Identifying predictive features of autism spectrum disorders in a clinical sample of adolescents and adults using machine learning
Diagnosing autism spectrum disorders (ASD) is a complicated, time-consuming process which is particularly challenging in older individuals. One of the most widely used behavioral diagnostic tools is the Autism Diagnostic Observation Schedule (ADOS). Previous work using machine learning techniques su...
Saved in:
Published in | Scientific reports Vol. 10; no. 1; p. 4805 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
18.03.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diagnosing autism spectrum disorders (ASD) is a complicated, time-consuming process which is particularly challenging in older individuals. One of the most widely used behavioral diagnostic tools is the Autism Diagnostic Observation Schedule (ADOS). Previous work using machine learning techniques suggested that ASD detection in children can be achieved with substantially fewer items than the original ADOS. Here, we expand on this work with a specific focus on adolescents and adults as assessed with the ADOS Module 4. We used a machine learning algorithm (support vector machine) to examine whether ASD detection can be improved by identifying a subset of behavioral features from the ADOS Module 4 in a routine clinical sample of N = 673 high-functioning adolescents and adults with ASD (n = 385) and individuals with suspected ASD but other best-estimate or no psychiatric diagnoses (n = 288). We identified reduced subsets of 5 behavioral features for the whole sample as well as age subgroups (adolescents vs. adults) that showed good specificity and sensitivity and reached performance close to that of the existing ADOS algorithm and the full ADOS, with no significant differences in overall performance. These results may help to improve the complicated diagnostic process of ASD by encouraging future efforts to develop novel diagnostic instruments for ASD detection based on the identified constructs as well as aiding clinicians in the difficult question of differential diagnosis. |
---|---|
AbstractList | Diagnosing autism spectrum disorders (ASD) is a complicated, time-consuming process which is particularly challenging in older individuals. One of the most widely used behavioral diagnostic tools is the Autism Diagnostic Observation Schedule (ADOS). Previous work using machine learning techniques suggested that ASD detection in children can be achieved with substantially fewer items than the original ADOS. Here, we expand on this work with a specific focus on adolescents and adults as assessed with the ADOS Module 4. We used a machine learning algorithm (support vector machine) to examine whether ASD detection can be improved by identifying a subset of behavioral features from the ADOS Module 4 in a routine clinical sample of N = 673 high-functioning adolescents and adults with ASD (n = 385) and individuals with suspected ASD but other best-estimate or no psychiatric diagnoses (n = 288). We identified reduced subsets of 5 behavioral features for the whole sample as well as age subgroups (adolescents vs. adults) that showed good specificity and sensitivity and reached performance close to that of the existing ADOS algorithm and the full ADOS, with no significant differences in overall performance. These results may help to improve the complicated diagnostic process of ASD by encouraging future efforts to develop novel diagnostic instruments for ASD detection based on the identified constructs as well as aiding clinicians in the difficult question of differential diagnosis.Diagnosing autism spectrum disorders (ASD) is a complicated, time-consuming process which is particularly challenging in older individuals. One of the most widely used behavioral diagnostic tools is the Autism Diagnostic Observation Schedule (ADOS). Previous work using machine learning techniques suggested that ASD detection in children can be achieved with substantially fewer items than the original ADOS. Here, we expand on this work with a specific focus on adolescents and adults as assessed with the ADOS Module 4. We used a machine learning algorithm (support vector machine) to examine whether ASD detection can be improved by identifying a subset of behavioral features from the ADOS Module 4 in a routine clinical sample of N = 673 high-functioning adolescents and adults with ASD (n = 385) and individuals with suspected ASD but other best-estimate or no psychiatric diagnoses (n = 288). We identified reduced subsets of 5 behavioral features for the whole sample as well as age subgroups (adolescents vs. adults) that showed good specificity and sensitivity and reached performance close to that of the existing ADOS algorithm and the full ADOS, with no significant differences in overall performance. These results may help to improve the complicated diagnostic process of ASD by encouraging future efforts to develop novel diagnostic instruments for ASD detection based on the identified constructs as well as aiding clinicians in the difficult question of differential diagnosis. Diagnosing autism spectrum disorders (ASD) is a complicated, time-consuming process which is particularly challenging in older individuals. One of the most widely used behavioral diagnostic tools is the Autism Diagnostic Observation Schedule (ADOS). Previous work using machine learning techniques suggested that ASD detection in children can be achieved with substantially fewer items than the original ADOS. Here, we expand on this work with a specific focus on adolescents and adults as assessed with the ADOS Module 4. We used a machine learning algorithm (support vector machine) to examine whether ASD detection can be improved by identifying a subset of behavioral features from the ADOS Module 4 in a routine clinical sample of N = 673 high-functioning adolescents and adults with ASD (n = 385) and individuals with suspected ASD but other best-estimate or no psychiatric diagnoses (n = 288). We identified reduced subsets of 5 behavioral features for the whole sample as well as age subgroups (adolescents vs. adults) that showed good specificity and sensitivity and reached performance close to that of the existing ADOS algorithm and the full ADOS, with no significant differences in overall performance. These results may help to improve the complicated diagnostic process of ASD by encouraging future efforts to develop novel diagnostic instruments for ASD detection based on the identified constructs as well as aiding clinicians in the difficult question of differential diagnosis. |
ArticleNumber | 4805 |
Author | Hauck, Florian Roessner, Veit Küpper, Charlotte Poustka, Luise Wolff, Nicole Schad-Hansjosten, Tanja Kamp-Becker, Inge Roepke, Stefan Kliewer, Natalia Schultebraucks, Katharina Stroth, Sanna |
Author_xml | – sequence: 1 givenname: Charlotte surname: Küpper fullname: Küpper, Charlotte email: charlotte.kuepper@charite.de organization: Department of Psychiatry, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin – sequence: 2 givenname: Sanna surname: Stroth fullname: Stroth, Sanna organization: Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University – sequence: 3 givenname: Nicole surname: Wolff fullname: Wolff, Nicole organization: Department of Child and Adolescent Psychiatry, TU Dresden – sequence: 4 givenname: Florian surname: Hauck fullname: Hauck, Florian organization: Department of Information Systems, Freie Universität Berlin – sequence: 5 givenname: Natalia surname: Kliewer fullname: Kliewer, Natalia organization: Department of Information Systems, Freie Universität Berlin – sequence: 6 givenname: Tanja surname: Schad-Hansjosten fullname: Schad-Hansjosten, Tanja organization: Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg – sequence: 7 givenname: Inge surname: Kamp-Becker fullname: Kamp-Becker, Inge organization: Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University – sequence: 8 givenname: Luise surname: Poustka fullname: Poustka, Luise organization: Department of Child and Adolescent Psychiatry, University Medical Center – sequence: 9 givenname: Veit surname: Roessner fullname: Roessner, Veit organization: Department of Child and Adolescent Psychiatry, TU Dresden – sequence: 10 givenname: Katharina orcidid: 0000-0001-5085-8249 surname: Schultebraucks fullname: Schultebraucks, Katharina organization: Department of Psychiatry, New York University School of Medicine, Vagelos School of Physicians and Surgeons, Department of Emergency Medicine, Columbia University Irving Medical Center – sequence: 11 givenname: Stefan surname: Roepke fullname: Roepke, Stefan email: stefan.roepke@charite.de organization: Department of Psychiatry, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32188882$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UktvFiEUJabG1to_4MKQuHEzymtmmI2JaXw0aeJG14RhLl9pGBhhaNOtv1ymX6u1i94NFzjncG44L9FBiAEQek3Je0q4_JAFbQfZEEaajnakb66foSNGRNswztjBg_4QneR8SWq1bBB0eIEOOaOyFjtCv88mCKuzNy7s8JJgcmZ1V4At6LUkyDharMvq8ozzAmZNZcaTyzFNkDJ2AWtsvAvOaI-znhcPt4wpesimKmesw1T3xde25O2VWZsLFwB70CnUg1foudU-w8ndeox-fvn84_Rbc_7969npp_PGtIytDYzGaEplx7mwbcc6JjgdezKJEeQwSmOBjtIybntmx85QOzJqCSey1ULCyI_Rx73uUsYZps1d0l4tyc063aionfr_JrgLtYtXqieS9IJWgXd3Ain-KpBXNbs6pPc6QCxZMd4PhA28ExX69hH0MpYU6ngbSkpOadtX1JuHjv5auf-eCpB7gEkx5wRWGbfq1cXNoPOKErWFQe3DoGoY1G0Y1HWlskfUe_UnSXxPyhUcdpD-2X6C9QdVIMq9 |
CitedBy_id | crossref_primary_10_4015_S1016237222500466 crossref_primary_10_1016_j_prime_2024_100602 crossref_primary_10_1111_jcpp_13650 crossref_primary_10_1155_2022_9410222 crossref_primary_10_1371_journal_pone_0241690 crossref_primary_10_1155_2022_3551528 crossref_primary_10_1016_j_psychres_2025_116353 crossref_primary_10_14801_jkiit_2023_21_8_175 crossref_primary_10_3238_arztebl_m2022_0379 crossref_primary_10_3390_brainsci13060883 crossref_primary_10_3390_life14050557 crossref_primary_10_1109_TCDS_2024_3386656 crossref_primary_10_18178_ijiet_2022_12_12_1765 crossref_primary_10_57197_JDR_2024_0053 crossref_primary_10_1007_s10803_024_06480_6 crossref_primary_10_1109_ACCESS_2024_3450970 crossref_primary_10_1109_TAFFC_2022_3178946 crossref_primary_10_1038_s41598_020_76874_w crossref_primary_10_3389_fpsyt_2021_727308 crossref_primary_10_1007_s00521_024_09905_6 crossref_primary_10_1016_j_knosys_2023_110724 crossref_primary_10_1016_j_cosrev_2025_100730 crossref_primary_10_1038_s41598_022_21719_x crossref_primary_10_2196_29242 crossref_primary_10_1016_j_imu_2021_100513 crossref_primary_10_3389_fpsyt_2021_637022 crossref_primary_10_3389_fpsyt_2022_826043 crossref_primary_10_1038_s41398_024_02802_5 crossref_primary_10_1038_s41598_024_56098_y crossref_primary_10_1007_s10479_022_05035_1 crossref_primary_10_1016_j_phycom_2020_101115 crossref_primary_10_1016_j_bspc_2024_106934 crossref_primary_10_1016_j_eswa_2023_120613 crossref_primary_10_1016_j_jval_2022_07_011 crossref_primary_10_1016_j_seizure_2022_11_004 crossref_primary_10_3390_biom14010048 |
Cites_doi | 10.1023/A:1005592401947 10.1038/tp.2015.7 10.1371/journal.pone.0093533 10.1093/jamia/ocy039 10.1007/s10803-010-1157-x 10.1007/s10803-012-1679-5 10.1177/1362361306068505 10.1023/B:JADD.0000022604.22374.5f 10.1007/s10803-014-2268-6 10.1177/1362361316671012 10.2307/2531595 10.1007/s10803-016-2886-2 10.1007/s10803-015-2532-4 10.1007/s10803-007-0403-3 10.1016/S0140-6736(13)61539-1 10.1038/tp.2012.10 10.3389/fpsyg.2018.01526 10.1371/journal.pone.0043855 10.1177/1362361310379241 10.1109/ECACE.2019.8679454 10.1371/journal.pone.0168224 10.1016/j.rasd.2016.11.012 10.1007/s10803-017-3258-2 10.18637/jss.v011.i09 10.1016/S2215-0366(15)00277-1 10.1177/1536867X0900900101 10.1176/appi.books.9780890425596 10.1038/tp.2015.221 10.1016/j.jaac.2013.02.017 10.1007/s10803-017-3188-z 10.1371/journal.pmed.1002705 10.1016/j.jaac.2014.10.003 10.1007/s00787-018-1143-y 10.1023/A:1010933404324 10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F 10.18637/jss.v028.i05 10.1111/jcpp.12510 10.1371/journal.pone.0222907 10.1109/ACCESS.2019.2952609 10.1007/s00787-013-0375-0 10.1111/j.1475-3588.2012.00664.x 10.1007/s10803-006-0280-1 10.1007/s10803-014-2080-3 10.1111/jcpp.12559 10.1371/journal.pone.0000883 10.2174/1745017901814010177 10.1186/s12888-018-1800-1 10.1007/978-3-030-10925-7_12 10.1186/s12888-017-1362-7 10.1038/tp.2014.65 10.1186/s13229-017-0180-6 10.1080/17538157.2017.1399132 10.1186/1471-2105-12-77 10.1177/1362361317748245 10.1007/s00787-015-0793-2 10.1177/1460458218824711 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/s41598-020-61607-w |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
ExternalDocumentID | PMC7080741 32188882 10_1038_s41598_020_61607_w |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research) grantid: FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A funderid: https://doi.org/10.13039/501100002347 – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation) grantid: SCHU 3259/1-1 funderid: https://doi.org/10.13039/501100001659 – fundername: ; grantid: FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A; FKZ 01EE1409A – fundername: ; grantid: SCHU 3259/1-1 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c522t-ebcca1186334f56262431b70d4be89b8cfe1b8f23f72fb6c1fb21f03085a48eb3 |
IEDL.DBID | 7X7 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 18:28:03 EDT 2025 Fri Jul 11 04:22:23 EDT 2025 Wed Aug 13 04:04:44 EDT 2025 Thu Apr 03 07:04:48 EDT 2025 Thu Apr 24 22:50:44 EDT 2025 Tue Jul 01 03:24:07 EDT 2025 Fri Feb 21 02:38:53 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c522t-ebcca1186334f56262431b70d4be89b8cfe1b8f23f72fb6c1fb21f03085a48eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5085-8249 |
OpenAccessLink | https://www.proquest.com/docview/2378831157?pq-origsite=%requestingapplication% |
PMID | 32188882 |
PQID | 2378831157 |
PQPubID | 2041939 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7080741 proquest_miscellaneous_2379029364 proquest_journals_2378831157 pubmed_primary_32188882 crossref_citationtrail_10_1038_s41598_020_61607_w crossref_primary_10_1038_s41598_020_61607_w springer_journals_10_1038_s41598_020_61607_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-18 |
PublicationDateYYYYMMDD | 2020-03-18 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Hayes, Ford, Rafeeque, Russell (CR7) 2018; 18 Bone (CR36) 2016; 57 Kamp-Becker (CR4) 2018; 27 Thabtah (CR32) 2018; 44 Lai, Baron-Cohen (CR25) 2015; 2 Fusaro (CR54) 2014; 9 De Bildt (CR17) 2004; 34 Tariq (CR55) 2018; 15 Duda, Kosmicki, Wall (CR40) 2014; 4 CR35 CR34 CR33 CR31 Hus, Lord (CR13) 2014; 44 Happé (CR26) 2016; 46 Rutter, Le Couteur, Lord (CR12) 2003 Lai, Lombardo, Auyeung, Chakrabarti, Baron-Cohen (CR60) 2015; 54 Le Couteur, Haden, Hammal, McConachie (CR15) 2008; 38 Lee, Maenner, Heilig (CR58) 2019; 14 Lai, Lombardo, Baron-Cohen (CR1) 2014; 383 De Bildt, Sytema, Meffert, Bastiaansen (CR19) 2015; 46 Drimalla, Landwehr, Baskow, Behnia, Roepke, Dziobek, Scheffer (CR53) 2019 Mazefsky, Oswald (CR16) 2006; 10 Maenner, Yeargin-Allsopp, Braun, Christensen, Schieve (CR57) 2016; 11 Bishop, Havdahl, Huerta, Lord (CR52) 2016; 57 Falkmer, Anderson, Falkmer, Horlin (CR9) 2013; 22 Kosmicki, Sochat, Duda, Wall (CR41) 2015; 5 Lai (CR59) 2017; 21 Langmann, Becker, Poustka, Becker, Kamp-Becker (CR20) 2017; 34 Molloy, Murray, Akers, Mitchell, Manning-Courtney (CR22) 2013; 15 Wigham (CR8) 2018; 23 Zander (CR24) 2016; 25 Tromans, Chester, Kiani, Alexander, Brugha (CR29) 2018; 14 Levy, Duda, Haber, Wall (CR42) 2017; 8 (CR3) 2016 Gotham, Risi, Pickles, Lord (CR14) 2007; 37 Maddox (CR23) 2017; 47 Carpenter, Bithell (CR49) 2000; 19 CR11 Charman, Gotham (CR5) 2013; 18 DeLong, DeLong, Clarke-Pearson (CR48) 1988; 44 Fusar-Poli (CR21) 2017; 47 Pepe, Longton, Janes (CR50) 2009; 9 Kuhn (CR45) 2008; 28 Lombardo, Barnes, Wheelwright, Baron-Cohen (CR27) 2007; 2 Wall, Kosmicki, Deluca, Harstad, Fusaro (CR38) 2012; 2 Kamp-Becker (CR44) 2017; 17 Lord (CR10) 2000; 30 Duda, Ma, Haber, Wall (CR37) 2016; 6 Wall, Dally, Luyster, Jung, DeLuca (CR43) 2012; 7 Howlin, Moss (CR30) 2012; 57 Karatzoglou, Smola, Hornik, Zeileis (CR47) 2004; 11 Abbas, Garberson, Glover, Wall (CR56) 2018; 25 Breiman (CR46) 2001; 45 Robin (CR61) 2011; 12 (CR2) 2013 Joshi (CR28) 2013; 43 Bastiaansen (CR18) 2011; 41 Whyatt, Torres (CR6) 2018; 9 Howlin, Moss, Savag, Rutter (CR51) 2013; 52 Bone (CR39) 2015; 45 CA Mazefsky (61607_CR16) 2006; 10 K Gotham (61607_CR14) 2007; 37 A Karatzoglou (61607_CR47) 2004; 11 G Joshi (61607_CR28) 2013; 43 MC Lai (61607_CR1) 2014; 383 X Robin (61607_CR61) 2011; 12 M Kuhn (61607_CR45) 2008; 28 MJ Maenner (61607_CR57) 2016; 11 MC Lai (61607_CR25) 2015; 2 DP Wall (61607_CR43) 2012; 7 E Zander (61607_CR24) 2016; 25 VA Fusaro (61607_CR54) 2014; 9 M Duda (61607_CR40) 2014; 4 M Duda (61607_CR37) 2016; 6 I Kamp-Becker (61607_CR44) 2017; 17 A Le Couteur (61607_CR15) 2008; 38 V Hus (61607_CR13) 2014; 44 MC Lai (61607_CR59) 2017; 21 World Health Organization (61607_CR3) 2016 A De Bildt (61607_CR19) 2015; 46 S Levy (61607_CR42) 2017; 8 61607_CR11 SH Lee (61607_CR58) 2019; 14 FG Happé (61607_CR26) 2016; 46 L Breiman (61607_CR46) 2001; 45 Hanna Drimalla (61607_CR53) 2019 H Abbas (61607_CR56) 2018; 25 C Lord (61607_CR10) 2000; 30 F Thabtah (61607_CR32) 2018; 44 J Kosmicki (61607_CR41) 2015; 5 J Hayes (61607_CR7) 2018; 18 MC Lai (61607_CR60) 2015; 54 S Tromans (61607_CR29) 2018; 14 M Pepe (61607_CR50) 2009; 9 D Wall (61607_CR38) 2012; 2 CA Molloy (61607_CR22) 2013; 15 P Howlin (61607_CR51) 2013; 52 D Bone (61607_CR39) 2015; 45 D Bone (61607_CR36) 2016; 57 A De Bildt (61607_CR17) 2004; 34 MV Lombardo (61607_CR27) 2007; 2 M Rutter (61607_CR12) 2003 Q Tariq (61607_CR55) 2018; 15 A Langmann (61607_CR20) 2017; 34 J Carpenter (61607_CR49) 2000; 19 T Falkmer (61607_CR9) 2013; 22 ER DeLong (61607_CR48) 1988; 44 S Bishop (61607_CR52) 2016; 57 I Kamp-Becker (61607_CR4) 2018; 27 P Howlin (61607_CR30) 2012; 57 L Fusar-Poli (61607_CR21) 2017; 47 T Charman (61607_CR5) 2013; 18 BB Maddox (61607_CR23) 2017; 47 American Psychiatric Association (61607_CR2) 2013 61607_CR35 61607_CR33 61607_CR34 CP Whyatt (61607_CR6) 2018; 9 61607_CR31 S Wigham (61607_CR8) 2018; 23 JA Bastiaansen (61607_CR18) 2011; 41 |
References_xml | – volume: 44 start-page: 837 issue: 3 year: 1988 end-page: 845 ident: CR48 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics. – volume: 9 start-page: 1526 year: 2018 ident: CR6 article-title: Autism Research: An objective quantitative review of progress and focus between 1994 and 2015 publication-title: Front. Psychol. – volume: 2 start-page: e883 issue: 9 year: 2007 ident: CR27 article-title: Self-referential cognition and empathy in autism publication-title: PLoS ONE. – start-page: 193 year: 2019 end-page: 208 ident: CR53 article-title: Detecting Autism by Analyzing a Simulated Social Interaction publication-title: Machine Learning and Knowledge Discovery in Databases – volume: 34 start-page: 34 year: 2017 end-page: 43 ident: CR20 article-title: Diagnostic utility of the autism diagnostic observation schedule in a clinical sample of adolescents and adults publication-title: Res Autism Spectr Disord. – volume: 23 start-page: 287 year: 2018 end-page: 305 ident: CR8 article-title: Psychometric properties of questionnaires and diagnostic measures for autism spectrum disorders in adults: A systematic review publication-title: Autism. – volume: 57 start-page: 927 issue: 8 year: 2016 end-page: 937 ident: CR36 article-title: Use of machine learning to improve autism screening and diagnostic instruments: effectiveness, efficiency, and multi-instrument fusion publication-title: J Child Psychol Psychiatry. – volume: 17 issue: 1 year: 2017 ident: CR44 article-title: Study protocol of the ASD-Net, the German research consortium for the study of autism spectrum disorder across the lifespan: from a better etiological understanding, through valid diagnosis, to more effective health care publication-title: BMC Psychiatry. – year: 2016 ident: CR3 publication-title: The International Statistical Classification of Dieases and Related Health Problems 10th Revision (ICD-10). – volume: 41 start-page: 1256 year: 2011 end-page: 1266 ident: CR18 article-title: Diagnosing autism spectrum disorders in adults: The use of Autism Diagnostic Observation Schedule (ADOS) Module 4 publication-title: Journal of Autism and Developmental Disorders. – ident: CR35 – volume: 37 start-page: 613 issue: 4 year: 2007 end-page: 627 ident: CR14 article-title: The Autism diagnostic observation schedule: Revised algorithms for improved diagnostic validity publication-title: Journal of Autism and Develop- mental Disordersmental Disorders. – volume: 6 year: 2016 ident: CR37 article-title: Use of machine learning for behavioral distinction of autism and ADHD publication-title: Translational Psychiatry. – volume: 2 issue: 4 year: 2012 ident: CR38 article-title: Use of machine learning to shorten observation-based screening and diagnosis of autism publication-title: Transl Psychiatry. – volume: 8 year: 2017 ident: CR42 article-title: Sparsifying machine learning models identify stable subsets of predictive features for behavioral detection of autism publication-title: Molecular Autism. – volume: 11 start-page: 1 issue: 9 year: 2004 end-page: 20 ident: CR47 article-title: kernlab-an S4 package for kernel methods in R publication-title: Journal of statistical software. – volume: 9 start-page: e93533 issue: 4 year: 2014 ident: CR54 article-title: The potential of accelerating early detection of autism through content analysis of YouTube videos publication-title: PLoS ONE. – volume: 18 start-page: 52 issue: 1 year: 2013 end-page: 63 ident: CR5 article-title: Measurement Issues: Screening and diagnostic instruments for autism spectrum disorders – lessons from research and practice publication-title: Child Adolesc Ment Health. – volume: 7 start-page: 43855 issue: 8 year: 2012 ident: CR43 article-title: Use of artificial intelligence to shorten the behavioral diagnosis of autism publication-title: PloS ONE. – volume: 46 start-page: 21 issue: 1 year: 2015 end-page: 30 ident: CR19 article-title: The Autism Diagnostic Observation Schedule, Module 4: Application of the revised algorithms in an independent, well-defined, Dutch sample (n = 93) publication-title: Journal of Autism and Developmental Disorders. – volume: 19 start-page: 1141 issue: 9 year: 2000 end-page: 1164 ident: CR49 article-title: Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians publication-title: Statistics in medicine. – ident: CR11 – volume: 18 issue: 1 year: 2018 ident: CR7 article-title: Clinical practice guidelines for diagnosis of autism spectrum disorder in adults and children in the UK: a narrative review publication-title: BMC Psychiatry. – volume: 30 start-page: 205 year: 2000 end-page: 223 ident: CR10 article-title: The Autism Diagnostic Observation Schedule–Generic: A standard measure of social and communication deficits associated with the spectrum of autism publication-title: Journal of Autism and Developmental Disorders. – volume: 4 issue: 8 year: 2014 ident: CR40 article-title: Testing the accuracy of an observation-based classifier for rapid detection of autism risk publication-title: Transl Psychiatry. – volume: 28 start-page: 1 issue: 5 year: 2008 end-page: 26 ident: CR45 article-title: Caret package publication-title: Journal of statistical software – volume: 45 start-page: 1121 year: 2015 end-page: 1136 ident: CR39 article-title: Applying machine learning to facilitate autism diagnostics: Pitfalls and promises publication-title: Journal of Autism and Developmental Disorders. – year: 2003 ident: CR12 publication-title: Autism Diagnostic Interview-Revised (ADI-R). – volume: 12 year: 2011 ident: CR61 article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves publication-title: BMC Bioinformatics. – volume: 38 start-page: 362 issue: 2 year: 2008 end-page: 372 ident: CR15 article-title: Diagnosing autism spectrum disorders in pre-school children using two standardised assessment instruments: the ADI-R and the ADOS publication-title: J Autism Dev Disord. – volume: 2 start-page: 1013 issue: 11 year: 2015 end-page: 27 ident: CR25 article-title: Identifying the lost generation of adults with autism spectrum conditions publication-title: Lancet Psychiatry. – volume: 22 start-page: 329 year: 2013 end-page: 40 ident: CR9 article-title: Diagnostic procedures in autism spectrum disorders: a systematic literature review publication-title: Eur Child Adolesc Psychiatry. – volume: 52 start-page: 572 issue: 6 year: 2013 end-page: 581 ident: CR51 article-title: Social outcomes in mid- to later adulthood among individuals diagnosed with autism and average nonverbal IQ as children publication-title: Journal of the American Academy of Child & Adolescent Psychiatry. – volume: 47 start-page: 3370 year: 2017 end-page: 3379 ident: CR21 article-title: Diagnosing ASD in Adults Without ID: Accuracy of the ADOS-2 and the ADI-R publication-title: J Autism Dev Disord. – year: 2013 ident: CR2 publication-title: Diagnostic and Statistical Manual of Mental Disorders, 5th edn. – ident: CR33 – volume: 46 start-page: 3469 year: 2016 end-page: 3480 ident: CR26 article-title: Demographic and cognitive profile of individuals seeking a diagnosis of autism spectrum disorder in adulthood publication-title: J Autism Dev Disord. – volume: 5 issue: 2 year: 2015 ident: CR41 article-title: Searching for a minimal set of behaviors for autism detection through feature selection-based machine learning publication-title: Transl Psychiatry. – volume: 43 start-page: 1314 issue: 6 year: 2013 end-page: 1325 ident: CR28 article-title: Psychiatric comorbidity and functioning in a clinically referred population of adults with autism spectrum disorders: A comparative study publication-title: Journal of Autism & Developmental Disorders. – volume: 21 start-page: 690 issue: 6 year: 2017 end-page: 702 ident: CR59 article-title: Quantifying and exploring camouflaging in men and women with autism publication-title: Autism. – volume: 27 start-page: 1193 year: 2018 end-page: 1207 ident: CR4 article-title: Diagnostic accuracy of the ADOS and ADOS-2 in clinical practice publication-title: European Child & Adolescent Psychiatry. – volume: 44 start-page: 1996 year: 2014 end-page: 2012 ident: CR13 article-title: The Autism Diagnostic Observation Schedule, Module 4: Revised algorithm and standardized severity scores publication-title: Journal of Autism and Developmental Disorders. – volume: 25 start-page: 1000 issue: 8 year: 2018 end-page: 1007 ident: CR56 article-title: Machine learning approach for early detection of autism by combining questionnaire and home video screening publication-title: Journal of the American Medical Informatics Association. – volume: 34 start-page: 129 issue: 2 year: 2004 end-page: 137 ident: CR17 article-title: Interrelationship between autism diagnostic observation schedule-generic (ADOS-G), autism diagnostic interview-revised (ADI-R), and the diagnostic and statistical manual of mental disorders (DSM-IV-TR) classification in children and adolescents with mental retardation publication-title: Journal of Autism and Developmental Disorders. – volume: 14 start-page: 177 year: 2018 end-page: 187 ident: CR29 article-title: The Prevalence of autism spectrum disorders in adult psychiatric inpatients: A systematic review publication-title: Clinical Practice & Epidemiology in Mental Health. – volume: 383 start-page: 896 year: 2014 end-page: 910 ident: CR1 article-title: Autism publication-title: Lancet. – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 ident: CR46 article-title: Random forests publication-title: Machine learning. – volume: 44 start-page: 278 issue: 3 year: 2018 end-page: 297 ident: CR32 article-title: Machine Learning in autistic spectrum disorder behavioral research: A review and ways forward publication-title: Informatics for Health and Social Care. – volume: 14 start-page: e0222907 issue: 9 year: 2019 ident: CR58 article-title: A comparison of machine learning algorithms for the surveillance of autism spectrum disorder publication-title: PLoS ONE. – volume: 10 start-page: 533 issue: 6 year: 2006 end-page: 549 ident: CR16 article-title: The discriminative ability and diagnostic utility of the ADOS-G, ADI-R, and GARS for children in a clinical setting publication-title: Autism. – volume: 25 start-page: 769 issue: 7 year: 2016 end-page: 780 ident: CR24 article-title: The objectivity of the Autism Diagnostic Observation Schedule (ADOS) in naturalistic clinical settings publication-title: European child & adolescent psychiatry. – volume: 11 start-page: e0168224 issue: 12 year: 2016 ident: CR57 article-title: Development of a machine learning algorithm for the surveillance of autism spectrum disorder publication-title: PLoS ONE. – ident: CR31 – volume: 15 start-page: e1002705 issue: 11 year: 2018 ident: CR55 article-title: Mobile detection of autism through machine learning on home video: a development and prospective validation study publication-title: PLOS Medicine. – volume: 54 start-page: 11 issue: 1 year: 2015 end-page: 24 ident: CR60 article-title: Sex/gender differences and autism: setting the scene for future research publication-title: J AmAcad Child Adolesc Psychiatry. – ident: CR34 – volume: 47 start-page: 2703 issue: 9 year: 2017 end-page: 2709 ident: CR23 article-title: The accuracy of the ADOS-2 in identifying autism among adults with complex psychiatric conditions publication-title: J Autism Dev Disord. – volume: 57 start-page: 909 issue: 8 year: 2016 end-page: 916 ident: CR52 article-title: Subdimensions of social-communication impairment in autism spectrum disorder publication-title: Journal of Child Psychology and Psychiatry. – volume: 15 start-page: 143 issue: 2 year: 2013 end-page: 162 ident: CR22 article-title: Use of the autism diagnostic observation schedule (ADOS) in a clinical setting publication-title: Autism. – volume: 9 start-page: 1 issue: 1 year: 2009 ident: CR50 article-title: Estimation and comparison of receiver operating characteristic curves publication-title: The Stata Journal. – volume: 57 start-page: 275 issue: 5 year: 2012 end-page: 283 ident: CR30 article-title: Adults with autism spectrum disorders publication-title: CanJPsychiatry. – volume: 30 start-page: 205 year: 2000 ident: 61607_CR10 publication-title: Journal of Autism and Developmental Disorders. doi: 10.1023/A:1005592401947 – volume: 5 issue: 2 year: 2015 ident: 61607_CR41 publication-title: Transl Psychiatry. doi: 10.1038/tp.2015.7 – volume: 9 start-page: e93533 issue: 4 year: 2014 ident: 61607_CR54 publication-title: PLoS ONE. doi: 10.1371/journal.pone.0093533 – volume: 25 start-page: 1000 issue: 8 year: 2018 ident: 61607_CR56 publication-title: Journal of the American Medical Informatics Association. doi: 10.1093/jamia/ocy039 – volume: 41 start-page: 1256 year: 2011 ident: 61607_CR18 publication-title: Journal of Autism and Developmental Disorders. doi: 10.1007/s10803-010-1157-x – volume: 43 start-page: 1314 issue: 6 year: 2013 ident: 61607_CR28 publication-title: Journal of Autism & Developmental Disorders. doi: 10.1007/s10803-012-1679-5 – volume: 10 start-page: 533 issue: 6 year: 2006 ident: 61607_CR16 publication-title: Autism. doi: 10.1177/1362361306068505 – volume: 34 start-page: 129 issue: 2 year: 2004 ident: 61607_CR17 publication-title: Journal of Autism and Developmental Disorders. doi: 10.1023/B:JADD.0000022604.22374.5f – volume: 45 start-page: 1121 year: 2015 ident: 61607_CR39 publication-title: Journal of Autism and Developmental Disorders. doi: 10.1007/s10803-014-2268-6 – volume: 21 start-page: 690 issue: 6 year: 2017 ident: 61607_CR59 publication-title: Autism. doi: 10.1177/1362361316671012 – volume: 44 start-page: 837 issue: 3 year: 1988 ident: 61607_CR48 publication-title: Biometrics. doi: 10.2307/2531595 – volume: 46 start-page: 3469 year: 2016 ident: 61607_CR26 publication-title: J Autism Dev Disord. doi: 10.1007/s10803-016-2886-2 – volume: 46 start-page: 21 issue: 1 year: 2015 ident: 61607_CR19 publication-title: Journal of Autism and Developmental Disorders. doi: 10.1007/s10803-015-2532-4 – volume: 38 start-page: 362 issue: 2 year: 2008 ident: 61607_CR15 publication-title: J Autism Dev Disord. doi: 10.1007/s10803-007-0403-3 – volume: 383 start-page: 896 year: 2014 ident: 61607_CR1 publication-title: Lancet. doi: 10.1016/S0140-6736(13)61539-1 – volume: 2 issue: 4 year: 2012 ident: 61607_CR38 publication-title: Transl Psychiatry. doi: 10.1038/tp.2012.10 – volume: 9 start-page: 1526 year: 2018 ident: 61607_CR6 publication-title: Front. Psychol. doi: 10.3389/fpsyg.2018.01526 – volume: 7 start-page: 43855 issue: 8 year: 2012 ident: 61607_CR43 publication-title: PloS ONE. doi: 10.1371/journal.pone.0043855 – volume: 15 start-page: 143 issue: 2 year: 2013 ident: 61607_CR22 publication-title: Autism. doi: 10.1177/1362361310379241 – ident: 61607_CR35 doi: 10.1109/ECACE.2019.8679454 – volume: 11 start-page: e0168224 issue: 12 year: 2016 ident: 61607_CR57 publication-title: PLoS ONE. doi: 10.1371/journal.pone.0168224 – volume: 34 start-page: 34 year: 2017 ident: 61607_CR20 publication-title: Res Autism Spectr Disord. doi: 10.1016/j.rasd.2016.11.012 – volume: 47 start-page: 3370 year: 2017 ident: 61607_CR21 publication-title: J Autism Dev Disord. doi: 10.1007/s10803-017-3258-2 – volume: 11 start-page: 1 issue: 9 year: 2004 ident: 61607_CR47 publication-title: Journal of statistical software. doi: 10.18637/jss.v011.i09 – volume: 2 start-page: 1013 issue: 11 year: 2015 ident: 61607_CR25 publication-title: Lancet Psychiatry. doi: 10.1016/S2215-0366(15)00277-1 – volume: 9 start-page: 1 issue: 1 year: 2009 ident: 61607_CR50 publication-title: The Stata Journal. doi: 10.1177/1536867X0900900101 – volume-title: Diagnostic and Statistical Manual of Mental Disorders, 5th edn. year: 2013 ident: 61607_CR2 doi: 10.1176/appi.books.9780890425596 – volume: 6 year: 2016 ident: 61607_CR37 publication-title: Translational Psychiatry. doi: 10.1038/tp.2015.221 – volume: 52 start-page: 572 issue: 6 year: 2013 ident: 61607_CR51 publication-title: Journal of the American Academy of Child & Adolescent Psychiatry. doi: 10.1016/j.jaac.2013.02.017 – volume: 47 start-page: 2703 issue: 9 year: 2017 ident: 61607_CR23 publication-title: J Autism Dev Disord. doi: 10.1007/s10803-017-3188-z – volume: 15 start-page: e1002705 issue: 11 year: 2018 ident: 61607_CR55 publication-title: PLOS Medicine. doi: 10.1371/journal.pmed.1002705 – volume: 57 start-page: 275 issue: 5 year: 2012 ident: 61607_CR30 publication-title: CanJPsychiatry. – volume: 54 start-page: 11 issue: 1 year: 2015 ident: 61607_CR60 publication-title: J AmAcad Child Adolesc Psychiatry. doi: 10.1016/j.jaac.2014.10.003 – volume: 27 start-page: 1193 year: 2018 ident: 61607_CR4 publication-title: European Child & Adolescent Psychiatry. doi: 10.1007/s00787-018-1143-y – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 61607_CR46 publication-title: Machine learning. doi: 10.1023/A:1010933404324 – volume: 19 start-page: 1141 issue: 9 year: 2000 ident: 61607_CR49 publication-title: Statistics in medicine. doi: 10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F – volume: 28 start-page: 1 issue: 5 year: 2008 ident: 61607_CR45 publication-title: Journal of statistical software doi: 10.18637/jss.v028.i05 – volume-title: The International Statistical Classification of Dieases and Related Health Problems 10th Revision (ICD-10). year: 2016 ident: 61607_CR3 – volume: 57 start-page: 909 issue: 8 year: 2016 ident: 61607_CR52 publication-title: Journal of Child Psychology and Psychiatry. doi: 10.1111/jcpp.12510 – volume: 14 start-page: e0222907 issue: 9 year: 2019 ident: 61607_CR58 publication-title: PLoS ONE. doi: 10.1371/journal.pone.0222907 – ident: 61607_CR34 doi: 10.1109/ACCESS.2019.2952609 – volume: 22 start-page: 329 year: 2013 ident: 61607_CR9 publication-title: Eur Child Adolesc Psychiatry. doi: 10.1007/s00787-013-0375-0 – volume: 18 start-page: 52 issue: 1 year: 2013 ident: 61607_CR5 publication-title: Child Adolesc Ment Health. doi: 10.1111/j.1475-3588.2012.00664.x – ident: 61607_CR11 – volume: 37 start-page: 613 issue: 4 year: 2007 ident: 61607_CR14 publication-title: Journal of Autism and Develop- mental Disordersmental Disorders. doi: 10.1007/s10803-006-0280-1 – volume: 44 start-page: 1996 year: 2014 ident: 61607_CR13 publication-title: Journal of Autism and Developmental Disorders. doi: 10.1007/s10803-014-2080-3 – volume: 57 start-page: 927 issue: 8 year: 2016 ident: 61607_CR36 publication-title: J Child Psychol Psychiatry. doi: 10.1111/jcpp.12559 – volume: 2 start-page: e883 issue: 9 year: 2007 ident: 61607_CR27 publication-title: PLoS ONE. doi: 10.1371/journal.pone.0000883 – volume: 14 start-page: 177 year: 2018 ident: 61607_CR29 publication-title: Clinical Practice & Epidemiology in Mental Health. doi: 10.2174/1745017901814010177 – volume: 18 issue: 1 year: 2018 ident: 61607_CR7 publication-title: BMC Psychiatry. doi: 10.1186/s12888-018-1800-1 – start-page: 193 volume-title: Machine Learning and Knowledge Discovery in Databases year: 2019 ident: 61607_CR53 doi: 10.1007/978-3-030-10925-7_12 – volume-title: Autism Diagnostic Interview-Revised (ADI-R). year: 2003 ident: 61607_CR12 – volume: 17 issue: 1 year: 2017 ident: 61607_CR44 publication-title: BMC Psychiatry. doi: 10.1186/s12888-017-1362-7 – volume: 4 issue: 8 year: 2014 ident: 61607_CR40 publication-title: Transl Psychiatry. doi: 10.1038/tp.2014.65 – volume: 8 year: 2017 ident: 61607_CR42 publication-title: Molecular Autism. doi: 10.1186/s13229-017-0180-6 – volume: 44 start-page: 278 issue: 3 year: 2018 ident: 61607_CR32 publication-title: Informatics for Health and Social Care. doi: 10.1080/17538157.2017.1399132 – volume: 12 year: 2011 ident: 61607_CR61 publication-title: BMC Bioinformatics. doi: 10.1186/1471-2105-12-77 – volume: 23 start-page: 287 year: 2018 ident: 61607_CR8 publication-title: Autism. doi: 10.1177/1362361317748245 – volume: 25 start-page: 769 issue: 7 year: 2016 ident: 61607_CR24 publication-title: European child & adolescent psychiatry. doi: 10.1007/s00787-015-0793-2 – ident: 61607_CR31 – ident: 61607_CR33 doi: 10.1177/1460458218824711 |
SSID | ssj0000529419 |
Score | 2.5182557 |
Snippet | Diagnosing autism spectrum disorders (ASD) is a complicated, time-consuming process which is particularly challenging in older individuals. One of the most... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4805 |
SubjectTerms | 631/477/2811 692/699/476/1373 Adolescent Adolescents Adult Age Factors Algorithms Autism Autism Spectrum Disorder - diagnosis Autism Spectrum Disorder - psychology Diagnosis, Differential Differential diagnosis Female Humanities and Social Sciences Humans Learning algorithms Machine Learning Male multidisciplinary Psychological Tests Psychometrics - methods Reproducibility of Results Science Science (multidisciplinary) Sensitivity and Specificity Support Vector Machine Symptom Assessment Teenagers Young Adult |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4BVSUuCPoiBaqp1FubNnFezgEhhECoUnvqStwiO7Ep0m4WNqDtXvvLO2Mni7Y8IuUS20rsmYm_kWe-AfhED5nFrgzjRuVh2mQiLEWdk-GVDN_JD_JRvj_z81H6_SK7WIOh3FG_gN2jrh3XkxrNxl__3CyOyOAPfcq4_NbRJsSJYs4RyqMinK_DC9qZCjbUHz3c91zfokzjss-deXzo6v70AHQ-jJ387wDV7Utn27DVA0o89hqwA2umfQUvfYnJxWv46zNxXTYTXs_4WIZ_cGiNY_TscGpRkfJ1E3RJl7O7CTY9I2eHVy0qHJInsVNMJexG3PNAoWobdCweHXIQ_SVOXHymwb4gxeUbGJ2d_jo5D_u6C2FNaOw2NJokSI5HniSpJXyUC0IZuoiaVBtZallbE2tpRWILYXVex1aL2DLxTaZSSd75W9hop63ZBZTUuWykTUxSp0pKlUVKZZnUdNf0_wggHla7qntScq6NMa7c4XgiKy-hiiRUOQlV8wA-L8dce0qOZ3vvD0KsBu2qBLPoO56hAD4um8mw-LREtWZ65_qUEYGhPA3gnZf58nUJASO6RADFijYsOzBp92pLe_XbkXcXEdMPxQF8GfTm_rOensX752exB5uCdZjjDOU-bJCymAMCS7f6g7OAf4apEro priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT90wDLYYE9IuiG1sdGOTJ-0G1dq0TdMjegKhHXYaErcqaROGtNeHKAjtur8c2_2BHmyTVqmXxlGT2km-1PYXgM_0kFnsqjhtrY7ztlBxpRpNA69i-E77oCHK95s-Pcu_nhfnG6CmXBgJ2hdKS5mmp-iwLz0tNJwMJpsdnZTx3TN4ztTtbNULvZj_q7DnKk-rMT8mycwfqq6vQU-A5dP4yEdOUll7TnZgewSNeDQ08yVs-O4VbA3HSP56Db-HbFvJWMKra3a98CSGwUsXe1wFtGRg_RIlsfL6dontyLrZ42WHFqcESewt0wVLjQeuJ7Rdi8LU0SMHyl_gUmIwPY6HTlzswtnJ8ffFaTyerRA3hLhuYu9IS7S50FmWB8JAWhGScGXS5s6bypkm-NSZoLJQquB0kwan0sDkNoXNDe3A38Bmt-r8HqAh4ao1IfNZk1tjbJFYWxTG0d3QHBFBOn3tuhmJx_n8i5-1OMAzUw8aqklDtWiovovgYK5zNdBu_FN6f1JiPQ7BvlbMlC9cQhF8motp8LBHxHZ-dSsyVUKAR-cRvB10Pr8uI_BDl4qgXLOGWYCJuddLussfQtBdJkwxlEZwONnNQ7P-3ot3_yf-Hl4otmmOLTT7sEnG4z8QQLpxH2VE3AP5JQ2Z priority: 102 providerName: Springer Nature |
Title | Identifying predictive features of autism spectrum disorders in a clinical sample of adolescents and adults using machine learning |
URI | https://link.springer.com/article/10.1038/s41598-020-61607-w https://www.ncbi.nlm.nih.gov/pubmed/32188882 https://www.proquest.com/docview/2378831157 https://www.proquest.com/docview/2379029364 https://pubmed.ncbi.nlm.nih.gov/PMC7080741 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7ahEIvpe86TRcVemtNbFmW5VPZLglhoaG0DezNSLaUBLrebZwQcu0v74wse9mGxmAbbAk_ZiR90sx8A_ABLxKLXRmnjZaxaHIel7yW2PBKgu84D-q9fE_k8amYL_JFWHDrglvl0Cf6jrpZ1bRGfsCJ-NxTw3xe_44paxRZV0MKjYewS9Rl5NJVLIpxjYWsWCItQ6xMkqmDDscriinzcyaZFPHN9nh0B2Te9ZX8x2Dqx6Gjp_AkAEg27SX-DB7Y9jk86lNK3r6AP33krY9eYutLMsNQh8ac9QyeHVs5plHZuiXzQZaX10vWBAbOjl20TLMhWJJ1mqiDfY0N7xPTbcM8a0fHyGn-jC29P6ZlIQHF2Us4PTr8OTuOQ56FuEb0dRVbgxLDiYbMMuEQD0mOqMIUSSOMVaVRtbOpUY5nruDOyDp1hqeOiG5yLRTOxl_BTrtq7RtgCguXjXKZzWqhldJ5onWeK4N7jf1FBOnwt6s6kJBTLoxflTeGZ6rqJVShhCovoeomgo9jnXVPwXFv6f1BiFVojl21UZ4I3o-3sSGRdUS3dnXty5QJgh8pInjdy3x8XIZACDceQbGlDWMBIunevtNenHuy7iIhuqE0gk-D3mxe6_9fsXf_V7yFx5x0mPwK1T7soLLYdwiOrszEt4AJ7E6n8x9zPH85PPn2Ha_O5GziFxzw-FWov-jUFSE |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ4ia2E7iHBDi0WpLywqhVuot2IldKrHZpWm16pUfxG9kxnmsloreGimX2HnOeB6ZmW8AXuJBQrHLw7jSaSirhIc5L1NceDmZ7-gHtVm-k3R8ID8fJodr8KevhaG0yl4mekFdzUr6R77JCfjcQ8O8m_8KqWsURVf7FhotW-za8wW6bM3bnU9I31ecb2_tfxyHXVeBsERb4zS0Bp8PzepUCOlQ-6ccdajJokoaq3KjSmdjoxwXLuPOpGXsDI8dwbokWir0PfG612BdCnRlRrD-YWvy9dvwV4fiZjLOu-qcSKjNBjUkVbF5Ly2NsnCxqgEvmLUXszP_CdF6zbd9G251Jit73_LYHViz9V243jaxPL8Hv9taX18vxeYnFPghEcqc9ZihDZs5ppG9mynzZZ0nZ1NWdZifDTuumWZ9eSZrNIEV-zOWSFNM1xXzOCENozT9Izb1GaCWdS0vju7DwZXQ4AGM6lltHwFTODmvlBNWlFIrpZNI6yRRBvcSJVQAcf-1i7KDPafuGz8LH34XqmgpVCCFCk-hYhHA6-GceQv6censjZ6IRScAmmLJrgG8GIZx6VI8Rtd2dubn5BGaW6kM4GFL8-F2Ak0v3HgA2Qo3DBMIFnx1pD7-4eHBs4gAjuIA3vR8s3ys_7_F48vf4jncGO9_2Sv2dia7T-AmJ36mrEa1ASNkHPsUTbNT86xbDwy-X_US_Asgnk30 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlAvqLwDLRgJThBtYufhHCqEWlYtRRUHKu3N2IldKrHZbdNq1Ss_i1_HjPNYLRW9NVIuiZNNdh7-nJn5BuAtHiQWuyKMK52FSZXysOBlhoZXEHzHdVCb5XuU7R8nXybpZA3-9LUwlFbZ-0TvqKtZSd_IR5yIzz01zMh1aRHf9sYf52chdZCiSGvfTqNVkUN7tcDlW7NzsIeyfsf5-PP33f2w6zAQlog7LkJr8FkRYmdCJA6RQMZxPjV5VCXGysLI0tnYSMeFy7kzWRk7w2NHFC-pTiSuQ_G-d-BuLtKYbCyf5MP3HYqgJXHR1elEQo4anCupns2v17IoDxerc-E1gHs9T_OfYK2fA8eb8KADr-xTq20PYc3Wj-Be287y6jH8bqt-feUUm59TCIicKXPWs4c2bOaYRkVvpswXeJ5fTlnVsX827LRmmvWFmqzRRFvsr1hyTjFdV8wzhjSMEvZP2NTnglrWNb84eQLHtyKBp7Bez2r7HJjEwUUlnbCiTLSUOo20TlNpcC_RVwUQ9_-2KjsCdOrD8Uv5QLyQqpWQQgkpLyG1COD9cM28pf-4cfRWL0TVuYJGLRU3gDfDaTRiiszo2s4u_ZgiQuCVJQE8a2U-_JxAEIYbDyBf0YZhABGEr56pT396ovA8IqqjOIAPvd4sH-v_b_Hi5rd4DffR8NTXg6PDl7DBSZ0pvVFuwTrqjd1GjHZhXnljYPDjtq3vL9UUUMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+predictive+features+of+autism+spectrum+disorders+in+a+clinical+sample+of+adolescents+and+adults+using+machine+learning&rft.jtitle=Scientific+reports&rft.au=K%C3%BCpper%2C+Charlotte&rft.au=Stroth+Sanna&rft.au=Wolff%2C+Nicole&rft.au=Hauck+Florian&rft.date=2020-03-18&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-61607-w&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |