Doxorubicin-conjugated siRNA lipid nanoparticles for combination cancer therapy
Evasion of apoptosis is a hallmark of cancer, attributed in part to overexpression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). In a variety of cancer types, including lymphoma, Bcl-2 is overexpressed. Therapeutic targeting of Bcl-2 has demonstrated efficacy in the clinic and is the subj...
Saved in:
Published in | Acta pharmaceutica Sinica. B Vol. 13; no. 4; pp. 1429 - 1437 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Evasion of apoptosis is a hallmark of cancer, attributed in part to overexpression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). In a variety of cancer types, including lymphoma, Bcl-2 is overexpressed. Therapeutic targeting of Bcl-2 has demonstrated efficacy in the clinic and is the subject of extensive clinical testing in combination with chemotherapy. Therefore, the development of co-delivery systems for Bcl-2 targeting agents, such as small interfering RNA (siRNA), and chemotherapeutics, such as doxorubicin (DOX), holds promise for enabling combination cancer therapies. Lipid nanoparticles (LNPs) are a clinically advanced nucleic acid delivery system with a compact structure suitable for siRNA encapsulation and delivery. Inspired by ongoing clinical trials of albumin-hitchhiking doxorubicin prodrugs, here we developed a DOX-siRNA co-delivery strategy via conjugation of doxorubicin to the surface of siRNA-loaded LNPs. Our optimized LNPs enabled potent knockdown of Bcl-2 and efficient delivery of DOX into the nucleus of Burkitts’ lymphoma (Raji) cells, leading to effective inhibition of tumor growth in a mouse model of lymphoma. Based on these results, our LNPs may provide a platform for the co-delivery of various nucleic acids and DOX for the development of new combination cancer therapies.
LNPs have been shown to efficiently encapsulate siRNA and enable potent intracellular delivery for gene knockdown. Doxorubicin-conjugated siRNA LNPs were engineered to achieve potent chemo- and RNA interference therapy. [Display omitted] |
---|---|
AbstractList | Evasion of apoptosis is a hallmark of cancer, attributed in part to overexpression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). In a variety of cancer types, including lymphoma, Bcl-2 is overexpressed. Therapeutic targeting of Bcl-2 has demonstrated efficacy in the clinic and is the subject of extensive clinical testing in combination with chemotherapy. Therefore, the development of co-delivery systems for Bcl-2 targeting agents, such as small interfering RNA (siRNA), and chemotherapeutics, such as doxorubicin (DOX), holds promise for enabling combination cancer therapies. Lipid nanoparticles (LNPs) are a clinically advanced nucleic acid delivery system with a compact structure suitable for siRNA encapsulation and delivery. Inspired by ongoing clinical trials of albumin-hitchhiking doxorubicin prodrugs, here we developed a DOX-siRNA co-delivery strategy
via
conjugation of doxorubicin to the surface of siRNA-loaded LNPs. Our optimized LNPs enabled potent knockdown of Bcl-2 and efficient delivery of DOX into the nucleus of Burkitts’ lymphoma (Raji) cells, leading to effective inhibition of tumor growth in a mouse model of lymphoma. Based on these results, our LNPs may provide a platform for the co-delivery of various nucleic acids and DOX for the development of new combination cancer therapies.
LNPs have been shown to efficiently encapsulate siRNA and enable potent intracellular delivery for gene knockdown. Doxorubicin-conjugated siRNA LNPs were engineered to achieve potent chemo- and RNA interference therapy.
Image 1 Evasion of apoptosis is a hallmark of cancer, attributed in part to overexpression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). In a variety of cancer types, including lymphoma, Bcl-2 is overexpressed. Therapeutic targeting of Bcl-2 has demonstrated efficacy in the clinic and is the subject of extensive clinical testing in combination with chemotherapy. Therefore, the development of co-delivery systems for Bcl-2 targeting agents, such as small interfering RNA (siRNA), and chemotherapeutics, such as doxorubicin (DOX), holds promise for enabling combination cancer therapies. Lipid nanoparticles (LNPs) are a clinically advanced nucleic acid delivery system with a compact structure suitable for siRNA encapsulation and delivery. Inspired by ongoing clinical trials of albumin-hitchhiking doxorubicin prodrugs, here we developed a DOX-siRNA co-delivery strategy via conjugation of doxorubicin to the surface of siRNA-loaded LNPs. Our optimized LNPs enabled potent knockdown of Bcl-2 and efficient delivery of DOX into the nucleus of Burkitts' lymphoma (Raji) cells, leading to effective inhibition of tumor growth in a mouse model of lymphoma. Based on these results, our LNPs may provide a platform for the co-delivery of various nucleic acids and DOX for the development of new combination cancer therapies.Evasion of apoptosis is a hallmark of cancer, attributed in part to overexpression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). In a variety of cancer types, including lymphoma, Bcl-2 is overexpressed. Therapeutic targeting of Bcl-2 has demonstrated efficacy in the clinic and is the subject of extensive clinical testing in combination with chemotherapy. Therefore, the development of co-delivery systems for Bcl-2 targeting agents, such as small interfering RNA (siRNA), and chemotherapeutics, such as doxorubicin (DOX), holds promise for enabling combination cancer therapies. Lipid nanoparticles (LNPs) are a clinically advanced nucleic acid delivery system with a compact structure suitable for siRNA encapsulation and delivery. Inspired by ongoing clinical trials of albumin-hitchhiking doxorubicin prodrugs, here we developed a DOX-siRNA co-delivery strategy via conjugation of doxorubicin to the surface of siRNA-loaded LNPs. Our optimized LNPs enabled potent knockdown of Bcl-2 and efficient delivery of DOX into the nucleus of Burkitts' lymphoma (Raji) cells, leading to effective inhibition of tumor growth in a mouse model of lymphoma. Based on these results, our LNPs may provide a platform for the co-delivery of various nucleic acids and DOX for the development of new combination cancer therapies. Evasion of apoptosis is a hallmark of cancer, attributed in part to overexpression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). In a variety of cancer types, including lymphoma, Bcl-2 is overexpressed. Therapeutic targeting of Bcl-2 has demonstrated efficacy in the clinic and is the subject of extensive clinical testing in combination with chemotherapy. Therefore, the development of co-delivery systems for Bcl-2 targeting agents, such as small interfering RNA (siRNA), and chemotherapeutics, such as doxorubicin (DOX), holds promise for enabling combination cancer therapies. Lipid nanoparticles (LNPs) are a clinically advanced nucleic acid delivery system with a compact structure suitable for siRNA encapsulation and delivery. Inspired by ongoing clinical trials of albumin-hitchhiking doxorubicin prodrugs, here we developed a DOX-siRNA co-delivery strategy via conjugation of doxorubicin to the surface of siRNA-loaded LNPs. Our optimized LNPs enabled potent knockdown of Bcl-2 and efficient delivery of DOX into the nucleus of Burkitts’ lymphoma (Raji) cells, leading to effective inhibition of tumor growth in a mouse model of lymphoma. Based on these results, our LNPs may provide a platform for the co-delivery of various nucleic acids and DOX for the development of new combination cancer therapies. LNPs have been shown to efficiently encapsulate siRNA and enable potent intracellular delivery for gene knockdown. Doxorubicin-conjugated siRNA LNPs were engineered to achieve potent chemo- and RNA interference therapy. [Display omitted] Evasion of apoptosis is a hallmark of cancer, attributed in part to overexpression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). In a variety of cancer types, including lymphoma, Bcl-2 is overexpressed. Therapeutic targeting of Bcl-2 has demonstrated efficacy in the clinic and is the subject of extensive clinical testing in combination with chemotherapy. Therefore, the development of co-delivery systems for Bcl-2 targeting agents, such as small interfering RNA (siRNA), and chemotherapeutics, such as doxorubicin (DOX), holds promise for enabling combination cancer therapies. Lipid nanoparticles (LNPs) are a clinically advanced nucleic acid delivery system with a compact structure suitable for siRNA encapsulation and delivery. Inspired by ongoing clinical trials of albumin-hitchhiking doxorubicin prodrugs, here we developed a DOX-siRNA co-delivery strategy via conjugation of doxorubicin to the surface of siRNA-loaded LNPs. Our optimized LNPs enabled potent knockdown of Bcl-2 and efficient delivery of DOX into the nucleus of Burkitts’ lymphoma (Raji) cells, leading to effective inhibition of tumor growth in a mouse model of lymphoma. Based on these results, our LNPs may provide a platform for the co-delivery of various nucleic acids and DOX for the development of new combination cancer therapies. Evasion of apoptosis is a hallmark of cancer, attributed in part to overexpression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). In a variety of cancer types, including lymphoma, Bcl-2 is overexpressed. Therapeutic targeting of Bcl-2 has demonstrated efficacy in the clinic and is the subject of extensive clinical testing in combination with chemotherapy. Therefore, the development of co-delivery systems for Bcl-2 targeting agents, such as small interfering RNA (siRNA), and chemotherapeutics, such as doxorubicin (DOX), holds promise for enabling combination cancer therapies. Lipid nanoparticles (LNPs) are a clinically advanced nucleic acid delivery system with a compact structure suitable for siRNA encapsulation and delivery. Inspired by ongoing clinical trials of albumin-hitchhiking doxorubicin prodrugs, here we developed a DOX-siRNA co-delivery strategy conjugation of doxorubicin to the surface of siRNA-loaded LNPs. Our optimized LNPs enabled potent knockdown of Bcl-2 and efficient delivery of DOX into the nucleus of Burkitts' lymphoma (Raji) cells, leading to effective inhibition of tumor growth in a mouse model of lymphoma. Based on these results, our LNPs may provide a platform for the co-delivery of various nucleic acids and DOX for the development of new combination cancer therapies. |
Author | Wang, Karin Guo, Wei El-Mayta, Rakan Haley, Rebecca M. Zhong, Wenqun Butowska, Kamila Mitchell, Michael J. Han, Xuexiang Gong, Ningqiang Xue, Lulu |
Author_xml | – sequence: 1 givenname: Kamila surname: Butowska fullname: Butowska, Kamila organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 2 givenname: Xuexiang surname: Han fullname: Han, Xuexiang organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 3 givenname: Ningqiang surname: Gong fullname: Gong, Ningqiang organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 4 givenname: Rakan orcidid: 0000-0002-5855-233X surname: El-Mayta fullname: El-Mayta, Rakan organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 5 givenname: Rebecca M. orcidid: 0000-0001-7322-7829 surname: Haley fullname: Haley, Rebecca M. organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 6 givenname: Lulu orcidid: 0000-0001-5719-1336 surname: Xue fullname: Xue, Lulu organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 7 givenname: Wenqun surname: Zhong fullname: Zhong, Wenqun organization: Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 8 givenname: Wei surname: Guo fullname: Guo, Wei organization: Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 9 givenname: Karin orcidid: 0000-0001-7812-2583 surname: Wang fullname: Wang, Karin organization: Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA – sequence: 10 givenname: Michael J. orcidid: 0000-0002-3628-2244 surname: Mitchell fullname: Mitchell, Michael J. email: mjmitch@seas.upenn.edu organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37139433$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1r1TAYx4NM3HbcF_BCeulNa17bFAQZ0-lgOBC9Dkn69CylJ6lJO9y3N-fFg_NiuUlI_i8P-Z2jEx88IPSG4IpgUr8fKj0lU1FMaYWbChPyAp1RSkjJJGcnxzMTp-gipQHnVWdxI16hU9YQ1nLGztDdp_A7xMU463xpgx-WtZ6hK5L7_u2yGN3kusJrHyYdZ2dHSEUfYmHDxjivZxd8YbW3EIv5HqKeHl-jl70eE1wc9hX6ef35x9XX8vbuy83V5W1pBaVz2YsOTEuglb3BTa9519qaYEMBW9mQXnJijWlBSFILwWspgJOOYyJr0zaUsRW62ed2QQ9qim6j46MK2qndRYhrdZhYQccYhyb31Zhryk1fM11r3thOYp6_YYU-7rOmxWygs-DnqMcnoU9fvLtX6_CgMgiBMRM54d0hIYZfC6RZbVyyMI7aQ1iSohK3glO8K3v7b9mx5S-SLKB7gY0hpQj9UULwtrFWg9qiV1v0Cjcqo88m-Z_JunnHJw_sxuetH_ZWyLgeHESVrIPMtHMR7Jz_0z1n_wPP5MnX |
CitedBy_id | crossref_primary_10_1016_j_apsb_2024_03_004 crossref_primary_10_1007_s13346_024_01638_2 crossref_primary_10_1016_j_nantod_2024_102249 crossref_primary_10_1021_acsnano_3c11154 crossref_primary_10_3390_bioengineering10070760 crossref_primary_10_1186_s12929_024_01080_z crossref_primary_10_1021_acsbiomaterials_4c02052 crossref_primary_10_1186_s11671_024_04069_7 crossref_primary_10_1021_acsami_4c08842 crossref_primary_10_1016_j_ijpharm_2023_123552 crossref_primary_10_1016_j_addr_2023_115136 crossref_primary_10_1016_j_ajps_2024_101011 crossref_primary_10_1021_acs_nanolett_3c02573 crossref_primary_10_1039_D4TB02256D crossref_primary_10_3390_ijms26062633 crossref_primary_10_1016_j_ijpx_2023_100218 crossref_primary_10_1186_s12951_024_02972_w crossref_primary_10_1021_acs_bioconjchem_3c00205 crossref_primary_10_1016_j_apsb_2023_03_005 crossref_primary_10_1007_s12013_024_01395_6 crossref_primary_10_1016_j_jconrel_2022_11_034 crossref_primary_10_1186_s13046_024_03167_9 crossref_primary_10_1016_j_bioorg_2025_108340 crossref_primary_10_1038_s41598_022_26523_1 crossref_primary_10_1039_D4TB01819B crossref_primary_10_1002_cbic_202400854 crossref_primary_10_1039_D4BM01228C crossref_primary_10_1016_j_ijpharm_2024_124917 crossref_primary_10_1016_j_humimm_2024_111221 crossref_primary_10_1002_cbic_202300633 crossref_primary_10_1016_j_addr_2024_115448 crossref_primary_10_1039_D4TB02550D crossref_primary_10_1021_acsami_4c02532 crossref_primary_10_1039_D4BM01377H crossref_primary_10_1007_s12195_023_00774_y crossref_primary_10_1016_j_jddst_2024_105994 crossref_primary_10_1016_j_ejmech_2023_115612 |
Cites_doi | 10.1016/j.jconrel.2012.02.018 10.1038/s41565-019-0591-y 10.1038/s43018-020-00165-6 10.1038/sj.cdd.4400476 10.3390/vaccines9040359 10.1080/17425247.2019.1669558 10.1002/adma.201705328 10.1007/s11095-017-2264-6 10.1016/j.jconrel.2019.10.028 10.1016/j.molmed.2021.03.003 10.1021/acs.nanolett.1c01353 10.7554/eLife.00387 10.1016/j.biomaterials.2011.10.057 10.1007/s10637-007-9104-1 10.1002/smll.200900621 10.3389/fonc.2020.584974 10.1021/nn301922x 10.1517/13543784.16.6.855 10.3322/caac.21660 10.1021/acsnano.7b05876 10.3322/caac.21492 10.1182/blood-2002-06-1899 10.1016/j.carbpol.2022.119315 10.1021/acs.nanolett.9b04246 10.1039/C5PY00168D 10.3390/ijms22073295 10.3390/ma14092135 10.1038/d41573-020-00073-5 10.1007/s00018-008-8111-5 10.1021/acs.biomac.8b00272 10.1038/onc.2008.307 10.1038/s41467-021-27493-0 10.1182/bloodadvances.2021004233 10.1039/D0BM01609H 10.1038/s41551-020-00623-7 10.1038/ncomms5277 10.3389/fonc.2018.00636 10.1242/jcs.031682 10.1007/s11095-014-1366-7 10.1126/sciadv.aba1028 10.1038/s41573-020-0090-8 10.1056/NEJMoa2035389 10.1126/science.3874430 10.1002/smtd.201700375 10.1242/jcs.195297 10.1155/2012/831263 |
ContentType | Journal Article |
Copyright | 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences |
Copyright_xml | – notice: 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences – notice: 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. – notice: 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.apsb.2022.07.011 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 2211-3843 |
EndPage | 1437 |
ExternalDocumentID | oai_doaj_org_article_ed334e7eb9604a24bf63a6a47cd80494 PMC10150035 37139433 10_1016_j_apsb_2022_07_011 S2211383522003239 |
Genre | Journal Article |
GroupedDBID | --- --K -05 -0E -SE -S~ 0R~ 0SF 1~5 4.4 457 4G. 53G 5VR 5VS 6I. 7-5 92M 9D9 9DE AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABKZE ABMAC ACGFS ADBBV ADEZE ADRAZ AEXQZ AFUIB AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV CAJEE CAJUS CCEZO CIEJG DIK EBS EJD FDB GROUPED_DOAJ GX1 HH5 HYE HZ~ IPNFZ IXB JUIAU KQ8 M41 M48 NCXOZ O-L O9- OK1 Q-- Q-4 R-E RIG ROL RPM RT5 SES SSZ T8U U1F U1G U5E U5O XH2 ~NG AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c522t-f5deb91e98fb07fa4d9c610b2e0c871f841cbb9e5816554685e41d40186b97233 |
IEDL.DBID | DOA |
ISSN | 2211-3835 |
IngestDate | Wed Aug 27 01:08:46 EDT 2025 Thu Aug 21 18:37:32 EDT 2025 Fri Jul 11 11:37:02 EDT 2025 Mon Jul 21 06:05:20 EDT 2025 Tue Jul 01 01:53:09 EDT 2025 Thu Apr 24 22:58:41 EDT 2025 Thu Jul 20 20:07:52 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Bcl-2 siRNA delivery Chemotherapy Doxorubicin Lymphoma Lipid nanoparticles |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c522t-f5deb91e98fb07fa4d9c610b2e0c871f841cbb9e5816554685e41d40186b97233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors made equal contributions to this work. |
ORCID | 0000-0001-7812-2583 0000-0001-7322-7829 0000-0001-5719-1336 0000-0002-3628-2244 0000-0002-5855-233X |
OpenAccessLink | https://doaj.org/article/ed334e7eb9604a24bf63a6a47cd80494 |
PMID | 37139433 |
PQID | 2809542094 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ed334e7eb9604a24bf63a6a47cd80494 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10150035 proquest_miscellaneous_2809542094 pubmed_primary_37139433 crossref_primary_10_1016_j_apsb_2022_07_011 crossref_citationtrail_10_1016_j_apsb_2022_07_011 elsevier_sciencedirect_doi_10_1016_j_apsb_2022_07_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Acta pharmaceutica Sinica. B |
PublicationTitleAlternate | Acta Pharm Sin B |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Mitchell, Billingsley, Haley, Wechsler, Peppas, Langer (bib26) 2021; 20 Yip, Reed (bib8) 2008; 27 Evers, Kulkarni, van der Meel, Cullis, Vader, Schiffelers (bib35) 2018; 2 Mitchell, Chen, Ponmudi, Hughes, King (bib15) 2012; 160 Knox, Chen, Feld, Nematollahi, Cheiken, Pond (bib14) 2008; 26 Marcucci, Byrd, Dai, Klisovic, Kourlas, Young, Cataland (bib18) 2003; 101 White, Grillo-Hill, Barber (bib50) 2017; 130 Sung, Ferlay, Siegel, Laversanne, Soerjomataram, Jemal (bib2) 2021; 71 Lage (bib5) 2008; 65 Li, Lv, Tang, Yin (bib22) 2022; 287 Bray, Ferlay, Soerjomataram, Siegel, Torre, Jemal (bib1) 2018; 68 Xiong, Veedu, Diermeier (bib12) 2021; 22 Chen, Zhang, Wei, Stueber, Taratula, Minko (bib23) 2009; 5 Walker, Marcucci, Yin, Blum, Stock, Kohlschmidt (bib19) 2021; 13 Tavan, Azadi, Veisani (bib3) 2019; 25 Wei, Cao, Sun, Cheng, Xiong, Jin (bib11) 2020; 10 Cheng, Cao, Chen, Yu, Shuai (bib24) 2012; 33 Decaudin, Geley, Hirsch, Castedo, Marchetti, Macho (bib53) 1997; 57 Tsujimoto, Cossman, Jaffe, Croce (bib7) 1985; 228 Krohn-Grimberghe, Mitchell, Schloss, Khan, Courties, Guimaraes (bib36) 2020; 4 Butowska, Woziwodzka, Borowik, Piosik (bib49) 2021; 14 Ickenstein, Garidel (bib37) 2019; 16 DiNardo, Konopleva (bib13) 2021; 2 Guimaraes, Zhang, Spektor, Tan, Chung, Billingsley (bib44) 2019; 316 Billingsley, Singh, Ravikumar, Zhang, June, Mitchell (bib39) 2020; 20 Adams, Clark-Garvey, Porcu, Eischen (bib10) 2019; 8 Han, Zhang, Butowska, Swingle, Alameh, Weissman (bib30) 2021; 12 Shimizu, Eguchi, Kamiike, Itoh, Hasegawa, Yamabe (bib55) 1996; 56 Kratz (bib38) 2007; 16 Thi, Suys, Lee, Nguyen, Park, Truong (bib31) 2021; 9 Patel, Kaufmann (bib52) 2012; 1 Whitehead, Dorkin, Vegas, Chang, Veiseh, Matthews (bib45) 2014; 5 Riley, Kashyap, Billingsley, White, Alameh, Bose (bib41) 2021; 7 Peng, Wang, Fang, Lu, Wang, Lu (bib21) 2014; 9 Swingle, Hamilton, Mitchell (bib29) 2021; 27 Akin, Maier, Manoharan, Fitzgerald, Jayaraman, Barros (bib32) 2019; 14 (bib4) 2019 Zhang, El-Mayta, Murdoch, Warzecha, Billingsley, Shepherd (bib43) 2021; 9 Gillet, Gottesman (bib6) 2010 Guimaraes, Gaglione, Sewastianik, Carrasco, Langer, Mitchell (bib17) 2018; 12 Fenton, Olafson, Pillai, Mitchell, Langer (bib27) 2018; 30 Mitchell, Castellanos, King (bib16) 2012; 2012 Hou, Zaks, Langer, Dong (bib28) 2021; 170 Baden, El Sahly, Essink, Kotloff, Frey, Novak (bib34) 2021; 384 Shepherd, Warzecha, Yadavali, El-Mayta, Alameh, Wang (bib40) 2021; 21 El-Mayta, Zhang, Shepherd, Wang, Billingsley, Dudkin (bib42) 2021; 4 Li, Zhang, Tang (bib20) 2017; 34 Walker, Sorkin, Alabi (bib47) 2021 Whitehead, Matthews, Chang, Niroui, Dorkin, Severgnini, Anderson (bib46) 2012; 6 Yu, Wang, Zhou, Teng, Ren, Yang (bib51) 2014; 31 Northrop, Frayne, Choudhary (bib48) 2015; 6 Sun, Chen, Xie, Wang, Lin, Zhu (bib25) 2018; 19 Porter, Jänicke (bib54) 1999; 6 Andreadakis, Kumar, Roman, Tollefsen, Saville, Mayhew (bib33) 2020; 19 Brunelle, Letai (bib9) 2009; 122 Yu (10.1016/j.apsb.2022.07.011_bib51) 2014; 31 Krohn-Grimberghe (10.1016/j.apsb.2022.07.011_bib36) 2020; 4 White (10.1016/j.apsb.2022.07.011_bib50) 2017; 130 Porter (10.1016/j.apsb.2022.07.011_bib54) 1999; 6 Ickenstein (10.1016/j.apsb.2022.07.011_bib37) 2019; 16 Whitehead (10.1016/j.apsb.2022.07.011_bib45) 2014; 5 Swingle (10.1016/j.apsb.2022.07.011_bib29) 2021; 27 Riley (10.1016/j.apsb.2022.07.011_bib41) 2021; 7 Wei (10.1016/j.apsb.2022.07.011_bib11) 2020; 10 Shimizu (10.1016/j.apsb.2022.07.011_bib55) 1996; 56 Adams (10.1016/j.apsb.2022.07.011_bib10) 2019; 8 Tavan (10.1016/j.apsb.2022.07.011_bib3) 2019; 25 Li (10.1016/j.apsb.2022.07.011_bib20) 2017; 34 Lage (10.1016/j.apsb.2022.07.011_bib5) 2008; 65 Sun (10.1016/j.apsb.2022.07.011_bib25) 2018; 19 Mitchell (10.1016/j.apsb.2022.07.011_bib26) 2021; 20 Zhang (10.1016/j.apsb.2022.07.011_bib43) 2021; 9 Shepherd (10.1016/j.apsb.2022.07.011_bib40) 2021; 21 Bray (10.1016/j.apsb.2022.07.011_bib1) 2018; 68 Cheng (10.1016/j.apsb.2022.07.011_bib24) 2012; 33 Whitehead (10.1016/j.apsb.2022.07.011_bib46) 2012; 6 Xiong (10.1016/j.apsb.2022.07.011_bib12) 2021; 22 Mitchell (10.1016/j.apsb.2022.07.011_bib15) 2012; 160 Baden (10.1016/j.apsb.2022.07.011_bib34) 2021; 384 El-Mayta (10.1016/j.apsb.2022.07.011_bib42) 2021; 4 Gillet (10.1016/j.apsb.2022.07.011_bib6) 2010 Thi (10.1016/j.apsb.2022.07.011_bib31) 2021; 9 Tsujimoto (10.1016/j.apsb.2022.07.011_bib7) 1985; 228 Guimaraes (10.1016/j.apsb.2022.07.011_bib17) 2018; 12 Decaudin (10.1016/j.apsb.2022.07.011_bib53) 1997; 57 Mitchell (10.1016/j.apsb.2022.07.011_bib16) 2012; 2012 Fenton (10.1016/j.apsb.2022.07.011_bib27) 2018; 30 DiNardo (10.1016/j.apsb.2022.07.011_bib13) 2021; 2 Peng (10.1016/j.apsb.2022.07.011_bib21) 2014; 9 Brunelle (10.1016/j.apsb.2022.07.011_bib9) 2009; 122 Kratz (10.1016/j.apsb.2022.07.011_bib38) 2007; 16 Billingsley (10.1016/j.apsb.2022.07.011_bib39) 2020; 20 Evers (10.1016/j.apsb.2022.07.011_bib35) 2018; 2 Walker (10.1016/j.apsb.2022.07.011_bib47) 2021 Akin (10.1016/j.apsb.2022.07.011_bib32) 2019; 14 Hou (10.1016/j.apsb.2022.07.011_bib28) 2021; 170 Li (10.1016/j.apsb.2022.07.011_bib22) 2022; 287 Sung (10.1016/j.apsb.2022.07.011_bib2) 2021; 71 Guimaraes (10.1016/j.apsb.2022.07.011_bib44) 2019; 316 Northrop (10.1016/j.apsb.2022.07.011_bib48) 2015; 6 Marcucci (10.1016/j.apsb.2022.07.011_bib18) 2003; 101 (10.1016/j.apsb.2022.07.011_bib4) 2019 Chen (10.1016/j.apsb.2022.07.011_bib23) 2009; 5 Knox (10.1016/j.apsb.2022.07.011_bib14) 2008; 26 Han (10.1016/j.apsb.2022.07.011_bib30) 2021; 12 Butowska (10.1016/j.apsb.2022.07.011_bib49) 2021; 14 Patel (10.1016/j.apsb.2022.07.011_bib52) 2012; 1 Andreadakis (10.1016/j.apsb.2022.07.011_bib33) 2020; 19 Yip (10.1016/j.apsb.2022.07.011_bib8) 2008; 27 Walker (10.1016/j.apsb.2022.07.011_bib19) 2021; 13 |
References_xml | – volume: 19 start-page: 305 year: 2020 end-page: 306 ident: bib33 article-title: The COVID-19 vaccine development landscape publication-title: Nat Rev Drug Discov – volume: 2012 start-page: 1 year: 2012 end-page: 10 ident: bib16 article-title: Nanostructures surfaces to target and kill circulating tumor cells while repelling leukocytes publication-title: J Nanomater – volume: 316 start-page: 404 year: 2019 end-page: 417 ident: bib44 article-title: Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated publication-title: J Control Release – volume: 20 start-page: 1578 year: 2020 end-page: 1589 ident: bib39 article-title: Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T engineering publication-title: Nano Lett – volume: 2 year: 2018 ident: bib35 article-title: State-of-the-art design and rapid-mixing production techniques of lipid nanoparticles for nucleic acid delivery publication-title: Small Methods – volume: 25 start-page: 147 year: 2019 end-page: 152 ident: bib3 article-title: Return to work in cancer patients: a systematic review and meta-analysis publication-title: Indian J Palliat Care – volume: 160 start-page: 609 year: 2012 end-page: 617 ident: bib15 article-title: E-selectin liposomal and nanotube-targeted delivery of doxorubicin to circulating tumor cells publication-title: J Control Release – volume: 287 year: 2022 ident: bib22 article-title: Co-delivery of doxorubicin and CRISPR/Cas9 or RNAi-expressing plasmid by chitosan-based nanoparticle for cancer therapy publication-title: Carbohydr Polym – volume: 30 year: 2018 ident: bib27 article-title: Advances in biomaterials for drug delivery publication-title: Adv Mater – volume: 130 start-page: 663 year: 2017 end-page: 669 ident: bib50 article-title: Cancer cell behaviors mediated by dysregulated pH dynamics at a glance publication-title: J Cell Sci – volume: 6 start-page: 99 year: 1999 end-page: 104 ident: bib54 article-title: Emerging roles of caspase-3 in apoptosis publication-title: Cell Death Differ – volume: 9 start-page: 1449 year: 2021 end-page: 1463 ident: bib43 article-title: Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver publication-title: Biomater Sci – volume: 57 start-page: 62 year: 1997 end-page: 67 ident: bib53 article-title: Bcl-2 and Bcl-XL antagonize the mitochondrial dysfunction preceding nuclear apoptosis induces by chemotherapeutic agents publication-title: Cancer Res – volume: 384 start-page: 403 year: 2021 end-page: 416 ident: bib34 article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine publication-title: N Engl J Med – volume: 101 start-page: 425 year: 2003 end-page: 432 ident: bib18 article-title: Phase 1 and pharmacodynamic studies of G3139, a Bcl-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed acute leukemia publication-title: Blood – volume: 1 year: 2012 ident: bib52 article-title: Cancer: how does doxorubicin work? publication-title: Elife – volume: 31 start-page: 2685 year: 2014 end-page: 2695 ident: bib51 article-title: Insight into mechanism of cellular uptake of lipid nanoparticles and intracellular release of small RNAs publication-title: Pharm Res (N Y) – volume: 65 start-page: 3145 year: 2008 end-page: 3167 ident: bib5 article-title: An overview of cancer multidrug resistance: a still unsolved problem publication-title: Cell Mol Life Sci – volume: 22 start-page: 3295 year: 2021 ident: bib12 article-title: Recent advances in oligonucleotide therapeutics in oncology publication-title: Int J Mol Sci – volume: 34 start-page: 2829 year: 2017 end-page: 2841 ident: bib20 article-title: Co-delivery of doxorubicin and survivin shRNA-expressing plasmid via microenvironment-responsive dendritic mesoporous silica nanoparticles for synergistic cancer therapy publication-title: Pharm Res (N Y) – volume: 20 start-page: 101 year: 2021 end-page: 124 ident: bib26 article-title: Engineering precision nanoparticles for drug delivery publication-title: Nat Rev Drug Discov – start-page: 47 year: 2010 end-page: 76 ident: bib6 article-title: Mechanism of multidrug resistance in cancer publication-title: Multi-drug resistance in cancer. Methods in molecular biology (methods and protocols) – volume: 4 year: 2021 ident: bib42 article-title: A nanoparticle platform for accelerated publication-title: Adv Ther – volume: 16 start-page: 855 year: 2007 end-page: 866 ident: bib38 article-title: DOXO-EMCH (INNO-206): the first albumin-binding prodrug of doxorubicin to enter clinical trials publication-title: Expet Opin Invest Drugs – volume: 16 start-page: 1205 year: 2019 end-page: 1226 ident: bib37 article-title: Lipid-based nanoparticles formulations for small molecules and RNA drugs publication-title: Expet Opin Drug Deliv – volume: 68 start-page: 394 year: 2018 end-page: 424 ident: bib1 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA A Cancer J Clin – volume: 27 start-page: 616 year: 2021 end-page: 617 ident: bib29 article-title: Lipid nanoparticle-mediated delivery of mRNA therapeutics and vaccines publication-title: Trends Mol Med – volume: 4 start-page: 1076 year: 2020 end-page: 1089 ident: bib36 article-title: Nanoparticle-encapsulated siRNA for gene silencing in the haematopoietic stem-cell niche publication-title: Nat Biomed Eng – volume: 170 start-page: 83 year: 2021 end-page: 112 ident: bib28 article-title: Lipid nanoparticle for mRNA delivery publication-title: Nat Rev Mater – volume: 9 start-page: 359 year: 2021 ident: bib31 article-title: Lipid-based nanoparticle in the clinic and clinical trials: from cancer nanomedice to COVID-19 vaccines publication-title: Vaccines – volume: 71 start-page: 209 year: 2021 end-page: 249 ident: bib2 article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA A Cancer J Clin – volume: 5 start-page: 4277 year: 2014 ident: bib45 article-title: Degradable lipid nanoparticles with predictable publication-title: Nat Commun – volume: 26 start-page: 193 year: 2008 end-page: 194 ident: bib14 article-title: A phase I‒II study of oblimersen sodium (G3139, Genasense) in combination with doxorubicin in advanced hepatocellular carcinoma (NCI #5798) publication-title: Invest N Drugs – volume: 8 start-page: 636 year: 2019 ident: bib10 article-title: Targeting the Bcl-2 family in B cell lymphoma publication-title: Front Oncol – volume: 33 start-page: 1170 year: 2012 end-page: 1179 ident: bib24 article-title: Multifunctional nanocarrier mediated co-delivery of doxorubicin and siRNA for synergistic enhancement of glioma apoptosis in rat publication-title: Biomaterials – volume: 5 start-page: 2673 year: 2009 end-page: 2677 ident: bib23 article-title: Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells publication-title: Small – volume: 21 start-page: 5671 year: 2021 end-page: 5680 ident: bib40 article-title: Scalable mRNA and siRNA lipid nanoparticle production using a parallelized microfluidic device publication-title: Nano Lett – volume: 228 start-page: 1440 year: 1985 end-page: 1443 ident: bib7 article-title: Involvement of the publication-title: Science – volume: 6 start-page: 6922 year: 2012 end-page: 6929 ident: bib46 article-title: translation of lipid nanoparticles for hepatocellular siRNA delivery publication-title: ACS Nano – year: 2019 ident: bib4 article-title: Cancer treatment & survivorship facts & figures 2019‒2021 – volume: 27 start-page: 6398 year: 2008 end-page: 6406 ident: bib8 article-title: Bcl-2 family proteins and cancer publication-title: Oncogene – volume: 12 start-page: 912 year: 2018 end-page: 931 ident: bib17 article-title: Nanoparticles for immune cytokine TRIAL-based cancer therapy publication-title: ACS Nano – volume: 13 start-page: 2775 year: 2021 end-page: 2787 ident: bib19 article-title: Phase 3 randomized trial of chemotherapy with or without oblimersen in older ALM patients: CALGB 10201 (Alliance) publication-title: Blood Adv – volume: 122 start-page: 437 year: 2009 end-page: 441 ident: bib9 article-title: Control of mitochondrial apoptosis by the Bcl-2 family publication-title: J Cell Sci – volume: 9 year: 2014 ident: bib21 article-title: Co-delivery of doxorubicin and SATB1 shRNA by thermosensitive magnetic cationic liposomes for gastric cancer therapy publication-title: PLoS One – volume: 6 start-page: 3415 year: 2015 end-page: 3430 ident: bib48 article-title: Thiol-maleimide “click” chemistry: evaluating the influence of solvent, initiator, and thiol on the reaction mechanism, kinetics, and selectivity publication-title: Polym Chem – volume: 12 start-page: 7222 year: 2021 ident: bib30 article-title: An ionizable lipid toolbox for RNA delivery publication-title: Nat Commun – volume: 7 year: 2021 ident: bib41 article-title: Ionizable lipid nanoparticle for in utero mRNA delivery publication-title: Sci Adv – volume: 14 start-page: 1084 year: 2019 end-page: 1087 ident: bib32 article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs publication-title: Nat Nanotechnol – volume: 14 start-page: 2135 year: 2021 ident: bib49 article-title: Polymeric nanocarriers: a transformation in doxorubicin therapies publication-title: Materials – volume: 19 start-page: 2248 year: 2018 end-page: 2256 ident: bib25 article-title: Co-delivery of doxorubicin and anti-BCL-2 siRNA by pH-responsive polymeric vector to overcome drug resistance in publication-title: Biomacromolecules – volume: 56 start-page: 2161 year: 1996 end-page: 2166 ident: bib55 article-title: Induction of apoptosis as well as necrosis by hypoxia and predominant prevention of apoptosis by Bcl-2 and Bcl-X publication-title: Cancer Res – volume: 2 start-page: 3 year: 2021 end-page: 5 ident: bib13 article-title: A venetoclax bench-to-bedside story publication-title: Nat Can (Que) – start-page: 305 year: 2021 end-page: 330 ident: bib47 article-title: Quantitative determination of intracellular bond cleavage publication-title: Quantitative analysis of cellular drug transport, disposition, and delivery – volume: 10 start-page: 2137 year: 2020 ident: bib11 article-title: Targeting Bcl-2 proteins in acute myeloid leukemia publication-title: Front Oncol – volume: 160 start-page: 609 year: 2012 ident: 10.1016/j.apsb.2022.07.011_bib15 article-title: E-selectin liposomal and nanotube-targeted delivery of doxorubicin to circulating tumor cells publication-title: J Control Release doi: 10.1016/j.jconrel.2012.02.018 – volume: 14 start-page: 1084 year: 2019 ident: 10.1016/j.apsb.2022.07.011_bib32 article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs publication-title: Nat Nanotechnol doi: 10.1038/s41565-019-0591-y – volume: 2 start-page: 3 year: 2021 ident: 10.1016/j.apsb.2022.07.011_bib13 article-title: A venetoclax bench-to-bedside story publication-title: Nat Can (Que) doi: 10.1038/s43018-020-00165-6 – volume: 6 start-page: 99 year: 1999 ident: 10.1016/j.apsb.2022.07.011_bib54 article-title: Emerging roles of caspase-3 in apoptosis publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4400476 – volume: 9 start-page: 359 year: 2021 ident: 10.1016/j.apsb.2022.07.011_bib31 article-title: Lipid-based nanoparticle in the clinic and clinical trials: from cancer nanomedice to COVID-19 vaccines publication-title: Vaccines doi: 10.3390/vaccines9040359 – volume: 16 start-page: 1205 year: 2019 ident: 10.1016/j.apsb.2022.07.011_bib37 article-title: Lipid-based nanoparticles formulations for small molecules and RNA drugs publication-title: Expet Opin Drug Deliv doi: 10.1080/17425247.2019.1669558 – year: 2019 ident: 10.1016/j.apsb.2022.07.011_bib4 – volume: 57 start-page: 62 year: 1997 ident: 10.1016/j.apsb.2022.07.011_bib53 article-title: Bcl-2 and Bcl-XL antagonize the mitochondrial dysfunction preceding nuclear apoptosis induces by chemotherapeutic agents publication-title: Cancer Res – volume: 30 year: 2018 ident: 10.1016/j.apsb.2022.07.011_bib27 article-title: Advances in biomaterials for drug delivery publication-title: Adv Mater doi: 10.1002/adma.201705328 – volume: 4 year: 2021 ident: 10.1016/j.apsb.2022.07.011_bib42 article-title: A nanoparticle platform for accelerated in vivo oral delivery screening of nucleic acids publication-title: Adv Ther – volume: 34 start-page: 2829 year: 2017 ident: 10.1016/j.apsb.2022.07.011_bib20 article-title: Co-delivery of doxorubicin and survivin shRNA-expressing plasmid via microenvironment-responsive dendritic mesoporous silica nanoparticles for synergistic cancer therapy publication-title: Pharm Res (N Y) doi: 10.1007/s11095-017-2264-6 – volume: 316 start-page: 404 year: 2019 ident: 10.1016/j.apsb.2022.07.011_bib44 article-title: Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening publication-title: J Control Release doi: 10.1016/j.jconrel.2019.10.028 – volume: 27 start-page: 616 year: 2021 ident: 10.1016/j.apsb.2022.07.011_bib29 article-title: Lipid nanoparticle-mediated delivery of mRNA therapeutics and vaccines publication-title: Trends Mol Med doi: 10.1016/j.molmed.2021.03.003 – volume: 21 start-page: 5671 year: 2021 ident: 10.1016/j.apsb.2022.07.011_bib40 article-title: Scalable mRNA and siRNA lipid nanoparticle production using a parallelized microfluidic device publication-title: Nano Lett doi: 10.1021/acs.nanolett.1c01353 – volume: 1 year: 2012 ident: 10.1016/j.apsb.2022.07.011_bib52 article-title: Cancer: how does doxorubicin work? publication-title: Elife doi: 10.7554/eLife.00387 – volume: 33 start-page: 1170 year: 2012 ident: 10.1016/j.apsb.2022.07.011_bib24 article-title: Multifunctional nanocarrier mediated co-delivery of doxorubicin and siRNA for synergistic enhancement of glioma apoptosis in rat publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.10.057 – volume: 26 start-page: 193 year: 2008 ident: 10.1016/j.apsb.2022.07.011_bib14 article-title: A phase I‒II study of oblimersen sodium (G3139, Genasense) in combination with doxorubicin in advanced hepatocellular carcinoma (NCI #5798) publication-title: Invest N Drugs doi: 10.1007/s10637-007-9104-1 – volume: 5 start-page: 2673 year: 2009 ident: 10.1016/j.apsb.2022.07.011_bib23 article-title: Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells publication-title: Small doi: 10.1002/smll.200900621 – volume: 10 start-page: 2137 year: 2020 ident: 10.1016/j.apsb.2022.07.011_bib11 article-title: Targeting Bcl-2 proteins in acute myeloid leukemia publication-title: Front Oncol doi: 10.3389/fonc.2020.584974 – volume: 6 start-page: 6922 year: 2012 ident: 10.1016/j.apsb.2022.07.011_bib46 article-title: In vitro‒in vivo translation of lipid nanoparticles for hepatocellular siRNA delivery publication-title: ACS Nano doi: 10.1021/nn301922x – volume: 16 start-page: 855 year: 2007 ident: 10.1016/j.apsb.2022.07.011_bib38 article-title: DOXO-EMCH (INNO-206): the first albumin-binding prodrug of doxorubicin to enter clinical trials publication-title: Expet Opin Invest Drugs doi: 10.1517/13543784.16.6.855 – volume: 71 start-page: 209 year: 2021 ident: 10.1016/j.apsb.2022.07.011_bib2 article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA A Cancer J Clin doi: 10.3322/caac.21660 – volume: 12 start-page: 912 year: 2018 ident: 10.1016/j.apsb.2022.07.011_bib17 article-title: Nanoparticles for immune cytokine TRIAL-based cancer therapy publication-title: ACS Nano doi: 10.1021/acsnano.7b05876 – volume: 68 start-page: 394 year: 2018 ident: 10.1016/j.apsb.2022.07.011_bib1 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA A Cancer J Clin doi: 10.3322/caac.21492 – volume: 101 start-page: 425 year: 2003 ident: 10.1016/j.apsb.2022.07.011_bib18 article-title: Phase 1 and pharmacodynamic studies of G3139, a Bcl-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed acute leukemia publication-title: Blood doi: 10.1182/blood-2002-06-1899 – volume: 287 year: 2022 ident: 10.1016/j.apsb.2022.07.011_bib22 article-title: Co-delivery of doxorubicin and CRISPR/Cas9 or RNAi-expressing plasmid by chitosan-based nanoparticle for cancer therapy publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2022.119315 – volume: 20 start-page: 1578 year: 2020 ident: 10.1016/j.apsb.2022.07.011_bib39 article-title: Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T engineering publication-title: Nano Lett doi: 10.1021/acs.nanolett.9b04246 – volume: 6 start-page: 3415 year: 2015 ident: 10.1016/j.apsb.2022.07.011_bib48 article-title: Thiol-maleimide “click” chemistry: evaluating the influence of solvent, initiator, and thiol on the reaction mechanism, kinetics, and selectivity publication-title: Polym Chem doi: 10.1039/C5PY00168D – volume: 22 start-page: 3295 year: 2021 ident: 10.1016/j.apsb.2022.07.011_bib12 article-title: Recent advances in oligonucleotide therapeutics in oncology publication-title: Int J Mol Sci doi: 10.3390/ijms22073295 – volume: 14 start-page: 2135 year: 2021 ident: 10.1016/j.apsb.2022.07.011_bib49 article-title: Polymeric nanocarriers: a transformation in doxorubicin therapies publication-title: Materials doi: 10.3390/ma14092135 – volume: 9 year: 2014 ident: 10.1016/j.apsb.2022.07.011_bib21 article-title: Co-delivery of doxorubicin and SATB1 shRNA by thermosensitive magnetic cationic liposomes for gastric cancer therapy publication-title: PLoS One – volume: 19 start-page: 305 year: 2020 ident: 10.1016/j.apsb.2022.07.011_bib33 article-title: The COVID-19 vaccine development landscape publication-title: Nat Rev Drug Discov doi: 10.1038/d41573-020-00073-5 – volume: 65 start-page: 3145 year: 2008 ident: 10.1016/j.apsb.2022.07.011_bib5 article-title: An overview of cancer multidrug resistance: a still unsolved problem publication-title: Cell Mol Life Sci doi: 10.1007/s00018-008-8111-5 – volume: 19 start-page: 2248 year: 2018 ident: 10.1016/j.apsb.2022.07.011_bib25 article-title: Co-delivery of doxorubicin and anti-BCL-2 siRNA by pH-responsive polymeric vector to overcome drug resistance in in vitro and in vivo HepG2 hepatoma model publication-title: Biomacromolecules doi: 10.1021/acs.biomac.8b00272 – volume: 27 start-page: 6398 year: 2008 ident: 10.1016/j.apsb.2022.07.011_bib8 article-title: Bcl-2 family proteins and cancer publication-title: Oncogene doi: 10.1038/onc.2008.307 – volume: 12 start-page: 7222 year: 2021 ident: 10.1016/j.apsb.2022.07.011_bib30 article-title: An ionizable lipid toolbox for RNA delivery publication-title: Nat Commun doi: 10.1038/s41467-021-27493-0 – volume: 13 start-page: 2775 year: 2021 ident: 10.1016/j.apsb.2022.07.011_bib19 article-title: Phase 3 randomized trial of chemotherapy with or without oblimersen in older ALM patients: CALGB 10201 (Alliance) publication-title: Blood Adv doi: 10.1182/bloodadvances.2021004233 – volume: 25 start-page: 147 year: 2019 ident: 10.1016/j.apsb.2022.07.011_bib3 article-title: Return to work in cancer patients: a systematic review and meta-analysis publication-title: Indian J Palliat Care – volume: 9 start-page: 1449 year: 2021 ident: 10.1016/j.apsb.2022.07.011_bib43 article-title: Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver publication-title: Biomater Sci doi: 10.1039/D0BM01609H – volume: 170 start-page: 83 year: 2021 ident: 10.1016/j.apsb.2022.07.011_bib28 article-title: Lipid nanoparticle for mRNA delivery publication-title: Nat Rev Mater – start-page: 305 year: 2021 ident: 10.1016/j.apsb.2022.07.011_bib47 article-title: Quantitative determination of intracellular bond cleavage – volume: 4 start-page: 1076 year: 2020 ident: 10.1016/j.apsb.2022.07.011_bib36 article-title: Nanoparticle-encapsulated siRNA for gene silencing in the haematopoietic stem-cell niche publication-title: Nat Biomed Eng doi: 10.1038/s41551-020-00623-7 – volume: 5 start-page: 4277 year: 2014 ident: 10.1016/j.apsb.2022.07.011_bib45 article-title: Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity publication-title: Nat Commun doi: 10.1038/ncomms5277 – volume: 8 start-page: 636 year: 2019 ident: 10.1016/j.apsb.2022.07.011_bib10 article-title: Targeting the Bcl-2 family in B cell lymphoma publication-title: Front Oncol doi: 10.3389/fonc.2018.00636 – volume: 122 start-page: 437 year: 2009 ident: 10.1016/j.apsb.2022.07.011_bib9 article-title: Control of mitochondrial apoptosis by the Bcl-2 family publication-title: J Cell Sci doi: 10.1242/jcs.031682 – volume: 31 start-page: 2685 year: 2014 ident: 10.1016/j.apsb.2022.07.011_bib51 article-title: Insight into mechanism of cellular uptake of lipid nanoparticles and intracellular release of small RNAs publication-title: Pharm Res (N Y) doi: 10.1007/s11095-014-1366-7 – volume: 56 start-page: 2161 year: 1996 ident: 10.1016/j.apsb.2022.07.011_bib55 article-title: Induction of apoptosis as well as necrosis by hypoxia and predominant prevention of apoptosis by Bcl-2 and Bcl-XL publication-title: Cancer Res – start-page: 47 year: 2010 ident: 10.1016/j.apsb.2022.07.011_bib6 article-title: Mechanism of multidrug resistance in cancer – volume: 7 year: 2021 ident: 10.1016/j.apsb.2022.07.011_bib41 article-title: Ionizable lipid nanoparticle for in utero mRNA delivery publication-title: Sci Adv doi: 10.1126/sciadv.aba1028 – volume: 20 start-page: 101 year: 2021 ident: 10.1016/j.apsb.2022.07.011_bib26 article-title: Engineering precision nanoparticles for drug delivery publication-title: Nat Rev Drug Discov doi: 10.1038/s41573-020-0090-8 – volume: 384 start-page: 403 year: 2021 ident: 10.1016/j.apsb.2022.07.011_bib34 article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine publication-title: N Engl J Med doi: 10.1056/NEJMoa2035389 – volume: 228 start-page: 1440 year: 1985 ident: 10.1016/j.apsb.2022.07.011_bib7 article-title: Involvement of the Bcl-2 gene in human follicular lymphoma publication-title: Science doi: 10.1126/science.3874430 – volume: 2 year: 2018 ident: 10.1016/j.apsb.2022.07.011_bib35 article-title: State-of-the-art design and rapid-mixing production techniques of lipid nanoparticles for nucleic acid delivery publication-title: Small Methods doi: 10.1002/smtd.201700375 – volume: 130 start-page: 663 year: 2017 ident: 10.1016/j.apsb.2022.07.011_bib50 article-title: Cancer cell behaviors mediated by dysregulated pH dynamics at a glance publication-title: J Cell Sci doi: 10.1242/jcs.195297 – volume: 2012 start-page: 1 year: 2012 ident: 10.1016/j.apsb.2022.07.011_bib16 article-title: Nanostructures surfaces to target and kill circulating tumor cells while repelling leukocytes publication-title: J Nanomater doi: 10.1155/2012/831263 |
SSID | ssj0000602275 |
Score | 2.4639876 |
Snippet | Evasion of apoptosis is a hallmark of cancer, attributed in part to overexpression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). In a variety of... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1429 |
SubjectTerms | Bcl-2 Chemotherapy Doxorubicin Lipid nanoparticles Lymphoma Original siRNA delivery |
SummonAdditionalLinks | – databaseName: ScienceDirect Free and Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnnpBQHks0MpIqBcabeJH4hz7oKo4lApaaW-WX4FUVbLah8T--844yZaA1AO33ayTdWYm9jfON58J-SQsq5wXKnEAhjBBEYnyoYBPwmV5wcHnkSB7lV_eiq8zOdshZ0MtDNIq-7G_G9PjaN0fmfbWnM7revqDQe7CI4CAyGQci_i4ULGIb3a6XWdJcxTJQyYjtk_whL52pqN5mfnSQprIWNTwzLLR_BRl_EfT1L8w9G825R_T08Vz8qzHlfSk6_oLshOal-TouhOm3hzTm8c6q-UxPaLXj5LVm33y7bz93S7WFl-zJ5Ah361xdc3TZf396oTe1_Pa08Y0kGD3PDoKWJeCzSCvjq6lDqNnQbtyrs0rcnvx5ebsMum3Wkgc2G-VVNIHW2ahVJVNi8oIXzoAVpaF1EFKVSmROWvLIFWWI69NySAyD7mZyi3uW8Zfk92mbcJbQqUMYGNbSg9YLARVVsag7pw14H4j0gnJBgNr1-uQ43YY93ognN1pdIpGp-i00OCUCfm8PWfeqXA82foU_bZtiQra8UC7-Kl7O-ngORehgLvOU2GYsFXOTW5E4bxCzZwJkYPX9Sgg4VL1k3_-cQgRDU8qvn4xTWjXS80UwFnBUrz2my5ktl3kBSBxwfmEqFEwje5h_EtT_4pq4BmuWaVcvvvPDr8ne_CNd2ykD2R3tViHAwBaK3sYn6QHXTYmKw priority: 102 providerName: Elsevier – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb5wwELai9NJL1Xe3L7lSlUtDBbYBc6iq9BFFlZpGVVbKzfKLlmgFW9iVsv--M2B2Sxvl1BsCYxjPDP7GjL8h5LUwrLROyMgCGMIARUTS-RyOhE2ynIPO-wTZ0-xkLr5cpBd7ZCx3FAawuza0w3pS83bx9urX5j04_LtdrpZedgZiPcZ6Ik7c6nsLZqYcHfVrgPvDlxkJ8zCrkTFk7wP0EfbRXN_NZK7qKf0nU9a_kPTvzMo_pqrju-ROwJj0aDCKe2TP1_fJwdlAUr05pOe7PVfdIT2gZzv66s0D8u1Tc9W0a4O_3COIli_XuNLmaFd9Pz2ii2pZOVrrGoLtkFNHAfdSMFyIsXs1U4uW1NJha9fmIZkffz7_eBKFsguRBTC2isrUeVMkvpClifNSC1dYAFmG-dhCeFVKkVhjCp_KJMMcN5l6kTiI02RmsIYZf0T266b2TwhNUw9jbIrUAS7zXhal1shBZzSYghbxjCTjACsbOMmxNMZCjclnlwqVolApKs4VKGVG3mzvWQ6MHDe2_oB627ZENu3-RNP-UGGclHecC5-D1FksNBOmzLjOtMitk8ifMyPpqHUVgMkAOKCr6saHvxpNRIHX4q8YXftm3SkmAdoKFmPfjweT2b4izwGVC85nRE6MaSLD9Epd_eyZwRNcv4p5-vR_SP2M3AZZ-JCm9Jzsr9q1fwEIbGVe9m71G7T8Lkw priority: 102 providerName: Scholars Portal |
Title | Doxorubicin-conjugated siRNA lipid nanoparticles for combination cancer therapy |
URI | https://dx.doi.org/10.1016/j.apsb.2022.07.011 https://www.ncbi.nlm.nih.gov/pubmed/37139433 https://www.proquest.com/docview/2809542094 https://pubmed.ncbi.nlm.nih.gov/PMC10150035 https://doaj.org/article/ed334e7eb9604a24bf63a6a47cd80494 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTr1UtLRlgSJXqrhA1Di2E-cIbRG0gtIKpL1ZfkUEoexqH1L333cmzi6bIsGlFytKnIdnxvE3yefPhHwSNqucFypxAIYwQRGJ8qGALeFYXnDweUuQvczPbsT3oRyuLfWFnLAoDxwN9zl4zkUogkUVEZMJW-Xc5EYUzivUNsG3L4x5a8lUfAejNB7yF7MMdfoAZ3QzZiK5y4ynFpLDLGuVOxnrjUqteH9vcHoMPv_lUK4NSqeb5FWHJulxbMVr8iI0b8jBVZSjXhzR64fZVdMjekCvHoSqF1vk59fRn9FkbvHnegJ58d0cv6l5Oq1_Xx7T-3pce9qYBtLqjj1HAeFSCFHIpluHUocxM6FxEtfiLbk5_Xb95SzpFlhIHMCuWVJJD3ZloVSVTYvKCF86gFM2C6mDRKpSgjlryyAVy5HNpmQQzENGpnKLq5Xxd2SjGTVhm1ApA9jYltIDAgtBlZUxqDZnDTjdiHRA2NLA2nXq47gIxr1e0szuNDpFo1N0WmhwyoAcrs4ZR-2NJ2ufoN9WNVE3u90B0aQ7O-nnomlA5NLruoMgEVrApeonb_5xGSIa-if-dDFNGM2nOlMAYgWEKFz7fQyZ1SPyAvC34HxAVC-Yem3oH2nq21YDnOGXqpTLnf_R6l3yEtrCIyFpj2zMJvPwAbDWzO633QrK8-EJlD9-KSgvhPoLaHQoyQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcCl4s22UIyEeqHRxrGTOMc-qLZQlgq20t4sv0JTVclqHxL775nJY0tA6oFblMSJMzOxv7E_fybkgzBRbp2QgQUwhAmKCKTzKRwJy5KUg89rguw4GV2Jz9N4ukVOurUwSKts2_6mTa9b6_bMsLXmcFYUwx8R5C68BhAQmRHPHpCHgAZS3L_hfHq8GWgJE1TJQyojFgiwRLt4puF56dnCQJ4YRbWIJ2O9DqrW8e_1U__i0L_plH_0T2dPyE4LLOlRU_enZMuXz8jBZaNMvT6kk7uFVotDekAv7zSr18_Jt9PqVzVfGZxnDyBFvlnh8Jqji-L7-IjeFrPC0VKXkGG3RDoKYJeC0SCxrn1LLYbPnDbrudYvyNXZp8nJKGj3WggsGHAZ5LHzJmM-k7kJ01wLl1lAVibyoYWcKpeCWWMyH0uWILFNxl4wB8mZTAxuXMZfku2yKv1rQuPYg41NFjsAY97LLNcaheeMBv9rEQ4I6wysbCtEjvth3KqOcXaj0CkKnaLCVIFTBuTjpsyskeG49-5j9NvmTpTQrk9U85-qtZPyjnPhU_jqJBQ6EiZPuE60SK2TKJozIHHnddWLSHhUce_L33chouBXxfkXXfpqtVCRBDwrohCf_aoJmU0VeQpQXHA-ILIXTL1v6F8pi-taDpzhoFXI493_rPA78mg0-XqhLs7HX_bIY7jCG2rSG7K9nK_8W0BdS7Nf_1W_AR3MKUo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Doxorubicin-conjugated+siRNA+lipid+nanoparticles+for+combination+cancer+therapy&rft.jtitle=Acta+pharmaceutica+Sinica.+B&rft.au=Kamila+Butowska&rft.au=Xuexiang+Han&rft.au=Ningqiang+Gong&rft.au=Rakan+El-Mayta&rft.date=2023-04-01&rft.pub=Elsevier&rft.issn=2211-3835&rft.volume=13&rft.issue=4&rft.spage=1429&rft.epage=1437&rft_id=info:doi/10.1016%2Fj.apsb.2022.07.011&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ed334e7eb9604a24bf63a6a47cd80494 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3835&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3835&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3835&client=summon |