Machine Learning and Deep Neural Networks in Thoracic and Cardiovascular Imaging
Advances in technology have always had the potential and opportunity to shape the practice of medicine, and in no medical specialty has technology been more rapidly embraced and adopted than radiology. Machine learning and deep neural networks promise to transform the practice of medicine, and, in p...
Saved in:
Published in | Journal of thoracic imaging Vol. 34; no. 3; p. 192 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.05.2019
|
Subjects | |
Online Access | Get more information |
ISSN | 1536-0237 |
DOI | 10.1097/RTI.0000000000000385 |
Cover
Loading…
Abstract | Advances in technology have always had the potential and opportunity to shape the practice of medicine, and in no medical specialty has technology been more rapidly embraced and adopted than radiology. Machine learning and deep neural networks promise to transform the practice of medicine, and, in particular, the practice of diagnostic radiology. These technologies are evolving at a rapid pace due to innovations in computational hardware and novel neural network architectures. Several cutting-edge postprocessing analysis applications are actively being developed in the fields of thoracic and cardiovascular imaging, including applications for lesion detection and characterization, lung parenchymal characterization, coronary artery assessment, cardiac volumetry and function, and anatomic localization. Cardiothoracic and cardiovascular imaging lies at the technological forefront of radiology due to a confluence of technical advances. Enhanced equipment has enabled computed tomography and magnetic resonance imaging scanners that can safely capture images that freeze the motion of the heart to exquisitely delineate fine anatomic structures. Computing hardware developments have enabled an explosion in computational capabilities and in data storage. Progress in software and fluid mechanical models is enabling complex 3D and 4D reconstructions to not only visualize and assess the dynamic motion of the heart, but also quantify its blood flow and hemodynamics. And now, innovations in machine learning, particularly in the form of deep neural networks, are enabling us to leverage the increasingly massive data repositories that are prevalent in the field. Here, we discuss developments in machine learning techniques and deep neural networks to highlight their likely role in future radiologic practice, both in and outside of image interpretation and analysis. We discuss the concepts of validation, generalizability, and clinical utility, as they pertain to this and other new technologies, and we reflect upon the opportunities and challenges of bringing these into daily use. |
---|---|
AbstractList | Advances in technology have always had the potential and opportunity to shape the practice of medicine, and in no medical specialty has technology been more rapidly embraced and adopted than radiology. Machine learning and deep neural networks promise to transform the practice of medicine, and, in particular, the practice of diagnostic radiology. These technologies are evolving at a rapid pace due to innovations in computational hardware and novel neural network architectures. Several cutting-edge postprocessing analysis applications are actively being developed in the fields of thoracic and cardiovascular imaging, including applications for lesion detection and characterization, lung parenchymal characterization, coronary artery assessment, cardiac volumetry and function, and anatomic localization. Cardiothoracic and cardiovascular imaging lies at the technological forefront of radiology due to a confluence of technical advances. Enhanced equipment has enabled computed tomography and magnetic resonance imaging scanners that can safely capture images that freeze the motion of the heart to exquisitely delineate fine anatomic structures. Computing hardware developments have enabled an explosion in computational capabilities and in data storage. Progress in software and fluid mechanical models is enabling complex 3D and 4D reconstructions to not only visualize and assess the dynamic motion of the heart, but also quantify its blood flow and hemodynamics. And now, innovations in machine learning, particularly in the form of deep neural networks, are enabling us to leverage the increasingly massive data repositories that are prevalent in the field. Here, we discuss developments in machine learning techniques and deep neural networks to highlight their likely role in future radiologic practice, both in and outside of image interpretation and analysis. We discuss the concepts of validation, generalizability, and clinical utility, as they pertain to this and other new technologies, and we reflect upon the opportunities and challenges of bringing these into daily use. |
Author | Hsiao, Albert Sall, Sean Besser, Alexandra H Golden, Daniel Retson, Tara A |
Author_xml | – sequence: 1 givenname: Tara A surname: Retson fullname: Retson, Tara A organization: Department of Radiology, University of California San Diego – sequence: 2 givenname: Alexandra H surname: Besser fullname: Besser, Alexandra H organization: Department of Radiology, University of California San Diego – sequence: 3 givenname: Sean surname: Sall fullname: Sall, Sean organization: Arterys Inc., San Francisco, CA – sequence: 4 givenname: Daniel surname: Golden fullname: Golden, Daniel organization: Arterys Inc., San Francisco, CA – sequence: 5 givenname: Albert surname: Hsiao fullname: Hsiao, Albert organization: Department of Radiology, University of California San Diego |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31009397$$D View this record in MEDLINE/PubMed |
BookMark | eNpNj9tOhDAYhBujcQ_6Bsb0BVhbuqXtpUFXSfAQg9ebn_ZnF4VCimh8e4mHxLn5bmYmMwty6DuPhJxxtuLMqIunIlux_xJaHpA5lyKJWCzUjCyG4YUxrsRaH5OZ4IwZYdScPN6B3dceaY4QfO13FLyjV4g9vccxQDPh7aMLrwOtPS32XQBb229TCsHV3TsMdmwg0KyF3ZQ_IUcVNAOe_nJJnjfXRXob5Q83WXqZR1bGQkZxybRMEDnnuJZ2GlMZLa2DUiGCrUBZ7YytcBpquYydAe1AJ1iVleOaxUty_tPbj2WLbtuHuoXwuf27Fn8Bgk9SGw |
CitedBy_id | crossref_primary_10_3934_publichealth_2024004 crossref_primary_10_1016_j_ancard_2021_08_001 crossref_primary_10_1097_RTI_0000000000000505 crossref_primary_10_1007_s43393_023_00200_4 crossref_primary_10_1097_RTI_0000000000000584 crossref_primary_10_1016_j_rcl_2020_02_011 crossref_primary_10_1016_j_jpi_2022_100184 crossref_primary_10_1186_s41747_021_00207_3 crossref_primary_10_3174_ajnr_A6468 crossref_primary_10_1016_j_jtcvs_2021_10_060 crossref_primary_10_1097_RTI_0000000000000459 crossref_primary_10_1148_ryai_2019190140 crossref_primary_10_1038_s41598_021_89636_z crossref_primary_10_1016_j_ejrad_2019_108692 crossref_primary_10_1038_s41746_020_00324_0 crossref_primary_10_1097_RTI_0000000000000453 crossref_primary_10_1097_RTI_0000000000000492 crossref_primary_10_1155_2021_6718029 crossref_primary_10_1109_TMI_2021_3057496 crossref_primary_10_3390_jcm12227082 crossref_primary_10_3390_opt3010002 crossref_primary_10_1016_S1877_1203_19_30041_2 crossref_primary_10_1152_ajpheart_00149_2024 crossref_primary_10_4330_wjc_v16_i2_67 crossref_primary_10_1155_2021_7259414 crossref_primary_10_1016_j_acra_2020_03_036 crossref_primary_10_1017_dce_2024_39 crossref_primary_10_1016_j_radi_2023_10_014 crossref_primary_10_1148_radiol_2019191165 crossref_primary_10_1177_08465371221145023 crossref_primary_10_1097_RTI_0000000000000522 crossref_primary_10_1148_radiol_212702 crossref_primary_10_1097_RTI_0000000000000485 crossref_primary_10_1097_RTI_0000000000000486 crossref_primary_10_1007_s11547_020_01249_0 crossref_primary_10_1097_RTI_0000000000000482 crossref_primary_10_1016_j_jcmg_2020_07_015 crossref_primary_10_1016_j_jfranklin_2021_08_023 crossref_primary_10_1085_jgp_202213291 crossref_primary_10_1097_RTI_0000000000000490 crossref_primary_10_1097_RTI_0000000000000491 crossref_primary_10_3390_jpm13081214 crossref_primary_10_1016_j_wneu_2021_02_114 crossref_primary_10_1016_j_ejmp_2019_09_241 crossref_primary_10_1007_s40031_023_00896_x crossref_primary_10_1155_2021_3941978 crossref_primary_10_1155_2022_3604012 crossref_primary_10_1002_jmri_27488 crossref_primary_10_1186_s12880_022_00918_y crossref_primary_10_1097_MNM_0000000000001426 crossref_primary_10_1186_s13073_019_0689_8 crossref_primary_10_1148_radiol_2020192173 crossref_primary_10_1111_hepr_13616 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1097/RTI.0000000000000385 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1536-0237 |
ExternalDocumentID | 31009397 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: T32 EB005970 |
GroupedDBID | --- .Z2 0R~ 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6PF 8L- AAAAV AAHPQ AAIQE AARTV AASCR AAWTL AAYEP ABASU ABBUW ABDIG ABJNI ABVCZ ABXVJ ABZAD ABZZY ACDDN ACEWG ACGFS ACILI ACWDW ACWRI ACXJB ACXNZ ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEETU AENEX AFBFQ AFDTB AFUWQ AGINI AHQNM AHRYX AHVBC AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC BQLVK BS7 C45 CGR CS3 CUY CVF DIWNM DU5 DUNZO E.X EBS ECM EEVPB EIF EJD EX3 F2K F2L F5P FCALG FL- GNXGY GQDEL H0~ HLJTE HZ~ IKREB IN~ IPNFZ JF9 JG8 JK3 JK8 K8S KD2 KMI L-C NPM N~M O9- OAG OAH OCUKA ODA OL1 OLG OLV OLZ OPUJH ORVUJ OUVQU OVD OVDNE OWU OWV OWW OWX OWY OWZ OXXIT P-K R58 RIG RLZ S4R S4S T8P TEORI TSPGW UDS V2I VVN W3M WOQ WOW X3V X3W XXN XYM YFH ZFV ZGI ZXP ZZMQN |
ID | FETCH-LOGICAL-c5235-2b0856ee111e45c939f985cdab7eeacfa7c8d9cfe009c152d9a8da86efbfd1802 |
IngestDate | Thu Apr 03 07:10:33 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5235-2b0856ee111e45c939f985cdab7eeacfa7c8d9cfe009c152d9a8da86efbfd1802 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7962152 |
PMID | 31009397 |
ParticipantIDs | pubmed_primary_31009397 |
PublicationCentury | 2000 |
PublicationDate | 2019-May |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-May |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of thoracic imaging |
PublicationTitleAlternate | J Thorac Imaging |
PublicationYear | 2019 |
SSID | ssj0017348 |
Score | 2.4615767 |
SecondaryResourceType | review_article |
Snippet | Advances in technology have always had the potential and opportunity to shape the practice of medicine, and in no medical specialty has technology been more... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 192 |
SubjectTerms | Cardiovascular Diseases - diagnostic imaging Cardiovascular System - diagnostic imaging Diagnostic Imaging - methods Humans Image Processing, Computer-Assisted - methods Machine Learning Neural Networks, Computer Thoracic Diseases - diagnostic imaging Thorax - diagnostic imaging |
Title | Machine Learning and Deep Neural Networks in Thoracic and Cardiovascular Imaging |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31009397 |
Volume | 34 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5aBelF3HeZgzeJ2mSyHUVcoSIaobcyyxstaC1SL_5632w21gW1h1AySUjm-_LyZt573xCyozKuhSwOIi0LFrFcxhEXTESxFClnMknABto7l9nZLbvopt1Go5619DISe_L1y7qS_6CK-xBXUyX7B2TfL4o78D_ii1tEGLe_wrhjMyEhiKTe-bxiGO4azQ3s_EuX5G1zXqt7RFt6edajj2mo5492saJvPNVROLNfO8wEaWDk67Uq_sxrs6JWj7xWPoON7xGpG-4CHTcw5uXp00Mwf7bivT4VYaqfQuLfHgTzaVKanYxLsK9-srJfH35bY9l2q-B9MuJOHPi6OnfikuGXuLV9argOHy2wJkZRJi7N9-fWCWnt0NQkTRxkmFVTzVSPD0EZ2Z9Qa1nm-1_dTovMhEtMjEqsd1LNkVkPFj10HJknDRgskJmOT5xYJFeeKjRQhSIs1FCFOqrQQBXaH9BAFXvQR6pQT5UlcntyXB2dRX4xjUimcZJGsUDnOgPAbxuwVOI967JIpeIiB_z4ap7LQpVSAz6PRKdOlbxQvMhAC62MTOAymRo8DWCV0LZErxKYyNO8zXSuyhjNUcIgU23jXas1suL6ojd0iim90Evr37ZskNaYUZtkWuMrClvo743EtsXlDVPiU9o |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+and+Deep+Neural+Networks+in+Thoracic+and+Cardiovascular+Imaging&rft.jtitle=Journal+of+thoracic+imaging&rft.au=Retson%2C+Tara+A&rft.au=Besser%2C+Alexandra+H&rft.au=Sall%2C+Sean&rft.au=Golden%2C+Daniel&rft.date=2019-05-01&rft.eissn=1536-0237&rft.volume=34&rft.issue=3&rft.spage=192&rft_id=info:doi/10.1097%2FRTI.0000000000000385&rft_id=info%3Apmid%2F31009397&rft_id=info%3Apmid%2F31009397&rft.externalDocID=31009397 |