The stretch‐shortening cycle (SSC) revisited: residual force enhancement contributes to increased performance during fast SSCs of human m. adductor pollicis

The stretch‐shortening cycle (SSC) occurs in most everyday movements, and is thought to provoke a performance enhancement of the musculoskeletal system. However, mechanisms of this performance enhancement remain a matter of debate. One proposed mechanism is associated with a stretch‐induced increase...

Full description

Saved in:
Bibliographic Details
Published inPhysiological reports Vol. 3; no. 5; pp. e12401 - n/a
Main Authors Seiberl, Wolfgang, Power, Geoffrey A., Herzog, Walter, Hahn, Daniel
Format Journal Article
LanguageEnglish
Published United States BlackWell Publishing Ltd 01.05.2015
Subjects
Online AccessGet full text
ISSN2051-817X
2051-817X
DOI10.14814/phy2.12401

Cover

Loading…
Abstract The stretch‐shortening cycle (SSC) occurs in most everyday movements, and is thought to provoke a performance enhancement of the musculoskeletal system. However, mechanisms of this performance enhancement remain a matter of debate. One proposed mechanism is associated with a stretch‐induced increase in steady‐state force, referred to as residual force enhancement (RFE). As yet, direct evidence relating RFE to increased force/work during SSCs is missing. Therefore, forces of electrically stimulated m. adductor pollicis (n = 14 subjects) were measured during and after pure stretch, pure shortening, and stretch‐shortening contractions with varying shortening amplitudes. Active stretch (30°, ω = 161 ± 6°s−1) caused significant RFE (16%, P < 0.01), whereas active shortening (10°, 20°, and 30°; ω = 103 ± 3°s−1, 152 ± 5°s−1, and 170 ± 5°s−1) resulted in significant force depression (9–15%, P < 0.01). In contrast, after SSCs (that is when active stretch preceded active shortening) no force depression was found. Indeed for our specific case in which the shortening amplitude was only 1/3 of the lengthening amplitude, there was a remnant RFE (10%, P < 0.01) following the active shortening. This result indicates that the RFE generated during lengthening affected force depression when active lengthening was followed by active shortening. As conventional explanations, such as the storage and release of elastic energy, cannot explain the enhanced steady‐state force after SSCs, it appears that the stretch‐induced RFE is not immediately abolished during shortening and contributes to the increased force and work during SSCs. Mechanisms underlying muscular performance enhancement in stretch‐shortening cycles (SSC) still are a matter of debate. Measuring thumb adduction force during and after pure stretch, pure shortening, and stretch‐shortening contractions we found a remnant increased force following the active shortening. As conventional explanations, such as the storage and release of elastic energy, cannot explain the enhanced steady‐state force after SSCs, it appears that mechanisms associated with stretch‐induced residual force enhancement contribute to the increased performance during SSCs.
AbstractList The stretch‐shortening cycle (SSC) occurs in most everyday movements, and is thought to provoke a performance enhancement of the musculoskeletal system. However, mechanisms of this performance enhancement remain a matter of debate. One proposed mechanism is associated with a stretch‐induced increase in steady‐state force, referred to as residual force enhancement (RFE). As yet, direct evidence relating RFE to increased force/work during SSCs is missing. Therefore, forces of electrically stimulated m. adductor pollicis (n = 14 subjects) were measured during and after pure stretch, pure shortening, and stretch‐shortening contractions with varying shortening amplitudes. Active stretch (30°, ω = 161 ± 6°s−1) caused significant RFE (16%, P < 0.01), whereas active shortening (10°, 20°, and 30°; ω = 103 ± 3°s−1, 152 ± 5°s−1, and 170 ± 5°s−1) resulted in significant force depression (9–15%, P < 0.01). In contrast, after SSCs (that is when active stretch preceded active shortening) no force depression was found. Indeed for our specific case in which the shortening amplitude was only 1/3 of the lengthening amplitude, there was a remnant RFE (10%, P < 0.01) following the active shortening. This result indicates that the RFE generated during lengthening affected force depression when active lengthening was followed by active shortening. As conventional explanations, such as the storage and release of elastic energy, cannot explain the enhanced steady‐state force after SSCs, it appears that the stretch‐induced RFE is not immediately abolished during shortening and contributes to the increased force and work during SSCs. Mechanisms underlying muscular performance enhancement in stretch‐shortening cycles (SSC) still are a matter of debate. Measuring thumb adduction force during and after pure stretch, pure shortening, and stretch‐shortening contractions we found a remnant increased force following the active shortening. As conventional explanations, such as the storage and release of elastic energy, cannot explain the enhanced steady‐state force after SSCs, it appears that mechanisms associated with stretch‐induced residual force enhancement contribute to the increased performance during SSCs.
The stretch-shortening cycle (SSC) occurs in most everyday movements, and is thought to provoke a performance enhancement of the musculoskeletal system. However, mechanisms of this performance enhancement remain a matter of debate. One proposed mechanism is associated with a stretch-induced increase in steady-state force, referred to as residual force enhancement (RFE). As yet, direct evidence relating RFE to increased force/work during SSCs is missing. Therefore, forces of electrically stimulated m. adductor pollicis (n = 14 subjects) were measured during and after pure stretch, pure shortening, and stretch-shortening contractions with varying shortening amplitudes. Active stretch (30°, ω = 161 ± 6°s(-1)) caused significant RFE (16%, P < 0.01), whereas active shortening (10°, 20°, and 30°; ω = 103 ± 3°s(-1), 152 ± 5°s(-1), and 170 ± 5°s(-1)) resulted in significant force depression (9-15%, P < 0.01). In contrast, after SSCs (that is when active stretch preceded active shortening) no force depression was found. Indeed for our specific case in which the shortening amplitude was only 1/3 of the lengthening amplitude, there was a remnant RFE (10%, P < 0.01) following the active shortening. This result indicates that the RFE generated during lengthening affected force depression when active lengthening was followed by active shortening. As conventional explanations, such as the storage and release of elastic energy, cannot explain the enhanced steady-state force after SSCs, it appears that the stretch-induced RFE is not immediately abolished during shortening and contributes to the increased force and work during SSCs.The stretch-shortening cycle (SSC) occurs in most everyday movements, and is thought to provoke a performance enhancement of the musculoskeletal system. However, mechanisms of this performance enhancement remain a matter of debate. One proposed mechanism is associated with a stretch-induced increase in steady-state force, referred to as residual force enhancement (RFE). As yet, direct evidence relating RFE to increased force/work during SSCs is missing. Therefore, forces of electrically stimulated m. adductor pollicis (n = 14 subjects) were measured during and after pure stretch, pure shortening, and stretch-shortening contractions with varying shortening amplitudes. Active stretch (30°, ω = 161 ± 6°s(-1)) caused significant RFE (16%, P < 0.01), whereas active shortening (10°, 20°, and 30°; ω = 103 ± 3°s(-1), 152 ± 5°s(-1), and 170 ± 5°s(-1)) resulted in significant force depression (9-15%, P < 0.01). In contrast, after SSCs (that is when active stretch preceded active shortening) no force depression was found. Indeed for our specific case in which the shortening amplitude was only 1/3 of the lengthening amplitude, there was a remnant RFE (10%, P < 0.01) following the active shortening. This result indicates that the RFE generated during lengthening affected force depression when active lengthening was followed by active shortening. As conventional explanations, such as the storage and release of elastic energy, cannot explain the enhanced steady-state force after SSCs, it appears that the stretch-induced RFE is not immediately abolished during shortening and contributes to the increased force and work during SSCs.
The stretch-shortening cycle (SSC) occurs in most everyday movements, and is thought to provoke a performance enhancement of the musculoskeletal system. However, mechanisms of this performance enhancement remain a matter of debate. One proposed mechanism is associated with a stretch-induced increase in steady-state force, referred to as residual force enhancement (RFE). As yet, direct evidence relating RFE to increased force/work during SSCs is missing. Therefore, forces of electrically stimulated m. adductor pollicis (n = 14 subjects) were measured during and after pure stretch, pure shortening, and stretch-shortening contractions with varying shortening amplitudes. Active stretch (30°, ω = 161 ± 6°s(-1)) caused significant RFE (16%, P < 0.01), whereas active shortening (10°, 20°, and 30°; ω = 103 ± 3°s(-1), 152 ± 5°s(-1), and 170 ± 5°s(-1)) resulted in significant force depression (9-15%, P < 0.01). In contrast, after SSCs (that is when active stretch preceded active shortening) no force depression was found. Indeed for our specific case in which the shortening amplitude was only 1/3 of the lengthening amplitude, there was a remnant RFE (10%, P < 0.01) following the active shortening. This result indicates that the RFE generated during lengthening affected force depression when active lengthening was followed by active shortening. As conventional explanations, such as the storage and release of elastic energy, cannot explain the enhanced steady-state force after SSCs, it appears that the stretch-induced RFE is not immediately abolished during shortening and contributes to the increased force and work during SSCs.
The stretch-shortening cycle (SSC) occurs in most everyday movements, and is thought to provoke a performance enhancement of the musculoskeletal system. However, mechanisms of this performance enhancement remain a matter of debate. One proposed mechanism is associated with a stretch-induced increase in steady-state force, referred to as residual force enhancement (RFE). As yet, direct evidence relating RFE to increased force/work during SSCs is missing. Therefore, forces of electrically stimulated m. adductor pollicis ( n  = 14 subjects) were measured during and after pure stretch, pure shortening, and stretch-shortening contractions with varying shortening amplitudes. Active stretch (30°, ω  = 161 ± 6°s −1 ) caused significant RFE (16%, P  < 0.01), whereas active shortening (10°, 20°, and 30°; ω  = 103 ± 3°s −1 , 152 ± 5°s −1 , and 170 ± 5°s −1 ) resulted in significant force depression (9–15%, P  < 0.01). In contrast, after SSCs (that is when active stretch preceded active shortening) no force depression was found. Indeed for our specific case in which the shortening amplitude was only 1/3 of the lengthening amplitude, there was a remnant RFE (10%, P  < 0.01) following the active shortening. This result indicates that the RFE generated during lengthening affected force depression when active lengthening was followed by active shortening. As conventional explanations, such as the storage and release of elastic energy, cannot explain the enhanced steady-state force after SSCs, it appears that the stretch-induced RFE is not immediately abolished during shortening and contributes to the increased force and work during SSCs.
The stretch-shortening cycle (SSC) occurs in most everyday movements, and is thought to provoke a performance enhancement of the musculoskeletal system. However, mechanisms of this performance enhancement remain a matter of debate. One proposed mechanism is associated with a stretch-induced increase in steady-state force, referred to as residual force enhancement (RFE). As yet, direct evidence relating RFE to increased force/work during SSCs is missing. Therefore, forces of electrically stimulated m. adductor pollicis (n = 14 subjects) were measured during and after pure stretch, pure shortening, and stretch-shortening contractions with varying shortening amplitudes. Active stretch (30 degree , omega = 161 plus or minus 6 degree s super(-1)) caused significant RFE (16%, P < 0.01), whereas active shortening (10 degree , 20 degree , and 30 degree ; omega = 103 plus or minus 3 degree s super(-1), 152 plus or minus 5 degree s super(-1), and 170 plus or minus 5 degree s super(-1)) resulted in significant force depression (9-15%, P < 0.01). In contrast, after SSCs (that is when active stretch preceded active shortening) no force depression was found. Indeed for our specific case in which the shortening amplitude was only 1/3 of the lengthening amplitude, there was a remnant RFE (10%, P < 0.01) following the active shortening. This result indicates that the RFE generated during lengthening affected force depression when active lengthening was followed by active shortening. As conventional explanations, such as the storage and release of elastic energy, cannot explain the enhanced steady-state force after SSCs, it appears that the stretch-induced RFE is not immediately abolished during shortening and contributes to the increased force and work during SSCs. Mechanisms underlying muscular performance enhancement in stretch-shortening cycles (SSC) still are a matter of debate. Measuring thumb adduction force during and after pure stretch, pure shortening, and stretch-shortening contractions we found a remnant increased force following the active shortening. As conventional explanations, such as the storage and release of elastic energy, cannot explain the enhanced steady-state force after SSCs, it appears that mechanisms associated with stretch-induced residual force enhancement contribute to the increased performance during SSCs.
Author Hahn, Daniel
Seiberl, Wolfgang
Herzog, Walter
Power, Geoffrey A.
Author_xml – sequence: 1
  givenname: Wolfgang
  surname: Seiberl
  fullname: Seiberl, Wolfgang
  organization: University of Calgary
– sequence: 2
  givenname: Geoffrey A.
  surname: Power
  fullname: Power, Geoffrey A.
  organization: University of Calgary
– sequence: 3
  givenname: Walter
  surname: Herzog
  fullname: Herzog, Walter
  organization: University of Calgary
– sequence: 4
  givenname: Daniel
  surname: Hahn
  fullname: Hahn, Daniel
  organization: Ruhr‐Universität Bochum
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25975646$$D View this record in MEDLINE/PubMed
BookMark eNqFks9qVDEUhy9SsbV25V6yrMiM-T8ZF4IMaoWCQivoKuQmJ72Re5Mxya3MzkfwCXw4n8Q7nVaqiK5y4Hy_jxPOud_sxRShaR4SPCdcEf503W3onFCOyZ3mgGJBZoosPuzdqvebo1I-YYwJZmyJ-b1mn4rlQkguD5rv5x2gUjNU2_34-q10KVeIIV4gu7E9oOOzs9VjlOEylFDBPZvKEtxoeuRTtoAgdiZaGCBWZFOsObRjhYJqQiHaDKaAQ2vIEz1sQeTGvLV7Uyqa3AUlj7px6qFhjoxzo60po3Xq-2BDedDc9aYvcHT9HjbvX708X53MTt--frN6cTqzgjIyE61wVnrPbeup5xQzLj3IBW0tc8yK1i-U8tJ407ZGWc4Y914IT7wE6hxlh83znXc9tgM4O30nm16vcxhM3uhkgv69E0OnL9Kl5lwyxfAkOL4W5PR5hFL1EIqFvjcR0lg0UUui5EIJ-X9UKkIlFVJN6KPbY_2a52Z_E0B2gM2plAxe21BNDdtNmNBrgvXVmejtmeirM5kyT_7I3Gj_TtMd_SX0sPkXqt-dfKS70E_-m9NR
CitedBy_id crossref_primary_10_1080_17461391_2022_2119434
crossref_primary_10_1371_journal_pone_0159058
crossref_primary_10_1038_srep39052
crossref_primary_10_14814_phy2_14188
crossref_primary_10_3389_fphys_2020_00521
crossref_primary_10_3389_fphys_2020_609553
crossref_primary_10_1016_j_jbiomech_2020_110040
crossref_primary_10_1098_rsos_161036
crossref_primary_10_1152_japplphysiol_00735_2021
crossref_primary_10_52082_jssm_2022_131
crossref_primary_10_1080_02640414_2024_2403873
crossref_primary_10_1038_srep21513
crossref_primary_10_1038_s41598_018_19657_8
crossref_primary_10_14814_phy2_70131
crossref_primary_10_3390_brainsci10010013
crossref_primary_10_1242_jeb_247377
crossref_primary_10_1016_j_jbiomech_2020_110136
crossref_primary_10_1038_s41598_019_54959_5
crossref_primary_10_1152_japplphysiol_00809_2023
crossref_primary_10_1242_bio_044651
crossref_primary_10_1242_jeb_225086
crossref_primary_10_1242_jeb_193367
crossref_primary_10_1519_JSC_0000000000003291
crossref_primary_10_3389_fphys_2021_644981
crossref_primary_10_14814_phy2_13279
crossref_primary_10_14814_phy2_13477
crossref_primary_10_3389_fphys_2021_693141
crossref_primary_10_1038_s41598_020_66124_4
crossref_primary_10_3389_fphys_2020_00921
crossref_primary_10_1242_jeb_204032
crossref_primary_10_23736_S0022_4707_24_16165_8
crossref_primary_10_3389_fphys_2020_592183
crossref_primary_10_52082_jssm_2023_189
crossref_primary_10_1152_japplphysiol_00931_2018
crossref_primary_10_1242_jeb_206557
crossref_primary_10_3389_fphys_2017_00985
crossref_primary_10_3389_fphys_2021_648019
crossref_primary_10_3389_frobt_2018_00036
crossref_primary_10_7717_peerj_5421
crossref_primary_10_1111_sms_12812
crossref_primary_10_1152_japplphysiol_00928_2018
crossref_primary_10_1249_MSS_0000000000001670
crossref_primary_10_1016_j_jbiomech_2016_02_015
crossref_primary_10_1519_JSC_0000000000003815
crossref_primary_10_3389_fphys_2020_567538
crossref_primary_10_1080_14763141_2022_2058991
crossref_primary_10_3389_fphys_2019_01504
crossref_primary_10_1016_j_jbiomech_2018_06_003
crossref_primary_10_1093_icb_icy021
crossref_primary_10_1113_JP285703
crossref_primary_10_5114_jhk_161729
crossref_primary_10_1007_s11357_016_9905_2
crossref_primary_10_1073_pnas_2413883121
crossref_primary_10_1016_j_jbiomech_2016_05_017
crossref_primary_10_1038_s41598_021_94046_2
crossref_primary_10_1016_j_jbiomech_2023_111579
crossref_primary_10_1016_j_jshs_2018_06_001
crossref_primary_10_1111_sms_13454
Cites_doi 10.1152/japplphysiol.00672.2002
10.1016/S0021-9290(03)00155-6
10.1016/S0021-9290(00)00070-1
10.1113/jphysiol.2011.222729
10.1123/jab.13.4.484
10.1152/japplphysiol.00509.2004
10.1152/jappl.1999.87.6.2090
10.1152/jappl.1968.24.1.21
10.1152/jappl.1999.87.5.1651
10.1152/japplphysiol.01217.2004
10.1016/j.jbiomech.2010.01.041
10.1113/jphysiol.2002.018010
10.1152/jappl.1998.84.1.97
10.1007/BF00640636
10.1016/S0021-9290(00)00008-7
10.1097/00005768-199611000-00009
10.1123/jab.13.4.389
10.1085/jgp.73.4.453
10.1123/jab.13.4.451
10.1113/jphysiol.1952.sp004733
10.1152/japplphysiol.01108.2009
10.1152/japplphysiol.01305.2004
10.1016/j.jbiomech.2009.06.026
10.1111/j.1748-1716.1976.tb10325.x
10.1113/jphysiol.1978.sp012413
10.1016/S0021-9290(01)00077-X
10.1242/jeb.01095
10.1113/jphysiol.1989.sp017723
10.1152/japplphysiol.00069.2013
10.1113/jphysiol.1954.sp005070
10.1111/j.1469-7793.1998.583bt.x
10.1371/journal.pone.0048044
10.1111/j.1469-7793.2000.00671.x
10.1123/jab.26.3.256
10.1016/S0021-9290(00)00064-6
10.1016/S0021-9290(97)00046-8
10.1113/jphysiol.2002.037333
10.1016/j.jbiomech.2006.06.014
10.1016/0021-9290(88)90281-3
10.1242/jeb.165.1.121
10.1016/j.jbiomech.2013.06.014
10.1007/978-1-4613-9030-5_39
10.1016/S0021-9290(99)00221-3
10.1016/j.exger.2014.05.004
10.1016/j.jelekin.2011.10.010
10.1002/phy2.4
10.1007/s12551-011-0059-2
10.1371/journal.pone.0049907
10.1113/jphysiol.1988.sp017411
10.1111/j.1748-1716.1981.tb06716.x
10.1085/jgp.80.5.769
10.1098/rspb.2012.0467
ContentType Journal Article
Copyright 2015 The Authors. published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
2015 The Authors. published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society. 2015
Copyright_xml – notice: 2015 The Authors. published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
– notice: 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
– notice: 2015 The Authors. published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society. 2015
DBID 24P
AAYXX
CITATION
NPM
7X8
7T5
H94
5PM
DOI 10.14814/phy2.12401
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
MEDLINE - Academic
Immunology Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
DatabaseTitleList
MEDLINE - Academic
PubMed

AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2051-817X
EndPage n/a
ExternalDocumentID PMC4463830
25975646
10_14814_phy2_12401
PHY212401
Genre article
Journal Article
GrantInformation_xml – fundername: Canadian Institutes of Health Research
– fundername: Technische Universität München
– fundername: The Killam Foundation
– fundername: Canada Research Chair Programme
– fundername: German Research Foundation (DFG)
– fundername: Natural Sciences and Engineering Research Council of Canada
GroupedDBID 0R~
1OC
24P
53G
5VS
7X7
8-1
8FE
8FH
8FI
8FJ
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACUHS
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
DIK
EBS
EJD
FYUFA
GODZA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAO
IHR
INH
ITC
KQ8
LK8
M48
M7P
M~E
OK1
PIMPY
PQQKQ
PROAC
RAP
RHI
RPM
UKHRP
WIN
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
PQGLB
7X8
7T5
H94
5PM
ID FETCH-LOGICAL-c5231-5b5dc6ff4cbf2f420346fe672bc3d3c5bf788f6afabba8c4334ff55f1f6e2dd23
IEDL.DBID M48
ISSN 2051-817X
IngestDate Thu Aug 21 18:37:01 EDT 2025
Thu Jul 10 17:52:37 EDT 2025
Fri Jul 11 00:30:27 EDT 2025
Mon Jul 21 05:38:55 EDT 2025
Tue Jul 01 00:32:25 EDT 2025
Thu Apr 24 23:05:27 EDT 2025
Wed Jan 22 16:19:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords force depression
electrical stimulation
force enhancement
potentiation
thumb
force redevelopment
muscle
eccentric
Concentric
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
http://doi.wiley.com/10.1002/tdm_license_1.1
2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5231-5b5dc6ff4cbf2f420346fe672bc3d3c5bf788f6afabba8c4334ff55f1f6e2dd23
Notes This study was supported by funding from the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chair Programme, and The Killam Foundation. This work was supported by the German Research Foundation (DFG) and the Technische Universität München within the funding program Open Access Publishing.
Funding Information
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Funding Information This study was supported by funding from the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chair Programme, and The Killam Foundation. This work was supported by the German Research Foundation (DFG) and the Technische Universität München within the funding program Open Access Publishing.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.14814/phy2.12401
PMID 25975646
PQID 1681262568
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4463830
proquest_miscellaneous_1891867856
proquest_miscellaneous_1681262568
pubmed_primary_25975646
crossref_citationtrail_10_14814_phy2_12401
crossref_primary_10_14814_phy2_12401
wiley_primary_10_14814_phy2_12401_PHY212401
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2015
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: May 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford, UK
PublicationTitle Physiological reports
PublicationTitleAlternate Physiol Rep
PublicationYear 2015
Publisher BlackWell Publishing Ltd
Publisher_xml – name: BlackWell Publishing Ltd
References 2014; 116
1987; 56
1968; 24
1989; 415
2013; 1
2009; 42
2010; 108
1952; 117
1992; 165
2013; 46
1978; 281
1997a; 13
2003; 36
1999; 87
1982; 80
1954; 123
2011; 3
1997b; 13
2004; 207
2003; 94
1988; 407
1998; 84
2003; 551
1979; 73
1976; 98
2012; 590
2010; 43
1996; 28
2010; 26
1990
1997; 30
2000; 33
1998; 507
1981; 111
1997; 13
2000; 526
1988; 21
2002; 545
2005; 98
2014; 57
2007; 40
2012; 279
2012; 7
2001; 34
2012; 22
2005; 99
Seiberl (10.14814/phy2.12401-BIB0046|phy212401-cit-0046) 2010; 26
Komi (10.14814/phy2.12401-BIB0029|phy212401-cit-0029) 1997; 13
Bobbert (10.14814/phy2.12401-BIB0002|phy212401-cit-0002) 1996; 28
Hahn (10.14814/phy2.12401-BIB0021|phy212401-cit-0021) 2012; 7
Lee (10.14814/phy2.12401-BIB0031|phy212401-cit-0031) 2009; 42
Abbott (10.14814/phy2.12401-BIB0001|phy212401-cit-0001) 1952; 117
Corr (10.14814/phy2.12401-BIB0010|phy212401-cit-0010) 2005; 99
Ruiter (10.14814/phy2.12401-BIB0012|phy212401-cit-0012) 1998; 507
Herzog (10.14814/phy2.12401-BIB0026|phy212401-cit-0026) 2000; 33
Lee (10.14814/phy2.12401-BIB0034|phy212401-cit-0034) 2002; 545
Lee (10.14814/phy2.12401-BIB0033|phy212401-cit-0033) 2003; 551
Bosco (10.14814/phy2.12401-BIB0005|phy212401-cit-0005) 1987; 56
Lee (10.14814/phy2.12401-BIB0036|phy212401-cit-0036) 2000; 33
Power (10.14814/phy2.12401-BIB0042|phy212401-cit-0042) 2012; 7
Joumaa (10.14814/phy2.12401-BIB0027|phy212401-cit-0027) 2010; 108
Sugi (10.14814/phy2.12401-BIB0048|phy212401-cit-0048) 1988; 407
Rassier (10.14814/phy2.12401-BIB0043|phy212401-cit-0043) 2012; 279
Chapman (10.14814/phy2.12401-BIB0009|phy212401-cit-0009) 1990
Granzier (10.14814/phy2.12401-BIB0019|phy212401-cit-0019) 1989; 415
Walshe (10.14814/phy2.12401-BIB0051|phy212401-cit-0051) 1998; 84
Ruiter (10.14814/phy2.12401-BIB0011|phy212401-cit-0011) 2003; 94
Kubo (10.14814/phy2.12401-BIB0030|phy212401-cit-0030) 1999; 87
Ruiter (10.14814/phy2.12401-BIB0013|phy212401-cit-0013) 2000; 526
Cavagna (10.14814/phy2.12401-BIB0008|phy212401-cit-0008) 1968; 24
Seiberl (10.14814/phy2.12401-BIB0045|phy212401-cit-0045) 2012; 22
Bosco (10.14814/phy2.12401-BIB0004|phy212401-cit-0004) 1981; 111
Herzog (10.14814/phy2.12401-BIB0024|phy212401-cit-0024) 1997; 30
Hahn (10.14814/phy2.12401-BIB0022|phy212401-cit-0022) 2010; 43
Peterson (10.14814/phy2.12401-BIB0040|phy212401-cit-0040) 2004; 207
Campbell (10.14814/phy2.12401-BIB0007|phy212401-cit-0007) 2011; 3
Herzog (10.14814/phy2.12401-BIB0025|phy212401-cit-0025) 2000; 33
Herzog (10.14814/phy2.12401-BIB0023|phy212401-cit-0023) 2014; 116
Merton (10.14814/phy2.12401-BIB0038|phy212401-cit-0038) 1954; 123
Bojsen-Moller (10.14814/phy2.12401-BIB0003|phy212401-cit-0003) 2005; 99
Edman (10.14814/phy2.12401-BIB0016|phy212401-cit-0016) 1978; 281
Edman (10.14814/phy2.12401-BIB0014|phy212401-cit-0014) 1976; 98
Oskouei (10.14814/phy2.12401-BIB0039|phy212401-cit-0039) 2005; 98
Edman (10.14814/phy2.12401-BIB0015|phy212401-cit-0015) 2012; 590
Ettema (10.14814/phy2.12401-BIB0018|phy212401-cit-0018) 1992; 165
Marechal (10.14814/phy2.12401-BIB0037|phy212401-cit-0037) 1979; 73
Lee (10.14814/phy2.12401-BIB0032|phy212401-cit-0032) 1999; 87
Power (10.14814/phy2.12401-BIB0500|phy212401-cit-0500) 2014; 57
Rassier (10.14814/phy2.12401-BIB0044|phy212401-cit-0044) 2003; 36
Power (10.14814/phy2.12401-BIB0041|phy212401-cit-0041) 2013; 1
Komi (10.14814/phy2.12401-BIB0028|phy212401-cit-0028) 2000; 33
Ingen Schenau (10.14814/phy2.12401-BIB0049|phy212401-cit-0049) 1997a; 13
Lee (10.14814/phy2.12401-BIB0035|phy212401-cit-0035) 2001; 34
Bullimore (10.14814/phy2.12401-BIB0006|phy212401-cit-0006) 2007; 40
Gregor (10.14814/phy2.12401-BIB0020|phy212401-cit-0020) 1988; 21
Edman (10.14814/phy2.12401-BIB0017|phy212401-cit-0017) 1982; 80
Seiberl (10.14814/phy2.12401-BIB0047|phy212401-cit-0047) 2013; 46
Ingen Schenau (10.14814/phy2.12401-BIB0050|phy212401-cit-0050) 1997b; 13
22180761 - Biophys Rev. 2011 Dec;3(4):199-207
3256616 - J Physiol. 1988 Dec;407:215-29
10562604 - J Appl Physiol (1985). 1999 Nov;87(5):1651-5
10807986 - J Biomech. 2000 Jun;33(6):659-68
5635766 - J Appl Physiol. 1968 Jan;24(1):21-32
23166794 - PLoS One. 2012;7(11):e49907
6983564 - J Gen Physiol. 1982 Nov;80(5):769-84
22115525 - J Electromyogr Kinesiol. 2012 Feb;22(1):117-23
1588248 - J Exp Biol. 1992 Apr;165:121-36
19651411 - J Biomech. 2009 Oct 16;42(14):2336-40
10708773 - J Biomech. 2000 May;33(5):531-42
312915 - J Gen Physiol. 1979 Apr;73(4):453-67
9451623 - J Appl Physiol (1985). 1998 Jan;84(1):97-106
10899328 - J Biomech. 2000 Oct;33(10):1197-206
9302608 - J Biomech. 1997 Sep;30(9):865-72
11448689 - J Biomech. 2001 Aug;34(8):979-87
12893039 - J Biomech. 2003 Sep;36(9):1309-16
309001 - J Physiol. 1978 Aug;281:139-55
12391074 - J Appl Physiol (1985). 2003 Jan;94(1):69-74
22331422 - J Physiol. 2012 Mar 15;590(6):1339-45
3569218 - Eur J Appl Physiol Occup Physiol. 1987;56(2):138-43
15705725 - J Appl Physiol (1985). 2005 Jun;98(6):2087-95
13152698 - J Physiol. 1954 Mar 29;123(3):553-64
9518715 - J Physiol. 1998 Mar 1;507 ( Pt 2):583-91
23133544 - PLoS One. 2012;7(10):e48044
10922017 - J Physiol. 2000 Aug 1;526 Pt 3:671-81
24303098 - Physiol Rep. 2013 Jun;1(1):e00004
15860680 - J Appl Physiol (1985). 2005 Sep;99(3):986-94
15235007 - J Exp Biol. 2004 Jul;207(Pt 16):2787-91
20167325 - J Biomech. 2010 May 28;43(8):1503-8
8933491 - Med Sci Sports Exerc. 1996 Nov;28(11):1402-12
16919641 - J Biomech. 2007;40(7):1518-24
15746298 - J Appl Physiol (1985). 2005 Jul;99(1):252-60
22535786 - Proc Biol Sci. 2012 Jul 22;279(1739):2705-13
23845729 - J Biomech. 2013 Aug 9;46(12):1996-2001
24835195 - Exp Gerontol. 2014 Sep;57:75-80
23429875 - J Appl Physiol (1985). 2014 Jun 1;116(11):1407-17
20841616 - J Appl Biomech. 2010 Aug;26(3):256-64
20007852 - J Appl Physiol (1985). 2010 Feb;108(2):356-62
3182876 - J Biomech. 1988;21(9):721-32
10828321 - J Biomech. 2000 Aug;33(8):917-23
10601154 - J Appl Physiol (1985). 1999 Dec;87(6):2090-6
7282389 - Acta Physiol Scand. 1981 Feb;111(2):135-40
12815187 - J Physiol. 2003 Sep 15;551(Pt 3):993-1003
2640463 - J Physiol. 1989 Aug;415:299-327
12433972 - J Physiol. 2002 Nov 15;545(Pt 1):321-30
14946730 - J Physiol. 1952 May;117(1):77-86
793303 - Acta Physiol Scand. 1976 Nov;98(3):384-6
References_xml – volume: 117
  start-page: 77
  year: 1952
  end-page: 86
  article-title: The force exerted by active striated muscle during and after change of length
  publication-title: J. Physiol.
– volume: 84
  start-page: 97
  year: 1998
  end-page: 106
  article-title: Stretch‐shorten cycle compared with isometric preload: contributions to enhanced muscular performance
  publication-title: J. Appl. Physiol.
– volume: 545
  start-page: 321
  year: 2002
  end-page: 330
  article-title: Force enhancement following muscle stretch of electrically stimulated and voluntarily activated human adductor pollicis
  publication-title: J. Physiol.
– volume: 57
  start-page: 75
  year: 2014
  end-page: 80
  article-title: Shortening‐induced torque depression in old men: implications for age‐related power loss
  publication-title: Exp Gerontol.
– volume: 80
  start-page: 769
  year: 1982
  end-page: 784
  article-title: Residual force enhancement after stretch of contracting frog single muscle fibers
  publication-title: J. Gen. Physiol.
– volume: 281
  start-page: 139
  year: 1978
  end-page: 155
  article-title: Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres
  publication-title: J. Physiol.
– volume: 13
  start-page: 451
  year: 1997
  end-page: 460
  article-title: Stretch reflex can have an important role in force enhancement during SSC‐exercise
  publication-title: J. Appl. Biomech.
– volume: 279
  start-page: 2705
  year: 2012
  end-page: 2713
  article-title: The mechanisms of the residual force enhancement after stretch of skeletal muscle: non‐uniformity in half‐sarcomeres and stiffness of titin
  publication-title: Proc. Biol. Sci.
– start-page: 608
  year: 1990
  end-page: 620
– volume: 98
  start-page: 384
  year: 1976
  end-page: 386
  article-title: Depression of mechanical activity induced by active shortening in frog skeletal muscle fibres
  publication-title: Acta Physiol. Scand.
– volume: 415
  start-page: 299
  year: 1989
  end-page: 327
  article-title: Effect of active pre‐shortening on isometric and isotonic performance of single frog muscle fibres
  publication-title: J. Physiol.
– volume: 87
  start-page: 1651
  year: 1999
  end-page: 1655
  article-title: Force depression in human quadriceps femoris following voluntary shortening contractions
  publication-title: J. Appl. Physiol.
– volume: 13
  start-page: 484
  year: 1997a
  end-page: 496
  article-title: Mechanics and energetics of the stretch‐shortening cycle: a stimulating discussion
  publication-title: J. Appl. Biomech.
– volume: 407
  start-page: 215
  year: 1988
  end-page: 229
  article-title: Stiffness changes during enhancement and deficit of isometric force by slow length changes in frog skeletal muscle fibres
  publication-title: J. Physiol.
– volume: 22
  start-page: 117
  year: 2012
  end-page: 123
  article-title: Feedback controlled force enhancement and activation reduction of voluntarily activated quadriceps femoris during sub‐maximal muscle action
  publication-title: J. Electromyogr. Kinesiol.
– volume: 34
  start-page: 979
  year: 2001
  end-page: 987
  article-title: Effects of cyclic changes in muscle length on force production in in‐situ cat soleus
  publication-title: J. Biomech.
– volume: 30
  start-page: 865
  year: 1997
  end-page: 872
  article-title: Depression of cat soleus‐forces following isokinetic shortening
  publication-title: J. Biomech.
– volume: 87
  start-page: 2090
  year: 1999
  end-page: 2096
  article-title: Influence of elastic properties of tendon structures on jump performance in humans
  publication-title: J. Appl. Physiol.
– volume: 551
  start-page: 993
  year: 2003
  end-page: 1003
  article-title: Force depression following muscle shortening of voluntarily activated and electrically stimulated human adductor pollicis
  publication-title: J. Physiol.
– volume: 33
  start-page: 917
  year: 2000
  end-page: 923
  article-title: Effects of speed and distance of muscle shortening on force depression during voluntary contractions
  publication-title: J. Biomech.
– volume: 116
  start-page: 1407
  year: 2014
  end-page: 1417
  article-title: Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions
  publication-title: J. Appl. Physiol.
– volume: 99
  start-page: 986
  year: 2005
  end-page: 994
  article-title: Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures
  publication-title: J. Appl. Physiol.
– volume: 1
  start-page: 1
  year: 2013
  end-page: 12
  article-title: Enhanced force production in old age is not a far stretch: an investigation of residual force enhancement and muscle architecture
  publication-title: Physiol. Rep.
– volume: 108
  start-page: 356
  year: 2010
  end-page: 362
  article-title: Force depression in single myofibrils
  publication-title: J. Appl. Physiol.
– volume: 28
  start-page: 1402
  year: 1996
  end-page: 1412
  article-title: Why is countermovement jump height greater than squat jump height?
  publication-title: Med. Sci. Sports Exerc.
– volume: 526
  start-page: 671
  year: 2000
  end-page: 681
  article-title: The force‐velocity relationship of human adductor pollicis muscle during stretch and the effects of fatigue
  publication-title: J. Physiol.
– volume: 36
  start-page: 1309
  year: 2003
  end-page: 1316
  article-title: Stretch‐induced, steady‐state force enhancement in single skeletal muscle fibers exceeds the isometric force at optimum fiber length
  publication-title: J. Biomech.
– volume: 43
  start-page: 1503
  year: 2010
  end-page: 1508
  article-title: Evidence of residual force enhancement for multi‐joint leg extension
  publication-title: J. Biomech.
– volume: 98
  start-page: 2087
  year: 2005
  end-page: 2095
  article-title: Observations on force enhancement in submaximal voluntary contractions of human adductor pollicis muscle
  publication-title: J. Appl. Physiol.
– volume: 56
  start-page: 138
  year: 1987
  end-page: 143
  article-title: Relationship between the efficiency of muscular work during jumping and the energetics of running
  publication-title: Eur. J. Appl. Physiol.
– volume: 40
  start-page: 1518
  year: 2007
  end-page: 1524
  article-title: History‐dependence of isometric muscle force: effect of prior stretch or shortening amplitude
  publication-title: J. Biomech.
– volume: 7
  start-page: e49907
  year: 2012
  article-title: Cortical and spinal excitability during and after lengthening contractions of the human plantar flexor muscles performed with maximal voluntary effort
  publication-title: PLoS ONE
– volume: 33
  start-page: 1197
  year: 2000
  end-page: 1206
  article-title: Stretch‐shortening cycle: a powerful model to study normal and fatigued muscle
  publication-title: J. Biomech.
– volume: 24
  start-page: 21
  year: 1968
  end-page: 32
  article-title: Positive work done by a previously stretched muscle
  publication-title: J. Appl. Physiol.
– volume: 507
  start-page: 583
  year: 1998
  end-page: 591
  article-title: Shortening‐induced force depression in human adductor pollicis muscle
  publication-title: J. Physiol. (Lond.)
– volume: 94
  start-page: 69
  year: 2003
  end-page: 74
  article-title: Shortening‐induced depression of voluntary force in unfatigued and fatigued human adductor pollicis muscle
  publication-title: J. Appl. Physiol.
– volume: 3
  start-page: 199
  year: 2011
  end-page: 207
  article-title: Mechanisms of residual force enhancement in skeletal muscle: insights from experiments and mathematical models
  publication-title: Biophys. Rev.
– volume: 590
  start-page: 1339
  year: 2012
  end-page: 1345
  article-title: Residual force enhancement after stretch in striated muscle. A consequence of increased myofilament overlap?
  publication-title: J. Physiol.
– volume: 42
  start-page: 2336
  year: 2009
  end-page: 2340
  article-title: Shortening‐induced force depression is primarily caused by cross‐bridges in strongly bound states
  publication-title: J. Biomech.
– volume: 165
  start-page: 121
  year: 1992
  end-page: 136
  article-title: The potentiating effect of prestretch on the contractile performance of rat gastrocnemius medialis muscle during subsequent shortening and isometric contractions
  publication-title: J. Exp. Biol.
– volume: 33
  start-page: 531
  year: 2000
  end-page: 542
  article-title: The history dependence of force production in mammalian skeletal muscle following stretch‐shortening and shortening‐stretch cycles
  publication-title: J. Biomech.
– volume: 26
  start-page: 256
  year: 2010
  end-page: 264
  article-title: Force enhancement of quadriceps femoris in vivo and its dependence on stretch‐induced muscle architectural changes
  publication-title: J. Appl. Biomech.
– volume: 7
  start-page: e48044
  year: 2012
  article-title: Increased residual force enhancement in older adults is associated with a maintenance of eccentric strength
  publication-title: PLoS ONE
– volume: 21
  start-page: 721
  year: 1988
  end-page: 732
  article-title: Mechanical output of the cat soleus during treadmill locomotion: in vivo vs in situ characteristics
  publication-title: J. Biomech.
– volume: 207
  start-page: 2787
  year: 2004
  end-page: 2791
  article-title: Force enhancement in single skeletal muscle fibres on the ascending limb of the force‐length relationship
  publication-title: J. Exp. Biol.
– volume: 111
  start-page: 135
  year: 1981
  end-page: 140
  article-title: Prestretch potentiation of human skeletal muscle during ballistic movement
  publication-title: Acta Physiol. Scand.
– volume: 13
  start-page: 389
  year: 1997b
  end-page: 415
  article-title: Does elastic energy enhance work and efficiency in the stretch‐shortening cycle?
  publication-title: J. Appl. Biomech.
– volume: 33
  start-page: 659
  year: 2000
  end-page: 668
  article-title: The relationship between force depression following shortening and mechanical work in skeletal muscle
  publication-title: J. Biomech.
– volume: 99
  start-page: 252
  year: 2005
  end-page: 260
  article-title: Force recovery after activated shortening in whole skeletal muscle: transient and steady‐state aspects of force depression
  publication-title: J. Appl. Physiol.
– volume: 73
  start-page: 453
  year: 1979
  end-page: 467
  article-title: The deficit of the isometric tetanic tension redeveloped after a release of frog muscle at a constant velocity
  publication-title: J. Gen. Physiol.
– volume: 123
  start-page: 553
  year: 1954
  end-page: 564
  article-title: Voluntary strength and fatigue
  publication-title: J. Physiol.
– volume: 46
  start-page: 1996
  year: 2013
  end-page: 2001
  article-title: On the relevance of residual force enhancement for everyday human movement
  publication-title: J. Biomech.
– volume: 94
  start-page: 69
  year: 2003
  ident: 10.14814/phy2.12401-BIB0011|phy212401-cit-0011
  article-title: Shortening-induced depression of voluntary force in unfatigued and fatigued human adductor pollicis muscle
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00672.2002
– volume: 36
  start-page: 1309
  year: 2003
  ident: 10.14814/phy2.12401-BIB0044|phy212401-cit-0044
  article-title: Stretch-induced, steady-state force enhancement in single skeletal muscle fibers exceeds the isometric force at optimum fiber length
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00155-6
– volume: 33
  start-page: 917
  year: 2000
  ident: 10.14814/phy2.12401-BIB0036|phy212401-cit-0036
  article-title: Effects of speed and distance of muscle shortening on force depression during voluntary contractions
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(00)00070-1
– volume: 590
  start-page: 1339
  year: 2012
  ident: 10.14814/phy2.12401-BIB0015|phy212401-cit-0015
  article-title: Residual force enhancement after stretch in striated muscle. A consequence of increased myofilament overlap?
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2011.222729
– volume: 13
  start-page: 484
  year: 1997a
  ident: 10.14814/phy2.12401-BIB0049|phy212401-cit-0049
  article-title: Mechanics and energetics of the stretch-shortening cycle: a stimulating discussion
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.13.4.484
– volume: 99
  start-page: 252
  year: 2005
  ident: 10.14814/phy2.12401-BIB0010|phy212401-cit-0010
  article-title: Force recovery after activated shortening in whole skeletal muscle: transient and steady-state aspects of force depression
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00509.2004
– volume: 87
  start-page: 2090
  year: 1999
  ident: 10.14814/phy2.12401-BIB0030|phy212401-cit-0030
  article-title: Influence of elastic properties of tendon structures on jump performance in humans
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1999.87.6.2090
– volume: 24
  start-page: 21
  year: 1968
  ident: 10.14814/phy2.12401-BIB0008|phy212401-cit-0008
  article-title: Positive work done by a previously stretched muscle
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1968.24.1.21
– volume: 87
  start-page: 1651
  year: 1999
  ident: 10.14814/phy2.12401-BIB0032|phy212401-cit-0032
  article-title: Force depression in human quadriceps femoris following voluntary shortening contractions
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1999.87.5.1651
– volume: 98
  start-page: 2087
  year: 2005
  ident: 10.14814/phy2.12401-BIB0039|phy212401-cit-0039
  article-title: Observations on force enhancement in submaximal voluntary contractions of human adductor pollicis muscle
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.01217.2004
– volume: 43
  start-page: 1503
  year: 2010
  ident: 10.14814/phy2.12401-BIB0022|phy212401-cit-0022
  article-title: Evidence of residual force enhancement for multi-joint leg extension
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.01.041
– volume: 545
  start-page: 321
  year: 2002
  ident: 10.14814/phy2.12401-BIB0034|phy212401-cit-0034
  article-title: Force enhancement following muscle stretch of electrically stimulated and voluntarily activated human adductor pollicis
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2002.018010
– volume: 84
  start-page: 97
  year: 1998
  ident: 10.14814/phy2.12401-BIB0051|phy212401-cit-0051
  article-title: Stretch-shorten cycle compared with isometric preload: contributions to enhanced muscular performance
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1998.84.1.97
– volume: 56
  start-page: 138
  year: 1987
  ident: 10.14814/phy2.12401-BIB0005|phy212401-cit-0005
  article-title: Relationship between the efficiency of muscular work during jumping and the energetics of running
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/BF00640636
– volume: 33
  start-page: 659
  year: 2000
  ident: 10.14814/phy2.12401-BIB0026|phy212401-cit-0026
  article-title: The relationship between force depression following shortening and mechanical work in skeletal muscle
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(00)00008-7
– volume: 28
  start-page: 1402
  year: 1996
  ident: 10.14814/phy2.12401-BIB0002|phy212401-cit-0002
  article-title: Why is countermovement jump height greater than squat jump height?
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1097/00005768-199611000-00009
– volume: 13
  start-page: 389
  year: 1997b
  ident: 10.14814/phy2.12401-BIB0050|phy212401-cit-0050
  article-title: Does elastic energy enhance work and efficiency in the stretch-shortening cycle?
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.13.4.389
– volume: 73
  start-page: 453
  year: 1979
  ident: 10.14814/phy2.12401-BIB0037|phy212401-cit-0037
  article-title: The deficit of the isometric tetanic tension redeveloped after a release of frog muscle at a constant velocity
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.73.4.453
– volume: 13
  start-page: 451
  year: 1997
  ident: 10.14814/phy2.12401-BIB0029|phy212401-cit-0029
  article-title: Stretch reflex can have an important role in force enhancement during SSC-exercise
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.13.4.451
– volume: 117
  start-page: 77
  year: 1952
  ident: 10.14814/phy2.12401-BIB0001|phy212401-cit-0001
  article-title: The force exerted by active striated muscle during and after change of length
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1952.sp004733
– volume: 108
  start-page: 356
  year: 2010
  ident: 10.14814/phy2.12401-BIB0027|phy212401-cit-0027
  article-title: Force depression in single myofibrils
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.01108.2009
– volume: 99
  start-page: 986
  year: 2005
  ident: 10.14814/phy2.12401-BIB0003|phy212401-cit-0003
  article-title: Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.01305.2004
– volume: 42
  start-page: 2336
  year: 2009
  ident: 10.14814/phy2.12401-BIB0031|phy212401-cit-0031
  article-title: Shortening-induced force depression is primarily caused by cross-bridges in strongly bound states
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.06.026
– volume: 98
  start-page: 384
  year: 1976
  ident: 10.14814/phy2.12401-BIB0014|phy212401-cit-0014
  article-title: Depression of mechanical activity induced by active shortening in frog skeletal muscle fibres
  publication-title: Acta Physiol. Scand.
  doi: 10.1111/j.1748-1716.1976.tb10325.x
– volume: 281
  start-page: 139
  year: 1978
  ident: 10.14814/phy2.12401-BIB0016|phy212401-cit-0016
  article-title: Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1978.sp012413
– volume: 34
  start-page: 979
  year: 2001
  ident: 10.14814/phy2.12401-BIB0035|phy212401-cit-0035
  article-title: Effects of cyclic changes in muscle length on force production in in-situ cat soleus
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00077-X
– volume: 207
  start-page: 2787
  year: 2004
  ident: 10.14814/phy2.12401-BIB0040|phy212401-cit-0040
  article-title: Force enhancement in single skeletal muscle fibres on the ascending limb of the force-length relationship
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.01095
– volume: 415
  start-page: 299
  year: 1989
  ident: 10.14814/phy2.12401-BIB0019|phy212401-cit-0019
  article-title: Effect of active pre-shortening on isometric and isotonic performance of single frog muscle fibres
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1989.sp017723
– volume: 116
  start-page: 1407
  year: 2014
  ident: 10.14814/phy2.12401-BIB0023|phy212401-cit-0023
  article-title: Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00069.2013
– volume: 123
  start-page: 553
  year: 1954
  ident: 10.14814/phy2.12401-BIB0038|phy212401-cit-0038
  article-title: Voluntary strength and fatigue
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1954.sp005070
– volume: 507
  start-page: 583
  year: 1998
  ident: 10.14814/phy2.12401-BIB0012|phy212401-cit-0012
  article-title: Shortening-induced force depression in human adductor pollicis muscle
  publication-title: J. Physiol. (Lond.)
  doi: 10.1111/j.1469-7793.1998.583bt.x
– volume: 7
  start-page: e48044
  year: 2012
  ident: 10.14814/phy2.12401-BIB0042|phy212401-cit-0042
  article-title: Increased residual force enhancement in older adults is associated with a maintenance of eccentric strength
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0048044
– volume: 526
  start-page: 671
  year: 2000
  ident: 10.14814/phy2.12401-BIB0013|phy212401-cit-0013
  article-title: The force-velocity relationship of human adductor pollicis muscle during stretch and the effects of fatigue
  publication-title: J. Physiol.
  doi: 10.1111/j.1469-7793.2000.00671.x
– volume: 26
  start-page: 256
  year: 2010
  ident: 10.14814/phy2.12401-BIB0046|phy212401-cit-0046
  article-title: Force enhancement of quadriceps femoris in vivo and its dependence on stretch-induced muscle architectural changes
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.26.3.256
– volume: 33
  start-page: 1197
  year: 2000
  ident: 10.14814/phy2.12401-BIB0028|phy212401-cit-0028
  article-title: Stretch-shortening cycle: a powerful model to study normal and fatigued muscle
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(00)00064-6
– volume: 30
  start-page: 865
  year: 1997
  ident: 10.14814/phy2.12401-BIB0024|phy212401-cit-0024
  article-title: Depression of cat soleus-forces following isokinetic shortening
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(97)00046-8
– volume: 551
  start-page: 993
  year: 2003
  ident: 10.14814/phy2.12401-BIB0033|phy212401-cit-0033
  article-title: Force depression following muscle shortening of voluntarily activated and electrically stimulated human adductor pollicis
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2002.037333
– volume: 40
  start-page: 1518
  year: 2007
  ident: 10.14814/phy2.12401-BIB0006|phy212401-cit-0006
  article-title: History-dependence of isometric muscle force: effect of prior stretch or shortening amplitude
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.06.014
– volume: 21
  start-page: 721
  year: 1988
  ident: 10.14814/phy2.12401-BIB0020|phy212401-cit-0020
  article-title: Mechanical output of the cat soleus during treadmill locomotion: in vivo vs in situ characteristics
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(88)90281-3
– volume: 165
  start-page: 121
  year: 1992
  ident: 10.14814/phy2.12401-BIB0018|phy212401-cit-0018
  article-title: The potentiating effect of prestretch on the contractile performance of rat gastrocnemius medialis muscle during subsequent shortening and isometric contractions
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.165.1.121
– volume: 46
  start-page: 1996
  year: 2013
  ident: 10.14814/phy2.12401-BIB0047|phy212401-cit-0047
  article-title: On the relevance of residual force enhancement for everyday human movement
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.06.014
– start-page: 608
  volume-title: Multiple muscle systems
  year: 1990
  ident: 10.14814/phy2.12401-BIB0009|phy212401-cit-0009
  doi: 10.1007/978-1-4613-9030-5_39
– volume: 33
  start-page: 531
  year: 2000
  ident: 10.14814/phy2.12401-BIB0025|phy212401-cit-0025
  article-title: The history dependence of force production in mammalian skeletal muscle following stretch-shortening and shortening-stretch cycles
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(99)00221-3
– volume: 57
  start-page: 75
  year: 2014
  ident: 10.14814/phy2.12401-BIB0500|phy212401-cit-0500
  article-title: Shortening-induced torque depression in old men: implications for age-related power loss
  publication-title: Exp Gerontol.
  doi: 10.1016/j.exger.2014.05.004
– volume: 22
  start-page: 117
  year: 2012
  ident: 10.14814/phy2.12401-BIB0045|phy212401-cit-0045
  article-title: Feedback controlled force enhancement and activation reduction of voluntarily activated quadriceps femoris during sub-maximal muscle action
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2011.10.010
– volume: 1
  start-page: 1
  year: 2013
  ident: 10.14814/phy2.12401-BIB0041|phy212401-cit-0041
  article-title: Enhanced force production in old age is not a far stretch: an investigation of residual force enhancement and muscle architecture
  publication-title: Physiol. Rep.
  doi: 10.1002/phy2.4
– volume: 3
  start-page: 199
  year: 2011
  ident: 10.14814/phy2.12401-BIB0007|phy212401-cit-0007
  article-title: Mechanisms of residual force enhancement in skeletal muscle: insights from experiments and mathematical models
  publication-title: Biophys. Rev.
  doi: 10.1007/s12551-011-0059-2
– volume: 7
  start-page: e49907
  year: 2012
  ident: 10.14814/phy2.12401-BIB0021|phy212401-cit-0021
  article-title: Cortical and spinal excitability during and after lengthening contractions of the human plantar flexor muscles performed with maximal voluntary effort
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0049907
– volume: 407
  start-page: 215
  year: 1988
  ident: 10.14814/phy2.12401-BIB0048|phy212401-cit-0048
  article-title: Stiffness changes during enhancement and deficit of isometric force by slow length changes in frog skeletal muscle fibres
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1988.sp017411
– volume: 111
  start-page: 135
  year: 1981
  ident: 10.14814/phy2.12401-BIB0004|phy212401-cit-0004
  article-title: Prestretch potentiation of human skeletal muscle during ballistic movement
  publication-title: Acta Physiol. Scand.
  doi: 10.1111/j.1748-1716.1981.tb06716.x
– volume: 80
  start-page: 769
  year: 1982
  ident: 10.14814/phy2.12401-BIB0017|phy212401-cit-0017
  article-title: Residual force enhancement after stretch of contracting frog single muscle fibers
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.80.5.769
– volume: 279
  start-page: 2705
  year: 2012
  ident: 10.14814/phy2.12401-BIB0043|phy212401-cit-0043
  article-title: The mechanisms of the residual force enhancement after stretch of skeletal muscle: non-uniformity in half-sarcomeres and stiffness of titin
  publication-title: Proc. Biol. Sci.
  doi: 10.1098/rspb.2012.0467
– reference: 10601154 - J Appl Physiol (1985). 1999 Dec;87(6):2090-6
– reference: 22115525 - J Electromyogr Kinesiol. 2012 Feb;22(1):117-23
– reference: 10807986 - J Biomech. 2000 Jun;33(6):659-68
– reference: 9451623 - J Appl Physiol (1985). 1998 Jan;84(1):97-106
– reference: 12433972 - J Physiol. 2002 Nov 15;545(Pt 1):321-30
– reference: 2640463 - J Physiol. 1989 Aug;415:299-327
– reference: 24303098 - Physiol Rep. 2013 Jun;1(1):e00004
– reference: 22180761 - Biophys Rev. 2011 Dec;3(4):199-207
– reference: 24835195 - Exp Gerontol. 2014 Sep;57:75-80
– reference: 1588248 - J Exp Biol. 1992 Apr;165:121-36
– reference: 9518715 - J Physiol. 1998 Mar 1;507 ( Pt 2):583-91
– reference: 14946730 - J Physiol. 1952 May;117(1):77-86
– reference: 3256616 - J Physiol. 1988 Dec;407:215-29
– reference: 8933491 - Med Sci Sports Exerc. 1996 Nov;28(11):1402-12
– reference: 12893039 - J Biomech. 2003 Sep;36(9):1309-16
– reference: 312915 - J Gen Physiol. 1979 Apr;73(4):453-67
– reference: 793303 - Acta Physiol Scand. 1976 Nov;98(3):384-6
– reference: 10922017 - J Physiol. 2000 Aug 1;526 Pt 3:671-81
– reference: 309001 - J Physiol. 1978 Aug;281:139-55
– reference: 23133544 - PLoS One. 2012;7(10):e48044
– reference: 20007852 - J Appl Physiol (1985). 2010 Feb;108(2):356-62
– reference: 6983564 - J Gen Physiol. 1982 Nov;80(5):769-84
– reference: 13152698 - J Physiol. 1954 Mar 29;123(3):553-64
– reference: 22535786 - Proc Biol Sci. 2012 Jul 22;279(1739):2705-13
– reference: 10562604 - J Appl Physiol (1985). 1999 Nov;87(5):1651-5
– reference: 12391074 - J Appl Physiol (1985). 2003 Jan;94(1):69-74
– reference: 15235007 - J Exp Biol. 2004 Jul;207(Pt 16):2787-91
– reference: 7282389 - Acta Physiol Scand. 1981 Feb;111(2):135-40
– reference: 20841616 - J Appl Biomech. 2010 Aug;26(3):256-64
– reference: 9302608 - J Biomech. 1997 Sep;30(9):865-72
– reference: 10899328 - J Biomech. 2000 Oct;33(10):1197-206
– reference: 23845729 - J Biomech. 2013 Aug 9;46(12):1996-2001
– reference: 22331422 - J Physiol. 2012 Mar 15;590(6):1339-45
– reference: 15860680 - J Appl Physiol (1985). 2005 Sep;99(3):986-94
– reference: 16919641 - J Biomech. 2007;40(7):1518-24
– reference: 15705725 - J Appl Physiol (1985). 2005 Jun;98(6):2087-95
– reference: 23429875 - J Appl Physiol (1985). 2014 Jun 1;116(11):1407-17
– reference: 15746298 - J Appl Physiol (1985). 2005 Jul;99(1):252-60
– reference: 19651411 - J Biomech. 2009 Oct 16;42(14):2336-40
– reference: 5635766 - J Appl Physiol. 1968 Jan;24(1):21-32
– reference: 11448689 - J Biomech. 2001 Aug;34(8):979-87
– reference: 23166794 - PLoS One. 2012;7(11):e49907
– reference: 3182876 - J Biomech. 1988;21(9):721-32
– reference: 12815187 - J Physiol. 2003 Sep 15;551(Pt 3):993-1003
– reference: 20167325 - J Biomech. 2010 May 28;43(8):1503-8
– reference: 3569218 - Eur J Appl Physiol Occup Physiol. 1987;56(2):138-43
– reference: 10708773 - J Biomech. 2000 May;33(5):531-42
– reference: 10828321 - J Biomech. 2000 Aug;33(8):917-23
SSID ssj0001033904
Score 2.2544577
Snippet The stretch‐shortening cycle (SSC) occurs in most everyday movements, and is thought to provoke a performance enhancement of the musculoskeletal system....
The stretch-shortening cycle (SSC) occurs in most everyday movements, and is thought to provoke a performance enhancement of the musculoskeletal system....
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e12401
SubjectTerms Concentric
eccentric
electrical stimulation
force depression
force enhancement
force redevelopment
muscle
Original Research
potentiation
thumb
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NattAEF5CesmltEnaOmnKFELpD0rt_dO6txAaTCAlkAbSk9hd7WJDIpvIPvjWR-gT5OHyJJ1ZKXZNSiA3gWYlwcxov5md-Yax_b5QeeDKZso4nyH-j5mz6I-WG517E6xLjDenP_TgQp5cqsu2Nod6YRp-iEXCjTwj_a_Jwa1rppBI05M0mnY45we4PVH31jNqriXqfC7PlimWrsCIXrZdebTq63LN6j70AFw-rJH8F7umzef4BXveokY4bNT8kq2FapNtHVYYMV_P4QOkOs6UIN9it6h5oBYQ1Mfd7z_1kMppKfsBfo6L4eP5-dEnuEld5Qg3v-FlnTqyAPGrDxCqIVkCZQ0hFbLTRKxQw3QMo4owZh1KmCz7DaDpdIRo6yngs2sYR0ij_-D6APDHNqNzAZgQ-7cf1dvs4vj7z6NB1k5hyDwGqb1MOVV6HaP0LvIoeVdIHYPOufOiFF65iFF01DZa56zxUggZo1KxF3XgZcnFK7ZejavwhgHag5Nlv8u9QVThnYvKhxIBpdOExGKHfb7XSeFbinKalHFVUKhCCixIgUVSYIftL4QnDTPH_8Xe3yu3QM-h4xBbhfGsLnpEvYYv1uYRGdMnxj-jdIe9bgxi8TIMHHOlJd7JV0xlIUDM3at3qtEwMXhjDC6M6HbYl2RUj31_cTb4xdPVzpOkd9kGYjvV1Ga-ZevTm1nYQ_w0de-Sl_wF3yQdPA
  priority: 102
  providerName: Wiley-Blackwell
Title The stretch‐shortening cycle (SSC) revisited: residual force enhancement contributes to increased performance during fast SSCs of human m. adductor pollicis
URI https://onlinelibrary.wiley.com/doi/abs/10.14814%2Fphy2.12401
https://www.ncbi.nlm.nih.gov/pubmed/25975646
https://www.proquest.com/docview/1681262568
https://www.proquest.com/docview/1891867856
https://pubmed.ncbi.nlm.nih.gov/PMC4463830
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ta9swEBZd-2VfxrbuxVsXblDGXnCWSJasDMboSksYtIR1geyTsWSJBFonjRNY_st-7O5kJ2vXrl-MwbItfHfWc6e75xjb7wmZOi7zWGpjY8T_PjY52mPOtUqtdrkJjDcnp6o_TL6N5GiLrZtxNh-wutW1o35Sw_l5-9fl6gsa_Gcy-ER3k484Id7GhYrquHZwSUrJQk8anB-CLR2Bvj3tMHNUwlh301FTq_fP_cQNjBBbKgLEVxeqG-jzZhLlVXAbVqfjh-xBAyvhoNaDR2zLlY_Z7kGJLvXFCt5ASPQMEfRd9htVA6hGBAUWV2PKtqXgCNgV3gpvz84O38E8FJ0jGv2Ep1Uo2AKEt9aBK8ekKBRUhJDnTg2zXAWLKUxKgqCVK2D2txwB6kJI8Hm1AHx2BVMPoTMgXLQB_3tL2jaAGZGD20n1hA2Pj34c9uOmSUNs0YftxtLIwirvE2s89wnviER5p1JurCiElcajk-1V7nNjcm0TIRLvpfRdrxwvCi6esu1yWrrnDFBdTFL0OtxqBB3WGC-tKxBvGkVAzUfs_VoimW0YzKmRxnlGngxJMiNJZkGSEdvfDJ7VxB23D3u9Fm2GhkW7JXnppssq6xIzG75Y6TvG6B4RAmqpIvasVofNy9Z6FLH0mqJsBhCx9_Ur5WQcCL7RRRdadCL2IajUXfPPBv2fPJy9-O8MXrL7CPNknaa5x7YX86V7hVBqYVrsHk8GeExHaYvtfD06HXxvhbBEKxjQH09fIqU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEF5KemgvpU36cB_pFELpA6X2vrTuLYQGt01CIAmkJ7G72sWGRjaRffCtP6G_oD8uvyQzK8WuSQn0JtCsJJgZ7TezM98wttUXKg9c2UwZ5zPE_zFzFv3RcqNzb4J1ifHm4FAPTuW3M3XWJtyoF6bhh1gk3Mgz0v-aHJwS0snLpelJmk07nPNt3J-ofeuu1Dwnx-TyaJlj6QoM6WXblkerPi3XrG5EN9DlzSLJv8Fr2n32HrIHLWyEnUbPj9idUK2zjZ0KQ-bzObyFVMiZMuQb7A-qHqgHBBVy-et3PaR6Wkp_gJ_jYnh3fLz7Hi5SWznizc94WaeWLEAA6wOEakimQGlDSJXsNBIr1DAdw6gikFmHEibLhgNoWh0h2noK-OwaxhHS7D843wb8s83oYAAmRP_tR_Vjdrr35WR3kLVjGDKPUWovU06VXscovYs8St4VUsegc-68KIVXLmIYHbWN1jlrvBRCxqhU7EUdeFly8YStVeMqPGOABuFk2e9ybxBWeOei8qFEROk0QbHYYR-udVL4lqOcRmX8LChWIQUWpMAiKbDDthbCk4aa499ib66VW6Dr0HmIrcJ4Vhc94l7DF2tzi4zpE-WfUbrDnjYGsXgZRo650hLv5CumshAg6u7VO9VomCi8MQgXRnQ77GMyqtu-vzga_ODp6vl_Sb9m9wYnB_vF_tfD7y_YfQR6qinUfMnWphez8ArB1NRtJo-5Ai6iIKg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3battAEF1KAqUvpW16cW-ZQii9oNTem9Z5M0mNewuB1CXNi9CudrGhkU1kP_itn9Av6Mf1SzKzUuyalEDfBJqVBDOjPTM7c4axna5QqecqT5SxLkH8HxKboz_m3OjUGZ_byHjz5VAPhvLjiTppanOoF6bmh1gm3Mgz4v-aHHxahOjk0nQkjaYdLfgubk_UvbVJPHlo1Ju9b8PT4SrJ0hYY08umL4_WvVutWt-JrsDLq1WSf6PXuP3077DbDW6EXq3ou-yGL--xrV6JMfPZAl5CrOSMKfIt9ht1D9QEghr58_NXNaKCWsp_gFvgYnh1fLz_Gs5jXzkCzj28rGJPFiCCdR58OSJboLwhxFJ2monlK5hNYFwSyqx8AdNVxwHUvY4Q8moG-OwKJgHi8D842wX8tc3pZACmxP_txtV9Nuy__7o_SJo5DInDMLWTKKsKp0OQzgYeJG8LqYPXKbdOFMIpGzCODjoPubW5cVIIGYJSoRO050XBxQO2UU5K_4gBWoSVRbfNnUFc4awNyvkCIaXVhMVCi7251EnmGpJympXxI6NghRSYkQKzqMAW21kKT2tujn-LvbhUboa-Qwcieekn8yrrEPkavliba2RMlzj_jNIt9rA2iOXLMHRMlZZ4J10zlaUAcXev3ynHo8jhjVG4MKLdYm-jUV33_dnR4DuPV4__S3qb3Tw66GefPxx-esJuIdBTdaHmU7YxO5_7ZwimZvZ54zIXwQAhoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+stretch-shortening+cycle+%28SSC%29+revisited%3A+residual+force+enhancement+contributes+to+increased+performance+during+fast+SSCs+of+human+m.+adductor+pollicis&rft.jtitle=Physiological+reports&rft.au=Seiberl%2C+Wolfgang&rft.au=Power%2C+Geoffrey+A&rft.au=Herzog%2C+Walter&rft.au=Hahn%2C+Daniel&rft.date=2015-05-01&rft.issn=2051-817X&rft.eissn=2051-817X&rft.volume=3&rft.issue=5&rft_id=info:doi/10.14814%2Fphy2.12401&rft_id=info%3Apmid%2F25975646&rft.externalDocID=25975646
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-817X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-817X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-817X&client=summon