Machine Learning and Deep Neural Networks in Thoracic and Cardiovascular Imaging

Advances in technology have always had the potential and opportunity to shape the practice of medicine, and in no medical specialty has technology been more rapidly embraced and adopted than radiology. Machine learning and deep neural networks promise to transform the practice of medicine, and, in p...

Full description

Saved in:
Bibliographic Details
Published inJournal of thoracic imaging Vol. 34; no. 3; p. 192
Main Authors Retson, Tara A, Besser, Alexandra H, Sall, Sean, Golden, Daniel, Hsiao, Albert
Format Journal Article
LanguageEnglish
Published United States 01.05.2019
Subjects
Online AccessGet more information
ISSN1536-0237
DOI10.1097/RTI.0000000000000385

Cover

Loading…
Abstract Advances in technology have always had the potential and opportunity to shape the practice of medicine, and in no medical specialty has technology been more rapidly embraced and adopted than radiology. Machine learning and deep neural networks promise to transform the practice of medicine, and, in particular, the practice of diagnostic radiology. These technologies are evolving at a rapid pace due to innovations in computational hardware and novel neural network architectures. Several cutting-edge postprocessing analysis applications are actively being developed in the fields of thoracic and cardiovascular imaging, including applications for lesion detection and characterization, lung parenchymal characterization, coronary artery assessment, cardiac volumetry and function, and anatomic localization. Cardiothoracic and cardiovascular imaging lies at the technological forefront of radiology due to a confluence of technical advances. Enhanced equipment has enabled computed tomography and magnetic resonance imaging scanners that can safely capture images that freeze the motion of the heart to exquisitely delineate fine anatomic structures. Computing hardware developments have enabled an explosion in computational capabilities and in data storage. Progress in software and fluid mechanical models is enabling complex 3D and 4D reconstructions to not only visualize and assess the dynamic motion of the heart, but also quantify its blood flow and hemodynamics. And now, innovations in machine learning, particularly in the form of deep neural networks, are enabling us to leverage the increasingly massive data repositories that are prevalent in the field. Here, we discuss developments in machine learning techniques and deep neural networks to highlight their likely role in future radiologic practice, both in and outside of image interpretation and analysis. We discuss the concepts of validation, generalizability, and clinical utility, as they pertain to this and other new technologies, and we reflect upon the opportunities and challenges of bringing these into daily use.
AbstractList Advances in technology have always had the potential and opportunity to shape the practice of medicine, and in no medical specialty has technology been more rapidly embraced and adopted than radiology. Machine learning and deep neural networks promise to transform the practice of medicine, and, in particular, the practice of diagnostic radiology. These technologies are evolving at a rapid pace due to innovations in computational hardware and novel neural network architectures. Several cutting-edge postprocessing analysis applications are actively being developed in the fields of thoracic and cardiovascular imaging, including applications for lesion detection and characterization, lung parenchymal characterization, coronary artery assessment, cardiac volumetry and function, and anatomic localization. Cardiothoracic and cardiovascular imaging lies at the technological forefront of radiology due to a confluence of technical advances. Enhanced equipment has enabled computed tomography and magnetic resonance imaging scanners that can safely capture images that freeze the motion of the heart to exquisitely delineate fine anatomic structures. Computing hardware developments have enabled an explosion in computational capabilities and in data storage. Progress in software and fluid mechanical models is enabling complex 3D and 4D reconstructions to not only visualize and assess the dynamic motion of the heart, but also quantify its blood flow and hemodynamics. And now, innovations in machine learning, particularly in the form of deep neural networks, are enabling us to leverage the increasingly massive data repositories that are prevalent in the field. Here, we discuss developments in machine learning techniques and deep neural networks to highlight their likely role in future radiologic practice, both in and outside of image interpretation and analysis. We discuss the concepts of validation, generalizability, and clinical utility, as they pertain to this and other new technologies, and we reflect upon the opportunities and challenges of bringing these into daily use.
Author Hsiao, Albert
Sall, Sean
Besser, Alexandra H
Golden, Daniel
Retson, Tara A
Author_xml – sequence: 1
  givenname: Tara A
  surname: Retson
  fullname: Retson, Tara A
  organization: Department of Radiology, University of California San Diego
– sequence: 2
  givenname: Alexandra H
  surname: Besser
  fullname: Besser, Alexandra H
  organization: Department of Radiology, University of California San Diego
– sequence: 3
  givenname: Sean
  surname: Sall
  fullname: Sall, Sean
  organization: Arterys Inc., San Francisco, CA
– sequence: 4
  givenname: Daniel
  surname: Golden
  fullname: Golden, Daniel
  organization: Arterys Inc., San Francisco, CA
– sequence: 5
  givenname: Albert
  surname: Hsiao
  fullname: Hsiao, Albert
  organization: Department of Radiology, University of California San Diego
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31009397$$D View this record in MEDLINE/PubMed
BookMark eNpNj9tOhDAYhBujcQ_6Bsb0BVhbuqXtpUFXSfAQg9ebn_ZnF4VCimh8e4mHxLn5bmYmMwty6DuPhJxxtuLMqIunIlux_xJaHpA5lyKJWCzUjCyG4YUxrsRaH5OZ4IwZYdScPN6B3dceaY4QfO13FLyjV4g9vccxQDPh7aMLrwOtPS32XQBb229TCsHV3TsMdmwg0KyF3ZQ_IUcVNAOe_nJJnjfXRXob5Q83WXqZR1bGQkZxybRMEDnnuJZ2GlMZLa2DUiGCrUBZ7YytcBpquYydAe1AJ1iVleOaxUty_tPbj2WLbtuHuoXwuf27Fn8Bgk9SGw
CitedBy_id crossref_primary_10_3934_publichealth_2024004
crossref_primary_10_1016_j_ancard_2021_08_001
crossref_primary_10_1097_RTI_0000000000000505
crossref_primary_10_1007_s43393_023_00200_4
crossref_primary_10_1097_RTI_0000000000000584
crossref_primary_10_1016_j_rcl_2020_02_011
crossref_primary_10_1016_j_jpi_2022_100184
crossref_primary_10_1186_s41747_021_00207_3
crossref_primary_10_3174_ajnr_A6468
crossref_primary_10_1016_j_jtcvs_2021_10_060
crossref_primary_10_1097_RTI_0000000000000459
crossref_primary_10_1148_ryai_2019190140
crossref_primary_10_1038_s41598_021_89636_z
crossref_primary_10_1016_j_ejrad_2019_108692
crossref_primary_10_1038_s41746_020_00324_0
crossref_primary_10_1097_RTI_0000000000000453
crossref_primary_10_1097_RTI_0000000000000492
crossref_primary_10_1155_2021_6718029
crossref_primary_10_1109_TMI_2021_3057496
crossref_primary_10_3390_jcm12227082
crossref_primary_10_3390_opt3010002
crossref_primary_10_1016_S1877_1203_19_30041_2
crossref_primary_10_1152_ajpheart_00149_2024
crossref_primary_10_4330_wjc_v16_i2_67
crossref_primary_10_1155_2021_7259414
crossref_primary_10_1016_j_acra_2020_03_036
crossref_primary_10_1017_dce_2024_39
crossref_primary_10_1016_j_radi_2023_10_014
crossref_primary_10_1148_radiol_2019191165
crossref_primary_10_1177_08465371221145023
crossref_primary_10_1097_RTI_0000000000000522
crossref_primary_10_1148_radiol_212702
crossref_primary_10_1097_RTI_0000000000000485
crossref_primary_10_1097_RTI_0000000000000486
crossref_primary_10_1007_s11547_020_01249_0
crossref_primary_10_1097_RTI_0000000000000482
crossref_primary_10_1016_j_jcmg_2020_07_015
crossref_primary_10_1016_j_jfranklin_2021_08_023
crossref_primary_10_1085_jgp_202213291
crossref_primary_10_1097_RTI_0000000000000490
crossref_primary_10_1097_RTI_0000000000000491
crossref_primary_10_3390_jpm13081214
crossref_primary_10_1016_j_wneu_2021_02_114
crossref_primary_10_1016_j_ejmp_2019_09_241
crossref_primary_10_1007_s40031_023_00896_x
crossref_primary_10_1155_2021_3941978
crossref_primary_10_1155_2022_3604012
crossref_primary_10_1002_jmri_27488
crossref_primary_10_1186_s12880_022_00918_y
crossref_primary_10_1097_MNM_0000000000001426
crossref_primary_10_1186_s13073_019_0689_8
crossref_primary_10_1148_radiol_2020192173
crossref_primary_10_1111_hepr_13616
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1097/RTI.0000000000000385
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1536-0237
ExternalDocumentID 31009397
Genre Journal Article
Review
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: T32 EB005970
GroupedDBID ---
.Z2
0R~
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6PF
8L-
AAAAV
AAHPQ
AAIQE
AARTV
AASCR
AAWTL
AAYEP
ABASU
ABBUW
ABDIG
ABJNI
ABVCZ
ABXVJ
ABZAD
ABZZY
ACDDN
ACEWG
ACGFS
ACILI
ACWDW
ACWRI
ACXJB
ACXNZ
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AE6
AEETU
AENEX
AFBFQ
AFDTB
AFUWQ
AGINI
AHQNM
AHRYX
AHVBC
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BQLVK
BS7
C45
CGR
CS3
CUY
CVF
DIWNM
DU5
DUNZO
E.X
EBS
ECM
EEVPB
EIF
EJD
EX3
F2K
F2L
F5P
FCALG
FL-
GNXGY
GQDEL
H0~
HLJTE
HZ~
IKREB
IN~
IPNFZ
JF9
JG8
JK3
JK8
K8S
KD2
KMI
L-C
NPM
N~M
O9-
OAG
OAH
OCUKA
ODA
OL1
OLG
OLV
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
R58
RIG
RLZ
S4R
S4S
T8P
TEORI
TSPGW
UDS
V2I
VVN
W3M
WOQ
WOW
X3V
X3W
XXN
XYM
YFH
ZFV
ZGI
ZXP
ZZMQN
ID FETCH-LOGICAL-c5235-2b0856ee111e45c939f985cdab7eeacfa7c8d9cfe009c152d9a8da86efbfd1802
IngestDate Thu Apr 03 07:10:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5235-2b0856ee111e45c939f985cdab7eeacfa7c8d9cfe009c152d9a8da86efbfd1802
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7962152
PMID 31009397
ParticipantIDs pubmed_primary_31009397
PublicationCentury 2000
PublicationDate 2019-May
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-May
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of thoracic imaging
PublicationTitleAlternate J Thorac Imaging
PublicationYear 2019
SSID ssj0017348
Score 2.4615767
SecondaryResourceType review_article
Snippet Advances in technology have always had the potential and opportunity to shape the practice of medicine, and in no medical specialty has technology been more...
SourceID pubmed
SourceType Index Database
StartPage 192
SubjectTerms Cardiovascular Diseases - diagnostic imaging
Cardiovascular System - diagnostic imaging
Diagnostic Imaging - methods
Humans
Image Processing, Computer-Assisted - methods
Machine Learning
Neural Networks, Computer
Thoracic Diseases - diagnostic imaging
Thorax - diagnostic imaging
Title Machine Learning and Deep Neural Networks in Thoracic and Cardiovascular Imaging
URI https://www.ncbi.nlm.nih.gov/pubmed/31009397
Volume 34
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5aBelF3HeZgzeJ2mSyHUVcoSIaobcyyxstaC1SL_5632w21gW1h1AySUjm-_LyZt573xCyozKuhSwOIi0LFrFcxhEXTESxFClnMknABto7l9nZLbvopt1Go5619DISe_L1y7qS_6CK-xBXUyX7B2TfL4o78D_ii1tEGLe_wrhjMyEhiKTe-bxiGO4azQ3s_EuX5G1zXqt7RFt6edajj2mo5492saJvPNVROLNfO8wEaWDk67Uq_sxrs6JWj7xWPoON7xGpG-4CHTcw5uXp00Mwf7bivT4VYaqfQuLfHgTzaVKanYxLsK9-srJfH35bY9l2q-B9MuJOHPi6OnfikuGXuLV9argOHy2wJkZRJi7N9-fWCWnt0NQkTRxkmFVTzVSPD0EZ2Z9Qa1nm-1_dTovMhEtMjEqsd1LNkVkPFj10HJknDRgskJmOT5xYJFeeKjRQhSIs1FCFOqrQQBXaH9BAFXvQR6pQT5UlcntyXB2dRX4xjUimcZJGsUDnOgPAbxuwVOI967JIpeIiB_z4ap7LQpVSAz6PRKdOlbxQvMhAC62MTOAymRo8DWCV0LZErxKYyNO8zXSuyhjNUcIgU23jXas1suL6ojd0iim90Evr37ZskNaYUZtkWuMrClvo743EtsXlDVPiU9o
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+and+Deep+Neural+Networks+in+Thoracic+and+Cardiovascular+Imaging&rft.jtitle=Journal+of+thoracic+imaging&rft.au=Retson%2C+Tara+A&rft.au=Besser%2C+Alexandra+H&rft.au=Sall%2C+Sean&rft.au=Golden%2C+Daniel&rft.date=2019-05-01&rft.eissn=1536-0237&rft.volume=34&rft.issue=3&rft.spage=192&rft_id=info:doi/10.1097%2FRTI.0000000000000385&rft_id=info%3Apmid%2F31009397&rft_id=info%3Apmid%2F31009397&rft.externalDocID=31009397