Model-Based Influences on Humans' Choices and Striatal Prediction Errors
The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based pla...
Saved in:
Published in | Neuron (Cambridge, Mass.) Vol. 69; no. 6; pp. 1204 - 1215 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
24.03.2011
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based planning, and the interaction between model-based and model-free values, prediction errors, and preferences is underexplored. We designed a multistep decision task in which model-based and model-free influences on human choice behavior could be distinguished. By showing that choices reflected both influences we could then test the purity of the ventral striatal BOLD signal as a model-free report. Contrary to expectations, the signal reflected both model-free and model-based predictions in proportions matching those that best explained choice behavior. These results challenge the notion of a separate model-free learner and suggest a more integrated computational architecture for high-level human decision-making.
► Humans learn both a world model and reinforcement-driven choice preferences ► BOLD responses in striatum and prefrontal cortex reflect both sorts of learning ► Across subjects, striatal BOLD tracks individual differences in model use ► Unexpectedly, ventral striatum shows combined model-based/free influences |
---|---|
AbstractList | The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based planning, and the interaction between model-based and model-free values, prediction errors, and preferences is underexplored. We designed a multistep decision task in which model-based and model-free influences on human choice behavior could be distinguished. By showing that choices reflected both influences we could then test the purity of the ventral striatal BOLD signal as a model-free report. Contrary to expectations, the signal reflected both model-free and model-based predictions in proportions matching those that best explained choice behavior. These results challenge the notion of a separate model-free learner and suggest a more integrated computational architecture for high-level human decision-making. The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based planning, and the interaction between model-based and model-free values, prediction errors, and preferences is underexplored. We designed a multistep decision task in which model-based and model-free influences on human choice behavior could be distinguished. By showing that choices reflected both influences we could then test the purity of the ventral striatal BOLD signal as a model-free report. Contrary to expectations, the signal reflected both model-free and model-based predictions in proportions matching those that best explained choice behavior. These results challenge the notion of a separate model-free learner and suggest a more integrated computational architecture for high-level human decision-making.The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based planning, and the interaction between model-based and model-free values, prediction errors, and preferences is underexplored. We designed a multistep decision task in which model-based and model-free influences on human choice behavior could be distinguished. By showing that choices reflected both influences we could then test the purity of the ventral striatal BOLD signal as a model-free report. Contrary to expectations, the signal reflected both model-free and model-based predictions in proportions matching those that best explained choice behavior. These results challenge the notion of a separate model-free learner and suggest a more integrated computational architecture for high-level human decision-making. The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based planning, and the interaction between model-based and model-free values, prediction errors and preferences is underexplored. We designed a multistep decision task in which model-based and model-free influences on human choice behavior could be distinguished. By showing that choices reflected both influences we could then test the purity of the ventral striatal BOLD signal as a model-free report. Contrary to expectations, the signal reflected both model-free and model-based predictions in proportions matching those that best explained choice behavior. These results challenge the notion of a separate model-free learner and suggest a more integrated computational architecture for high-level human decision-making. The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based planning, and the interaction between model-based and model-free values, prediction errors, and preferences is underexplored. We designed a multistep decision task in which model-based and model-free influences on human choice behavior could be distinguished. By showing that choices reflected both influences we could then test the purity of the ventral striatal BOLD signal as a model-free report. Contrary to expectations, the signal reflected both model-free and model-based predictions in proportions matching those that best explained choice behavior. These results challenge the notion of a separate model-free learner and suggest a more integrated computational architecture for high-level human decision-making. ► Humans learn both a world model and reinforcement-driven choice preferences ► BOLD responses in striatum and prefrontal cortex reflect both sorts of learning ► Across subjects, striatal BOLD tracks individual differences in model use ► Unexpectedly, ventral striatum shows combined model-based/free influences |
Author | Daw, Nathaniel D. Dolan, Raymond J. Gershman, Samuel J. Seymour, Ben Dayan, Peter |
AuthorAffiliation | 2 Department of Psychology and Neuroscience Institute, Princeton University 1 Center for Neural Science and Department of Psychology, New York University 4 Gatsby Computational Neuroscience Unit, University College London 3 Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London |
AuthorAffiliation_xml | – name: 1 Center for Neural Science and Department of Psychology, New York University – name: 3 Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London – name: 2 Department of Psychology and Neuroscience Institute, Princeton University – name: 4 Gatsby Computational Neuroscience Unit, University College London |
Author_xml | – sequence: 1 givenname: Nathaniel D. surname: Daw fullname: Daw, Nathaniel D. email: daw@cns.nyu.edu organization: Center for Neural Science and Department of Psychology, New York University, New York, NY 10012, USA – sequence: 2 givenname: Samuel J. surname: Gershman fullname: Gershman, Samuel J. organization: Department of Psychology and Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA – sequence: 3 givenname: Ben surname: Seymour fullname: Seymour, Ben organization: Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, WC1N 3BG London, UK – sequence: 4 givenname: Peter surname: Dayan fullname: Dayan, Peter organization: Gatsby Computational Neuroscience Unit, University College London, WC1N 3AR London, UK – sequence: 5 givenname: Raymond J. surname: Dolan fullname: Dolan, Raymond J. organization: Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, WC1N 3BG London, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21435563$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl9rFDEUxYNU7Lb6DUQGfOjTrLkzmfzxQahL7RYqCupzyCR3bZbZpCYzBb-9GXYrtQ8WLgRyf_dwc05OyFGIAQl5DXQJFPi77TLglGJYNhRgSZtS4hlZAFWiZqDUEVlQqXjNG9Eek5Oct5QC6xS8IMcNsLbreLsg68_R4VB_NBlddRU2w4TBYq5iqNbTzoR8Vq1uop-vTHDVtzF5M5qh-prQeTv6wl2kFFN-SZ5vzJDx1eE8JT8-XXxfrevrL5dXq_Pr2nZNM9Zu03ZccNM5MD00SoBiHJnroEcE2roNSHClw61E1Re0E9K2PUdlrVCsPSUf9rq3U79DZzGMyQz6NvmdSb91NF7_2wn-Rv-Md7qlQqiGF4Gzg0CKvybMo975bHEYTMA4ZS2LYZJRqp4mOylkAUUh3z4it3FKofigoWOSgeRCFurNw9X_7nyfRgHe7wGbYs4JN9r60cwml5f4QQPVc_R6q_fR6zl6TZtS8w7s0fC9_hNjBz-xhHbnMels_fwHnE9oR-2i_7_AH5TfyZA |
CitedBy_id | crossref_primary_10_1016_j_cognition_2022_105116 crossref_primary_10_1016_j_pneurobio_2020_101951 crossref_primary_10_1111_ejn_12802 crossref_primary_10_1038_nn_3918 crossref_primary_10_1371_journal_pcbi_1006713 crossref_primary_10_1002_eat_24161 crossref_primary_10_1038_s41562_023_01661_2 crossref_primary_10_3389_fnhum_2022_938501 crossref_primary_10_1016_j_neuroimage_2021_117747 crossref_primary_10_1007_s11065_018_9384_6 crossref_primary_10_1016_j_schres_2016_10_004 crossref_primary_10_1038_nature15692 crossref_primary_10_1007_s00422_018_0753_2 crossref_primary_10_7554_eLife_64983 crossref_primary_10_1162_jocn_a_02258 crossref_primary_10_1371_journal_pcbi_1004540 crossref_primary_10_3389_fnbeh_2023_1302842 crossref_primary_10_1038_s41598_020_72407_7 crossref_primary_10_1016_j_cognition_2022_105103 crossref_primary_10_1016_j_neuroimage_2023_120002 crossref_primary_10_1109_JPROC_2022_3162791 crossref_primary_10_1016_j_neuroimage_2017_11_057 crossref_primary_10_1162_jocn_a_01170 crossref_primary_10_1073_pnas_1710913114 crossref_primary_10_1016_j_bandc_2015_07_006 crossref_primary_10_1016_j_neubiorev_2022_104959 crossref_primary_10_1038_s41562_022_01306_w crossref_primary_10_3390_brainsci11081096 crossref_primary_10_1111_cogs_12103 crossref_primary_10_1177_1745691620966794 crossref_primary_10_1016_j_appet_2022_106084 crossref_primary_10_3389_fnins_2022_631347 crossref_primary_10_1016_j_cobeha_2016_02_001 crossref_primary_10_1038_s41598_019_56161_z crossref_primary_10_1371_journal_pcbi_1003466 crossref_primary_10_1177_1094428116644502 crossref_primary_10_1186_1471_2202_14_S1_P181 crossref_primary_10_1016_j_nicl_2024_103588 crossref_primary_10_1007_s00146_020_01015_w crossref_primary_10_1162_opmi_a_00143 crossref_primary_10_1162_jocn_a_02237 crossref_primary_10_3389_fpsyt_2020_568824 crossref_primary_10_1038_s41598_020_80593_7 crossref_primary_10_1016_j_brat_2023_104361 crossref_primary_10_1038_s44271_024_00123_3 crossref_primary_10_1038_s44271_024_00169_3 crossref_primary_10_1073_pnas_1911778117 crossref_primary_10_3389_fpsyg_2015_01948 crossref_primary_10_1001_jamapsychiatry_2019_2998 crossref_primary_10_1016_j_cognition_2023_105423 crossref_primary_10_1038_nn_3925 crossref_primary_10_1111_adb_12505 crossref_primary_10_1177_17470218231153137 crossref_primary_10_1111_ejn_16199 crossref_primary_10_1016_j_ijpsycho_2020_03_002 crossref_primary_10_1016_j_neuroimage_2021_118821 crossref_primary_10_1162_opmi_a_00132 crossref_primary_10_1371_journal_pcbi_1006972 crossref_primary_10_1016_j_neubiorev_2022_104977 crossref_primary_10_3758_s13415_016_0406_7 crossref_primary_10_1016_j_neuron_2022_07_005 crossref_primary_10_3390_brainsci9070174 crossref_primary_10_7554_eLife_93887_3 crossref_primary_10_3389_fnint_2018_00030 crossref_primary_10_1016_j_biopsych_2020_03_004 crossref_primary_10_1016_j_dcn_2023_101269 crossref_primary_10_3389_fpsyt_2023_1253727 crossref_primary_10_1038_s41467_019_08662_8 crossref_primary_10_1007_s10827_020_00751_8 crossref_primary_10_1016_j_neuroimage_2022_119398 crossref_primary_10_3758_s13415_020_00820_6 crossref_primary_10_1186_s12868_016_0302_7 crossref_primary_10_1371_journal_pcbi_1005810 crossref_primary_10_7554_eLife_49547 crossref_primary_10_1093_cercor_bht317 crossref_primary_10_1016_j_pbb_2021_173275 crossref_primary_10_1371_journal_pone_0119673 crossref_primary_10_1007_s10539_013_9385_z crossref_primary_10_1523_JNEUROSCI_0026_13_2013 crossref_primary_10_1016_j_neubiorev_2023_105085 crossref_primary_10_1016_j_neubiorev_2023_105083 crossref_primary_10_1371_journal_pcbi_1012383 crossref_primary_10_1007_s40429_020_00333_9 crossref_primary_10_1016_j_neuron_2011_07_004 crossref_primary_10_1523_JNEUROSCI_2700_16_2017 crossref_primary_10_1038_s41467_023_42589_5 crossref_primary_10_1073_pnas_1506367112 crossref_primary_10_1186_s12993_023_00207_w crossref_primary_10_1038_s41583_024_00893_z crossref_primary_10_1038_s41398_020_0762_5 crossref_primary_10_7554_eLife_75474 crossref_primary_10_1016_j_cognition_2022_105328 crossref_primary_10_1162_jocn_a_01595 crossref_primary_10_7554_eLife_26424 crossref_primary_10_1371_journal_pcbi_1002327 crossref_primary_10_1523_JNEUROSCI_3378_14_2015 crossref_primary_10_1016_j_tics_2020_04_004 crossref_primary_10_1038_s41562_024_01878_9 crossref_primary_10_1016_j_tics_2020_04_002 crossref_primary_10_1007_s11423_016_9507_9 crossref_primary_10_1016_j_nlm_2016_01_018 crossref_primary_10_1186_s12888_022_04462_5 crossref_primary_10_1016_j_neuroimage_2016_06_038 crossref_primary_10_1038_s41539_017_0009_2 crossref_primary_10_1007_s00406_014_0519_3 crossref_primary_10_1016_j_conb_2012_04_011 crossref_primary_10_1016_j_conb_2017_10_006 crossref_primary_10_1186_s12888_020_2439_2 crossref_primary_10_1073_pnas_1821647116 crossref_primary_10_1017_S003329172000402X crossref_primary_10_1152_jn_00333_2015 crossref_primary_10_3389_fnbeh_2016_00234 crossref_primary_10_2139_ssrn_2724547 crossref_primary_10_1016_j_neures_2012_09_007 crossref_primary_10_1093_brain_awz013 crossref_primary_10_3389_fnbeh_2021_658769 crossref_primary_10_1016_j_abrep_2024_100574 crossref_primary_10_1016_j_biopsych_2019_08_025 crossref_primary_10_1038_s41386_024_01821_6 crossref_primary_10_1016_j_biopsych_2017_04_006 crossref_primary_10_3724_SP_J_1042_2019_01044 crossref_primary_10_1038_s41467_019_09075_3 crossref_primary_10_1371_journal_pone_0117697 crossref_primary_10_1016_j_neubiorev_2016_05_018 crossref_primary_10_1016_j_neuron_2023_01_023 crossref_primary_10_7554_eLife_15963 crossref_primary_10_1177_1073858413499407 crossref_primary_10_1016_j_cobeha_2018_12_011 crossref_primary_10_1093_cercor_bhz019 crossref_primary_10_3389_fpsyt_2023_1162800 crossref_primary_10_1016_j_biopsych_2017_04_019 crossref_primary_10_1371_journal_pcbi_1012582 crossref_primary_10_3389_fnagi_2021_702810 crossref_primary_10_1523_JNEUROSCI_1113_22_2022 crossref_primary_10_1146_annurev_neuro_071714_033928 crossref_primary_10_1016_j_bbr_2024_114846 crossref_primary_10_1016_j_cobeha_2020_09_002 crossref_primary_10_1162_jocn_a_01541 crossref_primary_10_1002_alz_13885 crossref_primary_10_1093_brain_awz276 crossref_primary_10_1038_s41583_022_00570_z crossref_primary_10_1073_pnas_2016884118 crossref_primary_10_1016_j_neuron_2012_10_017 crossref_primary_10_1017_S0033291716003305 crossref_primary_10_3389_fpsyg_2021_767022 crossref_primary_10_1038_s41467_018_07280_0 crossref_primary_10_1016_j_jmp_2015_03_006 crossref_primary_10_3758_s13423_024_02506_3 crossref_primary_10_3389_fnbeh_2016_00026 crossref_primary_10_1111_adb_13433 crossref_primary_10_3758_s13415_015_0347_6 crossref_primary_10_1038_s41598_022_21832_x crossref_primary_10_1038_npp_2016_95 crossref_primary_10_1016_j_neunet_2021_10_003 crossref_primary_10_2196_44414 crossref_primary_10_1016_j_neuroimage_2014_10_025 crossref_primary_10_3389_fpsyg_2019_02592 crossref_primary_10_1186_s41235_024_00533_1 crossref_primary_10_1016_j_neubiorev_2016_06_022 crossref_primary_10_7554_eLife_79642 crossref_primary_10_1016_j_bandc_2023_106088 crossref_primary_10_1016_j_conb_2012_05_011 crossref_primary_10_1177_2167702621989323 crossref_primary_10_1126_science_abf1357 crossref_primary_10_1177_1535759719857069 crossref_primary_10_1016_j_plrev_2020_01_004 crossref_primary_10_1073_pnas_1111927109 crossref_primary_10_1075_ml_8_3_08ram crossref_primary_10_3389_fpsyg_2017_02048 crossref_primary_10_1016_j_neuroscience_2016_07_030 crossref_primary_10_1016_j_tics_2012_07_007 crossref_primary_10_1111_j_1365_2826_2011_02212_x crossref_primary_10_1016_j_conb_2012_05_010 crossref_primary_10_1038_s41467_024_50505_8 crossref_primary_10_3389_fnbeh_2018_00338 crossref_primary_10_1007_s40429_016_0089_8 crossref_primary_10_1016_j_cobeha_2015_08_010 crossref_primary_10_1038_s41467_024_55504_3 crossref_primary_10_1038_srep31378 crossref_primary_10_1038_s41598_019_56923_9 crossref_primary_10_1162_jocn_a_01777 crossref_primary_10_1007_s11920_013_0396_x crossref_primary_10_1177_1745691621995752 crossref_primary_10_1038_srep43119 crossref_primary_10_1371_journal_pbio_2004015 crossref_primary_10_1016_j_neuron_2018_10_002 crossref_primary_10_1111_cogs_12941 crossref_primary_10_1007_s00422_013_0571_5 crossref_primary_10_1016_j_jml_2020_104144 crossref_primary_10_1016_j_neuropsychologia_2023_108758 crossref_primary_10_1186_s12915_023_01774_0 crossref_primary_10_1162_neco_a_01351 crossref_primary_10_1007_s11229_022_03480_w crossref_primary_10_1162_neco_a_01357 crossref_primary_10_1371_journal_pcbi_1011692 crossref_primary_10_7554_eLife_79661 crossref_primary_10_1038_s41467_023_43250_x crossref_primary_10_3389_fnbot_2019_00052 crossref_primary_10_1080_20445911_2015_1095192 crossref_primary_10_1371_journal_pone_0279532 crossref_primary_10_1152_jn_00180_2020 crossref_primary_10_1162_opmi_a_00186 crossref_primary_10_1016_j_neunet_2022_07_002 crossref_primary_10_1038_s41598_024_69452_x crossref_primary_10_1177_1073858414568317 crossref_primary_10_3389_fnbeh_2015_00135 crossref_primary_10_1038_nn_3068 crossref_primary_10_1556_2006_2022_00059 crossref_primary_10_1016_j_neuron_2020_06_014 crossref_primary_10_1111_cogs_12735 crossref_primary_10_1073_pnas_1809298115 crossref_primary_10_1038_s44277_024_00023_8 crossref_primary_10_1024_1661_4747_a000298 crossref_primary_10_1024_1661_4747_a000297 crossref_primary_10_1016_j_biopsych_2017_05_017 crossref_primary_10_1523_JNEUROSCI_0185_14_2014 crossref_primary_10_1371_journal_pcbi_1011206 crossref_primary_10_1016_j_conb_2012_05_008 crossref_primary_10_1038_s41598_021_91179_2 crossref_primary_10_1162_neco_a_01346 crossref_primary_10_1007_s40429_025_00621_2 crossref_primary_10_1152_jn_00873_2014 crossref_primary_10_1016_j_cortex_2020_02_009 crossref_primary_10_1523_JNEUROSCI_1674_18_2018 crossref_primary_10_1016_j_neuroimage_2016_07_055 crossref_primary_10_1016_j_neuron_2012_03_042 crossref_primary_10_1371_journal_pcbi_1011678 crossref_primary_10_3758_s13415_021_00921_w crossref_primary_10_2139_ssrn_2787284 crossref_primary_10_1016_j_neuron_2012_03_037 crossref_primary_10_3389_fnut_2022_1021868 crossref_primary_10_3758_s13415_021_00943_4 crossref_primary_10_1093_imamat_hxw026 crossref_primary_10_1111_nyas_14929 crossref_primary_10_1038_s41562_022_01346_2 crossref_primary_10_1016_j_neubiorev_2024_105944 crossref_primary_10_1093_cercor_bhac171 crossref_primary_10_1371_journal_pcbi_1002918 crossref_primary_10_3758_s13415_025_01283_3 crossref_primary_10_3390_electronics11050707 crossref_primary_10_1038_s41386_021_01123_1 crossref_primary_10_1098_rstb_2021_0446 crossref_primary_10_3758_s13415_012_0128_4 crossref_primary_10_1038_s41467_019_13632_1 crossref_primary_10_1016_j_ynstr_2023_100528 crossref_primary_10_1016_j_isci_2024_111182 crossref_primary_10_1111_j_1460_9568_2012_08058_x crossref_primary_10_1002_wcs_1598 crossref_primary_10_3758_s13415_017_0511_2 crossref_primary_10_1016_j_brat_2018_09_007 crossref_primary_10_1016_j_cortex_2014_08_026 crossref_primary_10_1016_j_neuron_2020_01_017 crossref_primary_10_1016_j_cogpsych_2017_12_002 crossref_primary_10_1038_s41386_024_01946_8 crossref_primary_10_1371_journal_pone_0287563 crossref_primary_10_1093_ijnp_pyab016 crossref_primary_10_1016_j_neuron_2022_05_021 crossref_primary_10_1523_JNEUROSCI_1418_22_2023 crossref_primary_10_1007_s12304_020_09390_z crossref_primary_10_1016_j_euroneuro_2015_12_033 crossref_primary_10_1016_j_neuron_2022_05_022 crossref_primary_10_1523_JNEUROSCI_4490_15_2016 crossref_primary_10_1002_wcs_1589 crossref_primary_10_1038_s41562_018_0401_9 crossref_primary_10_1073_pnas_1720963115 crossref_primary_10_1016_j_jpain_2018_03_011 crossref_primary_10_1016_j_neuropharm_2021_108759 crossref_primary_10_1016_j_biopsych_2020_06_001 crossref_primary_10_1038_s41598_020_79929_0 crossref_primary_10_1038_s42003_023_04429_6 crossref_primary_10_1016_j_neuron_2019_05_042 crossref_primary_10_1002_wcs_1581 crossref_primary_10_3280_PARA2015_003004 crossref_primary_10_1016_j_bandc_2016_06_002 crossref_primary_10_1016_j_conb_2012_06_004 crossref_primary_10_1371_journal_pcbi_1010551 crossref_primary_10_1038_s41467_023_41112_0 crossref_primary_10_7717_peerj_10316 crossref_primary_10_1016_j_conb_2017_08_015 crossref_primary_10_1016_j_cobeha_2014_10_007 crossref_primary_10_1016_j_cobeha_2018_01_006 crossref_primary_10_1016_j_cobeha_2014_10_004 crossref_primary_10_3724_SP_J_1042_2020_00111 crossref_primary_10_1017_S0033291723000478 crossref_primary_10_1007_s11166_021_09358_5 crossref_primary_10_3758_s13428_023_02263_6 crossref_primary_10_1177_0956797616639301 crossref_primary_10_1371_journal_pcbi_1010785 crossref_primary_10_1523_JNEUROSCI_2219_18_2018 crossref_primary_10_1038_nn_3014 crossref_primary_10_1016_j_cobeha_2015_03_004 crossref_primary_10_1016_j_cognition_2018_04_017 crossref_primary_10_1016_j_tics_2017_03_011 crossref_primary_10_1038_d41586_023_03335_5 crossref_primary_10_3389_fpsyg_2017_00312 crossref_primary_10_7554_eLife_11305 crossref_primary_10_1016_j_conb_2017_08_008 crossref_primary_10_1016_j_neunet_2020_09_008 crossref_primary_10_1287_mnsc_2022_4584 crossref_primary_10_1007_s10072_017_3205_1 crossref_primary_10_1017_S0140525X19003261 crossref_primary_10_1093_cercor_bhx259 crossref_primary_10_1111_psyp_13399 crossref_primary_10_1038_ncomms11609 crossref_primary_10_1371_journal_pcbi_1007326 crossref_primary_10_1038_s41398_020_01118_4 crossref_primary_10_20900_jpbs_20200004 crossref_primary_10_7554_eLife_67778 crossref_primary_10_1523_JNEUROSCI_2033_15_2016 crossref_primary_10_1038_ncomms4926 crossref_primary_10_1371_journal_pcbi_1007334 crossref_primary_10_1024_0939_5911_a000254 crossref_primary_10_1159_000362840 crossref_primary_10_1162_jocn_a_01808 crossref_primary_10_1162_jocn_a_00957 crossref_primary_10_1093_brain_awad362 crossref_primary_10_1073_pnas_1809855116 crossref_primary_10_31887_DCNS_2016_18_1_ldeserno crossref_primary_10_1016_j_neuron_2019_04_027 crossref_primary_10_1016_j_cortex_2019_03_015 crossref_primary_10_3758_s13415_018_00678_9 crossref_primary_10_3758_s13415_023_01080_w crossref_primary_10_1007_s00213_019_05299_9 crossref_primary_10_1016_j_cortex_2015_11_004 crossref_primary_10_1016_j_neuroimage_2022_119709 crossref_primary_10_1038_s41467_020_15696_w crossref_primary_10_3758_s13415_018_0638_9 crossref_primary_10_1093_brain_awac268 crossref_primary_10_1016_j_neuron_2016_08_031 crossref_primary_10_1016_j_neuron_2017_10_026 crossref_primary_10_1016_j_neuron_2016_06_002 crossref_primary_10_1007_s40473_021_00225_w crossref_primary_10_1016_j_neubiorev_2021_07_006 crossref_primary_10_1007_s00702_016_1561_2 crossref_primary_10_1177_17456916231204811 crossref_primary_10_3389_fncir_2020_615626 crossref_primary_10_1523_ENEURO_0345_18_2019 crossref_primary_10_1523_JNEUROSCI_1677_16_2016 crossref_primary_10_1016_j_neuroimage_2022_119744 crossref_primary_10_1007_s11166_022_09388_7 crossref_primary_10_3389_fpsyg_2019_02735 crossref_primary_10_1016_j_tins_2023_12_002 crossref_primary_10_1073_pnas_2218523120 crossref_primary_10_1523_ENEURO_0240_18_2018 crossref_primary_10_1371_journal_pcbi_1010751 crossref_primary_10_1007_s40429_015_0062_y crossref_primary_10_1016_j_physbeh_2019_04_007 crossref_primary_10_1016_j_neuron_2015_12_029 crossref_primary_10_1016_j_neubiorev_2021_07_016 crossref_primary_10_1016_j_ijhcs_2021_102661 crossref_primary_10_1038_s41562_020_0905_y crossref_primary_10_3758_s13415_019_00697_0 crossref_primary_10_1159_000362838 crossref_primary_10_1038_nn_4538 crossref_primary_10_1111_adb_13356 crossref_primary_10_1016_j_neuron_2021_12_018 crossref_primary_10_1002_da_23291 crossref_primary_10_1016_j_bbi_2017_09_011 crossref_primary_10_1016_j_neuropharm_2014_11_021 crossref_primary_10_1038_s41598_023_33274_0 crossref_primary_10_1016_j_jneumeth_2019_01_006 crossref_primary_10_1162_jocn_a_00709 crossref_primary_10_1016_j_cognition_2014_11_009 crossref_primary_10_1162_imag_a_00277 crossref_primary_10_1152_jn_00145_2018 crossref_primary_10_1162_jocn_a_00945 crossref_primary_10_1016_j_cobeha_2017_09_012 crossref_primary_10_1016_j_xjmad_2023_100015 crossref_primary_10_1016_j_beproc_2019_103904 crossref_primary_10_1038_s41598_018_28241_z crossref_primary_10_1016_j_jmp_2022_102712 crossref_primary_10_7554_eLife_90082 crossref_primary_10_1098_rstb_2021_0295 crossref_primary_10_1371_journal_pone_0123105 crossref_primary_10_3389_fpsyt_2021_687062 crossref_primary_10_1016_j_biopsych_2023_02_004 crossref_primary_10_1016_j_neuron_2020_03_024 crossref_primary_10_1016_j_neubiorev_2013_03_015 crossref_primary_10_2139_ssrn_2600287 crossref_primary_10_1111_j_1749_6632_2011_06223_x crossref_primary_10_3389_fpsyg_2014_01450 crossref_primary_10_1038_mp_2014_44 crossref_primary_10_1088_1757_899X_1321_1_012002 crossref_primary_10_1177_1059712316667203 crossref_primary_10_1002_jnr_24581 crossref_primary_10_1016_j_neubiorev_2017_11_022 crossref_primary_10_1098_rspb_2018_1645 crossref_primary_10_1111_desc_13295 crossref_primary_10_1016_j_pneurobio_2015_09_001 crossref_primary_10_1016_j_jbtep_2021_101676 crossref_primary_10_1159_000364831 crossref_primary_10_1073_pnas_2010890117 crossref_primary_10_1111_cogs_13397 crossref_primary_10_2139_ssrn_3811830 crossref_primary_10_1016_j_tics_2022_08_003 crossref_primary_10_1038_s41598_022_05567_3 crossref_primary_10_1007_s11920_018_0928_5 crossref_primary_10_1016_j_tins_2018_08_005 crossref_primary_10_1016_j_neuroimage_2025_121022 crossref_primary_10_1016_j_pneurobio_2014_11_002 crossref_primary_10_1002_jnr_24552 crossref_primary_10_25299_itjrd_2023_13474 crossref_primary_10_1016_j_neuroimage_2018_07_064 crossref_primary_10_1038_s41583_018_0078_0 crossref_primary_10_1016_j_dcn_2019_100733 crossref_primary_10_1017_S1092852915000681 crossref_primary_10_1016_j_dcn_2019_100732 crossref_primary_10_1016_j_cobeha_2021_06_004 crossref_primary_10_1017_S0033291720000203 crossref_primary_10_1177_17456916231179138 crossref_primary_10_1371_journal_pone_0180588 crossref_primary_10_1016_j_neuroimage_2013_08_065 crossref_primary_10_1146_annurev_psych_122414_033417 crossref_primary_10_3758_s13415_020_00842_0 crossref_primary_10_1016_j_neubiorev_2023_105295 crossref_primary_10_1038_s41386_021_01130_2 crossref_primary_10_1007_s13164_020_00490_w crossref_primary_10_1111_psyp_14235 crossref_primary_10_3389_fnins_2019_00056 crossref_primary_10_1162_neco_a_01705 crossref_primary_10_1177_0269881118772454 crossref_primary_10_1016_j_cognition_2024_105967 crossref_primary_10_1016_j_cogpsych_2015_09_001 crossref_primary_10_1016_j_tins_2015_11_002 crossref_primary_10_1038_npp_2012_51 crossref_primary_10_1038_tp_2015_165 crossref_primary_10_1016_j_cobeha_2021_04_020 crossref_primary_10_1016_j_neuron_2011_04_012 crossref_primary_10_1016_j_neurobiolaging_2015_04_010 crossref_primary_10_1007_s00213_013_3313_4 crossref_primary_10_1016_j_jpsychires_2025_03_004 crossref_primary_10_1016_j_neuron_2016_06_022 crossref_primary_10_3389_fpsyg_2014_00591 crossref_primary_10_1016_j_neuropsychologia_2019_107261 crossref_primary_10_1038_s41583_018_0010_7 crossref_primary_10_1371_journal_pone_0108142 crossref_primary_10_1016_j_neuron_2019_01_046 crossref_primary_10_1038_s41598_019_53600_9 crossref_primary_10_1016_j_cub_2022_06_090 crossref_primary_10_1016_j_cub_2018_07_043 crossref_primary_10_1016_j_cub_2018_07_045 crossref_primary_10_1002_wcs_1561 crossref_primary_10_1016_j_neuron_2020_02_028 crossref_primary_10_1177_2167702614562041 crossref_primary_10_1016_j_cobeha_2020_10_003 crossref_primary_10_1093_cercor_bht049 crossref_primary_10_1016_j_biopsych_2022_09_032 crossref_primary_10_1177_2167702614562040 crossref_primary_10_1002_wcs_1556 crossref_primary_10_1371_journal_pcbi_1004463 crossref_primary_10_1016_j_biopsych_2022_09_034 crossref_primary_10_1523_JNEUROSCI_1814_24_2025 crossref_primary_10_1016_j_cobeha_2017_08_011 crossref_primary_10_1038_tp_2015_139 crossref_primary_10_1523_ENEURO_0151_18_2018 crossref_primary_10_3389_fpsyg_2015_00995 crossref_primary_10_3389_fninf_2022_1028121 crossref_primary_10_1016_j_neubiorev_2023_105473 crossref_primary_10_1093_scan_nsaa040 crossref_primary_10_1073_pnas_2206067119 crossref_primary_10_1016_j_neuron_2013_09_007 crossref_primary_10_1016_j_neuropsychologia_2019_107257 crossref_primary_10_1016_j_nlm_2017_07_015 crossref_primary_10_1523_JNEUROSCI_1108_23_2024 crossref_primary_10_7554_eLife_90082_3 crossref_primary_10_1146_annurev_neuro_101220_014053 crossref_primary_10_1523_JNEUROSCI_2422_12_2013 crossref_primary_10_1111_bph_15613 crossref_primary_10_1016_j_jmp_2021_102617 crossref_primary_10_1371_journal_pcbi_1003364 crossref_primary_10_7554_eLife_74402 crossref_primary_10_1016_j_socec_2019_101483 crossref_primary_10_1007_s11065_020_09459_z crossref_primary_10_1146_annurev_psych_122414_033625 crossref_primary_10_1016_j_bpsc_2016_06_005 crossref_primary_10_3758_s13415_016_0487_3 crossref_primary_10_1016_j_cobeha_2020_10_010 crossref_primary_10_1016_j_tbs_2024_100877 crossref_primary_10_1007_s12369_022_00942_6 crossref_primary_10_3389_fnhum_2014_00457 crossref_primary_10_1002_jnr_24594 crossref_primary_10_1371_journal_pcbi_1004237 crossref_primary_10_1016_j_neuroimage_2018_05_012 crossref_primary_10_1016_j_biopsych_2019_04_016 crossref_primary_10_1073_pnas_1705643114 crossref_primary_10_1254_fpj_153_224 crossref_primary_10_1523_JNEUROSCI_6316_10_2011 crossref_primary_10_1007_s10551_016_3058_1 crossref_primary_10_1038_ncomms12327 crossref_primary_10_1016_j_jphysparis_2014_06_001 crossref_primary_10_1016_j_bpsc_2016_05_001 crossref_primary_10_1016_j_neuron_2013_08_009 crossref_primary_10_1016_j_conb_2020_11_016 crossref_primary_10_1038_s41598_024_71692_w crossref_primary_10_1371_journal_pbio_3000899 crossref_primary_10_3389_fnins_2015_00063 crossref_primary_10_1016_j_jmp_2021_102602 crossref_primary_10_3390_jcm9051453 crossref_primary_10_1016_j_neuroimage_2018_05_023 crossref_primary_10_1126_sciadv_aax8783 crossref_primary_10_1523_JNEUROSCI_1785_20_2020 crossref_primary_10_1371_journal_pcbi_1003387 crossref_primary_10_1016_j_bbr_2016_08_023 crossref_primary_10_1523_JNEUROSCI_1680_20_2020 crossref_primary_10_1016_j_biopsych_2012_01_023 crossref_primary_10_1007_s10670_022_00533_x crossref_primary_10_1523_JNEUROSCI_4313_13_2014 crossref_primary_10_1016_j_biosystems_2023_105107 crossref_primary_10_1016_j_jcbs_2017_04_001 crossref_primary_10_7554_eLife_31949 crossref_primary_10_1523_JNEUROSCI_0457_18_2018 crossref_primary_10_1038_s41467_017_02750_3 crossref_primary_10_1016_j_cobeha_2019_07_002 crossref_primary_10_7717_peerj_596 crossref_primary_10_1038_s41386_021_01108_0 crossref_primary_10_1162_jocn_a_01289 crossref_primary_10_7554_eLife_50469 crossref_primary_10_1038_s41583_020_0355_6 crossref_primary_10_1093_scan_nsu152 crossref_primary_10_1017_S0033291722001593 crossref_primary_10_2139_ssrn_4407488 crossref_primary_10_1007_s10608_022_10348_3 crossref_primary_10_1126_science_aac6076 crossref_primary_10_1016_j_celrep_2023_112931 crossref_primary_10_1016_S2215_0366_15_00361_2 crossref_primary_10_1038_s41598_021_86388_8 crossref_primary_10_1016_j_bpsc_2016_07_007 crossref_primary_10_1038_s41539_024_00214_0 crossref_primary_10_1016_j_jmp_2020_102447 crossref_primary_10_1016_j_concog_2024_103724 crossref_primary_10_1371_journal_pcbi_1004648 crossref_primary_10_1371_journal_pcbi_1006827 crossref_primary_10_1016_j_jmp_2016_03_007 crossref_primary_10_1016_j_neunet_2021_08_018 crossref_primary_10_1016_j_neuron_2016_11_005 crossref_primary_10_1016_j_tics_2011_11_018 crossref_primary_10_1016_j_biopsych_2018_12_017 crossref_primary_10_1007_s12144_022_03904_3 crossref_primary_10_3724_SP_J_1042_2021_00677 crossref_primary_10_1523_JNEUROSCI_4322_15_2016 crossref_primary_10_1016_j_neuron_2021_07_025 crossref_primary_10_1093_scan_nsab081 crossref_primary_10_1162_jocn_a_01263 crossref_primary_10_1371_journal_pcbi_1007944 crossref_primary_10_1038_s41598_022_18245_1 crossref_primary_10_1038_s44159_025_00404_6 crossref_primary_10_1038_s41598_021_99428_0 crossref_primary_10_7554_eLife_39882 crossref_primary_10_2139_ssrn_4331775 crossref_primary_10_1016_j_bbr_2022_113951 crossref_primary_10_1016_j_neubiorev_2022_104869 crossref_primary_10_1016_j_neubiorev_2015_05_005 crossref_primary_10_1016_j_tics_2019_02_006 crossref_primary_10_1038_s41467_019_08922_7 crossref_primary_10_1016_j_neuroimage_2015_06_053 crossref_primary_10_1093_scan_nst046 crossref_primary_10_1016_j_addicn_2023_100066 crossref_primary_10_1016_j_bandc_2017_03_008 crossref_primary_10_1073_pnas_2400022121 crossref_primary_10_1523_JNEUROSCI_1459_22_2022 crossref_primary_10_1111_psyp_13789 crossref_primary_10_1371_journal_pbio_3002877 crossref_primary_10_1523_JNEUROSCI_0120_24_2024 crossref_primary_10_1371_journal_pcbi_1005753 crossref_primary_10_1016_j_conb_2013_12_004 crossref_primary_10_3758_s13415_014_0325_4 crossref_primary_10_1038_s41598_018_35124_w crossref_primary_10_1177_0956797612463080 crossref_primary_10_1038_s41562_023_01640_7 crossref_primary_10_1073_pnas_2113961119 crossref_primary_10_1016_j_conb_2013_12_007 crossref_primary_10_1038_s41467_023_43747_5 crossref_primary_10_1038_s41467_021_24576_w crossref_primary_10_1177_17456916211031926 crossref_primary_10_1007_s42113_024_00199_4 crossref_primary_10_1126_sciadv_adj4897 crossref_primary_10_3390_s24072171 crossref_primary_10_1016_j_jmp_2020_102472 crossref_primary_10_1007_s40429_021_00399_z crossref_primary_10_1016_j_cobeha_2024_101361 crossref_primary_10_1016_j_neubiorev_2023_105181 crossref_primary_10_5334_cpsy_83 crossref_primary_10_5334_cpsy_84 crossref_primary_10_1007_s11238_017_9625_9 crossref_primary_10_5334_cpsy_81 crossref_primary_10_1016_j_cognition_2023_105714 crossref_primary_10_1038_s41562_021_01263_w crossref_primary_10_1007_s10539_017_9590_2 crossref_primary_10_1016_j_conctc_2022_100969 crossref_primary_10_1016_j_dcn_2016_04_005 crossref_primary_10_1016_j_neuron_2019_02_014 crossref_primary_10_1038_s41598_019_55887_0 crossref_primary_10_1146_annurev_neuro_062111_150512 crossref_primary_10_1002_hbm_25988 crossref_primary_10_1016_j_neuron_2016_02_014 crossref_primary_10_1177_0959354319867392 crossref_primary_10_1038_s41598_020_72628_w crossref_primary_10_1371_journal_pcbi_1009070 crossref_primary_10_1038_s41467_020_17257_7 crossref_primary_10_1521_pedi_2017_31_299 crossref_primary_10_1016_j_neuron_2016_02_018 crossref_primary_10_1073_pnas_2007981117 crossref_primary_10_1371_journal_pcbi_1012471 crossref_primary_10_1016_j_neubiorev_2021_02_039 crossref_primary_10_1371_journal_pcbi_1012228 crossref_primary_10_1016_j_pbb_2017_06_014 crossref_primary_10_1371_journal_pcbi_1010047 crossref_primary_10_1016_j_neunet_2021_07_013 crossref_primary_10_1016_j_conb_2012_08_003 crossref_primary_10_1016_j_nlm_2014_04_014 crossref_primary_10_1111_lre_12209 crossref_primary_10_1111_joes_12676 crossref_primary_10_1016_j_dcn_2016_10_005 crossref_primary_10_1016_j_neuropsychologia_2021_107826 crossref_primary_10_1017_S0033291716002786 crossref_primary_10_1038_nn_4080 crossref_primary_10_1016_j_celrep_2021_110185 crossref_primary_10_1007_s00213_022_06077_w crossref_primary_10_1016_j_neuroimage_2015_12_004 crossref_primary_10_1523_JNEUROSCI_0204_14_2014 crossref_primary_10_1016_j_neuron_2011_03_026 crossref_primary_10_1038_s41386_019_0594_2 crossref_primary_10_1111_tops_12082 crossref_primary_10_1016_j_cognition_2016_04_002 crossref_primary_10_1098_rspa_2021_0518 crossref_primary_10_3758_s13415_018_00682_z crossref_primary_10_3389_fnhum_2016_00275 crossref_primary_10_1016_j_neubiorev_2022_104826 crossref_primary_10_5334_cpsy_57 crossref_primary_10_1016_j_neuroimage_2023_120327 crossref_primary_10_1007_s12529_018_9729_9 crossref_primary_10_3389_fneur_2018_00883 crossref_primary_10_1038_s41593_023_01542_x crossref_primary_10_1073_pnas_1922273117 crossref_primary_10_1177_2398212820975634 crossref_primary_10_1073_pnas_1820238116 crossref_primary_10_1016_j_ijpsycho_2020_09_019 crossref_primary_10_1016_j_tics_2013_06_005 crossref_primary_10_7554_eLife_47463 crossref_primary_10_1016_j_neuron_2012_09_005 crossref_primary_10_3758_s13420_023_00591_3 crossref_primary_10_7554_eLife_27879 crossref_primary_10_1007_s10827_022_00813_z crossref_primary_10_1371_journal_pcbi_1006803 crossref_primary_10_1162_jocn_a_01238 crossref_primary_10_1523_JNEUROSCI_1702_20_2020 crossref_primary_10_5334_cpsy_64 crossref_primary_10_1038_s41380_021_01194_y crossref_primary_10_1016_j_neuron_2016_03_037 crossref_primary_10_1080_01691864_2023_2225232 crossref_primary_10_1038_s41398_021_01642_x crossref_primary_10_1016_j_psychres_2018_12_079 crossref_primary_10_3758_s13415_014_0293_8 crossref_primary_10_3389_fncom_2014_00170 crossref_primary_10_1016_j_cub_2020_06_051 crossref_primary_10_1073_pnas_1609094113 crossref_primary_10_1038_s41598_022_12341_y crossref_primary_10_3758_s13421_021_01233_7 crossref_primary_10_1016_j_tics_2022_12_004 crossref_primary_10_1002_brb3_1552 crossref_primary_10_1371_journal_pone_0150165 crossref_primary_10_1371_journal_pcbi_1012675 crossref_primary_10_1007_s10798_020_09592_z crossref_primary_10_1162_jocn_a_00596 crossref_primary_10_1523_JNEUROSCI_2334_13_2013 crossref_primary_10_1002_hbm_22433 crossref_primary_10_1111_adb_12490 crossref_primary_10_3389_fncom_2015_00136 crossref_primary_10_1016_j_bandc_2021_105754 crossref_primary_10_1038_s44271_023_00031_y crossref_primary_10_1073_pnas_1519643113 crossref_primary_10_1016_j_bpsc_2019_12_019 crossref_primary_10_1038_s42003_023_04500_2 crossref_primary_10_1016_j_neuroscience_2021_10_016 crossref_primary_10_1016_j_biopsych_2018_06_018 crossref_primary_10_1016_j_neuron_2018_05_013 crossref_primary_10_1146_annurev_psych_021621_124910 crossref_primary_10_1038_s41593_021_00866_w crossref_primary_10_1016_j_jmp_2016_05_005 crossref_primary_10_1086_714364 crossref_primary_10_1002_hbm_22665 crossref_primary_10_7554_eLife_13665 crossref_primary_10_2139_ssrn_4578223 crossref_primary_10_3389_fnbeh_2014_00076 crossref_primary_10_1016_j_cortex_2023_06_012 crossref_primary_10_1523_JNEUROSCI_0080_24_2024 crossref_primary_10_1038_nrn_2016_78 crossref_primary_10_3389_fpsyg_2019_02892 crossref_primary_10_1371_journal_pone_0065274 crossref_primary_10_1007_s12474_015_0102_3 crossref_primary_10_1371_journal_pcbi_1005925 crossref_primary_10_1038_s41467_023_44632_x crossref_primary_10_1371_journal_pbio_3002010 crossref_primary_10_1152_jn_00393_2013 crossref_primary_10_1016_j_jpsychires_2021_03_011 crossref_primary_10_1093_cercor_bhad449 crossref_primary_10_1016_j_cobeha_2017_10_005 crossref_primary_10_1016_j_neunet_2019_04_022 crossref_primary_10_1111_cdev_13693 crossref_primary_10_1016_j_cortex_2023_06_009 crossref_primary_10_1111_ejn_13401 crossref_primary_10_1016_j_jmp_2019_03_007 crossref_primary_10_1038_s41539_023_00206_6 crossref_primary_10_3758_s13415_014_0332_5 crossref_primary_10_1038_s41467_019_12557_z crossref_primary_10_1016_j_cognition_2024_106014 crossref_primary_10_3389_fnhum_2019_00153 crossref_primary_10_1080_17437199_2016_1219673 crossref_primary_10_1016_j_neuroimage_2021_118780 crossref_primary_10_1073_pnas_2313073121 crossref_primary_10_1177_09567976211005702 crossref_primary_10_1016_j_neuroimage_2023_120393 crossref_primary_10_1016_j_addicn_2023_100070 crossref_primary_10_3389_fnbeh_2015_00225 crossref_primary_10_1038_nn_4499 crossref_primary_10_1038_s41398_024_02965_1 crossref_primary_10_1016_j_jphysparis_2015_02_001 crossref_primary_10_1038_s41598_022_21766_4 crossref_primary_10_1016_j_mehy_2016_02_020 crossref_primary_10_1016_j_neuron_2013_04_008 crossref_primary_10_3758_s13423_016_1012_y crossref_primary_10_7554_eLife_65074 crossref_primary_10_1093_cercor_bhab205 crossref_primary_10_2139_ssrn_3962167 crossref_primary_10_1016_j_tins_2012_04_009 crossref_primary_10_1093_cercor_bhab441 crossref_primary_10_3758_s13415_011_0077_3 crossref_primary_10_1016_j_neuroimage_2019_02_052 crossref_primary_10_1523_JNEUROSCI_0583_19_2019 crossref_primary_10_1523_JNEUROSCI_1327_21_2021 crossref_primary_10_1016_j_tics_2016_05_002 crossref_primary_10_1016_j_neuroimage_2015_11_011 crossref_primary_10_1002_cne_25618 crossref_primary_10_1177_09567976231180587 crossref_primary_10_1162_jocn_a_01655 crossref_primary_10_1371_journal_pcbi_1010201 crossref_primary_10_1073_pnas_1312011110 crossref_primary_10_1177_0963721419868211 crossref_primary_10_1016_j_biopsych_2021_01_009 crossref_primary_10_1038_s41386_020_0746_4 crossref_primary_10_1038_s41562_023_01573_1 crossref_primary_10_1016_j_neuron_2015_08_015 crossref_primary_10_1523_JNEUROSCI_4677_14_2015 crossref_primary_10_3390_jcm9082605 crossref_primary_10_1162_NETN_a_00024 crossref_primary_10_1523_JNEUROSCI_1415_23_2023 crossref_primary_10_1517_17530059_2012_673583 crossref_primary_10_1016_j_neuron_2013_11_028 crossref_primary_10_1073_pnas_1117189108 crossref_primary_10_1038_s41467_021_25123_3 crossref_primary_10_1038_s42256_019_0025_4 crossref_primary_10_3389_fnins_2019_00915 crossref_primary_10_1371_journal_pone_0195328 crossref_primary_10_1017_S1355617724000237 crossref_primary_10_1080_02643294_2019_1690981 crossref_primary_10_1162_jocn_a_01869 crossref_primary_10_1016_j_neubiorev_2025_106027 crossref_primary_10_1038_s41467_018_04055_5 crossref_primary_10_1007_s00406_017_0860_4 crossref_primary_10_1111_j_1460_9568_2011_07980_x crossref_primary_10_1016_j_tics_2014_01_003 crossref_primary_10_1016_j_cub_2019_04_011 crossref_primary_10_1016_j_pneurobio_2022_102253 crossref_primary_10_1073_pnas_1518488112 crossref_primary_10_1016_j_jmp_2018_09_002 crossref_primary_10_1038_s41386_021_01126_y crossref_primary_10_1080_23273798_2015_1077979 crossref_primary_10_1371_journal_pcbi_1009003 crossref_primary_10_1016_j_neuropsychologia_2018_04_023 crossref_primary_10_1038_s41562_021_01194_6 crossref_primary_10_1016_j_brat_2017_09_014 crossref_primary_10_1016_j_neuroimage_2020_117590 crossref_primary_10_1016_j_actpsy_2018_01_002 crossref_primary_10_1017_S1930297500005209 crossref_primary_10_1038_s41598_023_46850_1 crossref_primary_10_1016_j_psyneuen_2014_12_017 crossref_primary_10_1038_s41593_023_01283_x crossref_primary_10_1038_s41386_021_01100_8 crossref_primary_10_1371_journal_pcbi_1008342 crossref_primary_10_1038_nn_3364 crossref_primary_10_1111_j_1460_9568_2011_07982_x crossref_primary_10_1038_s41593_018_0232_z crossref_primary_10_1038_s41386_020_00899_y crossref_primary_10_1523_JNEUROSCI_0919_12_2013 crossref_primary_10_1016_j_tics_2023_08_019 crossref_primary_10_1016_j_cub_2021_03_091 crossref_primary_10_3758_s13415_023_01104_5 crossref_primary_10_2139_ssrn_3120083 crossref_primary_10_1016_j_nlm_2019_01_004 crossref_primary_10_1016_j_neuroimage_2015_02_007 crossref_primary_10_1371_journal_pone_0065088 crossref_primary_10_1162_jocn_a_01975 crossref_primary_10_1016_j_dss_2023_113961 crossref_primary_10_1016_j_cobeha_2020_07_003 crossref_primary_10_3724_SP_J_1042_2020_01337 crossref_primary_10_1016_j_addbeh_2023_107628 crossref_primary_10_1016_j_conb_2011_04_002 crossref_primary_10_1017_S0140525X19002000 crossref_primary_10_1016_j_cortex_2016_12_018 crossref_primary_10_1016_j_euroneuro_2021_08_002 crossref_primary_10_1017_S0265052518000134 crossref_primary_10_1016_j_neubiorev_2019_09_017 crossref_primary_10_3390_jcm8081188 crossref_primary_10_1016_j_jneuroling_2018_04_008 crossref_primary_10_3758_s13423_024_02559_4 crossref_primary_10_1016_j_bbr_2017_09_050 crossref_primary_10_1098_rstb_2013_0478 crossref_primary_10_1016_j_jesp_2019_103948 crossref_primary_10_1038_s44271_024_00074_9 crossref_primary_10_1049_ccs_2018_0002 crossref_primary_10_1002_wcs_1217 crossref_primary_10_1038_s41598_022_09720_w crossref_primary_10_1523_JNEUROSCI_1901_15_2016 crossref_primary_10_1371_journal_pcbi_1005090 crossref_primary_10_1016_j_jpsychires_2018_05_008 crossref_primary_10_3758_s13415_019_00763_7 crossref_primary_10_1523_JNEUROSCI_2854_15_2016 crossref_primary_10_3389_fpsyt_2022_814111 crossref_primary_10_1162_jocn_a_01947 crossref_primary_10_1073_pnas_1417219112 crossref_primary_10_1016_j_tics_2023_08_016 crossref_primary_10_1093_rfs_hhw010 crossref_primary_10_1016_j_neuint_2018_12_019 crossref_primary_10_1038_s41562_017_0180_8 crossref_primary_10_1017_pen_2018_14 crossref_primary_10_1177_21582440231216831 crossref_primary_10_1371_journal_pcbi_1009688 crossref_primary_10_3390_ani14030489 crossref_primary_10_7554_eLife_93887 crossref_primary_10_1038_s41598_020_78252_y crossref_primary_10_1016_j_nlm_2012_02_003 crossref_primary_10_1038_s41598_020_64540_0 crossref_primary_10_1098_rstb_2013_0482 crossref_primary_10_1152_jn_00600_2014 crossref_primary_10_1186_s12993_016_0099_7 crossref_primary_10_3758_s13415_014_0277_8 crossref_primary_10_1523_JNEUROSCI_3248_15_2016 crossref_primary_10_3389_fnbeh_2023_1285773 crossref_primary_10_1111_tops_12424 crossref_primary_10_1038_s41467_024_48548_y crossref_primary_10_1038_s41398_023_02717_7 crossref_primary_10_1111_jcpp_12964 crossref_primary_10_3758_s13415_015_0334_y crossref_primary_10_3758_s13415_021_00893_x crossref_primary_10_1016_j_jmp_2013_10_001 crossref_primary_10_1016_j_neuropsychologia_2018_07_022 crossref_primary_10_1371_journal_pcbi_1009634 crossref_primary_10_1038_s41467_017_01703_0 crossref_primary_10_1111_jofi_12126 crossref_primary_10_1016_j_bpsc_2020_12_004 crossref_primary_10_1038_nn_3561 crossref_primary_10_1038_s41562_021_01180_y crossref_primary_10_1016_j_conb_2020_08_014 crossref_primary_10_1007_s10548_024_01036_4 crossref_primary_10_3758_s13415_014_0288_5 crossref_primary_10_1016_j_neuron_2020_10_013 crossref_primary_10_1016_j_tics_2018_05_003 crossref_primary_10_1177_2398212820979772 crossref_primary_10_1016_j_cobeha_2016_04_005 crossref_primary_10_1016_j_neuron_2020_09_005 crossref_primary_10_1016_j_tics_2024_01_004 crossref_primary_10_1016_j_cobeha_2020_06_005 crossref_primary_10_1016_j_conb_2011_05_009 crossref_primary_10_1016_j_nlm_2014_05_002 crossref_primary_10_3389_fpsyg_2014_00849 crossref_primary_10_1111_spc3_12066 crossref_primary_10_1371_journal_pone_0276750 crossref_primary_10_3389_fnmol_2024_1429316 crossref_primary_10_3390_jcm9041158 crossref_primary_10_1371_journal_pcbi_1007443 crossref_primary_10_1371_journal_pcbi_1007685 crossref_primary_10_1007_s00429_021_02270_3 crossref_primary_10_1080_13825585_2019_1664389 crossref_primary_10_1177_0956797617708288 crossref_primary_10_1371_journal_pcbi_1003080 crossref_primary_10_1016_j_cobeha_2019_04_011 crossref_primary_10_3389_fpsyt_2022_1008011 crossref_primary_10_1152_jn_00532_2020 crossref_primary_10_1371_journal_pone_0021575 crossref_primary_10_1111_psyp_14381 crossref_primary_10_3389_fpsyg_2017_00244 crossref_primary_10_1016_j_neuroimage_2018_10_075 crossref_primary_10_3390_ani14030431 crossref_primary_10_3389_fnins_2022_996957 crossref_primary_10_1007_s42113_020_00095_7 crossref_primary_10_1093_scan_nsx045 crossref_primary_10_1016_j_cub_2017_09_060 crossref_primary_10_1016_j_jpsychires_2020_10_046 crossref_primary_10_1016_j_neuron_2018_12_029 crossref_primary_10_1016_j_neuron_2014_10_018 crossref_primary_10_1017_S0033291721003846 crossref_primary_10_1038_s41398_025_03236_3 crossref_primary_10_1016_j_celrep_2023_113008 crossref_primary_10_1016_j_cobeha_2019_04_006 crossref_primary_10_1007_s11920_022_01320_9 crossref_primary_10_1093_cercor_bhz327 crossref_primary_10_2139_ssrn_1892338 crossref_primary_10_1016_j_cobeha_2019_04_009 crossref_primary_10_1073_pnas_1505483112 crossref_primary_10_3389_fnint_2017_00039 crossref_primary_10_1007_s42113_022_00145_2 crossref_primary_10_1073_pnas_1414219112 crossref_primary_10_1016_j_biopsych_2017_07_016 crossref_primary_10_1111_ejn_14492 crossref_primary_10_1371_journal_pcbi_1011950 crossref_primary_10_1523_JNEUROSCI_3473_16_2017 crossref_primary_10_1371_journal_pcbi_1008552 crossref_primary_10_1016_j_beproc_2014_02_011 crossref_primary_10_1371_journal_pbio_2004752 crossref_primary_10_1093_ijnp_pyx088 crossref_primary_10_7554_eLife_83891 crossref_primary_10_1007_s00429_017_1412_4 crossref_primary_10_1093_cercor_bhac046 crossref_primary_10_1016_j_tics_2020_12_008 crossref_primary_10_1016_j_neunet_2015_08_006 crossref_primary_10_1152_jn_00696_2020 crossref_primary_10_3389_fpsyg_2016_01505 crossref_primary_10_1371_journal_pcbi_1006316 crossref_primary_10_1016_j_neuron_2012_09_034 crossref_primary_10_1038_nn_3515 crossref_primary_10_1080_20445911_2021_1969941 crossref_primary_10_1038_nn_4613 crossref_primary_10_1038_s41467_025_57049_5 crossref_primary_10_1111_j_1460_9568_2011_07986_x crossref_primary_10_2139_ssrn_2387654 crossref_primary_10_1007_s42113_022_00165_y crossref_primary_10_1177_02698811231216325 crossref_primary_10_1016_j_neubiorev_2023_105139 crossref_primary_10_1007_s11920_015_0559_z crossref_primary_10_1093_brain_awae133 crossref_primary_10_1007_s42113_022_00163_0 crossref_primary_10_1016_j_cognition_2020_104413 crossref_primary_10_1111_cogs_12181 crossref_primary_10_3389_fnhum_2014_00587 crossref_primary_10_1038_s41593_018_0258_2 crossref_primary_10_1016_j_neuron_2012_09_027 crossref_primary_10_1007_s11920_020_01213_9 crossref_primary_10_3389_fncom_2022_1060101 crossref_primary_10_1111_ejn_16456 crossref_primary_10_3758_s13415_015_0350_y crossref_primary_10_1038_nn_3994 crossref_primary_10_7554_eLife_64575 crossref_primary_10_3389_frai_2020_00069 crossref_primary_10_1371_journal_pone_0180234 crossref_primary_10_1007_s40473_021_00226_9 crossref_primary_10_1016_j_neunet_2021_09_009 crossref_primary_10_1027_1864_1105_a000315 crossref_primary_10_1016_j_neurobiolaging_2023_01_011 crossref_primary_10_1038_mp_2015_46 crossref_primary_10_3389_fpsyg_2015_00222 crossref_primary_10_1016_j_neuroimage_2022_119267 crossref_primary_10_1038_s41598_023_27609_0 crossref_primary_10_1111_j_1460_9568_2012_08017_x crossref_primary_10_1016_j_jmp_2021_102532 crossref_primary_10_1371_journal_pcbi_1004164 crossref_primary_10_1523_ENEURO_0422_22_2023 crossref_primary_10_1073_pnas_2205211120 crossref_primary_10_3758_s13415_014_0260_4 crossref_primary_10_3389_fpsyt_2020_00067 crossref_primary_10_1146_annurev_devpsych_050620_030227 crossref_primary_10_1038_s41586_023_06124_2 crossref_primary_10_1016_j_cogpsych_2022_101509 crossref_primary_10_3389_fpsyg_2020_607866 crossref_primary_10_1016_j_neuron_2021_05_021 crossref_primary_10_1371_journal_pone_0086850 crossref_primary_10_1371_journal_pone_0274548 crossref_primary_10_1016_j_neubiorev_2016_09_020 crossref_primary_10_1073_pnas_2311714121 crossref_primary_10_1016_j_neubiorev_2021_01_016 crossref_primary_10_1016_j_euroneuro_2015_06_025 crossref_primary_10_1016_j_cognition_2017_05_037 crossref_primary_10_1093_brain_awv347 crossref_primary_10_1038_s41598_020_78546_1 crossref_primary_10_1093_brain_awae102 crossref_primary_10_1016_j_neubiorev_2023_105103 crossref_primary_10_1038_s41467_024_45127_z crossref_primary_10_1523_JNEUROSCI_1962_14_2015 crossref_primary_10_7554_eLife_49154 crossref_primary_10_1016_j_cogpsych_2017_03_002 crossref_primary_10_1038_s41562_020_0919_5 crossref_primary_10_1093_schbul_sbae108 crossref_primary_10_1371_journal_pcbi_1006518 crossref_primary_10_1016_j_plrev_2020_11_005 crossref_primary_10_1093_ije_dyx117 crossref_primary_10_1007_s10071_017_1137_z crossref_primary_10_1016_j_conb_2015_11_004 crossref_primary_10_1080_17470919_2018_1518834 crossref_primary_10_1523_JNEUROSCI_2383_12_2012 crossref_primary_10_7554_eLife_56911 crossref_primary_10_1016_j_neurobiolaging_2016_06_002 crossref_primary_10_1016_j_cognition_2019_06_007 crossref_primary_10_3390_g12030062 crossref_primary_10_1016_j_jmp_2021_102503 crossref_primary_10_1016_j_neuroimage_2022_119437 crossref_primary_10_1038_s41593_018_0147_8 crossref_primary_10_1038_s41598_018_27378_1 crossref_primary_10_1016_j_neuroimage_2020_116834 crossref_primary_10_52396_JUSTC_2023_0132 crossref_primary_10_1038_ncomms12438 crossref_primary_10_1016_j_dcn_2017_09_008 crossref_primary_10_1002_hbm_24047 crossref_primary_10_1016_j_neubiorev_2020_07_021 crossref_primary_10_1016_j_neuron_2021_04_019 crossref_primary_10_1038_ncomms15958 crossref_primary_10_1111_j_1460_9568_2011_07920_x crossref_primary_10_1007_s11920_025_01588_7 crossref_primary_10_1038_nn_3981 crossref_primary_10_1371_journal_pbio_1001662 crossref_primary_10_1016_j_neuron_2012_07_014 crossref_primary_10_1038_s42003_024_06267_6 crossref_primary_10_1016_j_neuron_2023_07_017 crossref_primary_10_1523_JNEUROSCI_5445_12_2013 crossref_primary_10_1016_j_neuroimage_2022_119456 crossref_primary_10_1073_pnas_1523669113 crossref_primary_10_1111_jcpp_13669 crossref_primary_10_1016_j_pnpbp_2017_06_029 crossref_primary_10_1111_j_1460_9568_2012_08026_x crossref_primary_10_1163_1568539X_bja10041 crossref_primary_10_3389_fpsyg_2019_00848 crossref_primary_10_1016_j_jesp_2021_104267 crossref_primary_10_1371_journal_pcbi_1005684 crossref_primary_10_1038_s41593_023_01535_w crossref_primary_10_1111_ejn_12906 |
Cites_doi | 10.1523/JNEUROSCI.1010-06.2006 10.1016/S0896-6273(00)80374-8 10.1038/nature04587 10.1016/j.cub.2010.08.048 10.1523/JNEUROSCI.16-05-01936.1996 10.1016/S1053-8119(18)31587-8 10.1162/neco.2006.18.7.1637 10.1073/pnas.0711433105 10.1109/TSMC.1983.6313077 10.1016/j.neuron.2005.05.020 10.1098/rstb.1985.0010 10.1523/JNEUROSCI.6157-08.2009 10.1007/s00213-006-0686-7 10.1038/nn1279 10.1038/nn1579 10.1016/j.neuron.2006.11.010 10.1016/j.neuron.2010.04.016 10.2139/ssrn.539843 10.1038/nrn2213 10.1126/science.275.5306.1593 10.1016/j.brainres.2009.07.007 10.1523/JNEUROSCI.2469-09.2009 10.1523/JNEUROSCI.3489-09.2009 10.1037/0003-066X.58.9.697 10.1016/S0166-2236(03)00177-2 10.1037/h0061626 10.1006/nimg.2000.0593 10.1523/JNEUROSCI.21-08-02793.2001 10.1016/j.tics.2007.05.001 10.1523/JNEUROSCI.3761-07.2007 10.1523/JNEUROSCI.2728-09.2009 10.1196/annals.1390.022 10.1038/nrn2357 10.1073/pnas.0706111104 10.1002/hbm.460010306 10.1523/JNEUROSCI.0564-07.2007 10.1093/cercor/13.4.400 10.1523/JNEUROSCI.1309-08.2008 10.1016/S0896-6273(03)00169-7 10.1016/S0896-6273(03)00154-5 10.1038/nn.2141 10.1093/acprof:oso/9780199600434.003.0001 10.1002/mrm.1910390109 10.1016/B978-1-55860-141-3.50030-4 10.1016/j.neuroimage.2009.03.025 10.1111/j.1460-9568.2004.03095.x 10.1038/npp.2009.131 10.1523/JNEUROSCI.2131-07.2007 10.1016/j.neuroimage.2009.08.011 10.1152/jn.2000.84.6.3072 10.1016/j.conb.2004.10.016 10.1126/science.1134239 10.1016/j.neuron.2008.04.027 10.1073/pnas.0608842104 10.1016/j.neunet.2007.04.028 10.1016/j.pscychresns.2003.10.001 10.1016/j.neuron.2009.04.007 10.1111/j.1460-9568.2005.04218.x 10.1073/pnas.0801489105 10.1017/S0140525X0800472X 10.1038/nn2007 10.1162/089976602753712972 10.1007/s00426-007-0113-7 10.1016/j.neuroimage.2004.12.005 10.1080/14640748208400878 10.1038/nn1560 10.1038/nature04766 10.1016/S0893-6080(99)00046-5 10.1073/pnas.0711099105 10.1007/BF00993104 10.1523/JNEUROSCI.2496-07.2007 10.1038/377725a0 10.1016/j.neunet.2005.08.009 10.1038/nn1743 10.1152/jn.00158.2010 10.1901/jeab.2005.110-04 10.1038/35107080 10.1038/nature02581 10.1016/j.neuron.2006.06.024 10.1016/j.tics.2006.06.010 10.1038/nature05051 10.1037/0033-2909.119.1.3 10.1016/S0306-4522(98)00697-6 10.3758/LB.38.1.50 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Inc. Copyright © 2011 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Mar 24, 2011 |
Copyright_xml | – notice: 2011 Elsevier Inc. – notice: Copyright © 2011 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Mar 24, 2011 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.neuron.2011.02.027 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Nursing & Allied Health Premium MEDLINE - Academic Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4199 |
EndPage | 1215 |
ExternalDocumentID | PMC3077926 3384616121 21435563 10_1016_j_neuron_2011_02_027 S0896627311001255 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: 1R01MH087882-01 – fundername: Wellcome Trust – fundername: NIMH NIH HHS grantid: R01 MH087882 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 3V. 4.4 457 4G. 53G 5RE 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFKRA AFTJW AGHFR AGKMS AHHHB AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKNYI BPHCQ BVXVI CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HCIFZ HVGLF HZ~ IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M0R M0T M2M M2O M3Z M41 M7P N9A NCXOZ O-L O9- OK1 P2P P6G PQQKQ PROAC RCE RIG ROL RPZ SCP SDP SES SSZ TR2 WOW WQ6 ZA5 .55 .GJ 29N 3O- 5VS AAFWJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB G-2 ITC MVM OZT R2- X7M ZGI ZKB CGR CUY CVF ECM EFKBS EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c522t-df35676a5d1ab12971946e4d51bee103df181db126c8e9b676578c3b6e9cc7943 |
IEDL.DBID | IXB |
ISSN | 0896-6273 1097-4199 |
IngestDate | Thu Aug 21 18:15:01 EDT 2025 Fri Jul 11 11:02:20 EDT 2025 Fri Jul 11 15:18:14 EDT 2025 Fri Jul 25 10:55:20 EDT 2025 Mon Jul 21 06:04:02 EDT 2025 Tue Jul 01 01:16:02 EDT 2025 Thu Apr 24 22:56:44 EDT 2025 Fri Feb 23 02:11:26 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://creativecommons.org/licenses/by/3.0 https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2011 Elsevier Inc. All rights reserved. Open Access under CC BY 3.0 license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c522t-df35676a5d1ab12971946e4d51bee103df181db126c8e9b676578c3b6e9cc7943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0896627311001255 |
PMID | 21435563 |
PQID | 1548418678 |
PQPubID | 2031076 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3077926 proquest_miscellaneous_862784009 proquest_miscellaneous_858780097 proquest_journals_1548418678 pubmed_primary_21435563 crossref_citationtrail_10_1016_j_neuron_2011_02_027 crossref_primary_10_1016_j_neuron_2011_02_027 elsevier_sciencedirect_doi_10_1016_j_neuron_2011_02_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-03-24 |
PublicationDateYYYYMMDD | 2011-03-24 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Neuron (Cambridge, Mass.) |
PublicationTitleAlternate | Neuron |
PublicationYear | 2011 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Pessiglione, Seymour, Flandin, Dolan, Frith (bib67) 2006; 442 Doeller, King, Burgess (bib23) 2008; 105 Hampton, Bossaerts, O'Doherty (bib36) 2006; 26 O'Doherty, Dayan, Friston, Critchley, Dolan (bib65) 2003; 38 Rangel, Camerer, Montague (bib73) 2008; 9 Suri, Schultz (bib83) 1999; 91 Barto, Sutton, Anderson (bib6) 1983; 13 Bates, D., and Maechler, M. (2010). lme4: Linear mixed effects models using S4 classes. R package version 0.999375 33. Fu, Anderson (bib33) 2008; 72 Kable, Glimcher (bib44) 2007; 10 Daw, Courville, Touretzky (bib16) 2006; 18 Hare, O'Doherty, Camerer, Schultz, Rangel (bib38) 2008; 28 Daw, N.D. (in press). Trial-by-trial data analysis using computational models. In Affect, Learning and Decision Making, Attention and Performance XXIII, E.A. Phelps, T.W. Robbins, and M. Delgado, eds. (New York: Oxford University Press). O'Doherty (bib64) 2004; 14 Doya (bib25) 1999; 12 Berns, McClure, Pagnoni, Montague (bib9) 2001; 21 Frank, Moustafa, Haughey, Curran, Hutchison (bib30) 2007; 104 Rummery, Niranjan (bib75) 1994 Redish, Jensen, Johnson (bib74) 2008; 31 McClure, Berns, Montague (bib56) 2003; 38 Gershman, Pesaran, Daw (bib34) 2009; 29 Dickinson (bib20) 1985; 308 Tolman (bib87) 1948; 55 McClure, Daw, Montague (bib57) 2003; 26 Friston, Worsley, Frackowiak, Mazziotta, Evans (bib31) 1993; 1 Stephan, Penny, Daunizeau, Moran, Friston (bib82) 2009; 46 Yin, Knowlton, Balleine (bib92) 2004; 19 Peters, Büchel (bib68) 2009; 29 Balleine, Daw, O'Doherty (bib3) 2008 Morris, Nevet, Arkadir, Vaadia, Bergman (bib61) 2006; 9 Johnson, Redish (bib42) 2005; 18 Hampton, Bossaerts, O'Doherty (bib37) 2008; 105 Niv, Joel, Dayan (bib63) 2006; 10 Moore, Atkeson (bib60) 1993; 13 Bertin, Schweighofer, Doya (bib10) 2007; 20 Knutson, Westdorp, Kaiser, Hommer (bib49) 2000; 12 . Breiter, Gollub, Weisskoff, Kennedy, Makris, Berke, Goodman, Kantor, Gastfriend, Riorden (bib11) 1997; 19 Sloman (bib81) 1996; 119 Doya, Samejima, Katagiri, Kawato (bib26) 2002; 14 Kim, Sul, Huh, Lee, Jung (bib47) 2009; 29 Maia (bib55) 2010; 38 Kahneman (bib45) 2003; 58 Lau, Glimcher (bib51) 2005; 84 Lohrenz, McCabe, Camerer, Montague (bib53) 2007; 104 Schultz, Dayan, Montague (bib79) 1997; 275 Everitt, Robbins (bib27) 2005; 8 Montague, Dayan, Person, Sejnowski (bib58) 1995; 377 Schönberg, Daw, Joel, O'Doherty (bib77) 2007; 27 Schönberg, O'Doherty, Joel, Inzelberg, Segev, Daw (bib78) 2010; 49 Knutson, Rick, Wimmer, Prelec, Loewenstein (bib50) 2007; 53 Daw, Niv, Dayan (bib15) 2005; 8 Seymour, O'Doherty, Dayan, Koltzenburg, Jones, Dolan, Friston, Frackowiak (bib80) 2004; 429 Barto (bib5) 1995 Adams (bib1) 1982; 33b Bayer, Glimcher (bib8) 2005; 47 Ito, Doya (bib41) 2009; 29 Loewenstein, G., and O'Donoghue, T. (2004). Animal spirits: Affective and deliberative processes in economic behavior. Working Paper 04-14, Center for Analytic Economics, Cornell University. Thorndike (bib86) 1911 Dickinson, Balleine (bib21) 2002 Friston, Josephs, Rees, Turner (bib32) 1998; 39 Schacter, Addis, Buckner (bib76) 2007; 8 Johnson, Redish (bib43) 2007; 27 Gläscher, Daw, Dayan, O'Doherty (bib35) 2010; 66 Killcross, Coutureau (bib46) 2003; 13 Daw, O'Doherty, Dayan, Seymour, Dolan (bib17) 2006; 441 R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Wittmann, Daw, Seymour, Dolan (bib91) 2008; 58 Holmes, Friston (bib40) 1998; 7 Venkatraman, Payne, Bettman, Luce, Huettel (bib90) 2009; 62 Bromberg-Martin, Matsumoto, Hong, Hikosaka (bib13) 2010; 104 Delgado, Nystrom, Fissell, Noll, Fiez (bib18) 2000; 84 O'Doherty, Hampton, Kim (bib66) 2007; 1104 Preuschoff, Bossaerts, Quartz (bib71) 2006; 51 Tanaka, Doya, Okada, Ueda, Okamoto, Yamawaki (bib85) 2004; 7 Doeller, Burgess (bib22) 2008; 105 MacKay (bib54) 2003 Balleine, O'Doherty (bib2) 2010; 35 Poldrack, Clark, Paré-Blagoev, Shohamy, Creso Moyano, Myers, Gluck (bib70) 2001; 414 Tom, Fox, Trepel, Poldrack (bib88) 2007; 315 Hassabis, Maguire (bib39) 2007; 11 Knutson, Gibbs (bib48) 2007; 191 Foster, Wilson (bib29) 2006; 440 Nichols, Brett, Andersson, Wager, Poline (bib62) 2005; 25 Delgado, Gillis, Phelps (bib19) 2008; 11 Sutton, R. (1990). Integrated architectures for learning, planning, and reacting based on approximating dynamic programming. In Proceedings of the Seventh International Conference on Machine Learning (San Diego, California). Brett, M., Anton, J.-L., Valabregue, R., and Poline, J.-B. (2002). Region of interest analysis using an SPM toolbox. In 8th International Conference on Functional Mapping of the Human Brain (Sendai, Japan). Doll, Jacobs, Sanfey, Frank (bib24) 2009; 1299 Yin, Ostlund, Knowlton, Balleine (bib93) 2005; 22 Ballmaier, Toga, Siddarth, Blanton, Levitt, Lee, Caplan (bib4) 2004; 130 Valentin, Dickinson, O'Doherty (bib89) 2007; 27 Montague, Dayan, Sejnowski (bib59) 1996; 16 Fitzgerald, Seymour, Bach, Dolan (bib28) 2010; 20 Plassmann, O'Doherty, Rangel (bib69) 2007; 27 Barto (10.1016/j.neuron.2011.02.027_bib6) 1983; 13 Dickinson (10.1016/j.neuron.2011.02.027_bib20) 1985; 308 Lau (10.1016/j.neuron.2011.02.027_bib51) 2005; 84 Preuschoff (10.1016/j.neuron.2011.02.027_bib71) 2006; 51 Hampton (10.1016/j.neuron.2011.02.027_bib36) 2006; 26 Johnson (10.1016/j.neuron.2011.02.027_bib43) 2007; 27 Nichols (10.1016/j.neuron.2011.02.027_bib62) 2005; 25 Gläscher (10.1016/j.neuron.2011.02.027_bib35) 2010; 66 Daw (10.1016/j.neuron.2011.02.027_bib16) 2006; 18 Kim (10.1016/j.neuron.2011.02.027_bib47) 2009; 29 Tolman (10.1016/j.neuron.2011.02.027_bib87) 1948; 55 O'Doherty (10.1016/j.neuron.2011.02.027_bib64) 2004; 14 Yin (10.1016/j.neuron.2011.02.027_bib92) 2004; 19 Hare (10.1016/j.neuron.2011.02.027_bib38) 2008; 28 Schacter (10.1016/j.neuron.2011.02.027_bib76) 2007; 8 Schultz (10.1016/j.neuron.2011.02.027_bib79) 1997; 275 Ballmaier (10.1016/j.neuron.2011.02.027_bib4) 2004; 130 Wittmann (10.1016/j.neuron.2011.02.027_bib91) 2008; 58 Doll (10.1016/j.neuron.2011.02.027_bib24) 2009; 1299 Friston (10.1016/j.neuron.2011.02.027_bib32) 1998; 39 Berns (10.1016/j.neuron.2011.02.027_bib9) 2001; 21 Montague (10.1016/j.neuron.2011.02.027_bib58) 1995; 377 10.1016/j.neuron.2011.02.027_bib72 Doeller (10.1016/j.neuron.2011.02.027_bib23) 2008; 105 Fu (10.1016/j.neuron.2011.02.027_bib33) 2008; 72 Knutson (10.1016/j.neuron.2011.02.027_bib49) 2000; 12 Adams (10.1016/j.neuron.2011.02.027_bib1) 1982; 33b Bayer (10.1016/j.neuron.2011.02.027_bib8) 2005; 47 Balleine (10.1016/j.neuron.2011.02.027_bib2) 2010; 35 Lohrenz (10.1016/j.neuron.2011.02.027_bib53) 2007; 104 Tom (10.1016/j.neuron.2011.02.027_bib88) 2007; 315 Doya (10.1016/j.neuron.2011.02.027_bib25) 1999; 12 O'Doherty (10.1016/j.neuron.2011.02.027_bib66) 2007; 1104 Delgado (10.1016/j.neuron.2011.02.027_bib19) 2008; 11 Knutson (10.1016/j.neuron.2011.02.027_bib48) 2007; 191 Peters (10.1016/j.neuron.2011.02.027_bib68) 2009; 29 Killcross (10.1016/j.neuron.2011.02.027_bib46) 2003; 13 Hassabis (10.1016/j.neuron.2011.02.027_bib39) 2007; 11 McClure (10.1016/j.neuron.2011.02.027_bib57) 2003; 26 Gershman (10.1016/j.neuron.2011.02.027_bib34) 2009; 29 McClure (10.1016/j.neuron.2011.02.027_bib56) 2003; 38 Daw (10.1016/j.neuron.2011.02.027_bib17) 2006; 441 Rummery (10.1016/j.neuron.2011.02.027_bib75) 1994 10.1016/j.neuron.2011.02.027_bib84 Rangel (10.1016/j.neuron.2011.02.027_bib73) 2008; 9 Tanaka (10.1016/j.neuron.2011.02.027_bib85) 2004; 7 Sloman (10.1016/j.neuron.2011.02.027_bib81) 1996; 119 Balleine (10.1016/j.neuron.2011.02.027_bib3) 2008 Daw (10.1016/j.neuron.2011.02.027_bib15) 2005; 8 Seymour (10.1016/j.neuron.2011.02.027_bib80) 2004; 429 MacKay (10.1016/j.neuron.2011.02.027_bib54) 2003 Plassmann (10.1016/j.neuron.2011.02.027_bib69) 2007; 27 Fitzgerald (10.1016/j.neuron.2011.02.027_bib28) 2010; 20 Schönberg (10.1016/j.neuron.2011.02.027_bib77) 2007; 27 Doeller (10.1016/j.neuron.2011.02.027_bib22) 2008; 105 10.1016/j.neuron.2011.02.027_bib12 Knutson (10.1016/j.neuron.2011.02.027_bib50) 2007; 53 Breiter (10.1016/j.neuron.2011.02.027_bib11) 1997; 19 10.1016/j.neuron.2011.02.027_bib7 10.1016/j.neuron.2011.02.027_bib14 Venkatraman (10.1016/j.neuron.2011.02.027_bib90) 2009; 62 Maia (10.1016/j.neuron.2011.02.027_bib55) 2010; 38 Moore (10.1016/j.neuron.2011.02.027_bib60) 1993; 13 Poldrack (10.1016/j.neuron.2011.02.027_bib70) 2001; 414 Suri (10.1016/j.neuron.2011.02.027_bib83) 1999; 91 Frank (10.1016/j.neuron.2011.02.027_bib30) 2007; 104 10.1016/j.neuron.2011.02.027_bib52 Niv (10.1016/j.neuron.2011.02.027_bib63) 2006; 10 Stephan (10.1016/j.neuron.2011.02.027_bib82) 2009; 46 Johnson (10.1016/j.neuron.2011.02.027_bib42) 2005; 18 Barto (10.1016/j.neuron.2011.02.027_bib5) 1995 Foster (10.1016/j.neuron.2011.02.027_bib29) 2006; 440 Morris (10.1016/j.neuron.2011.02.027_bib61) 2006; 9 Bertin (10.1016/j.neuron.2011.02.027_bib10) 2007; 20 Kable (10.1016/j.neuron.2011.02.027_bib44) 2007; 10 Pessiglione (10.1016/j.neuron.2011.02.027_bib67) 2006; 442 Holmes (10.1016/j.neuron.2011.02.027_bib40) 1998; 7 Valentin (10.1016/j.neuron.2011.02.027_bib89) 2007; 27 Thorndike (10.1016/j.neuron.2011.02.027_bib86) 1911 Friston (10.1016/j.neuron.2011.02.027_bib31) 1993; 1 Redish (10.1016/j.neuron.2011.02.027_bib74) 2008; 31 O'Doherty (10.1016/j.neuron.2011.02.027_bib65) 2003; 38 Delgado (10.1016/j.neuron.2011.02.027_bib18) 2000; 84 Kahneman (10.1016/j.neuron.2011.02.027_bib45) 2003; 58 Schönberg (10.1016/j.neuron.2011.02.027_bib78) 2010; 49 Dickinson (10.1016/j.neuron.2011.02.027_bib21) 2002 Montague (10.1016/j.neuron.2011.02.027_bib59) 1996; 16 Hampton (10.1016/j.neuron.2011.02.027_bib37) 2008; 105 Ito (10.1016/j.neuron.2011.02.027_bib41) 2009; 29 Yin (10.1016/j.neuron.2011.02.027_bib93) 2005; 22 Bromberg-Martin (10.1016/j.neuron.2011.02.027_bib13) 2010; 104 Doya (10.1016/j.neuron.2011.02.027_bib26) 2002; 14 Everitt (10.1016/j.neuron.2011.02.027_bib27) 2005; 8 |
References_xml | – volume: 20 start-page: 1823 year: 2010 end-page: 1829 ident: bib28 article-title: Differentiable neural substrates for learned and described value and risk publication-title: Curr. Biol. – volume: 105 start-page: 6741 year: 2008 end-page: 6746 ident: bib37 article-title: Neural correlates of mentalizing-related computations during strategic interactions in humans publication-title: Proc. Natl. Acad. Sci. USA – year: 1911 ident: bib86 article-title: Animal Intelligence; Experimental Studies – volume: 105 start-page: 5909 year: 2008 end-page: 5914 ident: bib22 article-title: Distinct error-correcting and incidental learning of location relative to landmarks and boundaries publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 887 year: 2004 end-page: 893 ident: bib85 article-title: Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops publication-title: Nat. Neurosci. – volume: 105 start-page: 5915 year: 2008 end-page: 5920 ident: bib23 article-title: Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory publication-title: Proc. Natl. Acad. Sci. USA – volume: 38 start-page: 50 year: 2010 end-page: 67 ident: bib55 article-title: Two-factor theory, the actor-critic model, and conditioned avoidance publication-title: Learn. Behav. – reference: Bates, D., and Maechler, M. (2010). lme4: Linear mixed effects models using S4 classes. R package version 0.999375 33. – volume: 429 start-page: 664 year: 2004 end-page: 667 ident: bib80 article-title: Temporal difference models describe higher-order learning in humans publication-title: Nature – volume: 51 start-page: 381 year: 2006 end-page: 390 ident: bib71 article-title: Neural differentiation of expected reward and risk in human subcortical structures publication-title: Neuron – volume: 8 start-page: 657 year: 2007 end-page: 661 ident: bib76 article-title: Remembering the past to imagine the future: The prospective brain publication-title: Nat. Rev. Neurosci. – volume: 28 start-page: 5623 year: 2008 end-page: 5630 ident: bib38 article-title: Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors publication-title: J. Neurosci. – volume: 9 start-page: 1057 year: 2006 end-page: 1063 ident: bib61 article-title: Midbrain dopamine neurons encode decisions for future action publication-title: Nat. Neurosci. – volume: 21 start-page: 2793 year: 2001 end-page: 2798 ident: bib9 article-title: Predictability modulates human brain response to reward publication-title: J. Neurosci. – volume: 18 start-page: 1163 year: 2005 end-page: 1171 ident: bib42 article-title: Hippocampal replay contributes to within session learning in a temporal difference reinforcement learning model publication-title: Neural Netw. – volume: 1104 start-page: 35 year: 2007 end-page: 53 ident: bib66 article-title: Model-based fMRI and its application to reward learning and decision making publication-title: Ann. N Y Acad. Sci. – volume: 441 start-page: 876 year: 2006 end-page: 879 ident: bib17 article-title: Cortical substrates for exploratory decisions in humans publication-title: Nature – volume: 20 start-page: 668 year: 2007 end-page: 675 ident: bib10 article-title: Multiple model-based reinforcement learning explains dopamine neuronal activity publication-title: Neural Netw. – volume: 38 start-page: 329 year: 2003 end-page: 337 ident: bib65 article-title: Temporal difference models and reward-related learning in the human brain publication-title: Neuron – volume: 12 start-page: 20 year: 2000 end-page: 27 ident: bib49 article-title: FMRI visualization of brain activity during a monetary incentive delay task publication-title: Neuroimage – volume: 91 start-page: 871 year: 1999 end-page: 890 ident: bib83 article-title: A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task publication-title: Neuroscience – volume: 66 start-page: 585 year: 2010 end-page: 595 ident: bib35 article-title: States versus rewards: Dissociable neural prediction error signals underlying model-based and model-free reinforcement learning publication-title: Neuron – volume: 9 start-page: 545 year: 2008 end-page: 556 ident: bib73 article-title: A framework for studying the neurobiology of value-based decision making publication-title: Nat. Rev. Neurosci. – start-page: 215 year: 1995 end-page: 232 ident: bib5 article-title: Adaptive Critics and the Basal Ganglia publication-title: Models of Information Processing in the Basal Ganglia – volume: 25 start-page: 653 year: 2005 end-page: 660 ident: bib62 article-title: Valid conjunction inference with the minimum statistic publication-title: Neuroimage – volume: 26 start-page: 423 year: 2003 end-page: 428 ident: bib57 article-title: A computational substrate for incentive salience publication-title: Trends Neurosci. – volume: 29 start-page: 9861 year: 2009 end-page: 9874 ident: bib41 article-title: Validation of decision-making models and analysis of decision variables in the rat basal ganglia publication-title: J. Neurosci. – volume: 38 start-page: 339 year: 2003 end-page: 346 ident: bib56 article-title: Temporal prediction errors in a passive learning task activate human striatum publication-title: Neuron – volume: 29 start-page: 14701 year: 2009 end-page: 14712 ident: bib47 article-title: Role of striatum in updating values of chosen actions publication-title: J. Neurosci. – volume: 19 start-page: 591 year: 1997 end-page: 611 ident: bib11 article-title: Acute effects of cocaine on human brain activity and emotion publication-title: Neuron – start-page: 497 year: 2002 end-page: 534 ident: bib21 article-title: The role of learning in the operation of motivational systems. Stevens' Handbook of Experimental Psychology, Third Edition, Vol.3: Learning, Motivation, and Emotion – volume: 191 start-page: 813 year: 2007 end-page: 822 ident: bib48 article-title: Linking nucleus accumbens dopamine and blood oxygenation publication-title: Psychopharmacology (Berl.) – reference: R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. – volume: 27 start-page: 4019 year: 2007 end-page: 4026 ident: bib89 article-title: Determining the neural substrates of goal-directed learning in the human brain publication-title: J. Neurosci. – volume: 84 start-page: 3072 year: 2000 end-page: 3077 ident: bib18 article-title: Tracking the hemodynamic responses to reward and punishment in the striatum publication-title: J. Neurophysiol. – volume: 440 start-page: 680 year: 2006 end-page: 683 ident: bib29 article-title: Reverse replay of behavioural sequences in hippocampal place cells during the awake state publication-title: Nature – volume: 31 start-page: 415 year: 2008 end-page: 437 ident: bib74 article-title: A unified framework for addiction: Vulnerabilities in the decision process publication-title: Behav. Brain Sci. – volume: 49 start-page: 772 year: 2010 end-page: 781 ident: bib78 article-title: Selective impairment of prediction error signaling in human dorsolateral but not ventral striatum in Parkinson's disease patients: Evidence from a model-based fMRI study publication-title: Neuroimage – volume: 11 start-page: 880 year: 2008 end-page: 881 ident: bib19 article-title: Regulating the expectation of reward via cognitive strategies publication-title: Nat. Neurosci. – volume: 1299 start-page: 74 year: 2009 end-page: 94 ident: bib24 article-title: Instructional control of reinforcement learning: A behavioral and neurocomputational investigation publication-title: Brain Res. – year: 1994 ident: bib75 article-title: On-line Q-learning using connectionist systems. Technical Report CUED/F-INFENG/TR 166, Engineering Department – volume: 53 start-page: 147 year: 2007 end-page: 156 ident: bib50 article-title: Neural predictors of purchases publication-title: Neuron – volume: 442 start-page: 1042 year: 2006 end-page: 1045 ident: bib67 article-title: Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans publication-title: Nature – volume: 8 start-page: 1704 year: 2005 end-page: 1711 ident: bib15 article-title: Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control publication-title: Nat. Neurosci. – volume: 19 start-page: 181 year: 2004 end-page: 189 ident: bib92 article-title: Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning publication-title: Eur. J. Neurosci. – volume: 26 start-page: 8360 year: 2006 end-page: 8367 ident: bib36 article-title: The role of the ventromedial prefrontal cortex in abstract state-based inference during decision making in humans publication-title: J. Neurosci. – volume: 58 start-page: 697 year: 2003 end-page: 720 ident: bib45 article-title: A perspective on judgment and choice: Mapping bounded rationality publication-title: Am. Psychol. – volume: 130 start-page: 43 year: 2004 end-page: 55 ident: bib4 article-title: Thought disorder and nucleus accumbens in childhood: A structural MRI study publication-title: Psychiatry Res. – volume: 27 start-page: 12860 year: 2007 end-page: 12867 ident: bib77 article-title: Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making publication-title: J. Neurosci. – reference: Daw, N.D. (in press). Trial-by-trial data analysis using computational models. In Affect, Learning and Decision Making, Attention and Performance XXIII, E.A. Phelps, T.W. Robbins, and M. Delgado, eds. (New York: Oxford University Press). – volume: 72 start-page: 321 year: 2008 end-page: 330 ident: bib33 article-title: Solving the credit assignment problem: Explicit and implicit learning of action sequences with probabilistic outcomes publication-title: Psychol. Res. – volume: 13 start-page: 103 year: 1993 end-page: 130 ident: bib60 article-title: Prioritized sweeping: Reinforcement learning with less data and less time publication-title: Mach. Learn. – volume: 315 start-page: 515 year: 2007 end-page: 518 ident: bib88 article-title: The neural basis of loss aversion in decision-making under risk publication-title: Science – year: 2008 ident: bib3 article-title: Multiple forms of value learning and the function of dopamine publication-title: Neuroeconomics: Decision Making and the Brain – volume: 22 start-page: 513 year: 2005 end-page: 523 ident: bib93 article-title: The role of the dorsomedial striatum in instrumental conditioning publication-title: Eur. J. Neurosci. – volume: 14 start-page: 1347 year: 2002 end-page: 1369 ident: bib26 article-title: Multiple model-based reinforcement learning publication-title: Neural Comput. – volume: 13 start-page: 400 year: 2003 end-page: 408 ident: bib46 article-title: Coordination of actions and habits in the medial prefrontal cortex of rats publication-title: Cereb. Cortex – volume: 84 start-page: 555 year: 2005 end-page: 579 ident: bib51 article-title: Dynamic response-by-response models of matching behavior in rhesus monkeys publication-title: J. Exp. Anal. Behav. – reference: Loewenstein, G., and O'Donoghue, T. (2004). Animal spirits: Affective and deliberative processes in economic behavior. Working Paper 04-14, Center for Analytic Economics, Cornell University. – volume: 11 start-page: 299 year: 2007 end-page: 306 ident: bib39 article-title: Deconstructing episodic memory with construction publication-title: Trends Cogn. Sci. – volume: 29 start-page: 15727 year: 2009 end-page: 15734 ident: bib68 article-title: Overlapping and distinct neural systems code for subjective value during intertemporal and risky decision making publication-title: J. Neurosci. – volume: 10 start-page: 1625 year: 2007 end-page: 1633 ident: bib44 article-title: The neural correlates of subjective value during intertemporal choice publication-title: Nat. Neurosci. – volume: 46 start-page: 1004 year: 2009 end-page: 1017 ident: bib82 article-title: Bayesian model selection for group studies publication-title: Neuroimage – volume: 7 start-page: S754 year: 1998 ident: bib40 article-title: Generalisability, random effects and population inference publication-title: Neuroimage – volume: 18 start-page: 1637 year: 2006 end-page: 1677 ident: bib16 article-title: Representation and timing in theories of the dopamine system publication-title: Neural Comput. – volume: 308 start-page: 67 year: 1985 end-page: 78 ident: bib20 article-title: Actions and habits: The development of behavioural autonomy publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – year: 2003 ident: bib54 article-title: Information Theory, Inference, and Learning Algorithms – volume: 35 start-page: 48 year: 2010 end-page: 69 ident: bib2 article-title: Human and rodent homologies in action control: Corticostriatal determinants of goal-directed and habitual action publication-title: Neuropsychopharmacology – volume: 55 start-page: 189 year: 1948 end-page: 208 ident: bib87 article-title: Cognitive maps in rats and men publication-title: Psychol. Rev. – volume: 104 start-page: 9493 year: 2007 end-page: 9498 ident: bib53 article-title: Neural signature of fictive learning signals in a sequential investment task publication-title: Proc. Natl. Acad. Sci. USA – volume: 104 start-page: 16311 year: 2007 end-page: 16316 ident: bib30 article-title: Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning publication-title: Proc. Natl. Acad. Sci. USA – volume: 29 start-page: 13524 year: 2009 end-page: 13531 ident: bib34 article-title: Human reinforcement learning subdivides structured action spaces by learning effector-specific values publication-title: J. Neurosci. – volume: 62 start-page: 593 year: 2009 end-page: 602 ident: bib90 article-title: Separate neural mechanisms underlie choices and strategic preferences in risky decision making publication-title: Neuron – reference: Brett, M., Anton, J.-L., Valabregue, R., and Poline, J.-B. (2002). Region of interest analysis using an SPM toolbox. In 8th International Conference on Functional Mapping of the Human Brain (Sendai, Japan). – volume: 10 start-page: 375 year: 2006 end-page: 381 ident: bib63 article-title: A normative perspective on motivation publication-title: Trends Cogn. Sci. – volume: 39 start-page: 41 year: 1998 end-page: 52 ident: bib32 article-title: Nonlinear event-related responses in fMRI publication-title: Magn. Reson. Med. – volume: 119 start-page: 3 year: 1996 end-page: 22 ident: bib81 article-title: The empirical case for two systems of reasoning publication-title: Psychol. Bull. – volume: 58 start-page: 967 year: 2008 end-page: 973 ident: bib91 article-title: Striatal activity underlies novelty-based choice in humans publication-title: Neuron – volume: 12 start-page: 961 year: 1999 end-page: 974 ident: bib25 article-title: What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? publication-title: Neural Netw. – volume: 377 start-page: 725 year: 1995 end-page: 728 ident: bib58 article-title: Bee foraging in uncertain environments using predictive Hebbian learning publication-title: Nature – volume: 1 start-page: 210 year: 1993 end-page: 220 ident: bib31 article-title: Assessing the significance of focal activations using their spatial extent publication-title: Hum. Brain Mapp. – reference: Sutton, R. (1990). Integrated architectures for learning, planning, and reacting based on approximating dynamic programming. In Proceedings of the Seventh International Conference on Machine Learning (San Diego, California). – reference: . – volume: 27 start-page: 9984 year: 2007 end-page: 9988 ident: bib69 article-title: Orbitofrontal cortex encodes willingness to pay in everyday economic transactions publication-title: J. Neurosci. – volume: 414 start-page: 546 year: 2001 end-page: 550 ident: bib70 article-title: Interactive memory systems in the human brain publication-title: Nature – volume: 33b start-page: 77 year: 1982 end-page: 98 ident: bib1 article-title: Variations in the sensitivity of instrumental responding to reinforcer devaluation publication-title: Q. J. Exp. Psychol. – volume: 104 start-page: 1068 year: 2010 end-page: 1076 ident: bib13 article-title: A pallidus-habenula-dopamine pathway signals inferred stimulus values publication-title: J. Neurophysiol. – volume: 27 start-page: 12176 year: 2007 end-page: 12189 ident: bib43 article-title: Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point publication-title: J. Neurosci. – volume: 8 start-page: 1481 year: 2005 end-page: 1489 ident: bib27 article-title: Neural systems of reinforcement for drug addiction: From actions to habits to compulsion publication-title: Nat. Neurosci. – volume: 16 start-page: 1936 year: 1996 end-page: 1947 ident: bib59 article-title: A framework for mesencephalic dopamine systems based on predictive Hebbian learning publication-title: J. Neurosci. – volume: 275 start-page: 1593 year: 1997 end-page: 1599 ident: bib79 article-title: A neural substrate of prediction and reward publication-title: Science – volume: 14 start-page: 769 year: 2004 end-page: 776 ident: bib64 article-title: Reward representations and reward-related learning in the human brain: Insights from neuroimaging publication-title: Curr. Opin. Neurobiol. – volume: 47 start-page: 129 year: 2005 end-page: 141 ident: bib8 article-title: Midbrain dopamine neurons encode a quantitative reward prediction error signal publication-title: Neuron – volume: 13 start-page: 834 year: 1983 end-page: 846 ident: bib6 article-title: Neuronlike adaptive elements that can solve difficult learning control problems publication-title: IEEE Trans. Syst. Man Cybern. – volume: 26 start-page: 8360 year: 2006 ident: 10.1016/j.neuron.2011.02.027_bib36 article-title: The role of the ventromedial prefrontal cortex in abstract state-based inference during decision making in humans publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1010-06.2006 – volume: 19 start-page: 591 year: 1997 ident: 10.1016/j.neuron.2011.02.027_bib11 article-title: Acute effects of cocaine on human brain activity and emotion publication-title: Neuron doi: 10.1016/S0896-6273(00)80374-8 – volume: 440 start-page: 680 year: 2006 ident: 10.1016/j.neuron.2011.02.027_bib29 article-title: Reverse replay of behavioural sequences in hippocampal place cells during the awake state publication-title: Nature doi: 10.1038/nature04587 – volume: 20 start-page: 1823 year: 2010 ident: 10.1016/j.neuron.2011.02.027_bib28 article-title: Differentiable neural substrates for learned and described value and risk publication-title: Curr. Biol. doi: 10.1016/j.cub.2010.08.048 – volume: 16 start-page: 1936 year: 1996 ident: 10.1016/j.neuron.2011.02.027_bib59 article-title: A framework for mesencephalic dopamine systems based on predictive Hebbian learning publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-05-01936.1996 – volume: 7 start-page: S754 year: 1998 ident: 10.1016/j.neuron.2011.02.027_bib40 article-title: Generalisability, random effects and population inference publication-title: Neuroimage doi: 10.1016/S1053-8119(18)31587-8 – year: 2003 ident: 10.1016/j.neuron.2011.02.027_bib54 – ident: 10.1016/j.neuron.2011.02.027_bib12 – volume: 18 start-page: 1637 year: 2006 ident: 10.1016/j.neuron.2011.02.027_bib16 article-title: Representation and timing in theories of the dopamine system publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1637 – volume: 105 start-page: 5909 year: 2008 ident: 10.1016/j.neuron.2011.02.027_bib22 article-title: Distinct error-correcting and incidental learning of location relative to landmarks and boundaries publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0711433105 – volume: 13 start-page: 834 year: 1983 ident: 10.1016/j.neuron.2011.02.027_bib6 article-title: Neuronlike adaptive elements that can solve difficult learning control problems publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1983.6313077 – volume: 47 start-page: 129 year: 2005 ident: 10.1016/j.neuron.2011.02.027_bib8 article-title: Midbrain dopamine neurons encode a quantitative reward prediction error signal publication-title: Neuron doi: 10.1016/j.neuron.2005.05.020 – year: 2008 ident: 10.1016/j.neuron.2011.02.027_bib3 article-title: Multiple forms of value learning and the function of dopamine – volume: 308 start-page: 67 year: 1985 ident: 10.1016/j.neuron.2011.02.027_bib20 article-title: Actions and habits: The development of behavioural autonomy publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.1985.0010 – volume: 29 start-page: 9861 year: 2009 ident: 10.1016/j.neuron.2011.02.027_bib41 article-title: Validation of decision-making models and analysis of decision variables in the rat basal ganglia publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6157-08.2009 – volume: 191 start-page: 813 year: 2007 ident: 10.1016/j.neuron.2011.02.027_bib48 article-title: Linking nucleus accumbens dopamine and blood oxygenation publication-title: Psychopharmacology (Berl.) doi: 10.1007/s00213-006-0686-7 – volume: 7 start-page: 887 year: 2004 ident: 10.1016/j.neuron.2011.02.027_bib85 article-title: Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops publication-title: Nat. Neurosci. doi: 10.1038/nn1279 – volume: 8 start-page: 1481 year: 2005 ident: 10.1016/j.neuron.2011.02.027_bib27 article-title: Neural systems of reinforcement for drug addiction: From actions to habits to compulsion publication-title: Nat. Neurosci. doi: 10.1038/nn1579 – volume: 53 start-page: 147 year: 2007 ident: 10.1016/j.neuron.2011.02.027_bib50 article-title: Neural predictors of purchases publication-title: Neuron doi: 10.1016/j.neuron.2006.11.010 – volume: 66 start-page: 585 year: 2010 ident: 10.1016/j.neuron.2011.02.027_bib35 article-title: States versus rewards: Dissociable neural prediction error signals underlying model-based and model-free reinforcement learning publication-title: Neuron doi: 10.1016/j.neuron.2010.04.016 – ident: 10.1016/j.neuron.2011.02.027_bib52 doi: 10.2139/ssrn.539843 – volume: 8 start-page: 657 year: 2007 ident: 10.1016/j.neuron.2011.02.027_bib76 article-title: Remembering the past to imagine the future: The prospective brain publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2213 – volume: 275 start-page: 1593 year: 1997 ident: 10.1016/j.neuron.2011.02.027_bib79 article-title: A neural substrate of prediction and reward publication-title: Science doi: 10.1126/science.275.5306.1593 – volume: 1299 start-page: 74 year: 2009 ident: 10.1016/j.neuron.2011.02.027_bib24 article-title: Instructional control of reinforcement learning: A behavioral and neurocomputational investigation publication-title: Brain Res. doi: 10.1016/j.brainres.2009.07.007 – volume: 29 start-page: 13524 year: 2009 ident: 10.1016/j.neuron.2011.02.027_bib34 article-title: Human reinforcement learning subdivides structured action spaces by learning effector-specific values publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2469-09.2009 – volume: 29 start-page: 15727 year: 2009 ident: 10.1016/j.neuron.2011.02.027_bib68 article-title: Overlapping and distinct neural systems code for subjective value during intertemporal and risky decision making publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3489-09.2009 – volume: 58 start-page: 697 year: 2003 ident: 10.1016/j.neuron.2011.02.027_bib45 article-title: A perspective on judgment and choice: Mapping bounded rationality publication-title: Am. Psychol. doi: 10.1037/0003-066X.58.9.697 – ident: 10.1016/j.neuron.2011.02.027_bib72 – volume: 26 start-page: 423 year: 2003 ident: 10.1016/j.neuron.2011.02.027_bib57 article-title: A computational substrate for incentive salience publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(03)00177-2 – volume: 55 start-page: 189 year: 1948 ident: 10.1016/j.neuron.2011.02.027_bib87 article-title: Cognitive maps in rats and men publication-title: Psychol. Rev. doi: 10.1037/h0061626 – volume: 12 start-page: 20 year: 2000 ident: 10.1016/j.neuron.2011.02.027_bib49 article-title: FMRI visualization of brain activity during a monetary incentive delay task publication-title: Neuroimage doi: 10.1006/nimg.2000.0593 – volume: 21 start-page: 2793 year: 2001 ident: 10.1016/j.neuron.2011.02.027_bib9 article-title: Predictability modulates human brain response to reward publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-08-02793.2001 – volume: 11 start-page: 299 year: 2007 ident: 10.1016/j.neuron.2011.02.027_bib39 article-title: Deconstructing episodic memory with construction publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2007.05.001 – volume: 27 start-page: 12176 year: 2007 ident: 10.1016/j.neuron.2011.02.027_bib43 article-title: Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3761-07.2007 – volume: 29 start-page: 14701 year: 2009 ident: 10.1016/j.neuron.2011.02.027_bib47 article-title: Role of striatum in updating values of chosen actions publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2728-09.2009 – volume: 1104 start-page: 35 year: 2007 ident: 10.1016/j.neuron.2011.02.027_bib66 article-title: Model-based fMRI and its application to reward learning and decision making publication-title: Ann. N Y Acad. Sci. doi: 10.1196/annals.1390.022 – volume: 9 start-page: 545 year: 2008 ident: 10.1016/j.neuron.2011.02.027_bib73 article-title: A framework for studying the neurobiology of value-based decision making publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2357 – start-page: 497 year: 2002 ident: 10.1016/j.neuron.2011.02.027_bib21 article-title: The role of learning in the operation of motivational systems. Stevens' Handbook of Experimental Psychology, Third Edition, Vol.3: Learning, Motivation, and Emotion – volume: 104 start-page: 16311 year: 2007 ident: 10.1016/j.neuron.2011.02.027_bib30 article-title: Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0706111104 – volume: 1 start-page: 210 year: 1993 ident: 10.1016/j.neuron.2011.02.027_bib31 article-title: Assessing the significance of focal activations using their spatial extent publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460010306 – volume: 27 start-page: 4019 year: 2007 ident: 10.1016/j.neuron.2011.02.027_bib89 article-title: Determining the neural substrates of goal-directed learning in the human brain publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0564-07.2007 – volume: 13 start-page: 400 year: 2003 ident: 10.1016/j.neuron.2011.02.027_bib46 article-title: Coordination of actions and habits in the medial prefrontal cortex of rats publication-title: Cereb. Cortex doi: 10.1093/cercor/13.4.400 – volume: 28 start-page: 5623 year: 2008 ident: 10.1016/j.neuron.2011.02.027_bib38 article-title: Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1309-08.2008 – volume: 38 start-page: 329 year: 2003 ident: 10.1016/j.neuron.2011.02.027_bib65 article-title: Temporal difference models and reward-related learning in the human brain publication-title: Neuron doi: 10.1016/S0896-6273(03)00169-7 – volume: 38 start-page: 339 year: 2003 ident: 10.1016/j.neuron.2011.02.027_bib56 article-title: Temporal prediction errors in a passive learning task activate human striatum publication-title: Neuron doi: 10.1016/S0896-6273(03)00154-5 – volume: 11 start-page: 880 year: 2008 ident: 10.1016/j.neuron.2011.02.027_bib19 article-title: Regulating the expectation of reward via cognitive strategies publication-title: Nat. Neurosci. doi: 10.1038/nn.2141 – ident: 10.1016/j.neuron.2011.02.027_bib14 doi: 10.1093/acprof:oso/9780199600434.003.0001 – volume: 39 start-page: 41 year: 1998 ident: 10.1016/j.neuron.2011.02.027_bib32 article-title: Nonlinear event-related responses in fMRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910390109 – ident: 10.1016/j.neuron.2011.02.027_bib84 doi: 10.1016/B978-1-55860-141-3.50030-4 – volume: 46 start-page: 1004 year: 2009 ident: 10.1016/j.neuron.2011.02.027_bib82 article-title: Bayesian model selection for group studies publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.03.025 – volume: 19 start-page: 181 year: 2004 ident: 10.1016/j.neuron.2011.02.027_bib92 article-title: Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2004.03095.x – volume: 35 start-page: 48 year: 2010 ident: 10.1016/j.neuron.2011.02.027_bib2 article-title: Human and rodent homologies in action control: Corticostriatal determinants of goal-directed and habitual action publication-title: Neuropsychopharmacology doi: 10.1038/npp.2009.131 – ident: 10.1016/j.neuron.2011.02.027_bib7 – volume: 27 start-page: 9984 year: 2007 ident: 10.1016/j.neuron.2011.02.027_bib69 article-title: Orbitofrontal cortex encodes willingness to pay in everyday economic transactions publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2131-07.2007 – volume: 49 start-page: 772 year: 2010 ident: 10.1016/j.neuron.2011.02.027_bib78 article-title: Selective impairment of prediction error signaling in human dorsolateral but not ventral striatum in Parkinson's disease patients: Evidence from a model-based fMRI study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.08.011 – volume: 84 start-page: 3072 year: 2000 ident: 10.1016/j.neuron.2011.02.027_bib18 article-title: Tracking the hemodynamic responses to reward and punishment in the striatum publication-title: J. Neurophysiol. doi: 10.1152/jn.2000.84.6.3072 – year: 1911 ident: 10.1016/j.neuron.2011.02.027_bib86 – volume: 14 start-page: 769 year: 2004 ident: 10.1016/j.neuron.2011.02.027_bib64 article-title: Reward representations and reward-related learning in the human brain: Insights from neuroimaging publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2004.10.016 – volume: 315 start-page: 515 year: 2007 ident: 10.1016/j.neuron.2011.02.027_bib88 article-title: The neural basis of loss aversion in decision-making under risk publication-title: Science doi: 10.1126/science.1134239 – volume: 58 start-page: 967 year: 2008 ident: 10.1016/j.neuron.2011.02.027_bib91 article-title: Striatal activity underlies novelty-based choice in humans publication-title: Neuron doi: 10.1016/j.neuron.2008.04.027 – volume: 104 start-page: 9493 year: 2007 ident: 10.1016/j.neuron.2011.02.027_bib53 article-title: Neural signature of fictive learning signals in a sequential investment task publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0608842104 – volume: 20 start-page: 668 year: 2007 ident: 10.1016/j.neuron.2011.02.027_bib10 article-title: Multiple model-based reinforcement learning explains dopamine neuronal activity publication-title: Neural Netw. doi: 10.1016/j.neunet.2007.04.028 – volume: 130 start-page: 43 year: 2004 ident: 10.1016/j.neuron.2011.02.027_bib4 article-title: Thought disorder and nucleus accumbens in childhood: A structural MRI study publication-title: Psychiatry Res. doi: 10.1016/j.pscychresns.2003.10.001 – volume: 62 start-page: 593 year: 2009 ident: 10.1016/j.neuron.2011.02.027_bib90 article-title: Separate neural mechanisms underlie choices and strategic preferences in risky decision making publication-title: Neuron doi: 10.1016/j.neuron.2009.04.007 – year: 1994 ident: 10.1016/j.neuron.2011.02.027_bib75 – volume: 22 start-page: 513 year: 2005 ident: 10.1016/j.neuron.2011.02.027_bib93 article-title: The role of the dorsomedial striatum in instrumental conditioning publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2005.04218.x – volume: 105 start-page: 5915 year: 2008 ident: 10.1016/j.neuron.2011.02.027_bib23 article-title: Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0801489105 – volume: 31 start-page: 415 year: 2008 ident: 10.1016/j.neuron.2011.02.027_bib74 article-title: A unified framework for addiction: Vulnerabilities in the decision process publication-title: Behav. Brain Sci. doi: 10.1017/S0140525X0800472X – volume: 10 start-page: 1625 year: 2007 ident: 10.1016/j.neuron.2011.02.027_bib44 article-title: The neural correlates of subjective value during intertemporal choice publication-title: Nat. Neurosci. doi: 10.1038/nn2007 – volume: 14 start-page: 1347 year: 2002 ident: 10.1016/j.neuron.2011.02.027_bib26 article-title: Multiple model-based reinforcement learning publication-title: Neural Comput. doi: 10.1162/089976602753712972 – volume: 72 start-page: 321 year: 2008 ident: 10.1016/j.neuron.2011.02.027_bib33 article-title: Solving the credit assignment problem: Explicit and implicit learning of action sequences with probabilistic outcomes publication-title: Psychol. Res. doi: 10.1007/s00426-007-0113-7 – volume: 25 start-page: 653 year: 2005 ident: 10.1016/j.neuron.2011.02.027_bib62 article-title: Valid conjunction inference with the minimum statistic publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.12.005 – volume: 33b start-page: 77 year: 1982 ident: 10.1016/j.neuron.2011.02.027_bib1 article-title: Variations in the sensitivity of instrumental responding to reinforcer devaluation publication-title: Q. J. Exp. Psychol. doi: 10.1080/14640748208400878 – volume: 8 start-page: 1704 year: 2005 ident: 10.1016/j.neuron.2011.02.027_bib15 article-title: Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control publication-title: Nat. Neurosci. doi: 10.1038/nn1560 – volume: 441 start-page: 876 year: 2006 ident: 10.1016/j.neuron.2011.02.027_bib17 article-title: Cortical substrates for exploratory decisions in humans publication-title: Nature doi: 10.1038/nature04766 – volume: 12 start-page: 961 year: 1999 ident: 10.1016/j.neuron.2011.02.027_bib25 article-title: What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? publication-title: Neural Netw. doi: 10.1016/S0893-6080(99)00046-5 – volume: 105 start-page: 6741 year: 2008 ident: 10.1016/j.neuron.2011.02.027_bib37 article-title: Neural correlates of mentalizing-related computations during strategic interactions in humans publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0711099105 – volume: 13 start-page: 103 year: 1993 ident: 10.1016/j.neuron.2011.02.027_bib60 article-title: Prioritized sweeping: Reinforcement learning with less data and less time publication-title: Mach. Learn. doi: 10.1007/BF00993104 – volume: 27 start-page: 12860 year: 2007 ident: 10.1016/j.neuron.2011.02.027_bib77 article-title: Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2496-07.2007 – start-page: 215 year: 1995 ident: 10.1016/j.neuron.2011.02.027_bib5 article-title: Adaptive Critics and the Basal Ganglia – volume: 377 start-page: 725 year: 1995 ident: 10.1016/j.neuron.2011.02.027_bib58 article-title: Bee foraging in uncertain environments using predictive Hebbian learning publication-title: Nature doi: 10.1038/377725a0 – volume: 18 start-page: 1163 year: 2005 ident: 10.1016/j.neuron.2011.02.027_bib42 article-title: Hippocampal replay contributes to within session learning in a temporal difference reinforcement learning model publication-title: Neural Netw. doi: 10.1016/j.neunet.2005.08.009 – volume: 9 start-page: 1057 year: 2006 ident: 10.1016/j.neuron.2011.02.027_bib61 article-title: Midbrain dopamine neurons encode decisions for future action publication-title: Nat. Neurosci. doi: 10.1038/nn1743 – volume: 104 start-page: 1068 year: 2010 ident: 10.1016/j.neuron.2011.02.027_bib13 article-title: A pallidus-habenula-dopamine pathway signals inferred stimulus values publication-title: J. Neurophysiol. doi: 10.1152/jn.00158.2010 – volume: 84 start-page: 555 year: 2005 ident: 10.1016/j.neuron.2011.02.027_bib51 article-title: Dynamic response-by-response models of matching behavior in rhesus monkeys publication-title: J. Exp. Anal. Behav. doi: 10.1901/jeab.2005.110-04 – volume: 414 start-page: 546 year: 2001 ident: 10.1016/j.neuron.2011.02.027_bib70 article-title: Interactive memory systems in the human brain publication-title: Nature doi: 10.1038/35107080 – volume: 429 start-page: 664 year: 2004 ident: 10.1016/j.neuron.2011.02.027_bib80 article-title: Temporal difference models describe higher-order learning in humans publication-title: Nature doi: 10.1038/nature02581 – volume: 51 start-page: 381 year: 2006 ident: 10.1016/j.neuron.2011.02.027_bib71 article-title: Neural differentiation of expected reward and risk in human subcortical structures publication-title: Neuron doi: 10.1016/j.neuron.2006.06.024 – volume: 10 start-page: 375 year: 2006 ident: 10.1016/j.neuron.2011.02.027_bib63 article-title: A normative perspective on motivation publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2006.06.010 – volume: 442 start-page: 1042 year: 2006 ident: 10.1016/j.neuron.2011.02.027_bib67 article-title: Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans publication-title: Nature doi: 10.1038/nature05051 – volume: 119 start-page: 3 year: 1996 ident: 10.1016/j.neuron.2011.02.027_bib81 article-title: The empirical case for two systems of reasoning publication-title: Psychol. Bull. doi: 10.1037/0033-2909.119.1.3 – volume: 91 start-page: 871 year: 1999 ident: 10.1016/j.neuron.2011.02.027_bib83 article-title: A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task publication-title: Neuroscience doi: 10.1016/S0306-4522(98)00697-6 – volume: 38 start-page: 50 year: 2010 ident: 10.1016/j.neuron.2011.02.027_bib55 article-title: Two-factor theory, the actor-critic model, and conditioned avoidance publication-title: Learn. Behav. doi: 10.3758/LB.38.1.50 |
SSID | ssj0014591 |
Score | 2.5862598 |
Snippet | The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying... The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1204 |
SubjectTerms | Adult Basal Ganglia - physiology Behavior Brain Mapping Charitable foundations Choice Behavior - physiology Dopamine Dopamine - metabolism Female Humans Logistic Models Magnetic Resonance Imaging Male Models, Neurological Neurons - physiology Neuropsychological Tests Neurosciences Reinforcement, Psychology Studies Valuation |
Title | Model-Based Influences on Humans' Choices and Striatal Prediction Errors |
URI | https://dx.doi.org/10.1016/j.neuron.2011.02.027 https://www.ncbi.nlm.nih.gov/pubmed/21435563 https://www.proquest.com/docview/1548418678 https://www.proquest.com/docview/858780097 https://www.proquest.com/docview/862784009 https://pubmed.ncbi.nlm.nih.gov/PMC3077926 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA9iKfSlVO3HtVbyUNqncLebj80-nodyVVpKrfTewm6SwxObld3zwf_emewHnqUVhLAPmwkkmWRmksz8hpBPLi88d3rJ4KgBHy8KVixlxmRe2BwUlrMxGcy372p-Lk4WcrFFZn0sDLpVdrK_lelRWnd_xt1sjq9Xq_HZROeIXs4R9AzUNAaac6FjEN_icHhJELLNmgfEDKn78Lno4xUxI0MH5JlCyf6lnv42Px96Ud5TS8evyMvOnqTTtss7ZMuHXbI3DXCW_nNLP9Po4RmvznfJ8zbx5O0emWMKtCt2CCrM0a99npKGVoHGW_3mC51dVChDaBEcPcPcHmCl0x81vusgL-lRXVd185qcHx_9ms1Zl1OBWbC01swtuVSZKqRLihJ0fZbkQnnhZFJ6n0y4W4LKd1CjrPZ5CaSwpS0vlc-tRTC5N2Q7VMG_IzTDwxrYM9wqLRDnPeFlnlqeauukS-2I8H4qje0AxzHvxZXpPcsuTcsAgwwwkxRKNiJsaHXdAm48Qp_1XDIbC8eATnik5X7PVNNt3MbgCU4gyJ8eETpUw5bDd5Qi-OqmMVrqTGMAzH9IFD7oAs2IvG1XyTCYFC1UqTh0fGP9DAQI-L1ZE1YXEfgb5HGWp-r9k4f8gbxo78Q5S8U-2V7XN_4jGFXr8oA8m57-_H16EHfPHcjpIY0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkQvCFoeCwV8QHCydhPHjn1sV612oa2Q2kp7sxLbqy4qSZVsD_33nclLLAgqIUU5xGMp9tgzY3v8fQCfvMmC8HrJcamBr5BkPFvKlEuTOYMOy7uGDOb0TM0uk68LudiCaX8XhtIqO9vf2vTGWndfxl1vjm9Wq_H5RBtCLxcEeoZuWj6CxxgNpMTfMF8cDkcJiWxp81Cak3h_f65J8mpAI4sOyTPGJ_2bf_oz_vw9jfIXv3T8HJ51ASU7aP_5BWyFYhf2DgpcTP-8Y59Zk-LZ7J3vwpOWefJuD2bEgXbND9GHeTbviUpqVhas2davv7DpVUlGhGWFZ-dE7oFhOvte0cEOKZMdVVVZ1S_h8vjoYjrjHakCdxhqrblfCuwklUkfZTk6-zQyiQqJl1EeQjQRfok-32OJcjqYHEVxTjuRq2CcIzS5V7BdlEV4Ayyl1RoGNMIpnRDQeyRyEzsRa-elj90IRN-V1nWI40R8cW371LIftlWAJQXYSYxPOgI-1LppETcekE97LdmNkWPRKTxQc79Xqu1mbm1pCZcQyp8eARuKcc7RQUpWhPK2tlrqVNMNmH-IKDrRRZkRvG5HydCYmEJUqQT--Mb4GQQI8XuzpFhdNcjfaJBTE6u3_93kj_B0dnF6Yk_mZ9_ewU67QS54nOzD9rq6De8xwlrnH5oZdA80vyMJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-Based+Influences+on+Humans%27+Choices+and+Striatal+Prediction+Errors&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Daw%2C+Nathaniel%C2%A0D.&rft.au=Gershman%2C+Samuel%C2%A0J.&rft.au=Seymour%2C+Ben&rft.au=Dayan%2C+Peter&rft.date=2011-03-24&rft.issn=0896-6273&rft.volume=69&rft.issue=6&rft.spage=1204&rft.epage=1215&rft_id=info:doi/10.1016%2Fj.neuron.2011.02.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuron_2011_02_027 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon |