Assessing species and community functional responses to environmental gradients: which multivariate methods?
Question: How do multivariate methods perform in relating species- and community-level trait responses to the environment? Location: (1) Field data from grazed semi-natural grasslands, NE Germany; (2) artificial data. Methods: Research questions associated with trait—environment relationships were b...
Saved in:
Published in | Journal of vegetation science Vol. 23; no. 5; pp. 805 - 821 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.10.2012
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Question: How do multivariate methods perform in relating species- and community-level trait responses to the environment? Location: (1) Field data from grazed semi-natural grasslands, NE Germany; (2) artificial data. Methods: Research questions associated with trait—environment relationships were briefly reviewed and seven available methods evaluated. The main distinction between research questions is whether trait—environment relationships should be addressed at community or species level. A redundancy analysis (RDA) of mean trait values of species in a plot weighted by their abundances (CWM-RDA) is exclusively suitable for the community level. The other six methods address the species level. A double inertia analysis of two arrays (RLQ) and double canonical correspondence analysis (double CCA) use combinations of ordinations to simultaneously analyse species and trait responses to the environment. A combination of the outlying mean index with generalized additive models (OMI-GAM) predicts the response of species to environmental variables on trait gradients. RDA-RegTree first analyses species responses to the environment with RDA and then uses a regression tree to classify trait expressions according to scores of species responses on the ordination axes. Cluster regression uses cluster analyses and logistic regression to search for trait combinations with the best response to the environmental variables. This method models the distribution of functional groups on environmental gradients. All methods and data are available as R scripts. Results: All methods consistently revealed the main trait responses to environment in the field data set, namely that life history was associated with available phosphorus while grazing intensity was related to leaf C:N ratio and canopy height. At community level, CWM-RDA gave a good overview of trait— environment relationships, as also provided by the species-based methods RLQ and double CCA. OMI-GAM revealed non-linear relationships in the field data set. Field and artificial data gave that the number and stability of functional groups produced by Cluster regression and RDA-RegTree varied more strongly than RLQ, double CCA and OMI-GAM. Conclusions: Each method addresses particular ecological concepts and research questions. If a user asks for the response of average trait expressions of communities to environmental gradients, CWM-RDA may be the first choice. However, species-based methods should be applied to address questions regarding co-existence of different life histories or to assess how groups of species respond to environmental changes. The artificial data set revealed that the methods differed in sensitivity to gradient lengths and random data. |
---|---|
AbstractList | Question
How do multivariate methods perform in relating species‐ and community‐level trait responses to the environment?
Location
(1) Field data from grazed semi‐natural grasslands, NE Germany; (2) artificial data.
Methods
Research questions associated with trait–environment relationships were briefly reviewed and seven available methods evaluated. The main distinction between research questions is whether trait–environment relationships should be addressed at community or species level. A redundancy analysis (RDA) of mean trait values of species in a plot weighted by their abundances (CWM‐RDA) is exclusively suitable for the community level. The other six methods address the species level. A double inertia analysis of two arrays (RLQ) and double canonical correspondence analysis (double CCA) use combinations of ordinations to simultaneously analyse species and trait responses to the environment. A combination of the outlying mean index with generalized additive models (OMI‐GAM) predicts the response of species to environmental variables on trait gradients. RDA‐RegTree first analyses species responses to the environment with RDA and then uses a regression tree to classify trait expressions according to scores of species responses on the ordination axes. Cluster regression uses cluster analyses and logistic regression to search for trait combinations with the best response to the environmental variables. This method models the distribution of functional groups on environmental gradients. All methods and data are available as R scripts.
Results
All methods consistently revealed the main trait responses to environment in the field data set, namely that life history was associated with available phosphorus while grazing intensity was related to leaf C:N ratio and canopy height. At community level, CWM‐RDA gave a good overview of trait–environment relationships, as also provided by the species‐based methods RLQ and double CCA. OMI‐GAM revealed non‐linear relationships in the field data set. Field and artificial data gave that the number and stability of functional groups produced by Cluster regression and RDA‐RegTree varied more strongly than RLQ, double CCA and OMI‐GAM.
Conclusions
Each method addresses particular ecological concepts and research questions. If a user asks for the response of average trait expressions of communities to environmental gradients, CWM‐RDA may be the first choice. However, species‐based methods should be applied to address questions regarding co‐existence of different life histories or to assess how groups of species respond to environmental changes. The artificial data set revealed that the methods differed in sensitivity to gradient lengths and random data.
We compare seven multivariate methods suitable to determine the functional response of species to environmental change. The selection of the most appropriate method depends on the research question, i.e. the response of average trait expressions of communities, the coexistence of different life histories or the response of functional groups. R‐scripts and a tutorial for each method are available in the Appendix. Question: How do multivariate methods perform in relating species- and community-level trait responses to the environment? Location: (1) Field data from grazed semi-natural grasslands, NE Germany; (2) artificial data. Methods: Research questions associated with trait—environment relationships were briefly reviewed and seven available methods evaluated. The main distinction between research questions is whether trait—environment relationships should be addressed at community or species level. A redundancy analysis (RDA) of mean trait values of species in a plot weighted by their abundances (CWM-RDA) is exclusively suitable for the community level. The other six methods address the species level. A double inertia analysis of two arrays (RLQ) and double canonical correspondence analysis (double CCA) use combinations of ordinations to simultaneously analyse species and trait responses to the environment. A combination of the outlying mean index with generalized additive models (OMI-GAM) predicts the response of species to environmental variables on trait gradients. RDA-RegTree first analyses species responses to the environment with RDA and then uses a regression tree to classify trait expressions according to scores of species responses on the ordination axes. Cluster regression uses cluster analyses and logistic regression to search for trait combinations with the best response to the environmental variables. This method models the distribution of functional groups on environmental gradients. All methods and data are available as R scripts. Results: All methods consistently revealed the main trait responses to environment in the field data set, namely that life history was associated with available phosphorus while grazing intensity was related to leaf C:N ratio and canopy height. At community level, CWM-RDA gave a good overview of trait— environment relationships, as also provided by the species-based methods RLQ and double CCA. OMI-GAM revealed non-linear relationships in the field data set. Field and artificial data gave that the number and stability of functional groups produced by Cluster regression and RDA-RegTree varied more strongly than RLQ, double CCA and OMI-GAM. Conclusions: Each method addresses particular ecological concepts and research questions. If a user asks for the response of average trait expressions of communities to environmental gradients, CWM-RDA may be the first choice. However, species-based methods should be applied to address questions regarding co-existence of different life histories or to assess how groups of species respond to environmental changes. The artificial data set revealed that the methods differed in sensitivity to gradient lengths and random data. |
Author | Strauss, Barbara Dray, Stéphane Lepš, Jan Lavorel, Sandra Bello, Francescode Thuiller, Wilfried Pakeman, Robin J. Kleyer, Michael |
Author_xml | – sequence: 1 givenname: Michael surname: Kleyer fullname: Kleyer, Michael email: michael.kleyer@uni-oldenburg.de organization: Landscape Ecology Group, University of Oldenburg, 26111, Oldenburg, Germany – sequence: 2 givenname: Stéphane surname: Dray fullname: Dray, Stéphane email: stephane.dray@univ-lyon1.fr organization: Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, F-69000, Lyon, France – sequence: 3 givenname: Francescode surname: Bello fullname: Bello, Francescode email: fradebello@ctfc.es organization: Laboratoire d'Ecologie Alpine (CNRS UMR 5553) and Station Alpine Joseph Fourier (UMS-UJF-CNRS 2925), Université Joseph Fourier, BP 53, F-38042, Grenoble Cedex 09, France – sequence: 4 givenname: Jan surname: Lepš fullname: Lepš, Jan email: suspa@prf.jcu.cz organization: Faculty of Biological Sciences, University of South Bohemia, Branisovska 31, Ceske Budejovice, Czech Republic – sequence: 5 givenname: Robin J. surname: Pakeman fullname: Pakeman, Robin J. email: robin.pakeman@hutton.ac.uk organization: The James Hutton Institute, Craigiebuckler, AB15 8QH, Aberdeen, UK – sequence: 6 givenname: Barbara surname: Strauss fullname: Strauss, Barbara email: barbara.strauss@uni-oldenburg.de organization: Landscape Ecology Group, University of Oldenburg, 26111, Oldenburg, Germany – sequence: 7 givenname: Wilfried surname: Thuiller fullname: Thuiller, Wilfried email: wilfried.thuiller@ujf-grenoble.fr organization: Laboratoire d'Ecologie Alpine (CNRS UMR 5553) and Station Alpine Joseph Fourier (UMS-UJF-CNRS 2925), Université Joseph Fourier, BP 53, F-38042, Grenoble Cedex 09, France – sequence: 8 givenname: Sandra surname: Lavorel fullname: Lavorel, Sandra email: sandra.lavorel@ujf-grenoble.fr organization: Laboratoire d'Ecologie Alpine (CNRS UMR 5553) and Station Alpine Joseph Fourier (UMS-UJF-CNRS 2925), Université Joseph Fourier, BP 53, F-38042, Grenoble Cedex 09, France |
BackLink | https://univ-lyon1.hal.science/hal-02289796$$DView record in HAL |
BookMark | eNqNkE1P2zAcxi0EEm_7CJN83SGZX-ImQdqmCg0YquDABhMXy3H-pe4Su7Ld0n77OQvqYSd88SM_L5Z-p-jQOgsIYUpyms7nZU4nosgoJTxnhLKc0IKwfHuATvbGYdKUkKxmnB-j0xCWhNCyntAT1E1DgBCMfcFhBdpAwMq2WLu-X1sTd3i-tjoaZ1WHPYSVsymOo8NgN8Y724ONyXrxqjVJhgv8ujB6gft1F81GeaMi4B7iwrXh2zk6mqsuwIe3-wz9uvr-8_Imm91f_7iczjItGGeZbnnDJi1oACXaQgAB3tSsrpSoq7JhTV00tGzIvCxZ1SgmeKsEF0JUrGoFNPwMfRp3F6qTK2965XfSKSNvpjM5vBHGqjoB2NCUrcas9i4ED_N9gRI5EJZLOYCUA0g5EJb_CMttqn79r6pNVAOs6JXp3jPwZRx4NR3s3v2xvH18GFTqfxz7yxCd3_cTQ0E5rZKfjb4JEbZ7X_k_clLyUsinu2t5VRbF4_PTg_zN_wKjirI8 |
CitedBy_id | crossref_primary_10_1016_j_agee_2023_108386 crossref_primary_10_1007_s10530_020_02371_w crossref_primary_10_1038_s41598_024_64615_2 crossref_primary_10_3389_fmars_2024_1451886 crossref_primary_10_1111_jvs_12063 crossref_primary_10_1016_j_agee_2014_03_012 crossref_primary_10_1007_s10750_017_3245_9 crossref_primary_10_3389_fmars_2023_1117806 crossref_primary_10_1016_j_gecco_2024_e03144 crossref_primary_10_1002_ecs2_4193 crossref_primary_10_1111_1365_2664_13877 crossref_primary_10_1002_eap_2191 crossref_primary_10_1007_s43388_025_00226_3 crossref_primary_10_1016_j_ecolind_2024_112423 crossref_primary_10_1016_j_actao_2020_103673 crossref_primary_10_1016_j_soilbio_2016_08_006 crossref_primary_10_1038_s41598_024_71239_z crossref_primary_10_1016_j_scitotenv_2018_12_277 crossref_primary_10_1002_aqc_4141 crossref_primary_10_1111_plb_12155 crossref_primary_10_1038_s41598_019_53998_2 crossref_primary_10_1016_j_gecco_2016_01_004 crossref_primary_10_1111_jvs_12076 crossref_primary_10_1007_s13157_018_1050_5 crossref_primary_10_3389_fpls_2017_00891 crossref_primary_10_1002_ece3_3438 crossref_primary_10_3390_su15032094 crossref_primary_10_1093_jue_juz014 crossref_primary_10_1111_icad_12512 crossref_primary_10_1007_s11356_013_1702_1 crossref_primary_10_7717_peerj_2885 crossref_primary_10_1155_2020_4674580 crossref_primary_10_1016_j_ecss_2020_107105 crossref_primary_10_1038_s41467_017_02421_3 crossref_primary_10_1007_s10531_024_02860_7 crossref_primary_10_3390_d16080438 crossref_primary_10_1111_avsc_12288 crossref_primary_10_1111_avsc_12287 crossref_primary_10_3389_fevo_2019_00373 crossref_primary_10_4996_fireecology_130395119 crossref_primary_10_1890_13_1059_1 crossref_primary_10_1016_j_marpolbul_2022_114265 crossref_primary_10_1002_iroh_202002076 crossref_primary_10_1016_j_flora_2020_151661 crossref_primary_10_1051_kmae_2021030 crossref_primary_10_1002_ece3_1159 crossref_primary_10_1016_j_biocon_2019_108205 crossref_primary_10_1016_j_scitotenv_2018_09_210 crossref_primary_10_1016_j_gecco_2024_e03259 crossref_primary_10_1016_j_apsoil_2018_07_002 crossref_primary_10_1111_gcb_14846 crossref_primary_10_1016_j_foreco_2015_12_025 crossref_primary_10_1093_aob_mcac025 crossref_primary_10_1016_j_hal_2017_12_005 crossref_primary_10_1007_s00027_023_00995_3 crossref_primary_10_1002_2017WR021956 crossref_primary_10_1016_j_actao_2019_103443 crossref_primary_10_3832_ifor1960_009 crossref_primary_10_1016_j_agee_2017_07_005 crossref_primary_10_3389_fmars_2021_756814 crossref_primary_10_1016_j_pocean_2021_102710 crossref_primary_10_1093_aob_mcad105 crossref_primary_10_1007_s11270_017_3671_3 crossref_primary_10_3354_meps14023 crossref_primary_10_1007_s12224_016_9238_z crossref_primary_10_1016_j_watres_2019_115287 crossref_primary_10_1111_jvs_12156 crossref_primary_10_1002_ecy_70047 crossref_primary_10_1371_journal_pone_0174157 crossref_primary_10_1086_727471 crossref_primary_10_1007_s12224_015_9228_6 crossref_primary_10_1007_s12237_020_00856_4 crossref_primary_10_1111_avsc_12296 crossref_primary_10_1016_j_ppees_2014_09_002 crossref_primary_10_3389_ffgc_2023_1198626 crossref_primary_10_1890_15_0688 crossref_primary_10_1890_15_1368_1 crossref_primary_10_1016_j_agee_2023_108644 crossref_primary_10_1016_j_foreco_2016_08_024 crossref_primary_10_1016_j_eja_2015_06_010 crossref_primary_10_1016_j_scitotenv_2024_174171 crossref_primary_10_1111_jvs_12286 crossref_primary_10_1016_j_ecolind_2018_04_050 crossref_primary_10_1016_j_ecolind_2020_106625 crossref_primary_10_1002_ecy_2530 crossref_primary_10_1111_fwb_14064 crossref_primary_10_7717_peerj_3364 crossref_primary_10_1016_j_foreco_2024_121734 crossref_primary_10_1002_eco_1746 crossref_primary_10_1002_ecm_1454 crossref_primary_10_1016_j_jembe_2012_07_019 crossref_primary_10_1017_S0266467421000493 crossref_primary_10_3389_fevo_2020_583831 crossref_primary_10_1007_s00334_013_0430_2 crossref_primary_10_1016_j_apsoil_2017_09_027 crossref_primary_10_1111_2041_210X_12163 crossref_primary_10_1016_j_ecolind_2021_107671 crossref_primary_10_1111_avsc_12622 crossref_primary_10_1051_kmae_2023012 crossref_primary_10_1038_s41477_024_01649_4 crossref_primary_10_1071_MF24063 crossref_primary_10_1111_ele_13265 crossref_primary_10_1007_s10530_016_1188_0 crossref_primary_10_1590_1982_0224_20140185 crossref_primary_10_1111_1365_2745_12187 crossref_primary_10_1111_jvs_12850 crossref_primary_10_1016_j_gecco_2022_e02048 crossref_primary_10_1038_s41597_019_0344_7 crossref_primary_10_1111_2041_210X_12976 crossref_primary_10_1007_s13762_014_0569_0 crossref_primary_10_1002_ecy_1453 crossref_primary_10_1016_j_ecolind_2017_01_011 crossref_primary_10_1111_ddi_12790 crossref_primary_10_1177_1940082920923896 crossref_primary_10_1111_gcb_13085 crossref_primary_10_1111_1365_2435_13121 crossref_primary_10_1002_ece3_1084 crossref_primary_10_1016_j_ecocom_2019_100787 crossref_primary_10_1016_j_ecolind_2022_109525 crossref_primary_10_1016_j_agee_2018_01_014 crossref_primary_10_1016_j_aquabot_2017_06_002 crossref_primary_10_1016_j_baae_2019_08_002 crossref_primary_10_3389_fmars_2022_1006847 crossref_primary_10_1002_pei3_70019 crossref_primary_10_3390_fishes8010014 crossref_primary_10_1002_aqc_70068 crossref_primary_10_1016_j_foreco_2016_10_056 crossref_primary_10_1007_s10750_019_04072_5 crossref_primary_10_1016_j_soilbio_2018_03_021 crossref_primary_10_1016_j_chnaes_2018_10_005 crossref_primary_10_1111_geb_12184 crossref_primary_10_1016_j_biocon_2020_108545 crossref_primary_10_1111_nph_17296 crossref_primary_10_1016_j_foreco_2020_118180 crossref_primary_10_1016_j_agee_2017_07_042 crossref_primary_10_1111_j_1654_1103_2012_12036_x crossref_primary_10_1007_s11258_017_0751_9 crossref_primary_10_1111_geb_13706 crossref_primary_10_1007_s10980_019_00872_1 crossref_primary_10_3390_w11051047 crossref_primary_10_1016_j_ecolind_2018_11_021 crossref_primary_10_3389_fevo_2022_922539 crossref_primary_10_1111_jvs_12117 crossref_primary_10_1007_s10531_024_02792_2 crossref_primary_10_3389_fevo_2020_00225 crossref_primary_10_1002_eap_2133 crossref_primary_10_12688_f1000research_2_191_v1 crossref_primary_10_1016_j_ecolind_2022_109662 crossref_primary_10_12688_f1000research_2_191_v2 crossref_primary_10_3389_fevo_2024_1389619 crossref_primary_10_1038_ncomms9568 crossref_primary_10_1007_s10750_019_04123_x crossref_primary_10_1016_j_pocean_2024_103195 crossref_primary_10_1111_jvs_12481 crossref_primary_10_1016_j_earscirev_2024_104709 crossref_primary_10_1007_s10980_015_0172_x crossref_primary_10_1111_jvs_12009 crossref_primary_10_3389_fmars_2022_921595 crossref_primary_10_1016_j_tree_2015_06_007 crossref_primary_10_3390_plants11010087 crossref_primary_10_1007_s00442_024_05538_7 crossref_primary_10_1016_j_envpol_2019_06_117 crossref_primary_10_1007_s10452_014_9484_1 crossref_primary_10_5194_essd_11_301_2019 crossref_primary_10_1002_ece3_9396 crossref_primary_10_1007_s10651_017_0395_x crossref_primary_10_1007_s11629_016_4285_8 crossref_primary_10_1111_ecog_06718 crossref_primary_10_1016_j_pocean_2025_103421 crossref_primary_10_1111_jvs_12251 crossref_primary_10_1080_17550874_2019_1673846 crossref_primary_10_1155_2016_6417913 crossref_primary_10_3354_meps13840 crossref_primary_10_1111_jvs_12017 crossref_primary_10_1016_j_scitotenv_2020_142171 crossref_primary_10_1007_s40333_021_0003_7 crossref_primary_10_1111_1365_2435_14123 crossref_primary_10_1111_1365_2745_13190 crossref_primary_10_1007_s11104_017_3291_0 crossref_primary_10_1016_j_scitotenv_2024_176536 crossref_primary_10_1016_j_envpol_2020_113959 crossref_primary_10_1016_j_jenvman_2024_123755 crossref_primary_10_1590_0102_33062019abb0198 crossref_primary_10_1007_s10651_017_0368_0 crossref_primary_10_1111_jvs_13073 crossref_primary_10_1007_s10531_013_0565_6 crossref_primary_10_1016_j_scitotenv_2023_162405 crossref_primary_10_1111_ele_12462 crossref_primary_10_1111_wre_12283 crossref_primary_10_1038_s41597_023_02728_5 crossref_primary_10_1007_s00442_015_3345_z crossref_primary_10_1111_jvs_12666 crossref_primary_10_1111_jvs_12789 crossref_primary_10_1111_jvs_12425 crossref_primary_10_1111_geb_13630 crossref_primary_10_1016_j_scitotenv_2021_152317 crossref_primary_10_1002_ece3_11466 crossref_primary_10_1111_fwb_12825 crossref_primary_10_1007_s00334_018_0687_6 crossref_primary_10_1038_s41598_025_91820_4 crossref_primary_10_3989_ajbm_2397 crossref_primary_10_1016_j_ecolind_2015_10_008 crossref_primary_10_1093_icesjms_fsab011 crossref_primary_10_7717_peerj_9751 crossref_primary_10_1111_aec_12607 crossref_primary_10_1111_avsc_12359 crossref_primary_10_1007_s10021_013_9714_8 crossref_primary_10_1007_s11252_019_00843_z crossref_primary_10_1186_s13071_021_05143_0 crossref_primary_10_1111_1365_2435_13907 crossref_primary_10_3354_meps14671 crossref_primary_10_1016_j_fecs_2024_100235 crossref_primary_10_3389_frsc_2023_1192588 crossref_primary_10_1016_j_scitotenv_2020_144327 crossref_primary_10_1139_as_2021_0040 crossref_primary_10_1002_aqc_3128 crossref_primary_10_1111_jvs_12688 crossref_primary_10_1016_j_watbs_2024_100291 crossref_primary_10_1111_2041_210X_12327 crossref_primary_10_3390_math6120295 crossref_primary_10_3390_d15090949 crossref_primary_10_1177_1940082917713013 crossref_primary_10_1016_j_foreco_2015_10_008 crossref_primary_10_1890_13_0196_1 crossref_primary_10_1016_j_foreco_2013_06_046 crossref_primary_10_1016_j_foreco_2021_119272 crossref_primary_10_1016_j_ecolind_2021_107952 crossref_primary_10_1007_s10265_023_01468_2 crossref_primary_10_1002_ecs2_2460 crossref_primary_10_1016_j_aquabot_2014_05_007 crossref_primary_10_1007_s10980_017_0486_y crossref_primary_10_1002_eap_2560 crossref_primary_10_1111_avsc_12592 |
Cites_doi | 10.1046/j.1365-2745.2001.00535.x 10.1046/j.1365-2435.2002.00664.x 10.1086/285804 10.1111/j.0022-0477.2004.00928.x 10.2307/3546427 10.2307/3546011 10.2307/3237077 10.1111/j.1461-0248.2010.01456.x 10.1890/03-0148 10.1111/j.1654-1103.2005.tb02350.x 10.1111/j.1654-1103.2006.tb02444.x 10.1111/j.1654-1103.2007.tb02607.x 10.1007/978-94-017-1094-7 10.1007/978-3-540-32730-1_13 10.1111/j.1469-8137.2006.01741.x 10.1007/978-3-642-18970-8 10.1890/0012-9658(1997)078[0547:RBTHST]2.0.CO;2 10.1016/S0169-5347(97)01219-6 10.1093/aob/mcl215 10.1111/j.1365-2745.2004.00838.x 10.1111/j.0030-1299.2007.15559.x 10.1890/08-0349.1 10.1890/0012-9658(2006)87[1755:IBESTA]2.0.CO;2 10.1016/j.dsr2.2006.01.025 10.2307/3546655 10.1111/j.1461-0248.2007.01118.x 10.2307/3545483 10.3170/2008-8-18436 10.1007/BF02427859 10.1890/03-0178 10.1201/9780367805302 10.1111/j.1365-2486.2008.01557.x 10.2307/2261604 10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2 10.1111/j.1365-2656.2008.01462.x 10.1111/j.1654-1103.2009.05666.x 10.1111/j.1461-0248.2008.01277.x 10.2307/2389258 10.1890/0012-9658(2002)083[1105:MRTANT]2.0.CO;2 10.1111/j.1654-1103.2004.tb02236.x 10.1657/1523-0430(2005)037[0444:CSIAPT]2.0.CO;2 10.1002/9780470977811 10.2307/1938672 10.1556/ComEc.8.2007.2.3 10.1111/j.0022-0477.2004.00880.x 10.1111/j.1365-2745.2007.01275.x 10.1111/j.1365-2486.2007.01375.x 10.1890/06-0054 10.1111/j.1654-1103.2003.tb02158.x 10.1111/j.0030-1299.2008.16776.x 10.1007/s10651-008-0098-4 10.1111/j.1365-2699.2005.01351.x 10.1111/j.1654-1103.1996.tb00489.x 10.1034/j.1600-0706.2002.980116.x 10.1146/annurev.ecolsys.33.010802.150452 10.1111/j.1365-2427.2006.01663.x |
ContentType | Journal Article |
Copyright | Copyright © 2012 International Association for Vegetation Science 2012 International Association for Vegetation Science Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright © 2012 International Association for Vegetation Science – notice: 2012 International Association for Vegetation Science – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION 1XC |
DOI | 10.1111/j.1654-1103.2012.01402.x |
DatabaseName | Istex CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1654-1103 |
Editor | Wildi, Otto |
Editor_xml | – sequence: 9 givenname: Otto surname: Wildi fullname: Wildi, Otto |
EndPage | 821 |
ExternalDocumentID | oai_HAL_hal_02289796v1 10_1111_j_1654_1103_2012_01402_x JVS1402 23251318 ark_67375_WNG_F744VZWS_X |
Genre | article |
GrantInformation_xml | – fundername: ANR DIVERSITALP funderid: ANR 07 BDIV 014 – fundername: ESF EuroDIVERSITY funderid: DFG KL756/2‐1 – fundername: GACR funderid: 206/09/1471 |
GroupedDBID | -JH .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 29L 2~F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AANLZ AAONW AAPSS AASGY AAXRX AAXTN AAZKR ABBHK ABCQN ABCUV ABDBF ABEML ABJNI ABPLY ABPVW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADACV ADBBV ADEOM ADHSS ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEJZ AEEZP AEIGN AEIMD AENEX AEPYG AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFFIJ AFFPM AFGKR AFNWH AFPWT AFRAH AGUYK AHBTC AHXOZ AI. AICQM AITYG AIURR AIWBW AJBDE AJXKR AKPMI ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG CBGCD COF CS3 D-E D-F DATOO DC7 DCZOG DOOOF DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBD EBS ECGQY EDH EJD EMK EQZMY ESX F00 F01 F04 FEDTE G-S G.N GODZA GTFYD H.T H.X H13 HF~ HGD HGLYW HTVGU HVGLF HZ~ IAG IAO IEP IHR IPSME ITC J0M JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OVD P2P P2W P2X P4D PQ0 Q.N Q11 Q5J QB0 R.K RBO ROL RWI RX1 SA0 SUPJJ TEORI TUS UB1 VH1 VOH W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~02 ~8M ~IA ~KM ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACHIC ACRPL ACUHS ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX AGHNM CITATION 1XC |
ID | FETCH-LOGICAL-c5232-cd3b26deceea5d45e0e3b9298a5987b2b94b17b0f7728ba253da53555828d5eb3 |
IEDL.DBID | DR2 |
ISSN | 1100-9233 |
IngestDate | Fri May 09 12:16:06 EDT 2025 Tue Jul 01 03:14:55 EDT 2025 Thu Apr 24 22:57:47 EDT 2025 Wed Jan 22 16:42:35 EST 2025 Thu Jul 03 21:16:40 EDT 2025 Wed Oct 30 09:48:54 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5232-cd3b26deceea5d45e0e3b9298a5987b2b94b17b0f7728ba253da53555828d5eb3 |
Notes | ANR DIVERSITALP - No. ANR 07 BDIV 014 Appendix S1. Detailed description of the case study site, sampling methods and species' responses to environmental gradients.Appendix S2. Tutorial: methods for assessing functional responses to environmental gradients.Appendix S3. The artificial data set.Appendix S4. R scripts and field data set. GACR - No. 206/09/1471 ark:/67375/WNG-F744VZWS-X ArticleID:JVS1402 istex:B5F3978A2E79377D7172D51E66276F3757EE87F8 ESF EuroDIVERSITY - No. DFG KL756/2-1 |
ORCID | 0000-0002-7300-2811 0000-0002-5388-5274 0000-0001-9202-8198 0000-0003-0153-1105 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1654-1103.2012.01402.x |
PageCount | 17 |
ParticipantIDs | hal_primary_oai_HAL_hal_02289796v1 crossref_primary_10_1111_j_1654_1103_2012_01402_x crossref_citationtrail_10_1111_j_1654_1103_2012_01402_x wiley_primary_10_1111_j_1654_1103_2012_01402_x_JVS1402 jstor_primary_23251318 istex_primary_ark_67375_WNG_F744VZWS_X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2012 |
PublicationDateYYYYMMDD | 2012-10-01 |
PublicationDate_xml | – month: 10 year: 2012 text: October 2012 |
PublicationDecade | 2010 |
PublicationTitle | Journal of vegetation science |
PublicationTitleAlternate | J Veg Sci |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley |
References | Legendre, P. & Legendre, L. 1998. Numerical ecology, 2nd edn. Elsevier, Amsterdam, NL. Bernhardt-Römermann, M., Römermann, C., Nuske, R., Parth, A., Klotz, S., Schmidt, W. & Stadler, J. 2008. On the identification of the most suitable traits for plant functional trait analyses. Oikos 117: 1533-1541. Körner, C. 2003. Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer, Berlin and Heidelberg, DE. Pillar, V.D. & Sosinski, E.E. Jr 2003. An improved method for searching plant functional types by numerical analysis. Journal of Vegetation Science 14: 232-332. Kearney, M. & Porter, W. 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Ecology Letters 12: 334-350. Whitlock, R., Grime, J.P., Booth, R. & T. Burke, T. 2007. The role of genotypic diversity in determining grassland community structure under constant environmental conditions. Journal of Ecology 95: 895-907. Rao, C.R. 1964. The use and interpretation of principal correspondence analysis in applied research. Sankhya A 26: 329-359. Choler, P. 2005. Consistent shifts in Alpine plant traits along a mesotopographical gradient. Arctic, Antarctic and Alpine Research 37: 444-453. Lavorel, S., Rochette, C. & Lebreton, J. 1999. Functional groups for response to disturbance in Mediterranean old fields. Oikos 84: 480-498. Lavorel, S. & Garnier, E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16: 545-556. Moretti, M., de Bello, F., Roberts, S.P.M. & Potts, S.G. 2009. Taxonomical vs. functional responses of bee communities to fire in two contrasting climatic regions. Journal of Animal Ecology 78: 98-108. Leishman, M.R., Westoby, M. & Jurado, E. 1995. Correlates of seed size variation: a comparison among five temperate floras. Journal of Ecology 83: 517-530. Nygaard, B. & Ejrnaes, R. 2004. A new approach to functional interpretation of vegetation data. Journal of Vegetation Science 15: 49-56. McIntyre, S., Lavorel, S., Landsberg, J. & Forbes, T.D.A. 1999. Disturbance response in vegetation - towards a global perspective on functional traits. Journal of Vegetation Science 10: 621-630. Woodward, F.I. & Diament, A.D. 1991. Functional approaches to predicting the ecological effects of global change. Functional Ecology 5: 202-212. Lavorel, S., McIntyre, S., Landsberg, J. & Forbes, T.D.A. 1997. Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends in Ecology and Evolution 12: 474-478. Dray, S. & Legendre, P. 2008. Testing the species traits-environment relationships: the fourth-corner problem revisited. Ecology 89: 3400-3412. Cingolani, A.M., Cabido, M., Gurvich, D.E., Renison, D. & Diaz, S. 2007. Filtering processes in the assembly of plant communities: are species presence and abundance driven by the same traits? Journal of Vegetation Science 18: 911-920. Gordon, A.D. 1999. Classification, 2nd edn. Chapman & Hall, Boca Raton, FL, US. Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. 1984. Classification and regression trees. Chapman & Hall, New York, NY, US. Quetier, F., Thebault, A. & Lavorel, S. 2007. Plant traits in a state and transition framework as markers of ecosystem response to land-use change. Ecological Monographs 77: 33-52. Westoby, M., Leishman, M. & Lord, J. 1995. Issues of interpretation after relating comparative datasets to phylogeny. Journal of Ecology 83: 892-893. Jäger, E.J. & Werner, K. 2002. Exkursionsflora von Deutschland, Vol. 4, 9th edn. Spektrum, Berlin, DE. Grime, J.P. 2006. Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. Journal of Vegetation Science 17: 255-260. Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A. & Wright, I.J. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33: 125-159. Wilson, J.B. 1999. Guilds, functional types and ecological groups. Oikos 86: 507-522. Hood, R. R., Laws, E.A., Armstrong, R.A., Bates, N.R., Brown, C.W., Carlson, C.A., Chai, F., Doney, S.C., Falkowski, P.G., Feely, R.A., Friedrichs, M.A.M., Landry, M.R., Moore, J.K., Nelson, D.M., Richardson, T.L., Salihoglu, B., Schartau, M., Toole, D.A. & Wiggert, J. D. 2006. Pelagic functional group modeling: progress, challenges and prospects. Deep-Sea Research Part II-Topical Studies in Oceanography 53: 459-512. Ackerly, D.D., Knight, C.A., Weiss, S.B., Barton, K. & Starmer, K.P. 2002. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia 130: 449-457. De'Ath, G. 2002. Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology 83: 1105-1117. ter Braak, C.J.F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167-1179. Fox, B.J. & Brown, J.H. 1993. Assembly rules for functional groups in North American desert rodent communities. Oikos 67: 358-370. Burnham, K.P. & Anderson, D.R. 2002. Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York, NY, US. Grime, J.P., Thompson, K., Hunt, R., Hodgson, J.G., Cornelissen, J.H.C., Rorison, I.H., Hendry, G.A.F., Ashenden, T.W., Askew, A.P., Band, S.R., Booth, R.E., Bossard, C.C., Campbell, B.D., Cooper, J.E.L., Davison, A.W., Gupta, P.L., Hall, W., Hand, D.W., Hannah, M.A., Hillier, S.H., Hodkinson, D.J., Jalili, A., Liu, Z., Mackey, J.L., Matthews, N, Mowforth, M.A., Neal, A.M., Reader, R.J., Reiling, K., Ross-Fraser, A.M., Spencer, R.E., Sutton, F., Tasker, D.E., Thorpe, P.C. & Whitehouse, J. 1997. Integrated screening validates a primary axis of specialisation in plants. Oikos 79: 259-281. Grime, J.P., Hodgson, J.G. & Hunt, R. 1988. Comparative plant ecology. Unwin-Hyman, London, UK. Thuiller, W., Richardson, D.M., Rouget, M., Procheş, Ş. & Wilson, J.R.U. 2006. Interactions between environment, species traits, and human uses describe patterns of plant invasions. Ecology 87: 1755-1769. Moles, A.T., Falster, D.S., Leishman, M.R. & Westoby, M. 2004. Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. Journal of Ecology 92: 384-396. Hérault, B. & Honnay, O. 2005. The relative importance of local, regional and historical factors determining the distribution of plants in fragmented riverine forests: an emergent group approach. Journal of Biogeography 32: 2069-2081. Bonada, N., Dolédec, S. & Statzner, B. 2007. Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios. Global Change Biology 13: 1658-1671. Kühner, A. & Kleyer, M. 2008. A parsimonious combination of functional traits predicting plant response to disturbance and soil fertility. Journal of Vegetation Science 19: 681-642. Violle, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. & Garnier, E. 2007. Let the concept of trait be functional! Oikos 116: 882-892. Pakeman, R.J. 2004. Consistency of plant species and trait responses to grazing along a productivity gradient: a multi-site analysis. Journal of Ecology 92: 893-905. Suding, K.N., Lavorel, S., Chapin, F.S., Cornelissen, J.H.C., Diaz, S., Garnier, E., Goldberg, D., Hooper, D.U., Jackson, S.T. & Navas, M.L. 2008. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biology 14: 1125-1140. de Bello, F., Leps, J., Lavorel, S. & Moretti, M. 2007. Importance of species abundance for assessment of trait composition: an example based on pollinator communities. Community Ecology 8: 163-170. Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Dolezal, J., Eriksson, O., Fortunel, C., Freitas, H., Golodets, C., Grigulis, K., Jouany, C., Kazakou, E., Kigel, J., Kleyer, M., Lehsten, V., Leps, J., Meier, T., Pakeman, R., Papadimitriou, M., Papanastasis, V.P., Quested, H., Quetier, F., Robson, M., Roumet, C., Rusch, G., Skarpe, C., Sternberg, M., Theau, J.P., Thebault, A., Vile, D. & Zarovali, M.P. 2007. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Annals of Botany 99: 967-985. Lehsten, V., Harmand, P. & Kleyer, M. 2009. Fourth Corner Generation of Plant Functional Response Groups. Environmental and Ecological Statistics 16: 561-584. Everitt, B.S., Landau, S., Leese, M. & Stahl, D. 2011. Cluster analysis, 5th edn. Wiley, Chichester, UK. Dolédec, S., Chessel, D., ter Braak, C.J.F. & Champely, S. 1996. Matching species traits to environmental variables: a new three-table ordination method. Environmental and Ecological Statistics 3: 143-166. Thuiller, W., Lavorel, S., Midgley, G., Lavergne, S. & Rebelo, T. 2004. Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron taxa. Ecology 85: 1688-1699. Lord, J., Westoby, M. & Leishman, M. 1995. Seed size and phylogeny in 6 temperate floras - constraints, niche conservatism, and adaptation. American Naturalist 146: 349-364. Woodward, F.I. & Cramer, W. 1996. Plant functional types and climatic changes: introduction. Journal of Vegetation Science 7: 306-308. Legendre, P., Galzin, R. & HarmelinVivien, M.L. 1997. Relating behavior to habitat: solutions to the fourth-corner problem. Ecology 78: 547-562. Rosenfeld, J.S. 2002. Functional redundancy in ecology and conservation. Oikos 98: 156-162. Crutsinger, G.M., Souza, L. & Sanders, N.J. 2007. Intraspecific diversity and dominant genotypes resist plant invasions. Ecology Letters 11: 16-23. Dolédec, S., Chessel, D. & Gimaret-Carpentier, C. 2000. Niche separation in community analysis: a new method. E 2002; 16 1993; 67 2010; 13 2002; 98 2003; 14 1999; 86 1999; 84 2001; 89 2007; 77 2009; 12 2002; 83 2006; 21 1997; 12 2007; 8 2008; 117 1984 2005; 32 1999; 10 2005; 37 2003; 84 1996; 3 2009; 16 1988 1996; 7 2007; 18 2004; 85 2006; 53 2009; 20 2011 2002; 130 2006; 17 2008; 19 2002; 33 1998 2008; 14 2007 2002; 4 1964; 26 2003 2007; 95 2002 2007; 52 2007; 11 2007; 99 2007; 13 1999 1991; 5 2009; 78 1995; 83 2004; 92 2007; 116 2006; 87 1986; 67 2004; 15 1997; 79 1997; 78 2000; 81 2008; 89 1995; 146 2005; 16 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Jäger E.J. (e_1_2_9_27_1) 2002 Burnham K.P. (e_1_2_9_8_1) 2002 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Rao C.R. (e_1_2_9_52_1) 1964; 26 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 Westoby M. (e_1_2_9_58_1) 1995; 83 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_48_1 Legendre P. (e_1_2_9_35_1) 1998 e_1_2_9_29_1 Crutsinger G.M. (e_1_2_9_11_1) 2007; 11 Breiman L. (e_1_2_9_7_1) 1984 |
References_xml | – reference: Hérault, B. & Honnay, O. 2005. The relative importance of local, regional and historical factors determining the distribution of plants in fragmented riverine forests: an emergent group approach. Journal of Biogeography 32: 2069-2081. – reference: McIntyre, S., Lavorel, S., Landsberg, J. & Forbes, T.D.A. 1999. Disturbance response in vegetation - towards a global perspective on functional traits. Journal of Vegetation Science 10: 621-630. – reference: Hood, R. R., Laws, E.A., Armstrong, R.A., Bates, N.R., Brown, C.W., Carlson, C.A., Chai, F., Doney, S.C., Falkowski, P.G., Feely, R.A., Friedrichs, M.A.M., Landry, M.R., Moore, J.K., Nelson, D.M., Richardson, T.L., Salihoglu, B., Schartau, M., Toole, D.A. & Wiggert, J. D. 2006. Pelagic functional group modeling: progress, challenges and prospects. Deep-Sea Research Part II-Topical Studies in Oceanography 53: 459-512. – reference: Crutsinger, G.M., Souza, L. & Sanders, N.J. 2007. Intraspecific diversity and dominant genotypes resist plant invasions. Ecology Letters 11: 16-23. – reference: Lavorel, S. & Garnier, E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16: 545-556. – reference: Rosenfeld, J.S. 2002. Functional redundancy in ecology and conservation. Oikos 98: 156-162. – reference: Nygaard, B. & Ejrnaes, R. 2004. A new approach to functional interpretation of vegetation data. Journal of Vegetation Science 15: 49-56. – reference: Pillar, V. D., Duarte, L. D., Sosinski, E. E. & Joner, F. 2009. Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. Journal of Vegetation Science 20: 334-348. – reference: Whitlock, R., Grime, J.P., Booth, R. & T. Burke, T. 2007. The role of genotypic diversity in determining grassland community structure under constant environmental conditions. Journal of Ecology 95: 895-907. – reference: De'Ath, G. 2002. Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology 83: 1105-1117. – reference: Kearney, M. & Porter, W. 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Ecology Letters 12: 334-350. – reference: Burnham, K.P. & Anderson, D.R. 2002. Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York, NY, US. – reference: Woodward, F.I. & Diament, A.D. 1991. Functional approaches to predicting the ecological effects of global change. Functional Ecology 5: 202-212. – reference: Leishman, M.R., Westoby, M. & Jurado, E. 1995. Correlates of seed size variation: a comparison among five temperate floras. Journal of Ecology 83: 517-530. – reference: Quetier, F., Thebault, A. & Lavorel, S. 2007. Plant traits in a state and transition framework as markers of ecosystem response to land-use change. Ecological Monographs 77: 33-52. – reference: Bonada, N., Dolédec, S. & Statzner, B. 2007. Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios. Global Change Biology 13: 1658-1671. – reference: Louault, F., Pillard, V D., Aufrère, J., Garnier, E. & Soussana, J.-F. 2005. Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. Journal of Vegetation Science, 16: 151-160. – reference: Moretti, M., de Bello, F., Roberts, S.P.M. & Potts, S.G. 2009. Taxonomical vs. functional responses of bee communities to fire in two contrasting climatic regions. Journal of Animal Ecology 78: 98-108. – reference: Lord, J., Westoby, M. & Leishman, M. 1995. Seed size and phylogeny in 6 temperate floras - constraints, niche conservatism, and adaptation. American Naturalist 146: 349-364. – reference: Dolédec, S., Lamouroux, N., Fuchs, U. & Mérigoux, S. 2007. Modelling the hydraulic preferences of benthic macroinvertebrates in small European streams. Freshwater Biology 52: 145-164. – reference: Dray, S., Chessel, D. & Thioulouse, J. 2003. Co-inertia analysis and the linking of ecological data tables. Ecology 84: 3078-3089. – reference: Dray, S. & Legendre, P. 2008. Testing the species traits-environment relationships: the fourth-corner problem revisited. Ecology 89: 3400-3412. – reference: Cingolani, A.M., Cabido, M., Gurvich, D.E., Renison, D. & Diaz, S. 2007. Filtering processes in the assembly of plant communities: are species presence and abundance driven by the same traits? Journal of Vegetation Science 18: 911-920. – reference: Jäger, E.J. & Werner, K. 2002. Exkursionsflora von Deutschland, Vol. 4, 9th edn. Spektrum, Berlin, DE. – reference: Lehsten, V., Harmand, P. & Kleyer, M. 2009. Fourth Corner Generation of Plant Functional Response Groups. Environmental and Ecological Statistics 16: 561-584. – reference: de Bello, F., Leps, J., Lavorel, S. & Moretti, M. 2007. Importance of species abundance for assessment of trait composition: an example based on pollinator communities. Community Ecology 8: 163-170. – reference: Wilson, J.B. 1999. Guilds, functional types and ecological groups. Oikos 86: 507-522. – reference: McIntyre, S. & Lavorel, S. 2001. Livestock grazing in subtropical pastures: steps in the analysis of attribute response and plant functional types. Journal of Ecology 89: 209-226. – reference: Legendre, P., Galzin, R. & HarmelinVivien, M.L. 1997. Relating behavior to habitat: solutions to the fourth-corner problem. Ecology 78: 547-562. – reference: Choler, P. 2005. Consistent shifts in Alpine plant traits along a mesotopographical gradient. Arctic, Antarctic and Alpine Research 37: 444-453. – reference: Westoby, M., Leishman, M. & Lord, J. 1995. Issues of interpretation after relating comparative datasets to phylogeny. Journal of Ecology 83: 892-893. – reference: Pillar, V. D. & Duarte, L. D. 2010. A framework for metacommunity analysis of phylogenetic structure. Ecology Letters 13: 587-596. – reference: Dolédec, S., Chessel, D., ter Braak, C.J.F. & Champely, S. 1996. Matching species traits to environmental variables: a new three-table ordination method. Environmental and Ecological Statistics 3: 143-166. – reference: Gordon, A.D. 1999. Classification, 2nd edn. Chapman & Hall, Boca Raton, FL, US. – reference: Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Dolezal, J., Eriksson, O., Fortunel, C., Freitas, H., Golodets, C., Grigulis, K., Jouany, C., Kazakou, E., Kigel, J., Kleyer, M., Lehsten, V., Leps, J., Meier, T., Pakeman, R., Papadimitriou, M., Papanastasis, V.P., Quested, H., Quetier, F., Robson, M., Roumet, C., Rusch, G., Skarpe, C., Sternberg, M., Theau, J.P., Thebault, A., Vile, D. & Zarovali, M.P. 2007. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Annals of Botany 99: 967-985. – reference: Bernhardt-Römermann, M., Römermann, C., Nuske, R., Parth, A., Klotz, S., Schmidt, W. & Stadler, J. 2008. On the identification of the most suitable traits for plant functional trait analyses. Oikos 117: 1533-1541. – reference: Ackerly, D.D., Knight, C.A., Weiss, S.B., Barton, K. & Starmer, K.P. 2002. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia 130: 449-457. – reference: Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A. & Wright, I.J. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33: 125-159. – reference: Lavorel, S., Rochette, C. & Lebreton, J. 1999. Functional groups for response to disturbance in Mediterranean old fields. Oikos 84: 480-498. – reference: Kühner, A. & Kleyer, M. 2008. A parsimonious combination of functional traits predicting plant response to disturbance and soil fertility. Journal of Vegetation Science 19: 681-642. – reference: Lavorel, S., McIntyre, S., Landsberg, J. & Forbes, T.D.A. 1997. Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends in Ecology and Evolution 12: 474-478. – reference: Grime, J.P., Hodgson, J.G. & Hunt, R. 1988. Comparative plant ecology. Unwin-Hyman, London, UK. – reference: Fox, B.J. & Brown, J.H. 1993. Assembly rules for functional groups in North American desert rodent communities. Oikos 67: 358-370. – reference: Dolédec, S., Chessel, D. & Gimaret-Carpentier, C. 2000. Niche separation in community analysis: a new method. Ecology 81: 2914-2927. – reference: Moles, A.T., Falster, D.S., Leishman, M.R. & Westoby, M. 2004. Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. Journal of Ecology 92: 384-396. – reference: Legendre, P. & Legendre, L. 1998. Numerical ecology, 2nd edn. Elsevier, Amsterdam, NL. – reference: Pillar, V.D. & Sosinski, E.E. Jr 2003. An improved method for searching plant functional types by numerical analysis. Journal of Vegetation Science 14: 232-332. – reference: Rao, C.R. 1964. The use and interpretation of principal correspondence analysis in applied research. Sankhya A 26: 329-359. – reference: Thuiller, W., Richardson, D.M., Rouget, M., Procheş, Ş. & Wilson, J.R.U. 2006. Interactions between environment, species traits, and human uses describe patterns of plant invasions. Ecology 87: 1755-1769. – reference: Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. 1984. Classification and regression trees. Chapman & Hall, New York, NY, US. – reference: Grime, J.P., Thompson, K., Hunt, R., Hodgson, J.G., Cornelissen, J.H.C., Rorison, I.H., Hendry, G.A.F., Ashenden, T.W., Askew, A.P., Band, S.R., Booth, R.E., Bossard, C.C., Campbell, B.D., Cooper, J.E.L., Davison, A.W., Gupta, P.L., Hall, W., Hand, D.W., Hannah, M.A., Hillier, S.H., Hodkinson, D.J., Jalili, A., Liu, Z., Mackey, J.L., Matthews, N, Mowforth, M.A., Neal, A.M., Reader, R.J., Reiling, K., Ross-Fraser, A.M., Spencer, R.E., Sutton, F., Tasker, D.E., Thorpe, P.C. & Whitehouse, J. 1997. Integrated screening validates a primary axis of specialisation in plants. Oikos 79: 259-281. – reference: Thuiller, W., Lavorel, S., Midgley, G., Lavergne, S. & Rebelo, T. 2004. Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron taxa. Ecology 85: 1688-1699. – reference: ter Braak, C.J.F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167-1179. – reference: Grime, J.P. 2006. Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. Journal of Vegetation Science 17: 255-260. – reference: Woodward, F.I. & Cramer, W. 1996. Plant functional types and climatic changes: introduction. Journal of Vegetation Science 7: 306-308. – reference: McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. 2006. Rebuilding community ecology from functional traits. Trends in Ecology and Evolution 21: 178-185. – reference: Körner, C. 2003. Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer, Berlin and Heidelberg, DE. – reference: Pakeman, R.J. 2004. Consistency of plant species and trait responses to grazing along a productivity gradient: a multi-site analysis. Journal of Ecology 92: 893-905. – reference: Suding, K.N., Lavorel, S., Chapin, F.S., Cornelissen, J.H.C., Diaz, S., Garnier, E., Goldberg, D., Hooper, D.U., Jackson, S.T. & Navas, M.L. 2008. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biology 14: 1125-1140. – reference: Violle, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. & Garnier, E. 2007. Let the concept of trait be functional! Oikos 116: 882-892. – reference: Everitt, B.S., Landau, S., Leese, M. & Stahl, D. 2011. Cluster analysis, 5th edn. Wiley, Chichester, UK. – year: 2011 – volume: 12 start-page: 334 year: 2009 end-page: 350 article-title: Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges publication-title: Ecology Letters – volume: 92 start-page: 384 year: 2004 end-page: 396 article-title: Small‐seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime publication-title: Journal of Ecology – volume: 99 start-page: 967 year: 2007 end-page: 985 article-title: Assessing the effects of land‐use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites publication-title: Annals of Botany – volume: 81 start-page: 2914 year: 2000 end-page: 2927 article-title: Niche separation in community analysis: a new method publication-title: Ecology – volume: 83 start-page: 517 year: 1995 end-page: 530 article-title: Correlates of seed size variation: a comparison among five temperate floras publication-title: Journal of Ecology – volume: 26 start-page: 329 year: 1964 end-page: 359 article-title: The use and interpretation of principal correspondence analysis in applied research publication-title: Sankhya A – start-page: 149 year: 2007 end-page: 160 – volume: 87 start-page: 1755 year: 2006 end-page: 1769 article-title: Interactions between environment, species traits, and human uses describe patterns of plant invasions publication-title: Ecology – volume: 89 start-page: 3400 year: 2008 end-page: 3412 article-title: Testing the species traits–environment relationships: the fourth‐corner problem revisited publication-title: Ecology – volume: 16 start-page: 151 year: 2005 end-page: 160 article-title: Plant traits and functional types in response to reduced disturbance in a semi‐natural grassland publication-title: Journal of Vegetation Science – volume: 19 start-page: 681 year: 2008 end-page: 642 article-title: A parsimonious combination of functional traits predicting plant response to disturbance and soil fertility publication-title: Journal of Vegetation Science – volume: 67 start-page: 358 year: 1993 end-page: 370 article-title: Assembly rules for functional groups in North American desert rodent communities publication-title: Oikos – volume: 130 start-page: 449 year: 2002 end-page: 457 article-title: Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses publication-title: Oecologia – volume: 84 start-page: 480 year: 1999 end-page: 498 article-title: Functional groups for response to disturbance in Mediterranean old fields publication-title: Oikos – volume: 53 start-page: 459 year: 2006 end-page: 512 article-title: Pelagic functional group modeling: progress, challenges and prospects publication-title: Deep‐Sea Research Part II‐Topical Studies in Oceanography – year: 1998 – volume: 116 start-page: 882 year: 2007 end-page: 892 article-title: Let the concept of trait be functional! publication-title: Oikos – volume: 15 start-page: 49 year: 2004 end-page: 56 article-title: A new approach to functional interpretation of vegetation data publication-title: Journal of Vegetation Science – volume: 78 start-page: 98 year: 2009 end-page: 108 article-title: Taxonomical vs. functional responses of bee communities to fire in two contrasting climatic regions publication-title: Journal of Animal Ecology – volume: 37 start-page: 444 year: 2005 end-page: 453 article-title: Consistent shifts in Alpine plant traits along a mesotopographical gradient publication-title: Arctic, Antarctic and Alpine Research – volume: 5 start-page: 202 year: 1991 end-page: 212 article-title: Functional approaches to predicting the ecological effects of global change publication-title: Functional Ecology – volume: 32 start-page: 2069 year: 2005 end-page: 2081 article-title: The relative importance of local, regional and historical factors determining the distribution of plants in fragmented riverine forests: an emergent group approach publication-title: Journal of Biogeography – volume: 84 start-page: 3078 year: 2003 end-page: 3089 article-title: Co‐inertia analysis and the linking of ecological data tables publication-title: Ecology – volume: 18 start-page: 911 year: 2007 end-page: 920 article-title: Filtering processes in the assembly of plant communities: are species presence and abundance driven by the same traits? publication-title: Journal of Vegetation Science – volume: 10 start-page: 621 year: 1999 end-page: 630 article-title: Disturbance response in vegetation – towards a global perspective on functional traits publication-title: Journal of Vegetation Science – volume: 67 start-page: 1167 year: 1986 end-page: 1179 article-title: Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis publication-title: Ecology – volume: 13 start-page: 1658 year: 2007 end-page: 1671 article-title: Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios publication-title: Global Change Biology – volume: 16 start-page: 545 year: 2002 end-page: 556 article-title: Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail publication-title: Functional Ecology – volume: 79 start-page: 259 year: 1997 end-page: 281 article-title: Integrated screening validates a primary axis of specialisation in plants publication-title: Oikos – volume: 85 start-page: 1688 year: 2004 end-page: 1699 article-title: Relating plant traits and species distributions along bioclimatic gradients for 88 taxa publication-title: Ecology – volume: 12 start-page: 474 year: 1997 end-page: 478 article-title: Plant functional classifications: from general groups to specific groups based on response to disturbance publication-title: Trends in Ecology and Evolution – volume: 98 start-page: 156 year: 2002 end-page: 162 article-title: Functional redundancy in ecology and conservation publication-title: Oikos – volume: 83 start-page: 1105 year: 2002 end-page: 1117 article-title: Multivariate regression trees: a new technique for modeling species–environment relationships publication-title: Ecology – year: 2003 – volume: 83 start-page: 892 year: 1995 end-page: 893 article-title: Issues of interpretation after relating comparative datasets to phylogeny publication-title: Journal of Ecology – volume: 14 start-page: 232 year: 2003 end-page: 332 article-title: An improved method for searching plant functional types by numerical analysis publication-title: Journal of Vegetation Science – volume: 78 start-page: 547 year: 1997 end-page: 562 article-title: Relating behavior to habitat: solutions to the fourth‐corner problem publication-title: Ecology – volume: 92 start-page: 893 year: 2004 end-page: 905 article-title: Consistency of plant species and trait responses to grazing along a productivity gradient: a multi‐site analysis publication-title: Journal of Ecology – volume: 33 start-page: 125 year: 2002 end-page: 159 article-title: Plant ecological strategies: some leading dimensions of variation between species publication-title: Annual Review of Ecology and Systematics – volume: 3 start-page: 143 year: 1996 end-page: 166 article-title: Matching species traits to environmental variables: a new three‐table ordination method publication-title: Environmental and Ecological Statistics – volume: 16 start-page: 561 year: 2009 end-page: 584 article-title: Fourth Corner Generation of Plant Functional Response Groups publication-title: Environmental and Ecological Statistics – volume: 14 start-page: 1125 year: 2008 end-page: 1140 article-title: Scaling environmental change through the community‐level: a trait‐based response‐and‐effect framework for plants publication-title: Global Change Biology – volume: 4 year: 2002 – volume: 146 start-page: 349 year: 1995 end-page: 364 article-title: Seed size and phylogeny in 6 temperate floras – constraints, niche conservatism, and adaptation publication-title: American Naturalist – year: 1984 – volume: 17 start-page: 255 year: 2006 end-page: 260 article-title: Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences publication-title: Journal of Vegetation Science – volume: 21 start-page: 178 year: 2006 end-page: 185 article-title: Rebuilding community ecology from functional traits publication-title: Trends in Ecology and Evolution – volume: 77 start-page: 33 year: 2007 end-page: 52 article-title: Plant traits in a state and transition framework as markers of ecosystem response to land‐use change publication-title: Ecological Monographs – volume: 95 start-page: 895 year: 2007 end-page: 907 article-title: The role of genotypic diversity in determining grassland community structure under constant environmental conditions publication-title: Journal of Ecology – volume: 20 start-page: 334 year: 2009 end-page: 348 article-title: Discriminating trait‐convergence and trait‐divergence assembly patterns in ecological community gradients publication-title: Journal of Vegetation Science – year: 2002 – year: 1988 – volume: 8 start-page: 163 year: 2007 end-page: 170 article-title: Importance of species abundance for assessment of trait composition: an example based on pollinator communities publication-title: Community Ecology – volume: 11 start-page: 16 year: 2007 end-page: 23 article-title: Intraspecific diversity and dominant genotypes resist plant invasions publication-title: Ecology Letters – volume: 52 start-page: 145 year: 2007 end-page: 164 article-title: Modelling the hydraulic preferences of benthic macroinvertebrates in small European streams publication-title: Freshwater Biology – volume: 89 start-page: 209 year: 2001 end-page: 226 article-title: Livestock grazing in subtropical pastures: steps in the analysis of attribute response and plant functional types publication-title: Journal of Ecology – volume: 13 start-page: 587 year: 2010 end-page: 596 article-title: A framework for metacommunity analysis of phylogenetic structure publication-title: Ecology Letters – volume: 86 start-page: 507 year: 1999 end-page: 522 article-title: Guilds, functional types and ecological groups publication-title: Oikos – volume: 117 start-page: 1533 year: 2008 end-page: 1541 article-title: On the identification of the most suitable traits for plant functional trait analyses publication-title: Oikos – volume: 7 start-page: 306 year: 1996 end-page: 308 article-title: Plant functional types and climatic changes: introduction publication-title: Journal of Vegetation Science – year: 1999 – ident: e_1_2_9_42_1 doi: 10.1046/j.1365-2745.2001.00535.x – ident: e_1_2_9_31_1 doi: 10.1046/j.1365-2435.2002.00664.x – ident: e_1_2_9_39_1 doi: 10.1086/285804 – ident: e_1_2_9_47_1 doi: 10.1111/j.0022-0477.2004.00928.x – volume-title: Numerical ecology year: 1998 ident: e_1_2_9_35_1 – ident: e_1_2_9_33_1 doi: 10.2307/3546427 – ident: e_1_2_9_24_1 doi: 10.2307/3546011 – ident: e_1_2_9_43_1 doi: 10.2307/3237077 – ident: e_1_2_9_48_1 doi: 10.1111/j.1461-0248.2010.01456.x – ident: e_1_2_9_55_1 doi: 10.1890/03-0148 – ident: e_1_2_9_40_1 doi: 10.1111/j.1654-1103.2005.tb02350.x – ident: e_1_2_9_22_1 doi: 10.1111/j.1654-1103.2006.tb02444.x – ident: e_1_2_9_10_1 doi: 10.1111/j.1654-1103.2007.tb02607.x – ident: e_1_2_9_23_1 doi: 10.1007/978-94-017-1094-7 – volume-title: Classification and regression trees year: 1984 ident: e_1_2_9_7_1 – volume: 26 start-page: 329 year: 1964 ident: e_1_2_9_52_1 article-title: The use and interpretation of principal correspondence analysis in applied research publication-title: Sankhya A – ident: e_1_2_9_34_1 doi: 10.1007/978-3-540-32730-1_13 – ident: e_1_2_9_2_1 doi: 10.1111/j.1469-8137.2006.01741.x – ident: e_1_2_9_29_1 doi: 10.1007/978-3-642-18970-8 – ident: e_1_2_9_36_1 doi: 10.1890/0012-9658(1997)078[0547:RBTHST]2.0.CO;2 – volume-title: Exkursionsflora von Deutschland year: 2002 ident: e_1_2_9_27_1 – ident: e_1_2_9_32_1 doi: 10.1016/S0169-5347(97)01219-6 – ident: e_1_2_9_20_1 doi: 10.1093/aob/mcl215 – ident: e_1_2_9_41_1 doi: 10.1111/j.1365-2745.2004.00838.x – ident: e_1_2_9_57_1 doi: 10.1111/j.0030-1299.2007.15559.x – ident: e_1_2_9_16_1 doi: 10.1890/08-0349.1 – ident: e_1_2_9_56_1 doi: 10.1890/0012-9658(2006)87[1755:IBESTA]2.0.CO;2 – ident: e_1_2_9_26_1 doi: 10.1016/j.dsr2.2006.01.025 – ident: e_1_2_9_61_1 doi: 10.2307/3546655 – volume: 11 start-page: 16 year: 2007 ident: e_1_2_9_11_1 article-title: Intraspecific diversity and dominant genotypes resist plant invasions publication-title: Ecology Letters doi: 10.1111/j.1461-0248.2007.01118.x – ident: e_1_2_9_19_1 doi: 10.2307/3545483 – ident: e_1_2_9_30_1 doi: 10.3170/2008-8-18436 – ident: e_1_2_9_13_1 doi: 10.1007/BF02427859 – ident: e_1_2_9_17_1 doi: 10.1890/03-0178 – ident: e_1_2_9_21_1 doi: 10.1201/9780367805302 – ident: e_1_2_9_54_1 doi: 10.1111/j.1365-2486.2008.01557.x – ident: e_1_2_9_38_1 doi: 10.2307/2261604 – ident: e_1_2_9_14_1 doi: 10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2 – ident: e_1_2_9_45_1 doi: 10.1111/j.1365-2656.2008.01462.x – ident: e_1_2_9_50_1 doi: 10.1111/j.1654-1103.2009.05666.x – ident: e_1_2_9_28_1 doi: 10.1111/j.1461-0248.2008.01277.x – ident: e_1_2_9_63_1 doi: 10.2307/2389258 – ident: e_1_2_9_12_1 doi: 10.1890/0012-9658(2002)083[1105:MRTANT]2.0.CO;2 – ident: e_1_2_9_46_1 doi: 10.1111/j.1654-1103.2004.tb02236.x – volume: 83 start-page: 892 year: 1995 ident: e_1_2_9_58_1 article-title: Issues of interpretation after relating comparative datasets to phylogeny publication-title: Journal of Ecology – ident: e_1_2_9_9_1 doi: 10.1657/1523-0430(2005)037[0444:CSIAPT]2.0.CO;2 – ident: e_1_2_9_18_1 doi: 10.1002/9780470977811 – ident: e_1_2_9_6_1 doi: 10.2307/1938672 – ident: e_1_2_9_3_1 doi: 10.1556/ComEc.8.2007.2.3 – ident: e_1_2_9_44_1 doi: 10.1111/j.0022-0477.2004.00880.x – ident: e_1_2_9_60_1 doi: 10.1111/j.1365-2745.2007.01275.x – ident: e_1_2_9_5_1 doi: 10.1111/j.1365-2486.2007.01375.x – ident: e_1_2_9_51_1 doi: 10.1890/06-0054 – ident: e_1_2_9_49_1 doi: 10.1111/j.1654-1103.2003.tb02158.x – ident: e_1_2_9_4_1 doi: 10.1111/j.0030-1299.2008.16776.x – ident: e_1_2_9_37_1 doi: 10.1007/s10651-008-0098-4 – ident: e_1_2_9_25_1 doi: 10.1111/j.1365-2699.2005.01351.x – ident: e_1_2_9_62_1 doi: 10.1111/j.1654-1103.1996.tb00489.x – ident: e_1_2_9_53_1 doi: 10.1034/j.1600-0706.2002.980116.x – ident: e_1_2_9_59_1 doi: 10.1146/annurev.ecolsys.33.010802.150452 – volume-title: Model selection and multimodel inference: a practical information‐theoretic approach year: 2002 ident: e_1_2_9_8_1 – ident: e_1_2_9_15_1 doi: 10.1111/j.1365-2427.2006.01663.x |
SSID | ssj0017961 |
Score | 2.493985 |
Snippet | Question: How do multivariate methods perform in relating species- and community-level trait responses to the environment? Location: (1) Field data from grazed... Question How do multivariate methods perform in relating species‐ and community‐level trait responses to the environment? Location (1) Field data from grazed... |
SourceID | hal crossref wiley jstor istex |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 805 |
SubjectTerms | Cluster analysis Datasets Environmental assessment Functional groups Functional traits Functional types Inference Life Sciences Multivariate analysis Phenotypic traits Phosphorus Plants Regression tree Species Statistical modelling Sustainable communities Synecology Vegetation |
Title | Assessing species and community functional responses to environmental gradients: which multivariate methods? |
URI | https://api.istex.fr/ark:/67375/WNG-F744VZWS-X/fulltext.pdf https://www.jstor.org/stable/23251318 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1654-1103.2012.01402.x https://univ-lyon1.hal.science/hal-02289796 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEF61tIdeeLUIQ0GrCvXmyI9dr80FpYgQRVUODXmol9WuvSEoKEGJeaS_vjO7iUUQB1T1Ztmzlj2e8Xxjf_stISeQZcYEofaTwETQoIjcVzplkFdsyBRjgg0t26KdNLusNeCDJf8J58I4fYjqgxtmhn1fY4IrPV9P8oQzH8pXjAytqIa9QlRDPInULcRHvyolKQg7J50aBoEPmCZeJ_W8eqK1SvV-hDzJD-j6pxV1cR3P2oLU2CLj1a04Hsq4dl_qWv7nhcrj_7nXbbK5xK207gJth7wzk13y8ccUsOXiM7l1_46hDFKcugndN1WTguZu9km5oFg-3VdHOnOsXDApp_TZPDs4dD2zBLRyfkofRzf5iFq64wO084CIqVvsen72hXQbF1fnTX-5joOfQ5sb-XkR6ygpDNRjxQvGTWBiDbAsVTxLhY50xnQodDAEpJ9qFfG4UDxGIbIoLTh0-3tkYzKdmH14ZiEHizAxaVKwLNBKZIEyXPFEiCFAF4-I1TOT-VLkHNfauJXPmh1wpURXSnSltK6UTx4Jq5F3TujjDWO-QVhU5qjU3az_lLgPZYUyCLqH0CPfbdRUZmo2Rjad4LLfvpQNwVjvd78jBx7Zs2FVGYLveAjvXI8kNjjefF2y1evg1sG_Djwkn3C3Iy1-JRvl7N4cAfgq9bFNq78d0B1b |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5Bi0QvLa8Kl1JWCHFz5Meu1-aC2tIQSsiBviIuq11706BGCUrd0vbXd2Y3sRrEoULcomQ2iscznm82334D8A6zzNooNmEW2QQbFFmG2uQc84oPuOZc8oFjW_SyzhHf74v-bBwQnYXx-hDNhhtlhnteU4LThvRilmeCh1i_UqJoJS1qFpIWAsplGvBNQvqfvjdaUhh4Xjw1jqIQUU26SOv56zct1KqHQ2JKLpPzr-bkxUVE60pSew1G84vxTJSz1kVtWuXNHzqP_-lqn8DqDLqybR9rT-GBHT-DRzsThJfXz2Hk_z7GSsjo9CY24EyPK1b6Ayj1NaMK6jce2dQTc9GknrA7R-3wo9Op46DV5x_Y7-HPcsgc4_ESO3oExczPuz7_-AKO2nuHu51wNsohLLHTTcKySk2SVRZLshYVFzayqUFklmtR5NIkpuAmliYaINjPjU5EWmmRkhZZklcCG_51WBpPxvYl3rRYoEWc2TyreBEZLYtIW6FFJuUA0UsAcn7TVDnTOadxGyN1p99BVypypSJXKudKdRVA3Kz85bU-7rHmLcZFY05i3Z3trqL3SFmowKi7jAN478KmMdPTMyLUSaFOep9VW3J-_OPkQPUDWHdx1Rii70SMj90AMhcd9_5dav_4gF5t_OvCN_C4c_itq7pfel9fwQqZeA7jJizV0wv7GrFYbbZcjt0CAh8hdw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKixAXWh4VgVIshLhl5SR-JFxQH2yXUq0Qpe2qF8tOHBZttVtt09Ly65mxd6Mu4lAhblEyjpLJTOab5PNnQt5CljnHEhtL5lJoUFQZG5tzyCtec8O54rVnW_Rl74jvD8Rgxn_CuTBBH6L94IaZ4d_XmODnVb2Y5FLwGMpXhgyttIO9QtoBPLnCJStwGYfdr62UFMRd0E5NGIsB1GSLrJ6_nmmhVN0bIlFyBX1_PecuLgJaX5G6q2Q0v5dARBl1LhvbKX_9IfP4f252jTyaAVe6FSLtMVly4yfk_vYEwOXNU3IWfh5DHaQ4dxPab2rGFS3D9JPmhmL9DJ8d6TTQcsGkmdBbE-3g0PepZ6A1F-_pz-GPckg93_EK-nmAxDSsdn3x4Rk56n78ttOLZws5xCX0uWlcVplNZeWgIBtRceGYyyzgstyIIlc2tQW3ibKsBqifW5OKrDIiQyWyNK8EtPvrZHk8Gbvn8MwSARaJdLmseMGsUQUzThghlaoBu0REzZ-ZLmcq57jYxpm-1e2AKzW6UqMrtXelvo5I0o48D0ofdxjzBsKiNUep7t7WgcZ9qCtUQNBdJRF556OmNTPTEdLplNAn_T3dVZwfn54c6kFE1n1YtYbgO5HASzci0gfHna9L7x8f4taLfx34mjz4stvVB5_6n1-Sh2gRCIwbZLmZXrpXAMQau-kz7DdrryAm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+species+and+community+functional+responses+to+environmental+gradients%3A+which+multivariate+methods%3F&rft.jtitle=Journal+of+vegetation+science&rft.au=Kleyer%2C+Michael&rft.au=Dray%2C+St%C3%A9phane&rft.au=Bello%2C+Francescode&rft.au=Lep%C5%A1%2C+Jan&rft.date=2012-10-01&rft.issn=1100-9233&rft.eissn=1654-1103&rft.volume=23&rft.issue=5&rft.spage=805&rft.epage=821&rft_id=info:doi/10.1111%2Fj.1654-1103.2012.01402.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1654_1103_2012_01402_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1100-9233&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1100-9233&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1100-9233&client=summon |