Highly Concentrated Electrolyte towards Enhanced Energy Density and Cycling Life of Dual‐Ion Battery
Dual‐ion batteries (DIBs) have attracted much attention owing to their low cost, high voltage, and environmental friendliness. As the source of active ions during the charging/discharging process, the electrolyte plays a critical role in the performance of DIBs, including capacity, energy density, a...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 41; pp. 17924 - 17930 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
05.10.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dual‐ion batteries (DIBs) have attracted much attention owing to their low cost, high voltage, and environmental friendliness. As the source of active ions during the charging/discharging process, the electrolyte plays a critical role in the performance of DIBs, including capacity, energy density, and cycling life. However, most used electrolyte systems based on the LiPF6 salt demonstrate unsatisfactory performance in DIBs. We have successfully developed a 7.5 mol kg−1 lithium bis(fluorosulfonyl)imide (LiFSI) in a carbonate electrolyte system. Compared with diluted electrolytes, this highly concentrated electrolyte exhibits several advantages: 1) enhanced intercalation capacity and cycling stability of the graphite cathode, 2) optimized structural stability of the Al anode, and 3) significantly increased battery energy density. A proof‐of‐concept DIB based on this concentrated electrolyte exhibits a discharge capacity of 94.0 mAh g−1 at 200 mA g−1 and 96.8 % capacity retention after 500 cycles. By counting both the electrode materials and electrolyte, the energy density of this DIB reaches up to ≈180 Wh kg−1, which is among the best performances of DIBs reported to date.
A 7.5 mol kg−1 LiFSI highly concentrated electrolyte was developed for a dual‐ion battery (DIB). A proof‐of‐concept DIB based on this concentrated electrolyte exhibits a discharge capacity of 94.0 mAh g−1 at 200 mA g−1, 96.8 % capacity retention after 500 cycles, and an energy density up to approximately 180 Wh kg−1 based on the electrode materials and electrolyte, which is among the best performances of previously reported DIBs. |
---|---|
AbstractList | Dual‐ion batteries (DIBs) have attracted much attention owing to their low cost, high voltage, and environmental friendliness. As the source of active ions during the charging/discharging process, the electrolyte plays a critical role in the performance of DIBs, including capacity, energy density, and cycling life. However, most used electrolyte systems based on the LiPF6 salt demonstrate unsatisfactory performance in DIBs. We have successfully developed a 7.5 mol kg−1 lithium bis(fluorosulfonyl)imide (LiFSI) in a carbonate electrolyte system. Compared with diluted electrolytes, this highly concentrated electrolyte exhibits several advantages: 1) enhanced intercalation capacity and cycling stability of the graphite cathode, 2) optimized structural stability of the Al anode, and 3) significantly increased battery energy density. A proof‐of‐concept DIB based on this concentrated electrolyte exhibits a discharge capacity of 94.0 mAh g−1 at 200 mA g−1 and 96.8 % capacity retention after 500 cycles. By counting both the electrode materials and electrolyte, the energy density of this DIB reaches up to ≈180 Wh kg−1, which is among the best performances of DIBs reported to date.
A 7.5 mol kg−1 LiFSI highly concentrated electrolyte was developed for a dual‐ion battery (DIB). A proof‐of‐concept DIB based on this concentrated electrolyte exhibits a discharge capacity of 94.0 mAh g−1 at 200 mA g−1, 96.8 % capacity retention after 500 cycles, and an energy density up to approximately 180 Wh kg−1 based on the electrode materials and electrolyte, which is among the best performances of previously reported DIBs. Dual‐ion batteries (DIBs) have attracted much attention owing to their low cost, high voltage, and environmental friendliness. As the source of active ions during the charging/discharging process, the electrolyte plays a critical role in the performance of DIBs, including capacity, energy density, and cycling life. However, most used electrolyte systems based on the LiPF 6 salt demonstrate unsatisfactory performance in DIBs. We have successfully developed a 7.5 mol kg −1 lithium bis(fluorosulfonyl)imide (LiFSI) in a carbonate electrolyte system. Compared with diluted electrolytes, this highly concentrated electrolyte exhibits several advantages: 1) enhanced intercalation capacity and cycling stability of the graphite cathode, 2) optimized structural stability of the Al anode, and 3) significantly increased battery energy density. A proof‐of‐concept DIB based on this concentrated electrolyte exhibits a discharge capacity of 94.0 mAh g −1 at 200 mA g −1 and 96.8 % capacity retention after 500 cycles. By counting both the electrode materials and electrolyte, the energy density of this DIB reaches up to ≈180 Wh kg −1 , which is among the best performances of DIBs reported to date. Dual-ion batteries (DIBs) have attracted much attention owing to their low cost, high voltage, and environmental friendliness. As the source of active ions during the charging/discharging process, the electrolyte plays a critical role in the performance of DIBs, including capacity, energy density, and cycling life. However, most used electrolyte systems based on the LiPF6 salt demonstrate unsatisfactory performance in DIBs. We have successfully developed a 7.5 mol kg-1 lithium bis(fluorosulfonyl)imide (LiFSI) in a carbonate electrolyte system. Compared with diluted electrolytes, this highly concentrated electrolyte exhibits several advantages: 1) enhanced intercalation capacity and cycling stability of the graphite cathode, 2) optimized structural stability of the Al anode, and 3) significantly increased battery energy density. A proof-of-concept DIB based on this concentrated electrolyte exhibits a discharge capacity of 94.0 mAh g-1 at 200 mA g-1 and 96.8 % capacity retention after 500 cycles. By counting both the electrode materials and electrolyte, the energy density of this DIB reaches up to ≈180 Wh kg-1 , which is among the best performances of DIBs reported to date.Dual-ion batteries (DIBs) have attracted much attention owing to their low cost, high voltage, and environmental friendliness. As the source of active ions during the charging/discharging process, the electrolyte plays a critical role in the performance of DIBs, including capacity, energy density, and cycling life. However, most used electrolyte systems based on the LiPF6 salt demonstrate unsatisfactory performance in DIBs. We have successfully developed a 7.5 mol kg-1 lithium bis(fluorosulfonyl)imide (LiFSI) in a carbonate electrolyte system. Compared with diluted electrolytes, this highly concentrated electrolyte exhibits several advantages: 1) enhanced intercalation capacity and cycling stability of the graphite cathode, 2) optimized structural stability of the Al anode, and 3) significantly increased battery energy density. A proof-of-concept DIB based on this concentrated electrolyte exhibits a discharge capacity of 94.0 mAh g-1 at 200 mA g-1 and 96.8 % capacity retention after 500 cycles. By counting both the electrode materials and electrolyte, the energy density of this DIB reaches up to ≈180 Wh kg-1 , which is among the best performances of DIBs reported to date. Dual‐ion batteries (DIBs) have attracted much attention owing to their low cost, high voltage, and environmental friendliness. As the source of active ions during the charging/discharging process, the electrolyte plays a critical role in the performance of DIBs, including capacity, energy density, and cycling life. However, most used electrolyte systems based on the LiPF6 salt demonstrate unsatisfactory performance in DIBs. We have successfully developed a 7.5 mol kg−1 lithium bis(fluorosulfonyl)imide (LiFSI) in a carbonate electrolyte system. Compared with diluted electrolytes, this highly concentrated electrolyte exhibits several advantages: 1) enhanced intercalation capacity and cycling stability of the graphite cathode, 2) optimized structural stability of the Al anode, and 3) significantly increased battery energy density. A proof‐of‐concept DIB based on this concentrated electrolyte exhibits a discharge capacity of 94.0 mAh g−1 at 200 mA g−1 and 96.8 % capacity retention after 500 cycles. By counting both the electrode materials and electrolyte, the energy density of this DIB reaches up to ≈180 Wh kg−1, which is among the best performances of DIBs reported to date. |
Author | Xiang, Li Zhou, Zhiming Wang, Xingyong Li, Xiang Tang, Yongbing Ou, Xuewu |
Author_xml | – sequence: 1 givenname: Li surname: Xiang fullname: Xiang, Li organization: Chongqing University of Technology – sequence: 2 givenname: Xuewu surname: Ou fullname: Ou, Xuewu organization: Chinese Academy of Sciences – sequence: 3 givenname: Xingyong surname: Wang fullname: Wang, Xingyong organization: University of Science and Technology of China – sequence: 4 givenname: Zhiming surname: Zhou fullname: Zhou, Zhiming email: zhouzhiming@cqut.edu.cn organization: Chongqing University of Technology – sequence: 5 givenname: Xiang surname: Li fullname: Li, Xiang organization: University of Science and Technology of China – sequence: 6 givenname: Yongbing orcidid: 0000-0003-2705-4618 surname: Tang fullname: Tang, Yongbing email: tangyb@siat.ac.cn organization: Chinese Academy of Sciences |
BookMark | eNqFkMtqGzEUQEVIII9227Wgm27GkWb08tJ1nNhg0k26HjTyHVtGkVxJJsyun9BvzJdExiUBQ-lKgnuOdDnX6NwHDwh9oWRECalvtbcwqklNiOBjfoauKK9p1UjZnJc7a5pKKk4v0XVK28IrRcQV6ud2vXEDngZvwOeoM6zwzIHJMbghA87hRcdVwjO_0QUpQw9xPeA78MnmAWu_wtPBOOvXeGl7wKHHd3vtXn__WQSPv-ucIQ6f0EWvXYLPf88b9PN-9jSdV8sfD4vpZFkZXje86oSSkqwkFcpo3neEdLqnTBpuQPBGlQlnTKsxYWpslK47DlLLWhnohDSsuUHfju_uYvi1h5TbZ5sMOKc9hH1qa1aiqIYIUtCvJ-g27KMv2xWKCUkVk6JQoyNlYkgpQt_uon3WcWgpaQ_Z20P29j17EdiJYGzW2YZDXOv-rY2P2ot1MPznk3byuJh9uG_pg5oc |
CitedBy_id | crossref_primary_10_1039_D4EE04063E crossref_primary_10_1007_s41918_022_00167_1 crossref_primary_10_1016_j_isci_2024_110491 crossref_primary_10_1002_aenm_202102498 crossref_primary_10_1016_j_matchemphys_2022_126468 crossref_primary_10_1039_D2SE00636G crossref_primary_10_1002_batt_202100124 crossref_primary_10_1021_acs_chemrev_3c00826 crossref_primary_10_1016_j_est_2024_113884 crossref_primary_10_1021_acsaem_0c02694 crossref_primary_10_1016_j_powera_2021_100075 crossref_primary_10_1016_j_jechem_2023_06_008 crossref_primary_10_1002_ange_202300057 crossref_primary_10_1021_acsami_0c12389 crossref_primary_10_1002_adfm_202300305 crossref_primary_10_1002_ange_202016233 crossref_primary_10_1002_ange_202406182 crossref_primary_10_1021_acs_jpclett_1c01340 crossref_primary_10_1002_smll_202401200 crossref_primary_10_1002_adma_202203194 crossref_primary_10_1016_j_ensm_2023_102922 crossref_primary_10_2139_ssrn_4118513 crossref_primary_10_1002_aenm_202103589 crossref_primary_10_1149_1945_7111_acaad1 crossref_primary_10_1016_j_jpowsour_2021_230741 crossref_primary_10_1016_j_ensm_2024_103713 crossref_primary_10_1016_j_ceramint_2023_11_332 crossref_primary_10_1002_aenm_202003714 crossref_primary_10_1002_celc_202200054 crossref_primary_10_1002_smll_202401857 crossref_primary_10_1016_j_mtsust_2022_100188 crossref_primary_10_1002_bte2_20230009 crossref_primary_10_1021_acs_nanolett_4c01288 crossref_primary_10_1038_s41570_023_00506_w crossref_primary_10_1039_D5CC00366K crossref_primary_10_1002_adfm_202010958 crossref_primary_10_1002_anie_202212191 crossref_primary_10_1002_aenm_202103360 crossref_primary_10_1007_s40820_024_01470_w crossref_primary_10_1016_j_jpowsour_2024_235565 crossref_primary_10_1039_D4GC03426K crossref_primary_10_1002_sstr_202100217 crossref_primary_10_3389_fenrg_2021_599846 crossref_primary_10_1016_j_ensm_2022_02_053 crossref_primary_10_1021_acsaem_2c03050 crossref_primary_10_1134_S003602442205017X crossref_primary_10_1002_cssc_202201561 crossref_primary_10_1016_j_ensm_2021_11_048 crossref_primary_10_1002_smtd_202300249 crossref_primary_10_1016_j_mattod_2021_11_008 crossref_primary_10_1021_acs_langmuir_4c01150 crossref_primary_10_1039_D0CS00721H crossref_primary_10_1002_ange_202420160 crossref_primary_10_1016_j_electacta_2022_141754 crossref_primary_10_1002_adfm_202310449 crossref_primary_10_1002_aenm_202202253 crossref_primary_10_1002_anie_202420160 crossref_primary_10_1016_j_est_2024_114402 crossref_primary_10_1016_j_nanoen_2020_105539 crossref_primary_10_1016_j_jechem_2021_01_023 crossref_primary_10_1002_cey2_425 crossref_primary_10_1016_j_xcrp_2021_100693 crossref_primary_10_1002_anie_202406182 crossref_primary_10_1002_cssc_202101227 crossref_primary_10_1016_j_jcis_2021_09_139 crossref_primary_10_1002_smll_202400389 crossref_primary_10_1002_anie_202016233 crossref_primary_10_1002_aenm_202100151 crossref_primary_10_1016_j_nanoen_2020_105643 crossref_primary_10_20517_energymater_2023_75 crossref_primary_10_1002_cey2_275 crossref_primary_10_1002_cssc_202300671 crossref_primary_10_1002_smll_202006627 crossref_primary_10_1016_j_electacta_2023_142517 crossref_primary_10_1021_acsami_2c14206 crossref_primary_10_1016_j_cej_2024_152602 crossref_primary_10_1002_adma_202100793 crossref_primary_10_1021_acsami_1c05476 crossref_primary_10_1021_acssuschemeng_4c04793 crossref_primary_10_1038_s41467_021_23369_5 crossref_primary_10_1002_cssc_202201583 crossref_primary_10_1016_j_electacta_2023_142483 crossref_primary_10_1002_anie_202412753 crossref_primary_10_1038_s41467_021_26073_6 crossref_primary_10_1002_ange_202212191 crossref_primary_10_1016_j_mattod_2022_01_020 crossref_primary_10_1007_s41918_024_00226_9 crossref_primary_10_1007_s40820_023_01086_6 crossref_primary_10_1016_j_nanoen_2021_106744 crossref_primary_10_1016_j_cej_2024_149037 crossref_primary_10_1002_anie_202300057 crossref_primary_10_1002_asia_202300492 crossref_primary_10_1016_j_ensm_2021_08_017 crossref_primary_10_1016_j_jcis_2021_03_182 crossref_primary_10_1246_cl_220033 crossref_primary_10_1002_aesr_202100074 crossref_primary_10_1016_j_cej_2021_129385 crossref_primary_10_1002_cssc_202201375 crossref_primary_10_1002_eem2_12288 crossref_primary_10_1002_adfm_202107830 crossref_primary_10_1002_adfm_202103912 crossref_primary_10_2139_ssrn_4008695 crossref_primary_10_1016_j_cej_2021_134353 crossref_primary_10_1016_j_cej_2022_136259 crossref_primary_10_1002_cssc_202301468 crossref_primary_10_1021_acssuschemeng_3c03195 crossref_primary_10_1002_cssc_202301223 crossref_primary_10_1039_D0EE03356A crossref_primary_10_1002_adma_202302086 crossref_primary_10_1149_1945_7111_ac51f4 crossref_primary_10_1039_D2QI02080G crossref_primary_10_1016_j_chempr_2021_02_004 crossref_primary_10_1007_s11814_024_00255_6 crossref_primary_10_1016_j_esci_2022_10_003 crossref_primary_10_1016_j_ensm_2025_104052 crossref_primary_10_1021_acs_jpclett_4c01595 crossref_primary_10_1002_adfm_202212287 crossref_primary_10_1002_adma_202300917 crossref_primary_10_1002_aenm_202202450 crossref_primary_10_1016_j_jpowsour_2023_233953 crossref_primary_10_1002_elsa_202100127 crossref_primary_10_1002_ange_202412753 crossref_primary_10_1002_adfm_202316341 |
Cites_doi | 10.1021/acsaem.8b01764 10.1002/ange.201602397 10.1002/celc.201801108 10.1021/acsenergylett.7b00321 10.1002/aenm.201801219 10.1002/advs.201700146 10.1016/j.carbon.2018.10.053 10.1002/adfm.202001440 10.1002/anie.201814294 10.1002/aenm.201502588 10.1021/jp5115465 10.1002/ange.201711328 10.1007/s40242-020-0091-5 10.1016/j.ensm.2019.03.005 10.1038/ncomms12032 10.1021/acsami.8b11824 10.1002/ange.201712907 10.1002/anie.201901040 10.1002/cssc.201900597 10.1002/batt.201800138 10.1002/adfm.201806722 10.1002/anie.201915666 10.1149/1.1392609 10.1002/adma.201900826 10.1002/batt.201800118 10.1016/j.joule.2018.05.002 10.1002/ange.201902085 10.1021/acsami.9b02813 10.1016/j.ssi.2016.12.032 10.1002/aenm.201901663 10.1002/batt.201900229 10.1002/anie.201711328 10.1021/cr500003w 10.1016/j.ensm.2019.10.027 10.1002/batt.202000003 10.1039/D0TA01239D 10.1002/ange.201811955 10.1002/aenm.201802176 10.1038/s41467-020-15044-y 10.1126/science.aab1595 10.1002/ange.201904258 10.1038/s41560-019-0464-5 10.1021/acs.nanolett.8b03227 10.1002/ange.201801737 10.1149/2.0581910jes 10.1002/batt.201900148 10.1002/anie.201810575 10.1038/s41565-018-0183-2 10.1002/adfm.201907343 10.1002/aenm.201801120 10.1002/ange.201912272 10.1016/j.jechem.2020.03.043 10.1002/anie.201912167 10.1016/j.ensm.2019.11.003 10.1002/adma.201605958 10.1002/ange.201901040 10.1002/ange.201810575 10.1016/j.ensm.2020.04.025 10.1038/ncomms8872 10.1016/j.ensm.2020.03.021 10.1002/anie.201710806 10.1021/acsami.9b05053 10.1038/s41557-018-0045-4 10.1002/adma.201604219 10.1039/C9EE00141G 10.1016/j.jechem.2019.08.013 10.1021/acsami.8b08358 10.1002/ange.201912167 10.1002/aenm.201801439 10.1002/ange.201814646 10.1038/s41586-019-1281-5 10.1002/anie.201602397 10.1002/adma.201908470 10.1002/ange.201814294 10.1021/nl202088h 10.1002/anie.201712907 10.1016/j.nanoen.2019.03.062 10.1002/anie.201814646 10.1002/batt.201900191 10.1039/C9CS00162J 10.1002/adma.201804766 10.1016/j.ensm.2018.03.011 10.1002/adma.201606349 10.1002/anie.201902085 10.1002/aenm.201903277 10.1038/s41467-018-06923-6 10.1002/anie.201912272 10.1002/ange.201710806 10.1021/acs.nanolett.6b04766 10.1002/anie.201811955 10.1002/anie.201904258 10.1016/j.electacta.2007.01.069 10.1002/smll.201801836 10.1038/s41467-019-11077-0 10.1002/anie.201801737 10.1002/aenm.201901749 10.1002/adma.201802949 10.1038/s41467-019-13436-3 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202006595 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 17930 |
ExternalDocumentID | 10_1002_anie_202006595 ANIE202006595 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51822210, 51972329 – fundername: Key-Area Research and Development Program of Guangdong Province funderid: 2019B090914003 – fundername: Science and Technology Planning Project of Guangdong Province funderid: 2019A1515110445, 2018A050506066 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c5235-b68770d7168ca5fb00baf147c5ce6538d71544a890489c8a2b5e7a728ceb67c43 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 18:11:14 EDT 2025 Fri Jul 25 10:21:17 EDT 2025 Thu Apr 24 23:05:21 EDT 2025 Tue Jul 01 01:17:42 EDT 2025 Wed Jan 22 16:33:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5235-b68770d7168ca5fb00baf147c5ce6538d71544a890489c8a2b5e7a728ceb67c43 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2705-4618 |
PQID | 2446718476 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2415283060 proquest_journals_2446718476 crossref_primary_10_1002_anie_202006595 crossref_citationtrail_10_1002_anie_202006595 wiley_primary_10_1002_anie_202006595_ANIE202006595 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 5, 2020 |
PublicationDateYYYYMMDD | 2020-10-05 |
PublicationDate_xml | – month: 10 year: 2020 text: October 5, 2020 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 2 2017; 4 2019; 11 2019; 10 2019; 12 2020 2020; 59 132 2020; 59 2011; 11 2020; 11 2020; 10 2019; 166 2020; 8 2018; 9 2018; 8 2019; 60 2020; 3 2018; 2 2018; 5 2020; 50 2018 2018; 57 130 2019; 23 2020; 9 2019; 29 2018; 30 2020; 43 2019; 9 2015; 6 2019; 4 2019; 31 2019; 2 2020; 36 1999; 146 2017; 29 2020; 32 2007; 53 2014; 114 2019 2019; 58 131 2019; 142 2015; 350 2016; 6 2018; 18 2016; 7 2016 2016; 55 128 2020; 30 2017; 17 2020 2019; 48 2020; 28 2020; 25 2015; 119 2019; 570 2018; 10 2017; 300 2018; 15 2018; 14 2018; 13 e_1_2_6_72_2 e_1_2_6_95_1 e_1_2_6_53_2 e_1_2_6_91_3 e_1_2_6_30_2 e_1_2_6_91_2 Zhou X. (e_1_2_6_50_2) 2020; 9 e_1_2_6_19_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_38_3 e_1_2_6_76_3 e_1_2_6_38_2 e_1_2_6_76_2 e_1_2_6_15_2 e_1_2_6_57_2 e_1_2_6_99_2 e_1_2_6_102_2 e_1_2_6_87_1 e_1_2_6_64_2 e_1_2_6_41_2 e_1_2_6_83_1 e_1_2_6_60_2 e_1_2_6_9_2 e_1_2_6_5_1 e_1_2_6_1_1 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_64_3 e_1_2_6_45_1 e_1_2_6_26_2 e_1_2_6_68_2 e_1_2_6_73_1 e_1_2_6_96_1 e_1_2_6_31_2 e_1_2_6_92_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_77_1 e_1_2_6_61_2 e_1_2_6_84_2 e_1_2_6_101_3 e_1_2_6_61_3 e_1_2_6_42_2 e_1_2_6_105_2 e_1_2_6_80_2 e_1_2_6_101_2 e_1_2_6_6_2 e_1_2_6_46_3 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_65_2 e_1_2_6_88_2 e_1_2_6_27_2 e_1_2_6_69_1 e_1_2_6_46_2 e_1_2_6_51_1 e_1_2_6_97_2 e_1_2_6_74_2 e_1_2_6_93_2 e_1_2_6_70_2 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_13_2 e_1_2_6_32_2 e_1_2_6_17_1 e_1_2_6_78_1 e_1_2_6_55_2 Liu Z. (e_1_2_6_98_2) 2020 e_1_2_6_62_2 e_1_2_6_104_2 e_1_2_6_85_2 e_1_2_6_20_2 e_1_2_6_81_3 e_1_2_6_81_2 e_1_2_6_100_1 e_1_2_6_7_2 e_1_2_6_3_3 e_1_2_6_3_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_43_2 e_1_2_6_28_1 e_1_2_6_66_2 e_1_2_6_24_3 e_1_2_6_89_2 e_1_2_6_52_2 e_1_2_6_75_2 e_1_2_6_94_1 e_1_2_6_71_2 e_1_2_6_90_1 e_1_2_6_18_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_37_3 e_1_2_6_56_1 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_79_2 e_1_2_6_103_2 e_1_2_6_63_2 e_1_2_6_103_3 e_1_2_6_86_1 e_1_2_6_40_2 e_1_2_6_82_1 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_21_3 e_1_2_6_21_2 e_1_2_6_44_2 e_1_2_6_67_2 e_1_2_6_67_3 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 4 start-page: 796 year: 2019 end-page: 805 publication-title: Nat. Energy – volume: 58 131 start-page: 1094 1106 year: 2019 2019 end-page: 1099 1111 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 166 start-page: A1867 year: 2019 end-page: A1874 publication-title: J. Electrochem. Soc. – volume: 2 start-page: 1762 year: 2017 end-page: 1770 publication-title: ACS Energy Lett. – volume: 350 start-page: 938 year: 2015 end-page: 943 publication-title: Science – year: 2020 publication-title: Sci. Bull. – volume: 14 year: 2018 publication-title: Small – volume: 57 130 start-page: 5072 5166 year: 2018 2018 end-page: 5075 5169 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 13 start-page: 715 year: 2018 end-page: 722 publication-title: Nat. Nanotechnol. – volume: 2 start-page: 128 year: 2019 end-page: 131 publication-title: Batteries Supercaps – volume: 2 start-page: 440 year: 2019 end-page: 447 publication-title: Batteries Supercaps – volume: 57 130 start-page: 1898 1916 year: 2018 2018 end-page: 1902 1920 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 15 start-page: 22 year: 2018 end-page: 30 publication-title: Energy Storage Mater. – volume: 10 start-page: 5374 year: 2019 publication-title: Nat. Commun. – volume: 2 start-page: 1548 year: 2018 end-page: 1558 publication-title: Joule – volume: 3 start-page: 323 year: 2020 end-page: 330 publication-title: Batteries Supercaps – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 57 130 start-page: 3656 3718 year: 2018 2018 end-page: 3660 3722 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 12 start-page: 2609 year: 2019 end-page: 2619 publication-title: ChemSusChem – volume: 25 start-page: 93 year: 2020 end-page: 99 publication-title: Energy Storage Mater. – volume: 60 start-page: 285 year: 2019 end-page: 293 publication-title: Nano Energy – volume: 10 start-page: 29486 year: 2018 end-page: 29495 publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 1 year: 2020 end-page: 32 publication-title: Energy Storage Mater. – volume: 11 start-page: 1225 year: 2020 publication-title: Nat. Commun. – volume: 58 131 start-page: 5286 5340 year: 2019 2019 end-page: 5291 5345 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 17 start-page: 1602 year: 2017 end-page: 1609 publication-title: Nano Lett. – volume: 11 start-page: 15656 year: 2019 end-page: 15661 publication-title: ACS Appl. Mater. Interfaces – volume: 119 start-page: 8438 year: 2015 end-page: 8446 publication-title: J. Phys. Chem. C – volume: 3 start-page: 261 year: 2020 end-page: 267 publication-title: Batteries Supercaps – volume: 146 start-page: 4172 year: 1999 end-page: 4178 publication-title: J. Electrochem. Soc. – volume: 3 start-page: 331 year: 2020 end-page: 335 publication-title: Batteries Supercaps – volume: 2 start-page: 201 year: 2019 end-page: 206 publication-title: ACS Appl. Energy Mater. – volume: 58 131 start-page: 10500 10610 year: 2019 2019 end-page: 10505 10615 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 48 start-page: 4655 year: 2019 end-page: 4687 publication-title: Chem. Soc. Rev. – volume: 53 start-page: 1074 year: 2007 end-page: 1082 publication-title: Electrochim. Acta – volume: 5 start-page: 3612 year: 2018 end-page: 3618 publication-title: ChemElectroChem – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 10 start-page: 35978 year: 2018 end-page: 35983 publication-title: ACS Appl. Mater. Interfaces – volume: 57 130 start-page: 1505 1521 year: 2018 2018 end-page: 1509 1525 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 667 year: 2018 publication-title: Nat. Chem. – volume: 3 start-page: 212 year: 2020 end-page: 213 publication-title: Batteries Supercaps – volume: 7 start-page: 12032 year: 2016 publication-title: Nat. Commun. – volume: 18 start-page: 7155 year: 2018 end-page: 7164 publication-title: Nano Lett. – volume: 43 start-page: 129 year: 2020 end-page: 138 publication-title: J. Energy Chem. – volume: 30 start-page: 34 year: 2020 end-page: 41 publication-title: Energy Storage Mater. – volume: 114 start-page: 11503 year: 2014 end-page: 11618 publication-title: Chem. Rev. – volume: 58 131 start-page: 18892 19068 year: 2019 2019 end-page: 18897 19073 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 12 start-page: 1249 year: 2019 end-page: 1254 publication-title: Energy Environ. Sci. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 9 start-page: 551 year: 2020 end-page: 568 publication-title: Energy Storage Sci. Technol. – volume: 59 132 start-page: 110 112 year: 2020 2020 end-page: 135 138 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 7136 7252 year: 2016 2016 end-page: 7141 7257 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 4188 year: 2011 end-page: 4194 publication-title: Nano Lett. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 36 start-page: 402 year: 2020 end-page: 409 publication-title: Chem. Res. Chin. Univ. – volume: 9 start-page: 4469 year: 2018 publication-title: Nat. Commun. – volume: 142 start-page: 401 year: 2019 end-page: 410 publication-title: Carbon – volume: 8 start-page: 9128 year: 2020 end-page: 9136 publication-title: J. Mater. Chem. A – volume: 59 start-page: 9255 year: 2020 end-page: 9262 publication-title: Angew. Chem. Int. Ed. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 11 start-page: 18504 year: 2019 end-page: 18510 publication-title: ACS Appl. Mater. Interfaces – volume: 58 131 start-page: 9902 10007 year: 2019 2019 end-page: 9906 10011 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 16370 16608 year: 2018 2018 end-page: 16374 16612 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 23 start-page: 646 year: 2019 end-page: 652 publication-title: Energy Storage Mater. – volume: 28 start-page: 357 year: 2020 end-page: 363 publication-title: Energy Storage Mater. – volume: 10 start-page: 3483 year: 2019 publication-title: Nat. Commun. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 6 start-page: 7872 year: 2015 publication-title: Nat. Commun. – volume: 570 start-page: E65 year: 2019 end-page: E65 publication-title: Nature – volume: 59 132 start-page: 3802 3830 year: 2020 2020 end-page: 3832 3861 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 start-page: 416 year: 2020 end-page: 423 publication-title: J. Energy Chem. – volume: 59 132 start-page: 740 750 year: 2020 2020 end-page: 745 755 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 300 start-page: 169 year: 2017 end-page: 174 publication-title: Solid State Ionics – ident: e_1_2_6_13_2 doi: 10.1021/acsaem.8b01764 – ident: e_1_2_6_64_3 doi: 10.1002/ange.201602397 – year: 2020 ident: e_1_2_6_98_2 publication-title: Sci. Bull. – ident: e_1_2_6_39_2 doi: 10.1002/celc.201801108 – ident: e_1_2_6_2_2 doi: 10.1021/acsenergylett.7b00321 – ident: e_1_2_6_10_2 doi: 10.1002/aenm.201801219 – ident: e_1_2_6_85_2 doi: 10.1002/advs.201700146 – ident: e_1_2_6_45_1 – ident: e_1_2_6_32_2 doi: 10.1016/j.carbon.2018.10.053 – ident: e_1_2_6_47_2 doi: 10.1002/adfm.202001440 – ident: e_1_2_6_3_2 doi: 10.1002/anie.201814294 – ident: e_1_2_6_6_2 doi: 10.1002/aenm.201502588 – ident: e_1_2_6_28_1 – ident: e_1_2_6_52_2 doi: 10.1021/jp5115465 – ident: e_1_2_6_24_3 doi: 10.1002/ange.201711328 – ident: e_1_2_6_59_1 – ident: e_1_2_6_34_2 doi: 10.1007/s40242-020-0091-5 – ident: e_1_2_6_95_1 doi: 10.1016/j.ensm.2019.03.005 – ident: e_1_2_6_77_1 doi: 10.1038/ncomms12032 – ident: e_1_2_6_40_2 doi: 10.1021/acsami.8b11824 – ident: e_1_2_6_101_3 doi: 10.1002/ange.201712907 – ident: e_1_2_6_38_2 doi: 10.1002/anie.201901040 – ident: e_1_2_6_92_2 doi: 10.1002/cssc.201900597 – ident: e_1_2_6_100_1 – volume: 9 start-page: 551 year: 2020 ident: e_1_2_6_50_2 publication-title: Energy Storage Sci. Technol. – ident: e_1_2_6_44_2 doi: 10.1002/batt.201800138 – ident: e_1_2_6_7_2 doi: 10.1002/adfm.201806722 – ident: e_1_2_6_19_2 doi: 10.1002/anie.201915666 – ident: e_1_2_6_75_2 doi: 10.1149/1.1392609 – ident: e_1_2_6_94_1 doi: 10.1002/adma.201900826 – ident: e_1_2_6_55_2 doi: 10.1002/batt.201800118 – ident: e_1_2_6_62_2 doi: 10.1016/j.joule.2018.05.002 – ident: e_1_2_6_21_3 doi: 10.1002/ange.201902085 – ident: e_1_2_6_31_2 doi: 10.1021/acsami.9b02813 – ident: e_1_2_6_88_2 doi: 10.1016/j.ssi.2016.12.032 – ident: e_1_2_6_12_2 doi: 10.1002/aenm.201901663 – ident: e_1_2_6_96_1 – ident: e_1_2_6_87_1 – ident: e_1_2_6_54_2 doi: 10.1002/batt.201900229 – ident: e_1_2_6_24_2 doi: 10.1002/anie.201711328 – ident: e_1_2_6_90_1 – ident: e_1_2_6_70_2 doi: 10.1021/cr500003w – ident: e_1_2_6_20_2 doi: 10.1016/j.ensm.2019.10.027 – ident: e_1_2_6_68_2 doi: 10.1002/batt.202000003 – ident: e_1_2_6_72_2 doi: 10.1039/D0TA01239D – ident: e_1_2_6_91_3 doi: 10.1002/ange.201811955 – ident: e_1_2_6_86_1 doi: 10.1002/aenm.201802176 – ident: e_1_2_6_29_2 doi: 10.1038/s41467-020-15044-y – ident: e_1_2_6_56_1 – ident: e_1_2_6_60_2 doi: 10.1126/science.aab1595 – ident: e_1_2_6_61_3 doi: 10.1002/ange.201904258 – ident: e_1_2_6_63_2 doi: 10.1038/s41560-019-0464-5 – ident: e_1_2_6_78_1 – ident: e_1_2_6_9_2 doi: 10.1021/acs.nanolett.8b03227 – ident: e_1_2_6_67_3 doi: 10.1002/ange.201801737 – ident: e_1_2_6_17_1 – ident: e_1_2_6_102_2 doi: 10.1149/2.0581910jes – ident: e_1_2_6_5_1 – ident: e_1_2_6_97_2 doi: 10.1002/batt.201900148 – ident: e_1_2_6_46_2 doi: 10.1002/anie.201810575 – ident: e_1_2_6_99_2 doi: 10.1038/s41565-018-0183-2 – ident: e_1_2_6_93_2 doi: 10.1002/adfm.201907343 – ident: e_1_2_6_14_2 doi: 10.1002/aenm.201801120 – ident: e_1_2_6_76_3 doi: 10.1002/ange.201912272 – ident: e_1_2_6_80_2 doi: 10.1016/j.jechem.2020.03.043 – ident: e_1_2_6_81_2 doi: 10.1002/anie.201912167 – ident: e_1_2_6_4_2 doi: 10.1016/j.ensm.2019.11.003 – ident: e_1_2_6_16_2 doi: 10.1002/adma.201605958 – ident: e_1_2_6_38_3 doi: 10.1002/ange.201901040 – ident: e_1_2_6_46_3 doi: 10.1002/ange.201810575 – ident: e_1_2_6_43_2 doi: 10.1016/j.ensm.2020.04.025 – ident: e_1_2_6_18_2 doi: 10.1038/ncomms8872 – ident: e_1_2_6_23_2 doi: 10.1016/j.ensm.2020.03.021 – ident: e_1_2_6_103_2 doi: 10.1002/anie.201710806 – ident: e_1_2_6_11_2 doi: 10.1021/acsami.9b05053 – ident: e_1_2_6_89_2 doi: 10.1038/s41557-018-0045-4 – ident: e_1_2_6_26_2 doi: 10.1002/adma.201604219 – ident: e_1_2_6_71_2 doi: 10.1039/C9EE00141G – ident: e_1_2_6_15_2 doi: 10.1016/j.jechem.2019.08.013 – ident: e_1_2_6_36_1 – ident: e_1_2_6_30_2 doi: 10.1021/acsami.8b08358 – ident: e_1_2_6_81_3 doi: 10.1002/ange.201912167 – ident: e_1_2_6_57_2 doi: 10.1002/aenm.201801439 – ident: e_1_2_6_37_3 doi: 10.1002/ange.201814646 – ident: e_1_2_6_83_1 – ident: e_1_2_6_41_2 doi: 10.1038/s41586-019-1281-5 – ident: e_1_2_6_64_2 doi: 10.1002/anie.201602397 – ident: e_1_2_6_69_1 – ident: e_1_2_6_33_2 doi: 10.1002/adma.201908470 – ident: e_1_2_6_3_3 doi: 10.1002/ange.201814294 – ident: e_1_2_6_22_2 doi: 10.1021/nl202088h – ident: e_1_2_6_101_2 doi: 10.1002/anie.201712907 – ident: e_1_2_6_35_2 doi: 10.1016/j.nanoen.2019.03.062 – ident: e_1_2_6_37_2 doi: 10.1002/anie.201814646 – ident: e_1_2_6_1_1 – ident: e_1_2_6_105_2 doi: 10.1002/batt.201900191 – ident: e_1_2_6_51_1 – ident: e_1_2_6_53_2 doi: 10.1039/C9CS00162J – ident: e_1_2_6_58_2 doi: 10.1002/adma.201804766 – ident: e_1_2_6_48_1 – ident: e_1_2_6_8_2 doi: 10.1016/j.ensm.2018.03.011 – ident: e_1_2_6_27_2 doi: 10.1002/adma.201606349 – ident: e_1_2_6_21_2 doi: 10.1002/anie.201902085 – ident: e_1_2_6_104_2 doi: 10.1002/aenm.201903277 – ident: e_1_2_6_25_1 – ident: e_1_2_6_82_1 doi: 10.1038/s41467-018-06923-6 – ident: e_1_2_6_76_2 doi: 10.1002/anie.201912272 – ident: e_1_2_6_103_3 doi: 10.1002/ange.201710806 – ident: e_1_2_6_66_2 doi: 10.1021/acs.nanolett.6b04766 – ident: e_1_2_6_91_2 doi: 10.1002/anie.201811955 – ident: e_1_2_6_61_2 doi: 10.1002/anie.201904258 – ident: e_1_2_6_84_2 doi: 10.1016/j.electacta.2007.01.069 – ident: e_1_2_6_42_2 doi: 10.1002/smll.201801836 – ident: e_1_2_6_74_2 doi: 10.1038/s41467-019-11077-0 – ident: e_1_2_6_67_2 doi: 10.1002/anie.201801737 – ident: e_1_2_6_49_2 doi: 10.1002/aenm.201901749 – ident: e_1_2_6_79_2 doi: 10.1002/adma.201802949 – ident: e_1_2_6_73_1 – ident: e_1_2_6_65_2 doi: 10.1038/s41467-019-13436-3 |
SSID | ssj0028806 |
Score | 2.632198 |
Snippet | Dual‐ion batteries (DIBs) have attracted much attention owing to their low cost, high voltage, and environmental friendliness. As the source of active ions... Dual-ion batteries (DIBs) have attracted much attention owing to their low cost, high voltage, and environmental friendliness. As the source of active ions... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 17924 |
SubjectTerms | Batteries Cycles cycling stability Discharge dual-ion batteries Electrode materials Electrolytes Energy Flux density high energy density High voltage highly concentrated electrolyte Lithium Structural stability |
Title | Highly Concentrated Electrolyte towards Enhanced Energy Density and Cycling Life of Dual‐Ion Battery |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202006595 https://www.proquest.com/docview/2446718476 https://www.proquest.com/docview/2415283060 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BS-QwFA7iZb2oq7vsqLtkQfAUTdukaY8yjugiHkTBW3lJExWHjjidQz35E_yN_pLNS6dVFxZBbylJSJu8l7yXfu97hGzz3EqIeM7AqoSJEhTLlROMy0xrB6XQEACyp-nRhfhzKS9fRfG3_BD9hRtqRtivUcFBT_deSEMxAtv7d-gSyxyjzBGwhVbRWc8fFXvhbMOLkoRhFvqOtZHHe2-7vz2VXkzN1wZrOHEOVwh079oCTW53Z7XeNQ__0Dh-5mNWyfLcHKX7rfx8JQu2WiNfhl0WuHXiEAgybugQwxurQGVb0lGbO2fc1JbWAXc7paPqOoAJfAGjCekBIuPrhkJV0mGDAZhX9OTGWTpx9GAG4-fHp-NJRVt-z-YbuTgcnQ-P2Dw3AzPedZVMp5lSvPTeVmZAOq-8GlwklJHGpn4T9TVSCMhyv0PkJoNYS6tAxZmxOlVGJN_JYjWp7A9CEzCldpHlkDvhHM9jKziUaeIFJRI6HRDWrU1h5sTlmD9jXLSUy3GBs1f0szcgO337u5ay478tt7qlLuaqOy28vZP6A1soP_DvvtrPOv5JgcpOZtgmQlIcnvIBicO6vjNSsX96POqfNj7SaZMsYTkACeUWWazvZ_anN4hq_SsI_V8Z5wPR |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_hELBYwE4uTWSew4OXCodrfapcseUCv1FmzHBsQqi9isUDjxCLwKr8Ij8CR4nE1KkRASUg_cktiJE3vGnnG--QbgCcutUBHLqbIyobxUkubSccpEprVTJdcqAGTn6eSEvzgVp1vwrYuFafkh-g031IwwX6OC44b0_hlrKIZgewcPfWKRd7jKI9t88l7b6vl05If4aRwfjo-HE7pJLECN97sE1WkmJSu9q5AZJZyXPK1cxKURxqZ-BvAlgnOV5V68c5OpWAsrlYwzY3UqDU_8cy_BZUwjjnT9o1c9Y1Xs1aENaEoSinnvO55IFu-ff9_z6-CZcfuriRzWuMNr8L3rnRba8n5vXes98_k34sj_qvuuw9WNxU0OWhW5AVu2ugk7wy7R3S1wiHVZNGSIEZxVYOstybhND7RoakvqAC1ekXH1NuAl_AEGTJIRgv_rhqiqJMMGY0zfkNk7Z8nSkdFaLX58-TpdVqSlMG1uw8mFfOYd2K6Wlb0LJFGm1C6yTOWOO8fy2HKmyjTxuhBxnQ6AdsJQmA03O6YIWRQtq3Rc4GgV_WgN4Flf_0PLSvLHmrudbBWb2WlVeJMu9TYJl77hx32x73X8WaQqu1xjnQh5f1jKBhAHQfpLS8XBfDruz-79y02PYGdy_HJWzKbzo_twBa8H3KTYhe3649o-8PZfrR8GjSPw-qJl9CdGRWCr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_lEXChgJxMmt49hxcuBQbXbVpdUKISr1FmzHBtRVtmKzQuHEI_RR-ip9hT4JtrNJKRJCQuqBWxI7cWLP2DPON98AvCSZ4TIiGZZGxJiVUuBMWIYJT5WysmRKBoDsNNk9YG8P-eEanHaxMC0_RL_h5jUjzNdewY9Lu31BGuojsJ1_511innWwyj3TfHNO2-LNJHcj_IrS8ejDcBev8gpg7dwujlWSCkFK5ymkWnLrBE9JGzGhuTaJmwBcCWdMppmT7kynkipuhBQ01UYlQrPYPfcaXGcJyXyyiPx9T1hFnTa08UxxjH3a-44mktDty-97eRm8sG1_tZDDEje-A2dd57TIlqOtZa229PffeCP_p967C7dX9jbaaRXkHqyZ6j7cHHZp7h6A9UiXWYOGPn6zCly9JRq1yYFmTW1QHYDFCzSqPge0hDvw4ZIo99D_ukGyKtGw8RGmn9D-F2vQ3KJ8KWfnP04m8wq1BKbNQzi4ks98BOvVvDIbgGKpS2UjQ2RmmbUko4YRWSax04SIqWQAuJOFQq-Y2X2CkFnRckrTwo9W0Y_WAF739Y9bTpI_1tzsRKtYzU2Lwhl0ibNImHANv-iLXa_7X0WyMvOlrxN51h-SkAHQIEd_aanYmU5G_dnjf7npOdx4l4-L_cl07wnc8pcDaJJvwnr9dWmeOuOvVs-CviH4eNUi-hOit19a |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Concentrated+Electrolyte+towards+Enhanced+Energy+Density+and+Cycling+Life+of+Dual%E2%80%90Ion+Battery&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Xiang&rft.au=Ou%2C+Xuewu&rft.au=Wang%2C+Xingyong&rft.au=Zhou%2C+Zhiming&rft.date=2020-10-05&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=41&rft.spage=17924&rft.epage=17930&rft_id=info:doi/10.1002%2Fanie.202006595&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |