Protocol for live imaging of intracellular nanoscale structures using atomic force microscopy with nanoneedle probes

Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of...

Full description

Saved in:
Bibliographic Details
Published inSTAR protocols Vol. 4; no. 3; p. 102468
Main Authors Ichikawa, Takehiko, Alam, Mohammad Shahidul, Penedo, Marcos, Matsumoto, Kyosuke, Fujita, Sou, Miyazawa, Keisuke, Furusho, Hirotoshi, Miyata, Kazuki, Nakamura, Chikashi, Fukuma, Takeshi
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.09.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of cell staining, fabrication of the nanoneedle probes, observation inside living cells using 2D and 3D nanoendoscopy-AFM, and visualization of the 3D data. For complete details on the use and execution of this protocol, please refer to Penedo et al. (2021)1 and Penedo et al. (2021).2 [Display omitted] •Fabrication of nanoneedle tip by EBD or FIB-milling•Step-by-step guide for 2D and 3D nanoendoscopy-AFM imaging•Visualization of 3D intracellular structures from 3D nanoendoscopy-AFM data Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of cell staining, fabrication of the nanoneedle probes, observation inside living cells using 2D and 3D nanoendoscopy-AFM, and visualization of the 3D data.
AbstractList Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of cell staining, fabrication of the nanoneedle probes, observation inside living cells using 2D and 3D nanoendoscopy-AFM, and visualization of the 3D data. For complete details on the use and execution of this protocol, please refer to Penedo et al. (2021) 1 and Penedo et al. (2021). 2 • Fabrication of nanoneedle tip by EBD or FIB-milling • Step-by-step guide for 2D and 3D nanoendoscopy-AFM imaging • Visualization of 3D intracellular structures from 3D nanoendoscopy-AFM data Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of cell staining, fabrication of the nanoneedle probes, observation inside living cells using 2D and 3D nanoendoscopy-AFM, and visualization of the 3D data.
Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of cell staining, fabrication of the nanoneedle probes, observation inside living cells using 2D and 3D nanoendoscopy-AFM, and visualization of the 3D data. For complete details on the use and execution of this protocol, please refer to Penedo et al. (2021)1 and Penedo et al. (2021).2.Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of cell staining, fabrication of the nanoneedle probes, observation inside living cells using 2D and 3D nanoendoscopy-AFM, and visualization of the 3D data. For complete details on the use and execution of this protocol, please refer to Penedo et al. (2021)1 and Penedo et al. (2021).2.
Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of cell staining, fabrication of the nanoneedle probes, observation inside living cells using 2D and 3D nanoendoscopy-AFM, and visualization of the 3D data. For complete details on the use and execution of this protocol, please refer to Penedo et al. (2021) and Penedo et al. (2021). .
Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of cell staining, fabrication of the nanoneedle probes, observation inside living cells using 2D and 3D nanoendoscopy-AFM, and visualization of the 3D data.For complete details on the use and execution of this protocol, please refer to Penedo et al. (2021)1 and Penedo et al. (2021).2 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of cell staining, fabrication of the nanoneedle probes, observation inside living cells using 2D and 3D nanoendoscopy-AFM, and visualization of the 3D data. For complete details on the use and execution of this protocol, please refer to Penedo et al. (2021)1 and Penedo et al. (2021).2 [Display omitted] •Fabrication of nanoneedle tip by EBD or FIB-milling•Step-by-step guide for 2D and 3D nanoendoscopy-AFM imaging•Visualization of 3D intracellular structures from 3D nanoendoscopy-AFM data Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of cell staining, fabrication of the nanoneedle probes, observation inside living cells using 2D and 3D nanoendoscopy-AFM, and visualization of the 3D data.
ArticleNumber 102468
Author Alam, Mohammad Shahidul
Miyazawa, Keisuke
Fujita, Sou
Ichikawa, Takehiko
Miyata, Kazuki
Furusho, Hirotoshi
Penedo, Marcos
Matsumoto, Kyosuke
Fukuma, Takeshi
Nakamura, Chikashi
Author_xml – sequence: 1
  givenname: Takehiko
  orcidid: 0000-0002-2438-5502
  surname: Ichikawa
  fullname: Ichikawa, Takehiko
  email: tichikawa@staff.kanazawa-u.ac.jp
  organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
– sequence: 2
  givenname: Mohammad Shahidul
  surname: Alam
  fullname: Alam, Mohammad Shahidul
  organization: Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
– sequence: 3
  givenname: Marcos
  surname: Penedo
  fullname: Penedo, Marcos
  organization: École Polytechnique Fédérale de Lausanne, Institute for Bioengineering, Laboratory for Bio and Nanoinstrumentation, Lausanne, CH 1015, Switzerland
– sequence: 4
  givenname: Kyosuke
  surname: Matsumoto
  fullname: Matsumoto, Kyosuke
  organization: Faculty of Frontier Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
– sequence: 5
  givenname: Sou
  surname: Fujita
  fullname: Fujita, Sou
  organization: Faculty of Frontier Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
– sequence: 6
  givenname: Keisuke
  surname: Miyazawa
  fullname: Miyazawa, Keisuke
  organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
– sequence: 7
  givenname: Hirotoshi
  surname: Furusho
  fullname: Furusho, Hirotoshi
  organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
– sequence: 8
  givenname: Kazuki
  surname: Miyata
  fullname: Miyata, Kazuki
  organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
– sequence: 9
  givenname: Chikashi
  surname: Nakamura
  fullname: Nakamura, Chikashi
  organization: AIST-INDIA Diverse Assets and Applications International Laboratory (DAILAB), Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
– sequence: 10
  givenname: Takeshi
  surname: Fukuma
  fullname: Fukuma, Takeshi
  email: fukuma@staff.kanazawa-u.ac.jp
  organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37481726$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vEzEQtVARLaV_gAPykUuCP3a9joSEUEVLpUpwgLPltWdTR44dbG-g_x67aVHLoSePxvPem3kzr9FRiAEQekvJkhIqPmyWf3YpLhlhvCZYJ-QLdMKEEAsqxHD0KD5GZzlvCCGsp6yj8hU65kMn6cDECSrfUyzRRI-nmLB3e8Buq9curHGcsAslaQPez14nHHSI2WgPOJc0mzInyHjOrVaXuHWmcRjANUq1MO5u8W9Xbu5wAcBWYG15hPwGvZy0z3B2_56inxdffpx_XVx_u7w6_3y9MD1jZTENlgsLVlgD3citlqbnRE5aC8HYJM3ILOPcEtnRVdePvVz1DMaBDIZORFB-iq4OvDbqjdqlOlm6VVE7dZeIaa10Ks54UL0cO6ZH0vds1bGBr-zUV1tBCDMOuhOV69OBazePW6gdNWv8E9KnP8HdqHXcK0qa2wOvDO_vGVL8NUMuautyM1cHiHNWrI7REU54E3v3WOyfysPeaoE8FDSnc4JJGVd0cbFpO19FVbsStVHtSlS7EnW4kgpl_0Ef2J8FfTyAoK5r7yCpbBwEA9YlMKX66Z6D_wUK3tiq
CitedBy_id crossref_primary_10_3390_pharmaceutics16060733
crossref_primary_10_1186_s11671_024_04003_x
crossref_primary_10_1039_D4NR04497E
crossref_primary_10_35848_1347_4065_acf721
Cites_doi 10.1088/0957-4484/26/10/105707
10.1016/j.tcb.2019.12.007
10.1038/nmeth.2972
10.1038/nprot.2012.047
10.1039/C9NR03497H
10.1126/sciadv.abj4990
10.1039/D0CS00318B
10.1016/j.tibs.2008.10.011
10.1021/acsnano.9b04808
10.1038/nnano.2008.162
10.1126/science.1117694
10.1038/s41598-021-87319-3
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.
2023 The Author(s) 2023
Copyright_xml – notice: 2023 The Author(s)
– notice: Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2023 The Author(s) 2023
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.xpro.2023.102468
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2666-1667
ExternalDocumentID oai_doaj_org_article_58b42ab0552942739df5102e66cb7a46
PMC10374873
37481726
10_1016_j_xpro_2023_102468
S2666166723004355
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
53G
6I.
AAEDW
AAFTH
AALRI
AAMRU
AAXUO
ADVLN
AEXQZ
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
RPM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c522t-f7d36ded6dce4b3da8c5308faa6622f8cb2d233d0841945b58952eb707c1f0613
IEDL.DBID DOA
ISSN 2666-1667
IngestDate Wed Aug 27 01:31:10 EDT 2025
Thu Aug 21 18:36:39 EDT 2025
Fri Jul 11 01:03:49 EDT 2025
Mon Jul 21 06:08:25 EDT 2025
Tue Jul 01 01:14:36 EDT 2025
Thu Apr 24 23:05:17 EDT 2025
Sat Jan 25 15:58:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords AFM
Atomic Force Microscopy
Microscopy
Cell Biology
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-f7d36ded6dce4b3da8c5308faa6622f8cb2d233d0841945b58952eb707c1f0613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Technical contact
Lead contact
ORCID 0000-0002-2438-5502
OpenAccessLink https://doaj.org/article/58b42ab0552942739df5102e66cb7a46
PMID 37481726
PQID 2841403036
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_58b42ab0552942739df5102e66cb7a46
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10374873
proquest_miscellaneous_2841403036
pubmed_primary_37481726
crossref_citationtrail_10_1016_j_xpro_2023_102468
crossref_primary_10_1016_j_xpro_2023_102468
elsevier_sciencedirect_doi_10_1016_j_xpro_2023_102468
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-15
PublicationDateYYYYMMDD 2023-09-15
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle STAR protocols
PublicationTitleAlternate STAR Protoc
PublicationYear 2023
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Decelle, Veronesi, Gallet, Stryhanyuk, Benettoni, Schmidt, Tucoulou, Passarelli, Bohic, Clode, Musat (bib3) 2020; 30
Garcia (bib5) 2020; 49
Guerrero, Garcia, Garcia (bib7) 2019; 13
Shekhawat, Dravid (bib8) 2005; 310
Uchihashi, Kodera, Ando (bib12) 2012; 7
Miyazawa, Izumi, Watanabe-Nakayama, Asakawa, Fukuma (bib11) 2015; 26
Tetard, Passian, Venmar, Lynch, Voy, Shekhawat, Dravid, Thundat (bib9) 2008; 3
Leis, Rockel, Andrees, Baumeister (bib4) 2009; 34
Stühn, Fritschen, Choy, Dehnert, Dietz (bib6) 2019; 11
Necas, Klapetek (bib13) 2012; 10
Penedo, Miyazawa, Okano, Furusho, Ichikawa, Alam, Miyata, Nakamura, Fukuma (bib1) 2021; 7
Penedo, Shirokawa, Alam, Miyazawa, Ichikawa, Okano, Furusho, Nakamura, Fukuma (bib2) 2021; 11
Lukinavičius, Reymond, D'Este, Masharina, Göttfert, Ta, Güther, Fournier, Rizzo, Waldmann (bib10) 2014; 11
Garcia (10.1016/j.xpro.2023.102468_bib5) 2020; 49
Necas (10.1016/j.xpro.2023.102468_bib13) 2012; 10
Miyazawa (10.1016/j.xpro.2023.102468_bib11) 2015; 26
Decelle (10.1016/j.xpro.2023.102468_bib3) 2020; 30
Guerrero (10.1016/j.xpro.2023.102468_bib7) 2019; 13
Penedo (10.1016/j.xpro.2023.102468_bib2) 2021; 11
Tetard (10.1016/j.xpro.2023.102468_bib9) 2008; 3
Penedo (10.1016/j.xpro.2023.102468_bib1) 2021; 7
Lukinavičius (10.1016/j.xpro.2023.102468_bib10) 2014; 11
Stühn (10.1016/j.xpro.2023.102468_bib6) 2019; 11
Shekhawat (10.1016/j.xpro.2023.102468_bib8) 2005; 310
Uchihashi (10.1016/j.xpro.2023.102468_bib12) 2012; 7
Leis (10.1016/j.xpro.2023.102468_bib4) 2009; 34
References_xml – volume: 34
  start-page: 60
  year: 2009
  end-page: 70
  ident: bib4
  article-title: Visualizing cells at the nanoscale
  publication-title: Trends Biochem. Sci.
– volume: 49
  start-page: 5850
  year: 2020
  end-page: 5884
  ident: bib5
  article-title: Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 501
  year: 2008
  end-page: 505
  ident: bib9
  article-title: Imaging nanoparticles in cells by nanomechanical holography
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 9629
  year: 2019
  end-page: 9637
  ident: bib7
  article-title: Subsurface Imaging of Cell Organelles by Force Microscopy
  publication-title: ACS Nano
– volume: 26
  year: 2015
  ident: bib11
  article-title: Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid
  publication-title: Nanotechnology
– volume: 11
  start-page: 13089
  year: 2019
  end-page: 13097
  ident: bib6
  article-title: Nanomechanical sub-surface mapping of living biological cells by force microscopy
  publication-title: Nanoscale
– volume: 30
  start-page: 173
  year: 2020
  end-page: 188
  ident: bib3
  article-title: Subcellular Chemical Imaging: New Avenues in Cell Biology
  publication-title: Trends Cell Biol.
– volume: 11
  start-page: 731
  year: 2014
  end-page: 733
  ident: bib10
  article-title: Fluorogenic probes for live-cell imaging of the cytoskeleton
  publication-title: Nat. Methods
– volume: 7
  year: 2021
  ident: bib1
  article-title: Visualizing intracellular nanostructures of living cells by nanoendoscopy-AFM
  publication-title: Sci. Adv.
– volume: 310
  start-page: 89
  year: 2005
  end-page: 92
  ident: bib8
  article-title: Nanoscale imaging of buried structures via scanning near-field ultrasound holography
  publication-title: Science
– volume: 11
  start-page: 7756
  year: 2021
  ident: bib2
  article-title: Cell penetration efficiency analysis of different atomic force microscopy nanoneedles into living cells
  publication-title: Sci. Rep.
– volume: 10
  start-page: 181
  year: 2012
  end-page: 188
  ident: bib13
  article-title: Gwyddion: an open-source software for SPM data analysis
  publication-title: Cent. Eur. J. Phys.
– volume: 7
  start-page: 1193
  year: 2012
  end-page: 1206
  ident: bib12
  article-title: Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy
  publication-title: Nat. Protoc.
– volume: 10
  start-page: 181
  year: 2012
  ident: 10.1016/j.xpro.2023.102468_bib13
  article-title: Gwyddion: an open-source software for SPM data analysis
  publication-title: Cent. Eur. J. Phys.
– volume: 26
  year: 2015
  ident: 10.1016/j.xpro.2023.102468_bib11
  article-title: Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/10/105707
– volume: 30
  start-page: 173
  year: 2020
  ident: 10.1016/j.xpro.2023.102468_bib3
  article-title: Subcellular Chemical Imaging: New Avenues in Cell Biology
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2019.12.007
– volume: 11
  start-page: 731
  year: 2014
  ident: 10.1016/j.xpro.2023.102468_bib10
  article-title: Fluorogenic probes for live-cell imaging of the cytoskeleton
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2972
– volume: 7
  start-page: 1193
  year: 2012
  ident: 10.1016/j.xpro.2023.102468_bib12
  article-title: Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.047
– volume: 11
  start-page: 13089
  year: 2019
  ident: 10.1016/j.xpro.2023.102468_bib6
  article-title: Nanomechanical sub-surface mapping of living biological cells by force microscopy
  publication-title: Nanoscale
  doi: 10.1039/C9NR03497H
– volume: 7
  year: 2021
  ident: 10.1016/j.xpro.2023.102468_bib1
  article-title: Visualizing intracellular nanostructures of living cells by nanoendoscopy-AFM
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abj4990
– volume: 49
  start-page: 5850
  year: 2020
  ident: 10.1016/j.xpro.2023.102468_bib5
  article-title: Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00318B
– volume: 34
  start-page: 60
  year: 2009
  ident: 10.1016/j.xpro.2023.102468_bib4
  article-title: Visualizing cells at the nanoscale
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2008.10.011
– volume: 13
  start-page: 9629
  year: 2019
  ident: 10.1016/j.xpro.2023.102468_bib7
  article-title: Subsurface Imaging of Cell Organelles by Force Microscopy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04808
– volume: 3
  start-page: 501
  year: 2008
  ident: 10.1016/j.xpro.2023.102468_bib9
  article-title: Imaging nanoparticles in cells by nanomechanical holography
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.162
– volume: 310
  start-page: 89
  year: 2005
  ident: 10.1016/j.xpro.2023.102468_bib8
  article-title: Nanoscale imaging of buried structures via scanning near-field ultrasound holography
  publication-title: Science
  doi: 10.1126/science.1117694
– volume: 11
  start-page: 7756
  year: 2021
  ident: 10.1016/j.xpro.2023.102468_bib2
  article-title: Cell penetration efficiency analysis of different atomic force microscopy nanoneedles into living cells
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-87319-3
SSID ssj0002512418
Score 2.2599032
Snippet Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102468
SubjectTerms AFM
Atomic Force Microscopy
Cell Biology
Cell Membrane - chemistry
Microscopy
Microscopy, Atomic Force - methods
Nanotechnology - methods
Protocol
Title Protocol for live imaging of intracellular nanoscale structures using atomic force microscopy with nanoneedle probes
URI https://dx.doi.org/10.1016/j.xpro.2023.102468
https://www.ncbi.nlm.nih.gov/pubmed/37481726
https://www.proquest.com/docview/2841403036
https://pubmed.ncbi.nlm.nih.gov/PMC10374873
https://doaj.org/article/58b42ab0552942739df5102e66cb7a46
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZQT1zQpgErbJWRuKFAbMeOcwTEVCGBOFCpN8u_AkFtgmgnjf-e9-y0ajdpXHZtYqcv79nfZ-f5e4S8Zm3jZONYoa1l-JlRFxaQrQi-9FJ56ZnDs8Nfvqr5ovq8lMuDUl-YE5blgfOLeye1q7h1pZS8qQBrm9BCGPGolHe1rZLYNmDewWIK52BE7Spt7gEAqYIpVY8nZnJy1w1MT2-xcjhKF1Sos3qASkm8_wic7pLP2zmUB6B0dUKejGySvs9WnJJHsT8j229_hu0ADqZASOkKpjParVMxIjq0tMOOcLse809pb_thA26KNAvJXsPqm2Iu_A8Kq_F157EPH-ka8_bwBMtfiju3qV0PwAcNsSRN3Dwli6tP3z_Oi7G4QuGBcm2Ltg5ChRgUWFA5Eaz2UpS6tVYpzlvtHQ9ciFBqcGAlndSN5NHVZe1ZiyTgGZngk84JlQ33iRkEGNxtI7T0ApqIMopaRq-nhO1ervGj8jgWwFiZXYrZL4MOMegQkx0yJW_2bX5n3Y177_6APtvfiZrZ6QeIJDNGkvlfJE2J3HncjPQj0wroqrv34a924WFgbKIHbR-H640B6Ec5RCAJU_I8h8v-L6LsD5BHuKKPAunIhuMrffcz6X-zpBlUixcPYfVL8hhtwRQYJi_IBIItXgLP2rpZGlKztAH2DxjmJlQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protocol+for+live+imaging+of+intracellular+nanoscale+structures+using+atomic+force+microscopy+with+nanoneedle+probes&rft.jtitle=STAR+protocols&rft.au=Ichikawa%2C+Takehiko&rft.au=Alam%2C+Mohammad+Shahidul&rft.au=Penedo%2C+Marcos&rft.au=Matsumoto%2C+Kyosuke&rft.date=2023-09-15&rft.eissn=2666-1667&rft.volume=4&rft.issue=3&rft.spage=102468&rft_id=info:doi/10.1016%2Fj.xpro.2023.102468&rft_id=info%3Apmid%2F37481726&rft.externalDocID=37481726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-1667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-1667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-1667&client=summon