The stretch‐shortening cycle (SSC) revisited: residual force enhancement contributes to increased performance during fast SSCs of human m. adductor pollicis
The stretch‐shortening cycle (SSC) occurs in most everyday movements, and is thought to provoke a performance enhancement of the musculoskeletal system. However, mechanisms of this performance enhancement remain a matter of debate. One proposed mechanism is associated with a stretch‐induced increase...
Saved in:
Published in | Physiological reports Vol. 3; no. 5; pp. e12401 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
BlackWell Publishing Ltd
01.05.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 2051-817X 2051-817X |
DOI | 10.14814/phy2.12401 |
Cover
Loading…
Abstract | The stretch‐shortening cycle (SSC) occurs in most everyday movements, and is thought to provoke a performance enhancement of the musculoskeletal system. However, mechanisms of this performance enhancement remain a matter of debate. One proposed mechanism is associated with a stretch‐induced increase in steady‐state force, referred to as residual force enhancement (RFE). As yet, direct evidence relating RFE to increased force/work during SSCs is missing. Therefore, forces of electrically stimulated m. adductor pollicis (n = 14 subjects) were measured during and after pure stretch, pure shortening, and stretch‐shortening contractions with varying shortening amplitudes. Active stretch (30°, ω = 161 ± 6°s−1) caused significant RFE (16%, P < 0.01), whereas active shortening (10°, 20°, and 30°; ω = 103 ± 3°s−1, 152 ± 5°s−1, and 170 ± 5°s−1) resulted in significant force depression (9–15%, P < 0.01). In contrast, after SSCs (that is when active stretch preceded active shortening) no force depression was found. Indeed for our specific case in which the shortening amplitude was only 1/3 of the lengthening amplitude, there was a remnant RFE (10%, P < 0.01) following the active shortening. This result indicates that the RFE generated during lengthening affected force depression when active lengthening was followed by active shortening. As conventional explanations, such as the storage and release of elastic energy, cannot explain the enhanced steady‐state force after SSCs, it appears that the stretch‐induced RFE is not immediately abolished during shortening and contributes to the increased force and work during SSCs.
Mechanisms underlying muscular performance enhancement in stretch‐shortening cycles (SSC) still are a matter of debate. Measuring thumb adduction force during and after pure stretch, pure shortening, and stretch‐shortening contractions we found a remnant increased force following the active shortening. As conventional explanations, such as the storage and release of elastic energy, cannot explain the enhanced steady‐state force after SSCs, it appears that mechanisms associated with stretch‐induced residual force enhancement contribute to the increased performance during SSCs. |
---|---|
AbstractList | The stretch‐shortening cycle (SSC) occurs in most everyday movements, and is thought to provoke a performance enhancement of the musculoskeletal system. However, mechanisms of this performance enhancement remain a matter of debate. One proposed mechanism is associated with a stretch‐induced increase in steady‐state force, referred to as residual force enhancement (RFE). As yet, direct evidence relating RFE to increased force/work during SSCs is missing. Therefore, forces of electrically stimulated m. adductor pollicis (n = 14 subjects) were measured during and after pure stretch, pure shortening, and stretch‐shortening contractions with varying shortening amplitudes. Active stretch (30°, ω = 161 ± 6°s−1) caused significant RFE (16%, P < 0.01), whereas active shortening (10°, 20°, and 30°; ω = 103 ± 3°s−1, 152 ± 5°s−1, and 170 ± 5°s−1) resulted in significant force depression (9–15%, P < 0.01). In contrast, after SSCs (that is when active stretch preceded active shortening) no force depression was found. Indeed for our specific case in which the shortening amplitude was only 1/3 of the lengthening amplitude, there was a remnant RFE (10%, P < 0.01) following the active shortening. This result indicates that the RFE generated during lengthening affected force depression when active lengthening was followed by active shortening. As conventional explanations, such as the storage and release of elastic energy, cannot explain the enhanced steady‐state force after SSCs, it appears that the stretch‐induced RFE is not immediately abolished during shortening and contributes to the increased force and work during SSCs.
Mechanisms underlying muscular performance enhancement in stretch‐shortening cycles (SSC) still are a matter of debate. Measuring thumb adduction force during and after pure stretch, pure shortening, and stretch‐shortening contractions we found a remnant increased force following the active shortening. As conventional explanations, such as the storage and release of elastic energy, cannot explain the enhanced steady‐state force after SSCs, it appears that mechanisms associated with stretch‐induced residual force enhancement contribute to the increased performance during SSCs. The stretch-shortening cycle (SSC) occurs in most everyday movements, and is thought to provoke a performance enhancement of the musculoskeletal system. However, mechanisms of this performance enhancement remain a matter of debate. One proposed mechanism is associated with a stretch-induced increase in steady-state force, referred to as residual force enhancement (RFE). As yet, direct evidence relating RFE to increased force/work during SSCs is missing. Therefore, forces of electrically stimulated m. adductor pollicis (n = 14 subjects) were measured during and after pure stretch, pure shortening, and stretch-shortening contractions with varying shortening amplitudes. Active stretch (30°, ω = 161 ± 6°s(-1)) caused significant RFE (16%, P < 0.01), whereas active shortening (10°, 20°, and 30°; ω = 103 ± 3°s(-1), 152 ± 5°s(-1), and 170 ± 5°s(-1)) resulted in significant force depression (9-15%, P < 0.01). In contrast, after SSCs (that is when active stretch preceded active shortening) no force depression was found. Indeed for our specific case in which the shortening amplitude was only 1/3 of the lengthening amplitude, there was a remnant RFE (10%, P < 0.01) following the active shortening. This result indicates that the RFE generated during lengthening affected force depression when active lengthening was followed by active shortening. As conventional explanations, such as the storage and release of elastic energy, cannot explain the enhanced steady-state force after SSCs, it appears that the stretch-induced RFE is not immediately abolished during shortening and contributes to the increased force and work during SSCs.The stretch-shortening cycle (SSC) occurs in most everyday movements, and is thought to provoke a performance enhancement of the musculoskeletal system. However, mechanisms of this performance enhancement remain a matter of debate. One proposed mechanism is associated with a stretch-induced increase in steady-state force, referred to as residual force enhancement (RFE). As yet, direct evidence relating RFE to increased force/work during SSCs is missing. Therefore, forces of electrically stimulated m. adductor pollicis (n = 14 subjects) were measured during and after pure stretch, pure shortening, and stretch-shortening contractions with varying shortening amplitudes. Active stretch (30°, ω = 161 ± 6°s(-1)) caused significant RFE (16%, P < 0.01), whereas active shortening (10°, 20°, and 30°; ω = 103 ± 3°s(-1), 152 ± 5°s(-1), and 170 ± 5°s(-1)) resulted in significant force depression (9-15%, P < 0.01). In contrast, after SSCs (that is when active stretch preceded active shortening) no force depression was found. Indeed for our specific case in which the shortening amplitude was only 1/3 of the lengthening amplitude, there was a remnant RFE (10%, P < 0.01) following the active shortening. This result indicates that the RFE generated during lengthening affected force depression when active lengthening was followed by active shortening. As conventional explanations, such as the storage and release of elastic energy, cannot explain the enhanced steady-state force after SSCs, it appears that the stretch-induced RFE is not immediately abolished during shortening and contributes to the increased force and work during SSCs. The stretch-shortening cycle (SSC) occurs in most everyday movements, and is thought to provoke a performance enhancement of the musculoskeletal system. However, mechanisms of this performance enhancement remain a matter of debate. One proposed mechanism is associated with a stretch-induced increase in steady-state force, referred to as residual force enhancement (RFE). As yet, direct evidence relating RFE to increased force/work during SSCs is missing. Therefore, forces of electrically stimulated m. adductor pollicis (n = 14 subjects) were measured during and after pure stretch, pure shortening, and stretch-shortening contractions with varying shortening amplitudes. Active stretch (30°, ω = 161 ± 6°s(-1)) caused significant RFE (16%, P < 0.01), whereas active shortening (10°, 20°, and 30°; ω = 103 ± 3°s(-1), 152 ± 5°s(-1), and 170 ± 5°s(-1)) resulted in significant force depression (9-15%, P < 0.01). In contrast, after SSCs (that is when active stretch preceded active shortening) no force depression was found. Indeed for our specific case in which the shortening amplitude was only 1/3 of the lengthening amplitude, there was a remnant RFE (10%, P < 0.01) following the active shortening. This result indicates that the RFE generated during lengthening affected force depression when active lengthening was followed by active shortening. As conventional explanations, such as the storage and release of elastic energy, cannot explain the enhanced steady-state force after SSCs, it appears that the stretch-induced RFE is not immediately abolished during shortening and contributes to the increased force and work during SSCs. The stretch-shortening cycle (SSC) occurs in most everyday movements, and is thought to provoke a performance enhancement of the musculoskeletal system. However, mechanisms of this performance enhancement remain a matter of debate. One proposed mechanism is associated with a stretch-induced increase in steady-state force, referred to as residual force enhancement (RFE). As yet, direct evidence relating RFE to increased force/work during SSCs is missing. Therefore, forces of electrically stimulated m. adductor pollicis ( n = 14 subjects) were measured during and after pure stretch, pure shortening, and stretch-shortening contractions with varying shortening amplitudes. Active stretch (30°, ω = 161 ± 6°s −1 ) caused significant RFE (16%, P < 0.01), whereas active shortening (10°, 20°, and 30°; ω = 103 ± 3°s −1 , 152 ± 5°s −1 , and 170 ± 5°s −1 ) resulted in significant force depression (9–15%, P < 0.01). In contrast, after SSCs (that is when active stretch preceded active shortening) no force depression was found. Indeed for our specific case in which the shortening amplitude was only 1/3 of the lengthening amplitude, there was a remnant RFE (10%, P < 0.01) following the active shortening. This result indicates that the RFE generated during lengthening affected force depression when active lengthening was followed by active shortening. As conventional explanations, such as the storage and release of elastic energy, cannot explain the enhanced steady-state force after SSCs, it appears that the stretch-induced RFE is not immediately abolished during shortening and contributes to the increased force and work during SSCs. The stretch-shortening cycle (SSC) occurs in most everyday movements, and is thought to provoke a performance enhancement of the musculoskeletal system. However, mechanisms of this performance enhancement remain a matter of debate. One proposed mechanism is associated with a stretch-induced increase in steady-state force, referred to as residual force enhancement (RFE). As yet, direct evidence relating RFE to increased force/work during SSCs is missing. Therefore, forces of electrically stimulated m. adductor pollicis (n = 14 subjects) were measured during and after pure stretch, pure shortening, and stretch-shortening contractions with varying shortening amplitudes. Active stretch (30 degree , omega = 161 plus or minus 6 degree s super(-1)) caused significant RFE (16%, P < 0.01), whereas active shortening (10 degree , 20 degree , and 30 degree ; omega = 103 plus or minus 3 degree s super(-1), 152 plus or minus 5 degree s super(-1), and 170 plus or minus 5 degree s super(-1)) resulted in significant force depression (9-15%, P < 0.01). In contrast, after SSCs (that is when active stretch preceded active shortening) no force depression was found. Indeed for our specific case in which the shortening amplitude was only 1/3 of the lengthening amplitude, there was a remnant RFE (10%, P < 0.01) following the active shortening. This result indicates that the RFE generated during lengthening affected force depression when active lengthening was followed by active shortening. As conventional explanations, such as the storage and release of elastic energy, cannot explain the enhanced steady-state force after SSCs, it appears that the stretch-induced RFE is not immediately abolished during shortening and contributes to the increased force and work during SSCs. Mechanisms underlying muscular performance enhancement in stretch-shortening cycles (SSC) still are a matter of debate. Measuring thumb adduction force during and after pure stretch, pure shortening, and stretch-shortening contractions we found a remnant increased force following the active shortening. As conventional explanations, such as the storage and release of elastic energy, cannot explain the enhanced steady-state force after SSCs, it appears that mechanisms associated with stretch-induced residual force enhancement contribute to the increased performance during SSCs. |
Author | Hahn, Daniel Seiberl, Wolfgang Herzog, Walter Power, Geoffrey A. |
Author_xml | – sequence: 1 givenname: Wolfgang surname: Seiberl fullname: Seiberl, Wolfgang organization: University of Calgary – sequence: 2 givenname: Geoffrey A. surname: Power fullname: Power, Geoffrey A. organization: University of Calgary – sequence: 3 givenname: Walter surname: Herzog fullname: Herzog, Walter organization: University of Calgary – sequence: 4 givenname: Daniel surname: Hahn fullname: Hahn, Daniel organization: Ruhr‐Universität Bochum |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25975646$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9qVDEUhy9SsbV25V6yrMiM-T8ZF4IMaoWCQivoKuQmJ72Re5Mxya3MzkfwCXw4n8Q7nVaqiK5y4Hy_jxPOud_sxRShaR4SPCdcEf503W3onFCOyZ3mgGJBZoosPuzdqvebo1I-YYwJZmyJ-b1mn4rlQkguD5rv5x2gUjNU2_34-q10KVeIIV4gu7E9oOOzs9VjlOEylFDBPZvKEtxoeuRTtoAgdiZaGCBWZFOsObRjhYJqQiHaDKaAQ2vIEz1sQeTGvLV7Uyqa3AUlj7px6qFhjoxzo60po3Xq-2BDedDc9aYvcHT9HjbvX708X53MTt--frN6cTqzgjIyE61wVnrPbeup5xQzLj3IBW0tc8yK1i-U8tJ407ZGWc4Y914IT7wE6hxlh83znXc9tgM4O30nm16vcxhM3uhkgv69E0OnL9Kl5lwyxfAkOL4W5PR5hFL1EIqFvjcR0lg0UUui5EIJ-X9UKkIlFVJN6KPbY_2a52Z_E0B2gM2plAxe21BNDdtNmNBrgvXVmejtmeirM5kyT_7I3Gj_TtMd_SX0sPkXqt-dfKS70E_-m9NR |
CitedBy_id | crossref_primary_10_1080_17461391_2022_2119434 crossref_primary_10_1371_journal_pone_0159058 crossref_primary_10_1038_srep39052 crossref_primary_10_14814_phy2_14188 crossref_primary_10_3389_fphys_2020_00521 crossref_primary_10_3389_fphys_2020_609553 crossref_primary_10_1016_j_jbiomech_2020_110040 crossref_primary_10_1098_rsos_161036 crossref_primary_10_1152_japplphysiol_00735_2021 crossref_primary_10_52082_jssm_2022_131 crossref_primary_10_1080_02640414_2024_2403873 crossref_primary_10_1038_srep21513 crossref_primary_10_1038_s41598_018_19657_8 crossref_primary_10_14814_phy2_70131 crossref_primary_10_3390_brainsci10010013 crossref_primary_10_1242_jeb_247377 crossref_primary_10_1016_j_jbiomech_2020_110136 crossref_primary_10_1038_s41598_019_54959_5 crossref_primary_10_1152_japplphysiol_00809_2023 crossref_primary_10_1242_bio_044651 crossref_primary_10_1242_jeb_225086 crossref_primary_10_1242_jeb_193367 crossref_primary_10_1519_JSC_0000000000003291 crossref_primary_10_3389_fphys_2021_644981 crossref_primary_10_14814_phy2_13279 crossref_primary_10_14814_phy2_13477 crossref_primary_10_3389_fphys_2021_693141 crossref_primary_10_1038_s41598_020_66124_4 crossref_primary_10_3389_fphys_2020_00921 crossref_primary_10_1242_jeb_204032 crossref_primary_10_23736_S0022_4707_24_16165_8 crossref_primary_10_3389_fphys_2020_592183 crossref_primary_10_52082_jssm_2023_189 crossref_primary_10_1152_japplphysiol_00931_2018 crossref_primary_10_1242_jeb_206557 crossref_primary_10_3389_fphys_2017_00985 crossref_primary_10_3389_fphys_2021_648019 crossref_primary_10_3389_frobt_2018_00036 crossref_primary_10_7717_peerj_5421 crossref_primary_10_1111_sms_12812 crossref_primary_10_1152_japplphysiol_00928_2018 crossref_primary_10_1249_MSS_0000000000001670 crossref_primary_10_1016_j_jbiomech_2016_02_015 crossref_primary_10_1519_JSC_0000000000003815 crossref_primary_10_3389_fphys_2020_567538 crossref_primary_10_1080_14763141_2022_2058991 crossref_primary_10_3389_fphys_2019_01504 crossref_primary_10_1016_j_jbiomech_2018_06_003 crossref_primary_10_1093_icb_icy021 crossref_primary_10_1113_JP285703 crossref_primary_10_5114_jhk_161729 crossref_primary_10_1007_s11357_016_9905_2 crossref_primary_10_1073_pnas_2413883121 crossref_primary_10_1016_j_jbiomech_2016_05_017 crossref_primary_10_1038_s41598_021_94046_2 crossref_primary_10_1016_j_jbiomech_2023_111579 crossref_primary_10_1016_j_jshs_2018_06_001 crossref_primary_10_1111_sms_13454 |
Cites_doi | 10.1152/japplphysiol.00672.2002 10.1016/S0021-9290(03)00155-6 10.1016/S0021-9290(00)00070-1 10.1113/jphysiol.2011.222729 10.1123/jab.13.4.484 10.1152/japplphysiol.00509.2004 10.1152/jappl.1999.87.6.2090 10.1152/jappl.1968.24.1.21 10.1152/jappl.1999.87.5.1651 10.1152/japplphysiol.01217.2004 10.1016/j.jbiomech.2010.01.041 10.1113/jphysiol.2002.018010 10.1152/jappl.1998.84.1.97 10.1007/BF00640636 10.1016/S0021-9290(00)00008-7 10.1097/00005768-199611000-00009 10.1123/jab.13.4.389 10.1085/jgp.73.4.453 10.1123/jab.13.4.451 10.1113/jphysiol.1952.sp004733 10.1152/japplphysiol.01108.2009 10.1152/japplphysiol.01305.2004 10.1016/j.jbiomech.2009.06.026 10.1111/j.1748-1716.1976.tb10325.x 10.1113/jphysiol.1978.sp012413 10.1016/S0021-9290(01)00077-X 10.1242/jeb.01095 10.1113/jphysiol.1989.sp017723 10.1152/japplphysiol.00069.2013 10.1113/jphysiol.1954.sp005070 10.1111/j.1469-7793.1998.583bt.x 10.1371/journal.pone.0048044 10.1111/j.1469-7793.2000.00671.x 10.1123/jab.26.3.256 10.1016/S0021-9290(00)00064-6 10.1016/S0021-9290(97)00046-8 10.1113/jphysiol.2002.037333 10.1016/j.jbiomech.2006.06.014 10.1016/0021-9290(88)90281-3 10.1242/jeb.165.1.121 10.1016/j.jbiomech.2013.06.014 10.1007/978-1-4613-9030-5_39 10.1016/S0021-9290(99)00221-3 10.1016/j.exger.2014.05.004 10.1016/j.jelekin.2011.10.010 10.1002/phy2.4 10.1007/s12551-011-0059-2 10.1371/journal.pone.0049907 10.1113/jphysiol.1988.sp017411 10.1111/j.1748-1716.1981.tb06716.x 10.1085/jgp.80.5.769 10.1098/rspb.2012.0467 |
ContentType | Journal Article |
Copyright | 2015 The Authors. published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society. 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society. 2015 The Authors. published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society. 2015 |
Copyright_xml | – notice: 2015 The Authors. published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society. – notice: 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society. – notice: 2015 The Authors. published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society. 2015 |
DBID | 24P AAYXX CITATION NPM 7X8 7T5 H94 5PM |
DOI | 10.14814/phy2.12401 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed MEDLINE - Academic Immunology Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts |
DatabaseTitleList | MEDLINE - Academic PubMed AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2051-817X |
EndPage | n/a |
ExternalDocumentID | PMC4463830 25975646 10_14814_phy2_12401 PHY212401 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research – fundername: Technische Universität München – fundername: The Killam Foundation – fundername: Canada Research Chair Programme – fundername: German Research Foundation (DFG) – fundername: Natural Sciences and Engineering Research Council of Canada |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 7X7 8-1 8FE 8FH 8FI 8FJ AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACUHS ACXQS ADBBV ADKYN ADRAZ ADZMN AEEZP AEQDE AFKRA AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU DIK EBS EJD FYUFA GODZA GROUPED_DOAJ HCIFZ HMCUK HYE IAO IHR INH ITC KQ8 LK8 M48 M7P M~E OK1 PIMPY PQQKQ PROAC RAP RHI RPM UKHRP WIN AAYXX AFPKN CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY NPM PQGLB 7X8 7T5 H94 5PM |
ID | FETCH-LOGICAL-c5231-5b5dc6ff4cbf2f420346fe672bc3d3c5bf788f6afabba8c4334ff55f1f6e2dd23 |
IEDL.DBID | M48 |
ISSN | 2051-817X |
IngestDate | Thu Aug 21 18:37:01 EDT 2025 Thu Jul 10 17:52:37 EDT 2025 Fri Jul 11 00:30:27 EDT 2025 Mon Jul 21 05:38:55 EDT 2025 Tue Jul 01 00:32:25 EDT 2025 Thu Apr 24 23:05:27 EDT 2025 Wed Jan 22 16:19:56 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | force depression electrical stimulation force enhancement potentiation thumb force redevelopment muscle eccentric Concentric |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 http://doi.wiley.com/10.1002/tdm_license_1.1 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5231-5b5dc6ff4cbf2f420346fe672bc3d3c5bf788f6afabba8c4334ff55f1f6e2dd23 |
Notes | This study was supported by funding from the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chair Programme, and The Killam Foundation. This work was supported by the German Research Foundation (DFG) and the Technische Universität München within the funding program Open Access Publishing. Funding Information ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Funding Information This study was supported by funding from the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chair Programme, and The Killam Foundation. This work was supported by the German Research Foundation (DFG) and the Technische Universität München within the funding program Open Access Publishing. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.14814/phy2.12401 |
PMID | 25975646 |
PQID | 1681262568 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4463830 proquest_miscellaneous_1891867856 proquest_miscellaneous_1681262568 pubmed_primary_25975646 crossref_citationtrail_10_14814_phy2_12401 crossref_primary_10_14814_phy2_12401 wiley_primary_10_14814_phy2_12401_PHY212401 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2015 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: May 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford, UK |
PublicationTitle | Physiological reports |
PublicationTitleAlternate | Physiol Rep |
PublicationYear | 2015 |
Publisher | BlackWell Publishing Ltd |
Publisher_xml | – name: BlackWell Publishing Ltd |
References | 2014; 116 1987; 56 1968; 24 1989; 415 2013; 1 2009; 42 2010; 108 1952; 117 1992; 165 2013; 46 1978; 281 1997a; 13 2003; 36 1999; 87 1982; 80 1954; 123 2011; 3 1997b; 13 2004; 207 2003; 94 1988; 407 1998; 84 2003; 551 1979; 73 1976; 98 2012; 590 2010; 43 1996; 28 2010; 26 1990 1997; 30 2000; 33 1998; 507 1981; 111 1997; 13 2000; 526 1988; 21 2002; 545 2005; 98 2014; 57 2007; 40 2012; 279 2012; 7 2001; 34 2012; 22 2005; 99 Seiberl (10.14814/phy2.12401-BIB0046|phy212401-cit-0046) 2010; 26 Komi (10.14814/phy2.12401-BIB0029|phy212401-cit-0029) 1997; 13 Bobbert (10.14814/phy2.12401-BIB0002|phy212401-cit-0002) 1996; 28 Hahn (10.14814/phy2.12401-BIB0021|phy212401-cit-0021) 2012; 7 Lee (10.14814/phy2.12401-BIB0031|phy212401-cit-0031) 2009; 42 Abbott (10.14814/phy2.12401-BIB0001|phy212401-cit-0001) 1952; 117 Corr (10.14814/phy2.12401-BIB0010|phy212401-cit-0010) 2005; 99 Ruiter (10.14814/phy2.12401-BIB0012|phy212401-cit-0012) 1998; 507 Herzog (10.14814/phy2.12401-BIB0026|phy212401-cit-0026) 2000; 33 Lee (10.14814/phy2.12401-BIB0034|phy212401-cit-0034) 2002; 545 Lee (10.14814/phy2.12401-BIB0033|phy212401-cit-0033) 2003; 551 Bosco (10.14814/phy2.12401-BIB0005|phy212401-cit-0005) 1987; 56 Lee (10.14814/phy2.12401-BIB0036|phy212401-cit-0036) 2000; 33 Power (10.14814/phy2.12401-BIB0042|phy212401-cit-0042) 2012; 7 Joumaa (10.14814/phy2.12401-BIB0027|phy212401-cit-0027) 2010; 108 Sugi (10.14814/phy2.12401-BIB0048|phy212401-cit-0048) 1988; 407 Rassier (10.14814/phy2.12401-BIB0043|phy212401-cit-0043) 2012; 279 Chapman (10.14814/phy2.12401-BIB0009|phy212401-cit-0009) 1990 Granzier (10.14814/phy2.12401-BIB0019|phy212401-cit-0019) 1989; 415 Walshe (10.14814/phy2.12401-BIB0051|phy212401-cit-0051) 1998; 84 Ruiter (10.14814/phy2.12401-BIB0011|phy212401-cit-0011) 2003; 94 Kubo (10.14814/phy2.12401-BIB0030|phy212401-cit-0030) 1999; 87 Ruiter (10.14814/phy2.12401-BIB0013|phy212401-cit-0013) 2000; 526 Cavagna (10.14814/phy2.12401-BIB0008|phy212401-cit-0008) 1968; 24 Seiberl (10.14814/phy2.12401-BIB0045|phy212401-cit-0045) 2012; 22 Bosco (10.14814/phy2.12401-BIB0004|phy212401-cit-0004) 1981; 111 Herzog (10.14814/phy2.12401-BIB0024|phy212401-cit-0024) 1997; 30 Hahn (10.14814/phy2.12401-BIB0022|phy212401-cit-0022) 2010; 43 Peterson (10.14814/phy2.12401-BIB0040|phy212401-cit-0040) 2004; 207 Campbell (10.14814/phy2.12401-BIB0007|phy212401-cit-0007) 2011; 3 Herzog (10.14814/phy2.12401-BIB0025|phy212401-cit-0025) 2000; 33 Herzog (10.14814/phy2.12401-BIB0023|phy212401-cit-0023) 2014; 116 Merton (10.14814/phy2.12401-BIB0038|phy212401-cit-0038) 1954; 123 Bojsen-Moller (10.14814/phy2.12401-BIB0003|phy212401-cit-0003) 2005; 99 Edman (10.14814/phy2.12401-BIB0016|phy212401-cit-0016) 1978; 281 Edman (10.14814/phy2.12401-BIB0014|phy212401-cit-0014) 1976; 98 Oskouei (10.14814/phy2.12401-BIB0039|phy212401-cit-0039) 2005; 98 Edman (10.14814/phy2.12401-BIB0015|phy212401-cit-0015) 2012; 590 Ettema (10.14814/phy2.12401-BIB0018|phy212401-cit-0018) 1992; 165 Marechal (10.14814/phy2.12401-BIB0037|phy212401-cit-0037) 1979; 73 Lee (10.14814/phy2.12401-BIB0032|phy212401-cit-0032) 1999; 87 Power (10.14814/phy2.12401-BIB0500|phy212401-cit-0500) 2014; 57 Rassier (10.14814/phy2.12401-BIB0044|phy212401-cit-0044) 2003; 36 Power (10.14814/phy2.12401-BIB0041|phy212401-cit-0041) 2013; 1 Komi (10.14814/phy2.12401-BIB0028|phy212401-cit-0028) 2000; 33 Ingen Schenau (10.14814/phy2.12401-BIB0049|phy212401-cit-0049) 1997a; 13 Lee (10.14814/phy2.12401-BIB0035|phy212401-cit-0035) 2001; 34 Bullimore (10.14814/phy2.12401-BIB0006|phy212401-cit-0006) 2007; 40 Gregor (10.14814/phy2.12401-BIB0020|phy212401-cit-0020) 1988; 21 Edman (10.14814/phy2.12401-BIB0017|phy212401-cit-0017) 1982; 80 Seiberl (10.14814/phy2.12401-BIB0047|phy212401-cit-0047) 2013; 46 Ingen Schenau (10.14814/phy2.12401-BIB0050|phy212401-cit-0050) 1997b; 13 22180761 - Biophys Rev. 2011 Dec;3(4):199-207 3256616 - J Physiol. 1988 Dec;407:215-29 10562604 - J Appl Physiol (1985). 1999 Nov;87(5):1651-5 10807986 - J Biomech. 2000 Jun;33(6):659-68 5635766 - J Appl Physiol. 1968 Jan;24(1):21-32 23166794 - PLoS One. 2012;7(11):e49907 6983564 - J Gen Physiol. 1982 Nov;80(5):769-84 22115525 - J Electromyogr Kinesiol. 2012 Feb;22(1):117-23 1588248 - J Exp Biol. 1992 Apr;165:121-36 19651411 - J Biomech. 2009 Oct 16;42(14):2336-40 10708773 - J Biomech. 2000 May;33(5):531-42 312915 - J Gen Physiol. 1979 Apr;73(4):453-67 9451623 - J Appl Physiol (1985). 1998 Jan;84(1):97-106 10899328 - J Biomech. 2000 Oct;33(10):1197-206 9302608 - J Biomech. 1997 Sep;30(9):865-72 11448689 - J Biomech. 2001 Aug;34(8):979-87 12893039 - J Biomech. 2003 Sep;36(9):1309-16 309001 - J Physiol. 1978 Aug;281:139-55 12391074 - J Appl Physiol (1985). 2003 Jan;94(1):69-74 22331422 - J Physiol. 2012 Mar 15;590(6):1339-45 3569218 - Eur J Appl Physiol Occup Physiol. 1987;56(2):138-43 15705725 - J Appl Physiol (1985). 2005 Jun;98(6):2087-95 13152698 - J Physiol. 1954 Mar 29;123(3):553-64 9518715 - J Physiol. 1998 Mar 1;507 ( Pt 2):583-91 23133544 - PLoS One. 2012;7(10):e48044 10922017 - J Physiol. 2000 Aug 1;526 Pt 3:671-81 24303098 - Physiol Rep. 2013 Jun;1(1):e00004 15860680 - J Appl Physiol (1985). 2005 Sep;99(3):986-94 15235007 - J Exp Biol. 2004 Jul;207(Pt 16):2787-91 20167325 - J Biomech. 2010 May 28;43(8):1503-8 8933491 - Med Sci Sports Exerc. 1996 Nov;28(11):1402-12 16919641 - J Biomech. 2007;40(7):1518-24 15746298 - J Appl Physiol (1985). 2005 Jul;99(1):252-60 22535786 - Proc Biol Sci. 2012 Jul 22;279(1739):2705-13 23845729 - J Biomech. 2013 Aug 9;46(12):1996-2001 24835195 - Exp Gerontol. 2014 Sep;57:75-80 23429875 - J Appl Physiol (1985). 2014 Jun 1;116(11):1407-17 20841616 - J Appl Biomech. 2010 Aug;26(3):256-64 20007852 - J Appl Physiol (1985). 2010 Feb;108(2):356-62 3182876 - J Biomech. 1988;21(9):721-32 10828321 - J Biomech. 2000 Aug;33(8):917-23 10601154 - J Appl Physiol (1985). 1999 Dec;87(6):2090-6 7282389 - Acta Physiol Scand. 1981 Feb;111(2):135-40 12815187 - J Physiol. 2003 Sep 15;551(Pt 3):993-1003 2640463 - J Physiol. 1989 Aug;415:299-327 12433972 - J Physiol. 2002 Nov 15;545(Pt 1):321-30 14946730 - J Physiol. 1952 May;117(1):77-86 793303 - Acta Physiol Scand. 1976 Nov;98(3):384-6 |
References_xml | – volume: 117 start-page: 77 year: 1952 end-page: 86 article-title: The force exerted by active striated muscle during and after change of length publication-title: J. Physiol. – volume: 84 start-page: 97 year: 1998 end-page: 106 article-title: Stretch‐shorten cycle compared with isometric preload: contributions to enhanced muscular performance publication-title: J. Appl. Physiol. – volume: 545 start-page: 321 year: 2002 end-page: 330 article-title: Force enhancement following muscle stretch of electrically stimulated and voluntarily activated human adductor pollicis publication-title: J. Physiol. – volume: 57 start-page: 75 year: 2014 end-page: 80 article-title: Shortening‐induced torque depression in old men: implications for age‐related power loss publication-title: Exp Gerontol. – volume: 80 start-page: 769 year: 1982 end-page: 784 article-title: Residual force enhancement after stretch of contracting frog single muscle fibers publication-title: J. Gen. Physiol. – volume: 281 start-page: 139 year: 1978 end-page: 155 article-title: Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres publication-title: J. Physiol. – volume: 13 start-page: 451 year: 1997 end-page: 460 article-title: Stretch reflex can have an important role in force enhancement during SSC‐exercise publication-title: J. Appl. Biomech. – volume: 279 start-page: 2705 year: 2012 end-page: 2713 article-title: The mechanisms of the residual force enhancement after stretch of skeletal muscle: non‐uniformity in half‐sarcomeres and stiffness of titin publication-title: Proc. Biol. Sci. – start-page: 608 year: 1990 end-page: 620 – volume: 98 start-page: 384 year: 1976 end-page: 386 article-title: Depression of mechanical activity induced by active shortening in frog skeletal muscle fibres publication-title: Acta Physiol. Scand. – volume: 415 start-page: 299 year: 1989 end-page: 327 article-title: Effect of active pre‐shortening on isometric and isotonic performance of single frog muscle fibres publication-title: J. Physiol. – volume: 87 start-page: 1651 year: 1999 end-page: 1655 article-title: Force depression in human quadriceps femoris following voluntary shortening contractions publication-title: J. Appl. Physiol. – volume: 13 start-page: 484 year: 1997a end-page: 496 article-title: Mechanics and energetics of the stretch‐shortening cycle: a stimulating discussion publication-title: J. Appl. Biomech. – volume: 407 start-page: 215 year: 1988 end-page: 229 article-title: Stiffness changes during enhancement and deficit of isometric force by slow length changes in frog skeletal muscle fibres publication-title: J. Physiol. – volume: 22 start-page: 117 year: 2012 end-page: 123 article-title: Feedback controlled force enhancement and activation reduction of voluntarily activated quadriceps femoris during sub‐maximal muscle action publication-title: J. Electromyogr. Kinesiol. – volume: 34 start-page: 979 year: 2001 end-page: 987 article-title: Effects of cyclic changes in muscle length on force production in in‐situ cat soleus publication-title: J. Biomech. – volume: 30 start-page: 865 year: 1997 end-page: 872 article-title: Depression of cat soleus‐forces following isokinetic shortening publication-title: J. Biomech. – volume: 87 start-page: 2090 year: 1999 end-page: 2096 article-title: Influence of elastic properties of tendon structures on jump performance in humans publication-title: J. Appl. Physiol. – volume: 551 start-page: 993 year: 2003 end-page: 1003 article-title: Force depression following muscle shortening of voluntarily activated and electrically stimulated human adductor pollicis publication-title: J. Physiol. – volume: 33 start-page: 917 year: 2000 end-page: 923 article-title: Effects of speed and distance of muscle shortening on force depression during voluntary contractions publication-title: J. Biomech. – volume: 116 start-page: 1407 year: 2014 end-page: 1417 article-title: Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions publication-title: J. Appl. Physiol. – volume: 99 start-page: 986 year: 2005 end-page: 994 article-title: Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures publication-title: J. Appl. Physiol. – volume: 1 start-page: 1 year: 2013 end-page: 12 article-title: Enhanced force production in old age is not a far stretch: an investigation of residual force enhancement and muscle architecture publication-title: Physiol. Rep. – volume: 108 start-page: 356 year: 2010 end-page: 362 article-title: Force depression in single myofibrils publication-title: J. Appl. Physiol. – volume: 28 start-page: 1402 year: 1996 end-page: 1412 article-title: Why is countermovement jump height greater than squat jump height? publication-title: Med. Sci. Sports Exerc. – volume: 526 start-page: 671 year: 2000 end-page: 681 article-title: The force‐velocity relationship of human adductor pollicis muscle during stretch and the effects of fatigue publication-title: J. Physiol. – volume: 36 start-page: 1309 year: 2003 end-page: 1316 article-title: Stretch‐induced, steady‐state force enhancement in single skeletal muscle fibers exceeds the isometric force at optimum fiber length publication-title: J. Biomech. – volume: 43 start-page: 1503 year: 2010 end-page: 1508 article-title: Evidence of residual force enhancement for multi‐joint leg extension publication-title: J. Biomech. – volume: 98 start-page: 2087 year: 2005 end-page: 2095 article-title: Observations on force enhancement in submaximal voluntary contractions of human adductor pollicis muscle publication-title: J. Appl. Physiol. – volume: 56 start-page: 138 year: 1987 end-page: 143 article-title: Relationship between the efficiency of muscular work during jumping and the energetics of running publication-title: Eur. J. Appl. Physiol. – volume: 40 start-page: 1518 year: 2007 end-page: 1524 article-title: History‐dependence of isometric muscle force: effect of prior stretch or shortening amplitude publication-title: J. Biomech. – volume: 7 start-page: e49907 year: 2012 article-title: Cortical and spinal excitability during and after lengthening contractions of the human plantar flexor muscles performed with maximal voluntary effort publication-title: PLoS ONE – volume: 33 start-page: 1197 year: 2000 end-page: 1206 article-title: Stretch‐shortening cycle: a powerful model to study normal and fatigued muscle publication-title: J. Biomech. – volume: 24 start-page: 21 year: 1968 end-page: 32 article-title: Positive work done by a previously stretched muscle publication-title: J. Appl. Physiol. – volume: 507 start-page: 583 year: 1998 end-page: 591 article-title: Shortening‐induced force depression in human adductor pollicis muscle publication-title: J. Physiol. (Lond.) – volume: 94 start-page: 69 year: 2003 end-page: 74 article-title: Shortening‐induced depression of voluntary force in unfatigued and fatigued human adductor pollicis muscle publication-title: J. Appl. Physiol. – volume: 3 start-page: 199 year: 2011 end-page: 207 article-title: Mechanisms of residual force enhancement in skeletal muscle: insights from experiments and mathematical models publication-title: Biophys. Rev. – volume: 590 start-page: 1339 year: 2012 end-page: 1345 article-title: Residual force enhancement after stretch in striated muscle. A consequence of increased myofilament overlap? publication-title: J. Physiol. – volume: 42 start-page: 2336 year: 2009 end-page: 2340 article-title: Shortening‐induced force depression is primarily caused by cross‐bridges in strongly bound states publication-title: J. Biomech. – volume: 165 start-page: 121 year: 1992 end-page: 136 article-title: The potentiating effect of prestretch on the contractile performance of rat gastrocnemius medialis muscle during subsequent shortening and isometric contractions publication-title: J. Exp. Biol. – volume: 33 start-page: 531 year: 2000 end-page: 542 article-title: The history dependence of force production in mammalian skeletal muscle following stretch‐shortening and shortening‐stretch cycles publication-title: J. Biomech. – volume: 26 start-page: 256 year: 2010 end-page: 264 article-title: Force enhancement of quadriceps femoris in vivo and its dependence on stretch‐induced muscle architectural changes publication-title: J. Appl. Biomech. – volume: 7 start-page: e48044 year: 2012 article-title: Increased residual force enhancement in older adults is associated with a maintenance of eccentric strength publication-title: PLoS ONE – volume: 21 start-page: 721 year: 1988 end-page: 732 article-title: Mechanical output of the cat soleus during treadmill locomotion: in vivo vs in situ characteristics publication-title: J. Biomech. – volume: 207 start-page: 2787 year: 2004 end-page: 2791 article-title: Force enhancement in single skeletal muscle fibres on the ascending limb of the force‐length relationship publication-title: J. Exp. Biol. – volume: 111 start-page: 135 year: 1981 end-page: 140 article-title: Prestretch potentiation of human skeletal muscle during ballistic movement publication-title: Acta Physiol. Scand. – volume: 13 start-page: 389 year: 1997b end-page: 415 article-title: Does elastic energy enhance work and efficiency in the stretch‐shortening cycle? publication-title: J. Appl. Biomech. – volume: 33 start-page: 659 year: 2000 end-page: 668 article-title: The relationship between force depression following shortening and mechanical work in skeletal muscle publication-title: J. Biomech. – volume: 99 start-page: 252 year: 2005 end-page: 260 article-title: Force recovery after activated shortening in whole skeletal muscle: transient and steady‐state aspects of force depression publication-title: J. Appl. Physiol. – volume: 73 start-page: 453 year: 1979 end-page: 467 article-title: The deficit of the isometric tetanic tension redeveloped after a release of frog muscle at a constant velocity publication-title: J. Gen. Physiol. – volume: 123 start-page: 553 year: 1954 end-page: 564 article-title: Voluntary strength and fatigue publication-title: J. Physiol. – volume: 46 start-page: 1996 year: 2013 end-page: 2001 article-title: On the relevance of residual force enhancement for everyday human movement publication-title: J. Biomech. – volume: 94 start-page: 69 year: 2003 ident: 10.14814/phy2.12401-BIB0011|phy212401-cit-0011 article-title: Shortening-induced depression of voluntary force in unfatigued and fatigued human adductor pollicis muscle publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00672.2002 – volume: 36 start-page: 1309 year: 2003 ident: 10.14814/phy2.12401-BIB0044|phy212401-cit-0044 article-title: Stretch-induced, steady-state force enhancement in single skeletal muscle fibers exceeds the isometric force at optimum fiber length publication-title: J. Biomech. doi: 10.1016/S0021-9290(03)00155-6 – volume: 33 start-page: 917 year: 2000 ident: 10.14814/phy2.12401-BIB0036|phy212401-cit-0036 article-title: Effects of speed and distance of muscle shortening on force depression during voluntary contractions publication-title: J. Biomech. doi: 10.1016/S0021-9290(00)00070-1 – volume: 590 start-page: 1339 year: 2012 ident: 10.14814/phy2.12401-BIB0015|phy212401-cit-0015 article-title: Residual force enhancement after stretch in striated muscle. A consequence of increased myofilament overlap? publication-title: J. Physiol. doi: 10.1113/jphysiol.2011.222729 – volume: 13 start-page: 484 year: 1997a ident: 10.14814/phy2.12401-BIB0049|phy212401-cit-0049 article-title: Mechanics and energetics of the stretch-shortening cycle: a stimulating discussion publication-title: J. Appl. Biomech. doi: 10.1123/jab.13.4.484 – volume: 99 start-page: 252 year: 2005 ident: 10.14814/phy2.12401-BIB0010|phy212401-cit-0010 article-title: Force recovery after activated shortening in whole skeletal muscle: transient and steady-state aspects of force depression publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00509.2004 – volume: 87 start-page: 2090 year: 1999 ident: 10.14814/phy2.12401-BIB0030|phy212401-cit-0030 article-title: Influence of elastic properties of tendon structures on jump performance in humans publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1999.87.6.2090 – volume: 24 start-page: 21 year: 1968 ident: 10.14814/phy2.12401-BIB0008|phy212401-cit-0008 article-title: Positive work done by a previously stretched muscle publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1968.24.1.21 – volume: 87 start-page: 1651 year: 1999 ident: 10.14814/phy2.12401-BIB0032|phy212401-cit-0032 article-title: Force depression in human quadriceps femoris following voluntary shortening contractions publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1999.87.5.1651 – volume: 98 start-page: 2087 year: 2005 ident: 10.14814/phy2.12401-BIB0039|phy212401-cit-0039 article-title: Observations on force enhancement in submaximal voluntary contractions of human adductor pollicis muscle publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.01217.2004 – volume: 43 start-page: 1503 year: 2010 ident: 10.14814/phy2.12401-BIB0022|phy212401-cit-0022 article-title: Evidence of residual force enhancement for multi-joint leg extension publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.01.041 – volume: 545 start-page: 321 year: 2002 ident: 10.14814/phy2.12401-BIB0034|phy212401-cit-0034 article-title: Force enhancement following muscle stretch of electrically stimulated and voluntarily activated human adductor pollicis publication-title: J. Physiol. doi: 10.1113/jphysiol.2002.018010 – volume: 84 start-page: 97 year: 1998 ident: 10.14814/phy2.12401-BIB0051|phy212401-cit-0051 article-title: Stretch-shorten cycle compared with isometric preload: contributions to enhanced muscular performance publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1998.84.1.97 – volume: 56 start-page: 138 year: 1987 ident: 10.14814/phy2.12401-BIB0005|phy212401-cit-0005 article-title: Relationship between the efficiency of muscular work during jumping and the energetics of running publication-title: Eur. J. Appl. Physiol. doi: 10.1007/BF00640636 – volume: 33 start-page: 659 year: 2000 ident: 10.14814/phy2.12401-BIB0026|phy212401-cit-0026 article-title: The relationship between force depression following shortening and mechanical work in skeletal muscle publication-title: J. Biomech. doi: 10.1016/S0021-9290(00)00008-7 – volume: 28 start-page: 1402 year: 1996 ident: 10.14814/phy2.12401-BIB0002|phy212401-cit-0002 article-title: Why is countermovement jump height greater than squat jump height? publication-title: Med. Sci. Sports Exerc. doi: 10.1097/00005768-199611000-00009 – volume: 13 start-page: 389 year: 1997b ident: 10.14814/phy2.12401-BIB0050|phy212401-cit-0050 article-title: Does elastic energy enhance work and efficiency in the stretch-shortening cycle? publication-title: J. Appl. Biomech. doi: 10.1123/jab.13.4.389 – volume: 73 start-page: 453 year: 1979 ident: 10.14814/phy2.12401-BIB0037|phy212401-cit-0037 article-title: The deficit of the isometric tetanic tension redeveloped after a release of frog muscle at a constant velocity publication-title: J. Gen. Physiol. doi: 10.1085/jgp.73.4.453 – volume: 13 start-page: 451 year: 1997 ident: 10.14814/phy2.12401-BIB0029|phy212401-cit-0029 article-title: Stretch reflex can have an important role in force enhancement during SSC-exercise publication-title: J. Appl. Biomech. doi: 10.1123/jab.13.4.451 – volume: 117 start-page: 77 year: 1952 ident: 10.14814/phy2.12401-BIB0001|phy212401-cit-0001 article-title: The force exerted by active striated muscle during and after change of length publication-title: J. Physiol. doi: 10.1113/jphysiol.1952.sp004733 – volume: 108 start-page: 356 year: 2010 ident: 10.14814/phy2.12401-BIB0027|phy212401-cit-0027 article-title: Force depression in single myofibrils publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.01108.2009 – volume: 99 start-page: 986 year: 2005 ident: 10.14814/phy2.12401-BIB0003|phy212401-cit-0003 article-title: Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.01305.2004 – volume: 42 start-page: 2336 year: 2009 ident: 10.14814/phy2.12401-BIB0031|phy212401-cit-0031 article-title: Shortening-induced force depression is primarily caused by cross-bridges in strongly bound states publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.06.026 – volume: 98 start-page: 384 year: 1976 ident: 10.14814/phy2.12401-BIB0014|phy212401-cit-0014 article-title: Depression of mechanical activity induced by active shortening in frog skeletal muscle fibres publication-title: Acta Physiol. Scand. doi: 10.1111/j.1748-1716.1976.tb10325.x – volume: 281 start-page: 139 year: 1978 ident: 10.14814/phy2.12401-BIB0016|phy212401-cit-0016 article-title: Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres publication-title: J. Physiol. doi: 10.1113/jphysiol.1978.sp012413 – volume: 34 start-page: 979 year: 2001 ident: 10.14814/phy2.12401-BIB0035|phy212401-cit-0035 article-title: Effects of cyclic changes in muscle length on force production in in-situ cat soleus publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00077-X – volume: 207 start-page: 2787 year: 2004 ident: 10.14814/phy2.12401-BIB0040|phy212401-cit-0040 article-title: Force enhancement in single skeletal muscle fibres on the ascending limb of the force-length relationship publication-title: J. Exp. Biol. doi: 10.1242/jeb.01095 – volume: 415 start-page: 299 year: 1989 ident: 10.14814/phy2.12401-BIB0019|phy212401-cit-0019 article-title: Effect of active pre-shortening on isometric and isotonic performance of single frog muscle fibres publication-title: J. Physiol. doi: 10.1113/jphysiol.1989.sp017723 – volume: 116 start-page: 1407 year: 2014 ident: 10.14814/phy2.12401-BIB0023|phy212401-cit-0023 article-title: Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00069.2013 – volume: 123 start-page: 553 year: 1954 ident: 10.14814/phy2.12401-BIB0038|phy212401-cit-0038 article-title: Voluntary strength and fatigue publication-title: J. Physiol. doi: 10.1113/jphysiol.1954.sp005070 – volume: 507 start-page: 583 year: 1998 ident: 10.14814/phy2.12401-BIB0012|phy212401-cit-0012 article-title: Shortening-induced force depression in human adductor pollicis muscle publication-title: J. Physiol. (Lond.) doi: 10.1111/j.1469-7793.1998.583bt.x – volume: 7 start-page: e48044 year: 2012 ident: 10.14814/phy2.12401-BIB0042|phy212401-cit-0042 article-title: Increased residual force enhancement in older adults is associated with a maintenance of eccentric strength publication-title: PLoS ONE doi: 10.1371/journal.pone.0048044 – volume: 526 start-page: 671 year: 2000 ident: 10.14814/phy2.12401-BIB0013|phy212401-cit-0013 article-title: The force-velocity relationship of human adductor pollicis muscle during stretch and the effects of fatigue publication-title: J. Physiol. doi: 10.1111/j.1469-7793.2000.00671.x – volume: 26 start-page: 256 year: 2010 ident: 10.14814/phy2.12401-BIB0046|phy212401-cit-0046 article-title: Force enhancement of quadriceps femoris in vivo and its dependence on stretch-induced muscle architectural changes publication-title: J. Appl. Biomech. doi: 10.1123/jab.26.3.256 – volume: 33 start-page: 1197 year: 2000 ident: 10.14814/phy2.12401-BIB0028|phy212401-cit-0028 article-title: Stretch-shortening cycle: a powerful model to study normal and fatigued muscle publication-title: J. Biomech. doi: 10.1016/S0021-9290(00)00064-6 – volume: 30 start-page: 865 year: 1997 ident: 10.14814/phy2.12401-BIB0024|phy212401-cit-0024 article-title: Depression of cat soleus-forces following isokinetic shortening publication-title: J. Biomech. doi: 10.1016/S0021-9290(97)00046-8 – volume: 551 start-page: 993 year: 2003 ident: 10.14814/phy2.12401-BIB0033|phy212401-cit-0033 article-title: Force depression following muscle shortening of voluntarily activated and electrically stimulated human adductor pollicis publication-title: J. Physiol. doi: 10.1113/jphysiol.2002.037333 – volume: 40 start-page: 1518 year: 2007 ident: 10.14814/phy2.12401-BIB0006|phy212401-cit-0006 article-title: History-dependence of isometric muscle force: effect of prior stretch or shortening amplitude publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.06.014 – volume: 21 start-page: 721 year: 1988 ident: 10.14814/phy2.12401-BIB0020|phy212401-cit-0020 article-title: Mechanical output of the cat soleus during treadmill locomotion: in vivo vs in situ characteristics publication-title: J. Biomech. doi: 10.1016/0021-9290(88)90281-3 – volume: 165 start-page: 121 year: 1992 ident: 10.14814/phy2.12401-BIB0018|phy212401-cit-0018 article-title: The potentiating effect of prestretch on the contractile performance of rat gastrocnemius medialis muscle during subsequent shortening and isometric contractions publication-title: J. Exp. Biol. doi: 10.1242/jeb.165.1.121 – volume: 46 start-page: 1996 year: 2013 ident: 10.14814/phy2.12401-BIB0047|phy212401-cit-0047 article-title: On the relevance of residual force enhancement for everyday human movement publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.06.014 – start-page: 608 volume-title: Multiple muscle systems year: 1990 ident: 10.14814/phy2.12401-BIB0009|phy212401-cit-0009 doi: 10.1007/978-1-4613-9030-5_39 – volume: 33 start-page: 531 year: 2000 ident: 10.14814/phy2.12401-BIB0025|phy212401-cit-0025 article-title: The history dependence of force production in mammalian skeletal muscle following stretch-shortening and shortening-stretch cycles publication-title: J. Biomech. doi: 10.1016/S0021-9290(99)00221-3 – volume: 57 start-page: 75 year: 2014 ident: 10.14814/phy2.12401-BIB0500|phy212401-cit-0500 article-title: Shortening-induced torque depression in old men: implications for age-related power loss publication-title: Exp Gerontol. doi: 10.1016/j.exger.2014.05.004 – volume: 22 start-page: 117 year: 2012 ident: 10.14814/phy2.12401-BIB0045|phy212401-cit-0045 article-title: Feedback controlled force enhancement and activation reduction of voluntarily activated quadriceps femoris during sub-maximal muscle action publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2011.10.010 – volume: 1 start-page: 1 year: 2013 ident: 10.14814/phy2.12401-BIB0041|phy212401-cit-0041 article-title: Enhanced force production in old age is not a far stretch: an investigation of residual force enhancement and muscle architecture publication-title: Physiol. Rep. doi: 10.1002/phy2.4 – volume: 3 start-page: 199 year: 2011 ident: 10.14814/phy2.12401-BIB0007|phy212401-cit-0007 article-title: Mechanisms of residual force enhancement in skeletal muscle: insights from experiments and mathematical models publication-title: Biophys. Rev. doi: 10.1007/s12551-011-0059-2 – volume: 7 start-page: e49907 year: 2012 ident: 10.14814/phy2.12401-BIB0021|phy212401-cit-0021 article-title: Cortical and spinal excitability during and after lengthening contractions of the human plantar flexor muscles performed with maximal voluntary effort publication-title: PLoS ONE doi: 10.1371/journal.pone.0049907 – volume: 407 start-page: 215 year: 1988 ident: 10.14814/phy2.12401-BIB0048|phy212401-cit-0048 article-title: Stiffness changes during enhancement and deficit of isometric force by slow length changes in frog skeletal muscle fibres publication-title: J. Physiol. doi: 10.1113/jphysiol.1988.sp017411 – volume: 111 start-page: 135 year: 1981 ident: 10.14814/phy2.12401-BIB0004|phy212401-cit-0004 article-title: Prestretch potentiation of human skeletal muscle during ballistic movement publication-title: Acta Physiol. Scand. doi: 10.1111/j.1748-1716.1981.tb06716.x – volume: 80 start-page: 769 year: 1982 ident: 10.14814/phy2.12401-BIB0017|phy212401-cit-0017 article-title: Residual force enhancement after stretch of contracting frog single muscle fibers publication-title: J. Gen. Physiol. doi: 10.1085/jgp.80.5.769 – volume: 279 start-page: 2705 year: 2012 ident: 10.14814/phy2.12401-BIB0043|phy212401-cit-0043 article-title: The mechanisms of the residual force enhancement after stretch of skeletal muscle: non-uniformity in half-sarcomeres and stiffness of titin publication-title: Proc. Biol. Sci. doi: 10.1098/rspb.2012.0467 – reference: 10601154 - J Appl Physiol (1985). 1999 Dec;87(6):2090-6 – reference: 22115525 - J Electromyogr Kinesiol. 2012 Feb;22(1):117-23 – reference: 10807986 - J Biomech. 2000 Jun;33(6):659-68 – reference: 9451623 - J Appl Physiol (1985). 1998 Jan;84(1):97-106 – reference: 12433972 - J Physiol. 2002 Nov 15;545(Pt 1):321-30 – reference: 2640463 - J Physiol. 1989 Aug;415:299-327 – reference: 24303098 - Physiol Rep. 2013 Jun;1(1):e00004 – reference: 22180761 - Biophys Rev. 2011 Dec;3(4):199-207 – reference: 24835195 - Exp Gerontol. 2014 Sep;57:75-80 – reference: 1588248 - J Exp Biol. 1992 Apr;165:121-36 – reference: 9518715 - J Physiol. 1998 Mar 1;507 ( Pt 2):583-91 – reference: 14946730 - J Physiol. 1952 May;117(1):77-86 – reference: 3256616 - J Physiol. 1988 Dec;407:215-29 – reference: 8933491 - Med Sci Sports Exerc. 1996 Nov;28(11):1402-12 – reference: 12893039 - J Biomech. 2003 Sep;36(9):1309-16 – reference: 312915 - J Gen Physiol. 1979 Apr;73(4):453-67 – reference: 793303 - Acta Physiol Scand. 1976 Nov;98(3):384-6 – reference: 10922017 - J Physiol. 2000 Aug 1;526 Pt 3:671-81 – reference: 309001 - J Physiol. 1978 Aug;281:139-55 – reference: 23133544 - PLoS One. 2012;7(10):e48044 – reference: 20007852 - J Appl Physiol (1985). 2010 Feb;108(2):356-62 – reference: 6983564 - J Gen Physiol. 1982 Nov;80(5):769-84 – reference: 13152698 - J Physiol. 1954 Mar 29;123(3):553-64 – reference: 22535786 - Proc Biol Sci. 2012 Jul 22;279(1739):2705-13 – reference: 10562604 - J Appl Physiol (1985). 1999 Nov;87(5):1651-5 – reference: 12391074 - J Appl Physiol (1985). 2003 Jan;94(1):69-74 – reference: 15235007 - J Exp Biol. 2004 Jul;207(Pt 16):2787-91 – reference: 7282389 - Acta Physiol Scand. 1981 Feb;111(2):135-40 – reference: 20841616 - J Appl Biomech. 2010 Aug;26(3):256-64 – reference: 9302608 - J Biomech. 1997 Sep;30(9):865-72 – reference: 10899328 - J Biomech. 2000 Oct;33(10):1197-206 – reference: 23845729 - J Biomech. 2013 Aug 9;46(12):1996-2001 – reference: 22331422 - J Physiol. 2012 Mar 15;590(6):1339-45 – reference: 15860680 - J Appl Physiol (1985). 2005 Sep;99(3):986-94 – reference: 16919641 - J Biomech. 2007;40(7):1518-24 – reference: 15705725 - J Appl Physiol (1985). 2005 Jun;98(6):2087-95 – reference: 23429875 - J Appl Physiol (1985). 2014 Jun 1;116(11):1407-17 – reference: 15746298 - J Appl Physiol (1985). 2005 Jul;99(1):252-60 – reference: 19651411 - J Biomech. 2009 Oct 16;42(14):2336-40 – reference: 5635766 - J Appl Physiol. 1968 Jan;24(1):21-32 – reference: 11448689 - J Biomech. 2001 Aug;34(8):979-87 – reference: 23166794 - PLoS One. 2012;7(11):e49907 – reference: 3182876 - J Biomech. 1988;21(9):721-32 – reference: 12815187 - J Physiol. 2003 Sep 15;551(Pt 3):993-1003 – reference: 20167325 - J Biomech. 2010 May 28;43(8):1503-8 – reference: 3569218 - Eur J Appl Physiol Occup Physiol. 1987;56(2):138-43 – reference: 10708773 - J Biomech. 2000 May;33(5):531-42 – reference: 10828321 - J Biomech. 2000 Aug;33(8):917-23 |
SSID | ssj0001033904 |
Score | 2.2544577 |
Snippet | The stretch‐shortening cycle (SSC) occurs in most everyday movements, and is thought to provoke a performance enhancement of the musculoskeletal system.... The stretch-shortening cycle (SSC) occurs in most everyday movements, and is thought to provoke a performance enhancement of the musculoskeletal system.... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e12401 |
SubjectTerms | Concentric eccentric electrical stimulation force depression force enhancement force redevelopment muscle Original Research potentiation thumb |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NattAEF5CesmltEnaOmnKFELpD0rt_dO6txAaTCAlkAbSk9hd7WJDIpvIPvjWR-gT5OHyJJ1ZKXZNSiA3gWYlwcxov5md-Yax_b5QeeDKZso4nyH-j5mz6I-WG517E6xLjDenP_TgQp5cqsu2Nod6YRp-iEXCjTwj_a_Jwa1rppBI05M0mnY45we4PVH31jNqriXqfC7PlimWrsCIXrZdebTq63LN6j70AFw-rJH8F7umzef4BXveokY4bNT8kq2FapNtHVYYMV_P4QOkOs6UIN9it6h5oBYQ1Mfd7z_1kMppKfsBfo6L4eP5-dEnuEld5Qg3v-FlnTqyAPGrDxCqIVkCZQ0hFbLTRKxQw3QMo4owZh1KmCz7DaDpdIRo6yngs2sYR0ij_-D6APDHNqNzAZgQ-7cf1dvs4vj7z6NB1k5hyDwGqb1MOVV6HaP0LvIoeVdIHYPOufOiFF65iFF01DZa56zxUggZo1KxF3XgZcnFK7ZejavwhgHag5Nlv8u9QVThnYvKhxIBpdOExGKHfb7XSeFbinKalHFVUKhCCixIgUVSYIftL4QnDTPH_8Xe3yu3QM-h4xBbhfGsLnpEvYYv1uYRGdMnxj-jdIe9bgxi8TIMHHOlJd7JV0xlIUDM3at3qtEwMXhjDC6M6HbYl2RUj31_cTb4xdPVzpOkd9kGYjvV1Ga-ZevTm1nYQ_w0de-Sl_wF3yQdPA priority: 102 providerName: Wiley-Blackwell |
Title | The stretch‐shortening cycle (SSC) revisited: residual force enhancement contributes to increased performance during fast SSCs of human m. adductor pollicis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.14814%2Fphy2.12401 https://www.ncbi.nlm.nih.gov/pubmed/25975646 https://www.proquest.com/docview/1681262568 https://www.proquest.com/docview/1891867856 https://pubmed.ncbi.nlm.nih.gov/PMC4463830 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ta9swEBZd-2VfxrbuxVsXblDGXnCWSJasDMboSksYtIR1geyTsWSJBFonjRNY_st-7O5kJ2vXrl-MwbItfHfWc6e75xjb7wmZOi7zWGpjY8T_PjY52mPOtUqtdrkJjDcnp6o_TL6N5GiLrZtxNh-wutW1o35Sw_l5-9fl6gsa_Gcy-ER3k484Id7GhYrquHZwSUrJQk8anB-CLR2Bvj3tMHNUwlh301FTq_fP_cQNjBBbKgLEVxeqG-jzZhLlVXAbVqfjh-xBAyvhoNaDR2zLlY_Z7kGJLvXFCt5ASPQMEfRd9htVA6hGBAUWV2PKtqXgCNgV3gpvz84O38E8FJ0jGv2Ep1Uo2AKEt9aBK8ekKBRUhJDnTg2zXAWLKUxKgqCVK2D2txwB6kJI8Hm1AHx2BVMPoTMgXLQB_3tL2jaAGZGD20n1hA2Pj34c9uOmSUNs0YftxtLIwirvE2s89wnviER5p1JurCiElcajk-1V7nNjcm0TIRLvpfRdrxwvCi6esu1yWrrnDFBdTFL0OtxqBB3WGC-tKxBvGkVAzUfs_VoimW0YzKmRxnlGngxJMiNJZkGSEdvfDJ7VxB23D3u9Fm2GhkW7JXnppssq6xIzG75Y6TvG6B4RAmqpIvasVofNy9Z6FLH0mqJsBhCx9_Ur5WQcCL7RRRdadCL2IajUXfPPBv2fPJy9-O8MXrL7CPNknaa5x7YX86V7hVBqYVrsHk8GeExHaYvtfD06HXxvhbBEKxjQH09fIqU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEF5KemgvpU36cB_pFELpA6X2vrTuLYQGt01CIAmkJ7G72sWGRjaRffCtP6G_oD8uvyQzK8WuSQn0JtCsJJgZ7TezM98wttUXKg9c2UwZ5zPE_zFzFv3RcqNzb4J1ifHm4FAPTuW3M3XWJtyoF6bhh1gk3Mgz0v-aHJwS0snLpelJmk07nPNt3J-ofeuu1Dwnx-TyaJlj6QoM6WXblkerPi3XrG5EN9DlzSLJv8Fr2n32HrIHLWyEnUbPj9idUK2zjZ0KQ-bzObyFVMiZMuQb7A-qHqgHBBVy-et3PaR6Wkp_gJ_jYnh3fLz7Hi5SWznizc94WaeWLEAA6wOEakimQGlDSJXsNBIr1DAdw6gikFmHEibLhgNoWh0h2noK-OwaxhHS7D843wb8s83oYAAmRP_tR_Vjdrr35WR3kLVjGDKPUWovU06VXscovYs8St4VUsegc-68KIVXLmIYHbWN1jlrvBRCxqhU7EUdeFly8YStVeMqPGOABuFk2e9ybxBWeOei8qFEROk0QbHYYR-udVL4lqOcRmX8LChWIQUWpMAiKbDDthbCk4aa499ib66VW6Dr0HmIrcJ4Vhc94l7DF2tzi4zpE-WfUbrDnjYGsXgZRo650hLv5CumshAg6u7VO9VomCi8MQgXRnQ77GMyqtu-vzga_ODp6vl_Sb9m9wYnB_vF_tfD7y_YfQR6qinUfMnWphez8ArB1NRtJo-5Ai6iIKg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3battAEF1KAqUvpW16cW-ZQii9oNTem9Z5M0mNewuB1CXNi9CudrGhkU1kP_itn9Av6Mf1SzKzUuyalEDfBJqVBDOjPTM7c4axna5QqecqT5SxLkH8HxKboz_m3OjUGZ_byHjz5VAPhvLjiTppanOoF6bmh1gm3Mgz4v-aHHxahOjk0nQkjaYdLfgubk_UvbVJPHlo1Ju9b8PT4SrJ0hYY08umL4_WvVutWt-JrsDLq1WSf6PXuP3077DbDW6EXq3ou-yGL--xrV6JMfPZAl5CrOSMKfIt9ht1D9QEghr58_NXNaKCWsp_gFvgYnh1fLz_Gs5jXzkCzj28rGJPFiCCdR58OSJboLwhxFJ2monlK5hNYFwSyqx8AdNVxwHUvY4Q8moG-OwKJgHi8D842wX8tc3pZACmxP_txtV9Nuy__7o_SJo5DInDMLWTKKsKp0OQzgYeJG8LqYPXKbdOFMIpGzCODjoPubW5cVIIGYJSoRO050XBxQO2UU5K_4gBWoSVRbfNnUFc4awNyvkCIaXVhMVCi7251EnmGpJympXxI6NghRSYkQKzqMAW21kKT2tujn-LvbhUboa-Qwcieekn8yrrEPkavliba2RMlzj_jNIt9rA2iOXLMHRMlZZ4J10zlaUAcXev3ynHo8jhjVG4MKLdYm-jUV33_dnR4DuPV4__S3qb3Tw66GefPxx-esJuIdBTdaHmU7YxO5_7ZwimZvZ54zIXwQAhoA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+stretch-shortening+cycle+%28SSC%29+revisited%3A+residual+force+enhancement+contributes+to+increased+performance+during+fast+SSCs+of+human+m.+adductor+pollicis&rft.jtitle=Physiological+reports&rft.au=Seiberl%2C+Wolfgang&rft.au=Power%2C+Geoffrey+A&rft.au=Herzog%2C+Walter&rft.au=Hahn%2C+Daniel&rft.date=2015-05-01&rft.issn=2051-817X&rft.eissn=2051-817X&rft.volume=3&rft.issue=5&rft_id=info:doi/10.14814%2Fphy2.12401&rft_id=info%3Apmid%2F25975646&rft.externalDocID=25975646 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-817X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-817X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-817X&client=summon |