Protocol for live imaging of intracellular nanoscale structures using atomic force microscopy with nanoneedle probes
Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of...
Saved in:
Published in | STAR protocols Vol. 4; no. 3; p. 102468 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.09.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of cell staining, fabrication of the nanoneedle probes, observation inside living cells using 2D and 3D nanoendoscopy-AFM, and visualization of the 3D data.
For complete details on the use and execution of this protocol, please refer to Penedo et al. (2021)1 and Penedo et al. (2021).2
[Display omitted]
•Fabrication of nanoneedle tip by EBD or FIB-milling•Step-by-step guide for 2D and 3D nanoendoscopy-AFM imaging•Visualization of 3D intracellular structures from 3D nanoendoscopy-AFM data
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of cell staining, fabrication of the nanoneedle probes, observation inside living cells using 2D and 3D nanoendoscopy-AFM, and visualization of the 3D data. |
---|---|
AbstractList | Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of cell staining, fabrication of the nanoneedle probes, observation inside living cells using 2D and 3D nanoendoscopy-AFM, and visualization of the 3D data.
For complete details on the use and execution of this protocol, please refer to Penedo et al. (2021)
1
and Penedo et al. (2021).
2
•
Fabrication of nanoneedle tip by EBD or FIB-milling
•
Step-by-step guide for 2D and 3D nanoendoscopy-AFM imaging
•
Visualization of 3D intracellular structures from 3D nanoendoscopy-AFM data
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of cell staining, fabrication of the nanoneedle probes, observation inside living cells using 2D and 3D nanoendoscopy-AFM, and visualization of the 3D data. Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of cell staining, fabrication of the nanoneedle probes, observation inside living cells using 2D and 3D nanoendoscopy-AFM, and visualization of the 3D data. For complete details on the use and execution of this protocol, please refer to Penedo et al. (2021)1 and Penedo et al. (2021).2.Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of cell staining, fabrication of the nanoneedle probes, observation inside living cells using 2D and 3D nanoendoscopy-AFM, and visualization of the 3D data. For complete details on the use and execution of this protocol, please refer to Penedo et al. (2021)1 and Penedo et al. (2021).2. Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of cell staining, fabrication of the nanoneedle probes, observation inside living cells using 2D and 3D nanoendoscopy-AFM, and visualization of the 3D data. For complete details on the use and execution of this protocol, please refer to Penedo et al. (2021) and Penedo et al. (2021). . Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of cell staining, fabrication of the nanoneedle probes, observation inside living cells using 2D and 3D nanoendoscopy-AFM, and visualization of the 3D data.For complete details on the use and execution of this protocol, please refer to Penedo et al. (2021)1 and Penedo et al. (2021).2 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of cell staining, fabrication of the nanoneedle probes, observation inside living cells using 2D and 3D nanoendoscopy-AFM, and visualization of the 3D data. For complete details on the use and execution of this protocol, please refer to Penedo et al. (2021)1 and Penedo et al. (2021).2 [Display omitted] •Fabrication of nanoneedle tip by EBD or FIB-milling•Step-by-step guide for 2D and 3D nanoendoscopy-AFM imaging•Visualization of 3D intracellular structures from 3D nanoendoscopy-AFM data Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of cell staining, fabrication of the nanoneedle probes, observation inside living cells using 2D and 3D nanoendoscopy-AFM, and visualization of the 3D data. |
ArticleNumber | 102468 |
Author | Alam, Mohammad Shahidul Miyazawa, Keisuke Fujita, Sou Ichikawa, Takehiko Miyata, Kazuki Furusho, Hirotoshi Penedo, Marcos Matsumoto, Kyosuke Fukuma, Takeshi Nakamura, Chikashi |
Author_xml | – sequence: 1 givenname: Takehiko orcidid: 0000-0002-2438-5502 surname: Ichikawa fullname: Ichikawa, Takehiko email: tichikawa@staff.kanazawa-u.ac.jp organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan – sequence: 2 givenname: Mohammad Shahidul surname: Alam fullname: Alam, Mohammad Shahidul organization: Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan – sequence: 3 givenname: Marcos surname: Penedo fullname: Penedo, Marcos organization: École Polytechnique Fédérale de Lausanne, Institute for Bioengineering, Laboratory for Bio and Nanoinstrumentation, Lausanne, CH 1015, Switzerland – sequence: 4 givenname: Kyosuke surname: Matsumoto fullname: Matsumoto, Kyosuke organization: Faculty of Frontier Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan – sequence: 5 givenname: Sou surname: Fujita fullname: Fujita, Sou organization: Faculty of Frontier Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan – sequence: 6 givenname: Keisuke surname: Miyazawa fullname: Miyazawa, Keisuke organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan – sequence: 7 givenname: Hirotoshi surname: Furusho fullname: Furusho, Hirotoshi organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan – sequence: 8 givenname: Kazuki surname: Miyata fullname: Miyata, Kazuki organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan – sequence: 9 givenname: Chikashi surname: Nakamura fullname: Nakamura, Chikashi organization: AIST-INDIA Diverse Assets and Applications International Laboratory (DAILAB), Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan – sequence: 10 givenname: Takeshi surname: Fukuma fullname: Fukuma, Takeshi email: fukuma@staff.kanazawa-u.ac.jp organization: Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37481726$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1vEzEQtVARLaV_gAPykUuCP3a9joSEUEVLpUpwgLPltWdTR44dbG-g_x67aVHLoSePxvPem3kzr9FRiAEQekvJkhIqPmyWf3YpLhlhvCZYJ-QLdMKEEAsqxHD0KD5GZzlvCCGsp6yj8hU65kMn6cDECSrfUyzRRI-nmLB3e8Buq9curHGcsAslaQPez14nHHSI2WgPOJc0mzInyHjOrVaXuHWmcRjANUq1MO5u8W9Xbu5wAcBWYG15hPwGvZy0z3B2_56inxdffpx_XVx_u7w6_3y9MD1jZTENlgsLVlgD3citlqbnRE5aC8HYJM3ILOPcEtnRVdePvVz1DMaBDIZORFB-iq4OvDbqjdqlOlm6VVE7dZeIaa10Ks54UL0cO6ZH0vds1bGBr-zUV1tBCDMOuhOV69OBazePW6gdNWv8E9KnP8HdqHXcK0qa2wOvDO_vGVL8NUMuautyM1cHiHNWrI7REU54E3v3WOyfysPeaoE8FDSnc4JJGVd0cbFpO19FVbsStVHtSlS7EnW4kgpl_0Ef2J8FfTyAoK5r7yCpbBwEA9YlMKX66Z6D_wUK3tiq |
CitedBy_id | crossref_primary_10_3390_pharmaceutics16060733 crossref_primary_10_1186_s11671_024_04003_x crossref_primary_10_1039_D4NR04497E crossref_primary_10_35848_1347_4065_acf721 |
Cites_doi | 10.1088/0957-4484/26/10/105707 10.1016/j.tcb.2019.12.007 10.1038/nmeth.2972 10.1038/nprot.2012.047 10.1039/C9NR03497H 10.1126/sciadv.abj4990 10.1039/D0CS00318B 10.1016/j.tibs.2008.10.011 10.1021/acsnano.9b04808 10.1038/nnano.2008.162 10.1126/science.1117694 10.1038/s41598-021-87319-3 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved. 2023 The Author(s) 2023 |
Copyright_xml | – notice: 2023 The Author(s) – notice: Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2023 The Author(s) 2023 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.xpro.2023.102468 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2666-1667 |
ExternalDocumentID | oai_doaj_org_article_58b42ab0552942739df5102e66cb7a46 PMC10374873 37481726 10_1016_j_xpro_2023_102468 S2666166723004355 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 53G 6I. AAEDW AAFTH AALRI AAMRU AAXUO ADVLN AEXQZ AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL RPM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c522t-f7d36ded6dce4b3da8c5308faa6622f8cb2d233d0841945b58952eb707c1f0613 |
IEDL.DBID | DOA |
ISSN | 2666-1667 |
IngestDate | Wed Aug 27 01:31:10 EDT 2025 Thu Aug 21 18:36:39 EDT 2025 Fri Jul 11 01:03:49 EDT 2025 Mon Jul 21 06:08:25 EDT 2025 Tue Jul 01 01:14:36 EDT 2025 Thu Apr 24 23:05:17 EDT 2025 Sat Jan 25 15:58:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | AFM Atomic Force Microscopy Microscopy Cell Biology |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c522t-f7d36ded6dce4b3da8c5308faa6622f8cb2d233d0841945b58952eb707c1f0613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Technical contact Lead contact |
ORCID | 0000-0002-2438-5502 |
OpenAccessLink | https://doaj.org/article/58b42ab0552942739df5102e66cb7a46 |
PMID | 37481726 |
PQID | 2841403036 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_58b42ab0552942739df5102e66cb7a46 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10374873 proquest_miscellaneous_2841403036 pubmed_primary_37481726 crossref_citationtrail_10_1016_j_xpro_2023_102468 crossref_primary_10_1016_j_xpro_2023_102468 elsevier_sciencedirect_doi_10_1016_j_xpro_2023_102468 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-15 |
PublicationDateYYYYMMDD | 2023-09-15 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | STAR protocols |
PublicationTitleAlternate | STAR Protoc |
PublicationYear | 2023 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Decelle, Veronesi, Gallet, Stryhanyuk, Benettoni, Schmidt, Tucoulou, Passarelli, Bohic, Clode, Musat (bib3) 2020; 30 Garcia (bib5) 2020; 49 Guerrero, Garcia, Garcia (bib7) 2019; 13 Shekhawat, Dravid (bib8) 2005; 310 Uchihashi, Kodera, Ando (bib12) 2012; 7 Miyazawa, Izumi, Watanabe-Nakayama, Asakawa, Fukuma (bib11) 2015; 26 Tetard, Passian, Venmar, Lynch, Voy, Shekhawat, Dravid, Thundat (bib9) 2008; 3 Leis, Rockel, Andrees, Baumeister (bib4) 2009; 34 Stühn, Fritschen, Choy, Dehnert, Dietz (bib6) 2019; 11 Necas, Klapetek (bib13) 2012; 10 Penedo, Miyazawa, Okano, Furusho, Ichikawa, Alam, Miyata, Nakamura, Fukuma (bib1) 2021; 7 Penedo, Shirokawa, Alam, Miyazawa, Ichikawa, Okano, Furusho, Nakamura, Fukuma (bib2) 2021; 11 Lukinavičius, Reymond, D'Este, Masharina, Göttfert, Ta, Güther, Fournier, Rizzo, Waldmann (bib10) 2014; 11 Garcia (10.1016/j.xpro.2023.102468_bib5) 2020; 49 Necas (10.1016/j.xpro.2023.102468_bib13) 2012; 10 Miyazawa (10.1016/j.xpro.2023.102468_bib11) 2015; 26 Decelle (10.1016/j.xpro.2023.102468_bib3) 2020; 30 Guerrero (10.1016/j.xpro.2023.102468_bib7) 2019; 13 Penedo (10.1016/j.xpro.2023.102468_bib2) 2021; 11 Tetard (10.1016/j.xpro.2023.102468_bib9) 2008; 3 Penedo (10.1016/j.xpro.2023.102468_bib1) 2021; 7 Lukinavičius (10.1016/j.xpro.2023.102468_bib10) 2014; 11 Stühn (10.1016/j.xpro.2023.102468_bib6) 2019; 11 Shekhawat (10.1016/j.xpro.2023.102468_bib8) 2005; 310 Uchihashi (10.1016/j.xpro.2023.102468_bib12) 2012; 7 Leis (10.1016/j.xpro.2023.102468_bib4) 2009; 34 |
References_xml | – volume: 34 start-page: 60 year: 2009 end-page: 70 ident: bib4 article-title: Visualizing cells at the nanoscale publication-title: Trends Biochem. Sci. – volume: 49 start-page: 5850 year: 2020 end-page: 5884 ident: bib5 article-title: Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications publication-title: Chem. Soc. Rev. – volume: 3 start-page: 501 year: 2008 end-page: 505 ident: bib9 article-title: Imaging nanoparticles in cells by nanomechanical holography publication-title: Nat. Nanotechnol. – volume: 13 start-page: 9629 year: 2019 end-page: 9637 ident: bib7 article-title: Subsurface Imaging of Cell Organelles by Force Microscopy publication-title: ACS Nano – volume: 26 year: 2015 ident: bib11 article-title: Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid publication-title: Nanotechnology – volume: 11 start-page: 13089 year: 2019 end-page: 13097 ident: bib6 article-title: Nanomechanical sub-surface mapping of living biological cells by force microscopy publication-title: Nanoscale – volume: 30 start-page: 173 year: 2020 end-page: 188 ident: bib3 article-title: Subcellular Chemical Imaging: New Avenues in Cell Biology publication-title: Trends Cell Biol. – volume: 11 start-page: 731 year: 2014 end-page: 733 ident: bib10 article-title: Fluorogenic probes for live-cell imaging of the cytoskeleton publication-title: Nat. Methods – volume: 7 year: 2021 ident: bib1 article-title: Visualizing intracellular nanostructures of living cells by nanoendoscopy-AFM publication-title: Sci. Adv. – volume: 310 start-page: 89 year: 2005 end-page: 92 ident: bib8 article-title: Nanoscale imaging of buried structures via scanning near-field ultrasound holography publication-title: Science – volume: 11 start-page: 7756 year: 2021 ident: bib2 article-title: Cell penetration efficiency analysis of different atomic force microscopy nanoneedles into living cells publication-title: Sci. Rep. – volume: 10 start-page: 181 year: 2012 end-page: 188 ident: bib13 article-title: Gwyddion: an open-source software for SPM data analysis publication-title: Cent. Eur. J. Phys. – volume: 7 start-page: 1193 year: 2012 end-page: 1206 ident: bib12 article-title: Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy publication-title: Nat. Protoc. – volume: 10 start-page: 181 year: 2012 ident: 10.1016/j.xpro.2023.102468_bib13 article-title: Gwyddion: an open-source software for SPM data analysis publication-title: Cent. Eur. J. Phys. – volume: 26 year: 2015 ident: 10.1016/j.xpro.2023.102468_bib11 article-title: Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid publication-title: Nanotechnology doi: 10.1088/0957-4484/26/10/105707 – volume: 30 start-page: 173 year: 2020 ident: 10.1016/j.xpro.2023.102468_bib3 article-title: Subcellular Chemical Imaging: New Avenues in Cell Biology publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2019.12.007 – volume: 11 start-page: 731 year: 2014 ident: 10.1016/j.xpro.2023.102468_bib10 article-title: Fluorogenic probes for live-cell imaging of the cytoskeleton publication-title: Nat. Methods doi: 10.1038/nmeth.2972 – volume: 7 start-page: 1193 year: 2012 ident: 10.1016/j.xpro.2023.102468_bib12 article-title: Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.047 – volume: 11 start-page: 13089 year: 2019 ident: 10.1016/j.xpro.2023.102468_bib6 article-title: Nanomechanical sub-surface mapping of living biological cells by force microscopy publication-title: Nanoscale doi: 10.1039/C9NR03497H – volume: 7 year: 2021 ident: 10.1016/j.xpro.2023.102468_bib1 article-title: Visualizing intracellular nanostructures of living cells by nanoendoscopy-AFM publication-title: Sci. Adv. doi: 10.1126/sciadv.abj4990 – volume: 49 start-page: 5850 year: 2020 ident: 10.1016/j.xpro.2023.102468_bib5 article-title: Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00318B – volume: 34 start-page: 60 year: 2009 ident: 10.1016/j.xpro.2023.102468_bib4 article-title: Visualizing cells at the nanoscale publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2008.10.011 – volume: 13 start-page: 9629 year: 2019 ident: 10.1016/j.xpro.2023.102468_bib7 article-title: Subsurface Imaging of Cell Organelles by Force Microscopy publication-title: ACS Nano doi: 10.1021/acsnano.9b04808 – volume: 3 start-page: 501 year: 2008 ident: 10.1016/j.xpro.2023.102468_bib9 article-title: Imaging nanoparticles in cells by nanomechanical holography publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.162 – volume: 310 start-page: 89 year: 2005 ident: 10.1016/j.xpro.2023.102468_bib8 article-title: Nanoscale imaging of buried structures via scanning near-field ultrasound holography publication-title: Science doi: 10.1126/science.1117694 – volume: 11 start-page: 7756 year: 2021 ident: 10.1016/j.xpro.2023.102468_bib2 article-title: Cell penetration efficiency analysis of different atomic force microscopy nanoneedles into living cells publication-title: Sci. Rep. doi: 10.1038/s41598-021-87319-3 |
SSID | ssj0002512418 |
Score | 2.2599032 |
Snippet | Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102468 |
SubjectTerms | AFM Atomic Force Microscopy Cell Biology Cell Membrane - chemistry Microscopy Microscopy, Atomic Force - methods Nanotechnology - methods Protocol |
Title | Protocol for live imaging of intracellular nanoscale structures using atomic force microscopy with nanoneedle probes |
URI | https://dx.doi.org/10.1016/j.xpro.2023.102468 https://www.ncbi.nlm.nih.gov/pubmed/37481726 https://www.proquest.com/docview/2841403036 https://pubmed.ncbi.nlm.nih.gov/PMC10374873 https://doaj.org/article/58b42ab0552942739df5102e66cb7a46 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZQT1zQpgErbJWRuKFAbMeOcwTEVCGBOFCpN8u_AkFtgmgnjf-e9-y0ajdpXHZtYqcv79nfZ-f5e4S8Zm3jZONYoa1l-JlRFxaQrQi-9FJ56ZnDs8Nfvqr5ovq8lMuDUl-YE5blgfOLeye1q7h1pZS8qQBrm9BCGPGolHe1rZLYNmDewWIK52BE7Spt7gEAqYIpVY8nZnJy1w1MT2-xcjhKF1Sos3qASkm8_wic7pLP2zmUB6B0dUKejGySvs9WnJJHsT8j229_hu0ADqZASOkKpjParVMxIjq0tMOOcLse809pb_thA26KNAvJXsPqm2Iu_A8Kq_F157EPH-ka8_bwBMtfiju3qV0PwAcNsSRN3Dwli6tP3z_Oi7G4QuGBcm2Ltg5ChRgUWFA5Eaz2UpS6tVYpzlvtHQ9ciFBqcGAlndSN5NHVZe1ZiyTgGZngk84JlQ33iRkEGNxtI7T0ApqIMopaRq-nhO1ervGj8jgWwFiZXYrZL4MOMegQkx0yJW_2bX5n3Y177_6APtvfiZrZ6QeIJDNGkvlfJE2J3HncjPQj0wroqrv34a924WFgbKIHbR-H640B6Ec5RCAJU_I8h8v-L6LsD5BHuKKPAunIhuMrffcz6X-zpBlUixcPYfVL8hhtwRQYJi_IBIItXgLP2rpZGlKztAH2DxjmJlQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protocol+for+live+imaging+of+intracellular+nanoscale+structures+using+atomic+force+microscopy+with+nanoneedle+probes&rft.jtitle=STAR+protocols&rft.au=Ichikawa%2C+Takehiko&rft.au=Alam%2C+Mohammad+Shahidul&rft.au=Penedo%2C+Marcos&rft.au=Matsumoto%2C+Kyosuke&rft.date=2023-09-15&rft.eissn=2666-1667&rft.volume=4&rft.issue=3&rft.spage=102468&rft_id=info:doi/10.1016%2Fj.xpro.2023.102468&rft_id=info%3Apmid%2F37481726&rft.externalDocID=37481726 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-1667&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-1667&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-1667&client=summon |