1002/aenm.201502588
– ident: e_1_2_6_28_1
– ident: e_1_2_6_52_2
  doi: 10.1021/jp5115465
– ident: e_1_2_6_24_3
  doi: 10.1002/ange.201711328
– ident: e_1_2_6_59_1
– ident: e_1_2_6_34_2
  doi: 10.1007/s40242-020-0091-5
– ident: e_1_2_6_95_1
  doi: 10.1016/j.ensm.2019.03.005
– ident: e_1_2_6_77_1
  doi: 10.1038/ncomms12032
– ident: e_1_2_6_40_2
  doi: 10.1021/acsami.8b11824
– ident: e_1_2_6_101_3
  doi: 10.1002/ange.201712907
– ident: e_1_2_6_38_2
  doi: 10.1002/anie.201901040
– ident: e_1_2_6_92_2
  doi: 10.1002/cssc.201900597
– ident: e_1_2_6_100_1
– volume: 9
  start-page: 551
  year: 2020
  ident: e_1_2_6_50_2
  publication-title: Energy Storage Sci. Technol.
– ident: e_1_2_6_44_2
  doi: 10.1002/batt.201800138
– ident: e_1_2_6_7_2
  doi: 10.1002/adfm.201806722
– ident: e_1_2_6_19_2
  doi: 10.1002/anie.201915666
– ident: e_1_2_6_75_2
  doi: 10.1149/1.1392609
– ident: e_1_2_6_94_1
  doi: 10.1002/adma.201900826
– ident: e_1_2_6_55_2
  doi: 10.1002/batt.201800118
– ident: e_1_2_6_62_2
  doi: 10.1016/j.joule.2018.05.002
– ident: e_1_2_6_21_3
  doi: 10.1002/ange.201902085
– ident: e_1_2_6_31_2
  doi: 10.1021/acsami.9b02813
– ident: e_1_2_6_88_2
  doi: 10.1016/j.ssi.2016.12.032
– ident: e_1_2_6_12_2
  doi: 10.1002/aenm.201901663
– ident: e_1_2_6_96_1
– ident: e_1_2_6_87_1
– ident: e_1_2_6_54_2
  doi: 10.1002/batt.201900229
– ident: e_1_2_6_24_2
  doi: 10.1002/anie.201711328
– ident: e_1_2_6_90_1
– ident: e_1_2_6_70_2
  doi: 10.1021/cr500003w
– ident: e_1_2_6_20_2
  doi: 10.1016/j.ensm.2019.10.027
– ident: e_1_2_6_68_2
  doi: 10.1002/batt.202000003
– ident: e_1_2_6_72_2
  doi: 10.1039/D0TA01239D
– ident: e_1_2_6_91_3
  doi: 10.1002/ange.201811955
– ident: e_1_2_6_86_1
  doi: 10.1002/aenm.201802176
– ident: e_1_2_6_29_2
  doi: 10.1038/s41467-020-15044-y
– ident: e_1_2_6_56_1
– ident: e_1_2_6_60_2
  doi: 10.1126/science.aab1595
– ident: e_1_2_6_61_3
  doi: 10.1002/ange.201904258
– ident: e_1_2_6_63_2
  doi: 10.1038/s41560-019-0464-5
– ident: e_1_2_6_78_1
– ident: e_1_2_6_9_2
  doi: 10.1021/acs.nanolett.8b03227
– ident: e_1_2_6_67_3
  doi: 10.1002/ange.201801737
– ident: e_1_2_6_17_1
– ident: e_1_2_6_102_2
  doi: 10.1149/2.0581910jes
– ident: e_1_2_6_5_1
– ident: e_1_2_6_97_2
  doi: 10.1002/batt.201900148
– ident: e_1_2_6_46_2
  doi: 10.1002/anie.201810575
– ident: e_1_2_6_99_2
  doi: 10.1038/s41565-018-0183-2
– ident: e_1_2_6_93_2
  doi: 10.1002/adfm.201907343
– ident: e_1_2_6_14_2
  doi: 10.1002/aenm.201801120
– ident: e_1_2_6_76_3
  doi: 10.1002/ange.201912272
– ident: e_1_2_6_80_2
  doi: 10.1016/j.jechem.2020.03.043
– ident: e_1_2_6_81_2
  doi: 10.1002/anie.201912167
– ident: e_1_2_6_4_2
  doi: 10.1016/j.ensm.2019.11.003
– ident: e_1_2_6_16_2
  doi: 10.1002/adma.201605958
– ident: e_1_2_6_38_3
  doi: 10.1002/ange.201901040
– ident: e_1_2_6_46_3
  doi: 10.1002/ange.201810575
– ident: e_1_2_6_43_2
  doi: 10.1016/j.ensm.2020.04.025
– ident: e_1_2_6_18_2
  doi: 10.1038/ncomms8872
– ident: e_1_2_6_23_2
  doi: 10.1016/j.ensm.2020.03.021
– ident: e_1_2_6_103_2
  doi: 10.1002/anie.201710806
– ident: e_1_2_6_11_2
  doi: 10.1021/acsami.9b05053
– ident: e_1_2_6_89_2
  doi: 10.1038/s41557-018-0045-4
– ident: e_1_2_6_26_2
  doi: 10.1002/adma.201604219
– ident: e_1_2_6_71_2
  doi: 10.1039/C9EE00141G
– ident: e_1_2_6_15_2
  doi: 10.1016/j.jechem.2019.08.013
– ident: e_1_2_6_36_1
– ident: e_1_2_6_30_2
  doi: 10.1021/acsami.8b08358
– ident: e_1_2_6_81_3
  doi: 10.1002/ange.201912167
– ident: e_1_2_6_57_2
  doi: 10.1002/aenm.201801439
– ident: e_1_2_6_37_3
  doi: 10.1002/ange.201814646
– ident: e_1_2_6_83_1
– ident: e_1_2_6_41_2
  doi: 10.1038/s41586-019-1281-5
– ident: e_1_2_6_64_2
  doi: 10.1002/anie.201602397
– ident: e_1_2_6_69_1
– ident: e_1_2_6_33_2
  doi: 10.1002/adma.201908470
– ident: e_1_2_6_3_3
  doi: 10.1002/ange.201814294
– ident: e_1_2_6_22_2
  doi: 10.1021/nl202088h
– ident: e_1_2_6_101_2
  doi: 10.1002/anie.201712907
– ident: e_1_2_6_35_2
  doi: 10.1016/j.nanoen.2019.03.062
– ident: e_1_2_6_37_2
  doi: 10.1002/anie.201814646
– ident: e_1_2_6_1_1
– ident: e_1_2_6_105_2
  doi: 10.1002/batt.201900191
– ident: e_1_2_6_51_1
– ident: e_1_2_6_53_2
  doi: 10.1039/C9CS00162J
– ident: e_1_2_6_58_2
  doi: 10.1002/adma.201804766
– ident: e_1_2_6_48_1
– ident: e_1_2_6_8_2
  doi: 10.1016/j.ensm.2018.03.011
– ident: e_1_2_6_27_2
  doi: 10.1002/adma.201606349
– ident: e_1_2_6_21_2
  doi: 10.1002/anie.201902085
– ident: e_1_2_6_104_2
  doi: 10.1002/aenm.201903277
– ident: e_1_2_6_25_1
– ident: e_1_2_6_82_1
  doi: 10.1038/s41467-018-06923-6
– ident: e_1_2_6_76_2
  doi: 10.1002/anie.201912272
– ident: e_1_2_6_103_3
  doi: 10.1002/ange.201710806
– ident: e_1_2_6_66_2
  doi: 10.1021/acs.nanolett.6b04766
– ident: e_1_2_6_91_2
  doi: 10.1002/anie.201811955
– ident: e_1_2_6_61_2
  doi: 10.1002/anie.201904258
– ident: e_1_2_6_84_2
  doi: 10.1016/j.electacta.2007.01.069
– ident: e_1_2_6_42_2
  doi: 10.1002/smll.201801836
– ident: e_1_2_6_74_2
  doi: 10.1038/s41467-019-11077-0
– ident: e_1_2_6_67_2
  doi: 10.1002/anie.201801737
– ident: e_1_2_6_49_2
  doi: 10.1002/aenm.201901749
– ident: e_1_2_6_79_2
  doi: 10.1002/adma.201802949
– ident: e_1_2_6_73_1
– ident: e_1_2_6_65_2
  doi: 10.1038/s41467-019-13436-3
SSID ssj0028806
Score 2.632198
Snippet Dual‐ion batteries (DIBs) have attracted much attention owing to their low cost, high voltage, and environmental friendliness. As the source of active ions...
Dual-ion batteries (DIBs) have attracted much attention owing to their low cost, high voltage, and environmental friendliness. As the source of active ions...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17924
SubjectTerms Batteries
Cycles
cycling stability
Discharge
dual-ion batteries
Electrode materials
Electrolytes
Energy
Flux density
high energy density
High voltage
highly concentrated electrolyte
Lithium
Structural stability
Title Highly Concentrated Electrolyte towards Enhanced Energy Density and Cycling Life of Dual‐Ion Battery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202006595
https://www.proquest.com/docview/2446718476
https://www.proquest.com/docview/2415283060
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BS-QwFA7iZb2oq7vsqLtkQfAUTdukaY8yjugiHkTBW3lJExWHjjidQz35E_yN_pLNS6dVFxZBbylJSJu8l7yXfu97hGzz3EqIeM7AqoSJEhTLlROMy0xrB6XQEACyp-nRhfhzKS9fRfG3_BD9hRtqRtivUcFBT_deSEMxAtv7d-gSyxyjzBGwhVbRWc8fFXvhbMOLkoRhFvqOtZHHe2-7vz2VXkzN1wZrOHEOVwh079oCTW53Z7XeNQ__0Dh-5mNWyfLcHKX7rfx8JQu2WiNfhl0WuHXiEAgybugQwxurQGVb0lGbO2fc1JbWAXc7paPqOoAJfAGjCekBIuPrhkJV0mGDAZhX9OTGWTpx9GAG4-fHp-NJRVt-z-YbuTgcnQ-P2Dw3AzPedZVMp5lSvPTeVmZAOq-8GlwklJHGpn4T9TVSCMhyv0PkJoNYS6tAxZmxOlVGJN_JYjWp7A9CEzCldpHlkDvhHM9jKziUaeIFJRI6HRDWrU1h5sTlmD9jXLSUy3GBs1f0szcgO337u5ay478tt7qlLuaqOy28vZP6A1soP_DvvtrPOv5JgcpOZtgmQlIcnvIBicO6vjNSsX96POqfNj7SaZMsYTkACeUWWazvZ_anN4hq_SsI_V8Z5wPR
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_hELBYwE4uTWSew4OXCodrfapcseUCv1FmzHBsQqi9isUDjxCLwKr8Ij8CR4nE1KkRASUg_cktiJE3vGnnG--QbgCcutUBHLqbIyobxUkubSccpEprVTJdcqAGTn6eSEvzgVp1vwrYuFafkh-g031IwwX6OC44b0_hlrKIZgewcPfWKRd7jKI9t88l7b6vl05If4aRwfjo-HE7pJLECN97sE1WkmJSu9q5AZJZyXPK1cxKURxqZ-BvAlgnOV5V68c5OpWAsrlYwzY3UqDU_8cy_BZUwjjnT9o1c9Y1Xs1aENaEoSinnvO55IFu-ff9_z6-CZcfuriRzWuMNr8L3rnRba8n5vXes98_k34sj_qvuuw9WNxU0OWhW5AVu2ugk7wy7R3S1wiHVZNGSIEZxVYOstybhND7RoakvqAC1ekXH1NuAl_AEGTJIRgv_rhqiqJMMGY0zfkNk7Z8nSkdFaLX58-TpdVqSlMG1uw8mFfOYd2K6Wlb0LJFGm1C6yTOWOO8fy2HKmyjTxuhBxnQ6AdsJQmA03O6YIWRQtq3Rc4GgV_WgN4Flf_0PLSvLHmrudbBWb2WlVeJMu9TYJl77hx32x73X8WaQqu1xjnQh5f1jKBhAHQfpLS8XBfDruz-79y02PYGdy_HJWzKbzo_twBa8H3KTYhe3649o-8PZfrR8GjSPw-qJl9CdGRWCr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_lEXChgJxMmt49hxcuBQbXbVpdUKISr1FmzHBtRVtmKzQuHEI_RR-ip9hT4JtrNJKRJCQuqBWxI7cWLP2DPON98AvCSZ4TIiGZZGxJiVUuBMWIYJT5WysmRKBoDsNNk9YG8P-eEanHaxMC0_RL_h5jUjzNdewY9Lu31BGuojsJ1_511innWwyj3TfHNO2-LNJHcj_IrS8ejDcBev8gpg7dwujlWSCkFK5ymkWnLrBE9JGzGhuTaJmwBcCWdMppmT7kynkipuhBQ01UYlQrPYPfcaXGcJyXyyiPx9T1hFnTa08UxxjH3a-44mktDty-97eRm8sG1_tZDDEje-A2dd57TIlqOtZa229PffeCP_p967C7dX9jbaaRXkHqyZ6j7cHHZp7h6A9UiXWYOGPn6zCly9JRq1yYFmTW1QHYDFCzSqPge0hDvw4ZIo99D_ukGyKtGw8RGmn9D-F2vQ3KJ8KWfnP04m8wq1BKbNQzi4ks98BOvVvDIbgGKpS2UjQ2RmmbUko4YRWSax04SIqWQAuJOFQq-Y2X2CkFnRckrTwo9W0Y_WAF739Y9bTpI_1tzsRKtYzU2Lwhl0ibNImHANv-iLXa_7X0WyMvOlrxN51h-SkAHQIEd_aanYmU5G_dnjf7npOdx4l4-L_cl07wnc8pcDaJJvwnr9dWmeOuOvVs-CviH4eNUi-hOit19a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Concentrated+Electrolyte+towards+Enhanced+Energy+Density+and+Cycling+Life+of+Dual%E2%80%90Ion+Battery&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Xiang&rft.au=Ou%2C+Xuewu&rft.au=Wang%2C+Xingyong&rft.au=Zhou%2C+Zhiming&rft.date=2020-10-05&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=41&rft.spage=17924&rft.epage=17930&rft_id=info:doi/10.1002%2Fanie.202006595&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon