The scientific revolution that unraveled the astonishing DNA repair capacity of the Deinococcaceae : 40 years on
The family exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments. Their survival strategy involves the coupling of metabolic and DNA repair functions, resulting in an extraordinarily efficient homologous repair of DNA double-...
Saved in:
Published in | Canadian journal of microbiology Vol. 69; no. 10; pp. 369 - 386 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Canada
NRC Research Press
01.10.2023
Canadian Science Publishing NRC Research Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The family
exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments. Their survival strategy involves the coupling of metabolic and DNA repair functions, resulting in an extraordinarily efficient homologous repair of DNA double-strand breaks (DSBs) caused by radiation or desiccation. The keys to their survival lie in the hyperaccumulation of manganous (Mn
)-metabolite antioxidants that protect their DNA repair proteins under extreme oxidative stress and the persistent structural linkage by Holliday junctions of their multiple genome copies per cell that facilitates DSB repair. This coupling of metabolic and DNA repair functions has made polyploid
bacteria a useful tool in environmental biotechnology, radiobiology, aging, and planetary protection. The review highlights the groundbreaking contributions of the late Robert G.E. Murray to the field of
research and the emergent paradigm-shifting discoveries that revolutionized our understanding of radiation survivability and oxidative stress defense, demonstrating that the proteome, rather than the genome, is the primary target responsible for survivability. These discoveries have led to the commercial development of irradiated vaccines using
Mn-peptide antioxidants and have significant implications for various fields. |
---|---|
AbstractList | The family Deinococcaceae exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments. Their survival strategy involves the coupling of metabolic and DNA repair functions, resulting in an extraordinarily efficient homologous repair of DNA double-strand breaks (DSBs) caused by radiation or desiccation. The keys to their survival lie in the hyperaccumulation of manganous ([Mn.sup.2+])-metabolite antioxidants that protect their DNA repair proteins under extreme oxidative stress and the persistent structural linkage by Holliday junctions of their multiple genome copies per cell that facilitates DSB repair. This coupling of metabolic and DNA repair functions has made polyploid Deinococcus bacteria a useful tool in environmental biotechnology, radiobiology, aging, and planetary protection. The review highlights the groundbreaking contributions of the late Robert G.E. Murray to the field of Deinococcus research and the emergent paradigm-shifting discoveries that revolutionized our understanding of radiation survivability and oxidative stress defense, demonstrating that the proteome, rather than the genome, is the primary target responsible for survivability. These discoveries have led to the commercial development of irradiated vaccines using Deinococcus Mn-peptide antioxidants and have significant implications for various fields. Key words: Deinococcus, DNA repair, Holliday junction, Mn antioxidant, radiation, electron paramagnetic resonance The family Deinococcaceae exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments. Their survival strategy involves the coupling of metabolic and DNA repair functions, resulting in an extraordinarily efficient homologous repair of DNA double-strand breaks (DSBs) caused by radiation or desiccation. The keys to their survival lie in the hyperaccumulation of manganous ([Mn.sup.2+])-metabolite antioxidants that protect their DNA repair proteins under extreme oxidative stress and the persistent structural linkage by Holliday junctions of their multiple genome copies per cell that facilitates DSB repair. This coupling of metabolic and DNA repair functions has made polyploid Deinococcus bacteria a useful tool in environmental biotechnology, radiobiology, aging, and planetary protection. The review highlights the groundbreaking contributions of the late Robert G.E. Murray to the field of Deinococcus research and the emergent paradigm-shifting discoveries that revolutionized our understanding of radiation survivability and oxidative stress defense, demonstrating that the proteome, rather than the genome, is the primary target responsible for survivability. These discoveries have led to the commercial development of irradiated vaccines using Deinococcus Mn-peptide antioxidants and have significant implications for various fields. The family Deinococcaceae exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments. Their survival strategy involves the coupling of metabolic and DNA repair functions, resulting in an extraordinarily efficient homologous repair of DNA double-strand breaks (DSBs) caused by radiation or desiccation. The keys to their survival lie in the hyperaccumulation of manganous (Mn 2+ )-metabolite antioxidants that protect their DNA repair proteins under extreme oxidative stress and the persistent structural linkage by Holliday junctions of their multiple genome copies per cell that facilitates DSB repair. This coupling of metabolic and DNA repair functions has made polyploid Deinococcus bacteria a useful tool in environmental biotechnology, radiobiology, aging, and planetary protection. The review highlights the groundbreaking contributions of the late Robert G.E. Murray to the field of Deinococcus research and the emergent paradigm-shifting discoveries that revolutionized our understanding of radiation survivability and oxidative stress defense, demonstrating that the proteome, rather than the genome, is the primary target responsible for survivability. These discoveries have led to the commercial development of irradiated vaccines using Deinococcus Mn-peptide antioxidants and have significant implications for various fields. The family exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments. Their survival strategy involves the coupling of metabolic and DNA repair functions, resulting in an extraordinarily efficient homologous repair of DNA double-strand breaks (DSBs) caused by radiation or desiccation. The keys to their survival lie in the hyperaccumulation of manganous (Mn )-metabolite antioxidants that protect their DNA repair proteins under extreme oxidative stress and the persistent structural linkage by Holliday junctions of their multiple genome copies per cell that facilitates DSB repair. This coupling of metabolic and DNA repair functions has made polyploid bacteria a useful tool in environmental biotechnology, radiobiology, aging, and planetary protection. The review highlights the groundbreaking contributions of the late Robert G.E. Murray to the field of research and the emergent paradigm-shifting discoveries that revolutionized our understanding of radiation survivability and oxidative stress defense, demonstrating that the proteome, rather than the genome, is the primary target responsible for survivability. These discoveries have led to the commercial development of irradiated vaccines using Mn-peptide antioxidants and have significant implications for various fields. The family Deinococcaceae exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments. Their survival strategy involves the coupling of metabolic and DNA repair functions, resulting in an extraordinarily efficient homologous repair of DNA double-strand breaks (DSBs) caused by radiation or desiccation. The keys to their survival lie in the hyperaccumulation of manganous (Mn2+)-metabolite antioxidants that protect their DNA repair proteins under extreme oxidative stress and the persistent structural linkage by Holliday junctions of their multiple genome copies per cell that facilitates DSB repair. This coupling of metabolic and DNA repair functions has made polyploid Deinococcus bacteria a useful tool in environmental biotechnology, radiobiology, aging, and planetary protection. The review highlights the groundbreaking contributions of the late Robert G.E. Murray to the field of Deinococcus research and the emergent paradigm-shifting discoveries that revolutionized our understanding of radiation survivability and oxidative stress defense, demonstrating that the proteome, rather than the genome, is the primary target responsible for survivability. These discoveries have led to the commercial development of irradiated vaccines using Deinococcus Mn-peptide antioxidants and have significant implications for various fields. |
Audience | Academic |
Author | Daly, Michael J |
Author_xml | – sequence: 1 givenname: Michael J orcidid: 0000-0003-1496-5930 surname: Daly fullname: Daly, Michael J organization: Committee on Planetary Protection (CoPP), National Academies of Sciences, Washington, DC 20001, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37267626$$D View this record in MEDLINE/PubMed |
BookMark | eNqV0s1vFCEYBnBiauyHHr0aohc9TH2BgZn1tmn9aNLUROuZsMw7u2xmYQpM4_73srZ-rOnFcCCQH08IPMfkwAePhDxncMqYmL21603FgYsKQM4ekSNWt1AJ3sgDcgQAbVUzpQ7JcUprAAaiVk_IoWi4ahRXR2S8XiFN1qHPrneWRrwNw5Rd8DSvTKaTj-YWB-zKEqlJOXiXVs4v6fnVvOjRuEitGY11eUtD_5Odo_PBBmuNRYP0Ha2BbtHERIN_Sh73Zkj47H4-Id8-vL8--1Rdfv54cTa_rKzkPFcobcNbBFZD0y9ECw3WKATrpOG7XFDYM7WoO0DoewGzZoGyE9hyKWctV-KEvL7LHWO4mTBlvXHJ4jAYj2FKmreci6adMVnoq3_oOkzRl9sV1YAqmYL_UUszoHa-DzkauwvV80a1Usm6bot6-YCyo7vRf6PTB1AZHW6cLf_bu7K_l_pm70AxGb_npZlS0hdfv_yHvdq31Z21MaQUsddjdBsTt5qB3tVLl3rpXb30rl7Fv7h_qWmxwe63_tUn8QNHtceW |
CitedBy_id | crossref_primary_10_3389_fmicb_2024_1387296 crossref_primary_10_1016_j_bbrc_2024_149890 crossref_primary_10_1139_cjm_2023_0163 crossref_primary_10_3390_genes15070847 |
Cites_doi | 10.1128/AEM.70.7.4230-4241.2004 10.1016/j.femsre.2004.12.007 10.1089/ast.2022.0065 10.1179/1351000213Y.0000000078 10.1074/mcp.RA120.002092 10.1038/nrmicro2073 10.1038/s41598-019-47007-9 10.1016/j.cll.2006.03.009 10.1128/AEM.66.4.1489-1492.2000 10.1007/s00792-005-0437-4 10.1016/j.dnarep.2011.10.024 10.1128/jb.176.12.3508-3517.1994 10.1186/s40793-017-0258-y 10.1016/s0923-2508(99)00121-7 10.1128/mmbr.00080-22 10.1016/0003-9861(82)90049-2 10.1126/science.285.5433.1558 10.1016/0926-6550(64)90284-1 10.1038/nrmicro1264 10.1073/pnas.1009648107 10.3389/fphys.2020.592016 10.1128/jb.63.4.473-485.1952 10.1073/pnas.0630387100 10.1128/JB.00662-10 10.1128/AEM.01965-10 10.1038/nbt1098-929 10.1099/mic.0.29009-0 10.1038/ismej.2007.116 10.1038/s41598-019-53140-2 10.1534/genetics.104.029249 10.2147/CCID.S397751 10.1371/journal.pbio.0050092 10.1021/ja710162n 10.1128/jb.170.5.2126-2135.1988 10.1371/journal.pgen.1003810 10.1134/S0012496618030079 10.3389/fmicb.2017.02528 10.1038/171737a0 10.1139/m76-197 10.1128/jb.177.19.5495-5505.1995 10.1007/BF00446746 10.1128/jb.176.24.7506-7515.1994 10.1074/jbc.R114.588814 10.1017/S1431927607076891 10.1016/s0531-5565(01)00135-8 10.1099/00207713-31-3-353 10.1016/s0092-8674(01)00416-0 10.1038/71986 10.1371/journal.pone.0000955 10.1021/cg025591e 10.1073/pnas.1009312107 10.1042/bj0360080 10.1016/s0958-1669(00)00096-3 10.1111/j.1751-1097.1976.tb06769.x 10.1128/jb.60.6.697-718.1950 10.3390/cells10040954 10.1007/s00726-003-0011-2 10.1371/journal.pone.0012570 10.1021/acs.inorgchem.9b03737 10.1073/pnas.1303376110 10.1073/pnas.1713608114 10.1259/0007-1285-16-186-171 10.2307/3571706 10.1016/j.chom.2012.05.011 10.3389/fmicb.2020.613571 10.1126/science.1103185 10.1038/nature05160 10.1128/jb.178.3.633-637.1996 10.1126/science.270.5240.1318 10.1016/j.cell.2009.01.018 10.1099/00207713-30-4-627 10.1098/rsob.180249 10.3390/vaccines9020096 10.1371/journal.pone.0189261 10.1089/ars.2012.5093 10.1007/978-1-4757-2191-1_42 10.1128/jb.178.15.4461-4471.1996 10.1126/science.286.5444.1571 10.1128/MMBR.00015-10 10.1159/000368855 10.1073/pnas.2025188118 10.1042/bj0341367 10.1128/AEM.69.8.4575-4582.2003 10.1371/journal.pone.0160575 10.1128/AEM.66.6.2620-2626.2000 10.1117/12.375078 10.1002/bies.950170514 10.1016/0921-8777(95)00014-3 10.1371/journal.pone.0228006 10.1128/mBio.02338-20 10.1128/MMBR.65.1.44-79.2001 10.1186/1471-2148-5-57 10.1016/j.freeradbiomed.2019.09.023 10.1073/pnas.1119762109 10.3389/fmicb.2014.00274 10.1128/jb.134.1.71-75.1978 10.1128/mbio.03394-21 10.1111/j.1365-2672.2011.05095.x 10.17226/26336 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 NRC Research Press 2023 Published by NRC Research Press |
Copyright_xml | – notice: COPYRIGHT 2023 NRC Research Press – notice: 2023 Published by NRC Research Press |
DBID | NPM AAYXX CITATION ISN ISR 7QL 7SN 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 |
DOI | 10.1139/cjm-2023-0059 |
DatabaseName | PubMed CrossRef Gale In Context: Canada Gale In Context: Science Bacteriology Abstracts (Microbiology B) Ecology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Nursing & Allied Health Premium Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Nursing & Allied Health Premium MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1480-3275 |
EndPage | 386 |
ExternalDocumentID | A768565448 10_1139_cjm_2023_0059 37267626 |
Genre | Journal Article Review |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- -~X 00T 0R~ 29B 2QL 2XV 36B 4.4 4IJ 5GY 5RE 5RP 6J9 A8Z AAHBH AAIKC AAMNW ABCQX ABDBF ABJNI ACGFO ACGFS ACGOD ACNCT ACPRK AEGXH AENEX AFRAH AHMBA AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS APEBS CS3 D8U DU5 EAD EAP EAS EBC EBD EBS ECC EDH EMB EMK EMOBN EPL EST ESTFP ESX F5P HZ~ IAG IAO ICQ IEA IEP IHR INH INR IPNFZ ISN ISR ITC L7B ML0 MM. MV1 NPM NRXXU NYCZX O9- ONR P2P PV9 QF4 QM4 QN7 QO4 QRP RIG RRP RZL SV3 TN5 TUS U5U WH7 YZZ AAYXX CITATION 7QL 7SN 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 |
ID | FETCH-LOGICAL-c522t-e5c728e01407fb3807e4e331d5a2ccac06ef16b4d0e0ff3097be5d3e825598263 |
ISSN | 0008-4166 |
IngestDate | Sat Oct 05 06:06:52 EDT 2024 Thu Nov 07 05:52:40 EST 2024 Tue Nov 19 21:27:55 EST 2024 Tue Oct 01 01:30:33 EDT 2024 Tue Nov 12 23:34:34 EST 2024 Tue Oct 01 03:32:47 EDT 2024 Tue Oct 01 03:36:27 EDT 2024 Fri Dec 06 04:50:24 EST 2024 Wed Oct 16 00:38:16 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Holliday junction Mn antioxidant Deinococcus electron paramagnetic resonance radiation DNA repair |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/deed.en_GB |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c522t-e5c728e01407fb3807e4e331d5a2ccac06ef16b4d0e0ff3097be5d3e825598263 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0003-1496-5930 |
OpenAccessLink | https://cdnsciencepub.com/doi/pdf/10.1139/cjm-2023-0059 |
PMID | 37267626 |
PQID | 2870682532 |
PQPubID | 6731 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2822378915 proquest_journals_2870682532 gale_infotracmisc_A768565448 gale_infotraccpiq_768565448 gale_infotracacademiconefile_A768565448 gale_incontextgauss_ISR_A768565448 gale_incontextgauss_ISN_A768565448 crossref_primary_10_1139_cjm_2023_0059 pubmed_primary_37267626 |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Canada |
PublicationPlace_xml | – name: Canada – name: Ottawa |
PublicationTitle | Canadian journal of microbiology |
PublicationTitleAlternate | Can J Microbiol |
PublicationYear | 2023 |
Publisher | NRC Research Press Canadian Science Publishing NRC Research Press |
Publisher_xml | – name: NRC Research Press – name: Canadian Science Publishing NRC Research Press |
References | Murray R.G.E. (refg74/ref74) 1986 refg47/ref47 refg18/ref18 refg22/ref22 refg83/ref83 refg51/ref51 Committee on Space Research (refg19/ref19) 2020 refg25/ref25 refg15/ref15 Anderson A. (refg2/ref2) 1956; 10 refg80/ref80 refg79/ref79 refg54/ref54 refg57/ref57 refg37/ref37 refg93/ref93 refg10/ref10 refg1/ref1 refg32/ref32 refg86/ref86 refg89/ref89 refg35/ref35 refg59/ref59 refg61/ref61 refg42/ref42 refg64/ref64 refg67/ref67 refg13/ref13 refg27/ref27 refg90/ref90 refg56/ref56 United Nations (refg101/ref101) 1967 refg38/ref38 refg45/ref45 refg49/ref49 refg99/ref99 refg92/ref92 refg9/ref9 refg34/ref34 refg71/ref71 refg88/ref88 refg60/ref60 refg23/ref23 refg17/ref17 refg108/ref108 refg66/ref66 refg12/ref12 refg28/ref28 refg55/ref55 refg39/ref39 refg3/ref3 refg87/ref87 refg44/ref44 refg81/ref81 refg100/ref100 refg33/ref33 refg70/ref70 refg98/ref98 refg104/ref104 refg40/ref40 refg65/ref65 refg36/ref36 refg72/ref72 refg11/ref11 refg6/ref6 refg29/ref29 refg43/ref43 refg97/ref97 refg26/ref26 refg14/ref14 refg91/ref91 refg5/ref5 refg68/ref68 refg94/ref94 refg107/ref107 refg21/ref21 refg75/ref75 refg7/ref7 refg4/ref4 refg46/ref46 refg48/ref48 refg53/ref53 refg78/ref78 refg24/ref24 refg16/ref16 refg103/ref103 refg105/ref105 refg20/ref20 refg31/ref31 refg96/ref96 refg52/ref52 refg8/ref8 refg63/ref63 refg30/ref30 refg84/ref84 Hutchinson F. (refg50/ref50) 1966; 26 refg41/ref41 refg95/ref95 refg69/ref69 refg62/ref62 refg58/ref58 refg73/ref73 Murray R.G.E. (refg76/ref76) 1958 refg102/ref102 refg106/ref106 |
References_xml | – ident: refg38/ref38 doi: 10.1128/AEM.70.7.4230-4241.2004 – ident: refg42/ref42 doi: 10.1016/j.femsre.2004.12.007 – ident: refg49/ref49 doi: 10.1089/ast.2022.0065 – ident: refg7/ref7 doi: 10.1179/1351000213Y.0000000078 – ident: refg16/ref16 doi: 10.1074/mcp.RA120.002092 – ident: refg27/ref27 doi: 10.1038/nrmicro2073 – ident: refg92/ref92 doi: 10.1038/s41598-019-47007-9 – ident: refg26/ref26 doi: 10.1016/j.cll.2006.03.009 – ident: refg8/ref8 doi: 10.1128/AEM.66.4.1489-1492.2000 – ident: refg53/ref53 doi: 10.1007/s00792-005-0437-4 – ident: refg28/ref28 doi: 10.1016/j.dnarep.2011.10.024 – ident: refg32/ref32 doi: 10.1128/jb.176.12.3508-3517.1994 – volume-title: Treaty on principles governing the activities of states in the exploration and use of outer space, including the Moon and other celestial bodies. 18 U.S.T. 2410, 610 U.N.T.S. 205, art. IX year: 1967 ident: refg101/ref101 contributor: fullname: United Nations – ident: refg69/ref69 doi: 10.1186/s40793-017-0258-y – ident: refg66/ref66 doi: 10.1016/s0923-2508(99)00121-7 – ident: refg87/ref87 doi: 10.1128/mmbr.00080-22 – ident: refg4/ref4 doi: 10.1016/0003-9861(82)90049-2 – ident: refg62/ref62 doi: 10.1126/science.285.5433.1558 – ident: refg86/ref86 doi: 10.1016/0926-6550(64)90284-1 – ident: refg20/ref20 doi: 10.1038/nrmicro1264 – ident: refg71/ref71 doi: 10.1073/pnas.1009648107 – ident: refg48/ref48 doi: 10.3389/fphys.2020.592016 – ident: refg104/ref104 doi: 10.1128/jb.63.4.473-485.1952 – ident: refg64/ref64 doi: 10.1073/pnas.0630387100 – ident: refg79/ref79 doi: 10.1128/JB.00662-10 – ident: refg44/ref44 doi: 10.1128/AEM.01965-10 – ident: refg59/ref59 doi: 10.1038/nbt1098-929 – ident: refg11/ref11 doi: 10.1099/mic.0.29009-0 – start-page: 427 volume-title: Proceedings of the 7th International Congress for Microbiology, Stockholm year: 1958 ident: refg76/ref76 contributor: fullname: Murray R.G.E. – ident: refg39/ref39 doi: 10.1038/ismej.2007.116 – ident: refg84/ref84 doi: 10.1038/s41598-019-53140-2 – ident: refg98/ref98 doi: 10.1534/genetics.104.029249 – ident: refg6/ref6 doi: 10.2147/CCID.S397751 – ident: refg35/ref35 doi: 10.1371/journal.pbio.0050092 – ident: refg5/ref5 doi: 10.1021/ja710162n – ident: refg95/ref95 doi: 10.1128/jb.170.5.2126-2135.1988 – ident: refg55/ref55 doi: 10.1371/journal.pgen.1003810 – ident: refg90/ref90 doi: 10.1134/S0012496618030079 – ident: refg99/ref99 doi: 10.3389/fmicb.2017.02528 – ident: refg105/ref105 doi: 10.1038/171737a0 – ident: refg15/ref15 doi: 10.1139/m76-197 – ident: refg30/ref30 doi: 10.1128/jb.177.19.5495-5505.1995 – ident: refg65/ref65 doi: 10.1007/BF00446746 – ident: refg33/ref33 doi: 10.1128/jb.176.24.7506-7515.1994 – ident: refg51/ref51 doi: 10.1074/jbc.R114.588814 – ident: refg58/ref58 doi: 10.1017/S1431927607076891 – ident: refg61/ref61 doi: 10.1016/s0531-5565(01)00135-8 – ident: refg12/ref12 doi: 10.1099/00207713-31-3-353 – ident: refg1/ref1 doi: 10.1016/s0092-8674(01)00416-0 – ident: refg9/ref9 doi: 10.1038/71986 – volume: 26 start-page: 2045 issue: 9 year: 1966 ident: refg50/ref50 publication-title: Cancer Res. contributor: fullname: Hutchinson F. – ident: refg68/ref68 doi: 10.1371/journal.pone.0000955 – volume-title: Memo to H. Reichenbach, E. Stackebrandt, O. A. Nesterenko, R. B. Maxy, H. Ito, N. F. Lewis, B. E. B. Moseley, K. Komagata, E. Christensen, M. Embly, and R. L. Gherna. Dated August 21, 1986 and sent from The University of Western Ontario, Department of Microbiology and Immunology Health Sciences Center, London, Canada, N6A 5C1 year: 1986 ident: refg74/ref74 contributor: fullname: Murray R.G.E. – ident: refg18/ref18 doi: 10.1021/cg025591e – ident: refg54/ref54 doi: 10.1073/pnas.1009312107 – ident: refg23/ref23 doi: 10.1042/bj0360080 – ident: refg25/ref25 doi: 10.1016/s0958-1669(00)00096-3 – ident: refg60/ref60 doi: 10.1111/j.1751-1097.1976.tb06769.x – ident: refg103/ref103 doi: 10.1128/jb.60.6.697-718.1950 – ident: refg17/ref17 doi: 10.3390/cells10040954 – ident: refg97/ref97 doi: 10.1007/s00726-003-0011-2 – ident: refg36/ref36 doi: 10.1371/journal.pone.0012570 – ident: refg81/ref81 doi: 10.1021/acs.inorgchem.9b03737 – ident: refg88/ref88 doi: 10.1073/pnas.1303376110 – ident: refg89/ref89 doi: 10.1073/pnas.1713608114 – ident: refg24/ref24 doi: 10.1259/0007-1285-16-186-171 – ident: refg14/ref14 doi: 10.2307/3571706 – ident: refg40/ref40 doi: 10.1016/j.chom.2012.05.011 – ident: refg46/ref46 doi: 10.3389/fmicb.2020.613571 – ident: refg34/ref34 doi: 10.1126/science.1103185 – volume-title: Policy on planetary protection year: 2020 ident: refg19/ref19 contributor: fullname: Committee on Space Research – ident: refg107/ref107 doi: 10.1038/nature05160 – volume: 10 start-page: 575 year: 1956 ident: refg2/ref2 publication-title: Food Technol. contributor: fullname: Anderson A. – ident: refg70/ref70 doi: 10.1128/jb.178.3.633-637.1996 – ident: refg29/ref29 doi: 10.1126/science.270.5240.1318 – ident: refg94/ref94 doi: 10.1016/j.cell.2009.01.018 – ident: refg13/ref13 doi: 10.1099/00207713-30-4-627 – ident: refg56/ref56 doi: 10.1098/rsob.180249 – ident: refg37/ref37 doi: 10.3390/vaccines9020096 – ident: refg91/ref91 doi: 10.1371/journal.pone.0189261 – ident: refg21/ref21 doi: 10.1089/ars.2012.5093 – ident: refg75/ref75 doi: 10.1007/978-1-4757-2191-1_42 – ident: refg31/ref31 doi: 10.1128/jb.178.15.4461-4471.1996 – ident: refg106/ref106 doi: 10.1126/science.286.5444.1571 – ident: refg93/ref93 doi: 10.1128/MMBR.00015-10 – ident: refg96/ref96 doi: 10.1159/000368855 – ident: refg63/ref63 doi: 10.1073/pnas.2025188118 – ident: refg22/ref22 doi: 10.1042/bj0341367 – ident: refg10/ref10 doi: 10.1128/AEM.69.8.4575-4582.2003 – ident: refg45/ref45 doi: 10.1371/journal.pone.0160575 – ident: refg102/ref102 doi: 10.1128/AEM.66.6.2620-2626.2000 – ident: refg83/ref83 doi: 10.1117/12.375078 – ident: refg73/ref73 doi: 10.1002/bies.950170514 – ident: refg72/ref72 doi: 10.1016/0921-8777(95)00014-3 – ident: refg100/ref100 doi: 10.1371/journal.pone.0228006 – ident: refg3/ref3 doi: 10.1128/mBio.02338-20 – ident: refg67/ref67 doi: 10.1128/MMBR.65.1.44-79.2001 – ident: refg80/ref80 doi: 10.1186/1471-2148-5-57 – ident: refg52/ref52 doi: 10.1016/j.freeradbiomed.2019.09.023 – ident: refg57/ref57 doi: 10.1073/pnas.1119762109 – ident: refg108/ref108 doi: 10.3389/fmicb.2014.00274 – ident: refg47/ref47 doi: 10.1128/jb.134.1.71-75.1978 – ident: refg41/ref41 doi: 10.1128/mbio.03394-21 – ident: refg43/ref43 doi: 10.1111/j.1365-2672.2011.05095.x – ident: refg78/ref78 doi: 10.17226/26336 |
SSID | ssj0010346 |
Score | 2.4648278 |
SecondaryResourceType | review_article |
Snippet | The family
exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments. Their survival... The family Deinococcaceae exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments.... |
SourceID | proquest gale crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 369 |
SubjectTerms | Antioxidants Biotechnology Coupling Deinococcus Deoxyribonucleic acid Desiccation DNA DNA damage DNA repair Double-strand break repair Genetic aspects Genomes Gram-positive bacteria Holliday junctions Metabolism Metabolites Microbiological research Oxidative stress Polyploidy Proteomes Radiation Radiation tolerance Radiobiology Survivability Survival |
Title | The scientific revolution that unraveled the astonishing DNA repair capacity of the Deinococcaceae : 40 years on |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37267626 https://www.proquest.com/docview/2870682532 https://search.proquest.com/docview/2822378915 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagFRIXxJuyBRmE4LAKJLHz4talWy1oKRK0Um-W7TqoiE2WPg7Lr2cmdppkAWnhErXxxInms8cz9jwIeaGSWGUJzLRYRszjSa68lPm5F8ZpkOegb0QStwY-TuOTOf-wiBZ1oW0XXbJVr_XPP8aV_A-qcA9wxSjZf0B23yncgN-AL1wBYbheGWMb0YgOPxiG4l4H6iQY_rsCawt9N9ZFUqKa53acxtMRnhbI1fpQw2qpnV8Gko3NqihBSmqpjawC17l_eAHzAc8V2qrsPq9BK_nE2arJ69Tsgdti1s5B351DuY2GsHFZg3XCCkeegswObaWTWnraQiv1KPFbspC5JrusMpvx-neJzTDhqf525lXvxGDYZmmqj-Onn8RkfnoqZseL2XXSx6SHvEf6o6Px0aTf1KvgcZ1FlWVvOl12tI7La-8li6LSLGa3yS1nEtCRxfcOuWaKu-SGLRJ6cY-UgDJtUKYNyhRRpnuU4a-hLZQpoEwtyrRGmZZ5RdZF-S3lPq0wpmVxn8wnx7N3J54rk-FpUJ63nol0EqYGTWWYalhAwHDDWLCMZIjd-LHJg1jxpW_8PGd-ligTLZlJq-T8YcwekF5RFuYRoVmgpdRSKZnggbdSvmYqCtIlDwOVpmpAXtZsFOc2G4qorEiWCeC3QH4L5PeAPEcmC8wwUqAL01e522zE-y9TMQIDF6wIztO_En3uEL1yRHm5XcPHubAR-GDMXNahPOhQ6vPVD9FqHXZaQYrqzsPDejgIN202onICADaxcECe7ZvxSfRMLEy5QxpQsJM0C6IBeWiH0Z41LAljUDbix1d4-oDcbCbdkPS26515AvruVj11A_0XCEes9A |
link.rule.ids | 314,780,784,27924,27925 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+scientific+revolution+that+unraveled+the+astonishing+DNA+repair+capacity+of+the+Deinococcaceae%3A+40+years+on&rft.jtitle=Canadian+journal+of+microbiology&rft.au=Daly%2C+Michael+J&rft.date=2023-10-01&rft.eissn=1480-3275&rft.volume=69&rft.issue=10&rft.spage=369&rft.epage=386&rft_id=info:doi/10.1139%2Fcjm-2023-0059&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4166&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4166&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4166&client=summon |