Assessing species and community functional responses to environmental gradients: which multivariate methods?

Question: How do multivariate methods perform in relating species- and community-level trait responses to the environment? Location: (1) Field data from grazed semi-natural grasslands, NE Germany; (2) artificial data. Methods: Research questions associated with trait—environment relationships were b...

Full description

Saved in:
Bibliographic Details
Published inJournal of vegetation science Vol. 23; no. 5; pp. 805 - 821
Main Authors Kleyer, Michael, Dray, Stéphane, Bello, Francescode, Lepš, Jan, Pakeman, Robin J., Strauss, Barbara, Thuiller, Wilfried, Lavorel, Sandra
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.10.2012
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Question: How do multivariate methods perform in relating species- and community-level trait responses to the environment? Location: (1) Field data from grazed semi-natural grasslands, NE Germany; (2) artificial data. Methods: Research questions associated with trait—environment relationships were briefly reviewed and seven available methods evaluated. The main distinction between research questions is whether trait—environment relationships should be addressed at community or species level. A redundancy analysis (RDA) of mean trait values of species in a plot weighted by their abundances (CWM-RDA) is exclusively suitable for the community level. The other six methods address the species level. A double inertia analysis of two arrays (RLQ) and double canonical correspondence analysis (double CCA) use combinations of ordinations to simultaneously analyse species and trait responses to the environment. A combination of the outlying mean index with generalized additive models (OMI-GAM) predicts the response of species to environmental variables on trait gradients. RDA-RegTree first analyses species responses to the environment with RDA and then uses a regression tree to classify trait expressions according to scores of species responses on the ordination axes. Cluster regression uses cluster analyses and logistic regression to search for trait combinations with the best response to the environmental variables. This method models the distribution of functional groups on environmental gradients. All methods and data are available as R scripts. Results: All methods consistently revealed the main trait responses to environment in the field data set, namely that life history was associated with available phosphorus while grazing intensity was related to leaf C:N ratio and canopy height. At community level, CWM-RDA gave a good overview of trait— environment relationships, as also provided by the species-based methods RLQ and double CCA. OMI-GAM revealed non-linear relationships in the field data set. Field and artificial data gave that the number and stability of functional groups produced by Cluster regression and RDA-RegTree varied more strongly than RLQ, double CCA and OMI-GAM. Conclusions: Each method addresses particular ecological concepts and research questions. If a user asks for the response of average trait expressions of communities to environmental gradients, CWM-RDA may be the first choice. However, species-based methods should be applied to address questions regarding co-existence of different life histories or to assess how groups of species respond to environmental changes. The artificial data set revealed that the methods differed in sensitivity to gradient lengths and random data.
AbstractList Question How do multivariate methods perform in relating species‐ and community‐level trait responses to the environment? Location (1) Field data from grazed semi‐natural grasslands, NE Germany; (2) artificial data. Methods Research questions associated with trait–environment relationships were briefly reviewed and seven available methods evaluated. The main distinction between research questions is whether trait–environment relationships should be addressed at community or species level. A redundancy analysis (RDA) of mean trait values of species in a plot weighted by their abundances (CWM‐RDA) is exclusively suitable for the community level. The other six methods address the species level. A double inertia analysis of two arrays (RLQ) and double canonical correspondence analysis (double CCA) use combinations of ordinations to simultaneously analyse species and trait responses to the environment. A combination of the outlying mean index with generalized additive models (OMI‐GAM) predicts the response of species to environmental variables on trait gradients. RDA‐RegTree first analyses species responses to the environment with RDA and then uses a regression tree to classify trait expressions according to scores of species responses on the ordination axes. Cluster regression uses cluster analyses and logistic regression to search for trait combinations with the best response to the environmental variables. This method models the distribution of functional groups on environmental gradients. All methods and data are available as R scripts. Results All methods consistently revealed the main trait responses to environment in the field data set, namely that life history was associated with available phosphorus while grazing intensity was related to leaf C:N ratio and canopy height. At community level, CWM‐RDA gave a good overview of trait–environment relationships, as also provided by the species‐based methods RLQ and double CCA. OMI‐GAM revealed non‐linear relationships in the field data set. Field and artificial data gave that the number and stability of functional groups produced by Cluster regression and RDA‐RegTree varied more strongly than RLQ, double CCA and OMI‐GAM. Conclusions Each method addresses particular ecological concepts and research questions. If a user asks for the response of average trait expressions of communities to environmental gradients, CWM‐RDA may be the first choice. However, species‐based methods should be applied to address questions regarding co‐existence of different life histories or to assess how groups of species respond to environmental changes. The artificial data set revealed that the methods differed in sensitivity to gradient lengths and random data. We compare seven multivariate methods suitable to determine the functional response of species to environmental change. The selection of the most appropriate method depends on the research question, i.e. the response of average trait expressions of communities, the coexistence of different life histories or the response of functional groups. R‐scripts and a tutorial for each method are available in the Appendix.
Question: How do multivariate methods perform in relating species- and community-level trait responses to the environment? Location: (1) Field data from grazed semi-natural grasslands, NE Germany; (2) artificial data. Methods: Research questions associated with trait—environment relationships were briefly reviewed and seven available methods evaluated. The main distinction between research questions is whether trait—environment relationships should be addressed at community or species level. A redundancy analysis (RDA) of mean trait values of species in a plot weighted by their abundances (CWM-RDA) is exclusively suitable for the community level. The other six methods address the species level. A double inertia analysis of two arrays (RLQ) and double canonical correspondence analysis (double CCA) use combinations of ordinations to simultaneously analyse species and trait responses to the environment. A combination of the outlying mean index with generalized additive models (OMI-GAM) predicts the response of species to environmental variables on trait gradients. RDA-RegTree first analyses species responses to the environment with RDA and then uses a regression tree to classify trait expressions according to scores of species responses on the ordination axes. Cluster regression uses cluster analyses and logistic regression to search for trait combinations with the best response to the environmental variables. This method models the distribution of functional groups on environmental gradients. All methods and data are available as R scripts. Results: All methods consistently revealed the main trait responses to environment in the field data set, namely that life history was associated with available phosphorus while grazing intensity was related to leaf C:N ratio and canopy height. At community level, CWM-RDA gave a good overview of trait— environment relationships, as also provided by the species-based methods RLQ and double CCA. OMI-GAM revealed non-linear relationships in the field data set. Field and artificial data gave that the number and stability of functional groups produced by Cluster regression and RDA-RegTree varied more strongly than RLQ, double CCA and OMI-GAM. Conclusions: Each method addresses particular ecological concepts and research questions. If a user asks for the response of average trait expressions of communities to environmental gradients, CWM-RDA may be the first choice. However, species-based methods should be applied to address questions regarding co-existence of different life histories or to assess how groups of species respond to environmental changes. The artificial data set revealed that the methods differed in sensitivity to gradient lengths and random data.
Author Strauss, Barbara
Dray, Stéphane
Lepš, Jan
Lavorel, Sandra
Bello, Francescode
Thuiller, Wilfried
Pakeman, Robin J.
Kleyer, Michael
Author_xml – sequence: 1
  givenname: Michael
  surname: Kleyer
  fullname: Kleyer, Michael
  email: michael.kleyer@uni-oldenburg.de
  organization: Landscape Ecology Group, University of Oldenburg, 26111, Oldenburg, Germany
– sequence: 2
  givenname: Stéphane
  surname: Dray
  fullname: Dray, Stéphane
  email: stephane.dray@univ-lyon1.fr
  organization: Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, F-69000, Lyon, France
– sequence: 3
  givenname: Francescode
  surname: Bello
  fullname: Bello, Francescode
  email: fradebello@ctfc.es
  organization: Laboratoire d'Ecologie Alpine (CNRS UMR 5553) and Station Alpine Joseph Fourier (UMS-UJF-CNRS 2925), Université Joseph Fourier, BP 53, F-38042, Grenoble Cedex 09, France
– sequence: 4
  givenname: Jan
  surname: Lepš
  fullname: Lepš, Jan
  email: suspa@prf.jcu.cz
  organization: Faculty of Biological Sciences, University of South Bohemia, Branisovska 31, Ceske Budejovice, Czech Republic
– sequence: 5
  givenname: Robin J.
  surname: Pakeman
  fullname: Pakeman, Robin J.
  email: robin.pakeman@hutton.ac.uk
  organization: The James Hutton Institute, Craigiebuckler, AB15 8QH, Aberdeen, UK
– sequence: 6
  givenname: Barbara
  surname: Strauss
  fullname: Strauss, Barbara
  email: barbara.strauss@uni-oldenburg.de
  organization: Landscape Ecology Group, University of Oldenburg, 26111, Oldenburg, Germany
– sequence: 7
  givenname: Wilfried
  surname: Thuiller
  fullname: Thuiller, Wilfried
  email: wilfried.thuiller@ujf-grenoble.fr
  organization: Laboratoire d'Ecologie Alpine (CNRS UMR 5553) and Station Alpine Joseph Fourier (UMS-UJF-CNRS 2925), Université Joseph Fourier, BP 53, F-38042, Grenoble Cedex 09, France
– sequence: 8
  givenname: Sandra
  surname: Lavorel
  fullname: Lavorel, Sandra
  email: sandra.lavorel@ujf-grenoble.fr
  organization: Laboratoire d'Ecologie Alpine (CNRS UMR 5553) and Station Alpine Joseph Fourier (UMS-UJF-CNRS 2925), Université Joseph Fourier, BP 53, F-38042, Grenoble Cedex 09, France
BackLink https://univ-lyon1.hal.science/hal-02289796$$DView record in HAL
BookMark eNqNkE1P2zAcxi0EEm_7CJN83SGZX-ImQdqmCg0YquDABhMXy3H-pe4Su7Ld0n77OQvqYSd88SM_L5Z-p-jQOgsIYUpyms7nZU4nosgoJTxnhLKc0IKwfHuATvbGYdKUkKxmnB-j0xCWhNCyntAT1E1DgBCMfcFhBdpAwMq2WLu-X1sTd3i-tjoaZ1WHPYSVsymOo8NgN8Y724ONyXrxqjVJhgv8ujB6gft1F81GeaMi4B7iwrXh2zk6mqsuwIe3-wz9uvr-8_Imm91f_7iczjItGGeZbnnDJi1oACXaQgAB3tSsrpSoq7JhTV00tGzIvCxZ1SgmeKsEF0JUrGoFNPwMfRp3F6qTK2965XfSKSNvpjM5vBHGqjoB2NCUrcas9i4ED_N9gRI5EJZLOYCUA0g5EJb_CMttqn79r6pNVAOs6JXp3jPwZRx4NR3s3v2xvH18GFTqfxz7yxCd3_cTQ0E5rZKfjb4JEbZ7X_k_clLyUsinu2t5VRbF4_PTg_zN_wKjirI8
CitedBy_id crossref_primary_10_1016_j_agee_2023_108386
crossref_primary_10_1007_s10530_020_02371_w
crossref_primary_10_1038_s41598_024_64615_2
crossref_primary_10_3389_fmars_2024_1451886
crossref_primary_10_1111_jvs_12063
crossref_primary_10_1016_j_agee_2014_03_012
crossref_primary_10_1007_s10750_017_3245_9
crossref_primary_10_3389_fmars_2023_1117806
crossref_primary_10_1016_j_gecco_2024_e03144
crossref_primary_10_1002_ecs2_4193
crossref_primary_10_1111_1365_2664_13877
crossref_primary_10_1002_eap_2191
crossref_primary_10_1007_s43388_025_00226_3
crossref_primary_10_1016_j_ecolind_2024_112423
crossref_primary_10_1016_j_actao_2020_103673
crossref_primary_10_1016_j_soilbio_2016_08_006
crossref_primary_10_1038_s41598_024_71239_z
crossref_primary_10_1016_j_scitotenv_2018_12_277
crossref_primary_10_1002_aqc_4141
crossref_primary_10_1111_plb_12155
crossref_primary_10_1038_s41598_019_53998_2
crossref_primary_10_1016_j_gecco_2016_01_004
crossref_primary_10_1111_jvs_12076
crossref_primary_10_1007_s13157_018_1050_5
crossref_primary_10_3389_fpls_2017_00891
crossref_primary_10_1002_ece3_3438
crossref_primary_10_3390_su15032094
crossref_primary_10_1093_jue_juz014
crossref_primary_10_1111_icad_12512
crossref_primary_10_1007_s11356_013_1702_1
crossref_primary_10_7717_peerj_2885
crossref_primary_10_1155_2020_4674580
crossref_primary_10_1016_j_ecss_2020_107105
crossref_primary_10_1038_s41467_017_02421_3
crossref_primary_10_1007_s10531_024_02860_7
crossref_primary_10_3390_d16080438
crossref_primary_10_1111_avsc_12288
crossref_primary_10_1111_avsc_12287
crossref_primary_10_3389_fevo_2019_00373
crossref_primary_10_4996_fireecology_130395119
crossref_primary_10_1890_13_1059_1
crossref_primary_10_1016_j_marpolbul_2022_114265
crossref_primary_10_1002_iroh_202002076
crossref_primary_10_1016_j_flora_2020_151661
crossref_primary_10_1051_kmae_2021030
crossref_primary_10_1002_ece3_1159
crossref_primary_10_1016_j_biocon_2019_108205
crossref_primary_10_1016_j_scitotenv_2018_09_210
crossref_primary_10_1016_j_gecco_2024_e03259
crossref_primary_10_1016_j_apsoil_2018_07_002
crossref_primary_10_1111_gcb_14846
crossref_primary_10_1016_j_foreco_2015_12_025
crossref_primary_10_1093_aob_mcac025
crossref_primary_10_1016_j_hal_2017_12_005
crossref_primary_10_1007_s00027_023_00995_3
crossref_primary_10_1002_2017WR021956
crossref_primary_10_1016_j_actao_2019_103443
crossref_primary_10_3832_ifor1960_009
crossref_primary_10_1016_j_agee_2017_07_005
crossref_primary_10_3389_fmars_2021_756814
crossref_primary_10_1016_j_pocean_2021_102710
crossref_primary_10_1093_aob_mcad105
crossref_primary_10_1007_s11270_017_3671_3
crossref_primary_10_3354_meps14023
crossref_primary_10_1007_s12224_016_9238_z
crossref_primary_10_1016_j_watres_2019_115287
crossref_primary_10_1111_jvs_12156
crossref_primary_10_1002_ecy_70047
crossref_primary_10_1371_journal_pone_0174157
crossref_primary_10_1086_727471
crossref_primary_10_1007_s12224_015_9228_6
crossref_primary_10_1007_s12237_020_00856_4
crossref_primary_10_1111_avsc_12296
crossref_primary_10_1016_j_ppees_2014_09_002
crossref_primary_10_3389_ffgc_2023_1198626
crossref_primary_10_1890_15_0688
crossref_primary_10_1890_15_1368_1
crossref_primary_10_1016_j_agee_2023_108644
crossref_primary_10_1016_j_foreco_2016_08_024
crossref_primary_10_1016_j_eja_2015_06_010
crossref_primary_10_1016_j_scitotenv_2024_174171
crossref_primary_10_1111_jvs_12286
crossref_primary_10_1016_j_ecolind_2018_04_050
crossref_primary_10_1016_j_ecolind_2020_106625
crossref_primary_10_1002_ecy_2530
crossref_primary_10_1111_fwb_14064
crossref_primary_10_7717_peerj_3364
crossref_primary_10_1016_j_foreco_2024_121734
crossref_primary_10_1002_eco_1746
crossref_primary_10_1002_ecm_1454
crossref_primary_10_1016_j_jembe_2012_07_019
crossref_primary_10_1017_S0266467421000493
crossref_primary_10_3389_fevo_2020_583831
crossref_primary_10_1007_s00334_013_0430_2
crossref_primary_10_1016_j_apsoil_2017_09_027
crossref_primary_10_1111_2041_210X_12163
crossref_primary_10_1016_j_ecolind_2021_107671
crossref_primary_10_1111_avsc_12622
crossref_primary_10_1051_kmae_2023012
crossref_primary_10_1038_s41477_024_01649_4
crossref_primary_10_1071_MF24063
crossref_primary_10_1111_ele_13265
crossref_primary_10_1007_s10530_016_1188_0
crossref_primary_10_1590_1982_0224_20140185
crossref_primary_10_1111_1365_2745_12187
crossref_primary_10_1111_jvs_12850
crossref_primary_10_1016_j_gecco_2022_e02048
crossref_primary_10_1038_s41597_019_0344_7
crossref_primary_10_1111_2041_210X_12976
crossref_primary_10_1007_s13762_014_0569_0
crossref_primary_10_1002_ecy_1453
crossref_primary_10_1016_j_ecolind_2017_01_011
crossref_primary_10_1111_ddi_12790
crossref_primary_10_1177_1940082920923896
crossref_primary_10_1111_gcb_13085
crossref_primary_10_1111_1365_2435_13121
crossref_primary_10_1002_ece3_1084
crossref_primary_10_1016_j_ecocom_2019_100787
crossref_primary_10_1016_j_ecolind_2022_109525
crossref_primary_10_1016_j_agee_2018_01_014
crossref_primary_10_1016_j_aquabot_2017_06_002
crossref_primary_10_1016_j_baae_2019_08_002
crossref_primary_10_3389_fmars_2022_1006847
crossref_primary_10_1002_pei3_70019
crossref_primary_10_3390_fishes8010014
crossref_primary_10_1002_aqc_70068
crossref_primary_10_1016_j_foreco_2016_10_056
crossref_primary_10_1007_s10750_019_04072_5
crossref_primary_10_1016_j_soilbio_2018_03_021
crossref_primary_10_1016_j_chnaes_2018_10_005
crossref_primary_10_1111_geb_12184
crossref_primary_10_1016_j_biocon_2020_108545
crossref_primary_10_1111_nph_17296
crossref_primary_10_1016_j_foreco_2020_118180
crossref_primary_10_1016_j_agee_2017_07_042
crossref_primary_10_1111_j_1654_1103_2012_12036_x
crossref_primary_10_1007_s11258_017_0751_9
crossref_primary_10_1111_geb_13706
crossref_primary_10_1007_s10980_019_00872_1
crossref_primary_10_3390_w11051047
crossref_primary_10_1016_j_ecolind_2018_11_021
crossref_primary_10_3389_fevo_2022_922539
crossref_primary_10_1111_jvs_12117
crossref_primary_10_1007_s10531_024_02792_2
crossref_primary_10_3389_fevo_2020_00225
crossref_primary_10_1002_eap_2133
crossref_primary_10_12688_f1000research_2_191_v1
crossref_primary_10_1016_j_ecolind_2022_109662
crossref_primary_10_12688_f1000research_2_191_v2
crossref_primary_10_3389_fevo_2024_1389619
crossref_primary_10_1038_ncomms9568
crossref_primary_10_1007_s10750_019_04123_x
crossref_primary_10_1016_j_pocean_2024_103195
crossref_primary_10_1111_jvs_12481
crossref_primary_10_1016_j_earscirev_2024_104709
crossref_primary_10_1007_s10980_015_0172_x
crossref_primary_10_1111_jvs_12009
crossref_primary_10_3389_fmars_2022_921595
crossref_primary_10_1016_j_tree_2015_06_007
crossref_primary_10_3390_plants11010087
crossref_primary_10_1007_s00442_024_05538_7
crossref_primary_10_1016_j_envpol_2019_06_117
crossref_primary_10_1007_s10452_014_9484_1
crossref_primary_10_5194_essd_11_301_2019
crossref_primary_10_1002_ece3_9396
crossref_primary_10_1007_s10651_017_0395_x
crossref_primary_10_1007_s11629_016_4285_8
crossref_primary_10_1111_ecog_06718
crossref_primary_10_1016_j_pocean_2025_103421
crossref_primary_10_1111_jvs_12251
crossref_primary_10_1080_17550874_2019_1673846
crossref_primary_10_1155_2016_6417913
crossref_primary_10_3354_meps13840
crossref_primary_10_1111_jvs_12017
crossref_primary_10_1016_j_scitotenv_2020_142171
crossref_primary_10_1007_s40333_021_0003_7
crossref_primary_10_1111_1365_2435_14123
crossref_primary_10_1111_1365_2745_13190
crossref_primary_10_1007_s11104_017_3291_0
crossref_primary_10_1016_j_scitotenv_2024_176536
crossref_primary_10_1016_j_envpol_2020_113959
crossref_primary_10_1016_j_jenvman_2024_123755
crossref_primary_10_1590_0102_33062019abb0198
crossref_primary_10_1007_s10651_017_0368_0
crossref_primary_10_1111_jvs_13073
crossref_primary_10_1007_s10531_013_0565_6
crossref_primary_10_1016_j_scitotenv_2023_162405
crossref_primary_10_1111_ele_12462
crossref_primary_10_1111_wre_12283
crossref_primary_10_1038_s41597_023_02728_5
crossref_primary_10_1007_s00442_015_3345_z
crossref_primary_10_1111_jvs_12666
crossref_primary_10_1111_jvs_12789
crossref_primary_10_1111_jvs_12425
crossref_primary_10_1111_geb_13630
crossref_primary_10_1016_j_scitotenv_2021_152317
crossref_primary_10_1002_ece3_11466
crossref_primary_10_1111_fwb_12825
crossref_primary_10_1007_s00334_018_0687_6
crossref_primary_10_1038_s41598_025_91820_4
crossref_primary_10_3989_ajbm_2397
crossref_primary_10_1016_j_ecolind_2015_10_008
crossref_primary_10_1093_icesjms_fsab011
crossref_primary_10_7717_peerj_9751
crossref_primary_10_1111_aec_12607
crossref_primary_10_1111_avsc_12359
crossref_primary_10_1007_s10021_013_9714_8
crossref_primary_10_1007_s11252_019_00843_z
crossref_primary_10_1186_s13071_021_05143_0
crossref_primary_10_1111_1365_2435_13907
crossref_primary_10_3354_meps14671
crossref_primary_10_1016_j_fecs_2024_100235
crossref_primary_10_3389_frsc_2023_1192588
crossref_primary_10_1016_j_scitotenv_2020_144327
crossref_primary_10_1139_as_2021_0040
crossref_primary_10_1002_aqc_3128
crossref_primary_10_1111_jvs_12688
crossref_primary_10_1016_j_watbs_2024_100291
crossref_primary_10_1111_2041_210X_12327
crossref_primary_10_3390_math6120295
crossref_primary_10_3390_d15090949
crossref_primary_10_1177_1940082917713013
crossref_primary_10_1016_j_foreco_2015_10_008
crossref_primary_10_1890_13_0196_1
crossref_primary_10_1016_j_foreco_2013_06_046
crossref_primary_10_1016_j_foreco_2021_119272
crossref_primary_10_1016_j_ecolind_2021_107952
crossref_primary_10_1007_s10265_023_01468_2
crossref_primary_10_1002_ecs2_2460
crossref_primary_10_1016_j_aquabot_2014_05_007
crossref_primary_10_1007_s10980_017_0486_y
crossref_primary_10_1002_eap_2560
crossref_primary_10_1111_avsc_12592
Cites_doi 10.1046/j.1365-2745.2001.00535.x
10.1046/j.1365-2435.2002.00664.x
10.1086/285804
10.1111/j.0022-0477.2004.00928.x
10.2307/3546427
10.2307/3546011
10.2307/3237077
10.1111/j.1461-0248.2010.01456.x
10.1890/03-0148
10.1111/j.1654-1103.2005.tb02350.x
10.1111/j.1654-1103.2006.tb02444.x
10.1111/j.1654-1103.2007.tb02607.x
10.1007/978-94-017-1094-7
10.1007/978-3-540-32730-1_13
10.1111/j.1469-8137.2006.01741.x
10.1007/978-3-642-18970-8
10.1890/0012-9658(1997)078[0547:RBTHST]2.0.CO;2
10.1016/S0169-5347(97)01219-6
10.1093/aob/mcl215
10.1111/j.1365-2745.2004.00838.x
10.1111/j.0030-1299.2007.15559.x
10.1890/08-0349.1
10.1890/0012-9658(2006)87[1755:IBESTA]2.0.CO;2
10.1016/j.dsr2.2006.01.025
10.2307/3546655
10.1111/j.1461-0248.2007.01118.x
10.2307/3545483
10.3170/2008-8-18436
10.1007/BF02427859
10.1890/03-0178
10.1201/9780367805302
10.1111/j.1365-2486.2008.01557.x
10.2307/2261604
10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2
10.1111/j.1365-2656.2008.01462.x
10.1111/j.1654-1103.2009.05666.x
10.1111/j.1461-0248.2008.01277.x
10.2307/2389258
10.1890/0012-9658(2002)083[1105:MRTANT]2.0.CO;2
10.1111/j.1654-1103.2004.tb02236.x
10.1657/1523-0430(2005)037[0444:CSIAPT]2.0.CO;2
10.1002/9780470977811
10.2307/1938672
10.1556/ComEc.8.2007.2.3
10.1111/j.0022-0477.2004.00880.x
10.1111/j.1365-2745.2007.01275.x
10.1111/j.1365-2486.2007.01375.x
10.1890/06-0054
10.1111/j.1654-1103.2003.tb02158.x
10.1111/j.0030-1299.2008.16776.x
10.1007/s10651-008-0098-4
10.1111/j.1365-2699.2005.01351.x
10.1111/j.1654-1103.1996.tb00489.x
10.1034/j.1600-0706.2002.980116.x
10.1146/annurev.ecolsys.33.010802.150452
10.1111/j.1365-2427.2006.01663.x
ContentType Journal Article
Copyright Copyright © 2012 International Association for Vegetation Science
2012 International Association for Vegetation Science
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2012 International Association for Vegetation Science
– notice: 2012 International Association for Vegetation Science
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
1XC
DOI 10.1111/j.1654-1103.2012.01402.x
DatabaseName Istex
CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1654-1103
Editor Wildi, Otto
Editor_xml – sequence: 9
  givenname: Otto
  surname: Wildi
  fullname: Wildi, Otto
EndPage 821
ExternalDocumentID oai_HAL_hal_02289796v1
10_1111_j_1654_1103_2012_01402_x
JVS1402
23251318
ark_67375_WNG_F744VZWS_X
Genre article
GrantInformation_xml – fundername: ANR DIVERSITALP
  funderid: ANR 07 BDIV 014
– fundername: ESF EuroDIVERSITY
  funderid: DFG KL756/2‐1
– fundername: GACR
  funderid: 206/09/1471
GroupedDBID -JH
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
29L
2~F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AANLZ
AAONW
AAPSS
AASGY
AAXRX
AAXTN
AAZKR
ABBHK
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPLY
ABPVW
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADHSS
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEJZ
AEEZP
AEIGN
AEIMD
AENEX
AEPYG
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFFIJ
AFFPM
AFGKR
AFNWH
AFPWT
AFRAH
AGUYK
AHBTC
AHXOZ
AI.
AICQM
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKPMI
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
AQVQM
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
CBGCD
COF
CS3
D-E
D-F
DATOO
DC7
DCZOG
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EQZMY
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
H13
HF~
HGD
HGLYW
HTVGU
HVGLF
HZ~
IAG
IAO
IEP
IHR
IPSME
ITC
J0M
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
PQ0
Q.N
Q11
Q5J
QB0
R.K
RBO
ROL
RWI
RX1
SA0
SUPJJ
TEORI
TUS
UB1
VH1
VOH
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~02
~8M
~IA
~KM
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACHIC
ACRPL
ACUHS
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
AGHNM
CITATION
1XC
ID FETCH-LOGICAL-c5232-cd3b26deceea5d45e0e3b9298a5987b2b94b17b0f7728ba253da53555828d5eb3
IEDL.DBID DR2
ISSN 1100-9233
IngestDate Fri May 09 12:16:06 EDT 2025
Tue Jul 01 03:14:55 EDT 2025
Thu Apr 24 22:57:47 EDT 2025
Wed Jan 22 16:42:35 EST 2025
Thu Jul 03 21:16:40 EDT 2025
Wed Oct 30 09:48:54 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5232-cd3b26deceea5d45e0e3b9298a5987b2b94b17b0f7728ba253da53555828d5eb3
Notes ANR DIVERSITALP - No. ANR 07 BDIV 014
Appendix S1. Detailed description of the case study site, sampling methods and species' responses to environmental gradients.Appendix S2. Tutorial: methods for assessing functional responses to environmental gradients.Appendix S3. The artificial data set.Appendix S4. R scripts and field data set.
GACR - No. 206/09/1471
ark:/67375/WNG-F744VZWS-X
ArticleID:JVS1402
istex:B5F3978A2E79377D7172D51E66276F3757EE87F8
ESF EuroDIVERSITY - No. DFG KL756/2-1
ORCID 0000-0002-7300-2811
0000-0002-5388-5274
0000-0001-9202-8198
0000-0003-0153-1105
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1654-1103.2012.01402.x
PageCount 17
ParticipantIDs hal_primary_oai_HAL_hal_02289796v1
crossref_primary_10_1111_j_1654_1103_2012_01402_x
crossref_citationtrail_10_1111_j_1654_1103_2012_01402_x
wiley_primary_10_1111_j_1654_1103_2012_01402_x_JVS1402
jstor_primary_23251318
istex_primary_ark_67375_WNG_F744VZWS_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2012
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: October 2012
PublicationDecade 2010
PublicationTitle Journal of vegetation science
PublicationTitleAlternate J Veg Sci
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References Legendre, P. & Legendre, L. 1998. Numerical ecology, 2nd edn. Elsevier, Amsterdam, NL.
Bernhardt-Römermann, M., Römermann, C., Nuske, R., Parth, A., Klotz, S., Schmidt, W. & Stadler, J. 2008. On the identification of the most suitable traits for plant functional trait analyses. Oikos 117: 1533-1541.
Körner, C. 2003. Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer, Berlin and Heidelberg, DE.
Pillar, V.D. & Sosinski, E.E. Jr 2003. An improved method for searching plant functional types by numerical analysis. Journal of Vegetation Science 14: 232-332.
Kearney, M. & Porter, W. 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Ecology Letters 12: 334-350.
Whitlock, R., Grime, J.P., Booth, R. & T. Burke, T. 2007. The role of genotypic diversity in determining grassland community structure under constant environmental conditions. Journal of Ecology 95: 895-907.
Rao, C.R. 1964. The use and interpretation of principal correspondence analysis in applied research. Sankhya A 26: 329-359.
Choler, P. 2005. Consistent shifts in Alpine plant traits along a mesotopographical gradient. Arctic, Antarctic and Alpine Research 37: 444-453.
Lavorel, S., Rochette, C. & Lebreton, J. 1999. Functional groups for response to disturbance in Mediterranean old fields. Oikos 84: 480-498.
Lavorel, S. & Garnier, E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16: 545-556.
Moretti, M., de Bello, F., Roberts, S.P.M. & Potts, S.G. 2009. Taxonomical vs. functional responses of bee communities to fire in two contrasting climatic regions. Journal of Animal Ecology 78: 98-108.
Leishman, M.R., Westoby, M. & Jurado, E. 1995. Correlates of seed size variation: a comparison among five temperate floras. Journal of Ecology 83: 517-530.
Nygaard, B. & Ejrnaes, R. 2004. A new approach to functional interpretation of vegetation data. Journal of Vegetation Science 15: 49-56.
McIntyre, S., Lavorel, S., Landsberg, J. & Forbes, T.D.A. 1999. Disturbance response in vegetation - towards a global perspective on functional traits. Journal of Vegetation Science 10: 621-630.
Woodward, F.I. & Diament, A.D. 1991. Functional approaches to predicting the ecological effects of global change. Functional Ecology 5: 202-212.
Lavorel, S., McIntyre, S., Landsberg, J. & Forbes, T.D.A. 1997. Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends in Ecology and Evolution 12: 474-478.
Dray, S. & Legendre, P. 2008. Testing the species traits-environment relationships: the fourth-corner problem revisited. Ecology 89: 3400-3412.
Cingolani, A.M., Cabido, M., Gurvich, D.E., Renison, D. & Diaz, S. 2007. Filtering processes in the assembly of plant communities: are species presence and abundance driven by the same traits? Journal of Vegetation Science 18: 911-920.
Gordon, A.D. 1999. Classification, 2nd edn. Chapman & Hall, Boca Raton, FL, US.
Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. 1984. Classification and regression trees. Chapman & Hall, New York, NY, US.
Quetier, F., Thebault, A. & Lavorel, S. 2007. Plant traits in a state and transition framework as markers of ecosystem response to land-use change. Ecological Monographs 77: 33-52.
Westoby, M., Leishman, M. & Lord, J. 1995. Issues of interpretation after relating comparative datasets to phylogeny. Journal of Ecology 83: 892-893.
Jäger, E.J. & Werner, K. 2002. Exkursionsflora von Deutschland, Vol. 4, 9th edn. Spektrum, Berlin, DE.
Grime, J.P. 2006. Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. Journal of Vegetation Science 17: 255-260.
Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A. & Wright, I.J. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33: 125-159.
Wilson, J.B. 1999. Guilds, functional types and ecological groups. Oikos 86: 507-522.
Hood, R. R., Laws, E.A., Armstrong, R.A., Bates, N.R., Brown, C.W., Carlson, C.A., Chai, F., Doney, S.C., Falkowski, P.G., Feely, R.A., Friedrichs, M.A.M., Landry, M.R., Moore, J.K., Nelson, D.M., Richardson, T.L., Salihoglu, B., Schartau, M., Toole, D.A. & Wiggert, J. D. 2006. Pelagic functional group modeling: progress, challenges and prospects. Deep-Sea Research Part II-Topical Studies in Oceanography 53: 459-512.
Ackerly, D.D., Knight, C.A., Weiss, S.B., Barton, K. & Starmer, K.P. 2002. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia 130: 449-457.
De'Ath, G. 2002. Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology 83: 1105-1117.
ter Braak, C.J.F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167-1179.
Fox, B.J. & Brown, J.H. 1993. Assembly rules for functional groups in North American desert rodent communities. Oikos 67: 358-370.
Burnham, K.P. & Anderson, D.R. 2002. Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York, NY, US.
Grime, J.P., Thompson, K., Hunt, R., Hodgson, J.G., Cornelissen, J.H.C., Rorison, I.H., Hendry, G.A.F., Ashenden, T.W., Askew, A.P., Band, S.R., Booth, R.E., Bossard, C.C., Campbell, B.D., Cooper, J.E.L., Davison, A.W., Gupta, P.L., Hall, W., Hand, D.W., Hannah, M.A., Hillier, S.H., Hodkinson, D.J., Jalili, A., Liu, Z., Mackey, J.L., Matthews, N, Mowforth, M.A., Neal, A.M., Reader, R.J., Reiling, K., Ross-Fraser, A.M., Spencer, R.E., Sutton, F., Tasker, D.E., Thorpe, P.C. & Whitehouse, J. 1997. Integrated screening validates a primary axis of specialisation in plants. Oikos 79: 259-281.
Grime, J.P., Hodgson, J.G. & Hunt, R. 1988. Comparative plant ecology. Unwin-Hyman, London, UK.
Thuiller, W., Richardson, D.M., Rouget, M., Procheş, Ş. & Wilson, J.R.U. 2006. Interactions between environment, species traits, and human uses describe patterns of plant invasions. Ecology 87: 1755-1769.
Moles, A.T., Falster, D.S., Leishman, M.R. & Westoby, M. 2004. Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. Journal of Ecology 92: 384-396.
Hérault, B. & Honnay, O. 2005. The relative importance of local, regional and historical factors determining the distribution of plants in fragmented riverine forests: an emergent group approach. Journal of Biogeography 32: 2069-2081.
Bonada, N., Dolédec, S. & Statzner, B. 2007. Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios. Global Change Biology 13: 1658-1671.
Kühner, A. & Kleyer, M. 2008. A parsimonious combination of functional traits predicting plant response to disturbance and soil fertility. Journal of Vegetation Science 19: 681-642.
Violle, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. & Garnier, E. 2007. Let the concept of trait be functional! Oikos 116: 882-892.
Pakeman, R.J. 2004. Consistency of plant species and trait responses to grazing along a productivity gradient: a multi-site analysis. Journal of Ecology 92: 893-905.
Suding, K.N., Lavorel, S., Chapin, F.S., Cornelissen, J.H.C., Diaz, S., Garnier, E., Goldberg, D., Hooper, D.U., Jackson, S.T. & Navas, M.L. 2008. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biology 14: 1125-1140.
de Bello, F., Leps, J., Lavorel, S. & Moretti, M. 2007. Importance of species abundance for assessment of trait composition: an example based on pollinator communities. Community Ecology 8: 163-170.
Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Dolezal, J., Eriksson, O., Fortunel, C., Freitas, H., Golodets, C., Grigulis, K., Jouany, C., Kazakou, E., Kigel, J., Kleyer, M., Lehsten, V., Leps, J., Meier, T., Pakeman, R., Papadimitriou, M., Papanastasis, V.P., Quested, H., Quetier, F., Robson, M., Roumet, C., Rusch, G., Skarpe, C., Sternberg, M., Theau, J.P., Thebault, A., Vile, D. & Zarovali, M.P. 2007. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Annals of Botany 99: 967-985.
Lehsten, V., Harmand, P. & Kleyer, M. 2009. Fourth Corner Generation of Plant Functional Response Groups. Environmental and Ecological Statistics 16: 561-584.
Everitt, B.S., Landau, S., Leese, M. & Stahl, D. 2011. Cluster analysis, 5th edn. Wiley, Chichester, UK.
Dolédec, S., Chessel, D., ter Braak, C.J.F. & Champely, S. 1996. Matching species traits to environmental variables: a new three-table ordination method. Environmental and Ecological Statistics 3: 143-166.
Thuiller, W., Lavorel, S., Midgley, G., Lavergne, S. & Rebelo, T. 2004. Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron taxa. Ecology 85: 1688-1699.
Lord, J., Westoby, M. & Leishman, M. 1995. Seed size and phylogeny in 6 temperate floras - constraints, niche conservatism, and adaptation. American Naturalist 146: 349-364.
Woodward, F.I. & Cramer, W. 1996. Plant functional types and climatic changes: introduction. Journal of Vegetation Science 7: 306-308.
Legendre, P., Galzin, R. & HarmelinVivien, M.L. 1997. Relating behavior to habitat: solutions to the fourth-corner problem. Ecology 78: 547-562.
Rosenfeld, J.S. 2002. Functional redundancy in ecology and conservation. Oikos 98: 156-162.
Crutsinger, G.M., Souza, L. & Sanders, N.J. 2007. Intraspecific diversity and dominant genotypes resist plant invasions. Ecology Letters 11: 16-23.
Dolédec, S., Chessel, D. & Gimaret-Carpentier, C. 2000. Niche separation in community analysis: a new method. E
2002; 16
1993; 67
2010; 13
2002; 98
2003; 14
1999; 86
1999; 84
2001; 89
2007; 77
2009; 12
2002; 83
2006; 21
1997; 12
2007; 8
2008; 117
1984
2005; 32
1999; 10
2005; 37
2003; 84
1996; 3
2009; 16
1988
1996; 7
2007; 18
2004; 85
2006; 53
2009; 20
2011
2002; 130
2006; 17
2008; 19
2002; 33
1998
2008; 14
2007
2002; 4
1964; 26
2003
2007; 95
2002
2007; 52
2007; 11
2007; 99
2007; 13
1999
1991; 5
2009; 78
1995; 83
2004; 92
2007; 116
2006; 87
1986; 67
2004; 15
1997; 79
1997; 78
2000; 81
2008; 89
1995; 146
2005; 16
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Jäger E.J. (e_1_2_9_27_1) 2002
Burnham K.P. (e_1_2_9_8_1) 2002
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Rao C.R. (e_1_2_9_52_1) 1964; 26
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
Westoby M. (e_1_2_9_58_1) 1995; 83
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_48_1
Legendre P. (e_1_2_9_35_1) 1998
e_1_2_9_29_1
Crutsinger G.M. (e_1_2_9_11_1) 2007; 11
Breiman L. (e_1_2_9_7_1) 1984
References_xml – reference: Hérault, B. & Honnay, O. 2005. The relative importance of local, regional and historical factors determining the distribution of plants in fragmented riverine forests: an emergent group approach. Journal of Biogeography 32: 2069-2081.
– reference: McIntyre, S., Lavorel, S., Landsberg, J. & Forbes, T.D.A. 1999. Disturbance response in vegetation - towards a global perspective on functional traits. Journal of Vegetation Science 10: 621-630.
– reference: Hood, R. R., Laws, E.A., Armstrong, R.A., Bates, N.R., Brown, C.W., Carlson, C.A., Chai, F., Doney, S.C., Falkowski, P.G., Feely, R.A., Friedrichs, M.A.M., Landry, M.R., Moore, J.K., Nelson, D.M., Richardson, T.L., Salihoglu, B., Schartau, M., Toole, D.A. & Wiggert, J. D. 2006. Pelagic functional group modeling: progress, challenges and prospects. Deep-Sea Research Part II-Topical Studies in Oceanography 53: 459-512.
– reference: Crutsinger, G.M., Souza, L. & Sanders, N.J. 2007. Intraspecific diversity and dominant genotypes resist plant invasions. Ecology Letters 11: 16-23.
– reference: Lavorel, S. & Garnier, E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16: 545-556.
– reference: Rosenfeld, J.S. 2002. Functional redundancy in ecology and conservation. Oikos 98: 156-162.
– reference: Nygaard, B. & Ejrnaes, R. 2004. A new approach to functional interpretation of vegetation data. Journal of Vegetation Science 15: 49-56.
– reference: Pillar, V. D., Duarte, L. D., Sosinski, E. E. & Joner, F. 2009. Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. Journal of Vegetation Science 20: 334-348.
– reference: Whitlock, R., Grime, J.P., Booth, R. & T. Burke, T. 2007. The role of genotypic diversity in determining grassland community structure under constant environmental conditions. Journal of Ecology 95: 895-907.
– reference: De'Ath, G. 2002. Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology 83: 1105-1117.
– reference: Kearney, M. & Porter, W. 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Ecology Letters 12: 334-350.
– reference: Burnham, K.P. & Anderson, D.R. 2002. Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York, NY, US.
– reference: Woodward, F.I. & Diament, A.D. 1991. Functional approaches to predicting the ecological effects of global change. Functional Ecology 5: 202-212.
– reference: Leishman, M.R., Westoby, M. & Jurado, E. 1995. Correlates of seed size variation: a comparison among five temperate floras. Journal of Ecology 83: 517-530.
– reference: Quetier, F., Thebault, A. & Lavorel, S. 2007. Plant traits in a state and transition framework as markers of ecosystem response to land-use change. Ecological Monographs 77: 33-52.
– reference: Bonada, N., Dolédec, S. & Statzner, B. 2007. Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios. Global Change Biology 13: 1658-1671.
– reference: Louault, F., Pillard, V D., Aufrère, J., Garnier, E. & Soussana, J.-F. 2005. Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. Journal of Vegetation Science, 16: 151-160.
– reference: Moretti, M., de Bello, F., Roberts, S.P.M. & Potts, S.G. 2009. Taxonomical vs. functional responses of bee communities to fire in two contrasting climatic regions. Journal of Animal Ecology 78: 98-108.
– reference: Lord, J., Westoby, M. & Leishman, M. 1995. Seed size and phylogeny in 6 temperate floras - constraints, niche conservatism, and adaptation. American Naturalist 146: 349-364.
– reference: Dolédec, S., Lamouroux, N., Fuchs, U. & Mérigoux, S. 2007. Modelling the hydraulic preferences of benthic macroinvertebrates in small European streams. Freshwater Biology 52: 145-164.
– reference: Dray, S., Chessel, D. & Thioulouse, J. 2003. Co-inertia analysis and the linking of ecological data tables. Ecology 84: 3078-3089.
– reference: Dray, S. & Legendre, P. 2008. Testing the species traits-environment relationships: the fourth-corner problem revisited. Ecology 89: 3400-3412.
– reference: Cingolani, A.M., Cabido, M., Gurvich, D.E., Renison, D. & Diaz, S. 2007. Filtering processes in the assembly of plant communities: are species presence and abundance driven by the same traits? Journal of Vegetation Science 18: 911-920.
– reference: Jäger, E.J. & Werner, K. 2002. Exkursionsflora von Deutschland, Vol. 4, 9th edn. Spektrum, Berlin, DE.
– reference: Lehsten, V., Harmand, P. & Kleyer, M. 2009. Fourth Corner Generation of Plant Functional Response Groups. Environmental and Ecological Statistics 16: 561-584.
– reference: de Bello, F., Leps, J., Lavorel, S. & Moretti, M. 2007. Importance of species abundance for assessment of trait composition: an example based on pollinator communities. Community Ecology 8: 163-170.
– reference: Wilson, J.B. 1999. Guilds, functional types and ecological groups. Oikos 86: 507-522.
– reference: McIntyre, S. & Lavorel, S. 2001. Livestock grazing in subtropical pastures: steps in the analysis of attribute response and plant functional types. Journal of Ecology 89: 209-226.
– reference: Legendre, P., Galzin, R. & HarmelinVivien, M.L. 1997. Relating behavior to habitat: solutions to the fourth-corner problem. Ecology 78: 547-562.
– reference: Choler, P. 2005. Consistent shifts in Alpine plant traits along a mesotopographical gradient. Arctic, Antarctic and Alpine Research 37: 444-453.
– reference: Westoby, M., Leishman, M. & Lord, J. 1995. Issues of interpretation after relating comparative datasets to phylogeny. Journal of Ecology 83: 892-893.
– reference: Pillar, V. D. & Duarte, L. D. 2010. A framework for metacommunity analysis of phylogenetic structure. Ecology Letters 13: 587-596.
– reference: Dolédec, S., Chessel, D., ter Braak, C.J.F. & Champely, S. 1996. Matching species traits to environmental variables: a new three-table ordination method. Environmental and Ecological Statistics 3: 143-166.
– reference: Gordon, A.D. 1999. Classification, 2nd edn. Chapman & Hall, Boca Raton, FL, US.
– reference: Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Dolezal, J., Eriksson, O., Fortunel, C., Freitas, H., Golodets, C., Grigulis, K., Jouany, C., Kazakou, E., Kigel, J., Kleyer, M., Lehsten, V., Leps, J., Meier, T., Pakeman, R., Papadimitriou, M., Papanastasis, V.P., Quested, H., Quetier, F., Robson, M., Roumet, C., Rusch, G., Skarpe, C., Sternberg, M., Theau, J.P., Thebault, A., Vile, D. & Zarovali, M.P. 2007. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Annals of Botany 99: 967-985.
– reference: Bernhardt-Römermann, M., Römermann, C., Nuske, R., Parth, A., Klotz, S., Schmidt, W. & Stadler, J. 2008. On the identification of the most suitable traits for plant functional trait analyses. Oikos 117: 1533-1541.
– reference: Ackerly, D.D., Knight, C.A., Weiss, S.B., Barton, K. & Starmer, K.P. 2002. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia 130: 449-457.
– reference: Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A. & Wright, I.J. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33: 125-159.
– reference: Lavorel, S., Rochette, C. & Lebreton, J. 1999. Functional groups for response to disturbance in Mediterranean old fields. Oikos 84: 480-498.
– reference: Kühner, A. & Kleyer, M. 2008. A parsimonious combination of functional traits predicting plant response to disturbance and soil fertility. Journal of Vegetation Science 19: 681-642.
– reference: Lavorel, S., McIntyre, S., Landsberg, J. & Forbes, T.D.A. 1997. Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends in Ecology and Evolution 12: 474-478.
– reference: Grime, J.P., Hodgson, J.G. & Hunt, R. 1988. Comparative plant ecology. Unwin-Hyman, London, UK.
– reference: Fox, B.J. & Brown, J.H. 1993. Assembly rules for functional groups in North American desert rodent communities. Oikos 67: 358-370.
– reference: Dolédec, S., Chessel, D. & Gimaret-Carpentier, C. 2000. Niche separation in community analysis: a new method. Ecology 81: 2914-2927.
– reference: Moles, A.T., Falster, D.S., Leishman, M.R. & Westoby, M. 2004. Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. Journal of Ecology 92: 384-396.
– reference: Legendre, P. & Legendre, L. 1998. Numerical ecology, 2nd edn. Elsevier, Amsterdam, NL.
– reference: Pillar, V.D. & Sosinski, E.E. Jr 2003. An improved method for searching plant functional types by numerical analysis. Journal of Vegetation Science 14: 232-332.
– reference: Rao, C.R. 1964. The use and interpretation of principal correspondence analysis in applied research. Sankhya A 26: 329-359.
– reference: Thuiller, W., Richardson, D.M., Rouget, M., Procheş, Ş. & Wilson, J.R.U. 2006. Interactions between environment, species traits, and human uses describe patterns of plant invasions. Ecology 87: 1755-1769.
– reference: Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. 1984. Classification and regression trees. Chapman & Hall, New York, NY, US.
– reference: Grime, J.P., Thompson, K., Hunt, R., Hodgson, J.G., Cornelissen, J.H.C., Rorison, I.H., Hendry, G.A.F., Ashenden, T.W., Askew, A.P., Band, S.R., Booth, R.E., Bossard, C.C., Campbell, B.D., Cooper, J.E.L., Davison, A.W., Gupta, P.L., Hall, W., Hand, D.W., Hannah, M.A., Hillier, S.H., Hodkinson, D.J., Jalili, A., Liu, Z., Mackey, J.L., Matthews, N, Mowforth, M.A., Neal, A.M., Reader, R.J., Reiling, K., Ross-Fraser, A.M., Spencer, R.E., Sutton, F., Tasker, D.E., Thorpe, P.C. & Whitehouse, J. 1997. Integrated screening validates a primary axis of specialisation in plants. Oikos 79: 259-281.
– reference: Thuiller, W., Lavorel, S., Midgley, G., Lavergne, S. & Rebelo, T. 2004. Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron taxa. Ecology 85: 1688-1699.
– reference: ter Braak, C.J.F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167-1179.
– reference: Grime, J.P. 2006. Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. Journal of Vegetation Science 17: 255-260.
– reference: Woodward, F.I. & Cramer, W. 1996. Plant functional types and climatic changes: introduction. Journal of Vegetation Science 7: 306-308.
– reference: McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. 2006. Rebuilding community ecology from functional traits. Trends in Ecology and Evolution 21: 178-185.
– reference: Körner, C. 2003. Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer, Berlin and Heidelberg, DE.
– reference: Pakeman, R.J. 2004. Consistency of plant species and trait responses to grazing along a productivity gradient: a multi-site analysis. Journal of Ecology 92: 893-905.
– reference: Suding, K.N., Lavorel, S., Chapin, F.S., Cornelissen, J.H.C., Diaz, S., Garnier, E., Goldberg, D., Hooper, D.U., Jackson, S.T. & Navas, M.L. 2008. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biology 14: 1125-1140.
– reference: Violle, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. & Garnier, E. 2007. Let the concept of trait be functional! Oikos 116: 882-892.
– reference: Everitt, B.S., Landau, S., Leese, M. & Stahl, D. 2011. Cluster analysis, 5th edn. Wiley, Chichester, UK.
– year: 2011
– volume: 12
  start-page: 334
  year: 2009
  end-page: 350
  article-title: Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges
  publication-title: Ecology Letters
– volume: 92
  start-page: 384
  year: 2004
  end-page: 396
  article-title: Small‐seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime
  publication-title: Journal of Ecology
– volume: 99
  start-page: 967
  year: 2007
  end-page: 985
  article-title: Assessing the effects of land‐use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites
  publication-title: Annals of Botany
– volume: 81
  start-page: 2914
  year: 2000
  end-page: 2927
  article-title: Niche separation in community analysis: a new method
  publication-title: Ecology
– volume: 83
  start-page: 517
  year: 1995
  end-page: 530
  article-title: Correlates of seed size variation: a comparison among five temperate floras
  publication-title: Journal of Ecology
– volume: 26
  start-page: 329
  year: 1964
  end-page: 359
  article-title: The use and interpretation of principal correspondence analysis in applied research
  publication-title: Sankhya A
– start-page: 149
  year: 2007
  end-page: 160
– volume: 87
  start-page: 1755
  year: 2006
  end-page: 1769
  article-title: Interactions between environment, species traits, and human uses describe patterns of plant invasions
  publication-title: Ecology
– volume: 89
  start-page: 3400
  year: 2008
  end-page: 3412
  article-title: Testing the species traits–environment relationships: the fourth‐corner problem revisited
  publication-title: Ecology
– volume: 16
  start-page: 151
  year: 2005
  end-page: 160
  article-title: Plant traits and functional types in response to reduced disturbance in a semi‐natural grassland
  publication-title: Journal of Vegetation Science
– volume: 19
  start-page: 681
  year: 2008
  end-page: 642
  article-title: A parsimonious combination of functional traits predicting plant response to disturbance and soil fertility
  publication-title: Journal of Vegetation Science
– volume: 67
  start-page: 358
  year: 1993
  end-page: 370
  article-title: Assembly rules for functional groups in North American desert rodent communities
  publication-title: Oikos
– volume: 130
  start-page: 449
  year: 2002
  end-page: 457
  article-title: Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses
  publication-title: Oecologia
– volume: 84
  start-page: 480
  year: 1999
  end-page: 498
  article-title: Functional groups for response to disturbance in Mediterranean old fields
  publication-title: Oikos
– volume: 53
  start-page: 459
  year: 2006
  end-page: 512
  article-title: Pelagic functional group modeling: progress, challenges and prospects
  publication-title: Deep‐Sea Research Part II‐Topical Studies in Oceanography
– year: 1998
– volume: 116
  start-page: 882
  year: 2007
  end-page: 892
  article-title: Let the concept of trait be functional!
  publication-title: Oikos
– volume: 15
  start-page: 49
  year: 2004
  end-page: 56
  article-title: A new approach to functional interpretation of vegetation data
  publication-title: Journal of Vegetation Science
– volume: 78
  start-page: 98
  year: 2009
  end-page: 108
  article-title: Taxonomical vs. functional responses of bee communities to fire in two contrasting climatic regions
  publication-title: Journal of Animal Ecology
– volume: 37
  start-page: 444
  year: 2005
  end-page: 453
  article-title: Consistent shifts in Alpine plant traits along a mesotopographical gradient
  publication-title: Arctic, Antarctic and Alpine Research
– volume: 5
  start-page: 202
  year: 1991
  end-page: 212
  article-title: Functional approaches to predicting the ecological effects of global change
  publication-title: Functional Ecology
– volume: 32
  start-page: 2069
  year: 2005
  end-page: 2081
  article-title: The relative importance of local, regional and historical factors determining the distribution of plants in fragmented riverine forests: an emergent group approach
  publication-title: Journal of Biogeography
– volume: 84
  start-page: 3078
  year: 2003
  end-page: 3089
  article-title: Co‐inertia analysis and the linking of ecological data tables
  publication-title: Ecology
– volume: 18
  start-page: 911
  year: 2007
  end-page: 920
  article-title: Filtering processes in the assembly of plant communities: are species presence and abundance driven by the same traits?
  publication-title: Journal of Vegetation Science
– volume: 10
  start-page: 621
  year: 1999
  end-page: 630
  article-title: Disturbance response in vegetation – towards a global perspective on functional traits
  publication-title: Journal of Vegetation Science
– volume: 67
  start-page: 1167
  year: 1986
  end-page: 1179
  article-title: Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis
  publication-title: Ecology
– volume: 13
  start-page: 1658
  year: 2007
  end-page: 1671
  article-title: Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios
  publication-title: Global Change Biology
– volume: 16
  start-page: 545
  year: 2002
  end-page: 556
  article-title: Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail
  publication-title: Functional Ecology
– volume: 79
  start-page: 259
  year: 1997
  end-page: 281
  article-title: Integrated screening validates a primary axis of specialisation in plants
  publication-title: Oikos
– volume: 85
  start-page: 1688
  year: 2004
  end-page: 1699
  article-title: Relating plant traits and species distributions along bioclimatic gradients for 88 taxa
  publication-title: Ecology
– volume: 12
  start-page: 474
  year: 1997
  end-page: 478
  article-title: Plant functional classifications: from general groups to specific groups based on response to disturbance
  publication-title: Trends in Ecology and Evolution
– volume: 98
  start-page: 156
  year: 2002
  end-page: 162
  article-title: Functional redundancy in ecology and conservation
  publication-title: Oikos
– volume: 83
  start-page: 1105
  year: 2002
  end-page: 1117
  article-title: Multivariate regression trees: a new technique for modeling species–environment relationships
  publication-title: Ecology
– year: 2003
– volume: 83
  start-page: 892
  year: 1995
  end-page: 893
  article-title: Issues of interpretation after relating comparative datasets to phylogeny
  publication-title: Journal of Ecology
– volume: 14
  start-page: 232
  year: 2003
  end-page: 332
  article-title: An improved method for searching plant functional types by numerical analysis
  publication-title: Journal of Vegetation Science
– volume: 78
  start-page: 547
  year: 1997
  end-page: 562
  article-title: Relating behavior to habitat: solutions to the fourth‐corner problem
  publication-title: Ecology
– volume: 92
  start-page: 893
  year: 2004
  end-page: 905
  article-title: Consistency of plant species and trait responses to grazing along a productivity gradient: a multi‐site analysis
  publication-title: Journal of Ecology
– volume: 33
  start-page: 125
  year: 2002
  end-page: 159
  article-title: Plant ecological strategies: some leading dimensions of variation between species
  publication-title: Annual Review of Ecology and Systematics
– volume: 3
  start-page: 143
  year: 1996
  end-page: 166
  article-title: Matching species traits to environmental variables: a new three‐table ordination method
  publication-title: Environmental and Ecological Statistics
– volume: 16
  start-page: 561
  year: 2009
  end-page: 584
  article-title: Fourth Corner Generation of Plant Functional Response Groups
  publication-title: Environmental and Ecological Statistics
– volume: 14
  start-page: 1125
  year: 2008
  end-page: 1140
  article-title: Scaling environmental change through the community‐level: a trait‐based response‐and‐effect framework for plants
  publication-title: Global Change Biology
– volume: 4
  year: 2002
– volume: 146
  start-page: 349
  year: 1995
  end-page: 364
  article-title: Seed size and phylogeny in 6 temperate floras – constraints, niche conservatism, and adaptation
  publication-title: American Naturalist
– year: 1984
– volume: 17
  start-page: 255
  year: 2006
  end-page: 260
  article-title: Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences
  publication-title: Journal of Vegetation Science
– volume: 21
  start-page: 178
  year: 2006
  end-page: 185
  article-title: Rebuilding community ecology from functional traits
  publication-title: Trends in Ecology and Evolution
– volume: 77
  start-page: 33
  year: 2007
  end-page: 52
  article-title: Plant traits in a state and transition framework as markers of ecosystem response to land‐use change
  publication-title: Ecological Monographs
– volume: 95
  start-page: 895
  year: 2007
  end-page: 907
  article-title: The role of genotypic diversity in determining grassland community structure under constant environmental conditions
  publication-title: Journal of Ecology
– volume: 20
  start-page: 334
  year: 2009
  end-page: 348
  article-title: Discriminating trait‐convergence and trait‐divergence assembly patterns in ecological community gradients
  publication-title: Journal of Vegetation Science
– year: 2002
– year: 1988
– volume: 8
  start-page: 163
  year: 2007
  end-page: 170
  article-title: Importance of species abundance for assessment of trait composition: an example based on pollinator communities
  publication-title: Community Ecology
– volume: 11
  start-page: 16
  year: 2007
  end-page: 23
  article-title: Intraspecific diversity and dominant genotypes resist plant invasions
  publication-title: Ecology Letters
– volume: 52
  start-page: 145
  year: 2007
  end-page: 164
  article-title: Modelling the hydraulic preferences of benthic macroinvertebrates in small European streams
  publication-title: Freshwater Biology
– volume: 89
  start-page: 209
  year: 2001
  end-page: 226
  article-title: Livestock grazing in subtropical pastures: steps in the analysis of attribute response and plant functional types
  publication-title: Journal of Ecology
– volume: 13
  start-page: 587
  year: 2010
  end-page: 596
  article-title: A framework for metacommunity analysis of phylogenetic structure
  publication-title: Ecology Letters
– volume: 86
  start-page: 507
  year: 1999
  end-page: 522
  article-title: Guilds, functional types and ecological groups
  publication-title: Oikos
– volume: 117
  start-page: 1533
  year: 2008
  end-page: 1541
  article-title: On the identification of the most suitable traits for plant functional trait analyses
  publication-title: Oikos
– volume: 7
  start-page: 306
  year: 1996
  end-page: 308
  article-title: Plant functional types and climatic changes: introduction
  publication-title: Journal of Vegetation Science
– year: 1999
– ident: e_1_2_9_42_1
  doi: 10.1046/j.1365-2745.2001.00535.x
– ident: e_1_2_9_31_1
  doi: 10.1046/j.1365-2435.2002.00664.x
– ident: e_1_2_9_39_1
  doi: 10.1086/285804
– ident: e_1_2_9_47_1
  doi: 10.1111/j.0022-0477.2004.00928.x
– volume-title: Numerical ecology
  year: 1998
  ident: e_1_2_9_35_1
– ident: e_1_2_9_33_1
  doi: 10.2307/3546427
– ident: e_1_2_9_24_1
  doi: 10.2307/3546011
– ident: e_1_2_9_43_1
  doi: 10.2307/3237077
– ident: e_1_2_9_48_1
  doi: 10.1111/j.1461-0248.2010.01456.x
– ident: e_1_2_9_55_1
  doi: 10.1890/03-0148
– ident: e_1_2_9_40_1
  doi: 10.1111/j.1654-1103.2005.tb02350.x
– ident: e_1_2_9_22_1
  doi: 10.1111/j.1654-1103.2006.tb02444.x
– ident: e_1_2_9_10_1
  doi: 10.1111/j.1654-1103.2007.tb02607.x
– ident: e_1_2_9_23_1
  doi: 10.1007/978-94-017-1094-7
– volume-title: Classification and regression trees
  year: 1984
  ident: e_1_2_9_7_1
– volume: 26
  start-page: 329
  year: 1964
  ident: e_1_2_9_52_1
  article-title: The use and interpretation of principal correspondence analysis in applied research
  publication-title: Sankhya A
– ident: e_1_2_9_34_1
  doi: 10.1007/978-3-540-32730-1_13
– ident: e_1_2_9_2_1
  doi: 10.1111/j.1469-8137.2006.01741.x
– ident: e_1_2_9_29_1
  doi: 10.1007/978-3-642-18970-8
– ident: e_1_2_9_36_1
  doi: 10.1890/0012-9658(1997)078[0547:RBTHST]2.0.CO;2
– volume-title: Exkursionsflora von Deutschland
  year: 2002
  ident: e_1_2_9_27_1
– ident: e_1_2_9_32_1
  doi: 10.1016/S0169-5347(97)01219-6
– ident: e_1_2_9_20_1
  doi: 10.1093/aob/mcl215
– ident: e_1_2_9_41_1
  doi: 10.1111/j.1365-2745.2004.00838.x
– ident: e_1_2_9_57_1
  doi: 10.1111/j.0030-1299.2007.15559.x
– ident: e_1_2_9_16_1
  doi: 10.1890/08-0349.1
– ident: e_1_2_9_56_1
  doi: 10.1890/0012-9658(2006)87[1755:IBESTA]2.0.CO;2
– ident: e_1_2_9_26_1
  doi: 10.1016/j.dsr2.2006.01.025
– ident: e_1_2_9_61_1
  doi: 10.2307/3546655
– volume: 11
  start-page: 16
  year: 2007
  ident: e_1_2_9_11_1
  article-title: Intraspecific diversity and dominant genotypes resist plant invasions
  publication-title: Ecology Letters
  doi: 10.1111/j.1461-0248.2007.01118.x
– ident: e_1_2_9_19_1
  doi: 10.2307/3545483
– ident: e_1_2_9_30_1
  doi: 10.3170/2008-8-18436
– ident: e_1_2_9_13_1
  doi: 10.1007/BF02427859
– ident: e_1_2_9_17_1
  doi: 10.1890/03-0178
– ident: e_1_2_9_21_1
  doi: 10.1201/9780367805302
– ident: e_1_2_9_54_1
  doi: 10.1111/j.1365-2486.2008.01557.x
– ident: e_1_2_9_38_1
  doi: 10.2307/2261604
– ident: e_1_2_9_14_1
  doi: 10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2
– ident: e_1_2_9_45_1
  doi: 10.1111/j.1365-2656.2008.01462.x
– ident: e_1_2_9_50_1
  doi: 10.1111/j.1654-1103.2009.05666.x
– ident: e_1_2_9_28_1
  doi: 10.1111/j.1461-0248.2008.01277.x
– ident: e_1_2_9_63_1
  doi: 10.2307/2389258
– ident: e_1_2_9_12_1
  doi: 10.1890/0012-9658(2002)083[1105:MRTANT]2.0.CO;2
– ident: e_1_2_9_46_1
  doi: 10.1111/j.1654-1103.2004.tb02236.x
– volume: 83
  start-page: 892
  year: 1995
  ident: e_1_2_9_58_1
  article-title: Issues of interpretation after relating comparative datasets to phylogeny
  publication-title: Journal of Ecology
– ident: e_1_2_9_9_1
  doi: 10.1657/1523-0430(2005)037[0444:CSIAPT]2.0.CO;2
– ident: e_1_2_9_18_1
  doi: 10.1002/9780470977811
– ident: e_1_2_9_6_1
  doi: 10.2307/1938672
– ident: e_1_2_9_3_1
  doi: 10.1556/ComEc.8.2007.2.3
– ident: e_1_2_9_44_1
  doi: 10.1111/j.0022-0477.2004.00880.x
– ident: e_1_2_9_60_1
  doi: 10.1111/j.1365-2745.2007.01275.x
– ident: e_1_2_9_5_1
  doi: 10.1111/j.1365-2486.2007.01375.x
– ident: e_1_2_9_51_1
  doi: 10.1890/06-0054
– ident: e_1_2_9_49_1
  doi: 10.1111/j.1654-1103.2003.tb02158.x
– ident: e_1_2_9_4_1
  doi: 10.1111/j.0030-1299.2008.16776.x
– ident: e_1_2_9_37_1
  doi: 10.1007/s10651-008-0098-4
– ident: e_1_2_9_25_1
  doi: 10.1111/j.1365-2699.2005.01351.x
– ident: e_1_2_9_62_1
  doi: 10.1111/j.1654-1103.1996.tb00489.x
– ident: e_1_2_9_53_1
  doi: 10.1034/j.1600-0706.2002.980116.x
– ident: e_1_2_9_59_1
  doi: 10.1146/annurev.ecolsys.33.010802.150452
– volume-title: Model selection and multimodel inference: a practical information‐theoretic approach
  year: 2002
  ident: e_1_2_9_8_1
– ident: e_1_2_9_15_1
  doi: 10.1111/j.1365-2427.2006.01663.x
SSID ssj0017961
Score 2.493985
Snippet Question: How do multivariate methods perform in relating species- and community-level trait responses to the environment? Location: (1) Field data from grazed...
Question How do multivariate methods perform in relating species‐ and community‐level trait responses to the environment? Location (1) Field data from grazed...
SourceID hal
crossref
wiley
jstor
istex
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 805
SubjectTerms Cluster analysis
Datasets
Environmental assessment
Functional groups
Functional traits
Functional types
Inference
Life Sciences
Multivariate analysis
Phenotypic traits
Phosphorus
Plants
Regression tree
Species
Statistical modelling
Sustainable communities
Synecology
Vegetation
Title Assessing species and community functional responses to environmental gradients: which multivariate methods?
URI https://api.istex.fr/ark:/67375/WNG-F744VZWS-X/fulltext.pdf
https://www.jstor.org/stable/23251318
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1654-1103.2012.01402.x
https://univ-lyon1.hal.science/hal-02289796
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEF61tIdeeLUIQ0GrCvXmyI9dr80FpYgQRVUODXmol9WuvSEoKEGJeaS_vjO7iUUQB1T1Ztmzlj2e8Xxjf_stISeQZcYEofaTwETQoIjcVzplkFdsyBRjgg0t26KdNLusNeCDJf8J58I4fYjqgxtmhn1fY4IrPV9P8oQzH8pXjAytqIa9QlRDPInULcRHvyolKQg7J50aBoEPmCZeJ_W8eqK1SvV-hDzJD-j6pxV1cR3P2oLU2CLj1a04Hsq4dl_qWv7nhcrj_7nXbbK5xK207gJth7wzk13y8ccUsOXiM7l1_46hDFKcugndN1WTguZu9km5oFg-3VdHOnOsXDApp_TZPDs4dD2zBLRyfkofRzf5iFq64wO084CIqVvsen72hXQbF1fnTX-5joOfQ5sb-XkR6ygpDNRjxQvGTWBiDbAsVTxLhY50xnQodDAEpJ9qFfG4UDxGIbIoLTh0-3tkYzKdmH14ZiEHizAxaVKwLNBKZIEyXPFEiCFAF4-I1TOT-VLkHNfauJXPmh1wpURXSnSltK6UTx4Jq5F3TujjDWO-QVhU5qjU3az_lLgPZYUyCLqH0CPfbdRUZmo2Rjad4LLfvpQNwVjvd78jBx7Zs2FVGYLveAjvXI8kNjjefF2y1evg1sG_Djwkn3C3Iy1-JRvl7N4cAfgq9bFNq78d0B1b
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5Bi0QvLa8Kl1JWCHFz5Meu1-aC2tIQSsiBviIuq11706BGCUrd0vbXd2Y3sRrEoULcomQ2iscznm82334D8A6zzNooNmEW2QQbFFmG2uQc84oPuOZc8oFjW_SyzhHf74v-bBwQnYXx-hDNhhtlhnteU4LThvRilmeCh1i_UqJoJS1qFpIWAsplGvBNQvqfvjdaUhh4Xjw1jqIQUU26SOv56zct1KqHQ2JKLpPzr-bkxUVE60pSew1G84vxTJSz1kVtWuXNHzqP_-lqn8DqDLqybR9rT-GBHT-DRzsThJfXz2Hk_z7GSsjo9CY24EyPK1b6Ayj1NaMK6jce2dQTc9GknrA7R-3wo9Op46DV5x_Y7-HPcsgc4_ESO3oExczPuz7_-AKO2nuHu51wNsohLLHTTcKySk2SVRZLshYVFzayqUFklmtR5NIkpuAmliYaINjPjU5EWmmRkhZZklcCG_51WBpPxvYl3rRYoEWc2TyreBEZLYtIW6FFJuUA0UsAcn7TVDnTOadxGyN1p99BVypypSJXKudKdRVA3Kz85bU-7rHmLcZFY05i3Z3trqL3SFmowKi7jAN478KmMdPTMyLUSaFOep9VW3J-_OPkQPUDWHdx1Rii70SMj90AMhcd9_5dav_4gF5t_OvCN_C4c_itq7pfel9fwQqZeA7jJizV0wv7GrFYbbZcjt0CAh8hdw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKixAXWh4VgVIshLhl5SR-JFxQH2yXUq0Qpe2qF8tOHBZttVtt09Ly65mxd6Mu4lAhblEyjpLJTOab5PNnQt5CljnHEhtL5lJoUFQZG5tzyCtec8O54rVnW_Rl74jvD8Rgxn_CuTBBH6L94IaZ4d_XmODnVb2Y5FLwGMpXhgyttIO9QtoBPLnCJStwGYfdr62UFMRd0E5NGIsB1GSLrJ6_nmmhVN0bIlFyBX1_PecuLgJaX5G6q2Q0v5dARBl1LhvbKX_9IfP4f252jTyaAVe6FSLtMVly4yfk_vYEwOXNU3IWfh5DHaQ4dxPab2rGFS3D9JPmhmL9DJ8d6TTQcsGkmdBbE-3g0PepZ6A1F-_pz-GPckg93_EK-nmAxDSsdn3x4Rk56n78ttOLZws5xCX0uWlcVplNZeWgIBtRceGYyyzgstyIIlc2tQW3ibKsBqifW5OKrDIiQyWyNK8EtPvrZHk8Gbvn8MwSARaJdLmseMGsUQUzThghlaoBu0REzZ-ZLmcq57jYxpm-1e2AKzW6UqMrtXelvo5I0o48D0ofdxjzBsKiNUep7t7WgcZ9qCtUQNBdJRF556OmNTPTEdLplNAn_T3dVZwfn54c6kFE1n1YtYbgO5HASzci0gfHna9L7x8f4taLfx34mjz4stvVB5_6n1-Sh2gRCIwbZLmZXrpXAMQau-kz7DdrryAm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+species+and+community+functional+responses+to+environmental+gradients%3A+which+multivariate+methods%3F&rft.jtitle=Journal+of+vegetation+science&rft.au=Kleyer%2C+Michael&rft.au=Dray%2C+St%C3%A9phane&rft.au=Bello%2C+Francescode&rft.au=Lep%C5%A1%2C+Jan&rft.date=2012-10-01&rft.issn=1100-9233&rft.eissn=1654-1103&rft.volume=23&rft.issue=5&rft.spage=805&rft.epage=821&rft_id=info:doi/10.1111%2Fj.1654-1103.2012.01402.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1654_1103_2012_01402_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1100-9233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1100-9233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1100-9233&client=summon