Overview of epigenetic degraders based on PROTAC, molecular glue, and hydrophobic tagging technologies
Epigenetic pathways play a critical role in the initiation, progression, and metastasis of cancer. Over the past few decades, significant progress has been made in the development of targeted epigenetic modulators (e.g., inhibitors). However, epigenetic inhibitors have faced multiple challenges, inc...
Saved in:
Published in | Acta pharmaceutica Sinica. B Vol. 14; no. 2; pp. 533 - 578 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Epigenetic pathways play a critical role in the initiation, progression, and metastasis of cancer. Over the past few decades, significant progress has been made in the development of targeted epigenetic modulators (e.g., inhibitors). However, epigenetic inhibitors have faced multiple challenges, including limited clinical efficacy, toxicities, lack of subtype selectivity, and drug resistance. As a result, the design of new epigenetic modulators (e.g., degraders) such as PROTACs, molecular glue, and hydrophobic tagging (HyT) degraders has garnered significant attention from both academia and pharmaceutical industry, and numerous epigenetic degraders have been discovered in the past decade. In this review, we aim to provide an in-depth illustration of new degrading strategies (2017–2023) targeting epigenetic proteins for cancer therapy, focusing on the rational design, pharmacodynamics, pharmacokinetics, clinical status, and crystal structure information of these degraders. Importantly, we also provide deep insights into the potential challenges and corresponding remedies of this approach to drug design and development. Overall, we hope this review will offer a better mechanistic understanding and serve as a useful guide for the development of emerging epigenetic-targeting degraders.
This review summarizes the recent progress in the development of epigenetic degraders, including PROTACs, molecular glue, and hydrophobic tagging (HyT), with deep insights into the potential challenges and corresponding remedies. [Display omitted] |
---|---|
AbstractList | Epigenetic pathways play a critical role in the initiation, progression, and metastasis of cancer. Over the past few decades, significant progress has been made in the development of targeted epigenetic modulators (e.g., inhibitors). However, epigenetic inhibitors have faced multiple challenges, including limited clinical efficacy, toxicities, lack of subtype selectivity, and drug resistance. As a result, the design of new epigenetic modulators (e.g., degraders) such as PROTACs, molecular glue, and hydrophobic tagging (HyT) degraders has garnered significant attention from both academia and pharmaceutical industry, and numerous epigenetic degraders have been discovered in the past decade. In this review, we aim to provide an in-depth illustration of new degrading strategies (2017-2023) targeting epigenetic proteins for cancer therapy, focusing on the rational design, pharmacodynamics, pharmacokinetics, clinical status, and crystal structure information of these degraders. Importantly, we also provide deep insights into the potential challenges and corresponding remedies of this approach to drug design and development. Overall, we hope this review will offer a better mechanistic understanding and serve as a useful guide for the development of emerging epigenetic-targeting degraders.Epigenetic pathways play a critical role in the initiation, progression, and metastasis of cancer. Over the past few decades, significant progress has been made in the development of targeted epigenetic modulators (e.g., inhibitors). However, epigenetic inhibitors have faced multiple challenges, including limited clinical efficacy, toxicities, lack of subtype selectivity, and drug resistance. As a result, the design of new epigenetic modulators (e.g., degraders) such as PROTACs, molecular glue, and hydrophobic tagging (HyT) degraders has garnered significant attention from both academia and pharmaceutical industry, and numerous epigenetic degraders have been discovered in the past decade. In this review, we aim to provide an in-depth illustration of new degrading strategies (2017-2023) targeting epigenetic proteins for cancer therapy, focusing on the rational design, pharmacodynamics, pharmacokinetics, clinical status, and crystal structure information of these degraders. Importantly, we also provide deep insights into the potential challenges and corresponding remedies of this approach to drug design and development. Overall, we hope this review will offer a better mechanistic understanding and serve as a useful guide for the development of emerging epigenetic-targeting degraders. Epigenetic pathways play a critical role in the initiation, progression, and metastasis of cancer. Over the past few decades, significant progress has been made in the development of targeted epigenetic modulators ( inhibitors). However, epigenetic inhibitors have faced multiple challenges, including limited clinical efficacy, toxicities, lack of subtype selectivity, and drug resistance. As a result, the design of new epigenetic modulators ( degraders) such as PROTACs, molecular glue, and hydrophobic tagging (HyT) degraders has garnered significant attention from both academia and pharmaceutical industry, and numerous epigenetic degraders have been discovered in the past decade. In this review, we aim to provide an in-depth illustration of new degrading strategies (2017-2023) targeting epigenetic proteins for cancer therapy, focusing on the rational design, pharmacodynamics, pharmacokinetics, clinical status, and crystal structure information of these degraders. Importantly, we also provide deep insights into the potential challenges and corresponding remedies of this approach to drug design and development. Overall, we hope this review will offer a better mechanistic understanding and serve as a useful guide for the development of emerging epigenetic-targeting degraders. Epigenetic pathways play a critical role in the initiation, progression, and metastasis of cancer. Over the past few decades, significant progress has been made in the development of targeted epigenetic modulators ( e.g., inhibitors). However, epigenetic inhibitors have faced multiple challenges, including limited clinical efficacy, toxicities, lack of subtype selectivity, and drug resistance. As a result, the design of new epigenetic modulators ( e.g., degraders) such as PROTACs, molecular glue, and hydrophobic tagging (HyT) degraders has garnered significant attention from both academia and pharmaceutical industry, and numerous epigenetic degraders have been discovered in the past decade. In this review, we aim to provide an in-depth illustration of new degrading strategies (2017–2023) targeting epigenetic proteins for cancer therapy, focusing on the rational design, pharmacodynamics, pharmacokinetics, clinical status, and crystal structure information of these degraders. Importantly, we also provide deep insights into the potential challenges and corresponding remedies of this approach to drug design and development. Overall, we hope this review will offer a better mechanistic understanding and serve as a useful guide for the development of emerging epigenetic-targeting degraders. This review summarizes the recent progress in the development of epigenetic degraders, including PROTACs, molecular glue, and hydrophobic tagging (HyT), with deep insights into the potential challenges and corresponding remedies. Image 1 Epigenetic pathways play a critical role in the initiation, progression, and metastasis of cancer. Over the past few decades, significant progress has been made in the development of targeted epigenetic modulators (e.g., inhibitors). However, epigenetic inhibitors have faced multiple challenges, including limited clinical efficacy, toxicities, lack of subtype selectivity, and drug resistance. As a result, the design of new epigenetic modulators (e.g., degraders) such as PROTACs, molecular glue, and hydrophobic tagging (HyT) degraders has garnered significant attention from both academia and pharmaceutical industry, and numerous epigenetic degraders have been discovered in the past decade. In this review, we aim to provide an in-depth illustration of new degrading strategies (2017–2023) targeting epigenetic proteins for cancer therapy, focusing on the rational design, pharmacodynamics, pharmacokinetics, clinical status, and crystal structure information of these degraders. Importantly, we also provide deep insights into the potential challenges and corresponding remedies of this approach to drug design and development. Overall, we hope this review will offer a better mechanistic understanding and serve as a useful guide for the development of emerging epigenetic-targeting degraders. Epigenetic pathways play a critical role in the initiation, progression, and metastasis of cancer. Over the past few decades, significant progress has been made in the development of targeted epigenetic modulators (e.g., inhibitors). However, epigenetic inhibitors have faced multiple challenges, including limited clinical efficacy, toxicities, lack of subtype selectivity, and drug resistance. As a result, the design of new epigenetic modulators (e.g., degraders) such as PROTACs, molecular glue, and hydrophobic tagging (HyT) degraders has garnered significant attention from both academia and pharmaceutical industry, and numerous epigenetic degraders have been discovered in the past decade. In this review, we aim to provide an in-depth illustration of new degrading strategies (2017–2023) targeting epigenetic proteins for cancer therapy, focusing on the rational design, pharmacodynamics, pharmacokinetics, clinical status, and crystal structure information of these degraders. Importantly, we also provide deep insights into the potential challenges and corresponding remedies of this approach to drug design and development. Overall, we hope this review will offer a better mechanistic understanding and serve as a useful guide for the development of emerging epigenetic-targeting degraders. This review summarizes the recent progress in the development of epigenetic degraders, including PROTACs, molecular glue, and hydrophobic tagging (HyT), with deep insights into the potential challenges and corresponding remedies. [Display omitted] |
Author | Pan, Wanyi Lu, Benyan Zhang, Meizhu Tao, Chengpeng Xu, Congcong Bi, Huichang Zeng, Limei Hu, Zhihao Chen, Weiming Hou, Wen Chen, Jianjun Cheng, Kui Peng, Xiaopeng |
Author_xml | – sequence: 1 givenname: Xiaopeng surname: Peng fullname: Peng, Xiaopeng organization: College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China – sequence: 2 givenname: Zhihao surname: Hu fullname: Hu, Zhihao organization: College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China – sequence: 3 givenname: Limei surname: Zeng fullname: Zeng, Limei organization: College of Basic Medicine, Gannan Medical University, Ganzhou 314000, China – sequence: 4 givenname: Meizhu surname: Zhang fullname: Zhang, Meizhu organization: College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China – sequence: 5 givenname: Congcong surname: Xu fullname: Xu, Congcong organization: College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China – sequence: 6 givenname: Benyan surname: Lu fullname: Lu, Benyan organization: College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China – sequence: 7 givenname: Chengpeng surname: Tao fullname: Tao, Chengpeng organization: College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China – sequence: 8 givenname: Weiming surname: Chen fullname: Chen, Weiming organization: College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China – sequence: 9 givenname: Wen surname: Hou fullname: Hou, Wen organization: College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China – sequence: 10 givenname: Kui orcidid: 0000-0002-4136-2070 surname: Cheng fullname: Cheng, Kui email: chengk@smu.edu.cn organization: Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China – sequence: 11 givenname: Huichang surname: Bi fullname: Bi, Huichang email: bihchang@smu.edu.cn organization: Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China – sequence: 12 givenname: Wanyi surname: Pan fullname: Pan, Wanyi email: 270358051@qq.com organization: College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China – sequence: 13 givenname: Jianjun orcidid: 0000-0001-5668-6572 surname: Chen fullname: Chen, Jianjun email: jchen21@smu.edu.cn organization: Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38322348$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktr3DAUhU1JadI0f6CLomUXGVdPjwWFEoY-AoEpJV0LWbryaPBIU8mekn9fuZOEpotoI3F1z3eQ7nldnYQYoKreElwTTJoP21rvc1dTTFmNZY0xe1GdUUrIgrWcnTyemTitLnLe4rIaTOlSvKpOS5lSxtuzyq0PkA4efqPoEOx9DwFGb5CFPmkLKaNOZ7AoBvT9x_r2anWJdnEAMw06oX6Y4BLpYNHmzqa438SuSEfd9z70aASzCXGIvYf8pnrp9JDh4n4_r35--Xy7-ra4WX-9Xl3dLIygdFw4ZzTFwBsQDbdMNtRJ4YSwIFuCMQfX6M5gwbrWWNzxJcet1g3mVGLZGMHOq-sj10a9Vfvkdzrdqai9-luIqVc6lfcNoEA66aggjEjLnXWSasNMJyTDRhhuCuvTkbWfuh1YA2FMengCfXoT_Eb18aAIbjnmTBbC-3tCir8myKPa-WxgGHSAOGVFJWWMLkkzt7771-zR5WFSpaE9NpgUc07glPGjHn2cvf1QTNWcC7VVcy7UnAuFpSq5KFL6n_SB_qzo41EEZVwlIEll4yEYsD6BGct_-ufkfwCEFNHx |
CitedBy_id | crossref_primary_10_1016_j_jbc_2024_107751 crossref_primary_10_1038_s41419_024_07073_y crossref_primary_10_1002_wnan_2020 crossref_primary_10_1002_med_22101 crossref_primary_10_1038_s41392_024_02036_3 crossref_primary_10_1038_s41392_024_02039_0 crossref_primary_10_1016_j_bcp_2025_116875 crossref_primary_10_1021_acs_jmedchem_4c02774 crossref_primary_10_1186_s12915_025_02153_7 crossref_primary_10_1021_jacs_4c11003 crossref_primary_10_1080_17501911_2024_2430169 crossref_primary_10_1016_j_ejmech_2025_117560 crossref_primary_10_1016_j_actbio_2025_02_012 crossref_primary_10_1016_j_bioorg_2024_107818 crossref_primary_10_1016_j_ejmech_2024_116696 crossref_primary_10_1016_j_ejmech_2024_117103 crossref_primary_10_1016_j_ejmech_2024_116972 crossref_primary_10_1016_j_apsb_2024_07_016 crossref_primary_10_1080_13543776_2025_2468792 crossref_primary_10_1016_j_ejmech_2024_116857 crossref_primary_10_1038_s41401_024_01364_y |
Cites_doi | 10.1021/jacs.9b06422 10.1016/j.apsb.2022.11.007 10.1021/acs.jmedchem.6b01816 10.1039/D0CC01485K 10.1016/j.cbpa.2019.02.022 10.1007/s13238-020-00733-7 10.3390/ijms23147535 10.1038/s41573-021-00371-6 10.1517/13543776.2016.1159299 10.1158/2159-8290.CD-21-1059 10.1016/j.devcel.2015.11.022 10.1016/j.drudis.2020.07.013 10.1021/acscentsci.9b00713 10.1021/jacs.2c10177 10.1038/s41589-018-0055-y 10.1002/cbic.202000351 10.1039/D0CC03243C 10.3389/fcell.2022.872729 10.1038/s41467-021-25951-3 10.1002/anie.201611281 10.1021/acsmedchemlett.1c00580 10.1038/s41586-019-1842-7 10.7554/eLife.59994 10.1038/s41580-019-0168-5 10.1039/D2CS00200K 10.3390/cells10010012 10.1038/47412 10.1016/j.ccell.2019.10.002 10.1002/anie.201914826 10.1039/D2CS00220E 10.1039/D2MD00199C 10.1021/jacs.9b12718 10.1038/nature09784 10.1074/mcp.RA118.001253 10.1016/j.annonc.2021.05.353 10.1016/j.chembiol.2015.05.009 10.1038/s41392-022-00966-4 10.1186/s13045-020-00885-3 10.1016/j.chembiol.2023.02.008 10.1158/2159-8290.CD-17-0605 10.1016/j.ejmech.2019.111633 10.1016/j.drudis.2021.08.006 10.1007/978-981-15-3449-2_1 10.1039/D2CS00197G 10.1016/j.ejmech.2020.112800 10.3390/cancers14112721 10.1146/annurev-pharmtox-010715-103440 10.1021/acs.jmedchem.0c02234 10.1016/j.chembiol.2021.01.005 10.1021/acs.jmedchem.0c01846 10.1038/nature21688 10.1002/cbic.202100270 10.1016/j.chembiol.2021.03.005 10.1016/j.apsb.2021.07.003 10.1073/pnas.1521738113 10.1021/acs.bioconjchem.1c00490 10.1016/j.cell.2019.11.031 10.1038/s41408-022-00704-7 10.1038/s41589-019-0421-4 10.1158/0008-5472.CAN-18-2918 10.1016/j.bmc.2022.117134 10.1002/anie.202107347 10.1186/s13045-020-00937-8 10.1016/j.chembiol.2022.08.004 10.1126/sciadv.aay5064 10.1016/j.molcel.2017.10.030 10.1016/j.bmcl.2018.05.057 10.1021/acsmedchemlett.0c00046 10.1021/acschembio.5b00216 10.1016/j.jmb.2021.167186 10.1126/science.aab1433 10.1021/acs.jmedchem.1c00226 10.1146/annurev-pharmtox-011613-140028 10.1016/j.chembiol.2021.07.002 10.1016/j.cmet.2019.03.009 10.1016/j.apsb.2021.07.017 10.1016/j.ejmech.2022.114462 10.1021/acs.jmedchem.0c01845 10.1016/j.phrs.2020.105274 10.1016/S1470-2045(20)30441-1 10.3109/10428194.2016.1160082 10.1158/1535-7163.MCT-21-0474 10.1186/s13148-019-0800-4 10.3389/fphar.2021.692574 10.1016/j.apsb.2022.02.009 10.1021/jacs.1c00451 10.1080/17460441.2021.1969359 10.1038/s41589-021-00742-5 10.1016/j.chembiol.2020.04.008 10.1016/j.chembiol.2017.10.005 10.1016/j.molcel.2017.06.004 10.1039/D0SC00167H 10.1038/s41589-020-0594-x 10.1002/anie.201914396 10.1016/j.cell.2020.10.038 10.1158/0008-5472.CAN-16-2622 10.1021/acs.jmedchem.1c00895 10.1016/j.apsb.2019.01.001 10.1021/acsmedchemlett.1c00670 10.1016/j.ejmech.2019.111991 10.1093/nar/gkg274 10.1038/s41568-021-00365-x 10.1038/s41467-017-01173-4 10.1038/s41556-019-0314-5 10.1016/j.bpj.2020.10.002 10.1016/j.chembiol.2019.11.006 10.1016/j.ejmech.2020.112831 10.1038/nchembio.2329 10.1038/cr.2016.49 10.1021/acs.jmedchem.2c01659 10.1186/s13148-018-0549-1 10.1038/s41467-020-16443-x 10.1038/s41594-019-0298-7 10.1038/nature04433 10.1021/acs.orglett.9b01326 10.1523/JNEUROSCI.2133-14.2015 10.1021/acs.jmedchem.6b00753 10.1002/cmdc.201900497 10.1038/ncomms10013 10.1080/15548627.2015.1034410 10.1002/cbic.201000222 10.1016/j.ejmech.2022.114544 10.1038/s41589-019-0304-8 10.1016/j.apsb.2019.05.001 10.1021/acs.jmedchem.2c00739 10.1016/j.cell.2012.06.013 10.1016/j.chembiol.2019.11.004 10.1080/14756366.2023.2201408 10.1021/acscentsci.2c01317 10.1038/nrd.2016.199 10.1038/s41589-021-00878-4 10.1042/bj20021321 10.1016/j.bmc.2019.115181 10.1038/s41571-021-00579-w 10.1039/D2CS00478J 10.1021/jacs.1c00990 10.1038/nchembio.2065 10.3390/cancers15092596 10.1039/D2CC00272H 10.1038/s41388-020-01625-0 10.1021/acs.jmedchem.1c00460 10.1038/s41586-019-1722-1 10.1073/pnas.1107107108 10.1021/acscentsci.0c01550 10.1016/j.chembiol.2017.09.010 10.1186/s13046-018-0810-7 10.1016/j.drudis.2023.103643 10.1021/acschembio.0c00285 10.1016/j.cbpa.2020.01.010 10.1016/j.ejmech.2022.114419 10.1016/j.apsb.2022.03.019 10.1038/nm.4036 10.1038/s41571-020-0339-5 10.1038/s41392-022-01257-8 10.1021/acs.jmedchem.2c01149 10.1021/acs.jmedchem.1c01863 10.1021/acs.jmedchem.9b00516 10.1002/anie.202006725 10.1186/s12943-017-0596-9 10.1021/acs.jmedchem.6b01872 10.1038/cr.2011.22 10.1038/s41419-022-05505-1 10.1002/anie.201601506 10.1016/j.ejmech.2023.115381 10.1016/j.apsb.2019.08.001 10.1093/nar/gkx1151 10.1016/j.celrep.2014.08.025 10.1021/acs.jmedchem.8b01413 10.1016/j.ejmech.2020.112750 10.1016/j.canlet.2008.08.016 10.1021/acsptsci.2c00100 10.1021/jacs.1c03980 10.1038/nchembio.597 10.1016/j.molmed.2019.05.007 10.1038/s41573-020-00108-x 10.1038/s41588-020-00736-4 10.1039/C9CC08509B 10.1007/s13238-018-0602-z 10.1186/s13045-022-01258-8 10.1021/acsmedchemlett.1c00658 |
ContentType | Journal Article |
Copyright | 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences 2024 The Authors. 2024 The Authors 2024 |
Copyright_xml | – notice: 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences – notice: 2024 The Authors. – notice: 2024 The Authors 2024 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.apsb.2023.09.003 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 2211-3843 |
EndPage | 578 |
ExternalDocumentID | oai_doaj_org_article_e9f9f251319d4fdf92ac3cb5930c5c4c PMC10840439 38322348 10_1016_j_apsb_2023_09_003 S2211383523003556 |
Genre | Journal Article Review |
GroupedDBID | --- --K -05 -0E -SE -S~ 0R~ 0SF 1~5 4.4 457 4G. 53G 5VR 5VS 6I. 7-5 92M 9D9 9DE AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABKZE ABMAC ACGFS ADBBV ADEZE ADRAZ AEXQZ AFUIB AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV CAJEE CAJUS CCEZO CIEJG DIK EBS EJD FDB GROUPED_DOAJ GX1 HH5 HYE HZ~ IPNFZ IXB JUIAU KQ8 M41 M48 NCXOZ O-L O9- OK1 Q-- Q-4 R-E RIG ROL RPM RT5 SES SSZ T8U U1F U1G U5E U5O XH2 ~NG AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c522t-ffca20e46e564d3962f95f55de981004ef6abc053b8cd0b47408aa60429096c53 |
IEDL.DBID | M48 |
ISSN | 2211-3835 |
IngestDate | Wed Aug 27 01:31:38 EDT 2025 Thu Aug 21 18:35:27 EDT 2025 Fri Jul 11 07:56:52 EDT 2025 Thu Apr 03 07:06:50 EDT 2025 Thu Apr 24 22:58:45 EDT 2025 Tue Jul 01 01:53:12 EDT 2025 Sat Sep 30 17:11:56 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Degrader Hydrophobic tagging Molecular glue Epigenetic PROTAC |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c522t-ffca20e46e564d3962f95f55de981004ef6abc053b8cd0b47408aa60429096c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 These authors made equal contributions to this work. |
ORCID | 0000-0001-5668-6572 0000-0002-4136-2070 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211383523003556 |
PMID | 38322348 |
PQID | 2923327169 |
PQPubID | 23479 |
PageCount | 46 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e9f9f251319d4fdf92ac3cb5930c5c4c pubmedcentral_primary_oai_pubmedcentral_nih_gov_10840439 proquest_miscellaneous_2923327169 pubmed_primary_38322348 crossref_citationtrail_10_1016_j_apsb_2023_09_003 crossref_primary_10_1016_j_apsb_2023_09_003 elsevier_sciencedirect_doi_10_1016_j_apsb_2023_09_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Acta pharmaceutica Sinica. B |
PublicationTitleAlternate | Acta Pharm Sin B |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Eyre, Riches (bib80) 2023; 15 Qi, Dong, Xu, Cheng, Zhang, Qin (bib76) 2021; 12 Luo, Spradlin, Boike, Tong, Brittain, McKenna (bib181) 2021; 28 Erb, Scott, Li, Xie, Paulk, Seo (bib66) 2017; 543 Cross, Coulson, Smalley, Pytel, Ismail, Trory (bib107) 2022; 13 Burslem, Crews (bib37) 2020; 181 Yan, Lyu, Lin, Wu, Gong, Ren (bib125) 2023; 254 An, Lv, Su, Wu, Rao (bib100) 2019; 10 Roatsch, Vogelmann, Herp, Jung, Olsen (bib108) 2020; 40 Schiedel, Herp, Hammelmann, Swyter, Lehotzky, Robaa (bib111) 2018; 61 Duan, Du, Guo (bib133) 2020; 13 Schiedel, Lehotzky, Szunyogh, Olah, Hammelmann, Wossner (bib26) 2020; 21 Reynders, Matsuura, Berouti, Simoneschi, Marzio, Pagano (bib162) 2020; 6 Qiu, Sun, Kong, Li, Yang, Jiang (bib118) 2019; 21 Zhao, Zhao, Zhong, Tong, Jia (bib13) 2022; 7 Kong, Hao, Li, Wang, Ji, Wu (bib89) 2018; 10 Sabnis (bib131) 2022; 13 Oleinik, Orlov, Ponomareva, Koroteeva, Tsarev (bib167) 1981 Liu, Zheng, Akerstrom, Yuan, Ma, Zhong (bib85) 2016; 59 Weisberg, Chowdhury, Meng, Case, Ni, Garg (bib130) 2022; 12 Ma, Stratikopoulos, Park, Wei, Martin, Yang (bib44) 2020; 16 Liu, Hu, Wang, Wu, Zhang, Wei (bib135) 2021; 64 Cao, de Weerd, Chen, Zwinderman, van der Wouden, Dekker (bib88) 2020; 208 Zhang, Lu, Chang (bib154) 2020; 1253 Sinatra, Yang, Schliehe-Diecks, Dienstbier, Vogt, Gebing (bib96) 2022; 65 Potjewyd, Turner, Beri, Rectenwald, Norris-Drouin, Cholensky (bib139) 2020; 27 Zhou, Huang, Zhang, Zhao, Kim, Tu (bib127) 2020; 11 Spradlin, Hu, Ward, Brittain, Jones, Ou (bib180) 2019; 15 Toriki, Papatzimas, Nishikawa, Dovala, Frank, Hesse (bib29) 2023; 9 Hu, Pan, Li, Chen, Hu (bib65) 2022; 13 Wu, Yang, Cheng, Bi, Chen (bib93) 2022; 12 Winter, Mayer, Buckley, Erb, Roderick, Vittori (bib115) 2017; 67 LoPresti (bib153) 2020; 10 Stathis, Bertoni (bib63) 2018; 8 Tsukada, Fang, Erdjument-Bromage, Warren, Borchers, Tempst (bib155) 2006; 439 Jin, Wang, Fang (bib20) 2014; 54 Kim, Roberts (bib59) 2016; 22 . Bai, Zhou, Xu, Zhao, Chinnaswamy, McEachern (bib81) 2019; 36 Chotitumnavee, Yamashita, Takahashi, Takada, Iida, Oba (bib102) 2022; 58 Guo, He, Cheng, Li, Dong, Sheng (bib84) 2022; 13 Yang, Lv, He, Deng, Li, Wu (bib99) 2019; 55 Lu, Qian, Altieri, Dong, Wang, Raina (bib21) 2015; 22 Lu, Ye (bib33) 2021; 11 Tomassi, Romanelli, Zwergel, Valente, Mai (bib60) 2021; 64 He, Gao, Ma, Ma, Dong, Sheng (bib174) 2021; 60 Smalley, Adams, Millard, Song, Norris, Schwabe (bib106) 2020; 56 Zhang, Luukkonen, Eissler, Crowley, Yamashita, Schafroth (bib182) 2021; 143 Zhou, Hu, Xu, Chen, Bai, Fernandez-Salas (bib116) 2018; 61 Dale, Cheng, Park, Kaniskan, Xiong, Jin (bib15) 2021; 21 Dawson, Kouzarides (bib6) 2012; 150 Gadd, Testa, Lucas, Chan, Chen, Lamont (bib23) 2017; 13 Huang, Xie, Gong, Wei, Du, Xu (bib113) 2020; 188 Neklesa, Tae, Schneekloth, Stulberg, Corson, Sundberg (bib43) 2011; 7 Huang, Zhang, Xu, Wu, Zeng, Liu (bib105) 2023; 66 Jarrold, Davies (bib57) 2019; 25 Sun, Deng, Yang, Mai, Huang, Ma (bib104) 2022; 239 Maneiro, Forte, Shchepinova, Kounde, Chudasama, Baker (bib168) 2020; 15 Eagen, French (bib64) 2021; 40 Bai, Zhou, Yang, Ji, McEachern, Przybranowski (bib117) 2017; 77 Henning, Manford, Spradlin, Brittain, Zhang, McKenna (bib183) 2022; 144 Xiong, Donovan, Eleuteri, Kirmani, Yue, Razov (bib146) 2021; 28 Harvey, Chen, Jarosz (bib1) 2018; 69 Wang, Jiang, Feng, Liu, Sun (bib14) 2020; 10 Li, Ma, Hassan, Hunkeler, Teng, Puvar (bib184) 2023; 14 Wu, Yao, He, Jia, Zhu, Xu (bib36) 2022; 12 Liu, Chen, Liu, Shen, Meng, Kaniskan (bib177) 2021; 143 Darwish, Ghazy, Heimburg, Herp, Zeyen, Salem-Altintas (bib103) 2022; 23 Remillard, Buckley, Paulk, Brien, Sonnett, Seo (bib129) 2017; 56 Roberts, Belfort, Bestor, Bhagwat, Bickle, Bitinaite (bib48) 2003; 31 Chen, Chen, Feng, Wen, Sun (bib12) 2019; 9 Huang, Yokoe, Kaiho-Soma, Takahashi, Hirasawa, Morita (bib188) 2022; 33 Jeltsch, Adam, Dukatz, Emperle, Bashtrykov (bib49) 2021; 433 Lazo, Sharlow (bib18) 2016; 56 Zeng, Zhang, Sun, Wang, Ren, Banerjee (bib134) 2022; 238 Pfaff, Samarasinghe, Crews, Carreira (bib163) 2019; 5 Nemec, Schwalm, Muller, Knapp (bib179) 2022; 51 Chen, Lu, Yan, Lu, Zhou, Lyu (bib124) 2019; 182 King, Cho, Hsu, Dovala, McKenna, Tallarico (bib185) 2023; 30 He, Chan, Sobhian, Chou, Xue, Liu (bib70) 2011; 108 Paiva, Crews (bib39) 2019; 50 Klein, Ahmad, Vann, Andrews, Mayo, Bourriquen (bib68) 2018; 46 Nowak, DeAngelo, Buckley, He, Donovan, An (bib86) 2018; 14 Naro, Darrah, Deiters (bib164) 2020; 142 Perlman, Gadd, Arold, Radhakrishnan, Gerhard, Jennings (bib142) 2015; 6 Menon, Boyer, Winkle, McClain, Hanlin, Pandey (bib152) 2015; 35 Margueron, Reinberg (bib58) 2011; 469 Bhat, Umit Kaniskan, Jin, Gozani (bib3) 2021; 20 Tu, Sun, Qiao, Luo, Liu, Jiang (bib136) 2021; 64 Macabuag, Esmieu, Breccia, Jarvis, Blackaby, Lazari (bib91) 2022; 65 Peng, Li, Chen, Ren, Liu, Yu (bib95) 2022; 65 Winter, Buckley, Paulk, Roberts, Souza, Dhe-Paganon (bib120) 2015; 348 Huang, Dobrovolsky, Paulk, Yang, Weisberg, Doctor (bib147) 2018; 25 Toh, Lim, Chow (bib4) 2017; 16 Petroni, Cantley, Santambrogio, Formenti, Galluzzi (bib165) 2022; 19 Sinatra, Bandolik, Roatsch, Sonnichsen, Schoeder, Hamacher (bib112) 2020; 59 Li, Wang, Wang, Zhu, Li, Sha (bib83) 2019; 575 Yang, Yang, Li, Ni, Li (bib166) 2023; 145 A Phase 1/2 trial of ARV-471 alone and in combination with Palbociclib (IBRANCE®) in patients with ER+/HER2‒ locally advanced or metastatic breast cancer (mBC). Available online Wu, Zhang, Chen, Yu, Lv, Liu (bib55) 2022; 7 Zoppi, Hughes, Maniaci, Testa, Gmaschitz, Wieshofer (bib128) 2019; 62 Petrich, Nabhan (bib109) 2016; 57 Lv, Chen, Cao, Li, Zeng, Cui (bib16) 2020; 9 Sabnis (bib132) 2021; 12 Xue, Wang, Zhou, Zhong, Pan (bib160) 2019; 141 Guenette, Yang, Min, Pei, Potts (bib73) 2022; 51 Zaccara, Ries, Jaffrey (bib45) 2019; 20 Wang, Shao, Zhong, Wu, Xu, Sun (bib158) 2021; 17 Xie, Zhan, Zhu, Sun, Zhu, Liu (bib140) 2023; 62 Bolden, Tasdemir, Dow, van Es, Wilkinson, Zhao (bib150) 2014; 8 Bannister, Kouzarides (bib61) 2011; 21 Thummuri, Khan, Underwood, Zhang, Wiegand, Zhang (bib78) 2022; 21 Imaide, Riching, Makukhin, Vetma, Whitworth, Hughes (bib187) 2021; 17 Hines, Lartigue, Dong, Qian, Crews (bib123) 2019; 79 Ling, Ronn (bib2) 2019; 29 Slamon, Neven, Chia, Jerusalem, De Laurentiis, Im (bib38) 2021; 32 Dragovich, Pillow, Blake, Sadowsky, Adaligil, Adhikari (bib169) 2021; 64 Hughes, Testa, Thompson, Churcher (bib145) 2021; 26 Smith, Choudhary, Pellagatti, Choi, Bolanos, Bhagat (bib79) 2019; 21 Yin, Liu, Peng, Peng, Yu, Gao (bib11) 2018; 37 Cao, He, Wang, He, Rao (bib17) 2022; 51 Li, Ding, Li, Wang, Suo, Shen (bib62) 2019; 9 Ghoshal, Yugandhar, Srivastava (bib114) 2016; 26 Lapierre, Kumsta, Sandri, Ballabio, Hansen (bib54) 2015; 11 Zhang, Gao, Xie, Wang, Zhang, Wei (bib7) 2021; 12 Yang, Hu, Miao, Chen, Liu, Cheng (bib82) 2022; 12 Hanahan (bib5) 2022; 12 Raina, Lu, Qian, Altieri, Gordon, Rossi (bib22) 2016; 113 Sharda, Rashid, Shah, Sharma, Singh, Gera (bib51) 2020; 12 Cg N. Compounds for targeted degradation of BRD9. WO20211789320A1. Dong, Ding, He, Sheng (bib41) 2021; 64 Steinebach, Ng, Sosic, Lee, Chen, Lindner (bib149) 2020; 11 Scaranti, Cojocaru, Banerjee, Banerji (bib175) 2020; 17 Yang, Zhao, Nie, Wu, Wang, Almodovar-Rivera (bib98) 2020; 27 Zhou, Rossi (bib173) 2017; 16 Domostegui, Nieto-Barrado, Perez-Lopez, Mayor-Ruiz (bib35) 2022; 51 Husmann, Gozani (bib56) 2019; 26 Kiely-Collins, Winter, Bernardes (bib178) 2021; 28 Liu, Chen, Ma, He, Wang, Liu (bib161) 2020; 6 Wu, Yang, Zhang, Leisten, Li, Xie (bib97) 2019; 62 Pike, Williamson, Harlfinger, Martin, McGinnity (bib157) 2020; 25 Trial of ARV-110 in patients with metastatic castration resistant prostate cancer (mCRPC). Available online Mukherjee, Holubowska, Schwedhelm-Domeyer, Mitkovski, Lee, Kannan (bib151) 2015; 35 Jiang, Wei, Li, Li, Cui, Ma (bib122) 2020; 28 Numasawa, Hanaoka, Saito, Yamaguchi, Ikeno, Echizen (bib176) 2020; 59 Zhao, Song, Liu, Song, Yi (bib46) 2020; 11 Peng, Yu, Surineni, Deng, Zhang, Li (bib94) 2023; 38 Morschhauser, Tilly, Chaidos, McKay, Phillips, Assouline (bib10) 2020; 21 Xiao, Wang, Zhao, Chen, Zheng, Zhang (bib87) 2020; 56 Mi, Guan, Lyu, Zhao, Xi, Jiang (bib69) 2017; 8 Garnar-Wortzel, Bishop, Kitamura, Milosevich, Asiaban, Zhang (bib141) 2021; 7 Andrews, Shinsky, Shanle, Bridgers, Gest, Tsun (bib67) 2016; 12 Ding, Shao, Sun, Meng, Zang, Zhou (bib126) 2023; 78 Simpson, Glennie, Brewer, Zhao, Crooks, Shpiro (bib159) 2022; 29 Su, Dhusia, Wu (bib19) 2020; 119 Zhang, Zhang, Gao, Li, Li (bib32) 2022; 17 Strahl, Allis (bib47) 2000; 403 Bekes, Langley, Crews (bib34) 2022; 21 Vogelmann, Robaa, Sippl, Jung (bib31) 2020; 57 Zengerle, Chan, Ciulli (bib119) 2015; 10 Witt, Deubzer, Milde, Oehme (bib52) 2009; 277 Pulya, Amin, Adhikari, Biswas, Jha, Ghosh (bib92) 2021; 163 Yang, Wu, Zhang, Leisten, Nie, Liu (bib101) 2020; 11 Morgan, Shilatifard (bib50) 2020; 52 Li, Yao, Wu, Song (bib143) 2022; 15 Cyrus, Wehenkel, Choi, Swanson, Kim (bib186) 2010; 11 Wan, Chong, Xuan, Liang, Cui, Gates (bib72) 2020; 577 Pillow, Adhikari, Blake, Chen, Del Rosario, Deshmukh (bib171) 2020; 15 Hsu, Rasmusson, Robinson, Pachl, Read, Kawatkar (bib25) 2020; 27 Hescheler, Hartmann, Riemann, Michel, Bruns, Alakus (bib27) 2022; 14 Zhao, Guan, Zhao, Mi, Wen, Li (bib71) 2016; 26 Dragovich, Pillow, Blake, Sadowsky, Adaligil, Adhikari (bib170) 2021; 64 de Ruijter, van Gennip, Caron, Kemp, van Kuilenburg (bib53) 2003; 370 Tomaselli, Mautone, Mai, Rotili (bib30) 2020; 207 Yang, Song, Xie, Wu, Wu, Leisten (bib24) 2018; 28 Hemkens, Stamp, Loberg, Moreau, Hart (bib77) 2023; 28 Dale, Anderson, Park, Kaniskan, Ma, Shen (bib138) 2022; 5 Li, Song (bib40) 2020; 13 Testa, Hughes, Lucas, Wright, Ciulli (bib121) 2020; 59 Hu, Crews (bib156) 2022; 23 Mayor-Ruiz, Bauer, Brand, Kozicka, Siklos, Imrichova (bib42) 2020; 16 Kolakowski, Haelsig, Emmerton, Leiske, Miyamoto, Cochran (bib172) 2016; 55 Wang, Chen, Liu, Lu, Li, Qu (bib137) 2022; 238 Federspiel, Greco, Lum, Cristea (bib90) 2019; 18 Donovan, Ferguson, Bushman, Eleuteri, Bhunia, Ryu (bib148) 2020; 183 Burke, Smith, Zheng (bib110) 2022; 10 Bondeson, Smith, Burslem, Buhimschi, Hines, Jaime-Figueroa (bib144) 2018; 25 Peng, Sun, Kuang, Chen (bib9) 2020; 208 Sun, Shu, Ye, Wu, Xu, Gao (bib8) 2022; 12 Lazo (10.1016/j.apsb.2023.09.003_bib18) 2016; 56 Hu (10.1016/j.apsb.2023.09.003_bib156) 2022; 23 Strahl (10.1016/j.apsb.2023.09.003_bib47) 2000; 403 Testa (10.1016/j.apsb.2023.09.003_bib121) 2020; 59 Toh (10.1016/j.apsb.2023.09.003_bib4) 2017; 16 Lu (10.1016/j.apsb.2023.09.003_bib33) 2021; 11 Tomassi (10.1016/j.apsb.2023.09.003_bib60) 2021; 64 Eyre (10.1016/j.apsb.2023.09.003_bib80) 2023; 15 Wu (10.1016/j.apsb.2023.09.003_bib55) 2022; 7 Federspiel (10.1016/j.apsb.2023.09.003_bib90) 2019; 18 Mayor-Ruiz (10.1016/j.apsb.2023.09.003_bib42) 2020; 16 Cao (10.1016/j.apsb.2023.09.003_bib17) 2022; 51 Zhang (10.1016/j.apsb.2023.09.003_bib182) 2021; 143 Mukherjee (10.1016/j.apsb.2023.09.003_bib151) 2015; 35 Tu (10.1016/j.apsb.2023.09.003_bib136) 2021; 64 Garnar-Wortzel (10.1016/j.apsb.2023.09.003_bib141) 2021; 7 Hemkens (10.1016/j.apsb.2023.09.003_bib77) 2023; 28 Bhat (10.1016/j.apsb.2023.09.003_bib3) 2021; 20 Li (10.1016/j.apsb.2023.09.003_bib143) 2022; 15 Toriki (10.1016/j.apsb.2023.09.003_bib29) 2023; 9 An (10.1016/j.apsb.2023.09.003_bib100) 2019; 10 Roberts (10.1016/j.apsb.2023.09.003_bib48) 2003; 31 Sun (10.1016/j.apsb.2023.09.003_bib8) 2022; 12 Witt (10.1016/j.apsb.2023.09.003_bib52) 2009; 277 Li (10.1016/j.apsb.2023.09.003_bib40) 2020; 13 Yin (10.1016/j.apsb.2023.09.003_bib11) 2018; 37 Henning (10.1016/j.apsb.2023.09.003_bib183) 2022; 144 Kiely-Collins (10.1016/j.apsb.2023.09.003_bib178) 2021; 28 Lapierre (10.1016/j.apsb.2023.09.003_bib54) 2015; 11 Zhao (10.1016/j.apsb.2023.09.003_bib13) 2022; 7 Jarrold (10.1016/j.apsb.2023.09.003_bib57) 2019; 25 Naro (10.1016/j.apsb.2023.09.003_bib164) 2020; 142 Maneiro (10.1016/j.apsb.2023.09.003_bib168) 2020; 15 Bai (10.1016/j.apsb.2023.09.003_bib117) 2017; 77 He (10.1016/j.apsb.2023.09.003_bib174) 2021; 60 Zhang (10.1016/j.apsb.2023.09.003_bib32) 2022; 17 Cyrus (10.1016/j.apsb.2023.09.003_bib186) 2010; 11 Chen (10.1016/j.apsb.2023.09.003_bib124) 2019; 182 Zhou (10.1016/j.apsb.2023.09.003_bib116) 2018; 61 Remillard (10.1016/j.apsb.2023.09.003_bib129) 2017; 56 Thummuri (10.1016/j.apsb.2023.09.003_bib78) 2022; 21 Zengerle (10.1016/j.apsb.2023.09.003_bib119) 2015; 10 Simpson (10.1016/j.apsb.2023.09.003_bib159) 2022; 29 de Ruijter (10.1016/j.apsb.2023.09.003_bib53) 2003; 370 Schiedel (10.1016/j.apsb.2023.09.003_bib111) 2018; 61 Liu (10.1016/j.apsb.2023.09.003_bib161) 2020; 6 Xie (10.1016/j.apsb.2023.09.003_bib140) 2023; 62 Bondeson (10.1016/j.apsb.2023.09.003_bib144) 2018; 25 Zhao (10.1016/j.apsb.2023.09.003_bib46) 2020; 11 Yang (10.1016/j.apsb.2023.09.003_bib166) 2023; 145 Scaranti (10.1016/j.apsb.2023.09.003_bib175) 2020; 17 Oleinik (10.1016/j.apsb.2023.09.003_bib167) 1981 Smalley (10.1016/j.apsb.2023.09.003_bib106) 2020; 56 Nowak (10.1016/j.apsb.2023.09.003_bib86) 2018; 14 Hines (10.1016/j.apsb.2023.09.003_bib123) 2019; 79 Reynders (10.1016/j.apsb.2023.09.003_bib162) 2020; 6 Zaccara (10.1016/j.apsb.2023.09.003_bib45) 2019; 20 He (10.1016/j.apsb.2023.09.003_bib70) 2011; 108 Dragovich (10.1016/j.apsb.2023.09.003_bib170) 2021; 64 Wu (10.1016/j.apsb.2023.09.003_bib36) 2022; 12 Darwish (10.1016/j.apsb.2023.09.003_bib103) 2022; 23 Cross (10.1016/j.apsb.2023.09.003_bib107) 2022; 13 Li (10.1016/j.apsb.2023.09.003_bib83) 2019; 575 Xue (10.1016/j.apsb.2023.09.003_bib160) 2019; 141 Tsukada (10.1016/j.apsb.2023.09.003_bib155) 2006; 439 Zhao (10.1016/j.apsb.2023.09.003_bib71) 2016; 26 Peng (10.1016/j.apsb.2023.09.003_bib94) 2023; 38 Yang (10.1016/j.apsb.2023.09.003_bib101) 2020; 11 Huang (10.1016/j.apsb.2023.09.003_bib147) 2018; 25 Eagen (10.1016/j.apsb.2023.09.003_bib64) 2021; 40 Petrich (10.1016/j.apsb.2023.09.003_bib109) 2016; 57 Luo (10.1016/j.apsb.2023.09.003_bib181) 2021; 28 Yan (10.1016/j.apsb.2023.09.003_bib125) 2023; 254 10.1016/j.apsb.2023.09.003_bib74 Guo (10.1016/j.apsb.2023.09.003_bib84) 2022; 13 Li (10.1016/j.apsb.2023.09.003_bib184) 2023; 14 10.1016/j.apsb.2023.09.003_bib75 Steinebach (10.1016/j.apsb.2023.09.003_bib149) 2020; 11 Nemec (10.1016/j.apsb.2023.09.003_bib179) 2022; 51 Peng (10.1016/j.apsb.2023.09.003_bib9) 2020; 208 Yang (10.1016/j.apsb.2023.09.003_bib82) 2022; 12 Sabnis (10.1016/j.apsb.2023.09.003_bib132) 2021; 12 Vogelmann (10.1016/j.apsb.2023.09.003_bib31) 2020; 57 Sabnis (10.1016/j.apsb.2023.09.003_bib131) 2022; 13 Spradlin (10.1016/j.apsb.2023.09.003_bib180) 2019; 15 Jeltsch (10.1016/j.apsb.2023.09.003_bib49) 2021; 433 Dawson (10.1016/j.apsb.2023.09.003_bib6) 2012; 150 Schiedel (10.1016/j.apsb.2023.09.003_bib26) 2020; 21 Guenette (10.1016/j.apsb.2023.09.003_bib73) 2022; 51 Chotitumnavee (10.1016/j.apsb.2023.09.003_bib102) 2022; 58 Zhang (10.1016/j.apsb.2023.09.003_bib7) 2021; 12 Pulya (10.1016/j.apsb.2023.09.003_bib92) 2021; 163 Stathis (10.1016/j.apsb.2023.09.003_bib63) 2018; 8 Yang (10.1016/j.apsb.2023.09.003_bib24) 2018; 28 Morgan (10.1016/j.apsb.2023.09.003_bib50) 2020; 52 Lv (10.1016/j.apsb.2023.09.003_bib16) 2020; 9 Mi (10.1016/j.apsb.2023.09.003_bib69) 2017; 8 Kolakowski (10.1016/j.apsb.2023.09.003_bib172) 2016; 55 Menon (10.1016/j.apsb.2023.09.003_bib152) 2015; 35 Su (10.1016/j.apsb.2023.09.003_bib19) 2020; 119 Zeng (10.1016/j.apsb.2023.09.003_bib134) 2022; 238 Li (10.1016/j.apsb.2023.09.003_bib62) 2019; 9 Macabuag (10.1016/j.apsb.2023.09.003_bib91) 2022; 65 Huang (10.1016/j.apsb.2023.09.003_bib113) 2020; 188 Huang (10.1016/j.apsb.2023.09.003_bib188) 2022; 33 Ding (10.1016/j.apsb.2023.09.003_bib126) 2023; 78 Bekes (10.1016/j.apsb.2023.09.003_bib34) 2022; 21 Sinatra (10.1016/j.apsb.2023.09.003_bib112) 2020; 59 Zhou (10.1016/j.apsb.2023.09.003_bib173) 2017; 16 Zoppi (10.1016/j.apsb.2023.09.003_bib128) 2019; 62 Perlman (10.1016/j.apsb.2023.09.003_bib142) 2015; 6 Pfaff (10.1016/j.apsb.2023.09.003_bib163) 2019; 5 Xiao (10.1016/j.apsb.2023.09.003_bib87) 2020; 56 Pillow (10.1016/j.apsb.2023.09.003_bib171) 2020; 15 Imaide (10.1016/j.apsb.2023.09.003_bib187) 2021; 17 Yang (10.1016/j.apsb.2023.09.003_bib98) 2020; 27 Bannister (10.1016/j.apsb.2023.09.003_bib61) 2011; 21 Hu (10.1016/j.apsb.2023.09.003_bib65) 2022; 13 Erb (10.1016/j.apsb.2023.09.003_bib66) 2017; 543 Bai (10.1016/j.apsb.2023.09.003_bib81) 2019; 36 Wu (10.1016/j.apsb.2023.09.003_bib97) 2019; 62 Liu (10.1016/j.apsb.2023.09.003_bib177) 2021; 143 Burke (10.1016/j.apsb.2023.09.003_bib110) 2022; 10 Liu (10.1016/j.apsb.2023.09.003_bib85) 2016; 59 Jiang (10.1016/j.apsb.2023.09.003_bib122) 2020; 28 Smith (10.1016/j.apsb.2023.09.003_bib79) 2019; 21 Potjewyd (10.1016/j.apsb.2023.09.003_bib139) 2020; 27 Dragovich (10.1016/j.apsb.2023.09.003_bib169) 2021; 64 Slamon (10.1016/j.apsb.2023.09.003_bib38) 2021; 32 Zhou (10.1016/j.apsb.2023.09.003_bib127) 2020; 11 Lu (10.1016/j.apsb.2023.09.003_bib21) 2015; 22 Xiong (10.1016/j.apsb.2023.09.003_bib146) 2021; 28 Hanahan (10.1016/j.apsb.2023.09.003_bib5) 2022; 12 King (10.1016/j.apsb.2023.09.003_bib185) 2023; 30 Domostegui (10.1016/j.apsb.2023.09.003_bib35) 2022; 51 Qiu (10.1016/j.apsb.2023.09.003_bib118) 2019; 21 Weisberg (10.1016/j.apsb.2023.09.003_bib130) 2022; 12 Qi (10.1016/j.apsb.2023.09.003_bib76) 2021; 12 Margueron (10.1016/j.apsb.2023.09.003_bib58) 2011; 469 Jin (10.1016/j.apsb.2023.09.003_bib20) 2014; 54 Burslem (10.1016/j.apsb.2023.09.003_bib37) 2020; 181 Harvey (10.1016/j.apsb.2023.09.003_bib1) 2018; 69 Ghoshal (10.1016/j.apsb.2023.09.003_bib114) 2016; 26 Chen (10.1016/j.apsb.2023.09.003_bib12) 2019; 9 Bolden (10.1016/j.apsb.2023.09.003_bib150) 2014; 8 Ling (10.1016/j.apsb.2023.09.003_bib2) 2019; 29 Donovan (10.1016/j.apsb.2023.09.003_bib148) 2020; 183 10.1016/j.apsb.2023.09.003_bib28 Hescheler (10.1016/j.apsb.2023.09.003_bib27) 2022; 14 Ma (10.1016/j.apsb.2023.09.003_bib44) 2020; 16 Tomaselli (10.1016/j.apsb.2023.09.003_bib30) 2020; 207 Wang (10.1016/j.apsb.2023.09.003_bib137) 2022; 238 Wang (10.1016/j.apsb.2023.09.003_bib14) 2020; 10 Klein (10.1016/j.apsb.2023.09.003_bib68) 2018; 46 Sharda (10.1016/j.apsb.2023.09.003_bib51) 2020; 12 Cao (10.1016/j.apsb.2023.09.003_bib88) 2020; 208 Wang (10.1016/j.apsb.2023.09.003_bib158) 2021; 17 Dong (10.1016/j.apsb.2023.09.003_bib41) 2021; 64 Wu (10.1016/j.apsb.2023.09.003_bib93) 2022; 12 Husmann (10.1016/j.apsb.2023.09.003_bib56) 2019; 26 Kim (10.1016/j.apsb.2023.09.003_bib59) 2016; 22 LoPresti (10.1016/j.apsb.2023.09.003_bib153) 2020; 10 Roatsch (10.1016/j.apsb.2023.09.003_bib108) 2020; 40 Yang (10.1016/j.apsb.2023.09.003_bib99) 2019; 55 Dale (10.1016/j.apsb.2023.09.003_bib15) 2021; 21 Zhang (10.1016/j.apsb.2023.09.003_bib154) 2020; 1253 Peng (10.1016/j.apsb.2023.09.003_bib95) 2022; 65 Morschhauser (10.1016/j.apsb.2023.09.003_bib10) 2020; 21 Pike (10.1016/j.apsb.2023.09.003_bib157) 2020; 25 Gadd (10.1016/j.apsb.2023.09.003_bib23) 2017; 13 Hsu (10.1016/j.apsb.2023.09.003_bib25) 2020; 27 Paiva (10.1016/j.apsb.2023.09.003_bib39) 2019; 50 Huang (10.1016/j.apsb.2023.09.003_bib105) 2023; 66 Hughes (10.1016/j.apsb.2023.09.003_bib145) 2021; 26 Dale (10.1016/j.apsb.2023.09.003_bib138) 2022; 5 Kong (10.1016/j.apsb.2023.09.003_bib89) 2018; 10 Sun (10.1016/j.apsb.2023.09.003_bib104) 2022; 239 Duan (10.1016/j.apsb.2023.09.003_bib133) 2020; 13 Neklesa (10.1016/j.apsb.2023.09.003_bib43) 2011; 7 Wan (10.1016/j.apsb.2023.09.003_bib72) 2020; 577 Winter (10.1016/j.apsb.2023.09.003_bib120) 2015; 348 Numasawa (10.1016/j.apsb.2023.09.003_bib176) 2020; 59 Winter (10.1016/j.apsb.2023.09.003_bib115) 2017; 67 Raina (10.1016/j.apsb.2023.09.003_bib22) 2016; 113 Sinatra (10.1016/j.apsb.2023.09.003_bib96) 2022; 65 Petroni (10.1016/j.apsb.2023.09.003_bib165) 2022; 19 Liu (10.1016/j.apsb.2023.09.003_bib135) 2021; 64 Andrews (10.1016/j.apsb.2023.09.003_bib67) 2016; 12 |
References_xml | – volume: 9 year: 2020 ident: bib16 article-title: Discovery of a molecular glue promoting CDK12‒DDB1 interaction to trigger cyclin K degradation publication-title: Elife – volume: 17 start-page: 55 year: 2022 end-page: 69 ident: bib32 article-title: Strategies for targeting undruggable targets publication-title: Expet Opin Drug Discov – volume: 21 start-page: 181 year: 2022 end-page: 200 ident: bib34 article-title: PROTAC targeted protein degraders: the past is prologue publication-title: Nat Rev Drug Discov – volume: 59 start-page: 8134 year: 2016 end-page: 8140 ident: bib85 article-title: Fulvestrant-3 boronic acid (ZB716): an orally bioavailable selective estrogen receptor downregulator (SERD) publication-title: J Med Chem – volume: 143 start-page: 5141 year: 2021 end-page: 5149 ident: bib182 article-title: DCAF11 supports targeted protein degradation by electrophilic Proteolysis-Targeting Chimeras publication-title: J Am Chem Soc – volume: 77 start-page: 2476 year: 2017 end-page: 2487 ident: bib117 article-title: Targeted degradation of BET proteins in triple-negative breast cancer publication-title: Cancer Res – volume: 21 start-page: 184 year: 2022 end-page: 192 ident: bib78 article-title: Overcoming gemcitabine resistance in pancreatic cancer using the BCL-X(L)-specific degrader DT2216 publication-title: Mol Cancer Therapeut – volume: 51 start-page: 7066 year: 2022 end-page: 7114 ident: bib17 article-title: Chemistries of bifunctional PROTAC degraders publication-title: Chem Soc Rev – volume: 56 start-page: 9866 year: 2020 end-page: 9869 ident: bib87 article-title: Discovery of histone deacetylase 3 (HDAC3)-specific PROTACs publication-title: Chem Commun – volume: 51 start-page: 5498 year: 2022 end-page: 5517 ident: bib35 article-title: Chasing molecular glue degraders: screening approaches publication-title: Chem Soc Rev – volume: 28 start-page: 952 year: 2021 end-page: 968 ident: bib178 article-title: The role of reversible and irreversible covalent chemistry in targeted protein degradation publication-title: Cell Chem Biol – volume: 27 start-page: 41 year: 2020 end-page: 46 e17 ident: bib25 article-title: EED-targeted PROTACs degrade EED, EZH2, and SUZ12 in the PRC2 complex publication-title: Cell Chem Biol – volume: 51 start-page: 5740 year: 2022 end-page: 5756 ident: bib73 article-title: Target and tissue selectivity of PROTAC degraders publication-title: Chem Soc Rev – volume: 7 start-page: 402 year: 2022 ident: bib55 article-title: The sirtuin family in health and disease publication-title: Signal Transduct Targeted Ther – volume: 66 start-page: 1186 year: 2023 end-page: 1209 ident: bib105 article-title: Structure-based discovery of selective histone deacetylase 8 degraders with potent anticancer activity publication-title: J Med Chem – volume: 254 year: 2023 ident: bib125 article-title: Selective degradation of cellular BRD3 and BRD4-L promoted by PROTAC molecules in six cancer cell lines publication-title: Eur J Med Chem – reference: Cg N. Compounds for targeted degradation of BRD9. WO20211789320A1. – volume: 16 start-page: 214 year: 2020 end-page: 222 ident: bib44 article-title: Discovery of a first-in-class EZH2 selective degrader publication-title: Nat Chem Biol – volume: 12 start-page: 2658 year: 2022 end-page: 2671 ident: bib82 article-title: A BRD4 PROTAC nanodrug for glioma therapy publication-title: Acta Pharm Sin B – volume: 55 start-page: 14848 year: 2019 end-page: 14851 ident: bib99 article-title: Plasticity in designing PROTACs for selective and potent degradation of HDAC6 publication-title: Chem Commun – volume: 7 start-page: 113 year: 2022 ident: bib13 article-title: Targeted protein degradation: mechanisms, strategies and application publication-title: Signal Transduct Targeted Ther – volume: 12 start-page: 5716 year: 2021 ident: bib7 article-title: SPOP mutation induces DNA methylation publication-title: Nat Commun – volume: 8 start-page: 24 year: 2018 end-page: 36 ident: bib63 article-title: BET proteins as targets for anticancer treatment publication-title: Cancer Discov – volume: 143 start-page: 7380 year: 2021 end-page: 7387 ident: bib177 article-title: Cancer selective target degradation by folate-caged PROTACs publication-title: J Am Chem Soc – volume: 10 start-page: 606 year: 2019 end-page: 609 ident: bib100 article-title: Developing potent PROTACs tools for selective degradation of HDAC6 protein publication-title: Protein Cell – volume: 15 start-page: 41 year: 2022 ident: bib143 article-title: A proteolysis-targeting chimera molecule selectively degrades ENL and inhibits malignant gene expression and tumor growth publication-title: J Hematol Oncol – volume: 64 start-page: 10167 year: 2021 end-page: 10184 ident: bib136 article-title: Design, synthesis, and evaluation of VHL-based EZH2 degraders to enhance therapeutic activity against lymphoma publication-title: J Med Chem – volume: 142 start-page: 2193 year: 2020 end-page: 2197 ident: bib164 article-title: Optical control of small molecule-induced protein degradation publication-title: J Am Chem Soc – volume: 26 start-page: 629 year: 2016 end-page: 632 ident: bib71 article-title: YEATS2 is a selective histone crotonylation reader publication-title: Cell Res – start-page: 30 year: 1981 end-page: 33 ident: bib167 article-title: Cellular immunity indices in myocardial infarct publication-title: Voenno-Med Zh – volume: 11 start-page: 3474 year: 2020 end-page: 3486 ident: bib149 article-title: Systematic exploration of different E3 ubiquitin ligases: an approach towards potent and selective CDK6 degraders publication-title: Chem Sci – volume: 238 year: 2022 ident: bib137 article-title: Discovery of precision targeting EZH2 degraders for triple-negative breast cancer publication-title: Eur J Med Chem – volume: 46 start-page: 421 year: 2018 end-page: 430 ident: bib68 article-title: Yaf9 subunit of the NuA4 and SWR1 complexes targets histone H3K27ac through its YEATS domain publication-title: Nucleic Acids Res – volume: 15 start-page: 2596 year: 2023 ident: bib80 article-title: The evolution of therapies targeting Bruton tyrosine kinase for the treatment of chronic lymphocytic leukaemia: future perspectives publication-title: Cancers – volume: 58 start-page: 4635 year: 2022 end-page: 4638 ident: bib102 article-title: Selective degradation of histone deacetylase 8 mediated by a proteolysis targeting chimera (PROTAC) publication-title: Chem Commun – volume: 13 start-page: 1059 year: 2022 ident: bib65 article-title: Regulation of programmed cell death by Brd4 publication-title: Cell Death Dis – volume: 56 start-page: 23 year: 2016 end-page: 40 ident: bib18 article-title: Drugging undruggable molecular cancer targets publication-title: Annu Rev Pharmacol Toxicol – volume: 62 start-page: 7042 year: 2019 end-page: 7057 ident: bib97 article-title: Development of multifunctional histone deacetylase 6 degraders with potent antimyeloma activity publication-title: J Med Chem – volume: 36 start-page: 498 year: 2019 end-page: 511 e17 ident: bib81 article-title: A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression publication-title: Cancer Cell – volume: 64 start-page: 2534 year: 2021 end-page: 2575 ident: bib170 article-title: Antibody-mediated delivery of chimeric BRD4 degraders. Part 1: exploration of antibody linker, payload loading, and payload molecular properties publication-title: J Med Chem – volume: 31 start-page: 1805 year: 2003 end-page: 1812 ident: bib48 article-title: A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes publication-title: Nucleic Acids Res – volume: 119 start-page: 2116 year: 2020 end-page: 2126 ident: bib19 article-title: Understand the functions of scaffold proteins in cell signaling by a mesoscopic simulation method publication-title: Biophys J – volume: 29 start-page: 1482 year: 2022 end-page: 1504.e7 ident: bib159 article-title: Target protein localization and its impact on PROTAC-mediated degradation publication-title: Cell Chem Biol – volume: 20 start-page: 608 year: 2019 end-page: 624 ident: bib45 article-title: Reading, writing and erasing mRNA methylation publication-title: Nat Rev Mol Cell Biol – volume: 64 start-page: 11774 year: 2021 end-page: 11797 ident: bib60 article-title: Polycomb repressive complex 2 modulation through the development of EZH2‒EED interaction inhibitors and EED binders publication-title: J Med Chem – volume: 16 start-page: 181 year: 2017 end-page: 202 ident: bib173 article-title: Aptamers as targeted therapeutics: current potential and challenges publication-title: Nat Rev Drug Discov – volume: 5 start-page: 1682 year: 2019 end-page: 1690 ident: bib163 article-title: Reversible spatiotemporal control of induced protein degradation by bistable photoPROTACs publication-title: ACS Cent Sci – volume: 22 start-page: 755 year: 2015 end-page: 763 ident: bib21 article-title: Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4 publication-title: Chem Biol – volume: 181 start-page: 102 year: 2020 end-page: 114 ident: bib37 article-title: Proteolysis-targeting chimeras as therapeutics and tools for biological discovery publication-title: Cell – volume: 575 start-page: 203 year: 2019 end-page: 209 ident: bib83 article-title: Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds publication-title: Nature – volume: 12 start-page: 31 year: 2022 end-page: 46 ident: bib5 article-title: Hallmarks of cancer: new dimensions publication-title: Cancer Discov – volume: 238 year: 2022 ident: bib134 article-title: Targeting EZH2 for cancer therapy: from current progress to novel strategies publication-title: Eur J Med Chem – volume: 17 start-page: 349 year: 2020 end-page: 359 ident: bib175 article-title: Exploiting the folate receptor alpha in oncology publication-title: Nat Rev Clin Oncol – volume: 9 start-page: 915 year: 2023 end-page: 926 ident: bib29 article-title: Rational chemical design of molecular glue degraders publication-title: ACS Cent Sci – volume: 56 start-page: 4476 year: 2020 end-page: 4479 ident: bib106 article-title: PROTAC-mediated degradation of class I histone deacetylase enzymes in corepressor complexes publication-title: Chem Commun – volume: 11 start-page: 3335 year: 2021 end-page: 3336 ident: bib33 article-title: Commentary: PROTACs make undruggable targets druggable: challenge and opportunity publication-title: Acta Pharm Sin B – volume: 35 start-page: 8701 year: 2015 end-page: 8717 ident: bib151 article-title: Loss of the neuron-specific F-box protein FBXO41 models an ataxia-like phenotype in mice with neuronal migration defects and degeneration in the cerebellum publication-title: J Neurosci – volume: 23 year: 2022 ident: bib156 article-title: Recent developments in PROTAC-mediated protein degradation: from bench to clinic publication-title: Chembiochem – volume: 40 start-page: 245 year: 2020 ident: bib108 article-title: Proteolysis-targeting chimeras (PROTACs) based on macrocyclic tetrapeptides selectively degrade class I histone deacetylases 1–3 publication-title: Biomo Med Chem – volume: 11 start-page: 1531 year: 2010 end-page: 1534 ident: bib186 article-title: Two-headed PROTAC: an effective new tool for targeted protein degradation publication-title: Chembiochem – volume: 13 start-page: 514 year: 2017 end-page: 521 ident: bib23 article-title: Structural basis of PROTAC cooperative recognition for selective protein degradation publication-title: Nat Chem Biol – volume: 144 start-page: 701 year: 2022 end-page: 708 ident: bib183 article-title: Discovery of a covalent FEM1B recruiter for targeted protein degradation applications publication-title: J Am Chem Soc – volume: 61 start-page: 462 year: 2018 end-page: 481 ident: bib116 article-title: Discovery of a small-molecule degrader of bromodomain and extra-terminal (BET) proteins with picomolar cellular potencies and capable of achieving tumor regression publication-title: J Med Chem – volume: 1253 start-page: 3 year: 2020 end-page: 55 ident: bib154 article-title: Epigenetics in health and disease publication-title: Adv Exp Med Biol – volume: 15 start-page: 17 year: 2020 end-page: 25 ident: bib171 article-title: Antibody conjugation of a chimeric BET degrader enables publication-title: ChemMedChem – volume: 51 start-page: 7971 year: 2022 end-page: 7993 ident: bib179 article-title: PROTAC degraders as chemical probes for studying target biology and target validation publication-title: Chem Soc Rev – volume: 12 year: 2021 ident: bib76 article-title: PROTAC: an effective targeted protein degradation strategy for cancer therapy publication-title: Front Pharmacol – volume: 65 start-page: 16860 year: 2022 end-page: 16878 ident: bib96 article-title: Solid-phase synthesis of cereblon-recruiting selective histone deacetylase 6 degraders (HDAC6 PROTACs) with antileukemic activity publication-title: J Med Chem – volume: 20 start-page: 265 year: 2021 end-page: 286 ident: bib3 article-title: Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease publication-title: Nat Rev Drug Discov – volume: 26 start-page: 880 year: 2019 end-page: 889 ident: bib56 article-title: Histone lysine methyltransferases in biology and disease publication-title: Nat Struct Mol Biol – volume: 30 start-page: 394 year: 2023 end-page: 402.e9 ident: bib185 article-title: Chemoproteomics-enabled discovery of a covalent molecular glue degrader targeting NF-kappaB publication-title: Cell Chem Biol – volume: 207 year: 2020 ident: bib30 article-title: Recent advances in epigenetic proteolysis targeting chimeras (Epi-PROTACs) publication-title: Eur J Med Chem – volume: 25 start-page: 993 year: 2019 end-page: 1009 ident: bib57 article-title: PRMTs and arginine methylation: cancer's best-kept secret? publication-title: Trends Mol Med – volume: 13 start-page: 17 year: 2022 end-page: 18 ident: bib131 article-title: Novel compounds for targeted degradation of BRD9 and their use for treating cancer publication-title: ACS Med Chem Lett – volume: 439 start-page: 811 year: 2006 end-page: 816 ident: bib155 article-title: Histone demethylation by a family of JmjC domain-containing proteins publication-title: Nature – volume: 57 start-page: 8 year: 2020 end-page: 16 ident: bib31 article-title: Proteolysis targeting chimeras (PROTACs) for epigenetics research publication-title: Curr Opin Chem Biol – volume: 21 start-page: 640 year: 2019 end-page: 650 ident: bib79 article-title: U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies publication-title: Nat Cell Biol – volume: 469 start-page: 343 year: 2011 end-page: 349 ident: bib58 article-title: The polycomb complex PRC2 and its mark in life publication-title: Nature – volume: 79 start-page: 251 year: 2019 end-page: 262 ident: bib123 article-title: MDM2-recruiting PROTAC offers superior, synergistic antiproliferative activity publication-title: Cancer Res – volume: 56 start-page: 5738 year: 2017 end-page: 5743 ident: bib129 article-title: Degradation of the BAF complex factor BRD9 by heterobifunctional ligands publication-title: Angew Chem Int Ed Engl – volume: 8 start-page: 1088 year: 2017 ident: bib69 article-title: YEATS2 links histone acetylation to tumorigenesis of non-small cell lung cancer publication-title: Nat Commun – volume: 208 year: 2020 ident: bib9 article-title: Recent progress on HDAC inhibitors with dual targeting capabilities for cancer treatment publication-title: Eur J Med Chem – volume: 150 start-page: 12 year: 2012 end-page: 27 ident: bib6 article-title: Cancer epigenetics: from mechanism to therapy publication-title: Cell – volume: 21 start-page: 1433 year: 2020 end-page: 1442 ident: bib10 article-title: Tazemetostat for patients with relapsed or refractory follicular lymphoma: an open-label, single-arm, multicentre, phase 2 trial publication-title: Lancet Oncol – volume: 6 year: 2020 ident: bib161 article-title: Light-induced control of protein destruction by opto-PROTAC publication-title: Sci Adv – volume: 348 start-page: 1376 year: 2015 end-page: 1381 ident: bib120 article-title: Phthalimide conjugation as a strategy for publication-title: Science – volume: 17 start-page: 1157 year: 2021 end-page: 1167 ident: bib187 article-title: Trivalent PROTACs enhance protein degradation publication-title: Nat Chem Biol – volume: 277 start-page: 8 year: 2009 end-page: 21 ident: bib52 article-title: HDAC family: what are the cancer relevant targets? publication-title: Cancer Lett – volume: 12 start-page: 396 year: 2016 end-page: 398 ident: bib67 article-title: The Taf14 YEATS domain is a reader of histone crotonylation publication-title: Nat Chem Biol – volume: 26 start-page: 2889 year: 2021 end-page: 2897 ident: bib145 article-title: The rise and rise of protein degradation: opportunities and challenges ahead publication-title: Drug Discov Today – volume: 12 start-page: 4287 year: 2022 end-page: 4308 ident: bib93 article-title: Small molecule-based immunomodulators for cancer therapy publication-title: Acta Pharm Sin B – volume: 64 start-page: 2576 year: 2021 end-page: 2607 ident: bib169 article-title: Antibody-mediated delivery of chimeric BRD4 degraders. Part 2: improvement of publication-title: J Med Chem – volume: 64 start-page: 2829 year: 2021 end-page: 2848 ident: bib135 article-title: Design and synthesis of EZH2-based PROTACs to degrade the PRC2 complex for targeting the noncatalytic activity of EZH2 publication-title: J Med Chem – volume: 27 start-page: 47 year: 2020 end-page: 56.e15 ident: bib139 article-title: Degradation of polycomb repressive complex 2 with an EED-targeted bivalent chemical degrader publication-title: Cell Chem Biol – volume: 33 start-page: 142 year: 2022 end-page: 151 ident: bib188 article-title: Design, synthesis, and evaluation of trivalent PROTACs having a functionalization site with controlled orientation publication-title: Bioconjugate Chem – volume: 12 start-page: 110 year: 2022 ident: bib130 article-title: BRD9 degraders as chemosensitizers in acute leukemia and multiple myeloma publication-title: Blood Cancer J – volume: 28 start-page: 1514 year: 2021 end-page: 1527.e4 ident: bib146 article-title: Chemo-proteomics exploration of HDAC degradability by small molecule degraders publication-title: Cell Chem Biol – volume: 78 year: 2023 ident: bib126 article-title: Design, synthesis, and biological evaluation of BRD4 degraders publication-title: Bioorg Med Chem – volume: 543 start-page: 270 year: 2017 end-page: 274 ident: bib66 article-title: Transcription control by the ENL YEATS domain in acute leukaemia publication-title: Nature – volume: 13 start-page: 298 year: 2022 end-page: 303 ident: bib84 article-title: Hydrophobic tagging-induced degradation of PDEdelta in colon cancer cells publication-title: ACS Med Chem Lett – volume: 108 start-page: E636 year: 2011 end-page: E645 ident: bib70 article-title: Human polymerase-associated factor complex (PAFc) connects the super elongation complex (SEC) to RNA polymerase II on chromatin publication-title: Proc Natl Acad Sci U S A – volume: 113 start-page: 7124 year: 2016 end-page: 7129 ident: bib22 article-title: PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer publication-title: Proc Natl Acad Sci U S A – volume: 28 year: 2023 ident: bib77 article-title: Industry perspective on the nonclinical safety assessment of heterobifunctional degraders publication-title: Drug Discov Today – volume: 57 start-page: 1755 year: 2016 end-page: 1765 ident: bib109 article-title: Use of class I histone deacetylase inhibitor romidepsin in combination regimens publication-title: Leuk Lymphoma – volume: 11 start-page: 792 year: 2020 end-page: 808 ident: bib46 article-title: Mapping the epigenetic modifications of DNA and RNA publication-title: Protein Cell – volume: 38 year: 2023 ident: bib94 article-title: Discovery of novel benzohydroxamate-based histone deacetylase 6 (HDAC6) inhibitors with the ability to potentiate anti-PD-L1 immunotherapy in melanoma publication-title: J Enzym Inhib Med Chem – volume: 28 start-page: 2493 year: 2018 end-page: 2497 ident: bib24 article-title: Development of the first small molecule histone deacetylase 6 (HDAC6) degraders publication-title: Bioorg Med Chem Lett – volume: 14 year: 2023 ident: bib184 article-title: Template-assisted covalent modification of DCAF16 underlies activity of BRD4 molecular glue degraders publication-title: bioRxiv – volume: 64 start-page: 10606 year: 2021 end-page: 10620 ident: bib41 article-title: Molecular glues for targeted protein degradation: from serendipity to rational discovery publication-title: J Med Chem – volume: 10 start-page: 1770 year: 2015 end-page: 1777 ident: bib119 article-title: Selective small molecule induced degradation of the BET bromodomain protein BRD4 publication-title: ACS Chem Biol – volume: 433 year: 2021 ident: bib49 article-title: Deep enzymology studies on DNA methyltransferases reveal novel connections between flanking sequences and enzyme activity publication-title: J Mol Biol – volume: 27 start-page: 866 year: 2020 end-page: 876 e8 ident: bib98 article-title: A cell-based target engagement assay for the identification of cereblon E3 ubiquitin ligase ligands and their application in HDAC6 degraders publication-title: Cell Chem Biol – volume: 28 year: 2020 ident: bib122 article-title: Discovery of novel small molecule induced selective degradation of the bromodomain and extra-terminal (BET) bromodomain protein BRD4 and BRD2 with cellular potencies publication-title: Bioorg Med Chem – reference: Trial of ARV-110 in patients with metastatic castration resistant prostate cancer (mCRPC). Available online: – volume: 12 start-page: 4 year: 2020 ident: bib51 article-title: Elevated HDAC activity and altered histone phospho-acetylation confer acquired radio-resistant phenotype to breast cancer cells publication-title: Clin Epigenet – volume: 182 year: 2019 ident: bib124 article-title: Discovery, structural insight, and bioactivities of BY27 as a selective inhibitor of the second bromodomains of BET proteins publication-title: Eur J Med Chem – volume: 69 start-page: 195 year: 2018 end-page: 202 ident: bib1 article-title: Protein-based inheritance: epigenetics beyond the chromosome publication-title: Mol Cell – volume: 15 start-page: 1306 year: 2020 end-page: 1312 ident: bib168 article-title: Antibody‒PROTAC conjugates enable HER2-dependent targeted protein degradation of BRD4 publication-title: ACS Chem Biol – volume: 50 start-page: 111 year: 2019 end-page: 119 ident: bib39 article-title: Targeted protein degradation: elements of PROTAC design publication-title: Curr Opin Chem Biol – volume: 10 year: 2020 ident: bib153 article-title: HDAC6 in diseases of cognition and of neurons publication-title: Cells – volume: 145 start-page: 385 year: 2023 end-page: 391 ident: bib166 article-title: Radiotherapy-triggered proteolysis targeting chimera prodrug activation in tumors publication-title: J Am Chem Soc – volume: 15 start-page: 747 year: 2019 end-page: 755 ident: bib180 article-title: Harnessing the anti-cancer natural product nimbolide for targeted protein degradation publication-title: Nat Chem Biol – volume: 10 start-page: 117 year: 2018 ident: bib89 article-title: HDAC4 in ischemic stroke: mechanisms and therapeutic potential publication-title: Clin Epigenet – volume: 9 start-page: 794 year: 2019 end-page: 808 ident: bib62 article-title: Development of the triazole-fused pyrimidine derivatives as highly potent and reversible inhibitors of histone lysine specific demethylase 1 (LSD1/KDM1A) publication-title: Acta Pharm Sin B – volume: 18 start-page: S92 year: 2019 end-page: S113 ident: bib90 article-title: HDAC4 interactions in Huntington's disease viewed through the prism of multiomics publication-title: Mol Cell Proteomics – volume: 32 start-page: 1015 year: 2021 end-page: 1024 ident: bib38 article-title: Ribociclib plus fulvestrant for postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer in the phase III randomized MONALEESA-3 trial: updated overall survival publication-title: Ann Oncol – volume: 55 start-page: 7948 year: 2016 end-page: 7951 ident: bib172 article-title: The methylene alkoxy carbamate self-immolative unit: utilization for the targeted delivery of alcohol-containing payloads with antibody‒drug conjugates publication-title: Angew Chem Int Ed Engl – volume: 10 year: 2022 ident: bib110 article-title: Overcoming cancer drug resistance utilizing PROTAC technology publication-title: Front Cell Dev Biol – volume: 12 start-page: 1879 year: 2021 end-page: 1880 ident: bib132 article-title: BRD9 bifunctional degraders for treating cancer publication-title: ACS Med Chem Lett – volume: 37 start-page: 153 year: 2018 ident: bib11 article-title: PARP inhibitor veliparib and HDAC inhibitor SAHA synergistically co-target the UHRF1/BRCA1 DNA damage repair complex in prostate cancer cells publication-title: J Exp Clin Cancer Res – volume: 21 start-page: 638 year: 2021 end-page: 654 ident: bib15 article-title: Advancing targeted protein degradation for cancer therapy publication-title: Nat Rev Cancer – volume: 11 start-page: 867 year: 2015 end-page: 880 ident: bib54 article-title: Transcriptional and epigenetic regulation of autophagy in aging publication-title: Autophagy – volume: 14 start-page: 2721 year: 2022 ident: bib27 article-title: Targeted therapy for adrenocortical carcinoma: a genomic-based search for available and emerging options publication-title: Cancers – volume: 62 year: 2023 ident: bib140 article-title: Discovery of norbornene as a novel hydrophobic tag applied in protein degradation publication-title: Angew Chem Int Ed Engl – volume: 23 year: 2022 ident: bib103 article-title: Design, synthesis and biological characterization of histone deacetylase 8 (HDAC8) Proteolysis Targeting Chimeras (PROTACs) with anti-neuroblastoma activity publication-title: Int J Mol Sci – volume: 16 start-page: 1199 year: 2020 end-page: 1207 ident: bib42 article-title: Rational discovery of molecular glue degraders publication-title: Nat Chem Biol – volume: 61 start-page: 482 year: 2018 end-page: 491 ident: bib111 article-title: Chemically induced degradation of sirtuin 2 (Sirt2) by a proteolysis targeting chimera (PROTAC) based on sirtuin rearranging ligands (SirReals) publication-title: J Med Chem – volume: 10 start-page: 207 year: 2020 end-page: 238 ident: bib14 article-title: Degradation of proteins by PROTACs and other strategies publication-title: Acta Pharm Sin B – volume: 13 start-page: 50 year: 2020 ident: bib40 article-title: Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy publication-title: J Hematol Oncol – volume: 7 start-page: 538 year: 2011 end-page: 543 ident: bib43 article-title: Small-molecule hydrophobic tagging-induced degradation of HaloTag fusion proteins publication-title: Nat Chem Biol – volume: 370 start-page: 737 year: 2003 end-page: 749 ident: bib53 article-title: Histone deacetylases (HDACs): characterization of the classical HDAC family publication-title: Biochem J – reference: A Phase 1/2 trial of ARV-471 alone and in combination with Palbociclib (IBRANCE®) in patients with ER+/HER2‒ locally advanced or metastatic breast cancer (mBC). Available online: – volume: 59 start-page: 6015 year: 2020 end-page: 6020 ident: bib176 article-title: A fluorescent probe for rapid, high-contrast visualization of folate-receptor-expressing tumors publication-title: Angew Chem Int Ed Engl – volume: 25 start-page: 88 year: 2018 end-page: 99.e6 ident: bib147 article-title: A chemoproteomic approach to 1uery the degradable kinome using a multi-kinase degrader publication-title: Cell Chem Biol – volume: 13 start-page: 104 year: 2020 ident: bib133 article-title: EZH2: a novel target for cancer treatment publication-title: J Hematol Oncol – volume: 65 start-page: 2434 year: 2022 end-page: 2457 ident: bib95 article-title: Discovery of novel histone deacetylase 6 (HDAC6) inhibitors with enhanced antitumor immunity of anti-PD-L1 immunotherapy in melanoma publication-title: J Med Chem – volume: 13 start-page: 1634 year: 2022 end-page: 1639 ident: bib107 article-title: A 'click' chemistry approach to novel entinostat (MS-275) based class I histone deacetylase proteolysis targeting chimeras publication-title: RSC Med Chem – volume: 25 start-page: 78 year: 2018 end-page: 87.e5 ident: bib144 article-title: Lessons in PROTAC design from selective degradation with a promiscuous warhead publication-title: Cell Chem Biol – volume: 11 start-page: 2639 year: 2020 ident: bib127 article-title: The bromodomain containing protein BRD-9 orchestrates RAD51‒RAD54 complex formation and regulates homologous recombination-mediated repair publication-title: Nat Commun – volume: 40 start-page: 1396 year: 2021 end-page: 1408 ident: bib64 article-title: Supercharging BRD4 with NUT in carcinoma publication-title: Oncogene – volume: 6 year: 2020 ident: bib162 article-title: PHOTACs enable optical control of protein degradation publication-title: Sci Adv – volume: 26 start-page: 505 year: 2016 end-page: 522 ident: bib114 article-title: BET inhibitors in cancer therapeutics: a patent review publication-title: Expert Opin Ther Pat – volume: 208 year: 2020 ident: bib88 article-title: Induced protein degradation of histone deacetylases 3 (HDAC3) by proteolysis targeting chimera (PROTAC) publication-title: Eur J Med Chem – volume: 35 start-page: 698 year: 2015 end-page: 712 ident: bib152 article-title: The E3 ubiquitin ligase TRIM9 is a filopodia off switch required for netrin-dependent axon guidance publication-title: Dev Cell – volume: 9 start-page: 937 year: 2019 end-page: 951 ident: bib12 article-title: Synergistic antitumor activity of artesunate and HDAC inhibitors through elevating heme synthesis publication-title: Acta Pharm Sin B – volume: 52 start-page: 1271 year: 2020 end-page: 1281 ident: bib50 article-title: Reevaluating the roles of histone-modifying enzymes and their associated chromatin modifications in transcriptional regulation publication-title: Nat Genet – volume: 403 start-page: 41 year: 2000 end-page: 45 ident: bib47 article-title: The language of covalent histone modifications publication-title: Nature – volume: 12 start-page: 838 year: 2022 end-page: 852 ident: bib8 article-title: Histone deacetylase inhibitors inhibit cervical cancer growth through Parkin acetylation-mediated mitophagy publication-title: Acta Pharm Sin B – volume: 7 start-page: 815 year: 2021 end-page: 830 ident: bib141 article-title: Chemical inhibition of ENL/AF9 YEATS domains in acute leukemia publication-title: ACS Cent Sci – volume: 11 start-page: 575 year: 2020 end-page: 581 ident: bib101 article-title: Development of selective histone deacetylase 6 (HDAC6) degraders recruiting Von Hippel-Lindau (VHL) E3 ubiquitin ligase publication-title: ACS Med Chem Lett – volume: 54 start-page: 435 year: 2014 end-page: 456 ident: bib20 article-title: Targeting protein‒protein interaction by small molecules publication-title: Annu Rev Pharmacol Toxicol – volume: 29 start-page: 1028 year: 2019 end-page: 1044 ident: bib2 article-title: Epigenetics in human obesity and type 2 diabetes publication-title: Cell Metabol – volume: 577 start-page: 121 year: 2020 end-page: 126 ident: bib72 article-title: Impaired cell fate through gain-of-function mutations in a chromatin reader publication-title: Nature – volume: 5 start-page: 491 year: 2022 end-page: 507 ident: bib138 article-title: Targeting triple-negative breast cancer by a novel proteolysis targeting chimera degrader of enhancer of Zeste Homolog 2 publication-title: ACS Pharmacol Transl Sci – volume: 59 start-page: 22494 year: 2020 end-page: 22499 ident: bib112 article-title: Hydroxamic acids immobilized on resins (HAIRs): synthesis of dual-targeting HDAC inhibitors and HDAC degraders (PROTACs) publication-title: Angew Chem Int Ed Engl – volume: 183 start-page: 1714 year: 2020 end-page: 1731.e10 ident: bib148 article-title: Mapping the degradable kinome provides a resource for expedited degrader development publication-title: Cell – volume: 59 start-page: 1727 year: 2020 end-page: 1734 ident: bib121 article-title: Structure-based design of a macrocyclic PROTAC publication-title: Angew Chem Int Ed Engl – reference: .. – volume: 60 start-page: 23299 year: 2021 end-page: 23305 ident: bib174 article-title: Aptamer-PROTAC Conjugates (APCs) for tumor-specific targeting in breast cancer publication-title: Angew Chem Int Ed Engl – volume: 188 year: 2020 ident: bib113 article-title: A 18 publication-title: Eur J Med Chem – volume: 19 start-page: 114 year: 2022 end-page: 131 ident: bib165 article-title: Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer publication-title: Nat Rev Clin Oncol – volume: 21 start-page: 381 year: 2011 end-page: 395 ident: bib61 article-title: Regulation of chromatin by histone modifications publication-title: Cell Res – volume: 8 start-page: 1919 year: 2014 end-page: 1929 ident: bib150 article-title: Inducible publication-title: Cell Rep – volume: 12 start-page: 3548 year: 2022 end-page: 3566 ident: bib36 article-title: Molecular glues modulate protein functions by inducing protein aggregation: a promising therapeutic strategy of small molecules for disease treatment publication-title: Acta Pharm Sin B – volume: 25 start-page: 1793 year: 2020 end-page: 1800 ident: bib157 article-title: Optimising proteolysis-targeting chimeras (PROTACs) for oral drug delivery: a drug metabolism and pharmacokinetics perspective publication-title: Drug Discov Today – volume: 163 year: 2021 ident: bib92 article-title: HDAC6 as privileged target in drug discovery: a perspective publication-title: Pharmacol Res – volume: 6 year: 2015 ident: bib142 article-title: MLLT1 YEATS domain mutations in clinically distinctive Favourable Histology Wilms tumours publication-title: Nat Commun – volume: 14 start-page: 706 year: 2018 end-page: 714 ident: bib86 article-title: Plasticity in binding confers selectivity in ligand-induced protein degradation publication-title: Nat Chem Biol – volume: 22 start-page: 128 year: 2016 end-page: 134 ident: bib59 article-title: Targeting EZH2 in cancer publication-title: Nat Med – volume: 67 start-page: 5 year: 2017 end-page: 18.e19 ident: bib115 article-title: BET bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment publication-title: Mol Cell – volume: 21 start-page: 3371 year: 2020 end-page: 3376 ident: bib26 article-title: HaloTag-targeted sirtuin-rearranging ligand (SirReal) for the development of proteolysis-targeting chimeras (PROTACs) against the lysine deacetylase sirtuin 2 (Sirt2) publication-title: Chembiochem – volume: 21 start-page: 3838 year: 2019 end-page: 3841 ident: bib118 article-title: Chemoselective synthesis of lenalidomide-based PROTAC library using alkylation reaction publication-title: Org Lett – volume: 65 start-page: 12445 year: 2022 end-page: 12459 ident: bib91 article-title: Developing HDAC4-selective protein degraders to investigate the role of HDAC4 in Huntington's disease pathology publication-title: J Med Chem – volume: 141 start-page: 18370 year: 2019 end-page: 18374 ident: bib160 article-title: Light-induced protein degradation with photocaged PROTACs publication-title: J Am Chem Soc – volume: 62 start-page: 699 year: 2019 end-page: 726 ident: bib128 article-title: Iterative design and optimization of initially inactive Proteolysis Targeting Chimeras (PROTACs) identify VZ185 as a potent, fast, and selective von Hippel-Lindau (VHL) based dual degrader probe of BRD9 and BRD7 publication-title: J Med Chem – volume: 16 start-page: 29 year: 2017 ident: bib4 article-title: Epigenetics in cancer stem cells publication-title: Mol Cancer – volume: 239 year: 2022 ident: bib104 article-title: Discovery of pomalidomide-based PROTACs for selective degradation of histone deacetylase 8 publication-title: Eur J Med Chem – volume: 17 start-page: 567 year: 2021 end-page: 575 ident: bib158 article-title: Discovery of a first-in-class CDK2 selective degrader for AML differentiation therapy publication-title: Nat Chem Biol – volume: 28 start-page: 559 year: 2021 end-page: 566.e15 ident: bib181 article-title: Chemoproteomics-enabled discovery of covalent RNF114-based degraders that mimic natural product function publication-title: Cell Chem Biol – volume: 141 start-page: 18370 year: 2019 ident: 10.1016/j.apsb.2023.09.003_bib160 article-title: Light-induced protein degradation with photocaged PROTACs publication-title: J Am Chem Soc doi: 10.1021/jacs.9b06422 – volume: 12 start-page: 4287 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib93 article-title: Small molecule-based immunomodulators for cancer therapy publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2022.11.007 – volume: 61 start-page: 462 year: 2018 ident: 10.1016/j.apsb.2023.09.003_bib116 article-title: Discovery of a small-molecule degrader of bromodomain and extra-terminal (BET) proteins with picomolar cellular potencies and capable of achieving tumor regression publication-title: J Med Chem doi: 10.1021/acs.jmedchem.6b01816 – volume: 56 start-page: 4476 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib106 article-title: PROTAC-mediated degradation of class I histone deacetylase enzymes in corepressor complexes publication-title: Chem Commun doi: 10.1039/D0CC01485K – volume: 50 start-page: 111 year: 2019 ident: 10.1016/j.apsb.2023.09.003_bib39 article-title: Targeted protein degradation: elements of PROTAC design publication-title: Curr Opin Chem Biol doi: 10.1016/j.cbpa.2019.02.022 – volume: 11 start-page: 792 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib46 article-title: Mapping the epigenetic modifications of DNA and RNA publication-title: Protein Cell doi: 10.1007/s13238-020-00733-7 – volume: 23 start-page: 7535 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib103 article-title: Design, synthesis and biological characterization of histone deacetylase 8 (HDAC8) Proteolysis Targeting Chimeras (PROTACs) with anti-neuroblastoma activity publication-title: Int J Mol Sci doi: 10.3390/ijms23147535 – volume: 21 start-page: 181 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib34 article-title: PROTAC targeted protein degraders: the past is prologue publication-title: Nat Rev Drug Discov doi: 10.1038/s41573-021-00371-6 – volume: 26 start-page: 505 year: 2016 ident: 10.1016/j.apsb.2023.09.003_bib114 article-title: BET inhibitors in cancer therapeutics: a patent review publication-title: Expert Opin Ther Pat doi: 10.1517/13543776.2016.1159299 – volume: 12 start-page: 31 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib5 article-title: Hallmarks of cancer: new dimensions publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-21-1059 – volume: 35 start-page: 698 year: 2015 ident: 10.1016/j.apsb.2023.09.003_bib152 article-title: The E3 ubiquitin ligase TRIM9 is a filopodia off switch required for netrin-dependent axon guidance publication-title: Dev Cell doi: 10.1016/j.devcel.2015.11.022 – volume: 25 start-page: 1793 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib157 article-title: Optimising proteolysis-targeting chimeras (PROTACs) for oral drug delivery: a drug metabolism and pharmacokinetics perspective publication-title: Drug Discov Today doi: 10.1016/j.drudis.2020.07.013 – volume: 5 start-page: 1682 year: 2019 ident: 10.1016/j.apsb.2023.09.003_bib163 article-title: Reversible spatiotemporal control of induced protein degradation by bistable photoPROTACs publication-title: ACS Cent Sci doi: 10.1021/acscentsci.9b00713 – volume: 145 start-page: 385 year: 2023 ident: 10.1016/j.apsb.2023.09.003_bib166 article-title: Radiotherapy-triggered proteolysis targeting chimera prodrug activation in tumors publication-title: J Am Chem Soc doi: 10.1021/jacs.2c10177 – volume: 14 start-page: 706 year: 2018 ident: 10.1016/j.apsb.2023.09.003_bib86 article-title: Plasticity in binding confers selectivity in ligand-induced protein degradation publication-title: Nat Chem Biol doi: 10.1038/s41589-018-0055-y – volume: 21 start-page: 3371 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib26 article-title: HaloTag-targeted sirtuin-rearranging ligand (SirReal) for the development of proteolysis-targeting chimeras (PROTACs) against the lysine deacetylase sirtuin 2 (Sirt2) publication-title: Chembiochem doi: 10.1002/cbic.202000351 – volume: 56 start-page: 9866 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib87 article-title: Discovery of histone deacetylase 3 (HDAC3)-specific PROTACs publication-title: Chem Commun doi: 10.1039/D0CC03243C – volume: 10 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib110 article-title: Overcoming cancer drug resistance utilizing PROTAC technology publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2022.872729 – volume: 12 start-page: 5716 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib7 article-title: SPOP mutation induces DNA methylation via stabilizing GLP/G9a publication-title: Nat Commun doi: 10.1038/s41467-021-25951-3 – volume: 56 start-page: 5738 year: 2017 ident: 10.1016/j.apsb.2023.09.003_bib129 article-title: Degradation of the BAF complex factor BRD9 by heterobifunctional ligands publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201611281 – volume: 12 start-page: 1879 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib132 article-title: BRD9 bifunctional degraders for treating cancer publication-title: ACS Med Chem Lett doi: 10.1021/acsmedchemlett.1c00580 – volume: 577 start-page: 121 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib72 article-title: Impaired cell fate through gain-of-function mutations in a chromatin reader publication-title: Nature doi: 10.1038/s41586-019-1842-7 – volume: 9 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib16 article-title: Discovery of a molecular glue promoting CDK12‒DDB1 interaction to trigger cyclin K degradation publication-title: Elife doi: 10.7554/eLife.59994 – volume: 20 start-page: 608 year: 2019 ident: 10.1016/j.apsb.2023.09.003_bib45 article-title: Reading, writing and erasing mRNA methylation publication-title: Nat Rev Mol Cell Biol doi: 10.1038/s41580-019-0168-5 – volume: 51 start-page: 5740 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib73 article-title: Target and tissue selectivity of PROTAC degraders publication-title: Chem Soc Rev doi: 10.1039/D2CS00200K – volume: 10 start-page: 12 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib153 article-title: HDAC6 in diseases of cognition and of neurons publication-title: Cells doi: 10.3390/cells10010012 – volume: 403 start-page: 41 year: 2000 ident: 10.1016/j.apsb.2023.09.003_bib47 article-title: The language of covalent histone modifications publication-title: Nature doi: 10.1038/47412 – volume: 36 start-page: 498 year: 2019 ident: 10.1016/j.apsb.2023.09.003_bib81 article-title: A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo publication-title: Cancer Cell doi: 10.1016/j.ccell.2019.10.002 – volume: 59 start-page: 6015 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib176 article-title: A fluorescent probe for rapid, high-contrast visualization of folate-receptor-expressing tumors in vivo publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201914826 – volume: 51 start-page: 7066 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib17 article-title: Chemistries of bifunctional PROTAC degraders publication-title: Chem Soc Rev doi: 10.1039/D2CS00220E – volume: 13 start-page: 1634 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib107 article-title: A 'click' chemistry approach to novel entinostat (MS-275) based class I histone deacetylase proteolysis targeting chimeras publication-title: RSC Med Chem doi: 10.1039/D2MD00199C – volume: 40 start-page: 245 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib108 article-title: Proteolysis-targeting chimeras (PROTACs) based on macrocyclic tetrapeptides selectively degrade class I histone deacetylases 1–3 publication-title: Biomo Med Chem – volume: 142 start-page: 2193 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib164 article-title: Optical control of small molecule-induced protein degradation publication-title: J Am Chem Soc doi: 10.1021/jacs.9b12718 – volume: 469 start-page: 343 year: 2011 ident: 10.1016/j.apsb.2023.09.003_bib58 article-title: The polycomb complex PRC2 and its mark in life publication-title: Nature doi: 10.1038/nature09784 – volume: 18 start-page: S92 year: 2019 ident: 10.1016/j.apsb.2023.09.003_bib90 article-title: HDAC4 interactions in Huntington's disease viewed through the prism of multiomics publication-title: Mol Cell Proteomics doi: 10.1074/mcp.RA118.001253 – volume: 32 start-page: 1015 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib38 article-title: Ribociclib plus fulvestrant for postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer in the phase III randomized MONALEESA-3 trial: updated overall survival publication-title: Ann Oncol doi: 10.1016/j.annonc.2021.05.353 – volume: 22 start-page: 755 year: 2015 ident: 10.1016/j.apsb.2023.09.003_bib21 article-title: Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4 publication-title: Chem Biol doi: 10.1016/j.chembiol.2015.05.009 – volume: 7 start-page: 113 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib13 article-title: Targeted protein degradation: mechanisms, strategies and application publication-title: Signal Transduct Targeted Ther doi: 10.1038/s41392-022-00966-4 – volume: 13 start-page: 50 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib40 article-title: Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy publication-title: J Hematol Oncol doi: 10.1186/s13045-020-00885-3 – volume: 30 start-page: 394 year: 2023 ident: 10.1016/j.apsb.2023.09.003_bib185 article-title: Chemoproteomics-enabled discovery of a covalent molecular glue degrader targeting NF-kappaB publication-title: Cell Chem Biol doi: 10.1016/j.chembiol.2023.02.008 – volume: 8 start-page: 24 year: 2018 ident: 10.1016/j.apsb.2023.09.003_bib63 article-title: BET proteins as targets for anticancer treatment publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-17-0605 – volume: 182 year: 2019 ident: 10.1016/j.apsb.2023.09.003_bib124 article-title: Discovery, structural insight, and bioactivities of BY27 as a selective inhibitor of the second bromodomains of BET proteins publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2019.111633 – volume: 26 start-page: 2889 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib145 article-title: The rise and rise of protein degradation: opportunities and challenges ahead publication-title: Drug Discov Today doi: 10.1016/j.drudis.2021.08.006 – volume: 1253 start-page: 3 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib154 article-title: Epigenetics in health and disease publication-title: Adv Exp Med Biol doi: 10.1007/978-981-15-3449-2_1 – volume: 51 start-page: 5498 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib35 article-title: Chasing molecular glue degraders: screening approaches publication-title: Chem Soc Rev doi: 10.1039/D2CS00197G – volume: 208 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib88 article-title: Induced protein degradation of histone deacetylases 3 (HDAC3) by proteolysis targeting chimera (PROTAC) publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2020.112800 – volume: 14 start-page: 2721 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib27 article-title: Targeted therapy for adrenocortical carcinoma: a genomic-based search for available and emerging options publication-title: Cancers doi: 10.3390/cancers14112721 – volume: 56 start-page: 23 year: 2016 ident: 10.1016/j.apsb.2023.09.003_bib18 article-title: Drugging undruggable molecular cancer targets publication-title: Annu Rev Pharmacol Toxicol doi: 10.1146/annurev-pharmtox-010715-103440 – volume: 64 start-page: 2829 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib135 article-title: Design and synthesis of EZH2-based PROTACs to degrade the PRC2 complex for targeting the noncatalytic activity of EZH2 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.0c02234 – volume: 28 start-page: 559 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib181 article-title: Chemoproteomics-enabled discovery of covalent RNF114-based degraders that mimic natural product function publication-title: Cell Chem Biol doi: 10.1016/j.chembiol.2021.01.005 – volume: 64 start-page: 2576 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib169 article-title: Antibody-mediated delivery of chimeric BRD4 degraders. Part 2: improvement of in vitro antiproliferation activity and in vivo antitumor efficacy publication-title: J Med Chem doi: 10.1021/acs.jmedchem.0c01846 – volume: 543 start-page: 270 year: 2017 ident: 10.1016/j.apsb.2023.09.003_bib66 article-title: Transcription control by the ENL YEATS domain in acute leukaemia publication-title: Nature doi: 10.1038/nature21688 – volume: 23 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib156 article-title: Recent developments in PROTAC-mediated protein degradation: from bench to clinic publication-title: Chembiochem doi: 10.1002/cbic.202100270 – volume: 28 start-page: 952 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib178 article-title: The role of reversible and irreversible covalent chemistry in targeted protein degradation publication-title: Cell Chem Biol doi: 10.1016/j.chembiol.2021.03.005 – volume: 12 start-page: 838 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib8 article-title: Histone deacetylase inhibitors inhibit cervical cancer growth through Parkin acetylation-mediated mitophagy publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2021.07.003 – volume: 113 start-page: 7124 year: 2016 ident: 10.1016/j.apsb.2023.09.003_bib22 article-title: PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1521738113 – volume: 33 start-page: 142 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib188 article-title: Design, synthesis, and evaluation of trivalent PROTACs having a functionalization site with controlled orientation publication-title: Bioconjugate Chem doi: 10.1021/acs.bioconjchem.1c00490 – volume: 181 start-page: 102 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib37 article-title: Proteolysis-targeting chimeras as therapeutics and tools for biological discovery publication-title: Cell doi: 10.1016/j.cell.2019.11.031 – volume: 12 start-page: 110 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib130 article-title: BRD9 degraders as chemosensitizers in acute leukemia and multiple myeloma publication-title: Blood Cancer J doi: 10.1038/s41408-022-00704-7 – volume: 16 start-page: 214 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib44 article-title: Discovery of a first-in-class EZH2 selective degrader publication-title: Nat Chem Biol doi: 10.1038/s41589-019-0421-4 – volume: 79 start-page: 251 year: 2019 ident: 10.1016/j.apsb.2023.09.003_bib123 article-title: MDM2-recruiting PROTAC offers superior, synergistic antiproliferative activity via simultaneous degradation of BRD4 and stabilization of p53 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-18-2918 – volume: 78 year: 2023 ident: 10.1016/j.apsb.2023.09.003_bib126 article-title: Design, synthesis, and biological evaluation of BRD4 degraders publication-title: Bioorg Med Chem doi: 10.1016/j.bmc.2022.117134 – volume: 60 start-page: 23299 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib174 article-title: Aptamer-PROTAC Conjugates (APCs) for tumor-specific targeting in breast cancer publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.202107347 – volume: 13 start-page: 104 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib133 article-title: EZH2: a novel target for cancer treatment publication-title: J Hematol Oncol doi: 10.1186/s13045-020-00937-8 – volume: 29 start-page: 1482 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib159 article-title: Target protein localization and its impact on PROTAC-mediated degradation publication-title: Cell Chem Biol doi: 10.1016/j.chembiol.2022.08.004 – volume: 6 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib162 article-title: PHOTACs enable optical control of protein degradation publication-title: Sci Adv doi: 10.1126/sciadv.aay5064 – volume: 69 start-page: 195 year: 2018 ident: 10.1016/j.apsb.2023.09.003_bib1 article-title: Protein-based inheritance: epigenetics beyond the chromosome publication-title: Mol Cell doi: 10.1016/j.molcel.2017.10.030 – volume: 28 start-page: 2493 year: 2018 ident: 10.1016/j.apsb.2023.09.003_bib24 article-title: Development of the first small molecule histone deacetylase 6 (HDAC6) degraders publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2018.05.057 – volume: 11 start-page: 575 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib101 article-title: Development of selective histone deacetylase 6 (HDAC6) degraders recruiting Von Hippel-Lindau (VHL) E3 ubiquitin ligase publication-title: ACS Med Chem Lett doi: 10.1021/acsmedchemlett.0c00046 – volume: 10 start-page: 1770 year: 2015 ident: 10.1016/j.apsb.2023.09.003_bib119 article-title: Selective small molecule induced degradation of the BET bromodomain protein BRD4 publication-title: ACS Chem Biol doi: 10.1021/acschembio.5b00216 – volume: 433 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib49 article-title: Deep enzymology studies on DNA methyltransferases reveal novel connections between flanking sequences and enzyme activity publication-title: J Mol Biol doi: 10.1016/j.jmb.2021.167186 – volume: 348 start-page: 1376 year: 2015 ident: 10.1016/j.apsb.2023.09.003_bib120 article-title: Phthalimide conjugation as a strategy for in vivo target protein degradation publication-title: Science doi: 10.1126/science.aab1433 – volume: 64 start-page: 11774 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib60 article-title: Polycomb repressive complex 2 modulation through the development of EZH2‒EED interaction inhibitors and EED binders publication-title: J Med Chem doi: 10.1021/acs.jmedchem.1c00226 – volume: 54 start-page: 435 year: 2014 ident: 10.1016/j.apsb.2023.09.003_bib20 article-title: Targeting protein‒protein interaction by small molecules publication-title: Annu Rev Pharmacol Toxicol doi: 10.1146/annurev-pharmtox-011613-140028 – volume: 28 start-page: 1514 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib146 article-title: Chemo-proteomics exploration of HDAC degradability by small molecule degraders publication-title: Cell Chem Biol doi: 10.1016/j.chembiol.2021.07.002 – volume: 29 start-page: 1028 year: 2019 ident: 10.1016/j.apsb.2023.09.003_bib2 article-title: Epigenetics in human obesity and type 2 diabetes publication-title: Cell Metabol doi: 10.1016/j.cmet.2019.03.009 – volume: 11 start-page: 3335 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib33 article-title: Commentary: PROTACs make undruggable targets druggable: challenge and opportunity publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2021.07.017 – volume: 238 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib137 article-title: Discovery of precision targeting EZH2 degraders for triple-negative breast cancer publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2022.114462 – volume: 64 start-page: 2534 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib170 article-title: Antibody-mediated delivery of chimeric BRD4 degraders. Part 1: exploration of antibody linker, payload loading, and payload molecular properties publication-title: J Med Chem doi: 10.1021/acs.jmedchem.0c01845 – volume: 163 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib92 article-title: HDAC6 as privileged target in drug discovery: a perspective publication-title: Pharmacol Res doi: 10.1016/j.phrs.2020.105274 – volume: 21 start-page: 1433 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib10 article-title: Tazemetostat for patients with relapsed or refractory follicular lymphoma: an open-label, single-arm, multicentre, phase 2 trial publication-title: Lancet Oncol doi: 10.1016/S1470-2045(20)30441-1 – volume: 57 start-page: 1755 year: 2016 ident: 10.1016/j.apsb.2023.09.003_bib109 article-title: Use of class I histone deacetylase inhibitor romidepsin in combination regimens publication-title: Leuk Lymphoma doi: 10.3109/10428194.2016.1160082 – volume: 21 start-page: 184 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib78 article-title: Overcoming gemcitabine resistance in pancreatic cancer using the BCL-X(L)-specific degrader DT2216 publication-title: Mol Cancer Therapeut doi: 10.1158/1535-7163.MCT-21-0474 – volume: 12 start-page: 4 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib51 article-title: Elevated HDAC activity and altered histone phospho-acetylation confer acquired radio-resistant phenotype to breast cancer cells publication-title: Clin Epigenet doi: 10.1186/s13148-019-0800-4 – volume: 12 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib76 article-title: PROTAC: an effective targeted protein degradation strategy for cancer therapy publication-title: Front Pharmacol doi: 10.3389/fphar.2021.692574 – volume: 12 start-page: 2658 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib82 article-title: A BRD4 PROTAC nanodrug for glioma therapy via the intervention of tumor cells proliferation, apoptosis and M2 macrophages polarization publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2022.02.009 – volume: 143 start-page: 7380 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib177 article-title: Cancer selective target degradation by folate-caged PROTACs publication-title: J Am Chem Soc doi: 10.1021/jacs.1c00451 – volume: 17 start-page: 55 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib32 article-title: Strategies for targeting undruggable targets publication-title: Expet Opin Drug Discov doi: 10.1080/17460441.2021.1969359 – volume: 17 start-page: 567 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib158 article-title: Discovery of a first-in-class CDK2 selective degrader for AML differentiation therapy publication-title: Nat Chem Biol doi: 10.1038/s41589-021-00742-5 – volume: 27 start-page: 866 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib98 article-title: A cell-based target engagement assay for the identification of cereblon E3 ubiquitin ligase ligands and their application in HDAC6 degraders publication-title: Cell Chem Biol doi: 10.1016/j.chembiol.2020.04.008 – volume: 25 start-page: 88 year: 2018 ident: 10.1016/j.apsb.2023.09.003_bib147 article-title: A chemoproteomic approach to 1uery the degradable kinome using a multi-kinase degrader publication-title: Cell Chem Biol doi: 10.1016/j.chembiol.2017.10.005 – ident: 10.1016/j.apsb.2023.09.003_bib28 – volume: 67 start-page: 5 year: 2017 ident: 10.1016/j.apsb.2023.09.003_bib115 article-title: BET bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment publication-title: Mol Cell doi: 10.1016/j.molcel.2017.06.004 – volume: 11 start-page: 3474 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib149 article-title: Systematic exploration of different E3 ubiquitin ligases: an approach towards potent and selective CDK6 degraders publication-title: Chem Sci doi: 10.1039/D0SC00167H – volume: 16 start-page: 1199 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib42 article-title: Rational discovery of molecular glue degraders via scalable chemical profiling publication-title: Nat Chem Biol doi: 10.1038/s41589-020-0594-x – volume: 59 start-page: 1727 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib121 article-title: Structure-based design of a macrocyclic PROTAC publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201914396 – volume: 183 start-page: 1714 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib148 article-title: Mapping the degradable kinome provides a resource for expedited degrader development publication-title: Cell doi: 10.1016/j.cell.2020.10.038 – volume: 77 start-page: 2476 year: 2017 ident: 10.1016/j.apsb.2023.09.003_bib117 article-title: Targeted degradation of BET proteins in triple-negative breast cancer publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-16-2622 – volume: 64 start-page: 10606 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib41 article-title: Molecular glues for targeted protein degradation: from serendipity to rational discovery publication-title: J Med Chem doi: 10.1021/acs.jmedchem.1c00895 – volume: 9 start-page: 794 year: 2019 ident: 10.1016/j.apsb.2023.09.003_bib62 article-title: Development of the triazole-fused pyrimidine derivatives as highly potent and reversible inhibitors of histone lysine specific demethylase 1 (LSD1/KDM1A) publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2019.01.001 – volume: 13 start-page: 298 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib84 article-title: Hydrophobic tagging-induced degradation of PDEdelta in colon cancer cells publication-title: ACS Med Chem Lett doi: 10.1021/acsmedchemlett.1c00670 – volume: 188 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib113 article-title: A 18β-Glycyrrhetinic acid conjugate with Vorinostat degrades HDAC3 and HDAC6 with improved antitumor effects publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2019.111991 – volume: 31 start-page: 1805 year: 2003 ident: 10.1016/j.apsb.2023.09.003_bib48 article-title: A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg274 – volume: 21 start-page: 638 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib15 article-title: Advancing targeted protein degradation for cancer therapy publication-title: Nat Rev Cancer doi: 10.1038/s41568-021-00365-x – volume: 8 start-page: 1088 year: 2017 ident: 10.1016/j.apsb.2023.09.003_bib69 article-title: YEATS2 links histone acetylation to tumorigenesis of non-small cell lung cancer publication-title: Nat Commun doi: 10.1038/s41467-017-01173-4 – volume: 21 start-page: 640 year: 2019 ident: 10.1016/j.apsb.2023.09.003_bib79 article-title: U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies publication-title: Nat Cell Biol doi: 10.1038/s41556-019-0314-5 – volume: 119 start-page: 2116 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib19 article-title: Understand the functions of scaffold proteins in cell signaling by a mesoscopic simulation method publication-title: Biophys J doi: 10.1016/j.bpj.2020.10.002 – volume: 27 start-page: 47 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib139 article-title: Degradation of polycomb repressive complex 2 with an EED-targeted bivalent chemical degrader publication-title: Cell Chem Biol doi: 10.1016/j.chembiol.2019.11.006 – volume: 208 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib9 article-title: Recent progress on HDAC inhibitors with dual targeting capabilities for cancer treatment publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2020.112831 – volume: 13 start-page: 514 year: 2017 ident: 10.1016/j.apsb.2023.09.003_bib23 article-title: Structural basis of PROTAC cooperative recognition for selective protein degradation publication-title: Nat Chem Biol doi: 10.1038/nchembio.2329 – volume: 26 start-page: 629 year: 2016 ident: 10.1016/j.apsb.2023.09.003_bib71 article-title: YEATS2 is a selective histone crotonylation reader publication-title: Cell Res doi: 10.1038/cr.2016.49 – volume: 65 start-page: 16860 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib96 article-title: Solid-phase synthesis of cereblon-recruiting selective histone deacetylase 6 degraders (HDAC6 PROTACs) with antileukemic activity publication-title: J Med Chem doi: 10.1021/acs.jmedchem.2c01659 – volume: 10 start-page: 117 year: 2018 ident: 10.1016/j.apsb.2023.09.003_bib89 article-title: HDAC4 in ischemic stroke: mechanisms and therapeutic potential publication-title: Clin Epigenet doi: 10.1186/s13148-018-0549-1 – volume: 11 start-page: 2639 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib127 article-title: The bromodomain containing protein BRD-9 orchestrates RAD51‒RAD54 complex formation and regulates homologous recombination-mediated repair publication-title: Nat Commun doi: 10.1038/s41467-020-16443-x – volume: 26 start-page: 880 year: 2019 ident: 10.1016/j.apsb.2023.09.003_bib56 article-title: Histone lysine methyltransferases in biology and disease publication-title: Nat Struct Mol Biol doi: 10.1038/s41594-019-0298-7 – volume: 439 start-page: 811 year: 2006 ident: 10.1016/j.apsb.2023.09.003_bib155 article-title: Histone demethylation by a family of JmjC domain-containing proteins publication-title: Nature doi: 10.1038/nature04433 – volume: 21 start-page: 3838 year: 2019 ident: 10.1016/j.apsb.2023.09.003_bib118 article-title: Chemoselective synthesis of lenalidomide-based PROTAC library using alkylation reaction publication-title: Org Lett doi: 10.1021/acs.orglett.9b01326 – volume: 35 start-page: 8701 year: 2015 ident: 10.1016/j.apsb.2023.09.003_bib151 article-title: Loss of the neuron-specific F-box protein FBXO41 models an ataxia-like phenotype in mice with neuronal migration defects and degeneration in the cerebellum publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2133-14.2015 – volume: 59 start-page: 8134 year: 2016 ident: 10.1016/j.apsb.2023.09.003_bib85 article-title: Fulvestrant-3 boronic acid (ZB716): an orally bioavailable selective estrogen receptor downregulator (SERD) publication-title: J Med Chem doi: 10.1021/acs.jmedchem.6b00753 – volume: 15 start-page: 17 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib171 article-title: Antibody conjugation of a chimeric BET degrader enables in vivo activity publication-title: ChemMedChem doi: 10.1002/cmdc.201900497 – volume: 6 year: 2015 ident: 10.1016/j.apsb.2023.09.003_bib142 article-title: MLLT1 YEATS domain mutations in clinically distinctive Favourable Histology Wilms tumours publication-title: Nat Commun doi: 10.1038/ncomms10013 – volume: 6 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib161 article-title: Light-induced control of protein destruction by opto-PROTAC publication-title: Sci Adv – volume: 11 start-page: 867 year: 2015 ident: 10.1016/j.apsb.2023.09.003_bib54 article-title: Transcriptional and epigenetic regulation of autophagy in aging publication-title: Autophagy doi: 10.1080/15548627.2015.1034410 – volume: 11 start-page: 1531 year: 2010 ident: 10.1016/j.apsb.2023.09.003_bib186 article-title: Two-headed PROTAC: an effective new tool for targeted protein degradation publication-title: Chembiochem doi: 10.1002/cbic.201000222 – volume: 239 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib104 article-title: Discovery of pomalidomide-based PROTACs for selective degradation of histone deacetylase 8 publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2022.114544 – volume: 15 start-page: 747 year: 2019 ident: 10.1016/j.apsb.2023.09.003_bib180 article-title: Harnessing the anti-cancer natural product nimbolide for targeted protein degradation publication-title: Nat Chem Biol doi: 10.1038/s41589-019-0304-8 – volume: 9 start-page: 937 year: 2019 ident: 10.1016/j.apsb.2023.09.003_bib12 article-title: Synergistic antitumor activity of artesunate and HDAC inhibitors through elevating heme synthesis via synergistic upregulation of ALAS1 expression publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2019.05.001 – volume: 66 start-page: 1186 year: 2023 ident: 10.1016/j.apsb.2023.09.003_bib105 article-title: Structure-based discovery of selective histone deacetylase 8 degraders with potent anticancer activity publication-title: J Med Chem doi: 10.1021/acs.jmedchem.2c00739 – volume: 150 start-page: 12 year: 2012 ident: 10.1016/j.apsb.2023.09.003_bib6 article-title: Cancer epigenetics: from mechanism to therapy publication-title: Cell doi: 10.1016/j.cell.2012.06.013 – volume: 27 start-page: 41 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib25 article-title: EED-targeted PROTACs degrade EED, EZH2, and SUZ12 in the PRC2 complex publication-title: Cell Chem Biol doi: 10.1016/j.chembiol.2019.11.004 – volume: 38 year: 2023 ident: 10.1016/j.apsb.2023.09.003_bib94 article-title: Discovery of novel benzohydroxamate-based histone deacetylase 6 (HDAC6) inhibitors with the ability to potentiate anti-PD-L1 immunotherapy in melanoma publication-title: J Enzym Inhib Med Chem doi: 10.1080/14756366.2023.2201408 – volume: 9 start-page: 915 year: 2023 ident: 10.1016/j.apsb.2023.09.003_bib29 article-title: Rational chemical design of molecular glue degraders publication-title: ACS Cent Sci doi: 10.1021/acscentsci.2c01317 – volume: 62 year: 2023 ident: 10.1016/j.apsb.2023.09.003_bib140 article-title: Discovery of norbornene as a novel hydrophobic tag applied in protein degradation publication-title: Angew Chem Int Ed Engl – volume: 16 start-page: 181 year: 2017 ident: 10.1016/j.apsb.2023.09.003_bib173 article-title: Aptamers as targeted therapeutics: current potential and challenges publication-title: Nat Rev Drug Discov doi: 10.1038/nrd.2016.199 – start-page: 30 year: 1981 ident: 10.1016/j.apsb.2023.09.003_bib167 article-title: Cellular immunity indices in myocardial infarct publication-title: Voenno-Med Zh – volume: 17 start-page: 1157 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib187 article-title: Trivalent PROTACs enhance protein degradation via combined avidity and cooperativity publication-title: Nat Chem Biol doi: 10.1038/s41589-021-00878-4 – volume: 370 start-page: 737 year: 2003 ident: 10.1016/j.apsb.2023.09.003_bib53 article-title: Histone deacetylases (HDACs): characterization of the classical HDAC family publication-title: Biochem J doi: 10.1042/bj20021321 – volume: 28 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib122 article-title: Discovery of novel small molecule induced selective degradation of the bromodomain and extra-terminal (BET) bromodomain protein BRD4 and BRD2 with cellular potencies publication-title: Bioorg Med Chem doi: 10.1016/j.bmc.2019.115181 – volume: 19 start-page: 114 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib165 article-title: Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer publication-title: Nat Rev Clin Oncol doi: 10.1038/s41571-021-00579-w – volume: 51 start-page: 7971 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib179 article-title: PROTAC degraders as chemical probes for studying target biology and target validation publication-title: Chem Soc Rev doi: 10.1039/D2CS00478J – volume: 143 start-page: 5141 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib182 article-title: DCAF11 supports targeted protein degradation by electrophilic Proteolysis-Targeting Chimeras publication-title: J Am Chem Soc doi: 10.1021/jacs.1c00990 – volume: 12 start-page: 396 year: 2016 ident: 10.1016/j.apsb.2023.09.003_bib67 article-title: The Taf14 YEATS domain is a reader of histone crotonylation publication-title: Nat Chem Biol doi: 10.1038/nchembio.2065 – volume: 15 start-page: 2596 year: 2023 ident: 10.1016/j.apsb.2023.09.003_bib80 article-title: The evolution of therapies targeting Bruton tyrosine kinase for the treatment of chronic lymphocytic leukaemia: future perspectives publication-title: Cancers doi: 10.3390/cancers15092596 – ident: 10.1016/j.apsb.2023.09.003_bib75 – volume: 58 start-page: 4635 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib102 article-title: Selective degradation of histone deacetylase 8 mediated by a proteolysis targeting chimera (PROTAC) publication-title: Chem Commun doi: 10.1039/D2CC00272H – volume: 40 start-page: 1396 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib64 article-title: Supercharging BRD4 with NUT in carcinoma publication-title: Oncogene doi: 10.1038/s41388-020-01625-0 – volume: 64 start-page: 10167 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib136 article-title: Design, synthesis, and evaluation of VHL-based EZH2 degraders to enhance therapeutic activity against lymphoma publication-title: J Med Chem doi: 10.1021/acs.jmedchem.1c00460 – volume: 575 start-page: 203 year: 2019 ident: 10.1016/j.apsb.2023.09.003_bib83 article-title: Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds publication-title: Nature doi: 10.1038/s41586-019-1722-1 – volume: 108 start-page: E636 year: 2011 ident: 10.1016/j.apsb.2023.09.003_bib70 article-title: Human polymerase-associated factor complex (PAFc) connects the super elongation complex (SEC) to RNA polymerase II on chromatin publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1107107108 – volume: 7 start-page: 815 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib141 article-title: Chemical inhibition of ENL/AF9 YEATS domains in acute leukemia publication-title: ACS Cent Sci doi: 10.1021/acscentsci.0c01550 – volume: 25 start-page: 78 year: 2018 ident: 10.1016/j.apsb.2023.09.003_bib144 article-title: Lessons in PROTAC design from selective degradation with a promiscuous warhead publication-title: Cell Chem Biol doi: 10.1016/j.chembiol.2017.09.010 – volume: 37 start-page: 153 year: 2018 ident: 10.1016/j.apsb.2023.09.003_bib11 article-title: PARP inhibitor veliparib and HDAC inhibitor SAHA synergistically co-target the UHRF1/BRCA1 DNA damage repair complex in prostate cancer cells publication-title: J Exp Clin Cancer Res doi: 10.1186/s13046-018-0810-7 – volume: 28 year: 2023 ident: 10.1016/j.apsb.2023.09.003_bib77 article-title: Industry perspective on the nonclinical safety assessment of heterobifunctional degraders publication-title: Drug Discov Today doi: 10.1016/j.drudis.2023.103643 – volume: 15 start-page: 1306 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib168 article-title: Antibody‒PROTAC conjugates enable HER2-dependent targeted protein degradation of BRD4 publication-title: ACS Chem Biol doi: 10.1021/acschembio.0c00285 – volume: 57 start-page: 8 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib31 article-title: Proteolysis targeting chimeras (PROTACs) for epigenetics research publication-title: Curr Opin Chem Biol doi: 10.1016/j.cbpa.2020.01.010 – volume: 238 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib134 article-title: Targeting EZH2 for cancer therapy: from current progress to novel strategies publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2022.114419 – volume: 12 start-page: 3548 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib36 article-title: Molecular glues modulate protein functions by inducing protein aggregation: a promising therapeutic strategy of small molecules for disease treatment publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2022.03.019 – volume: 22 start-page: 128 year: 2016 ident: 10.1016/j.apsb.2023.09.003_bib59 article-title: Targeting EZH2 in cancer publication-title: Nat Med doi: 10.1038/nm.4036 – volume: 17 start-page: 349 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib175 article-title: Exploiting the folate receptor alpha in oncology publication-title: Nat Rev Clin Oncol doi: 10.1038/s41571-020-0339-5 – volume: 14 year: 2023 ident: 10.1016/j.apsb.2023.09.003_bib184 article-title: Template-assisted covalent modification of DCAF16 underlies activity of BRD4 molecular glue degraders publication-title: bioRxiv – volume: 7 start-page: 402 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib55 article-title: The sirtuin family in health and disease publication-title: Signal Transduct Targeted Ther doi: 10.1038/s41392-022-01257-8 – volume: 65 start-page: 12445 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib91 article-title: Developing HDAC4-selective protein degraders to investigate the role of HDAC4 in Huntington's disease pathology publication-title: J Med Chem doi: 10.1021/acs.jmedchem.2c01149 – volume: 65 start-page: 2434 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib95 article-title: Discovery of novel histone deacetylase 6 (HDAC6) inhibitors with enhanced antitumor immunity of anti-PD-L1 immunotherapy in melanoma publication-title: J Med Chem doi: 10.1021/acs.jmedchem.1c01863 – volume: 62 start-page: 7042 year: 2019 ident: 10.1016/j.apsb.2023.09.003_bib97 article-title: Development of multifunctional histone deacetylase 6 degraders with potent antimyeloma activity publication-title: J Med Chem doi: 10.1021/acs.jmedchem.9b00516 – volume: 59 start-page: 22494 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib112 article-title: Hydroxamic acids immobilized on resins (HAIRs): synthesis of dual-targeting HDAC inhibitors and HDAC degraders (PROTACs) publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.202006725 – ident: 10.1016/j.apsb.2023.09.003_bib74 – volume: 16 start-page: 29 year: 2017 ident: 10.1016/j.apsb.2023.09.003_bib4 article-title: Epigenetics in cancer stem cells publication-title: Mol Cancer doi: 10.1186/s12943-017-0596-9 – volume: 61 start-page: 482 year: 2018 ident: 10.1016/j.apsb.2023.09.003_bib111 article-title: Chemically induced degradation of sirtuin 2 (Sirt2) by a proteolysis targeting chimera (PROTAC) based on sirtuin rearranging ligands (SirReals) publication-title: J Med Chem doi: 10.1021/acs.jmedchem.6b01872 – volume: 21 start-page: 381 year: 2011 ident: 10.1016/j.apsb.2023.09.003_bib61 article-title: Regulation of chromatin by histone modifications publication-title: Cell Res doi: 10.1038/cr.2011.22 – volume: 13 start-page: 1059 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib65 article-title: Regulation of programmed cell death by Brd4 publication-title: Cell Death Dis doi: 10.1038/s41419-022-05505-1 – volume: 55 start-page: 7948 year: 2016 ident: 10.1016/j.apsb.2023.09.003_bib172 article-title: The methylene alkoxy carbamate self-immolative unit: utilization for the targeted delivery of alcohol-containing payloads with antibody‒drug conjugates publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201601506 – volume: 254 year: 2023 ident: 10.1016/j.apsb.2023.09.003_bib125 article-title: Selective degradation of cellular BRD3 and BRD4-L promoted by PROTAC molecules in six cancer cell lines publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2023.115381 – volume: 10 start-page: 207 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib14 article-title: Degradation of proteins by PROTACs and other strategies publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2019.08.001 – volume: 46 start-page: 421 year: 2018 ident: 10.1016/j.apsb.2023.09.003_bib68 article-title: Yaf9 subunit of the NuA4 and SWR1 complexes targets histone H3K27ac through its YEATS domain publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1151 – volume: 8 start-page: 1919 year: 2014 ident: 10.1016/j.apsb.2023.09.003_bib150 article-title: Inducible in vivo silencing of BRD4 identifies potential toxicities of sustained BET protein inhibition publication-title: Cell Rep doi: 10.1016/j.celrep.2014.08.025 – volume: 62 start-page: 699 year: 2019 ident: 10.1016/j.apsb.2023.09.003_bib128 article-title: Iterative design and optimization of initially inactive Proteolysis Targeting Chimeras (PROTACs) identify VZ185 as a potent, fast, and selective von Hippel-Lindau (VHL) based dual degrader probe of BRD9 and BRD7 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.8b01413 – volume: 207 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib30 article-title: Recent advances in epigenetic proteolysis targeting chimeras (Epi-PROTACs) publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2020.112750 – volume: 277 start-page: 8 year: 2009 ident: 10.1016/j.apsb.2023.09.003_bib52 article-title: HDAC family: what are the cancer relevant targets? publication-title: Cancer Lett doi: 10.1016/j.canlet.2008.08.016 – volume: 5 start-page: 491 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib138 article-title: Targeting triple-negative breast cancer by a novel proteolysis targeting chimera degrader of enhancer of Zeste Homolog 2 publication-title: ACS Pharmacol Transl Sci doi: 10.1021/acsptsci.2c00100 – volume: 144 start-page: 701 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib183 article-title: Discovery of a covalent FEM1B recruiter for targeted protein degradation applications publication-title: J Am Chem Soc doi: 10.1021/jacs.1c03980 – volume: 7 start-page: 538 year: 2011 ident: 10.1016/j.apsb.2023.09.003_bib43 article-title: Small-molecule hydrophobic tagging-induced degradation of HaloTag fusion proteins publication-title: Nat Chem Biol doi: 10.1038/nchembio.597 – volume: 25 start-page: 993 year: 2019 ident: 10.1016/j.apsb.2023.09.003_bib57 article-title: PRMTs and arginine methylation: cancer's best-kept secret? publication-title: Trends Mol Med doi: 10.1016/j.molmed.2019.05.007 – volume: 20 start-page: 265 year: 2021 ident: 10.1016/j.apsb.2023.09.003_bib3 article-title: Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease publication-title: Nat Rev Drug Discov doi: 10.1038/s41573-020-00108-x – volume: 52 start-page: 1271 year: 2020 ident: 10.1016/j.apsb.2023.09.003_bib50 article-title: Reevaluating the roles of histone-modifying enzymes and their associated chromatin modifications in transcriptional regulation publication-title: Nat Genet doi: 10.1038/s41588-020-00736-4 – volume: 55 start-page: 14848 year: 2019 ident: 10.1016/j.apsb.2023.09.003_bib99 article-title: Plasticity in designing PROTACs for selective and potent degradation of HDAC6 publication-title: Chem Commun doi: 10.1039/C9CC08509B – volume: 10 start-page: 606 year: 2019 ident: 10.1016/j.apsb.2023.09.003_bib100 article-title: Developing potent PROTACs tools for selective degradation of HDAC6 protein publication-title: Protein Cell doi: 10.1007/s13238-018-0602-z – volume: 15 start-page: 41 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib143 article-title: A proteolysis-targeting chimera molecule selectively degrades ENL and inhibits malignant gene expression and tumor growth publication-title: J Hematol Oncol doi: 10.1186/s13045-022-01258-8 – volume: 13 start-page: 17 year: 2022 ident: 10.1016/j.apsb.2023.09.003_bib131 article-title: Novel compounds for targeted degradation of BRD9 and their use for treating cancer publication-title: ACS Med Chem Lett doi: 10.1021/acsmedchemlett.1c00658 |
SSID | ssj0000602275 |
Score | 2.4338012 |
SecondaryResourceType | review_article |
Snippet | Epigenetic pathways play a critical role in the initiation, progression, and metastasis of cancer. Over the past few decades, significant progress has been... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 533 |
SubjectTerms | Degrader Epigenetic Hydrophobic tagging Molecular glue PROTAC Review |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Lb9QwEIct1BMXxJvwqIyEemEDWcd242NbtaqQoCu0lXqz_Bh3i0qy6mZB-9_XEyfbXZDKhWvetseen53xN4R88JXhRjCfK-CQ8_G-z42SkDNjPcOVMw64OfnrN3l6zr9ciIuNVF8YE5bwwKniPoMKKkQnHE3F8-CDYsaVzgpVFk447nD0jT5vYzKVxmBE42H8ImPI6Ys6o98xk4K7zHxhP2Hm8A5yOmTM6r1SB-_fck5_i88_Yyg3nNLJY_KoV5P0IJXiCXkA9VOyN0k46tWITu92Vy1GdI9O7kDVq2cknP3CkQJ-0yZQmCOXE7c0Uo8ACQxwpujjPG1qOvl-Nj04GtGfQzZdenm9hBE1taezlb9p5rPGxltbgyvYl7QdVuzjRPw5OT85nh6d5n3ehdxFNdbmITjDCuAShOS-VJIFJYIQHlSFgDkI0lgXe6-tnC8s3-dFZYxE1xYnRE6UL8hO3dTwilAmKyesd857xYHxCjxEQRJFSwHSAmRkPNS7dj2UHHNjXOsh-uyHxrbS2Fa6UIgyzcjH9T3zhOS49-pDbM71lYjT7g5EI9O9kel_GVlGxGAMulcmSXHER13d-_L3g-Xo2G3xX4ypoVkuNIvCumSIKsrIy2RJ608scZQteZWRasvGtsqwfaa-mnVo8HFRIS5Jvf4fpX5DHsay8BSj_pbstDdLeBclWGt3u952C36qME8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free & Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWe-KCeBNeMhLaCw1NHTsbH3crVisk2Aq6Um-WH-O2aEmiNgX13-PJo0tA2gPHOHbixOOZz_bMN4S8c7nmWjAXS-AQ88mpi7XMIGbaOIY7ZxwwOPnzl-zymn9aiMURmfaxMOhW2en-Vqc32rorGXd_c1yt1-NvLKxdUgQQKR6HCaTdTnneBPEtzg_7LEmGJHnoyYj1Y2zQxc60bl662poPmEO8oTvtc2d19qmh8R-YqX9h6N_elH-Yp4sH5H6HK-lZ2_WH5AiKR-Rk1hJT70d0fhtntR3REzq7pazePyb-6ifqDPhFS0-hQoZODG6kDqkk0NWZorVztCzo7OvV_Gw6oj_6vLp0ebODEdWFo6u925TVqjShaa1xL3tJ637vPizJn5Dri4_z6WXcZWCIbcBldey91SwBnoHIuEtlxrwUXggHMkeqOfCZNjbMY5Nblxh-ypNc6wyNXFgaWZE-JcdFWcBzQlmWW2Gctc5JDozn4CBAkwBfEsgMQEQm_X9XtqMnxywZN6r3Q_uucKwUjpVKJJKaRuT9oU3VknPcWfsch_NQE4m1m4Jys1SdZCmQXvqA-YJmctw7L5m2qTVCpokVltuIiF4Y1EBOw6PWd778bS85KkxgPJXRBZS7rWIBYqcMSYsi8qyVpEMXU9S3Qagjkg9kbPANwzvFetWQhE-SHImT5Iv_7PBLci9c8dZB_RU5rjc7eB3wV23eNBPsN8dKL78 priority: 102 providerName: Elsevier |
Title | Overview of epigenetic degraders based on PROTAC, molecular glue, and hydrophobic tagging technologies |
URI | https://dx.doi.org/10.1016/j.apsb.2023.09.003 https://www.ncbi.nlm.nih.gov/pubmed/38322348 https://www.proquest.com/docview/2923327169 https://pubmed.ncbi.nlm.nih.gov/PMC10840439 https://doaj.org/article/e9f9f251319d4fdf92ac3cb5930c5c4c |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3Lb9NAEIdXVblwQbwxj2qRUC_ElbPedbwHhNqKqoBKA0qk3Kx9zCZFwQ6JA-S_Z8ePBENVcfHB73hndn67mf2GkFc2VVwJZkMJHELeH9hQyQRCprRlOHPGARcnX3xKzsf8w0RM9khb7qj5gKtrh3ZYT2q8nB_9-r556x3-zS5XSy1W-ggLgVfMUoR_3vKRaYCOetHI_bpnRmAeZjUyhvQ-rz6adTTX36YTqyqkfydk_StJ_86s_CNUnd0ldxqNSY9ro7hH9iC_Tw6HNaR606Oj3ZqrVY8e0uEOX715QNzlD-w_4CctHIUF0jpxoSO1iJXAtGeKkc_SIqfDL5ej49Me_dbW2KXT-Rp6VOWWzjZ2WSxmhfaXlgrntae0bOfx_fD8IRmfvRudnodNNYbQeI1Whs4ZxSLgCYiE21gmzEnhhLAgU8TOgUuUNt6ndWpspPmAR6lSCQY8P0wyIn5E9vMihyeEsiQ1QltjrJUcGE_BgpcpXspEkGiAgPTb756ZBlWOFTPmWZuT9jXDtsqwrbJIIuA0IK-31yxqUMeNZ59gc27PRMh2taNYTrPGZzOQTjqv_3wvZbmzTjJlYqOFjCMjDDcBEa0xZI1eqXWIv9XVjQ9_2VpO5p0Z_6FRORTrVca83I4ZAowC8ri2pO0rxtj3xjwNSNqxsc5v6B7Jr2YVMLwfpQhRkk__48HPyG3_qrxOTH9O9svlGl543VXqg2q-wm_fT0789uPn9KByr9__2C_I |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKOcAF8W54Ggn1QpZsvLazPrYRVQp9RJBKuVlee5wEld0oD1D-PZ59pASkHriu7V2vPZ75bM98Q8h7lxpuBHORAg4R7_ZcZJSEiJnMMTw544DByecXcnDFP4_FeI_0m1gYdKusdX-l00ttXT_p1KPZmc9mnW8s7F0SBBAJXocJeYfcDWigh_kbTsfH24OWWCJLHroyYoMIW9TBM5Wfl5kvs4-YRLzkO22SZ9UGquTx37FT_-LQv90p_7BPJw_JgxpY0qOq74_IHuSPyeGwYqbetOnoJtBq2aaHdHjDWb15QvzlT1Qa8IsWnsIcKToxupE65JJAX2eK5s7RIqfDr5ejo36b_mgS69LJ9Rra1OSOTjduUcynRRaargweZk_oqjm8D3vyp-Tq5NOoP4jqFAyRDcBsFXlvDYuBSxCSu0RJ5pXwQjhQKXLNgZcms2EhZ6l1ccZ7PE6NkWjlwt7IiuQZ2c-LHA4IZTK1InPWOqc4MJ6Cg4BNAn6JQWYALdJtxl3bmp8c02Rc68YR7bvGudI4VzpWyGraIh-2beYVO8ettY9xOrc1kVm7fFAsJroWLQ3KKx9AX1BNjnvnFTM2sZlQSWyF5bZFRCMMekdQw6tmt378XSM5OqxgvJYxORTrpWYBYycMWYta5HklSdsuJqhwE562SLojYzv_sFuSz6YlS3g3TpE5Sb34zw6_JfcGo_MzfXZ68eUluR9KeOWt_orsrxZreB3A2Cp7Uy623wCTMt4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overview+of+epigenetic+degraders+based+on+PROTAC%2C+molecular+glue%2C+and+hydrophobic+tagging+technologies&rft.jtitle=Acta+pharmaceutica+Sinica.+B&rft.au=Peng%2C+Xiaopeng&rft.au=Hu%2C+Zhihao&rft.au=Zeng%2C+Limei&rft.au=Zhang%2C+Meizhu&rft.date=2024-02-01&rft.issn=2211-3835&rft.volume=14&rft.issue=2&rft.spage=533&rft_id=info:doi/10.1016%2Fj.apsb.2023.09.003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3835&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3835&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3835&client=summon |