Doxorubicin-conjugated siRNA lipid nanoparticles for combination cancer therapy

Evasion of apoptosis is a hallmark of cancer, attributed in part to overexpression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). In a variety of cancer types, including lymphoma, Bcl-2 is overexpressed. Therapeutic targeting of Bcl-2 has demonstrated efficacy in the clinic and is the subj...

Full description

Saved in:
Bibliographic Details
Published inActa pharmaceutica Sinica. B Vol. 13; no. 4; pp. 1429 - 1437
Main Authors Butowska, Kamila, Han, Xuexiang, Gong, Ningqiang, El-Mayta, Rakan, Haley, Rebecca M., Xue, Lulu, Zhong, Wenqun, Guo, Wei, Wang, Karin, Mitchell, Michael J.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Evasion of apoptosis is a hallmark of cancer, attributed in part to overexpression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). In a variety of cancer types, including lymphoma, Bcl-2 is overexpressed. Therapeutic targeting of Bcl-2 has demonstrated efficacy in the clinic and is the subject of extensive clinical testing in combination with chemotherapy. Therefore, the development of co-delivery systems for Bcl-2 targeting agents, such as small interfering RNA (siRNA), and chemotherapeutics, such as doxorubicin (DOX), holds promise for enabling combination cancer therapies. Lipid nanoparticles (LNPs) are a clinically advanced nucleic acid delivery system with a compact structure suitable for siRNA encapsulation and delivery. Inspired by ongoing clinical trials of albumin-hitchhiking doxorubicin prodrugs, here we developed a DOX-siRNA co-delivery strategy via conjugation of doxorubicin to the surface of siRNA-loaded LNPs. Our optimized LNPs enabled potent knockdown of Bcl-2 and efficient delivery of DOX into the nucleus of Burkitts’ lymphoma (Raji) cells, leading to effective inhibition of tumor growth in a mouse model of lymphoma. Based on these results, our LNPs may provide a platform for the co-delivery of various nucleic acids and DOX for the development of new combination cancer therapies. LNPs have been shown to efficiently encapsulate siRNA and enable potent intracellular delivery for gene knockdown. Doxorubicin-conjugated siRNA LNPs were engineered to achieve potent chemo- and RNA interference therapy. [Display omitted]
AbstractList Evasion of apoptosis is a hallmark of cancer, attributed in part to overexpression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). In a variety of cancer types, including lymphoma, Bcl-2 is overexpressed. Therapeutic targeting of Bcl-2 has demonstrated efficacy in the clinic and is the subject of extensive clinical testing in combination with chemotherapy. Therefore, the development of co-delivery systems for Bcl-2 targeting agents, such as small interfering RNA (siRNA), and chemotherapeutics, such as doxorubicin (DOX), holds promise for enabling combination cancer therapies. Lipid nanoparticles (LNPs) are a clinically advanced nucleic acid delivery system with a compact structure suitable for siRNA encapsulation and delivery. Inspired by ongoing clinical trials of albumin-hitchhiking doxorubicin prodrugs, here we developed a DOX-siRNA co-delivery strategy via conjugation of doxorubicin to the surface of siRNA-loaded LNPs. Our optimized LNPs enabled potent knockdown of Bcl-2 and efficient delivery of DOX into the nucleus of Burkitts’ lymphoma (Raji) cells, leading to effective inhibition of tumor growth in a mouse model of lymphoma. Based on these results, our LNPs may provide a platform for the co-delivery of various nucleic acids and DOX for the development of new combination cancer therapies. LNPs have been shown to efficiently encapsulate siRNA and enable potent intracellular delivery for gene knockdown. Doxorubicin-conjugated siRNA LNPs were engineered to achieve potent chemo- and RNA interference therapy. Image 1
Evasion of apoptosis is a hallmark of cancer, attributed in part to overexpression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). In a variety of cancer types, including lymphoma, Bcl-2 is overexpressed. Therapeutic targeting of Bcl-2 has demonstrated efficacy in the clinic and is the subject of extensive clinical testing in combination with chemotherapy. Therefore, the development of co-delivery systems for Bcl-2 targeting agents, such as small interfering RNA (siRNA), and chemotherapeutics, such as doxorubicin (DOX), holds promise for enabling combination cancer therapies. Lipid nanoparticles (LNPs) are a clinically advanced nucleic acid delivery system with a compact structure suitable for siRNA encapsulation and delivery. Inspired by ongoing clinical trials of albumin-hitchhiking doxorubicin prodrugs, here we developed a DOX-siRNA co-delivery strategy via conjugation of doxorubicin to the surface of siRNA-loaded LNPs. Our optimized LNPs enabled potent knockdown of Bcl-2 and efficient delivery of DOX into the nucleus of Burkitts' lymphoma (Raji) cells, leading to effective inhibition of tumor growth in a mouse model of lymphoma. Based on these results, our LNPs may provide a platform for the co-delivery of various nucleic acids and DOX for the development of new combination cancer therapies.Evasion of apoptosis is a hallmark of cancer, attributed in part to overexpression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). In a variety of cancer types, including lymphoma, Bcl-2 is overexpressed. Therapeutic targeting of Bcl-2 has demonstrated efficacy in the clinic and is the subject of extensive clinical testing in combination with chemotherapy. Therefore, the development of co-delivery systems for Bcl-2 targeting agents, such as small interfering RNA (siRNA), and chemotherapeutics, such as doxorubicin (DOX), holds promise for enabling combination cancer therapies. Lipid nanoparticles (LNPs) are a clinically advanced nucleic acid delivery system with a compact structure suitable for siRNA encapsulation and delivery. Inspired by ongoing clinical trials of albumin-hitchhiking doxorubicin prodrugs, here we developed a DOX-siRNA co-delivery strategy via conjugation of doxorubicin to the surface of siRNA-loaded LNPs. Our optimized LNPs enabled potent knockdown of Bcl-2 and efficient delivery of DOX into the nucleus of Burkitts' lymphoma (Raji) cells, leading to effective inhibition of tumor growth in a mouse model of lymphoma. Based on these results, our LNPs may provide a platform for the co-delivery of various nucleic acids and DOX for the development of new combination cancer therapies.
Evasion of apoptosis is a hallmark of cancer, attributed in part to overexpression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). In a variety of cancer types, including lymphoma, Bcl-2 is overexpressed. Therapeutic targeting of Bcl-2 has demonstrated efficacy in the clinic and is the subject of extensive clinical testing in combination with chemotherapy. Therefore, the development of co-delivery systems for Bcl-2 targeting agents, such as small interfering RNA (siRNA), and chemotherapeutics, such as doxorubicin (DOX), holds promise for enabling combination cancer therapies. Lipid nanoparticles (LNPs) are a clinically advanced nucleic acid delivery system with a compact structure suitable for siRNA encapsulation and delivery. Inspired by ongoing clinical trials of albumin-hitchhiking doxorubicin prodrugs, here we developed a DOX-siRNA co-delivery strategy via conjugation of doxorubicin to the surface of siRNA-loaded LNPs. Our optimized LNPs enabled potent knockdown of Bcl-2 and efficient delivery of DOX into the nucleus of Burkitts’ lymphoma (Raji) cells, leading to effective inhibition of tumor growth in a mouse model of lymphoma. Based on these results, our LNPs may provide a platform for the co-delivery of various nucleic acids and DOX for the development of new combination cancer therapies. LNPs have been shown to efficiently encapsulate siRNA and enable potent intracellular delivery for gene knockdown. Doxorubicin-conjugated siRNA LNPs were engineered to achieve potent chemo- and RNA interference therapy. [Display omitted]
Evasion of apoptosis is a hallmark of cancer, attributed in part to overexpression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). In a variety of cancer types, including lymphoma, Bcl-2 is overexpressed. Therapeutic targeting of Bcl-2 has demonstrated efficacy in the clinic and is the subject of extensive clinical testing in combination with chemotherapy. Therefore, the development of co-delivery systems for Bcl-2 targeting agents, such as small interfering RNA (siRNA), and chemotherapeutics, such as doxorubicin (DOX), holds promise for enabling combination cancer therapies. Lipid nanoparticles (LNPs) are a clinically advanced nucleic acid delivery system with a compact structure suitable for siRNA encapsulation and delivery. Inspired by ongoing clinical trials of albumin-hitchhiking doxorubicin prodrugs, here we developed a DOX-siRNA co-delivery strategy via conjugation of doxorubicin to the surface of siRNA-loaded LNPs. Our optimized LNPs enabled potent knockdown of Bcl-2 and efficient delivery of DOX into the nucleus of Burkitts’ lymphoma (Raji) cells, leading to effective inhibition of tumor growth in a mouse model of lymphoma. Based on these results, our LNPs may provide a platform for the co-delivery of various nucleic acids and DOX for the development of new combination cancer therapies.
Evasion of apoptosis is a hallmark of cancer, attributed in part to overexpression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). In a variety of cancer types, including lymphoma, Bcl-2 is overexpressed. Therapeutic targeting of Bcl-2 has demonstrated efficacy in the clinic and is the subject of extensive clinical testing in combination with chemotherapy. Therefore, the development of co-delivery systems for Bcl-2 targeting agents, such as small interfering RNA (siRNA), and chemotherapeutics, such as doxorubicin (DOX), holds promise for enabling combination cancer therapies. Lipid nanoparticles (LNPs) are a clinically advanced nucleic acid delivery system with a compact structure suitable for siRNA encapsulation and delivery. Inspired by ongoing clinical trials of albumin-hitchhiking doxorubicin prodrugs, here we developed a DOX-siRNA co-delivery strategy conjugation of doxorubicin to the surface of siRNA-loaded LNPs. Our optimized LNPs enabled potent knockdown of Bcl-2 and efficient delivery of DOX into the nucleus of Burkitts' lymphoma (Raji) cells, leading to effective inhibition of tumor growth in a mouse model of lymphoma. Based on these results, our LNPs may provide a platform for the co-delivery of various nucleic acids and DOX for the development of new combination cancer therapies.
Author Wang, Karin
Guo, Wei
El-Mayta, Rakan
Haley, Rebecca M.
Zhong, Wenqun
Butowska, Kamila
Mitchell, Michael J.
Han, Xuexiang
Gong, Ningqiang
Xue, Lulu
Author_xml – sequence: 1
  givenname: Kamila
  surname: Butowska
  fullname: Butowska, Kamila
  organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 2
  givenname: Xuexiang
  surname: Han
  fullname: Han, Xuexiang
  organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 3
  givenname: Ningqiang
  surname: Gong
  fullname: Gong, Ningqiang
  organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 4
  givenname: Rakan
  orcidid: 0000-0002-5855-233X
  surname: El-Mayta
  fullname: El-Mayta, Rakan
  organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 5
  givenname: Rebecca M.
  orcidid: 0000-0001-7322-7829
  surname: Haley
  fullname: Haley, Rebecca M.
  organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 6
  givenname: Lulu
  orcidid: 0000-0001-5719-1336
  surname: Xue
  fullname: Xue, Lulu
  organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 7
  givenname: Wenqun
  surname: Zhong
  fullname: Zhong, Wenqun
  organization: Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 8
  givenname: Wei
  surname: Guo
  fullname: Guo, Wei
  organization: Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 9
  givenname: Karin
  orcidid: 0000-0001-7812-2583
  surname: Wang
  fullname: Wang, Karin
  organization: Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
– sequence: 10
  givenname: Michael J.
  orcidid: 0000-0002-3628-2244
  surname: Mitchell
  fullname: Mitchell, Michael J.
  email: mjmitch@seas.upenn.edu
  organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37139433$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1r1TAYx4NM3HbcF_BCeulNa17bFAQZ0-lgOBC9Dkn69CylJ6lJO9y3N-fFg_NiuUlI_i8P-Z2jEx88IPSG4IpgUr8fKj0lU1FMaYWbChPyAp1RSkjJJGcnxzMTp-gipQHnVWdxI16hU9YQ1nLGztDdp_A7xMU463xpgx-WtZ6hK5L7_u2yGN3kusJrHyYdZ2dHSEUfYmHDxjivZxd8YbW3EIv5HqKeHl-jl70eE1wc9hX6ef35x9XX8vbuy83V5W1pBaVz2YsOTEuglb3BTa9519qaYEMBW9mQXnJijWlBSFILwWspgJOOYyJr0zaUsRW62ed2QQ9qim6j46MK2qndRYhrdZhYQccYhyb31Zhryk1fM11r3thOYp6_YYU-7rOmxWygs-DnqMcnoU9fvLtX6_CgMgiBMRM54d0hIYZfC6RZbVyyMI7aQ1iSohK3glO8K3v7b9mx5S-SLKB7gY0hpQj9UULwtrFWg9qiV1v0Cjcqo88m-Z_JunnHJw_sxuetH_ZWyLgeHESVrIPMtHMR7Jz_0z1n_wPP5MnX
CitedBy_id crossref_primary_10_1016_j_apsb_2024_03_004
crossref_primary_10_1007_s13346_024_01638_2
crossref_primary_10_1016_j_nantod_2024_102249
crossref_primary_10_1021_acsnano_3c11154
crossref_primary_10_3390_bioengineering10070760
crossref_primary_10_1186_s12929_024_01080_z
crossref_primary_10_1021_acsbiomaterials_4c02052
crossref_primary_10_1186_s11671_024_04069_7
crossref_primary_10_1021_acsami_4c08842
crossref_primary_10_1016_j_ijpharm_2023_123552
crossref_primary_10_1016_j_addr_2023_115136
crossref_primary_10_1016_j_ajps_2024_101011
crossref_primary_10_1021_acs_nanolett_3c02573
crossref_primary_10_1039_D4TB02256D
crossref_primary_10_3390_ijms26062633
crossref_primary_10_1016_j_ijpx_2023_100218
crossref_primary_10_1186_s12951_024_02972_w
crossref_primary_10_1021_acs_bioconjchem_3c00205
crossref_primary_10_1016_j_apsb_2023_03_005
crossref_primary_10_1007_s12013_024_01395_6
crossref_primary_10_1016_j_jconrel_2022_11_034
crossref_primary_10_1186_s13046_024_03167_9
crossref_primary_10_1016_j_bioorg_2025_108340
crossref_primary_10_1038_s41598_022_26523_1
crossref_primary_10_1039_D4TB01819B
crossref_primary_10_1002_cbic_202400854
crossref_primary_10_1039_D4BM01228C
crossref_primary_10_1016_j_ijpharm_2024_124917
crossref_primary_10_1016_j_humimm_2024_111221
crossref_primary_10_1002_cbic_202300633
crossref_primary_10_1016_j_addr_2024_115448
crossref_primary_10_1039_D4TB02550D
crossref_primary_10_1021_acsami_4c02532
crossref_primary_10_1039_D4BM01377H
crossref_primary_10_1007_s12195_023_00774_y
crossref_primary_10_1016_j_jddst_2024_105994
crossref_primary_10_1016_j_ejmech_2023_115612
Cites_doi 10.1016/j.jconrel.2012.02.018
10.1038/s41565-019-0591-y
10.1038/s43018-020-00165-6
10.1038/sj.cdd.4400476
10.3390/vaccines9040359
10.1080/17425247.2019.1669558
10.1002/adma.201705328
10.1007/s11095-017-2264-6
10.1016/j.jconrel.2019.10.028
10.1016/j.molmed.2021.03.003
10.1021/acs.nanolett.1c01353
10.7554/eLife.00387
10.1016/j.biomaterials.2011.10.057
10.1007/s10637-007-9104-1
10.1002/smll.200900621
10.3389/fonc.2020.584974
10.1021/nn301922x
10.1517/13543784.16.6.855
10.3322/caac.21660
10.1021/acsnano.7b05876
10.3322/caac.21492
10.1182/blood-2002-06-1899
10.1016/j.carbpol.2022.119315
10.1021/acs.nanolett.9b04246
10.1039/C5PY00168D
10.3390/ijms22073295
10.3390/ma14092135
10.1038/d41573-020-00073-5
10.1007/s00018-008-8111-5
10.1021/acs.biomac.8b00272
10.1038/onc.2008.307
10.1038/s41467-021-27493-0
10.1182/bloodadvances.2021004233
10.1039/D0BM01609H
10.1038/s41551-020-00623-7
10.1038/ncomms5277
10.3389/fonc.2018.00636
10.1242/jcs.031682
10.1007/s11095-014-1366-7
10.1126/sciadv.aba1028
10.1038/s41573-020-0090-8
10.1056/NEJMoa2035389
10.1126/science.3874430
10.1002/smtd.201700375
10.1242/jcs.195297
10.1155/2012/831263
ContentType Journal Article
Copyright 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences
2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.
2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences
Copyright_xml – notice: 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences
– notice: 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.
– notice: 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.apsb.2022.07.011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 2211-3843
EndPage 1437
ExternalDocumentID oai_doaj_org_article_ed334e7eb9604a24bf63a6a47cd80494
PMC10150035
37139433
10_1016_j_apsb_2022_07_011
S2211383522003239
Genre Journal Article
GroupedDBID ---
--K
-05
-0E
-SE
-S~
0R~
0SF
1~5
4.4
457
4G.
53G
5VR
5VS
6I.
7-5
92M
9D9
9DE
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABKZE
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
AEXQZ
AFUIB
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
CAJEE
CAJUS
CCEZO
CIEJG
DIK
EBS
EJD
FDB
GROUPED_DOAJ
GX1
HH5
HYE
HZ~
IPNFZ
IXB
JUIAU
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
Q--
Q-4
R-E
RIG
ROL
RPM
RT5
SES
SSZ
T8U
U1F
U1G
U5E
U5O
XH2
~NG
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c522t-f5deb91e98fb07fa4d9c610b2e0c871f841cbb9e5816554685e41d40186b97233
IEDL.DBID DOA
ISSN 2211-3835
IngestDate Wed Aug 27 01:08:46 EDT 2025
Thu Aug 21 18:37:32 EDT 2025
Fri Jul 11 11:37:02 EDT 2025
Mon Jul 21 06:05:20 EDT 2025
Tue Jul 01 01:53:09 EDT 2025
Thu Apr 24 22:58:41 EDT 2025
Thu Jul 20 20:07:52 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Bcl-2
siRNA delivery
Chemotherapy
Doxorubicin
Lymphoma
Lipid nanoparticles
Language English
License This is an open access article under the CC BY-NC-ND license.
2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-f5deb91e98fb07fa4d9c610b2e0c871f841cbb9e5816554685e41d40186b97233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors made equal contributions to this work.
ORCID 0000-0001-7812-2583
0000-0001-7322-7829
0000-0001-5719-1336
0000-0002-3628-2244
0000-0002-5855-233X
OpenAccessLink https://doaj.org/article/ed334e7eb9604a24bf63a6a47cd80494
PMID 37139433
PQID 2809542094
PQPubID 23479
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_ed334e7eb9604a24bf63a6a47cd80494
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10150035
proquest_miscellaneous_2809542094
pubmed_primary_37139433
crossref_primary_10_1016_j_apsb_2022_07_011
crossref_citationtrail_10_1016_j_apsb_2022_07_011
elsevier_sciencedirect_doi_10_1016_j_apsb_2022_07_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Acta pharmaceutica Sinica. B
PublicationTitleAlternate Acta Pharm Sin B
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Mitchell, Billingsley, Haley, Wechsler, Peppas, Langer (bib26) 2021; 20
Yip, Reed (bib8) 2008; 27
Evers, Kulkarni, van der Meel, Cullis, Vader, Schiffelers (bib35) 2018; 2
Mitchell, Chen, Ponmudi, Hughes, King (bib15) 2012; 160
Knox, Chen, Feld, Nematollahi, Cheiken, Pond (bib14) 2008; 26
Marcucci, Byrd, Dai, Klisovic, Kourlas, Young, Cataland (bib18) 2003; 101
White, Grillo-Hill, Barber (bib50) 2017; 130
Sung, Ferlay, Siegel, Laversanne, Soerjomataram, Jemal (bib2) 2021; 71
Lage (bib5) 2008; 65
Li, Lv, Tang, Yin (bib22) 2022; 287
Bray, Ferlay, Soerjomataram, Siegel, Torre, Jemal (bib1) 2018; 68
Xiong, Veedu, Diermeier (bib12) 2021; 22
Chen, Zhang, Wei, Stueber, Taratula, Minko (bib23) 2009; 5
Walker, Marcucci, Yin, Blum, Stock, Kohlschmidt (bib19) 2021; 13
Tavan, Azadi, Veisani (bib3) 2019; 25
Wei, Cao, Sun, Cheng, Xiong, Jin (bib11) 2020; 10
Cheng, Cao, Chen, Yu, Shuai (bib24) 2012; 33
Decaudin, Geley, Hirsch, Castedo, Marchetti, Macho (bib53) 1997; 57
Tsujimoto, Cossman, Jaffe, Croce (bib7) 1985; 228
Krohn-Grimberghe, Mitchell, Schloss, Khan, Courties, Guimaraes (bib36) 2020; 4
Butowska, Woziwodzka, Borowik, Piosik (bib49) 2021; 14
Ickenstein, Garidel (bib37) 2019; 16
DiNardo, Konopleva (bib13) 2021; 2
Guimaraes, Zhang, Spektor, Tan, Chung, Billingsley (bib44) 2019; 316
Billingsley, Singh, Ravikumar, Zhang, June, Mitchell (bib39) 2020; 20
Adams, Clark-Garvey, Porcu, Eischen (bib10) 2019; 8
Han, Zhang, Butowska, Swingle, Alameh, Weissman (bib30) 2021; 12
Shimizu, Eguchi, Kamiike, Itoh, Hasegawa, Yamabe (bib55) 1996; 56
Kratz (bib38) 2007; 16
Thi, Suys, Lee, Nguyen, Park, Truong (bib31) 2021; 9
Patel, Kaufmann (bib52) 2012; 1
Whitehead, Dorkin, Vegas, Chang, Veiseh, Matthews (bib45) 2014; 5
Riley, Kashyap, Billingsley, White, Alameh, Bose (bib41) 2021; 7
Peng, Wang, Fang, Lu, Wang, Lu (bib21) 2014; 9
Swingle, Hamilton, Mitchell (bib29) 2021; 27
Akin, Maier, Manoharan, Fitzgerald, Jayaraman, Barros (bib32) 2019; 14
(bib4) 2019
Zhang, El-Mayta, Murdoch, Warzecha, Billingsley, Shepherd (bib43) 2021; 9
Gillet, Gottesman (bib6) 2010
Guimaraes, Gaglione, Sewastianik, Carrasco, Langer, Mitchell (bib17) 2018; 12
Fenton, Olafson, Pillai, Mitchell, Langer (bib27) 2018; 30
Mitchell, Castellanos, King (bib16) 2012; 2012
Hou, Zaks, Langer, Dong (bib28) 2021; 170
Baden, El Sahly, Essink, Kotloff, Frey, Novak (bib34) 2021; 384
Shepherd, Warzecha, Yadavali, El-Mayta, Alameh, Wang (bib40) 2021; 21
El-Mayta, Zhang, Shepherd, Wang, Billingsley, Dudkin (bib42) 2021; 4
Li, Zhang, Tang (bib20) 2017; 34
Walker, Sorkin, Alabi (bib47) 2021
Whitehead, Matthews, Chang, Niroui, Dorkin, Severgnini, Anderson (bib46) 2012; 6
Yu, Wang, Zhou, Teng, Ren, Yang (bib51) 2014; 31
Northrop, Frayne, Choudhary (bib48) 2015; 6
Sun, Chen, Xie, Wang, Lin, Zhu (bib25) 2018; 19
Porter, Jänicke (bib54) 1999; 6
Andreadakis, Kumar, Roman, Tollefsen, Saville, Mayhew (bib33) 2020; 19
Brunelle, Letai (bib9) 2009; 122
Yu (10.1016/j.apsb.2022.07.011_bib51) 2014; 31
Krohn-Grimberghe (10.1016/j.apsb.2022.07.011_bib36) 2020; 4
White (10.1016/j.apsb.2022.07.011_bib50) 2017; 130
Porter (10.1016/j.apsb.2022.07.011_bib54) 1999; 6
Ickenstein (10.1016/j.apsb.2022.07.011_bib37) 2019; 16
Whitehead (10.1016/j.apsb.2022.07.011_bib45) 2014; 5
Swingle (10.1016/j.apsb.2022.07.011_bib29) 2021; 27
Riley (10.1016/j.apsb.2022.07.011_bib41) 2021; 7
Wei (10.1016/j.apsb.2022.07.011_bib11) 2020; 10
Shimizu (10.1016/j.apsb.2022.07.011_bib55) 1996; 56
Adams (10.1016/j.apsb.2022.07.011_bib10) 2019; 8
Tavan (10.1016/j.apsb.2022.07.011_bib3) 2019; 25
Li (10.1016/j.apsb.2022.07.011_bib20) 2017; 34
Lage (10.1016/j.apsb.2022.07.011_bib5) 2008; 65
Sun (10.1016/j.apsb.2022.07.011_bib25) 2018; 19
Mitchell (10.1016/j.apsb.2022.07.011_bib26) 2021; 20
Zhang (10.1016/j.apsb.2022.07.011_bib43) 2021; 9
Shepherd (10.1016/j.apsb.2022.07.011_bib40) 2021; 21
Bray (10.1016/j.apsb.2022.07.011_bib1) 2018; 68
Cheng (10.1016/j.apsb.2022.07.011_bib24) 2012; 33
Whitehead (10.1016/j.apsb.2022.07.011_bib46) 2012; 6
Xiong (10.1016/j.apsb.2022.07.011_bib12) 2021; 22
Mitchell (10.1016/j.apsb.2022.07.011_bib15) 2012; 160
Baden (10.1016/j.apsb.2022.07.011_bib34) 2021; 384
El-Mayta (10.1016/j.apsb.2022.07.011_bib42) 2021; 4
Gillet (10.1016/j.apsb.2022.07.011_bib6) 2010
Thi (10.1016/j.apsb.2022.07.011_bib31) 2021; 9
Tsujimoto (10.1016/j.apsb.2022.07.011_bib7) 1985; 228
Guimaraes (10.1016/j.apsb.2022.07.011_bib17) 2018; 12
Decaudin (10.1016/j.apsb.2022.07.011_bib53) 1997; 57
Mitchell (10.1016/j.apsb.2022.07.011_bib16) 2012; 2012
Fenton (10.1016/j.apsb.2022.07.011_bib27) 2018; 30
DiNardo (10.1016/j.apsb.2022.07.011_bib13) 2021; 2
Peng (10.1016/j.apsb.2022.07.011_bib21) 2014; 9
Brunelle (10.1016/j.apsb.2022.07.011_bib9) 2009; 122
Kratz (10.1016/j.apsb.2022.07.011_bib38) 2007; 16
Billingsley (10.1016/j.apsb.2022.07.011_bib39) 2020; 20
Evers (10.1016/j.apsb.2022.07.011_bib35) 2018; 2
Walker (10.1016/j.apsb.2022.07.011_bib47) 2021
Akin (10.1016/j.apsb.2022.07.011_bib32) 2019; 14
Hou (10.1016/j.apsb.2022.07.011_bib28) 2021; 170
Li (10.1016/j.apsb.2022.07.011_bib22) 2022; 287
Sung (10.1016/j.apsb.2022.07.011_bib2) 2021; 71
Guimaraes (10.1016/j.apsb.2022.07.011_bib44) 2019; 316
Northrop (10.1016/j.apsb.2022.07.011_bib48) 2015; 6
Marcucci (10.1016/j.apsb.2022.07.011_bib18) 2003; 101
(10.1016/j.apsb.2022.07.011_bib4) 2019
Chen (10.1016/j.apsb.2022.07.011_bib23) 2009; 5
Knox (10.1016/j.apsb.2022.07.011_bib14) 2008; 26
Han (10.1016/j.apsb.2022.07.011_bib30) 2021; 12
Butowska (10.1016/j.apsb.2022.07.011_bib49) 2021; 14
Patel (10.1016/j.apsb.2022.07.011_bib52) 2012; 1
Andreadakis (10.1016/j.apsb.2022.07.011_bib33) 2020; 19
Yip (10.1016/j.apsb.2022.07.011_bib8) 2008; 27
Walker (10.1016/j.apsb.2022.07.011_bib19) 2021; 13
References_xml – volume: 19
  start-page: 305
  year: 2020
  end-page: 306
  ident: bib33
  article-title: The COVID-19 vaccine development landscape
  publication-title: Nat Rev Drug Discov
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 10
  ident: bib16
  article-title: Nanostructures surfaces to target and kill circulating tumor cells while repelling leukocytes
  publication-title: J Nanomater
– volume: 316
  start-page: 404
  year: 2019
  end-page: 417
  ident: bib44
  article-title: Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated
  publication-title: J Control Release
– volume: 20
  start-page: 1578
  year: 2020
  end-page: 1589
  ident: bib39
  article-title: Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T engineering
  publication-title: Nano Lett
– volume: 2
  year: 2018
  ident: bib35
  article-title: State-of-the-art design and rapid-mixing production techniques of lipid nanoparticles for nucleic acid delivery
  publication-title: Small Methods
– volume: 25
  start-page: 147
  year: 2019
  end-page: 152
  ident: bib3
  article-title: Return to work in cancer patients: a systematic review and meta-analysis
  publication-title: Indian J Palliat Care
– volume: 160
  start-page: 609
  year: 2012
  end-page: 617
  ident: bib15
  article-title: E-selectin liposomal and nanotube-targeted delivery of doxorubicin to circulating tumor cells
  publication-title: J Control Release
– volume: 287
  year: 2022
  ident: bib22
  article-title: Co-delivery of doxorubicin and CRISPR/Cas9 or RNAi-expressing plasmid by chitosan-based nanoparticle for cancer therapy
  publication-title: Carbohydr Polym
– volume: 30
  year: 2018
  ident: bib27
  article-title: Advances in biomaterials for drug delivery
  publication-title: Adv Mater
– volume: 130
  start-page: 663
  year: 2017
  end-page: 669
  ident: bib50
  article-title: Cancer cell behaviors mediated by dysregulated pH dynamics at a glance
  publication-title: J Cell Sci
– volume: 6
  start-page: 99
  year: 1999
  end-page: 104
  ident: bib54
  article-title: Emerging roles of caspase-3 in apoptosis
  publication-title: Cell Death Differ
– volume: 9
  start-page: 1449
  year: 2021
  end-page: 1463
  ident: bib43
  article-title: Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver
  publication-title: Biomater Sci
– volume: 57
  start-page: 62
  year: 1997
  end-page: 67
  ident: bib53
  article-title: Bcl-2 and Bcl-XL antagonize the mitochondrial dysfunction preceding nuclear apoptosis induces by chemotherapeutic agents
  publication-title: Cancer Res
– volume: 384
  start-page: 403
  year: 2021
  end-page: 416
  ident: bib34
  article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine
  publication-title: N Engl J Med
– volume: 101
  start-page: 425
  year: 2003
  end-page: 432
  ident: bib18
  article-title: Phase 1 and pharmacodynamic studies of G3139, a Bcl-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed acute leukemia
  publication-title: Blood
– volume: 1
  year: 2012
  ident: bib52
  article-title: Cancer: how does doxorubicin work?
  publication-title: Elife
– volume: 31
  start-page: 2685
  year: 2014
  end-page: 2695
  ident: bib51
  article-title: Insight into mechanism of cellular uptake of lipid nanoparticles and intracellular release of small RNAs
  publication-title: Pharm Res (N Y)
– volume: 65
  start-page: 3145
  year: 2008
  end-page: 3167
  ident: bib5
  article-title: An overview of cancer multidrug resistance: a still unsolved problem
  publication-title: Cell Mol Life Sci
– volume: 22
  start-page: 3295
  year: 2021
  ident: bib12
  article-title: Recent advances in oligonucleotide therapeutics in oncology
  publication-title: Int J Mol Sci
– volume: 34
  start-page: 2829
  year: 2017
  end-page: 2841
  ident: bib20
  article-title: Co-delivery of doxorubicin and survivin shRNA-expressing plasmid via microenvironment-responsive dendritic mesoporous silica nanoparticles for synergistic cancer therapy
  publication-title: Pharm Res (N Y)
– volume: 20
  start-page: 101
  year: 2021
  end-page: 124
  ident: bib26
  article-title: Engineering precision nanoparticles for drug delivery
  publication-title: Nat Rev Drug Discov
– start-page: 47
  year: 2010
  end-page: 76
  ident: bib6
  article-title: Mechanism of multidrug resistance in cancer
  publication-title: Multi-drug resistance in cancer. Methods in molecular biology (methods and protocols)
– volume: 4
  year: 2021
  ident: bib42
  article-title: A nanoparticle platform for accelerated
  publication-title: Adv Ther
– volume: 16
  start-page: 855
  year: 2007
  end-page: 866
  ident: bib38
  article-title: DOXO-EMCH (INNO-206): the first albumin-binding prodrug of doxorubicin to enter clinical trials
  publication-title: Expet Opin Invest Drugs
– volume: 16
  start-page: 1205
  year: 2019
  end-page: 1226
  ident: bib37
  article-title: Lipid-based nanoparticles formulations for small molecules and RNA drugs
  publication-title: Expet Opin Drug Deliv
– volume: 68
  start-page: 394
  year: 2018
  end-page: 424
  ident: bib1
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA A Cancer J Clin
– volume: 27
  start-page: 616
  year: 2021
  end-page: 617
  ident: bib29
  article-title: Lipid nanoparticle-mediated delivery of mRNA therapeutics and vaccines
  publication-title: Trends Mol Med
– volume: 4
  start-page: 1076
  year: 2020
  end-page: 1089
  ident: bib36
  article-title: Nanoparticle-encapsulated siRNA for gene silencing in the haematopoietic stem-cell niche
  publication-title: Nat Biomed Eng
– volume: 170
  start-page: 83
  year: 2021
  end-page: 112
  ident: bib28
  article-title: Lipid nanoparticle for mRNA delivery
  publication-title: Nat Rev Mater
– volume: 9
  start-page: 359
  year: 2021
  ident: bib31
  article-title: Lipid-based nanoparticle in the clinic and clinical trials: from cancer nanomedice to COVID-19 vaccines
  publication-title: Vaccines
– volume: 71
  start-page: 209
  year: 2021
  end-page: 249
  ident: bib2
  article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA A Cancer J Clin
– volume: 5
  start-page: 4277
  year: 2014
  ident: bib45
  article-title: Degradable lipid nanoparticles with predictable
  publication-title: Nat Commun
– volume: 26
  start-page: 193
  year: 2008
  end-page: 194
  ident: bib14
  article-title: A phase I‒II study of oblimersen sodium (G3139, Genasense) in combination with doxorubicin in advanced hepatocellular carcinoma (NCI #5798)
  publication-title: Invest N Drugs
– volume: 8
  start-page: 636
  year: 2019
  ident: bib10
  article-title: Targeting the Bcl-2 family in B cell lymphoma
  publication-title: Front Oncol
– volume: 33
  start-page: 1170
  year: 2012
  end-page: 1179
  ident: bib24
  article-title: Multifunctional nanocarrier mediated co-delivery of doxorubicin and siRNA for synergistic enhancement of glioma apoptosis in rat
  publication-title: Biomaterials
– volume: 5
  start-page: 2673
  year: 2009
  end-page: 2677
  ident: bib23
  article-title: Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells
  publication-title: Small
– volume: 21
  start-page: 5671
  year: 2021
  end-page: 5680
  ident: bib40
  article-title: Scalable mRNA and siRNA lipid nanoparticle production using a parallelized microfluidic device
  publication-title: Nano Lett
– volume: 228
  start-page: 1440
  year: 1985
  end-page: 1443
  ident: bib7
  article-title: Involvement of the
  publication-title: Science
– volume: 6
  start-page: 6922
  year: 2012
  end-page: 6929
  ident: bib46
  article-title: translation of lipid nanoparticles for hepatocellular siRNA delivery
  publication-title: ACS Nano
– year: 2019
  ident: bib4
  article-title: Cancer treatment & survivorship facts & figures 2019‒2021
– volume: 27
  start-page: 6398
  year: 2008
  end-page: 6406
  ident: bib8
  article-title: Bcl-2 family proteins and cancer
  publication-title: Oncogene
– volume: 12
  start-page: 912
  year: 2018
  end-page: 931
  ident: bib17
  article-title: Nanoparticles for immune cytokine TRIAL-based cancer therapy
  publication-title: ACS Nano
– volume: 13
  start-page: 2775
  year: 2021
  end-page: 2787
  ident: bib19
  article-title: Phase 3 randomized trial of chemotherapy with or without oblimersen in older ALM patients: CALGB 10201 (Alliance)
  publication-title: Blood Adv
– volume: 122
  start-page: 437
  year: 2009
  end-page: 441
  ident: bib9
  article-title: Control of mitochondrial apoptosis by the Bcl-2 family
  publication-title: J Cell Sci
– volume: 9
  year: 2014
  ident: bib21
  article-title: Co-delivery of doxorubicin and SATB1 shRNA by thermosensitive magnetic cationic liposomes for gastric cancer therapy
  publication-title: PLoS One
– volume: 6
  start-page: 3415
  year: 2015
  end-page: 3430
  ident: bib48
  article-title: Thiol-maleimide “click” chemistry: evaluating the influence of solvent, initiator, and thiol on the reaction mechanism, kinetics, and selectivity
  publication-title: Polym Chem
– volume: 12
  start-page: 7222
  year: 2021
  ident: bib30
  article-title: An ionizable lipid toolbox for RNA delivery
  publication-title: Nat Commun
– volume: 7
  year: 2021
  ident: bib41
  article-title: Ionizable lipid nanoparticle for in utero mRNA delivery
  publication-title: Sci Adv
– volume: 14
  start-page: 1084
  year: 2019
  end-page: 1087
  ident: bib32
  article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs
  publication-title: Nat Nanotechnol
– volume: 14
  start-page: 2135
  year: 2021
  ident: bib49
  article-title: Polymeric nanocarriers: a transformation in doxorubicin therapies
  publication-title: Materials
– volume: 19
  start-page: 2248
  year: 2018
  end-page: 2256
  ident: bib25
  article-title: Co-delivery of doxorubicin and anti-BCL-2 siRNA by pH-responsive polymeric vector to overcome drug resistance in
  publication-title: Biomacromolecules
– volume: 56
  start-page: 2161
  year: 1996
  end-page: 2166
  ident: bib55
  article-title: Induction of apoptosis as well as necrosis by hypoxia and predominant prevention of apoptosis by Bcl-2 and Bcl-X
  publication-title: Cancer Res
– volume: 2
  start-page: 3
  year: 2021
  end-page: 5
  ident: bib13
  article-title: A venetoclax bench-to-bedside story
  publication-title: Nat Can (Que)
– start-page: 305
  year: 2021
  end-page: 330
  ident: bib47
  article-title: Quantitative determination of intracellular bond cleavage
  publication-title: Quantitative analysis of cellular drug transport, disposition, and delivery
– volume: 10
  start-page: 2137
  year: 2020
  ident: bib11
  article-title: Targeting Bcl-2 proteins in acute myeloid leukemia
  publication-title: Front Oncol
– volume: 160
  start-page: 609
  year: 2012
  ident: 10.1016/j.apsb.2022.07.011_bib15
  article-title: E-selectin liposomal and nanotube-targeted delivery of doxorubicin to circulating tumor cells
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2012.02.018
– volume: 14
  start-page: 1084
  year: 2019
  ident: 10.1016/j.apsb.2022.07.011_bib32
  article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs
  publication-title: Nat Nanotechnol
  doi: 10.1038/s41565-019-0591-y
– volume: 2
  start-page: 3
  year: 2021
  ident: 10.1016/j.apsb.2022.07.011_bib13
  article-title: A venetoclax bench-to-bedside story
  publication-title: Nat Can (Que)
  doi: 10.1038/s43018-020-00165-6
– volume: 6
  start-page: 99
  year: 1999
  ident: 10.1016/j.apsb.2022.07.011_bib54
  article-title: Emerging roles of caspase-3 in apoptosis
  publication-title: Cell Death Differ
  doi: 10.1038/sj.cdd.4400476
– volume: 9
  start-page: 359
  year: 2021
  ident: 10.1016/j.apsb.2022.07.011_bib31
  article-title: Lipid-based nanoparticle in the clinic and clinical trials: from cancer nanomedice to COVID-19 vaccines
  publication-title: Vaccines
  doi: 10.3390/vaccines9040359
– volume: 16
  start-page: 1205
  year: 2019
  ident: 10.1016/j.apsb.2022.07.011_bib37
  article-title: Lipid-based nanoparticles formulations for small molecules and RNA drugs
  publication-title: Expet Opin Drug Deliv
  doi: 10.1080/17425247.2019.1669558
– year: 2019
  ident: 10.1016/j.apsb.2022.07.011_bib4
– volume: 57
  start-page: 62
  year: 1997
  ident: 10.1016/j.apsb.2022.07.011_bib53
  article-title: Bcl-2 and Bcl-XL antagonize the mitochondrial dysfunction preceding nuclear apoptosis induces by chemotherapeutic agents
  publication-title: Cancer Res
– volume: 30
  year: 2018
  ident: 10.1016/j.apsb.2022.07.011_bib27
  article-title: Advances in biomaterials for drug delivery
  publication-title: Adv Mater
  doi: 10.1002/adma.201705328
– volume: 4
  year: 2021
  ident: 10.1016/j.apsb.2022.07.011_bib42
  article-title: A nanoparticle platform for accelerated in vivo oral delivery screening of nucleic acids
  publication-title: Adv Ther
– volume: 34
  start-page: 2829
  year: 2017
  ident: 10.1016/j.apsb.2022.07.011_bib20
  article-title: Co-delivery of doxorubicin and survivin shRNA-expressing plasmid via microenvironment-responsive dendritic mesoporous silica nanoparticles for synergistic cancer therapy
  publication-title: Pharm Res (N Y)
  doi: 10.1007/s11095-017-2264-6
– volume: 316
  start-page: 404
  year: 2019
  ident: 10.1016/j.apsb.2022.07.011_bib44
  article-title: Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2019.10.028
– volume: 27
  start-page: 616
  year: 2021
  ident: 10.1016/j.apsb.2022.07.011_bib29
  article-title: Lipid nanoparticle-mediated delivery of mRNA therapeutics and vaccines
  publication-title: Trends Mol Med
  doi: 10.1016/j.molmed.2021.03.003
– volume: 21
  start-page: 5671
  year: 2021
  ident: 10.1016/j.apsb.2022.07.011_bib40
  article-title: Scalable mRNA and siRNA lipid nanoparticle production using a parallelized microfluidic device
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.1c01353
– volume: 1
  year: 2012
  ident: 10.1016/j.apsb.2022.07.011_bib52
  article-title: Cancer: how does doxorubicin work?
  publication-title: Elife
  doi: 10.7554/eLife.00387
– volume: 33
  start-page: 1170
  year: 2012
  ident: 10.1016/j.apsb.2022.07.011_bib24
  article-title: Multifunctional nanocarrier mediated co-delivery of doxorubicin and siRNA for synergistic enhancement of glioma apoptosis in rat
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.10.057
– volume: 26
  start-page: 193
  year: 2008
  ident: 10.1016/j.apsb.2022.07.011_bib14
  article-title: A phase I‒II study of oblimersen sodium (G3139, Genasense) in combination with doxorubicin in advanced hepatocellular carcinoma (NCI #5798)
  publication-title: Invest N Drugs
  doi: 10.1007/s10637-007-9104-1
– volume: 5
  start-page: 2673
  year: 2009
  ident: 10.1016/j.apsb.2022.07.011_bib23
  article-title: Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells
  publication-title: Small
  doi: 10.1002/smll.200900621
– volume: 10
  start-page: 2137
  year: 2020
  ident: 10.1016/j.apsb.2022.07.011_bib11
  article-title: Targeting Bcl-2 proteins in acute myeloid leukemia
  publication-title: Front Oncol
  doi: 10.3389/fonc.2020.584974
– volume: 6
  start-page: 6922
  year: 2012
  ident: 10.1016/j.apsb.2022.07.011_bib46
  article-title: In vitro‒in vivo translation of lipid nanoparticles for hepatocellular siRNA delivery
  publication-title: ACS Nano
  doi: 10.1021/nn301922x
– volume: 16
  start-page: 855
  year: 2007
  ident: 10.1016/j.apsb.2022.07.011_bib38
  article-title: DOXO-EMCH (INNO-206): the first albumin-binding prodrug of doxorubicin to enter clinical trials
  publication-title: Expet Opin Invest Drugs
  doi: 10.1517/13543784.16.6.855
– volume: 71
  start-page: 209
  year: 2021
  ident: 10.1016/j.apsb.2022.07.011_bib2
  article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA A Cancer J Clin
  doi: 10.3322/caac.21660
– volume: 12
  start-page: 912
  year: 2018
  ident: 10.1016/j.apsb.2022.07.011_bib17
  article-title: Nanoparticles for immune cytokine TRIAL-based cancer therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05876
– volume: 68
  start-page: 394
  year: 2018
  ident: 10.1016/j.apsb.2022.07.011_bib1
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA A Cancer J Clin
  doi: 10.3322/caac.21492
– volume: 101
  start-page: 425
  year: 2003
  ident: 10.1016/j.apsb.2022.07.011_bib18
  article-title: Phase 1 and pharmacodynamic studies of G3139, a Bcl-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed acute leukemia
  publication-title: Blood
  doi: 10.1182/blood-2002-06-1899
– volume: 287
  year: 2022
  ident: 10.1016/j.apsb.2022.07.011_bib22
  article-title: Co-delivery of doxorubicin and CRISPR/Cas9 or RNAi-expressing plasmid by chitosan-based nanoparticle for cancer therapy
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2022.119315
– volume: 20
  start-page: 1578
  year: 2020
  ident: 10.1016/j.apsb.2022.07.011_bib39
  article-title: Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T engineering
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.9b04246
– volume: 6
  start-page: 3415
  year: 2015
  ident: 10.1016/j.apsb.2022.07.011_bib48
  article-title: Thiol-maleimide “click” chemistry: evaluating the influence of solvent, initiator, and thiol on the reaction mechanism, kinetics, and selectivity
  publication-title: Polym Chem
  doi: 10.1039/C5PY00168D
– volume: 22
  start-page: 3295
  year: 2021
  ident: 10.1016/j.apsb.2022.07.011_bib12
  article-title: Recent advances in oligonucleotide therapeutics in oncology
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22073295
– volume: 14
  start-page: 2135
  year: 2021
  ident: 10.1016/j.apsb.2022.07.011_bib49
  article-title: Polymeric nanocarriers: a transformation in doxorubicin therapies
  publication-title: Materials
  doi: 10.3390/ma14092135
– volume: 9
  year: 2014
  ident: 10.1016/j.apsb.2022.07.011_bib21
  article-title: Co-delivery of doxorubicin and SATB1 shRNA by thermosensitive magnetic cationic liposomes for gastric cancer therapy
  publication-title: PLoS One
– volume: 19
  start-page: 305
  year: 2020
  ident: 10.1016/j.apsb.2022.07.011_bib33
  article-title: The COVID-19 vaccine development landscape
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/d41573-020-00073-5
– volume: 65
  start-page: 3145
  year: 2008
  ident: 10.1016/j.apsb.2022.07.011_bib5
  article-title: An overview of cancer multidrug resistance: a still unsolved problem
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-008-8111-5
– volume: 19
  start-page: 2248
  year: 2018
  ident: 10.1016/j.apsb.2022.07.011_bib25
  article-title: Co-delivery of doxorubicin and anti-BCL-2 siRNA by pH-responsive polymeric vector to overcome drug resistance in in vitro and in vivo HepG2 hepatoma model
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.8b00272
– volume: 27
  start-page: 6398
  year: 2008
  ident: 10.1016/j.apsb.2022.07.011_bib8
  article-title: Bcl-2 family proteins and cancer
  publication-title: Oncogene
  doi: 10.1038/onc.2008.307
– volume: 12
  start-page: 7222
  year: 2021
  ident: 10.1016/j.apsb.2022.07.011_bib30
  article-title: An ionizable lipid toolbox for RNA delivery
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-27493-0
– volume: 13
  start-page: 2775
  year: 2021
  ident: 10.1016/j.apsb.2022.07.011_bib19
  article-title: Phase 3 randomized trial of chemotherapy with or without oblimersen in older ALM patients: CALGB 10201 (Alliance)
  publication-title: Blood Adv
  doi: 10.1182/bloodadvances.2021004233
– volume: 25
  start-page: 147
  year: 2019
  ident: 10.1016/j.apsb.2022.07.011_bib3
  article-title: Return to work in cancer patients: a systematic review and meta-analysis
  publication-title: Indian J Palliat Care
– volume: 9
  start-page: 1449
  year: 2021
  ident: 10.1016/j.apsb.2022.07.011_bib43
  article-title: Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver
  publication-title: Biomater Sci
  doi: 10.1039/D0BM01609H
– volume: 170
  start-page: 83
  year: 2021
  ident: 10.1016/j.apsb.2022.07.011_bib28
  article-title: Lipid nanoparticle for mRNA delivery
  publication-title: Nat Rev Mater
– start-page: 305
  year: 2021
  ident: 10.1016/j.apsb.2022.07.011_bib47
  article-title: Quantitative determination of intracellular bond cleavage
– volume: 4
  start-page: 1076
  year: 2020
  ident: 10.1016/j.apsb.2022.07.011_bib36
  article-title: Nanoparticle-encapsulated siRNA for gene silencing in the haematopoietic stem-cell niche
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-020-00623-7
– volume: 5
  start-page: 4277
  year: 2014
  ident: 10.1016/j.apsb.2022.07.011_bib45
  article-title: Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity
  publication-title: Nat Commun
  doi: 10.1038/ncomms5277
– volume: 8
  start-page: 636
  year: 2019
  ident: 10.1016/j.apsb.2022.07.011_bib10
  article-title: Targeting the Bcl-2 family in B cell lymphoma
  publication-title: Front Oncol
  doi: 10.3389/fonc.2018.00636
– volume: 122
  start-page: 437
  year: 2009
  ident: 10.1016/j.apsb.2022.07.011_bib9
  article-title: Control of mitochondrial apoptosis by the Bcl-2 family
  publication-title: J Cell Sci
  doi: 10.1242/jcs.031682
– volume: 31
  start-page: 2685
  year: 2014
  ident: 10.1016/j.apsb.2022.07.011_bib51
  article-title: Insight into mechanism of cellular uptake of lipid nanoparticles and intracellular release of small RNAs
  publication-title: Pharm Res (N Y)
  doi: 10.1007/s11095-014-1366-7
– volume: 56
  start-page: 2161
  year: 1996
  ident: 10.1016/j.apsb.2022.07.011_bib55
  article-title: Induction of apoptosis as well as necrosis by hypoxia and predominant prevention of apoptosis by Bcl-2 and Bcl-XL
  publication-title: Cancer Res
– start-page: 47
  year: 2010
  ident: 10.1016/j.apsb.2022.07.011_bib6
  article-title: Mechanism of multidrug resistance in cancer
– volume: 7
  year: 2021
  ident: 10.1016/j.apsb.2022.07.011_bib41
  article-title: Ionizable lipid nanoparticle for in utero mRNA delivery
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aba1028
– volume: 20
  start-page: 101
  year: 2021
  ident: 10.1016/j.apsb.2022.07.011_bib26
  article-title: Engineering precision nanoparticles for drug delivery
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/s41573-020-0090-8
– volume: 384
  start-page: 403
  year: 2021
  ident: 10.1016/j.apsb.2022.07.011_bib34
  article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2035389
– volume: 228
  start-page: 1440
  year: 1985
  ident: 10.1016/j.apsb.2022.07.011_bib7
  article-title: Involvement of the Bcl-2 gene in human follicular lymphoma
  publication-title: Science
  doi: 10.1126/science.3874430
– volume: 2
  year: 2018
  ident: 10.1016/j.apsb.2022.07.011_bib35
  article-title: State-of-the-art design and rapid-mixing production techniques of lipid nanoparticles for nucleic acid delivery
  publication-title: Small Methods
  doi: 10.1002/smtd.201700375
– volume: 130
  start-page: 663
  year: 2017
  ident: 10.1016/j.apsb.2022.07.011_bib50
  article-title: Cancer cell behaviors mediated by dysregulated pH dynamics at a glance
  publication-title: J Cell Sci
  doi: 10.1242/jcs.195297
– volume: 2012
  start-page: 1
  year: 2012
  ident: 10.1016/j.apsb.2022.07.011_bib16
  article-title: Nanostructures surfaces to target and kill circulating tumor cells while repelling leukocytes
  publication-title: J Nanomater
  doi: 10.1155/2012/831263
SSID ssj0000602275
Score 2.4639876
Snippet Evasion of apoptosis is a hallmark of cancer, attributed in part to overexpression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). In a variety of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1429
SubjectTerms Bcl-2
Chemotherapy
Doxorubicin
Lipid nanoparticles
Lymphoma
Original
siRNA delivery
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Titles
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnnpBQHks0MpIqBcabeJH4hz7oKo4lApaaW-WX4FUVbLah8T--844yZaA1AO33ayTdWYm9jfON58J-SQsq5wXKnEAhjBBEYnyoYBPwmV5wcHnkSB7lV_eiq8zOdshZ0MtDNIq-7G_G9PjaN0fmfbWnM7revqDQe7CI4CAyGQci_i4ULGIb3a6XWdJcxTJQyYjtk_whL52pqN5mfnSQprIWNTwzLLR_BRl_EfT1L8w9G825R_T08Vz8qzHlfSk6_oLshOal-TouhOm3hzTm8c6q-UxPaLXj5LVm33y7bz93S7WFl-zJ5Ah361xdc3TZf396oTe1_Pa08Y0kGD3PDoKWJeCzSCvjq6lDqNnQbtyrs0rcnvx5ebsMum3Wkgc2G-VVNIHW2ahVJVNi8oIXzoAVpaF1EFKVSmROWvLIFWWI69NySAyD7mZyi3uW8Zfk92mbcJbQqUMYGNbSg9YLARVVsag7pw14H4j0gnJBgNr1-uQ43YY93ognN1pdIpGp-i00OCUCfm8PWfeqXA82foU_bZtiQra8UC7-Kl7O-ngORehgLvOU2GYsFXOTW5E4bxCzZwJkYPX9Sgg4VL1k3_-cQgRDU8qvn4xTWjXS80UwFnBUrz2my5ktl3kBSBxwfmEqFEwje5h_EtT_4pq4BmuWaVcvvvPDr8ne_CNd2ykD2R3tViHAwBaK3sYn6QHXTYmKw
  priority: 102
  providerName: Elsevier
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb5wwELai9NJL1Xe3L7lSlUtDBbYBc6iq9BFFlZpGVVbKzfKLlmgFW9iVsv--M2B2Sxvl1BsCYxjPDP7GjL8h5LUwrLROyMgCGMIARUTS-RyOhE2ynIPO-wTZ0-xkLr5cpBd7ZCx3FAawuza0w3pS83bx9urX5j04_LtdrpZedgZiPcZ6Ik7c6nsLZqYcHfVrgPvDlxkJ8zCrkTFk7wP0EfbRXN_NZK7qKf0nU9a_kPTvzMo_pqrju-ROwJj0aDCKe2TP1_fJwdlAUr05pOe7PVfdIT2gZzv66s0D8u1Tc9W0a4O_3COIli_XuNLmaFd9Pz2ii2pZOVrrGoLtkFNHAfdSMFyIsXs1U4uW1NJha9fmIZkffz7_eBKFsguRBTC2isrUeVMkvpClifNSC1dYAFmG-dhCeFVKkVhjCp_KJMMcN5l6kTiI02RmsIYZf0T266b2TwhNUw9jbIrUAS7zXhal1shBZzSYghbxjCTjACsbOMmxNMZCjclnlwqVolApKs4VKGVG3mzvWQ6MHDe2_oB627ZENu3-RNP-UGGclHecC5-D1FksNBOmzLjOtMitk8ifMyPpqHUVgMkAOKCr6saHvxpNRIHX4q8YXftm3SkmAdoKFmPfjweT2b4izwGVC85nRE6MaSLD9Epd_eyZwRNcv4p5-vR_SP2M3AZZ-JCm9Jzsr9q1fwEIbGVe9m71G7T8Lkw
  priority: 102
  providerName: Scholars Portal
Title Doxorubicin-conjugated siRNA lipid nanoparticles for combination cancer therapy
URI https://dx.doi.org/10.1016/j.apsb.2022.07.011
https://www.ncbi.nlm.nih.gov/pubmed/37139433
https://www.proquest.com/docview/2809542094
https://pubmed.ncbi.nlm.nih.gov/PMC10150035
https://doaj.org/article/ed334e7eb9604a24bf63a6a47cd80494
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTr1UtLRlgSJXqrhA1Di2E-cIbRG0gtIKpL1ZfkUEoexqH1L333cmzi6bIsGlFytKnIdnxvE3yefPhHwSNqucFypxAIYwQRGJ8qGALeFYXnDweUuQvczPbsT3oRyuLfWFnLAoDxwN9zl4zkUogkUVEZMJW-Xc5EYUzivUNsG3L4x5a8lUfAejNB7yF7MMdfoAZ3QzZiK5y4ynFpLDLGuVOxnrjUqteH9vcHoMPv_lUK4NSqeb5FWHJulxbMVr8iI0b8jBVZSjXhzR64fZVdMjekCvHoSqF1vk59fRn9FkbvHnegJ58d0cv6l5Oq1_Xx7T-3pce9qYBtLqjj1HAeFSCFHIpluHUocxM6FxEtfiLbk5_Xb95SzpFlhIHMCuWVJJD3ZloVSVTYvKCF86gFM2C6mDRKpSgjlryyAVy5HNpmQQzENGpnKLq5Xxd2SjGTVhm1ApA9jYltIDAgtBlZUxqDZnDTjdiHRA2NLA2nXq47gIxr1e0szuNDpFo1N0WmhwyoAcrs4ZR-2NJ2ufoN9WNVE3u90B0aQ7O-nnomlA5NLruoMgEVrApeonb_5xGSIa-if-dDFNGM2nOlMAYgWEKFz7fQyZ1SPyAvC34HxAVC-Yem3oH2nq21YDnOGXqpTLnf_R6l3yEtrCIyFpj2zMJvPwAbDWzO633QrK8-EJlD9-KSgvhPoLaHQoyQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcCl4s22UIyEeqHRxrGTOMc-qLZQlgq20t4sv0JTVclqHxL775nJY0tA6oFblMSJMzOxv7E_fybkgzBRbp2QgQUwhAmKCKTzKRwJy5KUg89rguw4GV2Jz9N4ukVOurUwSKts2_6mTa9b6_bMsLXmcFYUwx8R5C68BhAQmRHPHpCHgAZS3L_hfHq8GWgJE1TJQyojFgiwRLt4puF56dnCQJ4YRbWIJ2O9DqrW8e_1U__i0L_plH_0T2dPyE4LLOlRU_enZMuXz8jBZaNMvT6kk7uFVotDekAv7zSr18_Jt9PqVzVfGZxnDyBFvlnh8Jqji-L7-IjeFrPC0VKXkGG3RDoKYJeC0SCxrn1LLYbPnDbrudYvyNXZp8nJKGj3WggsGHAZ5LHzJmM-k7kJ01wLl1lAVibyoYWcKpeCWWMyH0uWILFNxl4wB8mZTAxuXMZfku2yKv1rQuPYg41NFjsAY97LLNcaheeMBv9rEQ4I6wysbCtEjvth3KqOcXaj0CkKnaLCVIFTBuTjpsyskeG49-5j9NvmTpTQrk9U85-qtZPyjnPhU_jqJBQ6EiZPuE60SK2TKJozIHHnddWLSHhUce_L33chouBXxfkXXfpqtVCRBDwrohCf_aoJmU0VeQpQXHA-ILIXTL1v6F8pi-taDpzhoFXI493_rPA78mg0-XqhLs7HX_bIY7jCG2rSG7K9nK_8W0BdS7Nf_1W_AR3MKUo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Doxorubicin-conjugated+siRNA+lipid+nanoparticles+for+combination+cancer+therapy&rft.jtitle=Acta+pharmaceutica+Sinica.+B&rft.au=Kamila+Butowska&rft.au=Xuexiang+Han&rft.au=Ningqiang+Gong&rft.au=Rakan+El-Mayta&rft.date=2023-04-01&rft.pub=Elsevier&rft.issn=2211-3835&rft.volume=13&rft.issue=4&rft.spage=1429&rft.epage=1437&rft_id=info:doi/10.1016%2Fj.apsb.2022.07.011&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ed334e7eb9604a24bf63a6a47cd80494
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3835&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3835&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3835&client=summon