Identifying predictive features of autism spectrum disorders in a clinical sample of adolescents and adults using machine learning

Diagnosing autism spectrum disorders (ASD) is a complicated, time-consuming process which is particularly challenging in older individuals. One of the most widely used behavioral diagnostic tools is the Autism Diagnostic Observation Schedule (ADOS). Previous work using machine learning techniques su...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 10; no. 1; p. 4805
Main Authors Küpper, Charlotte, Stroth, Sanna, Wolff, Nicole, Hauck, Florian, Kliewer, Natalia, Schad-Hansjosten, Tanja, Kamp-Becker, Inge, Poustka, Luise, Roessner, Veit, Schultebraucks, Katharina, Roepke, Stefan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.03.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Diagnosing autism spectrum disorders (ASD) is a complicated, time-consuming process which is particularly challenging in older individuals. One of the most widely used behavioral diagnostic tools is the Autism Diagnostic Observation Schedule (ADOS). Previous work using machine learning techniques suggested that ASD detection in children can be achieved with substantially fewer items than the original ADOS. Here, we expand on this work with a specific focus on adolescents and adults as assessed with the ADOS Module 4. We used a machine learning algorithm (support vector machine) to examine whether ASD detection can be improved by identifying a subset of behavioral features from the ADOS Module 4 in a routine clinical sample of N = 673 high-functioning adolescents and adults with ASD (n = 385) and individuals with suspected ASD but other best-estimate or no psychiatric diagnoses (n = 288). We identified reduced subsets of 5 behavioral features for the whole sample as well as age subgroups (adolescents vs. adults) that showed good specificity and sensitivity and reached performance close to that of the existing ADOS algorithm and the full ADOS, with no significant differences in overall performance. These results may help to improve the complicated diagnostic process of ASD by encouraging future efforts to develop novel diagnostic instruments for ASD detection based on the identified constructs as well as aiding clinicians in the difficult question of differential diagnosis.
AbstractList Diagnosing autism spectrum disorders (ASD) is a complicated, time-consuming process which is particularly challenging in older individuals. One of the most widely used behavioral diagnostic tools is the Autism Diagnostic Observation Schedule (ADOS). Previous work using machine learning techniques suggested that ASD detection in children can be achieved with substantially fewer items than the original ADOS. Here, we expand on this work with a specific focus on adolescents and adults as assessed with the ADOS Module 4. We used a machine learning algorithm (support vector machine) to examine whether ASD detection can be improved by identifying a subset of behavioral features from the ADOS Module 4 in a routine clinical sample of N = 673 high-functioning adolescents and adults with ASD (n = 385) and individuals with suspected ASD but other best-estimate or no psychiatric diagnoses (n = 288). We identified reduced subsets of 5 behavioral features for the whole sample as well as age subgroups (adolescents vs. adults) that showed good specificity and sensitivity and reached performance close to that of the existing ADOS algorithm and the full ADOS, with no significant differences in overall performance. These results may help to improve the complicated diagnostic process of ASD by encouraging future efforts to develop novel diagnostic instruments for ASD detection based on the identified constructs as well as aiding clinicians in the difficult question of differential diagnosis.Diagnosing autism spectrum disorders (ASD) is a complicated, time-consuming process which is particularly challenging in older individuals. One of the most widely used behavioral diagnostic tools is the Autism Diagnostic Observation Schedule (ADOS). Previous work using machine learning techniques suggested that ASD detection in children can be achieved with substantially fewer items than the original ADOS. Here, we expand on this work with a specific focus on adolescents and adults as assessed with the ADOS Module 4. We used a machine learning algorithm (support vector machine) to examine whether ASD detection can be improved by identifying a subset of behavioral features from the ADOS Module 4 in a routine clinical sample of N = 673 high-functioning adolescents and adults with ASD (n = 385) and individuals with suspected ASD but other best-estimate or no psychiatric diagnoses (n = 288). We identified reduced subsets of 5 behavioral features for the whole sample as well as age subgroups (adolescents vs. adults) that showed good specificity and sensitivity and reached performance close to that of the existing ADOS algorithm and the full ADOS, with no significant differences in overall performance. These results may help to improve the complicated diagnostic process of ASD by encouraging future efforts to develop novel diagnostic instruments for ASD detection based on the identified constructs as well as aiding clinicians in the difficult question of differential diagnosis.
Diagnosing autism spectrum disorders (ASD) is a complicated, time-consuming process which is particularly challenging in older individuals. One of the most widely used behavioral diagnostic tools is the Autism Diagnostic Observation Schedule (ADOS). Previous work using machine learning techniques suggested that ASD detection in children can be achieved with substantially fewer items than the original ADOS. Here, we expand on this work with a specific focus on adolescents and adults as assessed with the ADOS Module 4. We used a machine learning algorithm (support vector machine) to examine whether ASD detection can be improved by identifying a subset of behavioral features from the ADOS Module 4 in a routine clinical sample of N = 673 high-functioning adolescents and adults with ASD (n = 385) and individuals with suspected ASD but other best-estimate or no psychiatric diagnoses (n = 288). We identified reduced subsets of 5 behavioral features for the whole sample as well as age subgroups (adolescents vs. adults) that showed good specificity and sensitivity and reached performance close to that of the existing ADOS algorithm and the full ADOS, with no significant differences in overall performance. These results may help to improve the complicated diagnostic process of ASD by encouraging future efforts to develop novel diagnostic instruments for ASD detection based on the identified constructs as well as aiding clinicians in the difficult question of differential diagnosis.
ArticleNumber 4805
Author Hauck, Florian
Roessner, Veit
Küpper, Charlotte
Poustka, Luise
Wolff, Nicole
Schad-Hansjosten, Tanja
Kamp-Becker, Inge
Roepke, Stefan
Kliewer, Natalia
Schultebraucks, Katharina
Stroth, Sanna
Author_xml – sequence: 1
  givenname: Charlotte
  surname: Küpper
  fullname: Küpper, Charlotte
  email: charlotte.kuepper@charite.de
  organization: Department of Psychiatry, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin
– sequence: 2
  givenname: Sanna
  surname: Stroth
  fullname: Stroth, Sanna
  organization: Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University
– sequence: 3
  givenname: Nicole
  surname: Wolff
  fullname: Wolff, Nicole
  organization: Department of Child and Adolescent Psychiatry, TU Dresden
– sequence: 4
  givenname: Florian
  surname: Hauck
  fullname: Hauck, Florian
  organization: Department of Information Systems, Freie Universität Berlin
– sequence: 5
  givenname: Natalia
  surname: Kliewer
  fullname: Kliewer, Natalia
  organization: Department of Information Systems, Freie Universität Berlin
– sequence: 6
  givenname: Tanja
  surname: Schad-Hansjosten
  fullname: Schad-Hansjosten, Tanja
  organization: Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg
– sequence: 7
  givenname: Inge
  surname: Kamp-Becker
  fullname: Kamp-Becker, Inge
  organization: Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University
– sequence: 8
  givenname: Luise
  surname: Poustka
  fullname: Poustka, Luise
  organization: Department of Child and Adolescent Psychiatry, University Medical Center
– sequence: 9
  givenname: Veit
  surname: Roessner
  fullname: Roessner, Veit
  organization: Department of Child and Adolescent Psychiatry, TU Dresden
– sequence: 10
  givenname: Katharina
  orcidid: 0000-0001-5085-8249
  surname: Schultebraucks
  fullname: Schultebraucks, Katharina
  organization: Department of Psychiatry, New York University School of Medicine, Vagelos School of Physicians and Surgeons, Department of Emergency Medicine, Columbia University Irving Medical Center
– sequence: 11
  givenname: Stefan
  surname: Roepke
  fullname: Roepke, Stefan
  email: stefan.roepke@charite.de
  organization: Department of Psychiatry, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32188882$$D View this record in MEDLINE/PubMed
BookMark eNp9UktvFiEUJabG1to_4MKQuHEzymtmmI2JaXw0aeJG14RhLl9pGBhhaNOtv1ymX6u1i94NFzjncG44L9FBiAEQek3Je0q4_JAFbQfZEEaajnakb66foSNGRNswztjBg_4QneR8SWq1bBB0eIEOOaOyFjtCv88mCKuzNy7s8JJgcmZ1V4At6LUkyDharMvq8ozzAmZNZcaTyzFNkDJ2AWtsvAvOaI-znhcPt4wpesimKmesw1T3xde25O2VWZsLFwB70CnUg1foudU-w8ndeox-fvn84_Rbc_7969npp_PGtIytDYzGaEplx7mwbcc6JjgdezKJEeQwSmOBjtIybntmx85QOzJqCSey1ULCyI_Rx73uUsYZps1d0l4tyc063aionfr_JrgLtYtXqieS9IJWgXd3Ain-KpBXNbs6pPc6QCxZMd4PhA28ExX69hH0MpYU6ngbSkpOadtX1JuHjv5auf-eCpB7gEkx5wRWGbfq1cXNoPOKErWFQe3DoGoY1G0Y1HWlskfUe_UnSXxPyhUcdpD-2X6C9QdVIMq9
CitedBy_id crossref_primary_10_4015_S1016237222500466
crossref_primary_10_1016_j_prime_2024_100602
crossref_primary_10_1111_jcpp_13650
crossref_primary_10_1155_2022_9410222
crossref_primary_10_1371_journal_pone_0241690
crossref_primary_10_1155_2022_3551528
crossref_primary_10_1016_j_psychres_2025_116353
crossref_primary_10_14801_jkiit_2023_21_8_175
crossref_primary_10_3238_arztebl_m2022_0379
crossref_primary_10_3390_brainsci13060883
crossref_primary_10_3390_life14050557
crossref_primary_10_1109_TCDS_2024_3386656
crossref_primary_10_18178_ijiet_2022_12_12_1765
crossref_primary_10_57197_JDR_2024_0053
crossref_primary_10_1007_s10803_024_06480_6
crossref_primary_10_1109_ACCESS_2024_3450970
crossref_primary_10_1109_TAFFC_2022_3178946
crossref_primary_10_1038_s41598_020_76874_w
crossref_primary_10_3389_fpsyt_2021_727308
crossref_primary_10_1007_s00521_024_09905_6
crossref_primary_10_1016_j_knosys_2023_110724
crossref_primary_10_1016_j_cosrev_2025_100730
crossref_primary_10_1038_s41598_022_21719_x
crossref_primary_10_2196_29242
crossref_primary_10_1016_j_imu_2021_100513
crossref_primary_10_3389_fpsyt_2021_637022
crossref_primary_10_3389_fpsyt_2022_826043
crossref_primary_10_1038_s41398_024_02802_5
crossref_primary_10_1038_s41598_024_56098_y
crossref_primary_10_1007_s10479_022_05035_1
crossref_primary_10_1016_j_phycom_2020_101115
crossref_primary_10_1016_j_bspc_2024_106934
crossref_primary_10_1016_j_eswa_2023_120613
crossref_primary_10_1016_j_jval_2022_07_011
crossref_primary_10_1016_j_seizure_2022_11_004
crossref_primary_10_3390_biom14010048
Cites_doi 10.1023/A:1005592401947
10.1038/tp.2015.7
10.1371/journal.pone.0093533
10.1093/jamia/ocy039
10.1007/s10803-010-1157-x
10.1007/s10803-012-1679-5
10.1177/1362361306068505
10.1023/B:JADD.0000022604.22374.5f
10.1007/s10803-014-2268-6
10.1177/1362361316671012
10.2307/2531595
10.1007/s10803-016-2886-2
10.1007/s10803-015-2532-4
10.1007/s10803-007-0403-3
10.1016/S0140-6736(13)61539-1
10.1038/tp.2012.10
10.3389/fpsyg.2018.01526
10.1371/journal.pone.0043855
10.1177/1362361310379241
10.1109/ECACE.2019.8679454
10.1371/journal.pone.0168224
10.1016/j.rasd.2016.11.012
10.1007/s10803-017-3258-2
10.18637/jss.v011.i09
10.1016/S2215-0366(15)00277-1
10.1177/1536867X0900900101
10.1176/appi.books.9780890425596
10.1038/tp.2015.221
10.1016/j.jaac.2013.02.017
10.1007/s10803-017-3188-z
10.1371/journal.pmed.1002705
10.1016/j.jaac.2014.10.003
10.1007/s00787-018-1143-y
10.1023/A:1010933404324
10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
10.18637/jss.v028.i05
10.1111/jcpp.12510
10.1371/journal.pone.0222907
10.1109/ACCESS.2019.2952609
10.1007/s00787-013-0375-0
10.1111/j.1475-3588.2012.00664.x
10.1007/s10803-006-0280-1
10.1007/s10803-014-2080-3
10.1111/jcpp.12559
10.1371/journal.pone.0000883
10.2174/1745017901814010177
10.1186/s12888-018-1800-1
10.1007/978-3-030-10925-7_12
10.1186/s12888-017-1362-7
10.1038/tp.2014.65
10.1186/s13229-017-0180-6
10.1080/17538157.2017.1399132
10.1186/1471-2105-12-77
10.1177/1362361317748245
10.1007/s00787-015-0793-2
10.1177/1460458218824711
ContentType Journal Article
Copyright The Author(s) 2020
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/s41598-020-61607-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID PMC7080741
32188882
10_1038_s41598_020_61607_w
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
  grantid: FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A
  funderid: https://doi.org/10.13039/501100002347
– fundername: Deutsche Forschungsgemeinschaft (German Research Foundation)
  grantid: SCHU 3259/1-1
  funderid: https://doi.org/10.13039/501100001659
– fundername: ;
  grantid: FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A
– fundername: ;
  grantid: SCHU 3259/1-1
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c522t-ebcca1186334f56262431b70d4be89b8cfe1b8f23f72fb6c1fb21f03085a48eb3
IEDL.DBID 7X7
ISSN 2045-2322
IngestDate Thu Aug 21 18:28:03 EDT 2025
Fri Jul 11 04:22:23 EDT 2025
Wed Aug 13 04:04:44 EDT 2025
Thu Apr 03 07:04:48 EDT 2025
Thu Apr 24 22:50:44 EDT 2025
Tue Jul 01 03:24:07 EDT 2025
Fri Feb 21 02:38:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-ebcca1186334f56262431b70d4be89b8cfe1b8f23f72fb6c1fb21f03085a48eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5085-8249
OpenAccessLink https://www.proquest.com/docview/2378831157?pq-origsite=%requestingapplication%
PMID 32188882
PQID 2378831157
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7080741
proquest_miscellaneous_2379029364
proquest_journals_2378831157
pubmed_primary_32188882
crossref_citationtrail_10_1038_s41598_020_61607_w
crossref_primary_10_1038_s41598_020_61607_w
springer_journals_10_1038_s41598_020_61607_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-18
PublicationDateYYYYMMDD 2020-03-18
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Hayes, Ford, Rafeeque, Russell (CR7) 2018; 18
Bone (CR36) 2016; 57
Kamp-Becker (CR4) 2018; 27
Thabtah (CR32) 2018; 44
Lai, Baron-Cohen (CR25) 2015; 2
Fusaro (CR54) 2014; 9
De Bildt (CR17) 2004; 34
Tariq (CR55) 2018; 15
Duda, Kosmicki, Wall (CR40) 2014; 4
CR35
CR34
CR33
CR31
Hus, Lord (CR13) 2014; 44
Happé (CR26) 2016; 46
Rutter, Le Couteur, Lord (CR12) 2003
Lai, Lombardo, Auyeung, Chakrabarti, Baron-Cohen (CR60) 2015; 54
Le Couteur, Haden, Hammal, McConachie (CR15) 2008; 38
Lee, Maenner, Heilig (CR58) 2019; 14
Lai, Lombardo, Baron-Cohen (CR1) 2014; 383
De Bildt, Sytema, Meffert, Bastiaansen (CR19) 2015; 46
Drimalla, Landwehr, Baskow, Behnia, Roepke, Dziobek, Scheffer (CR53) 2019
Mazefsky, Oswald (CR16) 2006; 10
Maenner, Yeargin-Allsopp, Braun, Christensen, Schieve (CR57) 2016; 11
Bishop, Havdahl, Huerta, Lord (CR52) 2016; 57
Falkmer, Anderson, Falkmer, Horlin (CR9) 2013; 22
Kosmicki, Sochat, Duda, Wall (CR41) 2015; 5
Lai (CR59) 2017; 21
Langmann, Becker, Poustka, Becker, Kamp-Becker (CR20) 2017; 34
Molloy, Murray, Akers, Mitchell, Manning-Courtney (CR22) 2013; 15
Wigham (CR8) 2018; 23
Zander (CR24) 2016; 25
Tromans, Chester, Kiani, Alexander, Brugha (CR29) 2018; 14
Levy, Duda, Haber, Wall (CR42) 2017; 8
(CR3) 2016
Gotham, Risi, Pickles, Lord (CR14) 2007; 37
Maddox (CR23) 2017; 47
Carpenter, Bithell (CR49) 2000; 19
CR11
Charman, Gotham (CR5) 2013; 18
DeLong, DeLong, Clarke-Pearson (CR48) 1988; 44
Fusar-Poli (CR21) 2017; 47
Pepe, Longton, Janes (CR50) 2009; 9
Kuhn (CR45) 2008; 28
Lombardo, Barnes, Wheelwright, Baron-Cohen (CR27) 2007; 2
Wall, Kosmicki, Deluca, Harstad, Fusaro (CR38) 2012; 2
Kamp-Becker (CR44) 2017; 17
Lord (CR10) 2000; 30
Duda, Ma, Haber, Wall (CR37) 2016; 6
Wall, Dally, Luyster, Jung, DeLuca (CR43) 2012; 7
Howlin, Moss (CR30) 2012; 57
Karatzoglou, Smola, Hornik, Zeileis (CR47) 2004; 11
Abbas, Garberson, Glover, Wall (CR56) 2018; 25
Breiman (CR46) 2001; 45
Robin (CR61) 2011; 12
(CR2) 2013
Joshi (CR28) 2013; 43
Bastiaansen (CR18) 2011; 41
Whyatt, Torres (CR6) 2018; 9
Howlin, Moss, Savag, Rutter (CR51) 2013; 52
Bone (CR39) 2015; 45
CA Mazefsky (61607_CR16) 2006; 10
K Gotham (61607_CR14) 2007; 37
A Karatzoglou (61607_CR47) 2004; 11
G Joshi (61607_CR28) 2013; 43
MC Lai (61607_CR1) 2014; 383
X Robin (61607_CR61) 2011; 12
M Kuhn (61607_CR45) 2008; 28
MJ Maenner (61607_CR57) 2016; 11
MC Lai (61607_CR25) 2015; 2
DP Wall (61607_CR43) 2012; 7
E Zander (61607_CR24) 2016; 25
VA Fusaro (61607_CR54) 2014; 9
M Duda (61607_CR40) 2014; 4
M Duda (61607_CR37) 2016; 6
I Kamp-Becker (61607_CR44) 2017; 17
A Le Couteur (61607_CR15) 2008; 38
V Hus (61607_CR13) 2014; 44
MC Lai (61607_CR59) 2017; 21
World Health Organization (61607_CR3) 2016
A De Bildt (61607_CR19) 2015; 46
S Levy (61607_CR42) 2017; 8
61607_CR11
SH Lee (61607_CR58) 2019; 14
FG Happé (61607_CR26) 2016; 46
L Breiman (61607_CR46) 2001; 45
Hanna Drimalla (61607_CR53) 2019
H Abbas (61607_CR56) 2018; 25
C Lord (61607_CR10) 2000; 30
F Thabtah (61607_CR32) 2018; 44
J Kosmicki (61607_CR41) 2015; 5
J Hayes (61607_CR7) 2018; 18
MC Lai (61607_CR60) 2015; 54
S Tromans (61607_CR29) 2018; 14
M Pepe (61607_CR50) 2009; 9
D Wall (61607_CR38) 2012; 2
CA Molloy (61607_CR22) 2013; 15
P Howlin (61607_CR51) 2013; 52
D Bone (61607_CR39) 2015; 45
D Bone (61607_CR36) 2016; 57
A De Bildt (61607_CR17) 2004; 34
MV Lombardo (61607_CR27) 2007; 2
M Rutter (61607_CR12) 2003
Q Tariq (61607_CR55) 2018; 15
A Langmann (61607_CR20) 2017; 34
J Carpenter (61607_CR49) 2000; 19
T Falkmer (61607_CR9) 2013; 22
ER DeLong (61607_CR48) 1988; 44
S Bishop (61607_CR52) 2016; 57
I Kamp-Becker (61607_CR4) 2018; 27
P Howlin (61607_CR30) 2012; 57
L Fusar-Poli (61607_CR21) 2017; 47
T Charman (61607_CR5) 2013; 18
BB Maddox (61607_CR23) 2017; 47
American Psychiatric Association (61607_CR2) 2013
61607_CR35
61607_CR33
61607_CR34
CP Whyatt (61607_CR6) 2018; 9
61607_CR31
S Wigham (61607_CR8) 2018; 23
JA Bastiaansen (61607_CR18) 2011; 41
References_xml – volume: 44
  start-page: 837
  issue: 3
  year: 1988
  end-page: 845
  ident: CR48
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics.
– volume: 9
  start-page: 1526
  year: 2018
  ident: CR6
  article-title: Autism Research: An objective quantitative review of progress and focus between 1994 and 2015
  publication-title: Front. Psychol.
– volume: 2
  start-page: e883
  issue: 9
  year: 2007
  ident: CR27
  article-title: Self-referential cognition and empathy in autism
  publication-title: PLoS ONE.
– start-page: 193
  year: 2019
  end-page: 208
  ident: CR53
  article-title: Detecting Autism by Analyzing a Simulated Social Interaction
  publication-title: Machine Learning and Knowledge Discovery in Databases
– volume: 34
  start-page: 34
  year: 2017
  end-page: 43
  ident: CR20
  article-title: Diagnostic utility of the autism diagnostic observation schedule in a clinical sample of adolescents and adults
  publication-title: Res Autism Spectr Disord.
– volume: 23
  start-page: 287
  year: 2018
  end-page: 305
  ident: CR8
  article-title: Psychometric properties of questionnaires and diagnostic measures for autism spectrum disorders in adults: A systematic review
  publication-title: Autism.
– volume: 57
  start-page: 927
  issue: 8
  year: 2016
  end-page: 937
  ident: CR36
  article-title: Use of machine learning to improve autism screening and diagnostic instruments: effectiveness, efficiency, and multi-instrument fusion
  publication-title: J Child Psychol Psychiatry.
– volume: 17
  issue: 1
  year: 2017
  ident: CR44
  article-title: Study protocol of the ASD-Net, the German research consortium for the study of autism spectrum disorder across the lifespan: from a better etiological understanding, through valid diagnosis, to more effective health care
  publication-title: BMC Psychiatry.
– year: 2016
  ident: CR3
  publication-title: The International Statistical Classification of Dieases and Related Health Problems 10th Revision (ICD-10).
– volume: 41
  start-page: 1256
  year: 2011
  end-page: 1266
  ident: CR18
  article-title: Diagnosing autism spectrum disorders in adults: The use of Autism Diagnostic Observation Schedule (ADOS) Module 4
  publication-title: Journal of Autism and Developmental Disorders.
– ident: CR35
– volume: 37
  start-page: 613
  issue: 4
  year: 2007
  end-page: 627
  ident: CR14
  article-title: The Autism diagnostic observation schedule: Revised algorithms for improved diagnostic validity
  publication-title: Journal of Autism and Develop- mental Disordersmental Disorders.
– volume: 6
  year: 2016
  ident: CR37
  article-title: Use of machine learning for behavioral distinction of autism and ADHD
  publication-title: Translational Psychiatry.
– volume: 2
  issue: 4
  year: 2012
  ident: CR38
  article-title: Use of machine learning to shorten observation-based screening and diagnosis of autism
  publication-title: Transl Psychiatry.
– volume: 8
  year: 2017
  ident: CR42
  article-title: Sparsifying machine learning models identify stable subsets of predictive features for behavioral detection of autism
  publication-title: Molecular Autism.
– volume: 11
  start-page: 1
  issue: 9
  year: 2004
  end-page: 20
  ident: CR47
  article-title: kernlab-an S4 package for kernel methods in R
  publication-title: Journal of statistical software.
– volume: 9
  start-page: e93533
  issue: 4
  year: 2014
  ident: CR54
  article-title: The potential of accelerating early detection of autism through content analysis of YouTube videos
  publication-title: PLoS ONE.
– volume: 18
  start-page: 52
  issue: 1
  year: 2013
  end-page: 63
  ident: CR5
  article-title: Measurement Issues: Screening and diagnostic instruments for autism spectrum disorders – lessons from research and practice
  publication-title: Child Adolesc Ment Health.
– volume: 7
  start-page: 43855
  issue: 8
  year: 2012
  ident: CR43
  article-title: Use of artificial intelligence to shorten the behavioral diagnosis of autism
  publication-title: PloS ONE.
– volume: 46
  start-page: 21
  issue: 1
  year: 2015
  end-page: 30
  ident: CR19
  article-title: The Autism Diagnostic Observation Schedule, Module 4: Application of the revised algorithms in an independent, well-defined, Dutch sample (n = 93)
  publication-title: Journal of Autism and Developmental Disorders.
– volume: 19
  start-page: 1141
  issue: 9
  year: 2000
  end-page: 1164
  ident: CR49
  article-title: Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians
  publication-title: Statistics in medicine.
– ident: CR11
– volume: 18
  issue: 1
  year: 2018
  ident: CR7
  article-title: Clinical practice guidelines for diagnosis of autism spectrum disorder in adults and children in the UK: a narrative review
  publication-title: BMC Psychiatry.
– volume: 30
  start-page: 205
  year: 2000
  end-page: 223
  ident: CR10
  article-title: The Autism Diagnostic Observation Schedule–Generic: A standard measure of social and communication deficits associated with the spectrum of autism
  publication-title: Journal of Autism and Developmental Disorders.
– volume: 4
  issue: 8
  year: 2014
  ident: CR40
  article-title: Testing the accuracy of an observation-based classifier for rapid detection of autism risk
  publication-title: Transl Psychiatry.
– volume: 28
  start-page: 1
  issue: 5
  year: 2008
  end-page: 26
  ident: CR45
  article-title: Caret package
  publication-title: Journal of statistical software
– volume: 45
  start-page: 1121
  year: 2015
  end-page: 1136
  ident: CR39
  article-title: Applying machine learning to facilitate autism diagnostics: Pitfalls and promises
  publication-title: Journal of Autism and Developmental Disorders.
– year: 2003
  ident: CR12
  publication-title: Autism Diagnostic Interview-Revised (ADI-R).
– volume: 12
  year: 2011
  ident: CR61
  article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinformatics.
– volume: 38
  start-page: 362
  issue: 2
  year: 2008
  end-page: 372
  ident: CR15
  article-title: Diagnosing autism spectrum disorders in pre-school children using two standardised assessment instruments: the ADI-R and the ADOS
  publication-title: J Autism Dev Disord.
– volume: 2
  start-page: 1013
  issue: 11
  year: 2015
  end-page: 27
  ident: CR25
  article-title: Identifying the lost generation of adults with autism spectrum conditions
  publication-title: Lancet Psychiatry.
– volume: 22
  start-page: 329
  year: 2013
  end-page: 40
  ident: CR9
  article-title: Diagnostic procedures in autism spectrum disorders: a systematic literature review
  publication-title: Eur Child Adolesc Psychiatry.
– volume: 52
  start-page: 572
  issue: 6
  year: 2013
  end-page: 581
  ident: CR51
  article-title: Social outcomes in mid- to later adulthood among individuals diagnosed with autism and average nonverbal IQ as children
  publication-title: Journal of the American Academy of Child & Adolescent Psychiatry.
– volume: 47
  start-page: 3370
  year: 2017
  end-page: 3379
  ident: CR21
  article-title: Diagnosing ASD in Adults Without ID: Accuracy of the ADOS-2 and the ADI-R
  publication-title: J Autism Dev Disord.
– year: 2013
  ident: CR2
  publication-title: Diagnostic and Statistical Manual of Mental Disorders, 5th edn.
– ident: CR33
– volume: 46
  start-page: 3469
  year: 2016
  end-page: 3480
  ident: CR26
  article-title: Demographic and cognitive profile of individuals seeking a diagnosis of autism spectrum disorder in adulthood
  publication-title: J Autism Dev Disord.
– volume: 5
  issue: 2
  year: 2015
  ident: CR41
  article-title: Searching for a minimal set of behaviors for autism detection through feature selection-based machine learning
  publication-title: Transl Psychiatry.
– volume: 43
  start-page: 1314
  issue: 6
  year: 2013
  end-page: 1325
  ident: CR28
  article-title: Psychiatric comorbidity and functioning in a clinically referred population of adults with autism spectrum disorders: A comparative study
  publication-title: Journal of Autism & Developmental Disorders.
– volume: 21
  start-page: 690
  issue: 6
  year: 2017
  end-page: 702
  ident: CR59
  article-title: Quantifying and exploring camouflaging in men and women with autism
  publication-title: Autism.
– volume: 27
  start-page: 1193
  year: 2018
  end-page: 1207
  ident: CR4
  article-title: Diagnostic accuracy of the ADOS and ADOS-2 in clinical practice
  publication-title: European Child & Adolescent Psychiatry.
– volume: 44
  start-page: 1996
  year: 2014
  end-page: 2012
  ident: CR13
  article-title: The Autism Diagnostic Observation Schedule, Module 4: Revised algorithm and standardized severity scores
  publication-title: Journal of Autism and Developmental Disorders.
– volume: 25
  start-page: 1000
  issue: 8
  year: 2018
  end-page: 1007
  ident: CR56
  article-title: Machine learning approach for early detection of autism by combining questionnaire and home video screening
  publication-title: Journal of the American Medical Informatics Association.
– volume: 34
  start-page: 129
  issue: 2
  year: 2004
  end-page: 137
  ident: CR17
  article-title: Interrelationship between autism diagnostic observation schedule-generic (ADOS-G), autism diagnostic interview-revised (ADI-R), and the diagnostic and statistical manual of mental disorders (DSM-IV-TR) classification in children and adolescents with mental retardation
  publication-title: Journal of Autism and Developmental Disorders.
– volume: 14
  start-page: 177
  year: 2018
  end-page: 187
  ident: CR29
  article-title: The Prevalence of autism spectrum disorders in adult psychiatric inpatients: A systematic review
  publication-title: Clinical Practice & Epidemiology in Mental Health.
– volume: 383
  start-page: 896
  year: 2014
  end-page: 910
  ident: CR1
  article-title: Autism
  publication-title: Lancet.
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  ident: CR46
  article-title: Random forests
  publication-title: Machine learning.
– volume: 44
  start-page: 278
  issue: 3
  year: 2018
  end-page: 297
  ident: CR32
  article-title: Machine Learning in autistic spectrum disorder behavioral research: A review and ways forward
  publication-title: Informatics for Health and Social Care.
– volume: 14
  start-page: e0222907
  issue: 9
  year: 2019
  ident: CR58
  article-title: A comparison of machine learning algorithms for the surveillance of autism spectrum disorder
  publication-title: PLoS ONE.
– volume: 10
  start-page: 533
  issue: 6
  year: 2006
  end-page: 549
  ident: CR16
  article-title: The discriminative ability and diagnostic utility of the ADOS-G, ADI-R, and GARS for children in a clinical setting
  publication-title: Autism.
– volume: 25
  start-page: 769
  issue: 7
  year: 2016
  end-page: 780
  ident: CR24
  article-title: The objectivity of the Autism Diagnostic Observation Schedule (ADOS) in naturalistic clinical settings
  publication-title: European child & adolescent psychiatry.
– volume: 11
  start-page: e0168224
  issue: 12
  year: 2016
  ident: CR57
  article-title: Development of a machine learning algorithm for the surveillance of autism spectrum disorder
  publication-title: PLoS ONE.
– ident: CR31
– volume: 15
  start-page: e1002705
  issue: 11
  year: 2018
  ident: CR55
  article-title: Mobile detection of autism through machine learning on home video: a development and prospective validation study
  publication-title: PLOS Medicine.
– volume: 54
  start-page: 11
  issue: 1
  year: 2015
  end-page: 24
  ident: CR60
  article-title: Sex/gender differences and autism: setting the scene for future research
  publication-title: J AmAcad Child Adolesc Psychiatry.
– ident: CR34
– volume: 47
  start-page: 2703
  issue: 9
  year: 2017
  end-page: 2709
  ident: CR23
  article-title: The accuracy of the ADOS-2 in identifying autism among adults with complex psychiatric conditions
  publication-title: J Autism Dev Disord.
– volume: 57
  start-page: 909
  issue: 8
  year: 2016
  end-page: 916
  ident: CR52
  article-title: Subdimensions of social-communication impairment in autism spectrum disorder
  publication-title: Journal of Child Psychology and Psychiatry.
– volume: 15
  start-page: 143
  issue: 2
  year: 2013
  end-page: 162
  ident: CR22
  article-title: Use of the autism diagnostic observation schedule (ADOS) in a clinical setting
  publication-title: Autism.
– volume: 9
  start-page: 1
  issue: 1
  year: 2009
  ident: CR50
  article-title: Estimation and comparison of receiver operating characteristic curves
  publication-title: The Stata Journal.
– volume: 57
  start-page: 275
  issue: 5
  year: 2012
  end-page: 283
  ident: CR30
  article-title: Adults with autism spectrum disorders
  publication-title: CanJPsychiatry.
– volume: 30
  start-page: 205
  year: 2000
  ident: 61607_CR10
  publication-title: Journal of Autism and Developmental Disorders.
  doi: 10.1023/A:1005592401947
– volume: 5
  issue: 2
  year: 2015
  ident: 61607_CR41
  publication-title: Transl Psychiatry.
  doi: 10.1038/tp.2015.7
– volume: 9
  start-page: e93533
  issue: 4
  year: 2014
  ident: 61607_CR54
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0093533
– volume: 25
  start-page: 1000
  issue: 8
  year: 2018
  ident: 61607_CR56
  publication-title: Journal of the American Medical Informatics Association.
  doi: 10.1093/jamia/ocy039
– volume: 41
  start-page: 1256
  year: 2011
  ident: 61607_CR18
  publication-title: Journal of Autism and Developmental Disorders.
  doi: 10.1007/s10803-010-1157-x
– volume: 43
  start-page: 1314
  issue: 6
  year: 2013
  ident: 61607_CR28
  publication-title: Journal of Autism & Developmental Disorders.
  doi: 10.1007/s10803-012-1679-5
– volume: 10
  start-page: 533
  issue: 6
  year: 2006
  ident: 61607_CR16
  publication-title: Autism.
  doi: 10.1177/1362361306068505
– volume: 34
  start-page: 129
  issue: 2
  year: 2004
  ident: 61607_CR17
  publication-title: Journal of Autism and Developmental Disorders.
  doi: 10.1023/B:JADD.0000022604.22374.5f
– volume: 45
  start-page: 1121
  year: 2015
  ident: 61607_CR39
  publication-title: Journal of Autism and Developmental Disorders.
  doi: 10.1007/s10803-014-2268-6
– volume: 21
  start-page: 690
  issue: 6
  year: 2017
  ident: 61607_CR59
  publication-title: Autism.
  doi: 10.1177/1362361316671012
– volume: 44
  start-page: 837
  issue: 3
  year: 1988
  ident: 61607_CR48
  publication-title: Biometrics.
  doi: 10.2307/2531595
– volume: 46
  start-page: 3469
  year: 2016
  ident: 61607_CR26
  publication-title: J Autism Dev Disord.
  doi: 10.1007/s10803-016-2886-2
– volume: 46
  start-page: 21
  issue: 1
  year: 2015
  ident: 61607_CR19
  publication-title: Journal of Autism and Developmental Disorders.
  doi: 10.1007/s10803-015-2532-4
– volume: 38
  start-page: 362
  issue: 2
  year: 2008
  ident: 61607_CR15
  publication-title: J Autism Dev Disord.
  doi: 10.1007/s10803-007-0403-3
– volume: 383
  start-page: 896
  year: 2014
  ident: 61607_CR1
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(13)61539-1
– volume: 2
  issue: 4
  year: 2012
  ident: 61607_CR38
  publication-title: Transl Psychiatry.
  doi: 10.1038/tp.2012.10
– volume: 9
  start-page: 1526
  year: 2018
  ident: 61607_CR6
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2018.01526
– volume: 7
  start-page: 43855
  issue: 8
  year: 2012
  ident: 61607_CR43
  publication-title: PloS ONE.
  doi: 10.1371/journal.pone.0043855
– volume: 15
  start-page: 143
  issue: 2
  year: 2013
  ident: 61607_CR22
  publication-title: Autism.
  doi: 10.1177/1362361310379241
– ident: 61607_CR35
  doi: 10.1109/ECACE.2019.8679454
– volume: 11
  start-page: e0168224
  issue: 12
  year: 2016
  ident: 61607_CR57
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0168224
– volume: 34
  start-page: 34
  year: 2017
  ident: 61607_CR20
  publication-title: Res Autism Spectr Disord.
  doi: 10.1016/j.rasd.2016.11.012
– volume: 47
  start-page: 3370
  year: 2017
  ident: 61607_CR21
  publication-title: J Autism Dev Disord.
  doi: 10.1007/s10803-017-3258-2
– volume: 11
  start-page: 1
  issue: 9
  year: 2004
  ident: 61607_CR47
  publication-title: Journal of statistical software.
  doi: 10.18637/jss.v011.i09
– volume: 2
  start-page: 1013
  issue: 11
  year: 2015
  ident: 61607_CR25
  publication-title: Lancet Psychiatry.
  doi: 10.1016/S2215-0366(15)00277-1
– volume: 9
  start-page: 1
  issue: 1
  year: 2009
  ident: 61607_CR50
  publication-title: The Stata Journal.
  doi: 10.1177/1536867X0900900101
– volume-title: Diagnostic and Statistical Manual of Mental Disorders, 5th edn.
  year: 2013
  ident: 61607_CR2
  doi: 10.1176/appi.books.9780890425596
– volume: 6
  year: 2016
  ident: 61607_CR37
  publication-title: Translational Psychiatry.
  doi: 10.1038/tp.2015.221
– volume: 52
  start-page: 572
  issue: 6
  year: 2013
  ident: 61607_CR51
  publication-title: Journal of the American Academy of Child & Adolescent Psychiatry.
  doi: 10.1016/j.jaac.2013.02.017
– volume: 47
  start-page: 2703
  issue: 9
  year: 2017
  ident: 61607_CR23
  publication-title: J Autism Dev Disord.
  doi: 10.1007/s10803-017-3188-z
– volume: 15
  start-page: e1002705
  issue: 11
  year: 2018
  ident: 61607_CR55
  publication-title: PLOS Medicine.
  doi: 10.1371/journal.pmed.1002705
– volume: 57
  start-page: 275
  issue: 5
  year: 2012
  ident: 61607_CR30
  publication-title: CanJPsychiatry.
– volume: 54
  start-page: 11
  issue: 1
  year: 2015
  ident: 61607_CR60
  publication-title: J AmAcad Child Adolesc Psychiatry.
  doi: 10.1016/j.jaac.2014.10.003
– volume: 27
  start-page: 1193
  year: 2018
  ident: 61607_CR4
  publication-title: European Child & Adolescent Psychiatry.
  doi: 10.1007/s00787-018-1143-y
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 61607_CR46
  publication-title: Machine learning.
  doi: 10.1023/A:1010933404324
– volume: 19
  start-page: 1141
  issue: 9
  year: 2000
  ident: 61607_CR49
  publication-title: Statistics in medicine.
  doi: 10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
– volume: 28
  start-page: 1
  issue: 5
  year: 2008
  ident: 61607_CR45
  publication-title: Journal of statistical software
  doi: 10.18637/jss.v028.i05
– volume-title: The International Statistical Classification of Dieases and Related Health Problems 10th Revision (ICD-10).
  year: 2016
  ident: 61607_CR3
– volume: 57
  start-page: 909
  issue: 8
  year: 2016
  ident: 61607_CR52
  publication-title: Journal of Child Psychology and Psychiatry.
  doi: 10.1111/jcpp.12510
– volume: 14
  start-page: e0222907
  issue: 9
  year: 2019
  ident: 61607_CR58
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0222907
– ident: 61607_CR34
  doi: 10.1109/ACCESS.2019.2952609
– volume: 22
  start-page: 329
  year: 2013
  ident: 61607_CR9
  publication-title: Eur Child Adolesc Psychiatry.
  doi: 10.1007/s00787-013-0375-0
– volume: 18
  start-page: 52
  issue: 1
  year: 2013
  ident: 61607_CR5
  publication-title: Child Adolesc Ment Health.
  doi: 10.1111/j.1475-3588.2012.00664.x
– ident: 61607_CR11
– volume: 37
  start-page: 613
  issue: 4
  year: 2007
  ident: 61607_CR14
  publication-title: Journal of Autism and Develop- mental Disordersmental Disorders.
  doi: 10.1007/s10803-006-0280-1
– volume: 44
  start-page: 1996
  year: 2014
  ident: 61607_CR13
  publication-title: Journal of Autism and Developmental Disorders.
  doi: 10.1007/s10803-014-2080-3
– volume: 57
  start-page: 927
  issue: 8
  year: 2016
  ident: 61607_CR36
  publication-title: J Child Psychol Psychiatry.
  doi: 10.1111/jcpp.12559
– volume: 2
  start-page: e883
  issue: 9
  year: 2007
  ident: 61607_CR27
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0000883
– volume: 14
  start-page: 177
  year: 2018
  ident: 61607_CR29
  publication-title: Clinical Practice & Epidemiology in Mental Health.
  doi: 10.2174/1745017901814010177
– volume: 18
  issue: 1
  year: 2018
  ident: 61607_CR7
  publication-title: BMC Psychiatry.
  doi: 10.1186/s12888-018-1800-1
– start-page: 193
  volume-title: Machine Learning and Knowledge Discovery in Databases
  year: 2019
  ident: 61607_CR53
  doi: 10.1007/978-3-030-10925-7_12
– volume-title: Autism Diagnostic Interview-Revised (ADI-R).
  year: 2003
  ident: 61607_CR12
– volume: 17
  issue: 1
  year: 2017
  ident: 61607_CR44
  publication-title: BMC Psychiatry.
  doi: 10.1186/s12888-017-1362-7
– volume: 4
  issue: 8
  year: 2014
  ident: 61607_CR40
  publication-title: Transl Psychiatry.
  doi: 10.1038/tp.2014.65
– volume: 8
  year: 2017
  ident: 61607_CR42
  publication-title: Molecular Autism.
  doi: 10.1186/s13229-017-0180-6
– volume: 44
  start-page: 278
  issue: 3
  year: 2018
  ident: 61607_CR32
  publication-title: Informatics for Health and Social Care.
  doi: 10.1080/17538157.2017.1399132
– volume: 12
  year: 2011
  ident: 61607_CR61
  publication-title: BMC Bioinformatics.
  doi: 10.1186/1471-2105-12-77
– volume: 23
  start-page: 287
  year: 2018
  ident: 61607_CR8
  publication-title: Autism.
  doi: 10.1177/1362361317748245
– volume: 25
  start-page: 769
  issue: 7
  year: 2016
  ident: 61607_CR24
  publication-title: European child & adolescent psychiatry.
  doi: 10.1007/s00787-015-0793-2
– ident: 61607_CR31
– ident: 61607_CR33
  doi: 10.1177/1460458218824711
SSID ssj0000529419
Score 2.5182557
Snippet Diagnosing autism spectrum disorders (ASD) is a complicated, time-consuming process which is particularly challenging in older individuals. One of the most...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4805
SubjectTerms 631/477/2811
692/699/476/1373
Adolescent
Adolescents
Adult
Age Factors
Algorithms
Autism
Autism Spectrum Disorder - diagnosis
Autism Spectrum Disorder - psychology
Diagnosis, Differential
Differential diagnosis
Female
Humanities and Social Sciences
Humans
Learning algorithms
Machine Learning
Male
multidisciplinary
Psychological Tests
Psychometrics - methods
Reproducibility of Results
Science
Science (multidisciplinary)
Sensitivity and Specificity
Support Vector Machine
Symptom Assessment
Teenagers
Young Adult
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4BVSUuCPoiBaqp1FubNnFezgEhhECoUnvqStwiO7Ep0m4WNqDtXvvLO2Mni7Y8IuUS20rsmYm_kWe-AfhED5nFrgzjRuVh2mQiLEWdk-GVDN_JD_JRvj_z81H6_SK7WIOh3FG_gN2jrh3XkxrNxl__3CyOyOAPfcq4_NbRJsSJYs4RyqMinK_DC9qZCjbUHz3c91zfokzjss-deXzo6v70AHQ-jJ387wDV7Utn27DVA0o89hqwA2umfQUvfYnJxWv46zNxXTYTXs_4WIZ_cGiNY_TscGpRkfJ1E3RJl7O7CTY9I2eHVy0qHJInsVNMJexG3PNAoWobdCweHXIQ_SVOXHymwb4gxeUbGJ2d_jo5D_u6C2FNaOw2NJokSI5HniSpJXyUC0IZuoiaVBtZallbE2tpRWILYXVex1aL2DLxTaZSSd75W9hop63ZBZTUuWykTUxSp0pKlUVKZZnUdNf0_wggHla7qntScq6NMa7c4XgiKy-hiiRUOQlV8wA-L8dce0qOZ3vvD0KsBu2qBLPoO56hAD4um8mw-LREtWZ65_qUEYGhPA3gnZf58nUJASO6RADFijYsOzBp92pLe_XbkXcXEdMPxQF8GfTm_rOensX752exB5uCdZjjDOU-bJCymAMCS7f6g7OAf4apEro
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT90wDLYYE9IuiG1sdGOTJ-0G1dq0TdMjegKhHXYaErcqaROGtNeHKAjtur8c2_2BHmyTVqmXxlGT2km-1PYXgM_0kFnsqjhtrY7ztlBxpRpNA69i-E77oCHK95s-Pcu_nhfnG6CmXBgJ2hdKS5mmp-iwLz0tNJwMJpsdnZTx3TN4ztTtbNULvZj_q7DnKk-rMT8mycwfqq6vQU-A5dP4yEdOUll7TnZgewSNeDQ08yVs-O4VbA3HSP56Db-HbFvJWMKra3a98CSGwUsXe1wFtGRg_RIlsfL6dontyLrZ42WHFqcESewt0wVLjQeuJ7Rdi8LU0SMHyl_gUmIwPY6HTlzswtnJ8ffFaTyerRA3hLhuYu9IS7S50FmWB8JAWhGScGXS5s6bypkm-NSZoLJQquB0kwan0sDkNoXNDe3A38Bmt-r8HqAh4ao1IfNZk1tjbJFYWxTG0d3QHBFBOn3tuhmJx_n8i5-1OMAzUw8aqklDtWiovovgYK5zNdBu_FN6f1JiPQ7BvlbMlC9cQhF8motp8LBHxHZ-dSsyVUKAR-cRvB10Pr8uI_BDl4qgXLOGWYCJuddLussfQtBdJkwxlEZwONnNQ7P-3ot3_yf-Hl4otmmOLTT7sEnG4z8QQLpxH2VE3AP5JQ2Z
  priority: 102
  providerName: Springer Nature
Title Identifying predictive features of autism spectrum disorders in a clinical sample of adolescents and adults using machine learning
URI https://link.springer.com/article/10.1038/s41598-020-61607-w
https://www.ncbi.nlm.nih.gov/pubmed/32188882
https://www.proquest.com/docview/2378831157
https://www.proquest.com/docview/2379029364
https://pubmed.ncbi.nlm.nih.gov/PMC7080741
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7ahEIvpe86TRcVemtNbFmW5VPZLglhoaG0DezNSLaUBLrebZwQcu0v74wse9mGxmAbbAk_ZiR90sx8A_ABLxKLXRmnjZaxaHIel7yW2PBKgu84D-q9fE_k8amYL_JFWHDrglvl0Cf6jrpZ1bRGfsCJ-NxTw3xe_44paxRZV0MKjYewS9Rl5NJVLIpxjYWsWCItQ6xMkqmDDscriinzcyaZFPHN9nh0B2Te9ZX8x2Dqx6Gjp_AkAEg27SX-DB7Y9jk86lNK3r6AP33krY9eYutLMsNQh8ac9QyeHVs5plHZuiXzQZaX10vWBAbOjl20TLMhWJJ1mqiDfY0N7xPTbcM8a0fHyGn-jC29P6ZlIQHF2Us4PTr8OTuOQ56FuEb0dRVbgxLDiYbMMuEQD0mOqMIUSSOMVaVRtbOpUY5nruDOyDp1hqeOiG5yLRTOxl_BTrtq7RtgCguXjXKZzWqhldJ5onWeK4N7jf1FBOnwt6s6kJBTLoxflTeGZ6rqJVShhCovoeomgo9jnXVPwXFv6f1BiFVojl21UZ4I3o-3sSGRdUS3dnXty5QJgh8pInjdy3x8XIZACDceQbGlDWMBIunevtNenHuy7iIhuqE0gk-D3mxe6_9fsXf_V7yFx5x0mPwK1T7soLLYdwiOrszEt4AJ7E6n8x9zPH85PPn2Ha_O5GziFxzw-FWov-jUFSE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ4ia2E7iHBDi0WpLywqhVuot2IldKrHZpWm16pUfxG9kxnmsloreGimX2HnOeB6ZmW8AXuJBQrHLw7jSaSirhIc5L1NceDmZ7-gHtVm-k3R8ID8fJodr8KevhaG0yl4mekFdzUr6R77JCfjcQ8O8m_8KqWsURVf7FhotW-za8wW6bM3bnU9I31ecb2_tfxyHXVeBsERb4zS0Bp8PzepUCOlQ-6ccdajJokoaq3KjSmdjoxwXLuPOpGXsDI8dwbokWir0PfG612BdCnRlRrD-YWvy9dvwV4fiZjLOu-qcSKjNBjUkVbF5Ly2NsnCxqgEvmLUXszP_CdF6zbd9G251Jit73_LYHViz9V243jaxPL8Hv9taX18vxeYnFPghEcqc9ZihDZs5ppG9mynzZZ0nZ1NWdZifDTuumWZ9eSZrNIEV-zOWSFNM1xXzOCENozT9Izb1GaCWdS0vju7DwZXQ4AGM6lltHwFTODmvlBNWlFIrpZNI6yRRBvcSJVQAcf-1i7KDPafuGz8LH34XqmgpVCCFCk-hYhHA6-GceQv6censjZ6IRScAmmLJrgG8GIZx6VI8Rtd2dubn5BGaW6kM4GFL8-F2Ak0v3HgA2Qo3DBMIFnx1pD7-4eHBs4gAjuIA3vR8s3ys_7_F48vf4jncGO9_2Sv2dia7T-AmJ36mrEa1ASNkHPsUTbNT86xbDwy-X_US_Asgnk30
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlAvqLwDLRgJThBtYufhHCqEWlYtRRUHKu3N2IldKrHZbdNq1Ss_i1_HjPNYLRW9NVIuiZNNdh7-nJn5BuAtHiQWuyKMK52FSZXysOBlhoZXEHzHdVCb5XuU7R8nXybpZA3-9LUwlFbZ-0TvqKtZSd_IR5yIzz01zMh1aRHf9sYf52chdZCiSGvfTqNVkUN7tcDlW7NzsIeyfsf5-PP33f2w6zAQlog7LkJr8FkRYmdCJA6RQMZxPjV5VCXGysLI0tnYSMeFy7kzWRk7w2NHFC-pTiSuQ_G-d-BuLtKYbCyf5MP3HYqgJXHR1elEQo4anCupns2v17IoDxerc-E1gHs9T_OfYK2fA8eb8KADr-xTq20PYc3Wj-Be287y6jH8bqt-feUUm59TCIicKXPWs4c2bOaYRkVvpswXeJ5fTlnVsX827LRmmvWFmqzRRFvsr1hyTjFdV8wzhjSMEvZP2NTnglrWNb84eQLHtyKBp7Bez2r7HJjEwUUlnbCiTLSUOo20TlNpcC_RVwUQ9_-2KjsCdOrD8Uv5QLyQqpWQQgkpLyG1COD9cM28pf-4cfRWL0TVuYJGLRU3gDfDaTRiiszo2s4u_ZgiQuCVJQE8a2U-_JxAEIYbDyBf0YZhABGEr56pT396ovA8IqqjOIAPvd4sH-v_b_Hi5rd4DffR8NTXg6PDl7DBSZ0pvVFuwTrqjd1GjHZhXnljYPDjtq3vL9UUUMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+predictive+features+of+autism+spectrum+disorders+in+a+clinical+sample+of+adolescents+and+adults+using+machine+learning&rft.jtitle=Scientific+reports&rft.au=K%C3%BCpper%2C+Charlotte&rft.au=Stroth+Sanna&rft.au=Wolff%2C+Nicole&rft.au=Hauck+Florian&rft.date=2020-03-18&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-61607-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon