Model-Based Influences on Humans' Choices and Striatal Prediction Errors

The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based pla...

Full description

Saved in:
Bibliographic Details
Published inNeuron (Cambridge, Mass.) Vol. 69; no. 6; pp. 1204 - 1215
Main Authors Daw, Nathaniel D., Gershman, Samuel J., Seymour, Ben, Dayan, Peter, Dolan, Raymond J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 24.03.2011
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based planning, and the interaction between model-based and model-free values, prediction errors, and preferences is underexplored. We designed a multistep decision task in which model-based and model-free influences on human choice behavior could be distinguished. By showing that choices reflected both influences we could then test the purity of the ventral striatal BOLD signal as a model-free report. Contrary to expectations, the signal reflected both model-free and model-based predictions in proportions matching those that best explained choice behavior. These results challenge the notion of a separate model-free learner and suggest a more integrated computational architecture for high-level human decision-making. ► Humans learn both a world model and reinforcement-driven choice preferences ► BOLD responses in striatum and prefrontal cortex reflect both sorts of learning ► Across subjects, striatal BOLD tracks individual differences in model use ► Unexpectedly, ventral striatum shows combined model-based/free influences
AbstractList The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based planning, and the interaction between model-based and model-free values, prediction errors, and preferences is underexplored. We designed a multistep decision task in which model-based and model-free influences on human choice behavior could be distinguished. By showing that choices reflected both influences we could then test the purity of the ventral striatal BOLD signal as a model-free report. Contrary to expectations, the signal reflected both model-free and model-based predictions in proportions matching those that best explained choice behavior. These results challenge the notion of a separate model-free learner and suggest a more integrated computational architecture for high-level human decision-making.
The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based planning, and the interaction between model-based and model-free values, prediction errors, and preferences is underexplored. We designed a multistep decision task in which model-based and model-free influences on human choice behavior could be distinguished. By showing that choices reflected both influences we could then test the purity of the ventral striatal BOLD signal as a model-free report. Contrary to expectations, the signal reflected both model-free and model-based predictions in proportions matching those that best explained choice behavior. These results challenge the notion of a separate model-free learner and suggest a more integrated computational architecture for high-level human decision-making.The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based planning, and the interaction between model-based and model-free values, prediction errors, and preferences is underexplored. We designed a multistep decision task in which model-based and model-free influences on human choice behavior could be distinguished. By showing that choices reflected both influences we could then test the purity of the ventral striatal BOLD signal as a model-free report. Contrary to expectations, the signal reflected both model-free and model-based predictions in proportions matching those that best explained choice behavior. These results challenge the notion of a separate model-free learner and suggest a more integrated computational architecture for high-level human decision-making.
The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based planning, and the interaction between model-based and model-free values, prediction errors and preferences is underexplored. We designed a multistep decision task in which model-based and model-free influences on human choice behavior could be distinguished. By showing that choices reflected both influences we could then test the purity of the ventral striatal BOLD signal as a model-free report. Contrary to expectations, the signal reflected both model-free and model-based predictions in proportions matching those that best explained choice behavior. These results challenge the notion of a separate model-free learner and suggest a more integrated computational architecture for high-level human decision-making.
The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based planning, and the interaction between model-based and model-free values, prediction errors, and preferences is underexplored. We designed a multistep decision task in which model-based and model-free influences on human choice behavior could be distinguished. By showing that choices reflected both influences we could then test the purity of the ventral striatal BOLD signal as a model-free report. Contrary to expectations, the signal reflected both model-free and model-based predictions in proportions matching those that best explained choice behavior. These results challenge the notion of a separate model-free learner and suggest a more integrated computational architecture for high-level human decision-making. ► Humans learn both a world model and reinforcement-driven choice preferences ► BOLD responses in striatum and prefrontal cortex reflect both sorts of learning ► Across subjects, striatal BOLD tracks individual differences in model use ► Unexpectedly, ventral striatum shows combined model-based/free influences
Author Daw, Nathaniel D.
Dolan, Raymond J.
Gershman, Samuel J.
Seymour, Ben
Dayan, Peter
AuthorAffiliation 2 Department of Psychology and Neuroscience Institute, Princeton University
1 Center for Neural Science and Department of Psychology, New York University
4 Gatsby Computational Neuroscience Unit, University College London
3 Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London
AuthorAffiliation_xml – name: 1 Center for Neural Science and Department of Psychology, New York University
– name: 3 Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London
– name: 2 Department of Psychology and Neuroscience Institute, Princeton University
– name: 4 Gatsby Computational Neuroscience Unit, University College London
Author_xml – sequence: 1
  givenname: Nathaniel D.
  surname: Daw
  fullname: Daw, Nathaniel D.
  email: daw@cns.nyu.edu
  organization: Center for Neural Science and Department of Psychology, New York University, New York, NY 10012, USA
– sequence: 2
  givenname: Samuel J.
  surname: Gershman
  fullname: Gershman, Samuel J.
  organization: Department of Psychology and Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
– sequence: 3
  givenname: Ben
  surname: Seymour
  fullname: Seymour, Ben
  organization: Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, WC1N 3BG London, UK
– sequence: 4
  givenname: Peter
  surname: Dayan
  fullname: Dayan, Peter
  organization: Gatsby Computational Neuroscience Unit, University College London, WC1N 3AR London, UK
– sequence: 5
  givenname: Raymond J.
  surname: Dolan
  fullname: Dolan, Raymond J.
  organization: Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, WC1N 3BG London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21435563$$D View this record in MEDLINE/PubMed
BookMark eNqFkl9rFDEUxYNU7Lb6DUQGfOjTrLkzmfzxQahL7RYqCupzyCR3bZbZpCYzBb-9GXYrtQ8WLgRyf_dwc05OyFGIAQl5DXQJFPi77TLglGJYNhRgSZtS4hlZAFWiZqDUEVlQqXjNG9Eek5Oct5QC6xS8IMcNsLbreLsg68_R4VB_NBlddRU2w4TBYq5iqNbTzoR8Vq1uop-vTHDVtzF5M5qh-prQeTv6wl2kFFN-SZ5vzJDx1eE8JT8-XXxfrevrL5dXq_Pr2nZNM9Zu03ZccNM5MD00SoBiHJnroEcE2roNSHClw61E1Re0E9K2PUdlrVCsPSUf9rq3U79DZzGMyQz6NvmdSb91NF7_2wn-Rv-Md7qlQqiGF4Gzg0CKvybMo975bHEYTMA4ZS2LYZJRqp4mOylkAUUh3z4it3FKofigoWOSgeRCFurNw9X_7nyfRgHe7wGbYs4JN9r60cwml5f4QQPVc_R6q_fR6zl6TZtS8w7s0fC9_hNjBz-xhHbnMels_fwHnE9oR-2i_7_AH5TfyZA
CitedBy_id crossref_primary_10_1016_j_cognition_2022_105116
crossref_primary_10_1016_j_pneurobio_2020_101951
crossref_primary_10_1111_ejn_12802
crossref_primary_10_1038_nn_3918
crossref_primary_10_1371_journal_pcbi_1006713
crossref_primary_10_1002_eat_24161
crossref_primary_10_1038_s41562_023_01661_2
crossref_primary_10_3389_fnhum_2022_938501
crossref_primary_10_1016_j_neuroimage_2021_117747
crossref_primary_10_1007_s11065_018_9384_6
crossref_primary_10_1016_j_schres_2016_10_004
crossref_primary_10_1038_nature15692
crossref_primary_10_1007_s00422_018_0753_2
crossref_primary_10_7554_eLife_64983
crossref_primary_10_1162_jocn_a_02258
crossref_primary_10_1371_journal_pcbi_1004540
crossref_primary_10_3389_fnbeh_2023_1302842
crossref_primary_10_1038_s41598_020_72407_7
crossref_primary_10_1016_j_cognition_2022_105103
crossref_primary_10_1016_j_neuroimage_2023_120002
crossref_primary_10_1109_JPROC_2022_3162791
crossref_primary_10_1016_j_neuroimage_2017_11_057
crossref_primary_10_1162_jocn_a_01170
crossref_primary_10_1073_pnas_1710913114
crossref_primary_10_1016_j_bandc_2015_07_006
crossref_primary_10_1016_j_neubiorev_2022_104959
crossref_primary_10_1038_s41562_022_01306_w
crossref_primary_10_3390_brainsci11081096
crossref_primary_10_1111_cogs_12103
crossref_primary_10_1177_1745691620966794
crossref_primary_10_1016_j_appet_2022_106084
crossref_primary_10_3389_fnins_2022_631347
crossref_primary_10_1016_j_cobeha_2016_02_001
crossref_primary_10_1038_s41598_019_56161_z
crossref_primary_10_1371_journal_pcbi_1003466
crossref_primary_10_1177_1094428116644502
crossref_primary_10_1186_1471_2202_14_S1_P181
crossref_primary_10_1016_j_nicl_2024_103588
crossref_primary_10_1007_s00146_020_01015_w
crossref_primary_10_1162_opmi_a_00143
crossref_primary_10_1162_jocn_a_02237
crossref_primary_10_3389_fpsyt_2020_568824
crossref_primary_10_1038_s41598_020_80593_7
crossref_primary_10_1016_j_brat_2023_104361
crossref_primary_10_1038_s44271_024_00123_3
crossref_primary_10_1038_s44271_024_00169_3
crossref_primary_10_1073_pnas_1911778117
crossref_primary_10_3389_fpsyg_2015_01948
crossref_primary_10_1001_jamapsychiatry_2019_2998
crossref_primary_10_1016_j_cognition_2023_105423
crossref_primary_10_1038_nn_3925
crossref_primary_10_1111_adb_12505
crossref_primary_10_1177_17470218231153137
crossref_primary_10_1111_ejn_16199
crossref_primary_10_1016_j_ijpsycho_2020_03_002
crossref_primary_10_1016_j_neuroimage_2021_118821
crossref_primary_10_1162_opmi_a_00132
crossref_primary_10_1371_journal_pcbi_1006972
crossref_primary_10_1016_j_neubiorev_2022_104977
crossref_primary_10_3758_s13415_016_0406_7
crossref_primary_10_1016_j_neuron_2022_07_005
crossref_primary_10_3390_brainsci9070174
crossref_primary_10_7554_eLife_93887_3
crossref_primary_10_3389_fnint_2018_00030
crossref_primary_10_1016_j_biopsych_2020_03_004
crossref_primary_10_1016_j_dcn_2023_101269
crossref_primary_10_3389_fpsyt_2023_1253727
crossref_primary_10_1038_s41467_019_08662_8
crossref_primary_10_1007_s10827_020_00751_8
crossref_primary_10_1016_j_neuroimage_2022_119398
crossref_primary_10_3758_s13415_020_00820_6
crossref_primary_10_1186_s12868_016_0302_7
crossref_primary_10_1371_journal_pcbi_1005810
crossref_primary_10_7554_eLife_49547
crossref_primary_10_1093_cercor_bht317
crossref_primary_10_1016_j_pbb_2021_173275
crossref_primary_10_1371_journal_pone_0119673
crossref_primary_10_1007_s10539_013_9385_z
crossref_primary_10_1523_JNEUROSCI_0026_13_2013
crossref_primary_10_1016_j_neubiorev_2023_105085
crossref_primary_10_1016_j_neubiorev_2023_105083
crossref_primary_10_1371_journal_pcbi_1012383
crossref_primary_10_1007_s40429_020_00333_9
crossref_primary_10_1016_j_neuron_2011_07_004
crossref_primary_10_1523_JNEUROSCI_2700_16_2017
crossref_primary_10_1038_s41467_023_42589_5
crossref_primary_10_1073_pnas_1506367112
crossref_primary_10_1186_s12993_023_00207_w
crossref_primary_10_1038_s41583_024_00893_z
crossref_primary_10_1038_s41398_020_0762_5
crossref_primary_10_7554_eLife_75474
crossref_primary_10_1016_j_cognition_2022_105328
crossref_primary_10_1162_jocn_a_01595
crossref_primary_10_7554_eLife_26424
crossref_primary_10_1371_journal_pcbi_1002327
crossref_primary_10_1523_JNEUROSCI_3378_14_2015
crossref_primary_10_1016_j_tics_2020_04_004
crossref_primary_10_1038_s41562_024_01878_9
crossref_primary_10_1016_j_tics_2020_04_002
crossref_primary_10_1007_s11423_016_9507_9
crossref_primary_10_1016_j_nlm_2016_01_018
crossref_primary_10_1186_s12888_022_04462_5
crossref_primary_10_1016_j_neuroimage_2016_06_038
crossref_primary_10_1038_s41539_017_0009_2
crossref_primary_10_1007_s00406_014_0519_3
crossref_primary_10_1016_j_conb_2012_04_011
crossref_primary_10_1016_j_conb_2017_10_006
crossref_primary_10_1186_s12888_020_2439_2
crossref_primary_10_1073_pnas_1821647116
crossref_primary_10_1017_S003329172000402X
crossref_primary_10_1152_jn_00333_2015
crossref_primary_10_3389_fnbeh_2016_00234
crossref_primary_10_2139_ssrn_2724547
crossref_primary_10_1016_j_neures_2012_09_007
crossref_primary_10_1093_brain_awz013
crossref_primary_10_3389_fnbeh_2021_658769
crossref_primary_10_1016_j_abrep_2024_100574
crossref_primary_10_1016_j_biopsych_2019_08_025
crossref_primary_10_1038_s41386_024_01821_6
crossref_primary_10_1016_j_biopsych_2017_04_006
crossref_primary_10_3724_SP_J_1042_2019_01044
crossref_primary_10_1038_s41467_019_09075_3
crossref_primary_10_1371_journal_pone_0117697
crossref_primary_10_1016_j_neubiorev_2016_05_018
crossref_primary_10_1016_j_neuron_2023_01_023
crossref_primary_10_7554_eLife_15963
crossref_primary_10_1177_1073858413499407
crossref_primary_10_1016_j_cobeha_2018_12_011
crossref_primary_10_1093_cercor_bhz019
crossref_primary_10_3389_fpsyt_2023_1162800
crossref_primary_10_1016_j_biopsych_2017_04_019
crossref_primary_10_1371_journal_pcbi_1012582
crossref_primary_10_3389_fnagi_2021_702810
crossref_primary_10_1523_JNEUROSCI_1113_22_2022
crossref_primary_10_1146_annurev_neuro_071714_033928
crossref_primary_10_1016_j_bbr_2024_114846
crossref_primary_10_1016_j_cobeha_2020_09_002
crossref_primary_10_1162_jocn_a_01541
crossref_primary_10_1002_alz_13885
crossref_primary_10_1093_brain_awz276
crossref_primary_10_1038_s41583_022_00570_z
crossref_primary_10_1073_pnas_2016884118
crossref_primary_10_1016_j_neuron_2012_10_017
crossref_primary_10_1017_S0033291716003305
crossref_primary_10_3389_fpsyg_2021_767022
crossref_primary_10_1038_s41467_018_07280_0
crossref_primary_10_1016_j_jmp_2015_03_006
crossref_primary_10_3758_s13423_024_02506_3
crossref_primary_10_3389_fnbeh_2016_00026
crossref_primary_10_1111_adb_13433
crossref_primary_10_3758_s13415_015_0347_6
crossref_primary_10_1038_s41598_022_21832_x
crossref_primary_10_1038_npp_2016_95
crossref_primary_10_1016_j_neunet_2021_10_003
crossref_primary_10_2196_44414
crossref_primary_10_1016_j_neuroimage_2014_10_025
crossref_primary_10_3389_fpsyg_2019_02592
crossref_primary_10_1186_s41235_024_00533_1
crossref_primary_10_1016_j_neubiorev_2016_06_022
crossref_primary_10_7554_eLife_79642
crossref_primary_10_1016_j_bandc_2023_106088
crossref_primary_10_1016_j_conb_2012_05_011
crossref_primary_10_1177_2167702621989323
crossref_primary_10_1126_science_abf1357
crossref_primary_10_1177_1535759719857069
crossref_primary_10_1016_j_plrev_2020_01_004
crossref_primary_10_1073_pnas_1111927109
crossref_primary_10_1075_ml_8_3_08ram
crossref_primary_10_3389_fpsyg_2017_02048
crossref_primary_10_1016_j_neuroscience_2016_07_030
crossref_primary_10_1016_j_tics_2012_07_007
crossref_primary_10_1111_j_1365_2826_2011_02212_x
crossref_primary_10_1016_j_conb_2012_05_010
crossref_primary_10_1038_s41467_024_50505_8
crossref_primary_10_3389_fnbeh_2018_00338
crossref_primary_10_1007_s40429_016_0089_8
crossref_primary_10_1016_j_cobeha_2015_08_010
crossref_primary_10_1038_s41467_024_55504_3
crossref_primary_10_1038_srep31378
crossref_primary_10_1038_s41598_019_56923_9
crossref_primary_10_1162_jocn_a_01777
crossref_primary_10_1007_s11920_013_0396_x
crossref_primary_10_1177_1745691621995752
crossref_primary_10_1038_srep43119
crossref_primary_10_1371_journal_pbio_2004015
crossref_primary_10_1016_j_neuron_2018_10_002
crossref_primary_10_1111_cogs_12941
crossref_primary_10_1007_s00422_013_0571_5
crossref_primary_10_1016_j_jml_2020_104144
crossref_primary_10_1016_j_neuropsychologia_2023_108758
crossref_primary_10_1186_s12915_023_01774_0
crossref_primary_10_1162_neco_a_01351
crossref_primary_10_1007_s11229_022_03480_w
crossref_primary_10_1162_neco_a_01357
crossref_primary_10_1371_journal_pcbi_1011692
crossref_primary_10_7554_eLife_79661
crossref_primary_10_1038_s41467_023_43250_x
crossref_primary_10_3389_fnbot_2019_00052
crossref_primary_10_1080_20445911_2015_1095192
crossref_primary_10_1371_journal_pone_0279532
crossref_primary_10_1152_jn_00180_2020
crossref_primary_10_1162_opmi_a_00186
crossref_primary_10_1016_j_neunet_2022_07_002
crossref_primary_10_1038_s41598_024_69452_x
crossref_primary_10_1177_1073858414568317
crossref_primary_10_3389_fnbeh_2015_00135
crossref_primary_10_1038_nn_3068
crossref_primary_10_1556_2006_2022_00059
crossref_primary_10_1016_j_neuron_2020_06_014
crossref_primary_10_1111_cogs_12735
crossref_primary_10_1073_pnas_1809298115
crossref_primary_10_1038_s44277_024_00023_8
crossref_primary_10_1024_1661_4747_a000298
crossref_primary_10_1024_1661_4747_a000297
crossref_primary_10_1016_j_biopsych_2017_05_017
crossref_primary_10_1523_JNEUROSCI_0185_14_2014
crossref_primary_10_1371_journal_pcbi_1011206
crossref_primary_10_1016_j_conb_2012_05_008
crossref_primary_10_1038_s41598_021_91179_2
crossref_primary_10_1162_neco_a_01346
crossref_primary_10_1007_s40429_025_00621_2
crossref_primary_10_1152_jn_00873_2014
crossref_primary_10_1016_j_cortex_2020_02_009
crossref_primary_10_1523_JNEUROSCI_1674_18_2018
crossref_primary_10_1016_j_neuroimage_2016_07_055
crossref_primary_10_1016_j_neuron_2012_03_042
crossref_primary_10_1371_journal_pcbi_1011678
crossref_primary_10_3758_s13415_021_00921_w
crossref_primary_10_2139_ssrn_2787284
crossref_primary_10_1016_j_neuron_2012_03_037
crossref_primary_10_3389_fnut_2022_1021868
crossref_primary_10_3758_s13415_021_00943_4
crossref_primary_10_1093_imamat_hxw026
crossref_primary_10_1111_nyas_14929
crossref_primary_10_1038_s41562_022_01346_2
crossref_primary_10_1016_j_neubiorev_2024_105944
crossref_primary_10_1093_cercor_bhac171
crossref_primary_10_1371_journal_pcbi_1002918
crossref_primary_10_3758_s13415_025_01283_3
crossref_primary_10_3390_electronics11050707
crossref_primary_10_1038_s41386_021_01123_1
crossref_primary_10_1098_rstb_2021_0446
crossref_primary_10_3758_s13415_012_0128_4
crossref_primary_10_1038_s41467_019_13632_1
crossref_primary_10_1016_j_ynstr_2023_100528
crossref_primary_10_1016_j_isci_2024_111182
crossref_primary_10_1111_j_1460_9568_2012_08058_x
crossref_primary_10_1002_wcs_1598
crossref_primary_10_3758_s13415_017_0511_2
crossref_primary_10_1016_j_brat_2018_09_007
crossref_primary_10_1016_j_cortex_2014_08_026
crossref_primary_10_1016_j_neuron_2020_01_017
crossref_primary_10_1016_j_cogpsych_2017_12_002
crossref_primary_10_1038_s41386_024_01946_8
crossref_primary_10_1371_journal_pone_0287563
crossref_primary_10_1093_ijnp_pyab016
crossref_primary_10_1016_j_neuron_2022_05_021
crossref_primary_10_1523_JNEUROSCI_1418_22_2023
crossref_primary_10_1007_s12304_020_09390_z
crossref_primary_10_1016_j_euroneuro_2015_12_033
crossref_primary_10_1016_j_neuron_2022_05_022
crossref_primary_10_1523_JNEUROSCI_4490_15_2016
crossref_primary_10_1002_wcs_1589
crossref_primary_10_1038_s41562_018_0401_9
crossref_primary_10_1073_pnas_1720963115
crossref_primary_10_1016_j_jpain_2018_03_011
crossref_primary_10_1016_j_neuropharm_2021_108759
crossref_primary_10_1016_j_biopsych_2020_06_001
crossref_primary_10_1038_s41598_020_79929_0
crossref_primary_10_1038_s42003_023_04429_6
crossref_primary_10_1016_j_neuron_2019_05_042
crossref_primary_10_1002_wcs_1581
crossref_primary_10_3280_PARA2015_003004
crossref_primary_10_1016_j_bandc_2016_06_002
crossref_primary_10_1016_j_conb_2012_06_004
crossref_primary_10_1371_journal_pcbi_1010551
crossref_primary_10_1038_s41467_023_41112_0
crossref_primary_10_7717_peerj_10316
crossref_primary_10_1016_j_conb_2017_08_015
crossref_primary_10_1016_j_cobeha_2014_10_007
crossref_primary_10_1016_j_cobeha_2018_01_006
crossref_primary_10_1016_j_cobeha_2014_10_004
crossref_primary_10_3724_SP_J_1042_2020_00111
crossref_primary_10_1017_S0033291723000478
crossref_primary_10_1007_s11166_021_09358_5
crossref_primary_10_3758_s13428_023_02263_6
crossref_primary_10_1177_0956797616639301
crossref_primary_10_1371_journal_pcbi_1010785
crossref_primary_10_1523_JNEUROSCI_2219_18_2018
crossref_primary_10_1038_nn_3014
crossref_primary_10_1016_j_cobeha_2015_03_004
crossref_primary_10_1016_j_cognition_2018_04_017
crossref_primary_10_1016_j_tics_2017_03_011
crossref_primary_10_1038_d41586_023_03335_5
crossref_primary_10_3389_fpsyg_2017_00312
crossref_primary_10_7554_eLife_11305
crossref_primary_10_1016_j_conb_2017_08_008
crossref_primary_10_1016_j_neunet_2020_09_008
crossref_primary_10_1287_mnsc_2022_4584
crossref_primary_10_1007_s10072_017_3205_1
crossref_primary_10_1017_S0140525X19003261
crossref_primary_10_1093_cercor_bhx259
crossref_primary_10_1111_psyp_13399
crossref_primary_10_1038_ncomms11609
crossref_primary_10_1371_journal_pcbi_1007326
crossref_primary_10_1038_s41398_020_01118_4
crossref_primary_10_20900_jpbs_20200004
crossref_primary_10_7554_eLife_67778
crossref_primary_10_1523_JNEUROSCI_2033_15_2016
crossref_primary_10_1038_ncomms4926
crossref_primary_10_1371_journal_pcbi_1007334
crossref_primary_10_1024_0939_5911_a000254
crossref_primary_10_1159_000362840
crossref_primary_10_1162_jocn_a_01808
crossref_primary_10_1162_jocn_a_00957
crossref_primary_10_1093_brain_awad362
crossref_primary_10_1073_pnas_1809855116
crossref_primary_10_31887_DCNS_2016_18_1_ldeserno
crossref_primary_10_1016_j_neuron_2019_04_027
crossref_primary_10_1016_j_cortex_2019_03_015
crossref_primary_10_3758_s13415_018_00678_9
crossref_primary_10_3758_s13415_023_01080_w
crossref_primary_10_1007_s00213_019_05299_9
crossref_primary_10_1016_j_cortex_2015_11_004
crossref_primary_10_1016_j_neuroimage_2022_119709
crossref_primary_10_1038_s41467_020_15696_w
crossref_primary_10_3758_s13415_018_0638_9
crossref_primary_10_1093_brain_awac268
crossref_primary_10_1016_j_neuron_2016_08_031
crossref_primary_10_1016_j_neuron_2017_10_026
crossref_primary_10_1016_j_neuron_2016_06_002
crossref_primary_10_1007_s40473_021_00225_w
crossref_primary_10_1016_j_neubiorev_2021_07_006
crossref_primary_10_1007_s00702_016_1561_2
crossref_primary_10_1177_17456916231204811
crossref_primary_10_3389_fncir_2020_615626
crossref_primary_10_1523_ENEURO_0345_18_2019
crossref_primary_10_1523_JNEUROSCI_1677_16_2016
crossref_primary_10_1016_j_neuroimage_2022_119744
crossref_primary_10_1007_s11166_022_09388_7
crossref_primary_10_3389_fpsyg_2019_02735
crossref_primary_10_1016_j_tins_2023_12_002
crossref_primary_10_1073_pnas_2218523120
crossref_primary_10_1523_ENEURO_0240_18_2018
crossref_primary_10_1371_journal_pcbi_1010751
crossref_primary_10_1007_s40429_015_0062_y
crossref_primary_10_1016_j_physbeh_2019_04_007
crossref_primary_10_1016_j_neuron_2015_12_029
crossref_primary_10_1016_j_neubiorev_2021_07_016
crossref_primary_10_1016_j_ijhcs_2021_102661
crossref_primary_10_1038_s41562_020_0905_y
crossref_primary_10_3758_s13415_019_00697_0
crossref_primary_10_1159_000362838
crossref_primary_10_1038_nn_4538
crossref_primary_10_1111_adb_13356
crossref_primary_10_1016_j_neuron_2021_12_018
crossref_primary_10_1002_da_23291
crossref_primary_10_1016_j_bbi_2017_09_011
crossref_primary_10_1016_j_neuropharm_2014_11_021
crossref_primary_10_1038_s41598_023_33274_0
crossref_primary_10_1016_j_jneumeth_2019_01_006
crossref_primary_10_1162_jocn_a_00709
crossref_primary_10_1016_j_cognition_2014_11_009
crossref_primary_10_1162_imag_a_00277
crossref_primary_10_1152_jn_00145_2018
crossref_primary_10_1162_jocn_a_00945
crossref_primary_10_1016_j_cobeha_2017_09_012
crossref_primary_10_1016_j_xjmad_2023_100015
crossref_primary_10_1016_j_beproc_2019_103904
crossref_primary_10_1038_s41598_018_28241_z
crossref_primary_10_1016_j_jmp_2022_102712
crossref_primary_10_7554_eLife_90082
crossref_primary_10_1098_rstb_2021_0295
crossref_primary_10_1371_journal_pone_0123105
crossref_primary_10_3389_fpsyt_2021_687062
crossref_primary_10_1016_j_biopsych_2023_02_004
crossref_primary_10_1016_j_neuron_2020_03_024
crossref_primary_10_1016_j_neubiorev_2013_03_015
crossref_primary_10_2139_ssrn_2600287
crossref_primary_10_1111_j_1749_6632_2011_06223_x
crossref_primary_10_3389_fpsyg_2014_01450
crossref_primary_10_1038_mp_2014_44
crossref_primary_10_1088_1757_899X_1321_1_012002
crossref_primary_10_1177_1059712316667203
crossref_primary_10_1002_jnr_24581
crossref_primary_10_1016_j_neubiorev_2017_11_022
crossref_primary_10_1098_rspb_2018_1645
crossref_primary_10_1111_desc_13295
crossref_primary_10_1016_j_pneurobio_2015_09_001
crossref_primary_10_1016_j_jbtep_2021_101676
crossref_primary_10_1159_000364831
crossref_primary_10_1073_pnas_2010890117
crossref_primary_10_1111_cogs_13397
crossref_primary_10_2139_ssrn_3811830
crossref_primary_10_1016_j_tics_2022_08_003
crossref_primary_10_1038_s41598_022_05567_3
crossref_primary_10_1007_s11920_018_0928_5
crossref_primary_10_1016_j_tins_2018_08_005
crossref_primary_10_1016_j_neuroimage_2025_121022
crossref_primary_10_1016_j_pneurobio_2014_11_002
crossref_primary_10_1002_jnr_24552
crossref_primary_10_25299_itjrd_2023_13474
crossref_primary_10_1016_j_neuroimage_2018_07_064
crossref_primary_10_1038_s41583_018_0078_0
crossref_primary_10_1016_j_dcn_2019_100733
crossref_primary_10_1017_S1092852915000681
crossref_primary_10_1016_j_dcn_2019_100732
crossref_primary_10_1016_j_cobeha_2021_06_004
crossref_primary_10_1017_S0033291720000203
crossref_primary_10_1177_17456916231179138
crossref_primary_10_1371_journal_pone_0180588
crossref_primary_10_1016_j_neuroimage_2013_08_065
crossref_primary_10_1146_annurev_psych_122414_033417
crossref_primary_10_3758_s13415_020_00842_0
crossref_primary_10_1016_j_neubiorev_2023_105295
crossref_primary_10_1038_s41386_021_01130_2
crossref_primary_10_1007_s13164_020_00490_w
crossref_primary_10_1111_psyp_14235
crossref_primary_10_3389_fnins_2019_00056
crossref_primary_10_1162_neco_a_01705
crossref_primary_10_1177_0269881118772454
crossref_primary_10_1016_j_cognition_2024_105967
crossref_primary_10_1016_j_cogpsych_2015_09_001
crossref_primary_10_1016_j_tins_2015_11_002
crossref_primary_10_1038_npp_2012_51
crossref_primary_10_1038_tp_2015_165
crossref_primary_10_1016_j_cobeha_2021_04_020
crossref_primary_10_1016_j_neuron_2011_04_012
crossref_primary_10_1016_j_neurobiolaging_2015_04_010
crossref_primary_10_1007_s00213_013_3313_4
crossref_primary_10_1016_j_jpsychires_2025_03_004
crossref_primary_10_1016_j_neuron_2016_06_022
crossref_primary_10_3389_fpsyg_2014_00591
crossref_primary_10_1016_j_neuropsychologia_2019_107261
crossref_primary_10_1038_s41583_018_0010_7
crossref_primary_10_1371_journal_pone_0108142
crossref_primary_10_1016_j_neuron_2019_01_046
crossref_primary_10_1038_s41598_019_53600_9
crossref_primary_10_1016_j_cub_2022_06_090
crossref_primary_10_1016_j_cub_2018_07_043
crossref_primary_10_1016_j_cub_2018_07_045
crossref_primary_10_1002_wcs_1561
crossref_primary_10_1016_j_neuron_2020_02_028
crossref_primary_10_1177_2167702614562041
crossref_primary_10_1016_j_cobeha_2020_10_003
crossref_primary_10_1093_cercor_bht049
crossref_primary_10_1016_j_biopsych_2022_09_032
crossref_primary_10_1177_2167702614562040
crossref_primary_10_1002_wcs_1556
crossref_primary_10_1371_journal_pcbi_1004463
crossref_primary_10_1016_j_biopsych_2022_09_034
crossref_primary_10_1523_JNEUROSCI_1814_24_2025
crossref_primary_10_1016_j_cobeha_2017_08_011
crossref_primary_10_1038_tp_2015_139
crossref_primary_10_1523_ENEURO_0151_18_2018
crossref_primary_10_3389_fpsyg_2015_00995
crossref_primary_10_3389_fninf_2022_1028121
crossref_primary_10_1016_j_neubiorev_2023_105473
crossref_primary_10_1093_scan_nsaa040
crossref_primary_10_1073_pnas_2206067119
crossref_primary_10_1016_j_neuron_2013_09_007
crossref_primary_10_1016_j_neuropsychologia_2019_107257
crossref_primary_10_1016_j_nlm_2017_07_015
crossref_primary_10_1523_JNEUROSCI_1108_23_2024
crossref_primary_10_7554_eLife_90082_3
crossref_primary_10_1146_annurev_neuro_101220_014053
crossref_primary_10_1523_JNEUROSCI_2422_12_2013
crossref_primary_10_1111_bph_15613
crossref_primary_10_1016_j_jmp_2021_102617
crossref_primary_10_1371_journal_pcbi_1003364
crossref_primary_10_7554_eLife_74402
crossref_primary_10_1016_j_socec_2019_101483
crossref_primary_10_1007_s11065_020_09459_z
crossref_primary_10_1146_annurev_psych_122414_033625
crossref_primary_10_1016_j_bpsc_2016_06_005
crossref_primary_10_3758_s13415_016_0487_3
crossref_primary_10_1016_j_cobeha_2020_10_010
crossref_primary_10_1016_j_tbs_2024_100877
crossref_primary_10_1007_s12369_022_00942_6
crossref_primary_10_3389_fnhum_2014_00457
crossref_primary_10_1002_jnr_24594
crossref_primary_10_1371_journal_pcbi_1004237
crossref_primary_10_1016_j_neuroimage_2018_05_012
crossref_primary_10_1016_j_biopsych_2019_04_016
crossref_primary_10_1073_pnas_1705643114
crossref_primary_10_1254_fpj_153_224
crossref_primary_10_1523_JNEUROSCI_6316_10_2011
crossref_primary_10_1007_s10551_016_3058_1
crossref_primary_10_1038_ncomms12327
crossref_primary_10_1016_j_jphysparis_2014_06_001
crossref_primary_10_1016_j_bpsc_2016_05_001
crossref_primary_10_1016_j_neuron_2013_08_009
crossref_primary_10_1016_j_conb_2020_11_016
crossref_primary_10_1038_s41598_024_71692_w
crossref_primary_10_1371_journal_pbio_3000899
crossref_primary_10_3389_fnins_2015_00063
crossref_primary_10_1016_j_jmp_2021_102602
crossref_primary_10_3390_jcm9051453
crossref_primary_10_1016_j_neuroimage_2018_05_023
crossref_primary_10_1126_sciadv_aax8783
crossref_primary_10_1523_JNEUROSCI_1785_20_2020
crossref_primary_10_1371_journal_pcbi_1003387
crossref_primary_10_1016_j_bbr_2016_08_023
crossref_primary_10_1523_JNEUROSCI_1680_20_2020
crossref_primary_10_1016_j_biopsych_2012_01_023
crossref_primary_10_1007_s10670_022_00533_x
crossref_primary_10_1523_JNEUROSCI_4313_13_2014
crossref_primary_10_1016_j_biosystems_2023_105107
crossref_primary_10_1016_j_jcbs_2017_04_001
crossref_primary_10_7554_eLife_31949
crossref_primary_10_1523_JNEUROSCI_0457_18_2018
crossref_primary_10_1038_s41467_017_02750_3
crossref_primary_10_1016_j_cobeha_2019_07_002
crossref_primary_10_7717_peerj_596
crossref_primary_10_1038_s41386_021_01108_0
crossref_primary_10_1162_jocn_a_01289
crossref_primary_10_7554_eLife_50469
crossref_primary_10_1038_s41583_020_0355_6
crossref_primary_10_1093_scan_nsu152
crossref_primary_10_1017_S0033291722001593
crossref_primary_10_2139_ssrn_4407488
crossref_primary_10_1007_s10608_022_10348_3
crossref_primary_10_1126_science_aac6076
crossref_primary_10_1016_j_celrep_2023_112931
crossref_primary_10_1016_S2215_0366_15_00361_2
crossref_primary_10_1038_s41598_021_86388_8
crossref_primary_10_1016_j_bpsc_2016_07_007
crossref_primary_10_1038_s41539_024_00214_0
crossref_primary_10_1016_j_jmp_2020_102447
crossref_primary_10_1016_j_concog_2024_103724
crossref_primary_10_1371_journal_pcbi_1004648
crossref_primary_10_1371_journal_pcbi_1006827
crossref_primary_10_1016_j_jmp_2016_03_007
crossref_primary_10_1016_j_neunet_2021_08_018
crossref_primary_10_1016_j_neuron_2016_11_005
crossref_primary_10_1016_j_tics_2011_11_018
crossref_primary_10_1016_j_biopsych_2018_12_017
crossref_primary_10_1007_s12144_022_03904_3
crossref_primary_10_3724_SP_J_1042_2021_00677
crossref_primary_10_1523_JNEUROSCI_4322_15_2016
crossref_primary_10_1016_j_neuron_2021_07_025
crossref_primary_10_1093_scan_nsab081
crossref_primary_10_1162_jocn_a_01263
crossref_primary_10_1371_journal_pcbi_1007944
crossref_primary_10_1038_s41598_022_18245_1
crossref_primary_10_1038_s44159_025_00404_6
crossref_primary_10_1038_s41598_021_99428_0
crossref_primary_10_7554_eLife_39882
crossref_primary_10_2139_ssrn_4331775
crossref_primary_10_1016_j_bbr_2022_113951
crossref_primary_10_1016_j_neubiorev_2022_104869
crossref_primary_10_1016_j_neubiorev_2015_05_005
crossref_primary_10_1016_j_tics_2019_02_006
crossref_primary_10_1038_s41467_019_08922_7
crossref_primary_10_1016_j_neuroimage_2015_06_053
crossref_primary_10_1093_scan_nst046
crossref_primary_10_1016_j_addicn_2023_100066
crossref_primary_10_1016_j_bandc_2017_03_008
crossref_primary_10_1073_pnas_2400022121
crossref_primary_10_1523_JNEUROSCI_1459_22_2022
crossref_primary_10_1111_psyp_13789
crossref_primary_10_1371_journal_pbio_3002877
crossref_primary_10_1523_JNEUROSCI_0120_24_2024
crossref_primary_10_1371_journal_pcbi_1005753
crossref_primary_10_1016_j_conb_2013_12_004
crossref_primary_10_3758_s13415_014_0325_4
crossref_primary_10_1038_s41598_018_35124_w
crossref_primary_10_1177_0956797612463080
crossref_primary_10_1038_s41562_023_01640_7
crossref_primary_10_1073_pnas_2113961119
crossref_primary_10_1016_j_conb_2013_12_007
crossref_primary_10_1038_s41467_023_43747_5
crossref_primary_10_1038_s41467_021_24576_w
crossref_primary_10_1177_17456916211031926
crossref_primary_10_1007_s42113_024_00199_4
crossref_primary_10_1126_sciadv_adj4897
crossref_primary_10_3390_s24072171
crossref_primary_10_1016_j_jmp_2020_102472
crossref_primary_10_1007_s40429_021_00399_z
crossref_primary_10_1016_j_cobeha_2024_101361
crossref_primary_10_1016_j_neubiorev_2023_105181
crossref_primary_10_5334_cpsy_83
crossref_primary_10_5334_cpsy_84
crossref_primary_10_1007_s11238_017_9625_9
crossref_primary_10_5334_cpsy_81
crossref_primary_10_1016_j_cognition_2023_105714
crossref_primary_10_1038_s41562_021_01263_w
crossref_primary_10_1007_s10539_017_9590_2
crossref_primary_10_1016_j_conctc_2022_100969
crossref_primary_10_1016_j_dcn_2016_04_005
crossref_primary_10_1016_j_neuron_2019_02_014
crossref_primary_10_1038_s41598_019_55887_0
crossref_primary_10_1146_annurev_neuro_062111_150512
crossref_primary_10_1002_hbm_25988
crossref_primary_10_1016_j_neuron_2016_02_014
crossref_primary_10_1177_0959354319867392
crossref_primary_10_1038_s41598_020_72628_w
crossref_primary_10_1371_journal_pcbi_1009070
crossref_primary_10_1038_s41467_020_17257_7
crossref_primary_10_1521_pedi_2017_31_299
crossref_primary_10_1016_j_neuron_2016_02_018
crossref_primary_10_1073_pnas_2007981117
crossref_primary_10_1371_journal_pcbi_1012471
crossref_primary_10_1016_j_neubiorev_2021_02_039
crossref_primary_10_1371_journal_pcbi_1012228
crossref_primary_10_1016_j_pbb_2017_06_014
crossref_primary_10_1371_journal_pcbi_1010047
crossref_primary_10_1016_j_neunet_2021_07_013
crossref_primary_10_1016_j_conb_2012_08_003
crossref_primary_10_1016_j_nlm_2014_04_014
crossref_primary_10_1111_lre_12209
crossref_primary_10_1111_joes_12676
crossref_primary_10_1016_j_dcn_2016_10_005
crossref_primary_10_1016_j_neuropsychologia_2021_107826
crossref_primary_10_1017_S0033291716002786
crossref_primary_10_1038_nn_4080
crossref_primary_10_1016_j_celrep_2021_110185
crossref_primary_10_1007_s00213_022_06077_w
crossref_primary_10_1016_j_neuroimage_2015_12_004
crossref_primary_10_1523_JNEUROSCI_0204_14_2014
crossref_primary_10_1016_j_neuron_2011_03_026
crossref_primary_10_1038_s41386_019_0594_2
crossref_primary_10_1111_tops_12082
crossref_primary_10_1016_j_cognition_2016_04_002
crossref_primary_10_1098_rspa_2021_0518
crossref_primary_10_3758_s13415_018_00682_z
crossref_primary_10_3389_fnhum_2016_00275
crossref_primary_10_1016_j_neubiorev_2022_104826
crossref_primary_10_5334_cpsy_57
crossref_primary_10_1016_j_neuroimage_2023_120327
crossref_primary_10_1007_s12529_018_9729_9
crossref_primary_10_3389_fneur_2018_00883
crossref_primary_10_1038_s41593_023_01542_x
crossref_primary_10_1073_pnas_1922273117
crossref_primary_10_1177_2398212820975634
crossref_primary_10_1073_pnas_1820238116
crossref_primary_10_1016_j_ijpsycho_2020_09_019
crossref_primary_10_1016_j_tics_2013_06_005
crossref_primary_10_7554_eLife_47463
crossref_primary_10_1016_j_neuron_2012_09_005
crossref_primary_10_3758_s13420_023_00591_3
crossref_primary_10_7554_eLife_27879
crossref_primary_10_1007_s10827_022_00813_z
crossref_primary_10_1371_journal_pcbi_1006803
crossref_primary_10_1162_jocn_a_01238
crossref_primary_10_1523_JNEUROSCI_1702_20_2020
crossref_primary_10_5334_cpsy_64
crossref_primary_10_1038_s41380_021_01194_y
crossref_primary_10_1016_j_neuron_2016_03_037
crossref_primary_10_1080_01691864_2023_2225232
crossref_primary_10_1038_s41398_021_01642_x
crossref_primary_10_1016_j_psychres_2018_12_079
crossref_primary_10_3758_s13415_014_0293_8
crossref_primary_10_3389_fncom_2014_00170
crossref_primary_10_1016_j_cub_2020_06_051
crossref_primary_10_1073_pnas_1609094113
crossref_primary_10_1038_s41598_022_12341_y
crossref_primary_10_3758_s13421_021_01233_7
crossref_primary_10_1016_j_tics_2022_12_004
crossref_primary_10_1002_brb3_1552
crossref_primary_10_1371_journal_pone_0150165
crossref_primary_10_1371_journal_pcbi_1012675
crossref_primary_10_1007_s10798_020_09592_z
crossref_primary_10_1162_jocn_a_00596
crossref_primary_10_1523_JNEUROSCI_2334_13_2013
crossref_primary_10_1002_hbm_22433
crossref_primary_10_1111_adb_12490
crossref_primary_10_3389_fncom_2015_00136
crossref_primary_10_1016_j_bandc_2021_105754
crossref_primary_10_1038_s44271_023_00031_y
crossref_primary_10_1073_pnas_1519643113
crossref_primary_10_1016_j_bpsc_2019_12_019
crossref_primary_10_1038_s42003_023_04500_2
crossref_primary_10_1016_j_neuroscience_2021_10_016
crossref_primary_10_1016_j_biopsych_2018_06_018
crossref_primary_10_1016_j_neuron_2018_05_013
crossref_primary_10_1146_annurev_psych_021621_124910
crossref_primary_10_1038_s41593_021_00866_w
crossref_primary_10_1016_j_jmp_2016_05_005
crossref_primary_10_1086_714364
crossref_primary_10_1002_hbm_22665
crossref_primary_10_7554_eLife_13665
crossref_primary_10_2139_ssrn_4578223
crossref_primary_10_3389_fnbeh_2014_00076
crossref_primary_10_1016_j_cortex_2023_06_012
crossref_primary_10_1523_JNEUROSCI_0080_24_2024
crossref_primary_10_1038_nrn_2016_78
crossref_primary_10_3389_fpsyg_2019_02892
crossref_primary_10_1371_journal_pone_0065274
crossref_primary_10_1007_s12474_015_0102_3
crossref_primary_10_1371_journal_pcbi_1005925
crossref_primary_10_1038_s41467_023_44632_x
crossref_primary_10_1371_journal_pbio_3002010
crossref_primary_10_1152_jn_00393_2013
crossref_primary_10_1016_j_jpsychires_2021_03_011
crossref_primary_10_1093_cercor_bhad449
crossref_primary_10_1016_j_cobeha_2017_10_005
crossref_primary_10_1016_j_neunet_2019_04_022
crossref_primary_10_1111_cdev_13693
crossref_primary_10_1016_j_cortex_2023_06_009
crossref_primary_10_1111_ejn_13401
crossref_primary_10_1016_j_jmp_2019_03_007
crossref_primary_10_1038_s41539_023_00206_6
crossref_primary_10_3758_s13415_014_0332_5
crossref_primary_10_1038_s41467_019_12557_z
crossref_primary_10_1016_j_cognition_2024_106014
crossref_primary_10_3389_fnhum_2019_00153
crossref_primary_10_1080_17437199_2016_1219673
crossref_primary_10_1016_j_neuroimage_2021_118780
crossref_primary_10_1073_pnas_2313073121
crossref_primary_10_1177_09567976211005702
crossref_primary_10_1016_j_neuroimage_2023_120393
crossref_primary_10_1016_j_addicn_2023_100070
crossref_primary_10_3389_fnbeh_2015_00225
crossref_primary_10_1038_nn_4499
crossref_primary_10_1038_s41398_024_02965_1
crossref_primary_10_1016_j_jphysparis_2015_02_001
crossref_primary_10_1038_s41598_022_21766_4
crossref_primary_10_1016_j_mehy_2016_02_020
crossref_primary_10_1016_j_neuron_2013_04_008
crossref_primary_10_3758_s13423_016_1012_y
crossref_primary_10_7554_eLife_65074
crossref_primary_10_1093_cercor_bhab205
crossref_primary_10_2139_ssrn_3962167
crossref_primary_10_1016_j_tins_2012_04_009
crossref_primary_10_1093_cercor_bhab441
crossref_primary_10_3758_s13415_011_0077_3
crossref_primary_10_1016_j_neuroimage_2019_02_052
crossref_primary_10_1523_JNEUROSCI_0583_19_2019
crossref_primary_10_1523_JNEUROSCI_1327_21_2021
crossref_primary_10_1016_j_tics_2016_05_002
crossref_primary_10_1016_j_neuroimage_2015_11_011
crossref_primary_10_1002_cne_25618
crossref_primary_10_1177_09567976231180587
crossref_primary_10_1162_jocn_a_01655
crossref_primary_10_1371_journal_pcbi_1010201
crossref_primary_10_1073_pnas_1312011110
crossref_primary_10_1177_0963721419868211
crossref_primary_10_1016_j_biopsych_2021_01_009
crossref_primary_10_1038_s41386_020_0746_4
crossref_primary_10_1038_s41562_023_01573_1
crossref_primary_10_1016_j_neuron_2015_08_015
crossref_primary_10_1523_JNEUROSCI_4677_14_2015
crossref_primary_10_3390_jcm9082605
crossref_primary_10_1162_NETN_a_00024
crossref_primary_10_1523_JNEUROSCI_1415_23_2023
crossref_primary_10_1517_17530059_2012_673583
crossref_primary_10_1016_j_neuron_2013_11_028
crossref_primary_10_1073_pnas_1117189108
crossref_primary_10_1038_s41467_021_25123_3
crossref_primary_10_1038_s42256_019_0025_4
crossref_primary_10_3389_fnins_2019_00915
crossref_primary_10_1371_journal_pone_0195328
crossref_primary_10_1017_S1355617724000237
crossref_primary_10_1080_02643294_2019_1690981
crossref_primary_10_1162_jocn_a_01869
crossref_primary_10_1016_j_neubiorev_2025_106027
crossref_primary_10_1038_s41467_018_04055_5
crossref_primary_10_1007_s00406_017_0860_4
crossref_primary_10_1111_j_1460_9568_2011_07980_x
crossref_primary_10_1016_j_tics_2014_01_003
crossref_primary_10_1016_j_cub_2019_04_011
crossref_primary_10_1016_j_pneurobio_2022_102253
crossref_primary_10_1073_pnas_1518488112
crossref_primary_10_1016_j_jmp_2018_09_002
crossref_primary_10_1038_s41386_021_01126_y
crossref_primary_10_1080_23273798_2015_1077979
crossref_primary_10_1371_journal_pcbi_1009003
crossref_primary_10_1016_j_neuropsychologia_2018_04_023
crossref_primary_10_1038_s41562_021_01194_6
crossref_primary_10_1016_j_brat_2017_09_014
crossref_primary_10_1016_j_neuroimage_2020_117590
crossref_primary_10_1016_j_actpsy_2018_01_002
crossref_primary_10_1017_S1930297500005209
crossref_primary_10_1038_s41598_023_46850_1
crossref_primary_10_1016_j_psyneuen_2014_12_017
crossref_primary_10_1038_s41593_023_01283_x
crossref_primary_10_1038_s41386_021_01100_8
crossref_primary_10_1371_journal_pcbi_1008342
crossref_primary_10_1038_nn_3364
crossref_primary_10_1111_j_1460_9568_2011_07982_x
crossref_primary_10_1038_s41593_018_0232_z
crossref_primary_10_1038_s41386_020_00899_y
crossref_primary_10_1523_JNEUROSCI_0919_12_2013
crossref_primary_10_1016_j_tics_2023_08_019
crossref_primary_10_1016_j_cub_2021_03_091
crossref_primary_10_3758_s13415_023_01104_5
crossref_primary_10_2139_ssrn_3120083
crossref_primary_10_1016_j_nlm_2019_01_004
crossref_primary_10_1016_j_neuroimage_2015_02_007
crossref_primary_10_1371_journal_pone_0065088
crossref_primary_10_1162_jocn_a_01975
crossref_primary_10_1016_j_dss_2023_113961
crossref_primary_10_1016_j_cobeha_2020_07_003
crossref_primary_10_3724_SP_J_1042_2020_01337
crossref_primary_10_1016_j_addbeh_2023_107628
crossref_primary_10_1016_j_conb_2011_04_002
crossref_primary_10_1017_S0140525X19002000
crossref_primary_10_1016_j_cortex_2016_12_018
crossref_primary_10_1016_j_euroneuro_2021_08_002
crossref_primary_10_1017_S0265052518000134
crossref_primary_10_1016_j_neubiorev_2019_09_017
crossref_primary_10_3390_jcm8081188
crossref_primary_10_1016_j_jneuroling_2018_04_008
crossref_primary_10_3758_s13423_024_02559_4
crossref_primary_10_1016_j_bbr_2017_09_050
crossref_primary_10_1098_rstb_2013_0478
crossref_primary_10_1016_j_jesp_2019_103948
crossref_primary_10_1038_s44271_024_00074_9
crossref_primary_10_1049_ccs_2018_0002
crossref_primary_10_1002_wcs_1217
crossref_primary_10_1038_s41598_022_09720_w
crossref_primary_10_1523_JNEUROSCI_1901_15_2016
crossref_primary_10_1371_journal_pcbi_1005090
crossref_primary_10_1016_j_jpsychires_2018_05_008
crossref_primary_10_3758_s13415_019_00763_7
crossref_primary_10_1523_JNEUROSCI_2854_15_2016
crossref_primary_10_3389_fpsyt_2022_814111
crossref_primary_10_1162_jocn_a_01947
crossref_primary_10_1073_pnas_1417219112
crossref_primary_10_1016_j_tics_2023_08_016
crossref_primary_10_1093_rfs_hhw010
crossref_primary_10_1016_j_neuint_2018_12_019
crossref_primary_10_1038_s41562_017_0180_8
crossref_primary_10_1017_pen_2018_14
crossref_primary_10_1177_21582440231216831
crossref_primary_10_1371_journal_pcbi_1009688
crossref_primary_10_3390_ani14030489
crossref_primary_10_7554_eLife_93887
crossref_primary_10_1038_s41598_020_78252_y
crossref_primary_10_1016_j_nlm_2012_02_003
crossref_primary_10_1038_s41598_020_64540_0
crossref_primary_10_1098_rstb_2013_0482
crossref_primary_10_1152_jn_00600_2014
crossref_primary_10_1186_s12993_016_0099_7
crossref_primary_10_3758_s13415_014_0277_8
crossref_primary_10_1523_JNEUROSCI_3248_15_2016
crossref_primary_10_3389_fnbeh_2023_1285773
crossref_primary_10_1111_tops_12424
crossref_primary_10_1038_s41467_024_48548_y
crossref_primary_10_1038_s41398_023_02717_7
crossref_primary_10_1111_jcpp_12964
crossref_primary_10_3758_s13415_015_0334_y
crossref_primary_10_3758_s13415_021_00893_x
crossref_primary_10_1016_j_jmp_2013_10_001
crossref_primary_10_1016_j_neuropsychologia_2018_07_022
crossref_primary_10_1371_journal_pcbi_1009634
crossref_primary_10_1038_s41467_017_01703_0
crossref_primary_10_1111_jofi_12126
crossref_primary_10_1016_j_bpsc_2020_12_004
crossref_primary_10_1038_nn_3561
crossref_primary_10_1038_s41562_021_01180_y
crossref_primary_10_1016_j_conb_2020_08_014
crossref_primary_10_1007_s10548_024_01036_4
crossref_primary_10_3758_s13415_014_0288_5
crossref_primary_10_1016_j_neuron_2020_10_013
crossref_primary_10_1016_j_tics_2018_05_003
crossref_primary_10_1177_2398212820979772
crossref_primary_10_1016_j_cobeha_2016_04_005
crossref_primary_10_1016_j_neuron_2020_09_005
crossref_primary_10_1016_j_tics_2024_01_004
crossref_primary_10_1016_j_cobeha_2020_06_005
crossref_primary_10_1016_j_conb_2011_05_009
crossref_primary_10_1016_j_nlm_2014_05_002
crossref_primary_10_3389_fpsyg_2014_00849
crossref_primary_10_1111_spc3_12066
crossref_primary_10_1371_journal_pone_0276750
crossref_primary_10_3389_fnmol_2024_1429316
crossref_primary_10_3390_jcm9041158
crossref_primary_10_1371_journal_pcbi_1007443
crossref_primary_10_1371_journal_pcbi_1007685
crossref_primary_10_1007_s00429_021_02270_3
crossref_primary_10_1080_13825585_2019_1664389
crossref_primary_10_1177_0956797617708288
crossref_primary_10_1371_journal_pcbi_1003080
crossref_primary_10_1016_j_cobeha_2019_04_011
crossref_primary_10_3389_fpsyt_2022_1008011
crossref_primary_10_1152_jn_00532_2020
crossref_primary_10_1371_journal_pone_0021575
crossref_primary_10_1111_psyp_14381
crossref_primary_10_3389_fpsyg_2017_00244
crossref_primary_10_1016_j_neuroimage_2018_10_075
crossref_primary_10_3390_ani14030431
crossref_primary_10_3389_fnins_2022_996957
crossref_primary_10_1007_s42113_020_00095_7
crossref_primary_10_1093_scan_nsx045
crossref_primary_10_1016_j_cub_2017_09_060
crossref_primary_10_1016_j_jpsychires_2020_10_046
crossref_primary_10_1016_j_neuron_2018_12_029
crossref_primary_10_1016_j_neuron_2014_10_018
crossref_primary_10_1017_S0033291721003846
crossref_primary_10_1038_s41398_025_03236_3
crossref_primary_10_1016_j_celrep_2023_113008
crossref_primary_10_1016_j_cobeha_2019_04_006
crossref_primary_10_1007_s11920_022_01320_9
crossref_primary_10_1093_cercor_bhz327
crossref_primary_10_2139_ssrn_1892338
crossref_primary_10_1016_j_cobeha_2019_04_009
crossref_primary_10_1073_pnas_1505483112
crossref_primary_10_3389_fnint_2017_00039
crossref_primary_10_1007_s42113_022_00145_2
crossref_primary_10_1073_pnas_1414219112
crossref_primary_10_1016_j_biopsych_2017_07_016
crossref_primary_10_1111_ejn_14492
crossref_primary_10_1371_journal_pcbi_1011950
crossref_primary_10_1523_JNEUROSCI_3473_16_2017
crossref_primary_10_1371_journal_pcbi_1008552
crossref_primary_10_1016_j_beproc_2014_02_011
crossref_primary_10_1371_journal_pbio_2004752
crossref_primary_10_1093_ijnp_pyx088
crossref_primary_10_7554_eLife_83891
crossref_primary_10_1007_s00429_017_1412_4
crossref_primary_10_1093_cercor_bhac046
crossref_primary_10_1016_j_tics_2020_12_008
crossref_primary_10_1016_j_neunet_2015_08_006
crossref_primary_10_1152_jn_00696_2020
crossref_primary_10_3389_fpsyg_2016_01505
crossref_primary_10_1371_journal_pcbi_1006316
crossref_primary_10_1016_j_neuron_2012_09_034
crossref_primary_10_1038_nn_3515
crossref_primary_10_1080_20445911_2021_1969941
crossref_primary_10_1038_nn_4613
crossref_primary_10_1038_s41467_025_57049_5
crossref_primary_10_1111_j_1460_9568_2011_07986_x
crossref_primary_10_2139_ssrn_2387654
crossref_primary_10_1007_s42113_022_00165_y
crossref_primary_10_1177_02698811231216325
crossref_primary_10_1016_j_neubiorev_2023_105139
crossref_primary_10_1007_s11920_015_0559_z
crossref_primary_10_1093_brain_awae133
crossref_primary_10_1007_s42113_022_00163_0
crossref_primary_10_1016_j_cognition_2020_104413
crossref_primary_10_1111_cogs_12181
crossref_primary_10_3389_fnhum_2014_00587
crossref_primary_10_1038_s41593_018_0258_2
crossref_primary_10_1016_j_neuron_2012_09_027
crossref_primary_10_1007_s11920_020_01213_9
crossref_primary_10_3389_fncom_2022_1060101
crossref_primary_10_1111_ejn_16456
crossref_primary_10_3758_s13415_015_0350_y
crossref_primary_10_1038_nn_3994
crossref_primary_10_7554_eLife_64575
crossref_primary_10_3389_frai_2020_00069
crossref_primary_10_1371_journal_pone_0180234
crossref_primary_10_1007_s40473_021_00226_9
crossref_primary_10_1016_j_neunet_2021_09_009
crossref_primary_10_1027_1864_1105_a000315
crossref_primary_10_1016_j_neurobiolaging_2023_01_011
crossref_primary_10_1038_mp_2015_46
crossref_primary_10_3389_fpsyg_2015_00222
crossref_primary_10_1016_j_neuroimage_2022_119267
crossref_primary_10_1038_s41598_023_27609_0
crossref_primary_10_1111_j_1460_9568_2012_08017_x
crossref_primary_10_1016_j_jmp_2021_102532
crossref_primary_10_1371_journal_pcbi_1004164
crossref_primary_10_1523_ENEURO_0422_22_2023
crossref_primary_10_1073_pnas_2205211120
crossref_primary_10_3758_s13415_014_0260_4
crossref_primary_10_3389_fpsyt_2020_00067
crossref_primary_10_1146_annurev_devpsych_050620_030227
crossref_primary_10_1038_s41586_023_06124_2
crossref_primary_10_1016_j_cogpsych_2022_101509
crossref_primary_10_3389_fpsyg_2020_607866
crossref_primary_10_1016_j_neuron_2021_05_021
crossref_primary_10_1371_journal_pone_0086850
crossref_primary_10_1371_journal_pone_0274548
crossref_primary_10_1016_j_neubiorev_2016_09_020
crossref_primary_10_1073_pnas_2311714121
crossref_primary_10_1016_j_neubiorev_2021_01_016
crossref_primary_10_1016_j_euroneuro_2015_06_025
crossref_primary_10_1016_j_cognition_2017_05_037
crossref_primary_10_1093_brain_awv347
crossref_primary_10_1038_s41598_020_78546_1
crossref_primary_10_1093_brain_awae102
crossref_primary_10_1016_j_neubiorev_2023_105103
crossref_primary_10_1038_s41467_024_45127_z
crossref_primary_10_1523_JNEUROSCI_1962_14_2015
crossref_primary_10_7554_eLife_49154
crossref_primary_10_1016_j_cogpsych_2017_03_002
crossref_primary_10_1038_s41562_020_0919_5
crossref_primary_10_1093_schbul_sbae108
crossref_primary_10_1371_journal_pcbi_1006518
crossref_primary_10_1016_j_plrev_2020_11_005
crossref_primary_10_1093_ije_dyx117
crossref_primary_10_1007_s10071_017_1137_z
crossref_primary_10_1016_j_conb_2015_11_004
crossref_primary_10_1080_17470919_2018_1518834
crossref_primary_10_1523_JNEUROSCI_2383_12_2012
crossref_primary_10_7554_eLife_56911
crossref_primary_10_1016_j_neurobiolaging_2016_06_002
crossref_primary_10_1016_j_cognition_2019_06_007
crossref_primary_10_3390_g12030062
crossref_primary_10_1016_j_jmp_2021_102503
crossref_primary_10_1016_j_neuroimage_2022_119437
crossref_primary_10_1038_s41593_018_0147_8
crossref_primary_10_1038_s41598_018_27378_1
crossref_primary_10_1016_j_neuroimage_2020_116834
crossref_primary_10_52396_JUSTC_2023_0132
crossref_primary_10_1038_ncomms12438
crossref_primary_10_1016_j_dcn_2017_09_008
crossref_primary_10_1002_hbm_24047
crossref_primary_10_1016_j_neubiorev_2020_07_021
crossref_primary_10_1016_j_neuron_2021_04_019
crossref_primary_10_1038_ncomms15958
crossref_primary_10_1111_j_1460_9568_2011_07920_x
crossref_primary_10_1007_s11920_025_01588_7
crossref_primary_10_1038_nn_3981
crossref_primary_10_1371_journal_pbio_1001662
crossref_primary_10_1016_j_neuron_2012_07_014
crossref_primary_10_1038_s42003_024_06267_6
crossref_primary_10_1016_j_neuron_2023_07_017
crossref_primary_10_1523_JNEUROSCI_5445_12_2013
crossref_primary_10_1016_j_neuroimage_2022_119456
crossref_primary_10_1073_pnas_1523669113
crossref_primary_10_1111_jcpp_13669
crossref_primary_10_1016_j_pnpbp_2017_06_029
crossref_primary_10_1111_j_1460_9568_2012_08026_x
crossref_primary_10_1163_1568539X_bja10041
crossref_primary_10_3389_fpsyg_2019_00848
crossref_primary_10_1016_j_jesp_2021_104267
crossref_primary_10_1371_journal_pcbi_1005684
crossref_primary_10_1038_s41593_023_01535_w
crossref_primary_10_1111_ejn_12906
Cites_doi 10.1523/JNEUROSCI.1010-06.2006
10.1016/S0896-6273(00)80374-8
10.1038/nature04587
10.1016/j.cub.2010.08.048
10.1523/JNEUROSCI.16-05-01936.1996
10.1016/S1053-8119(18)31587-8
10.1162/neco.2006.18.7.1637
10.1073/pnas.0711433105
10.1109/TSMC.1983.6313077
10.1016/j.neuron.2005.05.020
10.1098/rstb.1985.0010
10.1523/JNEUROSCI.6157-08.2009
10.1007/s00213-006-0686-7
10.1038/nn1279
10.1038/nn1579
10.1016/j.neuron.2006.11.010
10.1016/j.neuron.2010.04.016
10.2139/ssrn.539843
10.1038/nrn2213
10.1126/science.275.5306.1593
10.1016/j.brainres.2009.07.007
10.1523/JNEUROSCI.2469-09.2009
10.1523/JNEUROSCI.3489-09.2009
10.1037/0003-066X.58.9.697
10.1016/S0166-2236(03)00177-2
10.1037/h0061626
10.1006/nimg.2000.0593
10.1523/JNEUROSCI.21-08-02793.2001
10.1016/j.tics.2007.05.001
10.1523/JNEUROSCI.3761-07.2007
10.1523/JNEUROSCI.2728-09.2009
10.1196/annals.1390.022
10.1038/nrn2357
10.1073/pnas.0706111104
10.1002/hbm.460010306
10.1523/JNEUROSCI.0564-07.2007
10.1093/cercor/13.4.400
10.1523/JNEUROSCI.1309-08.2008
10.1016/S0896-6273(03)00169-7
10.1016/S0896-6273(03)00154-5
10.1038/nn.2141
10.1093/acprof:oso/9780199600434.003.0001
10.1002/mrm.1910390109
10.1016/B978-1-55860-141-3.50030-4
10.1016/j.neuroimage.2009.03.025
10.1111/j.1460-9568.2004.03095.x
10.1038/npp.2009.131
10.1523/JNEUROSCI.2131-07.2007
10.1016/j.neuroimage.2009.08.011
10.1152/jn.2000.84.6.3072
10.1016/j.conb.2004.10.016
10.1126/science.1134239
10.1016/j.neuron.2008.04.027
10.1073/pnas.0608842104
10.1016/j.neunet.2007.04.028
10.1016/j.pscychresns.2003.10.001
10.1016/j.neuron.2009.04.007
10.1111/j.1460-9568.2005.04218.x
10.1073/pnas.0801489105
10.1017/S0140525X0800472X
10.1038/nn2007
10.1162/089976602753712972
10.1007/s00426-007-0113-7
10.1016/j.neuroimage.2004.12.005
10.1080/14640748208400878
10.1038/nn1560
10.1038/nature04766
10.1016/S0893-6080(99)00046-5
10.1073/pnas.0711099105
10.1007/BF00993104
10.1523/JNEUROSCI.2496-07.2007
10.1038/377725a0
10.1016/j.neunet.2005.08.009
10.1038/nn1743
10.1152/jn.00158.2010
10.1901/jeab.2005.110-04
10.1038/35107080
10.1038/nature02581
10.1016/j.neuron.2006.06.024
10.1016/j.tics.2006.06.010
10.1038/nature05051
10.1037/0033-2909.119.1.3
10.1016/S0306-4522(98)00697-6
10.3758/LB.38.1.50
ContentType Journal Article
Copyright 2011 Elsevier Inc.
Copyright © 2011 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Mar 24, 2011
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: Copyright © 2011 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Mar 24, 2011
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.neuron.2011.02.027
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Nursing & Allied Health Premium
MEDLINE - Academic
Neurosciences Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
EndPage 1215
ExternalDocumentID PMC3077926
3384616121
21435563
10_1016_j_neuron_2011_02_027
S0896627311001255
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: 1R01MH087882-01
– fundername: Wellcome Trust
– fundername: NIMH NIH HHS
  grantid: R01 MH087882
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
3V.
4.4
457
4G.
53G
5RE
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFKRA
AFTJW
AGHFR
AGKMS
AHHHB
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BPHCQ
BVXVI
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HCIFZ
HVGLF
HZ~
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M0R
M0T
M2M
M2O
M3Z
M41
M7P
N9A
NCXOZ
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
WQ6
ZA5
.55
.GJ
29N
3O-
5VS
AAFWJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
G-2
ITC
MVM
OZT
R2-
X7M
ZGI
ZKB
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c522t-df35676a5d1ab12971946e4d51bee103df181db126c8e9b676578c3b6e9cc7943
IEDL.DBID IXB
ISSN 0896-6273
1097-4199
IngestDate Thu Aug 21 18:15:01 EDT 2025
Fri Jul 11 11:02:20 EDT 2025
Fri Jul 11 15:18:14 EDT 2025
Fri Jul 25 10:55:20 EDT 2025
Mon Jul 21 06:04:02 EDT 2025
Tue Jul 01 01:16:02 EDT 2025
Thu Apr 24 22:56:44 EDT 2025
Fri Feb 23 02:11:26 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://creativecommons.org/licenses/by/3.0
https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2011 Elsevier Inc. All rights reserved.
Open Access under CC BY 3.0 license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-df35676a5d1ab12971946e4d51bee103df181db126c8e9b676578c3b6e9cc7943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0896627311001255
PMID 21435563
PQID 1548418678
PQPubID 2031076
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3077926
proquest_miscellaneous_862784009
proquest_miscellaneous_858780097
proquest_journals_1548418678
pubmed_primary_21435563
crossref_citationtrail_10_1016_j_neuron_2011_02_027
crossref_primary_10_1016_j_neuron_2011_02_027
elsevier_sciencedirect_doi_10_1016_j_neuron_2011_02_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-24
PublicationDateYYYYMMDD 2011-03-24
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2011
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Pessiglione, Seymour, Flandin, Dolan, Frith (bib67) 2006; 442
Doeller, King, Burgess (bib23) 2008; 105
Hampton, Bossaerts, O'Doherty (bib36) 2006; 26
O'Doherty, Dayan, Friston, Critchley, Dolan (bib65) 2003; 38
Rangel, Camerer, Montague (bib73) 2008; 9
Suri, Schultz (bib83) 1999; 91
Barto, Sutton, Anderson (bib6) 1983; 13
Bates, D., and Maechler, M. (2010). lme4: Linear mixed effects models using S4 classes. R package version 0.999375 33.
Fu, Anderson (bib33) 2008; 72
Kable, Glimcher (bib44) 2007; 10
Daw, Courville, Touretzky (bib16) 2006; 18
Hare, O'Doherty, Camerer, Schultz, Rangel (bib38) 2008; 28
Daw, N.D. (in press). Trial-by-trial data analysis using computational models. In Affect, Learning and Decision Making, Attention and Performance XXIII, E.A. Phelps, T.W. Robbins, and M. Delgado, eds. (New York: Oxford University Press).
O'Doherty (bib64) 2004; 14
Doya (bib25) 1999; 12
Berns, McClure, Pagnoni, Montague (bib9) 2001; 21
Frank, Moustafa, Haughey, Curran, Hutchison (bib30) 2007; 104
Rummery, Niranjan (bib75) 1994
Redish, Jensen, Johnson (bib74) 2008; 31
McClure, Berns, Montague (bib56) 2003; 38
Gershman, Pesaran, Daw (bib34) 2009; 29
Dickinson (bib20) 1985; 308
Tolman (bib87) 1948; 55
McClure, Daw, Montague (bib57) 2003; 26
Friston, Worsley, Frackowiak, Mazziotta, Evans (bib31) 1993; 1
Stephan, Penny, Daunizeau, Moran, Friston (bib82) 2009; 46
Yin, Knowlton, Balleine (bib92) 2004; 19
Peters, Büchel (bib68) 2009; 29
Balleine, Daw, O'Doherty (bib3) 2008
Morris, Nevet, Arkadir, Vaadia, Bergman (bib61) 2006; 9
Johnson, Redish (bib42) 2005; 18
Hampton, Bossaerts, O'Doherty (bib37) 2008; 105
Niv, Joel, Dayan (bib63) 2006; 10
Moore, Atkeson (bib60) 1993; 13
Bertin, Schweighofer, Doya (bib10) 2007; 20
Knutson, Westdorp, Kaiser, Hommer (bib49) 2000; 12
.
Breiter, Gollub, Weisskoff, Kennedy, Makris, Berke, Goodman, Kantor, Gastfriend, Riorden (bib11) 1997; 19
Sloman (bib81) 1996; 119
Doya, Samejima, Katagiri, Kawato (bib26) 2002; 14
Kim, Sul, Huh, Lee, Jung (bib47) 2009; 29
Maia (bib55) 2010; 38
Kahneman (bib45) 2003; 58
Lau, Glimcher (bib51) 2005; 84
Lohrenz, McCabe, Camerer, Montague (bib53) 2007; 104
Schultz, Dayan, Montague (bib79) 1997; 275
Everitt, Robbins (bib27) 2005; 8
Montague, Dayan, Person, Sejnowski (bib58) 1995; 377
Schönberg, Daw, Joel, O'Doherty (bib77) 2007; 27
Schönberg, O'Doherty, Joel, Inzelberg, Segev, Daw (bib78) 2010; 49
Knutson, Rick, Wimmer, Prelec, Loewenstein (bib50) 2007; 53
Daw, Niv, Dayan (bib15) 2005; 8
Seymour, O'Doherty, Dayan, Koltzenburg, Jones, Dolan, Friston, Frackowiak (bib80) 2004; 429
Barto (bib5) 1995
Adams (bib1) 1982; 33b
Bayer, Glimcher (bib8) 2005; 47
Ito, Doya (bib41) 2009; 29
Loewenstein, G., and O'Donoghue, T. (2004). Animal spirits: Affective and deliberative processes in economic behavior. Working Paper 04-14, Center for Analytic Economics, Cornell University.
Thorndike (bib86) 1911
Dickinson, Balleine (bib21) 2002
Friston, Josephs, Rees, Turner (bib32) 1998; 39
Schacter, Addis, Buckner (bib76) 2007; 8
Johnson, Redish (bib43) 2007; 27
Gläscher, Daw, Dayan, O'Doherty (bib35) 2010; 66
Killcross, Coutureau (bib46) 2003; 13
Daw, O'Doherty, Dayan, Seymour, Dolan (bib17) 2006; 441
R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
Wittmann, Daw, Seymour, Dolan (bib91) 2008; 58
Holmes, Friston (bib40) 1998; 7
Venkatraman, Payne, Bettman, Luce, Huettel (bib90) 2009; 62
Bromberg-Martin, Matsumoto, Hong, Hikosaka (bib13) 2010; 104
Delgado, Nystrom, Fissell, Noll, Fiez (bib18) 2000; 84
O'Doherty, Hampton, Kim (bib66) 2007; 1104
Preuschoff, Bossaerts, Quartz (bib71) 2006; 51
Tanaka, Doya, Okada, Ueda, Okamoto, Yamawaki (bib85) 2004; 7
Doeller, Burgess (bib22) 2008; 105
MacKay (bib54) 2003
Balleine, O'Doherty (bib2) 2010; 35
Poldrack, Clark, Paré-Blagoev, Shohamy, Creso Moyano, Myers, Gluck (bib70) 2001; 414
Tom, Fox, Trepel, Poldrack (bib88) 2007; 315
Hassabis, Maguire (bib39) 2007; 11
Knutson, Gibbs (bib48) 2007; 191
Foster, Wilson (bib29) 2006; 440
Nichols, Brett, Andersson, Wager, Poline (bib62) 2005; 25
Delgado, Gillis, Phelps (bib19) 2008; 11
Sutton, R. (1990). Integrated architectures for learning, planning, and reacting based on approximating dynamic programming. In Proceedings of the Seventh International Conference on Machine Learning (San Diego, California).
Brett, M., Anton, J.-L., Valabregue, R., and Poline, J.-B. (2002). Region of interest analysis using an SPM toolbox. In 8th International Conference on Functional Mapping of the Human Brain (Sendai, Japan).
Doll, Jacobs, Sanfey, Frank (bib24) 2009; 1299
Yin, Ostlund, Knowlton, Balleine (bib93) 2005; 22
Ballmaier, Toga, Siddarth, Blanton, Levitt, Lee, Caplan (bib4) 2004; 130
Valentin, Dickinson, O'Doherty (bib89) 2007; 27
Montague, Dayan, Sejnowski (bib59) 1996; 16
Fitzgerald, Seymour, Bach, Dolan (bib28) 2010; 20
Plassmann, O'Doherty, Rangel (bib69) 2007; 27
Barto (10.1016/j.neuron.2011.02.027_bib6) 1983; 13
Dickinson (10.1016/j.neuron.2011.02.027_bib20) 1985; 308
Lau (10.1016/j.neuron.2011.02.027_bib51) 2005; 84
Preuschoff (10.1016/j.neuron.2011.02.027_bib71) 2006; 51
Hampton (10.1016/j.neuron.2011.02.027_bib36) 2006; 26
Johnson (10.1016/j.neuron.2011.02.027_bib43) 2007; 27
Nichols (10.1016/j.neuron.2011.02.027_bib62) 2005; 25
Gläscher (10.1016/j.neuron.2011.02.027_bib35) 2010; 66
Daw (10.1016/j.neuron.2011.02.027_bib16) 2006; 18
Kim (10.1016/j.neuron.2011.02.027_bib47) 2009; 29
Tolman (10.1016/j.neuron.2011.02.027_bib87) 1948; 55
O'Doherty (10.1016/j.neuron.2011.02.027_bib64) 2004; 14
Yin (10.1016/j.neuron.2011.02.027_bib92) 2004; 19
Hare (10.1016/j.neuron.2011.02.027_bib38) 2008; 28
Schacter (10.1016/j.neuron.2011.02.027_bib76) 2007; 8
Schultz (10.1016/j.neuron.2011.02.027_bib79) 1997; 275
Ballmaier (10.1016/j.neuron.2011.02.027_bib4) 2004; 130
Wittmann (10.1016/j.neuron.2011.02.027_bib91) 2008; 58
Doll (10.1016/j.neuron.2011.02.027_bib24) 2009; 1299
Friston (10.1016/j.neuron.2011.02.027_bib32) 1998; 39
Berns (10.1016/j.neuron.2011.02.027_bib9) 2001; 21
Montague (10.1016/j.neuron.2011.02.027_bib58) 1995; 377
10.1016/j.neuron.2011.02.027_bib72
Doeller (10.1016/j.neuron.2011.02.027_bib23) 2008; 105
Fu (10.1016/j.neuron.2011.02.027_bib33) 2008; 72
Knutson (10.1016/j.neuron.2011.02.027_bib49) 2000; 12
Adams (10.1016/j.neuron.2011.02.027_bib1) 1982; 33b
Bayer (10.1016/j.neuron.2011.02.027_bib8) 2005; 47
Balleine (10.1016/j.neuron.2011.02.027_bib2) 2010; 35
Lohrenz (10.1016/j.neuron.2011.02.027_bib53) 2007; 104
Tom (10.1016/j.neuron.2011.02.027_bib88) 2007; 315
Doya (10.1016/j.neuron.2011.02.027_bib25) 1999; 12
O'Doherty (10.1016/j.neuron.2011.02.027_bib66) 2007; 1104
Delgado (10.1016/j.neuron.2011.02.027_bib19) 2008; 11
Knutson (10.1016/j.neuron.2011.02.027_bib48) 2007; 191
Peters (10.1016/j.neuron.2011.02.027_bib68) 2009; 29
Killcross (10.1016/j.neuron.2011.02.027_bib46) 2003; 13
Hassabis (10.1016/j.neuron.2011.02.027_bib39) 2007; 11
McClure (10.1016/j.neuron.2011.02.027_bib57) 2003; 26
Gershman (10.1016/j.neuron.2011.02.027_bib34) 2009; 29
McClure (10.1016/j.neuron.2011.02.027_bib56) 2003; 38
Daw (10.1016/j.neuron.2011.02.027_bib17) 2006; 441
Rummery (10.1016/j.neuron.2011.02.027_bib75) 1994
10.1016/j.neuron.2011.02.027_bib84
Rangel (10.1016/j.neuron.2011.02.027_bib73) 2008; 9
Tanaka (10.1016/j.neuron.2011.02.027_bib85) 2004; 7
Sloman (10.1016/j.neuron.2011.02.027_bib81) 1996; 119
Balleine (10.1016/j.neuron.2011.02.027_bib3) 2008
Daw (10.1016/j.neuron.2011.02.027_bib15) 2005; 8
Seymour (10.1016/j.neuron.2011.02.027_bib80) 2004; 429
MacKay (10.1016/j.neuron.2011.02.027_bib54) 2003
Plassmann (10.1016/j.neuron.2011.02.027_bib69) 2007; 27
Fitzgerald (10.1016/j.neuron.2011.02.027_bib28) 2010; 20
Schönberg (10.1016/j.neuron.2011.02.027_bib77) 2007; 27
Doeller (10.1016/j.neuron.2011.02.027_bib22) 2008; 105
10.1016/j.neuron.2011.02.027_bib12
Knutson (10.1016/j.neuron.2011.02.027_bib50) 2007; 53
Breiter (10.1016/j.neuron.2011.02.027_bib11) 1997; 19
10.1016/j.neuron.2011.02.027_bib7
10.1016/j.neuron.2011.02.027_bib14
Venkatraman (10.1016/j.neuron.2011.02.027_bib90) 2009; 62
Maia (10.1016/j.neuron.2011.02.027_bib55) 2010; 38
Moore (10.1016/j.neuron.2011.02.027_bib60) 1993; 13
Poldrack (10.1016/j.neuron.2011.02.027_bib70) 2001; 414
Suri (10.1016/j.neuron.2011.02.027_bib83) 1999; 91
Frank (10.1016/j.neuron.2011.02.027_bib30) 2007; 104
10.1016/j.neuron.2011.02.027_bib52
Niv (10.1016/j.neuron.2011.02.027_bib63) 2006; 10
Stephan (10.1016/j.neuron.2011.02.027_bib82) 2009; 46
Johnson (10.1016/j.neuron.2011.02.027_bib42) 2005; 18
Barto (10.1016/j.neuron.2011.02.027_bib5) 1995
Foster (10.1016/j.neuron.2011.02.027_bib29) 2006; 440
Morris (10.1016/j.neuron.2011.02.027_bib61) 2006; 9
Bertin (10.1016/j.neuron.2011.02.027_bib10) 2007; 20
Kable (10.1016/j.neuron.2011.02.027_bib44) 2007; 10
Pessiglione (10.1016/j.neuron.2011.02.027_bib67) 2006; 442
Holmes (10.1016/j.neuron.2011.02.027_bib40) 1998; 7
Valentin (10.1016/j.neuron.2011.02.027_bib89) 2007; 27
Thorndike (10.1016/j.neuron.2011.02.027_bib86) 1911
Friston (10.1016/j.neuron.2011.02.027_bib31) 1993; 1
Redish (10.1016/j.neuron.2011.02.027_bib74) 2008; 31
O'Doherty (10.1016/j.neuron.2011.02.027_bib65) 2003; 38
Delgado (10.1016/j.neuron.2011.02.027_bib18) 2000; 84
Kahneman (10.1016/j.neuron.2011.02.027_bib45) 2003; 58
Schönberg (10.1016/j.neuron.2011.02.027_bib78) 2010; 49
Dickinson (10.1016/j.neuron.2011.02.027_bib21) 2002
Montague (10.1016/j.neuron.2011.02.027_bib59) 1996; 16
Hampton (10.1016/j.neuron.2011.02.027_bib37) 2008; 105
Ito (10.1016/j.neuron.2011.02.027_bib41) 2009; 29
Yin (10.1016/j.neuron.2011.02.027_bib93) 2005; 22
Bromberg-Martin (10.1016/j.neuron.2011.02.027_bib13) 2010; 104
Doya (10.1016/j.neuron.2011.02.027_bib26) 2002; 14
Everitt (10.1016/j.neuron.2011.02.027_bib27) 2005; 8
References_xml – volume: 20
  start-page: 1823
  year: 2010
  end-page: 1829
  ident: bib28
  article-title: Differentiable neural substrates for learned and described value and risk
  publication-title: Curr. Biol.
– volume: 105
  start-page: 6741
  year: 2008
  end-page: 6746
  ident: bib37
  article-title: Neural correlates of mentalizing-related computations during strategic interactions in humans
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 1911
  ident: bib86
  article-title: Animal Intelligence; Experimental Studies
– volume: 105
  start-page: 5909
  year: 2008
  end-page: 5914
  ident: bib22
  article-title: Distinct error-correcting and incidental learning of location relative to landmarks and boundaries
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  start-page: 887
  year: 2004
  end-page: 893
  ident: bib85
  article-title: Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops
  publication-title: Nat. Neurosci.
– volume: 105
  start-page: 5915
  year: 2008
  end-page: 5920
  ident: bib23
  article-title: Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 38
  start-page: 50
  year: 2010
  end-page: 67
  ident: bib55
  article-title: Two-factor theory, the actor-critic model, and conditioned avoidance
  publication-title: Learn. Behav.
– reference: Bates, D., and Maechler, M. (2010). lme4: Linear mixed effects models using S4 classes. R package version 0.999375 33.
– volume: 429
  start-page: 664
  year: 2004
  end-page: 667
  ident: bib80
  article-title: Temporal difference models describe higher-order learning in humans
  publication-title: Nature
– volume: 51
  start-page: 381
  year: 2006
  end-page: 390
  ident: bib71
  article-title: Neural differentiation of expected reward and risk in human subcortical structures
  publication-title: Neuron
– volume: 8
  start-page: 657
  year: 2007
  end-page: 661
  ident: bib76
  article-title: Remembering the past to imagine the future: The prospective brain
  publication-title: Nat. Rev. Neurosci.
– volume: 28
  start-page: 5623
  year: 2008
  end-page: 5630
  ident: bib38
  article-title: Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors
  publication-title: J. Neurosci.
– volume: 9
  start-page: 1057
  year: 2006
  end-page: 1063
  ident: bib61
  article-title: Midbrain dopamine neurons encode decisions for future action
  publication-title: Nat. Neurosci.
– volume: 21
  start-page: 2793
  year: 2001
  end-page: 2798
  ident: bib9
  article-title: Predictability modulates human brain response to reward
  publication-title: J. Neurosci.
– volume: 18
  start-page: 1163
  year: 2005
  end-page: 1171
  ident: bib42
  article-title: Hippocampal replay contributes to within session learning in a temporal difference reinforcement learning model
  publication-title: Neural Netw.
– volume: 1104
  start-page: 35
  year: 2007
  end-page: 53
  ident: bib66
  article-title: Model-based fMRI and its application to reward learning and decision making
  publication-title: Ann. N Y Acad. Sci.
– volume: 441
  start-page: 876
  year: 2006
  end-page: 879
  ident: bib17
  article-title: Cortical substrates for exploratory decisions in humans
  publication-title: Nature
– volume: 20
  start-page: 668
  year: 2007
  end-page: 675
  ident: bib10
  article-title: Multiple model-based reinforcement learning explains dopamine neuronal activity
  publication-title: Neural Netw.
– volume: 38
  start-page: 329
  year: 2003
  end-page: 337
  ident: bib65
  article-title: Temporal difference models and reward-related learning in the human brain
  publication-title: Neuron
– volume: 12
  start-page: 20
  year: 2000
  end-page: 27
  ident: bib49
  article-title: FMRI visualization of brain activity during a monetary incentive delay task
  publication-title: Neuroimage
– volume: 91
  start-page: 871
  year: 1999
  end-page: 890
  ident: bib83
  article-title: A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task
  publication-title: Neuroscience
– volume: 66
  start-page: 585
  year: 2010
  end-page: 595
  ident: bib35
  article-title: States versus rewards: Dissociable neural prediction error signals underlying model-based and model-free reinforcement learning
  publication-title: Neuron
– volume: 9
  start-page: 545
  year: 2008
  end-page: 556
  ident: bib73
  article-title: A framework for studying the neurobiology of value-based decision making
  publication-title: Nat. Rev. Neurosci.
– start-page: 215
  year: 1995
  end-page: 232
  ident: bib5
  article-title: Adaptive Critics and the Basal Ganglia
  publication-title: Models of Information Processing in the Basal Ganglia
– volume: 25
  start-page: 653
  year: 2005
  end-page: 660
  ident: bib62
  article-title: Valid conjunction inference with the minimum statistic
  publication-title: Neuroimage
– volume: 26
  start-page: 423
  year: 2003
  end-page: 428
  ident: bib57
  article-title: A computational substrate for incentive salience
  publication-title: Trends Neurosci.
– volume: 29
  start-page: 9861
  year: 2009
  end-page: 9874
  ident: bib41
  article-title: Validation of decision-making models and analysis of decision variables in the rat basal ganglia
  publication-title: J. Neurosci.
– volume: 38
  start-page: 339
  year: 2003
  end-page: 346
  ident: bib56
  article-title: Temporal prediction errors in a passive learning task activate human striatum
  publication-title: Neuron
– volume: 29
  start-page: 14701
  year: 2009
  end-page: 14712
  ident: bib47
  article-title: Role of striatum in updating values of chosen actions
  publication-title: J. Neurosci.
– volume: 19
  start-page: 591
  year: 1997
  end-page: 611
  ident: bib11
  article-title: Acute effects of cocaine on human brain activity and emotion
  publication-title: Neuron
– start-page: 497
  year: 2002
  end-page: 534
  ident: bib21
  article-title: The role of learning in the operation of motivational systems. Stevens' Handbook of Experimental Psychology, Third Edition, Vol.3: Learning, Motivation, and Emotion
– volume: 191
  start-page: 813
  year: 2007
  end-page: 822
  ident: bib48
  article-title: Linking nucleus accumbens dopamine and blood oxygenation
  publication-title: Psychopharmacology (Berl.)
– reference: R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
– volume: 27
  start-page: 4019
  year: 2007
  end-page: 4026
  ident: bib89
  article-title: Determining the neural substrates of goal-directed learning in the human brain
  publication-title: J. Neurosci.
– volume: 84
  start-page: 3072
  year: 2000
  end-page: 3077
  ident: bib18
  article-title: Tracking the hemodynamic responses to reward and punishment in the striatum
  publication-title: J. Neurophysiol.
– volume: 440
  start-page: 680
  year: 2006
  end-page: 683
  ident: bib29
  article-title: Reverse replay of behavioural sequences in hippocampal place cells during the awake state
  publication-title: Nature
– volume: 31
  start-page: 415
  year: 2008
  end-page: 437
  ident: bib74
  article-title: A unified framework for addiction: Vulnerabilities in the decision process
  publication-title: Behav. Brain Sci.
– volume: 49
  start-page: 772
  year: 2010
  end-page: 781
  ident: bib78
  article-title: Selective impairment of prediction error signaling in human dorsolateral but not ventral striatum in Parkinson's disease patients: Evidence from a model-based fMRI study
  publication-title: Neuroimage
– volume: 11
  start-page: 880
  year: 2008
  end-page: 881
  ident: bib19
  article-title: Regulating the expectation of reward via cognitive strategies
  publication-title: Nat. Neurosci.
– volume: 1299
  start-page: 74
  year: 2009
  end-page: 94
  ident: bib24
  article-title: Instructional control of reinforcement learning: A behavioral and neurocomputational investigation
  publication-title: Brain Res.
– year: 1994
  ident: bib75
  article-title: On-line Q-learning using connectionist systems. Technical Report CUED/F-INFENG/TR 166, Engineering Department
– volume: 53
  start-page: 147
  year: 2007
  end-page: 156
  ident: bib50
  article-title: Neural predictors of purchases
  publication-title: Neuron
– volume: 442
  start-page: 1042
  year: 2006
  end-page: 1045
  ident: bib67
  article-title: Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans
  publication-title: Nature
– volume: 8
  start-page: 1704
  year: 2005
  end-page: 1711
  ident: bib15
  article-title: Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control
  publication-title: Nat. Neurosci.
– volume: 19
  start-page: 181
  year: 2004
  end-page: 189
  ident: bib92
  article-title: Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning
  publication-title: Eur. J. Neurosci.
– volume: 26
  start-page: 8360
  year: 2006
  end-page: 8367
  ident: bib36
  article-title: The role of the ventromedial prefrontal cortex in abstract state-based inference during decision making in humans
  publication-title: J. Neurosci.
– volume: 58
  start-page: 697
  year: 2003
  end-page: 720
  ident: bib45
  article-title: A perspective on judgment and choice: Mapping bounded rationality
  publication-title: Am. Psychol.
– volume: 130
  start-page: 43
  year: 2004
  end-page: 55
  ident: bib4
  article-title: Thought disorder and nucleus accumbens in childhood: A structural MRI study
  publication-title: Psychiatry Res.
– volume: 27
  start-page: 12860
  year: 2007
  end-page: 12867
  ident: bib77
  article-title: Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making
  publication-title: J. Neurosci.
– reference: Daw, N.D. (in press). Trial-by-trial data analysis using computational models. In Affect, Learning and Decision Making, Attention and Performance XXIII, E.A. Phelps, T.W. Robbins, and M. Delgado, eds. (New York: Oxford University Press).
– volume: 72
  start-page: 321
  year: 2008
  end-page: 330
  ident: bib33
  article-title: Solving the credit assignment problem: Explicit and implicit learning of action sequences with probabilistic outcomes
  publication-title: Psychol. Res.
– volume: 13
  start-page: 103
  year: 1993
  end-page: 130
  ident: bib60
  article-title: Prioritized sweeping: Reinforcement learning with less data and less time
  publication-title: Mach. Learn.
– volume: 315
  start-page: 515
  year: 2007
  end-page: 518
  ident: bib88
  article-title: The neural basis of loss aversion in decision-making under risk
  publication-title: Science
– year: 2008
  ident: bib3
  article-title: Multiple forms of value learning and the function of dopamine
  publication-title: Neuroeconomics: Decision Making and the Brain
– volume: 22
  start-page: 513
  year: 2005
  end-page: 523
  ident: bib93
  article-title: The role of the dorsomedial striatum in instrumental conditioning
  publication-title: Eur. J. Neurosci.
– volume: 14
  start-page: 1347
  year: 2002
  end-page: 1369
  ident: bib26
  article-title: Multiple model-based reinforcement learning
  publication-title: Neural Comput.
– volume: 13
  start-page: 400
  year: 2003
  end-page: 408
  ident: bib46
  article-title: Coordination of actions and habits in the medial prefrontal cortex of rats
  publication-title: Cereb. Cortex
– volume: 84
  start-page: 555
  year: 2005
  end-page: 579
  ident: bib51
  article-title: Dynamic response-by-response models of matching behavior in rhesus monkeys
  publication-title: J. Exp. Anal. Behav.
– reference: Loewenstein, G., and O'Donoghue, T. (2004). Animal spirits: Affective and deliberative processes in economic behavior. Working Paper 04-14, Center for Analytic Economics, Cornell University.
– volume: 11
  start-page: 299
  year: 2007
  end-page: 306
  ident: bib39
  article-title: Deconstructing episodic memory with construction
  publication-title: Trends Cogn. Sci.
– volume: 29
  start-page: 15727
  year: 2009
  end-page: 15734
  ident: bib68
  article-title: Overlapping and distinct neural systems code for subjective value during intertemporal and risky decision making
  publication-title: J. Neurosci.
– volume: 10
  start-page: 1625
  year: 2007
  end-page: 1633
  ident: bib44
  article-title: The neural correlates of subjective value during intertemporal choice
  publication-title: Nat. Neurosci.
– volume: 46
  start-page: 1004
  year: 2009
  end-page: 1017
  ident: bib82
  article-title: Bayesian model selection for group studies
  publication-title: Neuroimage
– volume: 7
  start-page: S754
  year: 1998
  ident: bib40
  article-title: Generalisability, random effects and population inference
  publication-title: Neuroimage
– volume: 18
  start-page: 1637
  year: 2006
  end-page: 1677
  ident: bib16
  article-title: Representation and timing in theories of the dopamine system
  publication-title: Neural Comput.
– volume: 308
  start-page: 67
  year: 1985
  end-page: 78
  ident: bib20
  article-title: Actions and habits: The development of behavioural autonomy
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– year: 2003
  ident: bib54
  article-title: Information Theory, Inference, and Learning Algorithms
– volume: 35
  start-page: 48
  year: 2010
  end-page: 69
  ident: bib2
  article-title: Human and rodent homologies in action control: Corticostriatal determinants of goal-directed and habitual action
  publication-title: Neuropsychopharmacology
– volume: 55
  start-page: 189
  year: 1948
  end-page: 208
  ident: bib87
  article-title: Cognitive maps in rats and men
  publication-title: Psychol. Rev.
– volume: 104
  start-page: 9493
  year: 2007
  end-page: 9498
  ident: bib53
  article-title: Neural signature of fictive learning signals in a sequential investment task
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 104
  start-page: 16311
  year: 2007
  end-page: 16316
  ident: bib30
  article-title: Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 29
  start-page: 13524
  year: 2009
  end-page: 13531
  ident: bib34
  article-title: Human reinforcement learning subdivides structured action spaces by learning effector-specific values
  publication-title: J. Neurosci.
– volume: 62
  start-page: 593
  year: 2009
  end-page: 602
  ident: bib90
  article-title: Separate neural mechanisms underlie choices and strategic preferences in risky decision making
  publication-title: Neuron
– reference: Brett, M., Anton, J.-L., Valabregue, R., and Poline, J.-B. (2002). Region of interest analysis using an SPM toolbox. In 8th International Conference on Functional Mapping of the Human Brain (Sendai, Japan).
– volume: 10
  start-page: 375
  year: 2006
  end-page: 381
  ident: bib63
  article-title: A normative perspective on motivation
  publication-title: Trends Cogn. Sci.
– volume: 39
  start-page: 41
  year: 1998
  end-page: 52
  ident: bib32
  article-title: Nonlinear event-related responses in fMRI
  publication-title: Magn. Reson. Med.
– volume: 119
  start-page: 3
  year: 1996
  end-page: 22
  ident: bib81
  article-title: The empirical case for two systems of reasoning
  publication-title: Psychol. Bull.
– volume: 58
  start-page: 967
  year: 2008
  end-page: 973
  ident: bib91
  article-title: Striatal activity underlies novelty-based choice in humans
  publication-title: Neuron
– volume: 12
  start-page: 961
  year: 1999
  end-page: 974
  ident: bib25
  article-title: What are the computations of the cerebellum, the basal ganglia and the cerebral cortex?
  publication-title: Neural Netw.
– volume: 377
  start-page: 725
  year: 1995
  end-page: 728
  ident: bib58
  article-title: Bee foraging in uncertain environments using predictive Hebbian learning
  publication-title: Nature
– volume: 1
  start-page: 210
  year: 1993
  end-page: 220
  ident: bib31
  article-title: Assessing the significance of focal activations using their spatial extent
  publication-title: Hum. Brain Mapp.
– reference: Sutton, R. (1990). Integrated architectures for learning, planning, and reacting based on approximating dynamic programming. In Proceedings of the Seventh International Conference on Machine Learning (San Diego, California).
– reference: .
– volume: 27
  start-page: 9984
  year: 2007
  end-page: 9988
  ident: bib69
  article-title: Orbitofrontal cortex encodes willingness to pay in everyday economic transactions
  publication-title: J. Neurosci.
– volume: 414
  start-page: 546
  year: 2001
  end-page: 550
  ident: bib70
  article-title: Interactive memory systems in the human brain
  publication-title: Nature
– volume: 33b
  start-page: 77
  year: 1982
  end-page: 98
  ident: bib1
  article-title: Variations in the sensitivity of instrumental responding to reinforcer devaluation
  publication-title: Q. J. Exp. Psychol.
– volume: 104
  start-page: 1068
  year: 2010
  end-page: 1076
  ident: bib13
  article-title: A pallidus-habenula-dopamine pathway signals inferred stimulus values
  publication-title: J. Neurophysiol.
– volume: 27
  start-page: 12176
  year: 2007
  end-page: 12189
  ident: bib43
  article-title: Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point
  publication-title: J. Neurosci.
– volume: 8
  start-page: 1481
  year: 2005
  end-page: 1489
  ident: bib27
  article-title: Neural systems of reinforcement for drug addiction: From actions to habits to compulsion
  publication-title: Nat. Neurosci.
– volume: 16
  start-page: 1936
  year: 1996
  end-page: 1947
  ident: bib59
  article-title: A framework for mesencephalic dopamine systems based on predictive Hebbian learning
  publication-title: J. Neurosci.
– volume: 275
  start-page: 1593
  year: 1997
  end-page: 1599
  ident: bib79
  article-title: A neural substrate of prediction and reward
  publication-title: Science
– volume: 14
  start-page: 769
  year: 2004
  end-page: 776
  ident: bib64
  article-title: Reward representations and reward-related learning in the human brain: Insights from neuroimaging
  publication-title: Curr. Opin. Neurobiol.
– volume: 47
  start-page: 129
  year: 2005
  end-page: 141
  ident: bib8
  article-title: Midbrain dopamine neurons encode a quantitative reward prediction error signal
  publication-title: Neuron
– volume: 13
  start-page: 834
  year: 1983
  end-page: 846
  ident: bib6
  article-title: Neuronlike adaptive elements that can solve difficult learning control problems
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 26
  start-page: 8360
  year: 2006
  ident: 10.1016/j.neuron.2011.02.027_bib36
  article-title: The role of the ventromedial prefrontal cortex in abstract state-based inference during decision making in humans
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1010-06.2006
– volume: 19
  start-page: 591
  year: 1997
  ident: 10.1016/j.neuron.2011.02.027_bib11
  article-title: Acute effects of cocaine on human brain activity and emotion
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80374-8
– volume: 440
  start-page: 680
  year: 2006
  ident: 10.1016/j.neuron.2011.02.027_bib29
  article-title: Reverse replay of behavioural sequences in hippocampal place cells during the awake state
  publication-title: Nature
  doi: 10.1038/nature04587
– volume: 20
  start-page: 1823
  year: 2010
  ident: 10.1016/j.neuron.2011.02.027_bib28
  article-title: Differentiable neural substrates for learned and described value and risk
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2010.08.048
– volume: 16
  start-page: 1936
  year: 1996
  ident: 10.1016/j.neuron.2011.02.027_bib59
  article-title: A framework for mesencephalic dopamine systems based on predictive Hebbian learning
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-05-01936.1996
– volume: 7
  start-page: S754
  year: 1998
  ident: 10.1016/j.neuron.2011.02.027_bib40
  article-title: Generalisability, random effects and population inference
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(18)31587-8
– year: 2003
  ident: 10.1016/j.neuron.2011.02.027_bib54
– ident: 10.1016/j.neuron.2011.02.027_bib12
– volume: 18
  start-page: 1637
  year: 2006
  ident: 10.1016/j.neuron.2011.02.027_bib16
  article-title: Representation and timing in theories of the dopamine system
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1637
– volume: 105
  start-page: 5909
  year: 2008
  ident: 10.1016/j.neuron.2011.02.027_bib22
  article-title: Distinct error-correcting and incidental learning of location relative to landmarks and boundaries
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0711433105
– volume: 13
  start-page: 834
  year: 1983
  ident: 10.1016/j.neuron.2011.02.027_bib6
  article-title: Neuronlike adaptive elements that can solve difficult learning control problems
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1983.6313077
– volume: 47
  start-page: 129
  year: 2005
  ident: 10.1016/j.neuron.2011.02.027_bib8
  article-title: Midbrain dopamine neurons encode a quantitative reward prediction error signal
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.05.020
– year: 2008
  ident: 10.1016/j.neuron.2011.02.027_bib3
  article-title: Multiple forms of value learning and the function of dopamine
– volume: 308
  start-page: 67
  year: 1985
  ident: 10.1016/j.neuron.2011.02.027_bib20
  article-title: Actions and habits: The development of behavioural autonomy
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.1985.0010
– volume: 29
  start-page: 9861
  year: 2009
  ident: 10.1016/j.neuron.2011.02.027_bib41
  article-title: Validation of decision-making models and analysis of decision variables in the rat basal ganglia
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.6157-08.2009
– volume: 191
  start-page: 813
  year: 2007
  ident: 10.1016/j.neuron.2011.02.027_bib48
  article-title: Linking nucleus accumbens dopamine and blood oxygenation
  publication-title: Psychopharmacology (Berl.)
  doi: 10.1007/s00213-006-0686-7
– volume: 7
  start-page: 887
  year: 2004
  ident: 10.1016/j.neuron.2011.02.027_bib85
  article-title: Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1279
– volume: 8
  start-page: 1481
  year: 2005
  ident: 10.1016/j.neuron.2011.02.027_bib27
  article-title: Neural systems of reinforcement for drug addiction: From actions to habits to compulsion
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1579
– volume: 53
  start-page: 147
  year: 2007
  ident: 10.1016/j.neuron.2011.02.027_bib50
  article-title: Neural predictors of purchases
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.11.010
– volume: 66
  start-page: 585
  year: 2010
  ident: 10.1016/j.neuron.2011.02.027_bib35
  article-title: States versus rewards: Dissociable neural prediction error signals underlying model-based and model-free reinforcement learning
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.04.016
– ident: 10.1016/j.neuron.2011.02.027_bib52
  doi: 10.2139/ssrn.539843
– volume: 8
  start-page: 657
  year: 2007
  ident: 10.1016/j.neuron.2011.02.027_bib76
  article-title: Remembering the past to imagine the future: The prospective brain
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2213
– volume: 275
  start-page: 1593
  year: 1997
  ident: 10.1016/j.neuron.2011.02.027_bib79
  article-title: A neural substrate of prediction and reward
  publication-title: Science
  doi: 10.1126/science.275.5306.1593
– volume: 1299
  start-page: 74
  year: 2009
  ident: 10.1016/j.neuron.2011.02.027_bib24
  article-title: Instructional control of reinforcement learning: A behavioral and neurocomputational investigation
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2009.07.007
– volume: 29
  start-page: 13524
  year: 2009
  ident: 10.1016/j.neuron.2011.02.027_bib34
  article-title: Human reinforcement learning subdivides structured action spaces by learning effector-specific values
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2469-09.2009
– volume: 29
  start-page: 15727
  year: 2009
  ident: 10.1016/j.neuron.2011.02.027_bib68
  article-title: Overlapping and distinct neural systems code for subjective value during intertemporal and risky decision making
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3489-09.2009
– volume: 58
  start-page: 697
  year: 2003
  ident: 10.1016/j.neuron.2011.02.027_bib45
  article-title: A perspective on judgment and choice: Mapping bounded rationality
  publication-title: Am. Psychol.
  doi: 10.1037/0003-066X.58.9.697
– ident: 10.1016/j.neuron.2011.02.027_bib72
– volume: 26
  start-page: 423
  year: 2003
  ident: 10.1016/j.neuron.2011.02.027_bib57
  article-title: A computational substrate for incentive salience
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(03)00177-2
– volume: 55
  start-page: 189
  year: 1948
  ident: 10.1016/j.neuron.2011.02.027_bib87
  article-title: Cognitive maps in rats and men
  publication-title: Psychol. Rev.
  doi: 10.1037/h0061626
– volume: 12
  start-page: 20
  year: 2000
  ident: 10.1016/j.neuron.2011.02.027_bib49
  article-title: FMRI visualization of brain activity during a monetary incentive delay task
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0593
– volume: 21
  start-page: 2793
  year: 2001
  ident: 10.1016/j.neuron.2011.02.027_bib9
  article-title: Predictability modulates human brain response to reward
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-08-02793.2001
– volume: 11
  start-page: 299
  year: 2007
  ident: 10.1016/j.neuron.2011.02.027_bib39
  article-title: Deconstructing episodic memory with construction
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2007.05.001
– volume: 27
  start-page: 12176
  year: 2007
  ident: 10.1016/j.neuron.2011.02.027_bib43
  article-title: Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3761-07.2007
– volume: 29
  start-page: 14701
  year: 2009
  ident: 10.1016/j.neuron.2011.02.027_bib47
  article-title: Role of striatum in updating values of chosen actions
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2728-09.2009
– volume: 1104
  start-page: 35
  year: 2007
  ident: 10.1016/j.neuron.2011.02.027_bib66
  article-title: Model-based fMRI and its application to reward learning and decision making
  publication-title: Ann. N Y Acad. Sci.
  doi: 10.1196/annals.1390.022
– volume: 9
  start-page: 545
  year: 2008
  ident: 10.1016/j.neuron.2011.02.027_bib73
  article-title: A framework for studying the neurobiology of value-based decision making
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2357
– start-page: 497
  year: 2002
  ident: 10.1016/j.neuron.2011.02.027_bib21
  article-title: The role of learning in the operation of motivational systems. Stevens' Handbook of Experimental Psychology, Third Edition, Vol.3: Learning, Motivation, and Emotion
– volume: 104
  start-page: 16311
  year: 2007
  ident: 10.1016/j.neuron.2011.02.027_bib30
  article-title: Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0706111104
– volume: 1
  start-page: 210
  year: 1993
  ident: 10.1016/j.neuron.2011.02.027_bib31
  article-title: Assessing the significance of focal activations using their spatial extent
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460010306
– volume: 27
  start-page: 4019
  year: 2007
  ident: 10.1016/j.neuron.2011.02.027_bib89
  article-title: Determining the neural substrates of goal-directed learning in the human brain
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0564-07.2007
– volume: 13
  start-page: 400
  year: 2003
  ident: 10.1016/j.neuron.2011.02.027_bib46
  article-title: Coordination of actions and habits in the medial prefrontal cortex of rats
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/13.4.400
– volume: 28
  start-page: 5623
  year: 2008
  ident: 10.1016/j.neuron.2011.02.027_bib38
  article-title: Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1309-08.2008
– volume: 38
  start-page: 329
  year: 2003
  ident: 10.1016/j.neuron.2011.02.027_bib65
  article-title: Temporal difference models and reward-related learning in the human brain
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00169-7
– volume: 38
  start-page: 339
  year: 2003
  ident: 10.1016/j.neuron.2011.02.027_bib56
  article-title: Temporal prediction errors in a passive learning task activate human striatum
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00154-5
– volume: 11
  start-page: 880
  year: 2008
  ident: 10.1016/j.neuron.2011.02.027_bib19
  article-title: Regulating the expectation of reward via cognitive strategies
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2141
– ident: 10.1016/j.neuron.2011.02.027_bib14
  doi: 10.1093/acprof:oso/9780199600434.003.0001
– volume: 39
  start-page: 41
  year: 1998
  ident: 10.1016/j.neuron.2011.02.027_bib32
  article-title: Nonlinear event-related responses in fMRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910390109
– ident: 10.1016/j.neuron.2011.02.027_bib84
  doi: 10.1016/B978-1-55860-141-3.50030-4
– volume: 46
  start-page: 1004
  year: 2009
  ident: 10.1016/j.neuron.2011.02.027_bib82
  article-title: Bayesian model selection for group studies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.03.025
– volume: 19
  start-page: 181
  year: 2004
  ident: 10.1016/j.neuron.2011.02.027_bib92
  article-title: Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2004.03095.x
– volume: 35
  start-page: 48
  year: 2010
  ident: 10.1016/j.neuron.2011.02.027_bib2
  article-title: Human and rodent homologies in action control: Corticostriatal determinants of goal-directed and habitual action
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2009.131
– ident: 10.1016/j.neuron.2011.02.027_bib7
– volume: 27
  start-page: 9984
  year: 2007
  ident: 10.1016/j.neuron.2011.02.027_bib69
  article-title: Orbitofrontal cortex encodes willingness to pay in everyday economic transactions
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2131-07.2007
– volume: 49
  start-page: 772
  year: 2010
  ident: 10.1016/j.neuron.2011.02.027_bib78
  article-title: Selective impairment of prediction error signaling in human dorsolateral but not ventral striatum in Parkinson's disease patients: Evidence from a model-based fMRI study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.08.011
– volume: 84
  start-page: 3072
  year: 2000
  ident: 10.1016/j.neuron.2011.02.027_bib18
  article-title: Tracking the hemodynamic responses to reward and punishment in the striatum
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2000.84.6.3072
– year: 1911
  ident: 10.1016/j.neuron.2011.02.027_bib86
– volume: 14
  start-page: 769
  year: 2004
  ident: 10.1016/j.neuron.2011.02.027_bib64
  article-title: Reward representations and reward-related learning in the human brain: Insights from neuroimaging
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2004.10.016
– volume: 315
  start-page: 515
  year: 2007
  ident: 10.1016/j.neuron.2011.02.027_bib88
  article-title: The neural basis of loss aversion in decision-making under risk
  publication-title: Science
  doi: 10.1126/science.1134239
– volume: 58
  start-page: 967
  year: 2008
  ident: 10.1016/j.neuron.2011.02.027_bib91
  article-title: Striatal activity underlies novelty-based choice in humans
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.04.027
– volume: 104
  start-page: 9493
  year: 2007
  ident: 10.1016/j.neuron.2011.02.027_bib53
  article-title: Neural signature of fictive learning signals in a sequential investment task
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0608842104
– volume: 20
  start-page: 668
  year: 2007
  ident: 10.1016/j.neuron.2011.02.027_bib10
  article-title: Multiple model-based reinforcement learning explains dopamine neuronal activity
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2007.04.028
– volume: 130
  start-page: 43
  year: 2004
  ident: 10.1016/j.neuron.2011.02.027_bib4
  article-title: Thought disorder and nucleus accumbens in childhood: A structural MRI study
  publication-title: Psychiatry Res.
  doi: 10.1016/j.pscychresns.2003.10.001
– volume: 62
  start-page: 593
  year: 2009
  ident: 10.1016/j.neuron.2011.02.027_bib90
  article-title: Separate neural mechanisms underlie choices and strategic preferences in risky decision making
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.04.007
– year: 1994
  ident: 10.1016/j.neuron.2011.02.027_bib75
– volume: 22
  start-page: 513
  year: 2005
  ident: 10.1016/j.neuron.2011.02.027_bib93
  article-title: The role of the dorsomedial striatum in instrumental conditioning
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2005.04218.x
– volume: 105
  start-page: 5915
  year: 2008
  ident: 10.1016/j.neuron.2011.02.027_bib23
  article-title: Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0801489105
– volume: 31
  start-page: 415
  year: 2008
  ident: 10.1016/j.neuron.2011.02.027_bib74
  article-title: A unified framework for addiction: Vulnerabilities in the decision process
  publication-title: Behav. Brain Sci.
  doi: 10.1017/S0140525X0800472X
– volume: 10
  start-page: 1625
  year: 2007
  ident: 10.1016/j.neuron.2011.02.027_bib44
  article-title: The neural correlates of subjective value during intertemporal choice
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn2007
– volume: 14
  start-page: 1347
  year: 2002
  ident: 10.1016/j.neuron.2011.02.027_bib26
  article-title: Multiple model-based reinforcement learning
  publication-title: Neural Comput.
  doi: 10.1162/089976602753712972
– volume: 72
  start-page: 321
  year: 2008
  ident: 10.1016/j.neuron.2011.02.027_bib33
  article-title: Solving the credit assignment problem: Explicit and implicit learning of action sequences with probabilistic outcomes
  publication-title: Psychol. Res.
  doi: 10.1007/s00426-007-0113-7
– volume: 25
  start-page: 653
  year: 2005
  ident: 10.1016/j.neuron.2011.02.027_bib62
  article-title: Valid conjunction inference with the minimum statistic
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.12.005
– volume: 33b
  start-page: 77
  year: 1982
  ident: 10.1016/j.neuron.2011.02.027_bib1
  article-title: Variations in the sensitivity of instrumental responding to reinforcer devaluation
  publication-title: Q. J. Exp. Psychol.
  doi: 10.1080/14640748208400878
– volume: 8
  start-page: 1704
  year: 2005
  ident: 10.1016/j.neuron.2011.02.027_bib15
  article-title: Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1560
– volume: 441
  start-page: 876
  year: 2006
  ident: 10.1016/j.neuron.2011.02.027_bib17
  article-title: Cortical substrates for exploratory decisions in humans
  publication-title: Nature
  doi: 10.1038/nature04766
– volume: 12
  start-page: 961
  year: 1999
  ident: 10.1016/j.neuron.2011.02.027_bib25
  article-title: What are the computations of the cerebellum, the basal ganglia and the cerebral cortex?
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(99)00046-5
– volume: 105
  start-page: 6741
  year: 2008
  ident: 10.1016/j.neuron.2011.02.027_bib37
  article-title: Neural correlates of mentalizing-related computations during strategic interactions in humans
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0711099105
– volume: 13
  start-page: 103
  year: 1993
  ident: 10.1016/j.neuron.2011.02.027_bib60
  article-title: Prioritized sweeping: Reinforcement learning with less data and less time
  publication-title: Mach. Learn.
  doi: 10.1007/BF00993104
– volume: 27
  start-page: 12860
  year: 2007
  ident: 10.1016/j.neuron.2011.02.027_bib77
  article-title: Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2496-07.2007
– start-page: 215
  year: 1995
  ident: 10.1016/j.neuron.2011.02.027_bib5
  article-title: Adaptive Critics and the Basal Ganglia
– volume: 377
  start-page: 725
  year: 1995
  ident: 10.1016/j.neuron.2011.02.027_bib58
  article-title: Bee foraging in uncertain environments using predictive Hebbian learning
  publication-title: Nature
  doi: 10.1038/377725a0
– volume: 18
  start-page: 1163
  year: 2005
  ident: 10.1016/j.neuron.2011.02.027_bib42
  article-title: Hippocampal replay contributes to within session learning in a temporal difference reinforcement learning model
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2005.08.009
– volume: 9
  start-page: 1057
  year: 2006
  ident: 10.1016/j.neuron.2011.02.027_bib61
  article-title: Midbrain dopamine neurons encode decisions for future action
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1743
– volume: 104
  start-page: 1068
  year: 2010
  ident: 10.1016/j.neuron.2011.02.027_bib13
  article-title: A pallidus-habenula-dopamine pathway signals inferred stimulus values
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00158.2010
– volume: 84
  start-page: 555
  year: 2005
  ident: 10.1016/j.neuron.2011.02.027_bib51
  article-title: Dynamic response-by-response models of matching behavior in rhesus monkeys
  publication-title: J. Exp. Anal. Behav.
  doi: 10.1901/jeab.2005.110-04
– volume: 414
  start-page: 546
  year: 2001
  ident: 10.1016/j.neuron.2011.02.027_bib70
  article-title: Interactive memory systems in the human brain
  publication-title: Nature
  doi: 10.1038/35107080
– volume: 429
  start-page: 664
  year: 2004
  ident: 10.1016/j.neuron.2011.02.027_bib80
  article-title: Temporal difference models describe higher-order learning in humans
  publication-title: Nature
  doi: 10.1038/nature02581
– volume: 51
  start-page: 381
  year: 2006
  ident: 10.1016/j.neuron.2011.02.027_bib71
  article-title: Neural differentiation of expected reward and risk in human subcortical structures
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.06.024
– volume: 10
  start-page: 375
  year: 2006
  ident: 10.1016/j.neuron.2011.02.027_bib63
  article-title: A normative perspective on motivation
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2006.06.010
– volume: 442
  start-page: 1042
  year: 2006
  ident: 10.1016/j.neuron.2011.02.027_bib67
  article-title: Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans
  publication-title: Nature
  doi: 10.1038/nature05051
– volume: 119
  start-page: 3
  year: 1996
  ident: 10.1016/j.neuron.2011.02.027_bib81
  article-title: The empirical case for two systems of reasoning
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.119.1.3
– volume: 91
  start-page: 871
  year: 1999
  ident: 10.1016/j.neuron.2011.02.027_bib83
  article-title: A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(98)00697-6
– volume: 38
  start-page: 50
  year: 2010
  ident: 10.1016/j.neuron.2011.02.027_bib55
  article-title: Two-factor theory, the actor-critic model, and conditioned avoidance
  publication-title: Learn. Behav.
  doi: 10.3758/LB.38.1.50
SSID ssj0014591
Score 2.5862598
Snippet The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying...
The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1204
SubjectTerms Adult
Basal Ganglia - physiology
Behavior
Brain Mapping
Charitable foundations
Choice Behavior - physiology
Dopamine
Dopamine - metabolism
Female
Humans
Logistic Models
Magnetic Resonance Imaging
Male
Models, Neurological
Neurons - physiology
Neuropsychological Tests
Neurosciences
Reinforcement, Psychology
Studies
Valuation
Title Model-Based Influences on Humans' Choices and Striatal Prediction Errors
URI https://dx.doi.org/10.1016/j.neuron.2011.02.027
https://www.ncbi.nlm.nih.gov/pubmed/21435563
https://www.proquest.com/docview/1548418678
https://www.proquest.com/docview/858780097
https://www.proquest.com/docview/862784009
https://pubmed.ncbi.nlm.nih.gov/PMC3077926
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA9iKfSlVO3HtVbyUNqncLebj80-nodyVVpKrfTewm6SwxObld3zwf_emewHnqUVhLAPmwkkmWRmksz8hpBPLi88d3rJ4KgBHy8KVixlxmRe2BwUlrMxGcy372p-Lk4WcrFFZn0sDLpVdrK_lelRWnd_xt1sjq9Xq_HZROeIXs4R9AzUNAaac6FjEN_icHhJELLNmgfEDKn78Lno4xUxI0MH5JlCyf6lnv42Px96Ud5TS8evyMvOnqTTtss7ZMuHXbI3DXCW_nNLP9Po4RmvznfJ8zbx5O0emWMKtCt2CCrM0a99npKGVoHGW_3mC51dVChDaBEcPcPcHmCl0x81vusgL-lRXVd185qcHx_9ms1Zl1OBWbC01swtuVSZKqRLihJ0fZbkQnnhZFJ6n0y4W4LKd1CjrPZ5CaSwpS0vlc-tRTC5N2Q7VMG_IzTDwxrYM9wqLRDnPeFlnlqeauukS-2I8H4qje0AxzHvxZXpPcsuTcsAgwwwkxRKNiJsaHXdAm48Qp_1XDIbC8eATnik5X7PVNNt3MbgCU4gyJ8eETpUw5bDd5Qi-OqmMVrqTGMAzH9IFD7oAs2IvG1XyTCYFC1UqTh0fGP9DAQI-L1ZE1YXEfgb5HGWp-r9k4f8gbxo78Q5S8U-2V7XN_4jGFXr8oA8m57-_H16EHfPHcjpIY0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkQvCFoeCwV8QHCydhPHjn1sV612oa2Q2kp7sxLbqy4qSZVsD_33nclLLAgqIUU5xGMp9tgzY3v8fQCfvMmC8HrJcamBr5BkPFvKlEuTOYMOy7uGDOb0TM0uk68LudiCaX8XhtIqO9vf2vTGWndfxl1vjm9Wq_H5RBtCLxcEeoZuWj6CxxgNpMTfMF8cDkcJiWxp81Cak3h_f65J8mpAI4sOyTPGJ_2bf_oz_vw9jfIXv3T8HJ51ASU7aP_5BWyFYhf2DgpcTP-8Y59Zk-LZ7J3vwpOWefJuD2bEgXbND9GHeTbviUpqVhas2davv7DpVUlGhGWFZ-dE7oFhOvte0cEOKZMdVVVZ1S_h8vjoYjrjHakCdxhqrblfCuwklUkfZTk6-zQyiQqJl1EeQjQRfok-32OJcjqYHEVxTjuRq2CcIzS5V7BdlEV4Ayyl1RoGNMIpnRDQeyRyEzsRa-elj90IRN-V1nWI40R8cW371LIftlWAJQXYSYxPOgI-1LppETcekE97LdmNkWPRKTxQc79Xqu1mbm1pCZcQyp8eARuKcc7RQUpWhPK2tlrqVNMNmH-IKDrRRZkRvG5HydCYmEJUqQT--Mb4GQQI8XuzpFhdNcjfaJBTE6u3_93kj_B0dnF6Yk_mZ9_ewU67QS54nOzD9rq6De8xwlrnH5oZdA80vyMJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-Based+Influences+on+Humans%27+Choices+and+Striatal+Prediction+Errors&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Daw%2C+Nathaniel%C2%A0D.&rft.au=Gershman%2C+Samuel%C2%A0J.&rft.au=Seymour%2C+Ben&rft.au=Dayan%2C+Peter&rft.date=2011-03-24&rft.issn=0896-6273&rft.volume=69&rft.issue=6&rft.spage=1204&rft.epage=1215&rft_id=info:doi/10.1016%2Fj.neuron.2011.02.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuron_2011_02_027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon