The scientific revolution that unraveled the astonishing DNA repair capacity of the Deinococcaceae : 40 years on

The family exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments. Their survival strategy involves the coupling of metabolic and DNA repair functions, resulting in an extraordinarily efficient homologous repair of DNA double-...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of microbiology Vol. 69; no. 10; pp. 369 - 386
Main Author Daly, Michael J
Format Journal Article
LanguageEnglish
Published Canada NRC Research Press 01.10.2023
Canadian Science Publishing NRC Research Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The family exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments. Their survival strategy involves the coupling of metabolic and DNA repair functions, resulting in an extraordinarily efficient homologous repair of DNA double-strand breaks (DSBs) caused by radiation or desiccation. The keys to their survival lie in the hyperaccumulation of manganous (Mn )-metabolite antioxidants that protect their DNA repair proteins under extreme oxidative stress and the persistent structural linkage by Holliday junctions of their multiple genome copies per cell that facilitates DSB repair. This coupling of metabolic and DNA repair functions has made polyploid bacteria a useful tool in environmental biotechnology, radiobiology, aging, and planetary protection. The review highlights the groundbreaking contributions of the late Robert G.E. Murray to the field of research and the emergent paradigm-shifting discoveries that revolutionized our understanding of radiation survivability and oxidative stress defense, demonstrating that the proteome, rather than the genome, is the primary target responsible for survivability. These discoveries have led to the commercial development of irradiated vaccines using Mn-peptide antioxidants and have significant implications for various fields.
AbstractList The family Deinococcaceae exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments. Their survival strategy involves the coupling of metabolic and DNA repair functions, resulting in an extraordinarily efficient homologous repair of DNA double-strand breaks (DSBs) caused by radiation or desiccation. The keys to their survival lie in the hyperaccumulation of manganous ([Mn.sup.2+])-metabolite antioxidants that protect their DNA repair proteins under extreme oxidative stress and the persistent structural linkage by Holliday junctions of their multiple genome copies per cell that facilitates DSB repair. This coupling of metabolic and DNA repair functions has made polyploid Deinococcus bacteria a useful tool in environmental biotechnology, radiobiology, aging, and planetary protection. The review highlights the groundbreaking contributions of the late Robert G.E. Murray to the field of Deinococcus research and the emergent paradigm-shifting discoveries that revolutionized our understanding of radiation survivability and oxidative stress defense, demonstrating that the proteome, rather than the genome, is the primary target responsible for survivability. These discoveries have led to the commercial development of irradiated vaccines using Deinococcus Mn-peptide antioxidants and have significant implications for various fields. Key words: Deinococcus, DNA repair, Holliday junction, Mn antioxidant, radiation, electron paramagnetic resonance
The family Deinococcaceae exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments. Their survival strategy involves the coupling of metabolic and DNA repair functions, resulting in an extraordinarily efficient homologous repair of DNA double-strand breaks (DSBs) caused by radiation or desiccation. The keys to their survival lie in the hyperaccumulation of manganous ([Mn.sup.2+])-metabolite antioxidants that protect their DNA repair proteins under extreme oxidative stress and the persistent structural linkage by Holliday junctions of their multiple genome copies per cell that facilitates DSB repair. This coupling of metabolic and DNA repair functions has made polyploid Deinococcus bacteria a useful tool in environmental biotechnology, radiobiology, aging, and planetary protection. The review highlights the groundbreaking contributions of the late Robert G.E. Murray to the field of Deinococcus research and the emergent paradigm-shifting discoveries that revolutionized our understanding of radiation survivability and oxidative stress defense, demonstrating that the proteome, rather than the genome, is the primary target responsible for survivability. These discoveries have led to the commercial development of irradiated vaccines using Deinococcus Mn-peptide antioxidants and have significant implications for various fields.
The family Deinococcaceae exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments. Their survival strategy involves the coupling of metabolic and DNA repair functions, resulting in an extraordinarily efficient homologous repair of DNA double-strand breaks (DSBs) caused by radiation or desiccation. The keys to their survival lie in the hyperaccumulation of manganous (Mn 2+ )-metabolite antioxidants that protect their DNA repair proteins under extreme oxidative stress and the persistent structural linkage by Holliday junctions of their multiple genome copies per cell that facilitates DSB repair. This coupling of metabolic and DNA repair functions has made polyploid Deinococcus bacteria a useful tool in environmental biotechnology, radiobiology, aging, and planetary protection. The review highlights the groundbreaking contributions of the late Robert G.E. Murray to the field of Deinococcus research and the emergent paradigm-shifting discoveries that revolutionized our understanding of radiation survivability and oxidative stress defense, demonstrating that the proteome, rather than the genome, is the primary target responsible for survivability. These discoveries have led to the commercial development of irradiated vaccines using Deinococcus Mn-peptide antioxidants and have significant implications for various fields.
The family exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments. Their survival strategy involves the coupling of metabolic and DNA repair functions, resulting in an extraordinarily efficient homologous repair of DNA double-strand breaks (DSBs) caused by radiation or desiccation. The keys to their survival lie in the hyperaccumulation of manganous (Mn )-metabolite antioxidants that protect their DNA repair proteins under extreme oxidative stress and the persistent structural linkage by Holliday junctions of their multiple genome copies per cell that facilitates DSB repair. This coupling of metabolic and DNA repair functions has made polyploid bacteria a useful tool in environmental biotechnology, radiobiology, aging, and planetary protection. The review highlights the groundbreaking contributions of the late Robert G.E. Murray to the field of research and the emergent paradigm-shifting discoveries that revolutionized our understanding of radiation survivability and oxidative stress defense, demonstrating that the proteome, rather than the genome, is the primary target responsible for survivability. These discoveries have led to the commercial development of irradiated vaccines using Mn-peptide antioxidants and have significant implications for various fields.
The family Deinococcaceae exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments. Their survival strategy involves the coupling of metabolic and DNA repair functions, resulting in an extraordinarily efficient homologous repair of DNA double-strand breaks (DSBs) caused by radiation or desiccation. The keys to their survival lie in the hyperaccumulation of manganous (Mn2+)-metabolite antioxidants that protect their DNA repair proteins under extreme oxidative stress and the persistent structural linkage by Holliday junctions of their multiple genome copies per cell that facilitates DSB repair. This coupling of metabolic and DNA repair functions has made polyploid Deinococcus bacteria a useful tool in environmental biotechnology, radiobiology, aging, and planetary protection. The review highlights the groundbreaking contributions of the late Robert G.E. Murray to the field of Deinococcus research and the emergent paradigm-shifting discoveries that revolutionized our understanding of radiation survivability and oxidative stress defense, demonstrating that the proteome, rather than the genome, is the primary target responsible for survivability. These discoveries have led to the commercial development of irradiated vaccines using Deinococcus Mn-peptide antioxidants and have significant implications for various fields.
Audience Academic
Author Daly, Michael J
Author_xml – sequence: 1
  givenname: Michael J
  orcidid: 0000-0003-1496-5930
  surname: Daly
  fullname: Daly, Michael J
  organization: Committee on Planetary Protection (CoPP), National Academies of Sciences, Washington, DC 20001, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37267626$$D View this record in MEDLINE/PubMed
BookMark eNqV0s1vFCEYBnBiauyHHr0aohc9TH2BgZn1tmn9aNLUROuZsMw7u2xmYQpM4_73srZ-rOnFcCCQH08IPMfkwAePhDxncMqYmL21603FgYsKQM4ekSNWt1AJ3sgDcgQAbVUzpQ7JcUprAAaiVk_IoWi4ahRXR2S8XiFN1qHPrneWRrwNw5Rd8DSvTKaTj-YWB-zKEqlJOXiXVs4v6fnVvOjRuEitGY11eUtD_5Odo_PBBmuNRYP0Ha2BbtHERIN_Sh73Zkj47H4-Id8-vL8--1Rdfv54cTa_rKzkPFcobcNbBFZD0y9ECw3WKATrpOG7XFDYM7WoO0DoewGzZoGyE9hyKWctV-KEvL7LHWO4mTBlvXHJ4jAYj2FKmreci6adMVnoq3_oOkzRl9sV1YAqmYL_UUszoHa-DzkauwvV80a1Usm6bot6-YCyo7vRf6PTB1AZHW6cLf_bu7K_l_pm70AxGb_npZlS0hdfv_yHvdq31Z21MaQUsddjdBsTt5qB3tVLl3rpXb30rl7Fv7h_qWmxwe63_tUn8QNHtceW
CitedBy_id crossref_primary_10_3389_fmicb_2024_1387296
crossref_primary_10_1016_j_bbrc_2024_149890
crossref_primary_10_1139_cjm_2023_0163
crossref_primary_10_3390_genes15070847
Cites_doi 10.1128/AEM.70.7.4230-4241.2004
10.1016/j.femsre.2004.12.007
10.1089/ast.2022.0065
10.1179/1351000213Y.0000000078
10.1074/mcp.RA120.002092
10.1038/nrmicro2073
10.1038/s41598-019-47007-9
10.1016/j.cll.2006.03.009
10.1128/AEM.66.4.1489-1492.2000
10.1007/s00792-005-0437-4
10.1016/j.dnarep.2011.10.024
10.1128/jb.176.12.3508-3517.1994
10.1186/s40793-017-0258-y
10.1016/s0923-2508(99)00121-7
10.1128/mmbr.00080-22
10.1016/0003-9861(82)90049-2
10.1126/science.285.5433.1558
10.1016/0926-6550(64)90284-1
10.1038/nrmicro1264
10.1073/pnas.1009648107
10.3389/fphys.2020.592016
10.1128/jb.63.4.473-485.1952
10.1073/pnas.0630387100
10.1128/JB.00662-10
10.1128/AEM.01965-10
10.1038/nbt1098-929
10.1099/mic.0.29009-0
10.1038/ismej.2007.116
10.1038/s41598-019-53140-2
10.1534/genetics.104.029249
10.2147/CCID.S397751
10.1371/journal.pbio.0050092
10.1021/ja710162n
10.1128/jb.170.5.2126-2135.1988
10.1371/journal.pgen.1003810
10.1134/S0012496618030079
10.3389/fmicb.2017.02528
10.1038/171737a0
10.1139/m76-197
10.1128/jb.177.19.5495-5505.1995
10.1007/BF00446746
10.1128/jb.176.24.7506-7515.1994
10.1074/jbc.R114.588814
10.1017/S1431927607076891
10.1016/s0531-5565(01)00135-8
10.1099/00207713-31-3-353
10.1016/s0092-8674(01)00416-0
10.1038/71986
10.1371/journal.pone.0000955
10.1021/cg025591e
10.1073/pnas.1009312107
10.1042/bj0360080
10.1016/s0958-1669(00)00096-3
10.1111/j.1751-1097.1976.tb06769.x
10.1128/jb.60.6.697-718.1950
10.3390/cells10040954
10.1007/s00726-003-0011-2
10.1371/journal.pone.0012570
10.1021/acs.inorgchem.9b03737
10.1073/pnas.1303376110
10.1073/pnas.1713608114
10.1259/0007-1285-16-186-171
10.2307/3571706
10.1016/j.chom.2012.05.011
10.3389/fmicb.2020.613571
10.1126/science.1103185
10.1038/nature05160
10.1128/jb.178.3.633-637.1996
10.1126/science.270.5240.1318
10.1016/j.cell.2009.01.018
10.1099/00207713-30-4-627
10.1098/rsob.180249
10.3390/vaccines9020096
10.1371/journal.pone.0189261
10.1089/ars.2012.5093
10.1007/978-1-4757-2191-1_42
10.1128/jb.178.15.4461-4471.1996
10.1126/science.286.5444.1571
10.1128/MMBR.00015-10
10.1159/000368855
10.1073/pnas.2025188118
10.1042/bj0341367
10.1128/AEM.69.8.4575-4582.2003
10.1371/journal.pone.0160575
10.1128/AEM.66.6.2620-2626.2000
10.1117/12.375078
10.1002/bies.950170514
10.1016/0921-8777(95)00014-3
10.1371/journal.pone.0228006
10.1128/mBio.02338-20
10.1128/MMBR.65.1.44-79.2001
10.1186/1471-2148-5-57
10.1016/j.freeradbiomed.2019.09.023
10.1073/pnas.1119762109
10.3389/fmicb.2014.00274
10.1128/jb.134.1.71-75.1978
10.1128/mbio.03394-21
10.1111/j.1365-2672.2011.05095.x
10.17226/26336
ContentType Journal Article
Copyright COPYRIGHT 2023 NRC Research Press
2023 Published by NRC Research Press
Copyright_xml – notice: COPYRIGHT 2023 NRC Research Press
– notice: 2023 Published by NRC Research Press
DBID NPM
AAYXX
CITATION
ISN
ISR
7QL
7SN
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
DOI 10.1139/cjm-2023-0059
DatabaseName PubMed
CrossRef
Gale In Context: Canada
Gale In Context: Science
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Nursing & Allied Health Premium
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList

CrossRef


PubMed

Nursing & Allied Health Premium
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1480-3275
EndPage 386
ExternalDocumentID A768565448
10_1139_cjm_2023_0059
37267626
Genre Journal Article
Review
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
-~X
00T
0R~
29B
2QL
2XV
36B
4.4
4IJ
5GY
5RE
5RP
6J9
A8Z
AAHBH
AAIKC
AAMNW
ABCQX
ABDBF
ABJNI
ACGFO
ACGFS
ACGOD
ACNCT
ACPRK
AEGXH
AENEX
AFRAH
AHMBA
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
APEBS
CS3
D8U
DU5
EAD
EAP
EAS
EBC
EBD
EBS
ECC
EDH
EMB
EMK
EMOBN
EPL
EST
ESTFP
ESX
F5P
HZ~
IAG
IAO
ICQ
IEA
IEP
IHR
INH
INR
IPNFZ
ISN
ISR
ITC
L7B
ML0
MM.
MV1
NPM
NRXXU
NYCZX
O9-
ONR
P2P
PV9
QF4
QM4
QN7
QO4
QRP
RIG
RRP
RZL
SV3
TN5
TUS
U5U
WH7
YZZ
AAYXX
CITATION
7QL
7SN
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
ID FETCH-LOGICAL-c522t-e5c728e01407fb3807e4e331d5a2ccac06ef16b4d0e0ff3097be5d3e825598263
ISSN 0008-4166
IngestDate Sat Oct 05 06:06:52 EDT 2024
Thu Nov 07 05:52:40 EST 2024
Tue Nov 19 21:27:55 EST 2024
Tue Oct 01 01:30:33 EDT 2024
Tue Nov 12 23:34:34 EST 2024
Tue Oct 01 03:32:47 EDT 2024
Tue Oct 01 03:36:27 EDT 2024
Fri Dec 06 04:50:24 EST 2024
Wed Oct 16 00:38:16 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Holliday junction
Mn antioxidant
Deinococcus
electron paramagnetic resonance
radiation
DNA repair
Language English
License https://creativecommons.org/licenses/by/4.0/deed.en_GB
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c522t-e5c728e01407fb3807e4e331d5a2ccac06ef16b4d0e0ff3097be5d3e825598263
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0003-1496-5930
OpenAccessLink https://cdnsciencepub.com/doi/pdf/10.1139/cjm-2023-0059
PMID 37267626
PQID 2870682532
PQPubID 6731
PageCount 18
ParticipantIDs proquest_miscellaneous_2822378915
proquest_journals_2870682532
gale_infotracmisc_A768565448
gale_infotraccpiq_768565448
gale_infotracacademiconefile_A768565448
gale_incontextgauss_ISR_A768565448
gale_incontextgauss_ISN_A768565448
crossref_primary_10_1139_cjm_2023_0059
pubmed_primary_37267626
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Ottawa
PublicationTitle Canadian journal of microbiology
PublicationTitleAlternate Can J Microbiol
PublicationYear 2023
Publisher NRC Research Press
Canadian Science Publishing NRC Research Press
Publisher_xml – name: NRC Research Press
– name: Canadian Science Publishing NRC Research Press
References Murray R.G.E. (refg74/ref74) 1986
refg47/ref47
refg18/ref18
refg22/ref22
refg83/ref83
refg51/ref51
Committee on Space Research (refg19/ref19) 2020
refg25/ref25
refg15/ref15
Anderson A. (refg2/ref2) 1956; 10
refg80/ref80
refg79/ref79
refg54/ref54
refg57/ref57
refg37/ref37
refg93/ref93
refg10/ref10
refg1/ref1
refg32/ref32
refg86/ref86
refg89/ref89
refg35/ref35
refg59/ref59
refg61/ref61
refg42/ref42
refg64/ref64
refg67/ref67
refg13/ref13
refg27/ref27
refg90/ref90
refg56/ref56
United Nations (refg101/ref101) 1967
refg38/ref38
refg45/ref45
refg49/ref49
refg99/ref99
refg92/ref92
refg9/ref9
refg34/ref34
refg71/ref71
refg88/ref88
refg60/ref60
refg23/ref23
refg17/ref17
refg108/ref108
refg66/ref66
refg12/ref12
refg28/ref28
refg55/ref55
refg39/ref39
refg3/ref3
refg87/ref87
refg44/ref44
refg81/ref81
refg100/ref100
refg33/ref33
refg70/ref70
refg98/ref98
refg104/ref104
refg40/ref40
refg65/ref65
refg36/ref36
refg72/ref72
refg11/ref11
refg6/ref6
refg29/ref29
refg43/ref43
refg97/ref97
refg26/ref26
refg14/ref14
refg91/ref91
refg5/ref5
refg68/ref68
refg94/ref94
refg107/ref107
refg21/ref21
refg75/ref75
refg7/ref7
refg4/ref4
refg46/ref46
refg48/ref48
refg53/ref53
refg78/ref78
refg24/ref24
refg16/ref16
refg103/ref103
refg105/ref105
refg20/ref20
refg31/ref31
refg96/ref96
refg52/ref52
refg8/ref8
refg63/ref63
refg30/ref30
refg84/ref84
Hutchinson F. (refg50/ref50) 1966; 26
refg41/ref41
refg95/ref95
refg69/ref69
refg62/ref62
refg58/ref58
refg73/ref73
Murray R.G.E. (refg76/ref76) 1958
refg102/ref102
refg106/ref106
References_xml – ident: refg38/ref38
  doi: 10.1128/AEM.70.7.4230-4241.2004
– ident: refg42/ref42
  doi: 10.1016/j.femsre.2004.12.007
– ident: refg49/ref49
  doi: 10.1089/ast.2022.0065
– ident: refg7/ref7
  doi: 10.1179/1351000213Y.0000000078
– ident: refg16/ref16
  doi: 10.1074/mcp.RA120.002092
– ident: refg27/ref27
  doi: 10.1038/nrmicro2073
– ident: refg92/ref92
  doi: 10.1038/s41598-019-47007-9
– ident: refg26/ref26
  doi: 10.1016/j.cll.2006.03.009
– ident: refg8/ref8
  doi: 10.1128/AEM.66.4.1489-1492.2000
– ident: refg53/ref53
  doi: 10.1007/s00792-005-0437-4
– ident: refg28/ref28
  doi: 10.1016/j.dnarep.2011.10.024
– ident: refg32/ref32
  doi: 10.1128/jb.176.12.3508-3517.1994
– volume-title: Treaty on principles governing the activities of states in the exploration and use of outer space, including the Moon and other celestial bodies. 18 U.S.T. 2410, 610 U.N.T.S. 205, art. IX
  year: 1967
  ident: refg101/ref101
  contributor:
    fullname: United Nations
– ident: refg69/ref69
  doi: 10.1186/s40793-017-0258-y
– ident: refg66/ref66
  doi: 10.1016/s0923-2508(99)00121-7
– ident: refg87/ref87
  doi: 10.1128/mmbr.00080-22
– ident: refg4/ref4
  doi: 10.1016/0003-9861(82)90049-2
– ident: refg62/ref62
  doi: 10.1126/science.285.5433.1558
– ident: refg86/ref86
  doi: 10.1016/0926-6550(64)90284-1
– ident: refg20/ref20
  doi: 10.1038/nrmicro1264
– ident: refg71/ref71
  doi: 10.1073/pnas.1009648107
– ident: refg48/ref48
  doi: 10.3389/fphys.2020.592016
– ident: refg104/ref104
  doi: 10.1128/jb.63.4.473-485.1952
– ident: refg64/ref64
  doi: 10.1073/pnas.0630387100
– ident: refg79/ref79
  doi: 10.1128/JB.00662-10
– ident: refg44/ref44
  doi: 10.1128/AEM.01965-10
– ident: refg59/ref59
  doi: 10.1038/nbt1098-929
– ident: refg11/ref11
  doi: 10.1099/mic.0.29009-0
– start-page: 427
  volume-title: Proceedings of the 7th International Congress for Microbiology, Stockholm
  year: 1958
  ident: refg76/ref76
  contributor:
    fullname: Murray R.G.E.
– ident: refg39/ref39
  doi: 10.1038/ismej.2007.116
– ident: refg84/ref84
  doi: 10.1038/s41598-019-53140-2
– ident: refg98/ref98
  doi: 10.1534/genetics.104.029249
– ident: refg6/ref6
  doi: 10.2147/CCID.S397751
– ident: refg35/ref35
  doi: 10.1371/journal.pbio.0050092
– ident: refg5/ref5
  doi: 10.1021/ja710162n
– ident: refg95/ref95
  doi: 10.1128/jb.170.5.2126-2135.1988
– ident: refg55/ref55
  doi: 10.1371/journal.pgen.1003810
– ident: refg90/ref90
  doi: 10.1134/S0012496618030079
– ident: refg99/ref99
  doi: 10.3389/fmicb.2017.02528
– ident: refg105/ref105
  doi: 10.1038/171737a0
– ident: refg15/ref15
  doi: 10.1139/m76-197
– ident: refg30/ref30
  doi: 10.1128/jb.177.19.5495-5505.1995
– ident: refg65/ref65
  doi: 10.1007/BF00446746
– ident: refg33/ref33
  doi: 10.1128/jb.176.24.7506-7515.1994
– ident: refg51/ref51
  doi: 10.1074/jbc.R114.588814
– ident: refg58/ref58
  doi: 10.1017/S1431927607076891
– ident: refg61/ref61
  doi: 10.1016/s0531-5565(01)00135-8
– ident: refg12/ref12
  doi: 10.1099/00207713-31-3-353
– ident: refg1/ref1
  doi: 10.1016/s0092-8674(01)00416-0
– ident: refg9/ref9
  doi: 10.1038/71986
– volume: 26
  start-page: 2045
  issue: 9
  year: 1966
  ident: refg50/ref50
  publication-title: Cancer Res.
  contributor:
    fullname: Hutchinson F.
– ident: refg68/ref68
  doi: 10.1371/journal.pone.0000955
– volume-title: Memo to H. Reichenbach, E. Stackebrandt, O. A. Nesterenko, R. B. Maxy, H. Ito, N. F. Lewis, B. E. B. Moseley, K. Komagata, E. Christensen, M. Embly, and R. L. Gherna. Dated August 21, 1986 and sent from The University of Western Ontario, Department of Microbiology and Immunology Health Sciences Center, London, Canada, N6A 5C1
  year: 1986
  ident: refg74/ref74
  contributor:
    fullname: Murray R.G.E.
– ident: refg18/ref18
  doi: 10.1021/cg025591e
– ident: refg54/ref54
  doi: 10.1073/pnas.1009312107
– ident: refg23/ref23
  doi: 10.1042/bj0360080
– ident: refg25/ref25
  doi: 10.1016/s0958-1669(00)00096-3
– ident: refg60/ref60
  doi: 10.1111/j.1751-1097.1976.tb06769.x
– ident: refg103/ref103
  doi: 10.1128/jb.60.6.697-718.1950
– ident: refg17/ref17
  doi: 10.3390/cells10040954
– ident: refg97/ref97
  doi: 10.1007/s00726-003-0011-2
– ident: refg36/ref36
  doi: 10.1371/journal.pone.0012570
– ident: refg81/ref81
  doi: 10.1021/acs.inorgchem.9b03737
– ident: refg88/ref88
  doi: 10.1073/pnas.1303376110
– ident: refg89/ref89
  doi: 10.1073/pnas.1713608114
– ident: refg24/ref24
  doi: 10.1259/0007-1285-16-186-171
– ident: refg14/ref14
  doi: 10.2307/3571706
– ident: refg40/ref40
  doi: 10.1016/j.chom.2012.05.011
– ident: refg46/ref46
  doi: 10.3389/fmicb.2020.613571
– ident: refg34/ref34
  doi: 10.1126/science.1103185
– volume-title: Policy on planetary protection
  year: 2020
  ident: refg19/ref19
  contributor:
    fullname: Committee on Space Research
– ident: refg107/ref107
  doi: 10.1038/nature05160
– volume: 10
  start-page: 575
  year: 1956
  ident: refg2/ref2
  publication-title: Food Technol.
  contributor:
    fullname: Anderson A.
– ident: refg70/ref70
  doi: 10.1128/jb.178.3.633-637.1996
– ident: refg29/ref29
  doi: 10.1126/science.270.5240.1318
– ident: refg94/ref94
  doi: 10.1016/j.cell.2009.01.018
– ident: refg13/ref13
  doi: 10.1099/00207713-30-4-627
– ident: refg56/ref56
  doi: 10.1098/rsob.180249
– ident: refg37/ref37
  doi: 10.3390/vaccines9020096
– ident: refg91/ref91
  doi: 10.1371/journal.pone.0189261
– ident: refg21/ref21
  doi: 10.1089/ars.2012.5093
– ident: refg75/ref75
  doi: 10.1007/978-1-4757-2191-1_42
– ident: refg31/ref31
  doi: 10.1128/jb.178.15.4461-4471.1996
– ident: refg106/ref106
  doi: 10.1126/science.286.5444.1571
– ident: refg93/ref93
  doi: 10.1128/MMBR.00015-10
– ident: refg96/ref96
  doi: 10.1159/000368855
– ident: refg63/ref63
  doi: 10.1073/pnas.2025188118
– ident: refg22/ref22
  doi: 10.1042/bj0341367
– ident: refg10/ref10
  doi: 10.1128/AEM.69.8.4575-4582.2003
– ident: refg45/ref45
  doi: 10.1371/journal.pone.0160575
– ident: refg102/ref102
  doi: 10.1128/AEM.66.6.2620-2626.2000
– ident: refg83/ref83
  doi: 10.1117/12.375078
– ident: refg73/ref73
  doi: 10.1002/bies.950170514
– ident: refg72/ref72
  doi: 10.1016/0921-8777(95)00014-3
– ident: refg100/ref100
  doi: 10.1371/journal.pone.0228006
– ident: refg3/ref3
  doi: 10.1128/mBio.02338-20
– ident: refg67/ref67
  doi: 10.1128/MMBR.65.1.44-79.2001
– ident: refg80/ref80
  doi: 10.1186/1471-2148-5-57
– ident: refg52/ref52
  doi: 10.1016/j.freeradbiomed.2019.09.023
– ident: refg57/ref57
  doi: 10.1073/pnas.1119762109
– ident: refg108/ref108
  doi: 10.3389/fmicb.2014.00274
– ident: refg47/ref47
  doi: 10.1128/jb.134.1.71-75.1978
– ident: refg41/ref41
  doi: 10.1128/mbio.03394-21
– ident: refg43/ref43
  doi: 10.1111/j.1365-2672.2011.05095.x
– ident: refg78/ref78
  doi: 10.17226/26336
SSID ssj0010346
Score 2.4648278
SecondaryResourceType review_article
Snippet The family exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments. Their survival...
The family Deinococcaceae exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments....
SourceID proquest
gale
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 369
SubjectTerms Antioxidants
Biotechnology
Coupling
Deinococcus
Deoxyribonucleic acid
Desiccation
DNA
DNA damage
DNA repair
Double-strand break repair
Genetic aspects
Genomes
Gram-positive bacteria
Holliday junctions
Metabolism
Metabolites
Microbiological research
Oxidative stress
Polyploidy
Proteomes
Radiation
Radiation tolerance
Radiobiology
Survivability
Survival
Title The scientific revolution that unraveled the astonishing DNA repair capacity of the Deinococcaceae : 40 years on
URI https://www.ncbi.nlm.nih.gov/pubmed/37267626
https://www.proquest.com/docview/2870682532
https://search.proquest.com/docview/2822378915
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagFRIXxJuyBRmE4LAKJLHz4talWy1oKRK0Um-W7TqoiE2WPg7Lr2cmdppkAWnhErXxxInms8cz9jwIeaGSWGUJzLRYRszjSa68lPm5F8ZpkOegb0QStwY-TuOTOf-wiBZ1oW0XXbJVr_XPP8aV_A-qcA9wxSjZf0B23yncgN-AL1wBYbheGWMb0YgOPxiG4l4H6iQY_rsCawt9N9ZFUqKa53acxtMRnhbI1fpQw2qpnV8Gko3NqihBSmqpjawC17l_eAHzAc8V2qrsPq9BK_nE2arJ69Tsgdti1s5B351DuY2GsHFZg3XCCkeegswObaWTWnraQiv1KPFbspC5JrusMpvx-neJzTDhqf525lXvxGDYZmmqj-Onn8RkfnoqZseL2XXSx6SHvEf6o6Px0aTf1KvgcZ1FlWVvOl12tI7La-8li6LSLGa3yS1nEtCRxfcOuWaKu-SGLRJ6cY-UgDJtUKYNyhRRpnuU4a-hLZQpoEwtyrRGmZZ5RdZF-S3lPq0wpmVxn8wnx7N3J54rk-FpUJ63nol0EqYGTWWYalhAwHDDWLCMZIjd-LHJg1jxpW_8PGd-ligTLZlJq-T8YcwekF5RFuYRoVmgpdRSKZnggbdSvmYqCtIlDwOVpmpAXtZsFOc2G4qorEiWCeC3QH4L5PeAPEcmC8wwUqAL01e522zE-y9TMQIDF6wIztO_En3uEL1yRHm5XcPHubAR-GDMXNahPOhQ6vPVD9FqHXZaQYrqzsPDejgIN202onICADaxcECe7ZvxSfRMLEy5QxpQsJM0C6IBeWiH0Z41LAljUDbix1d4-oDcbCbdkPS26515AvruVj11A_0XCEes9A
link.rule.ids 314,780,784,27924,27925
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+scientific+revolution+that+unraveled+the+astonishing+DNA+repair+capacity+of+the+Deinococcaceae%3A+40+years+on&rft.jtitle=Canadian+journal+of+microbiology&rft.au=Daly%2C+Michael+J&rft.date=2023-10-01&rft.eissn=1480-3275&rft.volume=69&rft.issue=10&rft.spage=369&rft.epage=386&rft_id=info:doi/10.1139%2Fcjm-2023-0059&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4166&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4166&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4166&client=summon