Ferroelectric artificial synapse for neuromorphic computing and flexible applications
Research of artificial synapses is increasing in popularity with the development of bioelectronics and the appearance of wearable devices. Because the high-temperature treatment process of inorganic materials is not compatible with flexible substrates, organic ferroelectric materials that are easier...
Saved in:
Published in | Fundamental research (Beijing) Vol. 3; no. 6; pp. 960 - 966 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
China
Elsevier B.V
01.11.2023
KeAi Publishing KeAi Communications Co. Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Research of artificial synapses is increasing in popularity with the development of bioelectronics and the appearance of wearable devices. Because the high-temperature treatment process of inorganic materials is not compatible with flexible substrates, organic ferroelectric materials that are easier to process have emerged as alternatives. An organic synaptic device based on P(VDF-TrFE) was prepared in this study. The device showed reliable P/E endurance over 104 cycles and a data storage retention capability at 80 °C over 104 s. Simultaneously, it possessed excellent synaptic functions, including short-term/ long-term synaptic plasticity and spike-timing-dependent plasticity. In addition, the ferroelectric performance of the device remained stable even under bending (7 mm bending radius) or after 500 bending cycles. This work shows that low-temperature processed organic ferroelectric materials can provide new ideas for the future development of wearable electronics and flexible artificial synapses.
[Display omitted] |
---|---|
AbstractList | Research of artificial synapses is increasing in popularity with the development of bioelectronics and the appearance of wearable devices. Because the high-temperature treatment process of inorganic materials is not compatible with flexible substrates, organic ferroelectric materials that are easier to process have emerged as alternatives. An organic synaptic device based on P(VDF-TrFE) was prepared in this study. The device showed reliable P/E endurance over 104 cycles and a data storage retention capability at 80 °C over 104 s. Simultaneously, it possessed excellent synaptic functions, including short-term/ long-term synaptic plasticity and spike-timing-dependent plasticity. In addition, the ferroelectric performance of the device remained stable even under bending (7 mm bending radius) or after 500 bending cycles. This work shows that low-temperature processed organic ferroelectric materials can provide new ideas for the future development of wearable electronics and flexible artificial synapses.Research of artificial synapses is increasing in popularity with the development of bioelectronics and the appearance of wearable devices. Because the high-temperature treatment process of inorganic materials is not compatible with flexible substrates, organic ferroelectric materials that are easier to process have emerged as alternatives. An organic synaptic device based on P(VDF-TrFE) was prepared in this study. The device showed reliable P/E endurance over 104 cycles and a data storage retention capability at 80 °C over 104 s. Simultaneously, it possessed excellent synaptic functions, including short-term/ long-term synaptic plasticity and spike-timing-dependent plasticity. In addition, the ferroelectric performance of the device remained stable even under bending (7 mm bending radius) or after 500 bending cycles. This work shows that low-temperature processed organic ferroelectric materials can provide new ideas for the future development of wearable electronics and flexible artificial synapses. Research of artificial synapses is increasing in popularity with the development of bioelectronics and the appearance of wearable devices. Because the high-temperature treatment process of inorganic materials is not compatible with flexible substrates, organic ferroelectric materials that are easier to process have emerged as alternatives. An organic synaptic device based on P(VDF-TrFE) was prepared in this study. The device showed reliable P/E endurance over 104 cycles and a data storage retention capability at 80 °C over 104 s. Simultaneously, it possessed excellent synaptic functions, including short-term/ long-term synaptic plasticity and spike-timing-dependent plasticity. In addition, the ferroelectric performance of the device remained stable even under bending (7 mm bending radius) or after 500 bending cycles. This work shows that low-temperature processed organic ferroelectric materials can provide new ideas for the future development of wearable electronics and flexible artificial synapses. [Display omitted] Research of artificial synapses is increasing in popularity with the development of bioelectronics and the appearance of wearable devices. Because the high-temperature treatment process of inorganic materials is not compatible with flexible substrates, organic ferroelectric materials that are easier to process have emerged as alternatives. An organic synaptic device based on P(VDF-TrFE) was prepared in this study. The device showed reliable P/E endurance over 10 cycles and a data storage retention capability at 80 °C over 10 s. Simultaneously, it possessed excellent synaptic functions, including short-term/ long-term synaptic plasticity and spike-timing-dependent plasticity. In addition, the ferroelectric performance of the device remained stable even under bending (7 mm bending radius) or after 500 bending cycles. This work shows that low-temperature processed organic ferroelectric materials can provide new ideas for the future development of wearable electronics and flexible artificial synapses. Research of artificial synapses is increasing in popularity with the development of bioelectronics and the appearance of wearable devices. Because the high-temperature treatment process of inorganic materials is not compatible with flexible substrates, organic ferroelectric materials that are easier to process have emerged as alternatives. An organic synaptic device based on P(VDF-TrFE) was prepared in this study. The device showed reliable P/E endurance over 104 cycles and a data storage retention capability at 80 °C over 104 s. Simultaneously, it possessed excellent synaptic functions, including short-term/ long-term synaptic plasticity and spike-timing-dependent plasticity. In addition, the ferroelectric performance of the device remained stable even under bending (7 mm bending radius) or after 500 bending cycles. This work shows that low-temperature processed organic ferroelectric materials can provide new ideas for the future development of wearable electronics and flexible artificial synapses. Research of artificial synapses is increasing in popularity with the development of bioelectronics and the appearance of wearable devices. Because the high-temperature treatment process of inorganic materials is not compatible with flexible substrates, organic ferroelectric materials that are easier to process have emerged as alternatives. An organic synaptic device based on P(VDF-TrFE) was prepared in this study. The device showed reliable P/E endurance over 10 4 cycles and a data storage retention capability at 80 °C over 10 4 s. Simultaneously, it possessed excellent synaptic functions, including short-term/ long-term synaptic plasticity and spike-timing-dependent plasticity. In addition, the ferroelectric performance of the device remained stable even under bending (7 mm bending radius) or after 500 bending cycles. This work shows that low-temperature processed organic ferroelectric materials can provide new ideas for the future development of wearable electronics and flexible artificial synapses. Image, graphical abstract |
Author | Wang, Tian-Yu Ji, Li Sun, Qing-Qing Li, Qing-Xuan Liu, Wen-Jun Liu, Yi-Lun Cao, Yuan-Yuan Chen, Lin Zhang, David Wei Zhu, Hao |
Author_xml | – sequence: 1 givenname: Qing-Xuan orcidid: 0000-0001-5163-7958 surname: Li fullname: Li, Qing-Xuan organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China – sequence: 2 givenname: Yi-Lun surname: Liu fullname: Liu, Yi-Lun organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China – sequence: 3 givenname: Yuan-Yuan surname: Cao fullname: Cao, Yuan-Yuan organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China – sequence: 4 givenname: Tian-Yu surname: Wang fullname: Wang, Tian-Yu organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China – sequence: 5 givenname: Hao surname: Zhu fullname: Zhu, Hao organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China – sequence: 6 givenname: Li surname: Ji fullname: Ji, Li organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China – sequence: 7 givenname: Wen-Jun surname: Liu fullname: Liu, Wen-Jun email: wjliu@fudan.edu.cn organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China – sequence: 8 givenname: Qing-Qing surname: Sun fullname: Sun, Qing-Qing email: qqsun@fudan.edu.cn organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China – sequence: 9 givenname: David Wei surname: Zhang fullname: Zhang, David Wei organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China – sequence: 10 givenname: Lin surname: Chen fullname: Chen, Lin email: linchen@fudan.edu.cn organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38933007$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1rHDEMHUpKk6b5Az2UOfayG9meDw8USgltEwj00p6NR5Y3Xjz21J4Nzb-vN5uGpIeAwMZ670nW09vqKMRAVfWewZoB6863azslWnPgfA0loHlVnfCu61eCt_Loyf24Ost5CwBcMiYEf1MdCzkIAdCfVL--UUqRPOGSHNY6Lc46dNrX-S7oOVNtY6oD7VKcYppvCgbjNO8WFza1Dqa2nv640VOt59k71IuLIb-rXlvtM509nKelztefF5er6x_fry6-XK-w5XxZIXSNIGvaphWlO8sY2oH1yKUYJDPQEBoDYEpG8MZIRi2gsLy1gA0MVpxWVwddE_VWzclNOt2pqJ26f4hpo_Y_Qk_KgmQD2XGAARvJUTdmHMo4rBh1y4e2aH0-aM27cSKDFJak_TPR55ngbtQm3irG2NC3nSwKHx8UUvy9o7yoyWUk73WguMtKQF8saETbF-iHp8Ueq_wzpgD4AYAp5pzIPkIYqP0CqK3aL4DaL4CCEtAUkvyPhG65d6Q07PzL1E8HKhW7bh0lldFRQDIuld0o83Qv0f8CubPM2A |
CitedBy_id | crossref_primary_10_1016_j_mtphys_2024_101607 crossref_primary_10_1021_acsami_4c21545 crossref_primary_10_20517_ss_2024_77 crossref_primary_10_1088_2053_1583_adb8c3 crossref_primary_10_1002_adfm_202412832 crossref_primary_10_1021_acs_chemrev_4c00369 crossref_primary_10_1038_s41467_024_46878_5 crossref_primary_10_1021_acsanm_3c03397 crossref_primary_10_1109_LED_2024_3386710 crossref_primary_10_35848_1347_4065_adb820 |
Cites_doi | 10.1038/s41928-017-0006-8 10.1038/nnano.2016.70 10.1002/aelm.201600460 10.1126/science.1209236 10.1016/j.nanoen.2020.105648 10.1080/00150199008223826 10.1038/nmat3070 10.1002/adma.200900759 10.1021/acsami.8b03274 10.1002/adfm.201501427 10.1016/j.orgel.2017.05.017 10.1039/C6CP06004H 10.1039/D0NH00559B 10.1146/annurev.physiol.64.092501.114547 10.1039/C4TC00652F 10.1039/C7TC03037A 10.1021/acsami.9b19510 10.1021/acsami.0c07717 10.1002/cne.902960102 10.1002/adma.201101790 10.1080/01411598908206863 10.1038/ncomms14736 10.1088/0957-4484/24/38/382001 10.1038/nnano.2017.83 10.1016/S0001-8686(97)00017-1 10.1002/adma.201505898 10.1016/j.nanoen.2014.04.016 10.1038/nature03010 10.1080/10584580802541106 10.1109/JPROC.2015.2444094 10.1038/s41563-018-0248-5 10.1063/1.5116270 10.1038/ncomms12805 10.1038/nature06932 10.1039/C8NR07133K 10.1021/acsami.8b20827 10.1002/aelm.201700665 |
ContentType | Journal Article |
Copyright | 2022 2022 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. 2022 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. 2022 |
Copyright_xml | – notice: 2022 – notice: 2022 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. – notice: 2022 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. 2022 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.fmre.2022.02.004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2667-3258 |
EndPage | 966 |
ExternalDocumentID | oai_doaj_org_article_f0819efb909c482ca4db9133f3ba5295 PMC11197568 38933007 10_1016_j_fmre_2022_02_004 S2667325822001091 |
Genre | Journal Article |
GroupedDBID | 6I. AAEDW AAFTH AAXUO AEXQZ ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ ROL 0R~ AALRI AAYWO AAYXX ABDBF ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP CITATION M~E OK1 PGMZT RPM NPM 7X8 5PM |
ID | FETCH-LOGICAL-c522t-c0643efd5453028f11cf917c283981d04ecdd00d8f1324d81e50c3f25f0c409f3 |
IEDL.DBID | DOA |
ISSN | 2667-3258 2096-9457 |
IngestDate | Wed Aug 27 01:19:55 EDT 2025 Thu Aug 21 18:33:02 EDT 2025 Thu Jul 10 23:10:10 EDT 2025 Thu Jan 02 22:37:25 EST 2025 Tue Jul 01 01:56:15 EDT 2025 Thu Apr 24 23:02:20 EDT 2025 Fri Feb 23 02:40:19 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Ferroelectric Synaptic devices Wearable electronics Organic artificial synapse Neuromorphic computing |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2022 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c522t-c0643efd5453028f11cf917c283981d04ecdd00d8f1324d81e50c3f25f0c409f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5163-7958 |
OpenAccessLink | https://doaj.org/article/f0819efb909c482ca4db9133f3ba5295 |
PMID | 38933007 |
PQID | 3072814357 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f0819efb909c482ca4db9133f3ba5295 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11197568 proquest_miscellaneous_3072814357 pubmed_primary_38933007 crossref_primary_10_1016_j_fmre_2022_02_004 crossref_citationtrail_10_1016_j_fmre_2022_02_004 elsevier_sciencedirect_doi_10_1016_j_fmre_2022_02_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | China |
PublicationPlace_xml | – name: China |
PublicationTitle | Fundamental research (Beijing) |
PublicationTitleAlternate | Fundam Res |
PublicationYear | 2023 |
Publisher | Elsevier B.V KeAi Publishing KeAi Communications Co. Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Publishing – name: KeAi Communications Co. Ltd |
References | Pi, Zhang, Wen (bib0025) 2014; 7 Yan, Zhang, Yang (bib0017) 2017; 5 Lu, Shen, Shang (bib0022) 2020; 12 Wan, Zhu, Liu (bib0036) 2016; 28 Ho, Lee, Martin (bib0040) 2011; 334 Strukov, Snider, Stewart (bib0013) 2008; 453 Kong, Sun, Qian (bib0020) 2017; 47 Gianotti, Capizzi, Zamboni (bib0028) 1973; 55 Boyn, Grollier, Lecerf (bib0042) 2017; 8 Zhang, Ye, Zhou (bib0044) 2019; 29 Naber, Asadi, Blom (bib0023) 2010; 22 Lee, Lee, Lee (bib0014) 2011; 10 Jiang, Hu, Xie (bib0041) 2019; 11 West, Gundersen (bib0002) 1990; 296 Kuzum, Yu, Wong (bib0003) 2015; 24 H. Lodish, A. Berk, S.L. Zipursky, et al. Overview of neuron structure and function - molecular cell biology - ncbi bookshelf. W.h.freeman. (2000). Tuma, Pantazi, Gallo (bib0012) 2016; 11 Yoon, Ji, Lee (bib0016) 2018; 4 Wu, Zhang, Wan (bib0038) 2014; 2 Hua, Wu, Gao (bib0019) 2019; 6 Wei, Ni, Sun (bib0043) 2021; 81 Furukawa (bib0027) 2011; 104 Jin, Lu, Chanthad (bib0030) 2011; 23 Abbott, Regehr (bib0006) 2004; 431 Kim, Heo, Lee (bib0021) 2021; 6 Sheridan, Cai, Du (bib0005) 2017; 12 Lau, Liu, Chen (bib0034) 2013 Zidan, Strachan, Lu (bib0004) 2018; 1 Gupta, Serb, Khiat (bib0015) 2016; 7 Shao, Li, Ma (bib0045) 2020; 12 Indiveri, Liu (bib0011) 2015; 103 Ang, Zhou, Yew (bib0018) 2019; 115 Zucker, Regehr (bib0035) 2002; 64 Hasler, Marr (bib0001) 2013; 7 Furukawa (bib0029) 1989; 18 Yu, Zhu, Gao (bib0010) 2018; 10 Chen, Han, Shen (bib0026) 2017; 3 Furukawa (bib0032) 1997; 71 Yang, Shang, Chai (bib0037) 2017; 19 Irem, Manuel, Nandakumar (bib0008) 2017; 9 Zhu, Li, Liang (bib0009) 2019; 18 Jung, Yoon, Kang (bib0033) 2008; 100 Lill, Eftaiha, Huang (bib0024) 2019; 11 Du, Ma, Chang (bib0039) 2015; 25 Manfang, Shanming, Peng (bib0031) 2015 Lee (10.1016/j.fmre.2022.02.004_bib0014) 2011; 10 West (10.1016/j.fmre.2022.02.004_bib0002) 1990; 296 Kuzum (10.1016/j.fmre.2022.02.004_bib0003) 2015; 24 Boyn (10.1016/j.fmre.2022.02.004_bib0042) 2017; 8 Zidan (10.1016/j.fmre.2022.02.004_bib0004) 2018; 1 Hua (10.1016/j.fmre.2022.02.004_bib0019) 2019; 6 Indiveri (10.1016/j.fmre.2022.02.004_bib0011) 2015; 103 Manfang (10.1016/j.fmre.2022.02.004_bib0031) 2015 Yu (10.1016/j.fmre.2022.02.004_bib0010) 2018; 10 Du (10.1016/j.fmre.2022.02.004_bib0039) 2015; 25 Zhu (10.1016/j.fmre.2022.02.004_bib0009) 2019; 18 Jung (10.1016/j.fmre.2022.02.004_bib0033) 2008; 100 Gupta (10.1016/j.fmre.2022.02.004_bib0015) 2016; 7 Furukawa (10.1016/j.fmre.2022.02.004_bib0029) 1989; 18 Yoon (10.1016/j.fmre.2022.02.004_bib0016) 2018; 4 Furukawa (10.1016/j.fmre.2022.02.004_bib0032) 1997; 71 Hasler (10.1016/j.fmre.2022.02.004_bib0001) 2013; 7 Lu (10.1016/j.fmre.2022.02.004_bib0022) 2020; 12 Ho (10.1016/j.fmre.2022.02.004_bib0040) 2011; 334 Wan (10.1016/j.fmre.2022.02.004_bib0036) 2016; 28 Yang (10.1016/j.fmre.2022.02.004_bib0037) 2017; 19 Yan (10.1016/j.fmre.2022.02.004_bib0017) 2017; 5 Shao (10.1016/j.fmre.2022.02.004_bib0045) 2020; 12 Strukov (10.1016/j.fmre.2022.02.004_bib0013) 2008; 453 Kim (10.1016/j.fmre.2022.02.004_bib0021) 2021; 6 Irem (10.1016/j.fmre.2022.02.004_bib0008) 2017; 9 Lill (10.1016/j.fmre.2022.02.004_bib0024) 2019; 11 Ang (10.1016/j.fmre.2022.02.004_bib0018) 2019; 115 10.1016/j.fmre.2022.02.004_bib0007 Sheridan (10.1016/j.fmre.2022.02.004_bib0005) 2017; 12 Jin (10.1016/j.fmre.2022.02.004_bib0030) 2011; 23 Lau (10.1016/j.fmre.2022.02.004_bib0034) 2013 Zucker (10.1016/j.fmre.2022.02.004_bib0035) 2002; 64 Tuma (10.1016/j.fmre.2022.02.004_bib0012) 2016; 11 Jiang (10.1016/j.fmre.2022.02.004_bib0041) 2019; 11 Wei (10.1016/j.fmre.2022.02.004_bib0043) 2021; 81 Abbott (10.1016/j.fmre.2022.02.004_bib0006) 2004; 431 Wu (10.1016/j.fmre.2022.02.004_bib0038) 2014; 2 Furukawa (10.1016/j.fmre.2022.02.004_bib0027) 2011; 104 Zhang (10.1016/j.fmre.2022.02.004_bib0044) 2019; 29 Kong (10.1016/j.fmre.2022.02.004_bib0020) 2017; 47 Chen (10.1016/j.fmre.2022.02.004_bib0026) 2017; 3 Naber (10.1016/j.fmre.2022.02.004_bib0023) 2010; 22 Pi (10.1016/j.fmre.2022.02.004_bib0025) 2014; 7 Gianotti (10.1016/j.fmre.2022.02.004_bib0028) 1973; 55 |
References_xml | – volume: 9 start-page: 2514 year: 2017 ident: bib0008 article-title: Neuromorphic computing with multi-memristive synapses publication-title: Nat. Commun. – volume: 5 start-page: 11046 year: 2017 end-page: 11052 ident: bib0017 article-title: Highly improved performance in Zr publication-title: J. Mater. Chem. C – volume: 7 start-page: 12805 year: 2016 ident: bib0015 article-title: Real-time encoding and compression of neuronal spikes by metal-oxide memristors publication-title: Nat. Commun. – volume: 11 start-page: 1360 year: 2019 end-page: 1369 ident: bib0041 article-title: 2d electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration publication-title: Nanoscale – volume: 12 start-page: 26496 year: 2020 end-page: 26508 ident: bib0045 article-title: Highly sensitive strain sensor based on a stretchable and conductive poly (vinyl alcohol)/phytic acid/nh2-poss hydrogel with a 3d microporous structure publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 693 year: 2016 end-page: 699 ident: bib0012 article-title: Stochastic phase-change neurons publication-title: Nat. Nanotechnol. – year: 2013 ident: bib0034 article-title: Effect of annealing temperature on the morphology and piezoresponsecharacterisation of poly (vinylidene fluoride-trifluoroethylene) films via scanning probe microscopy publication-title: Adv. Condens. Matter Phys. – volume: 1 start-page: 22 year: 2018 end-page: 29 ident: bib0004 article-title: The future of electronics based on memristive systems publication-title: Nat. Electron. – volume: 12 start-page: 4673 year: 2020 end-page: 4677 ident: bib0022 article-title: Nonvolatile memory and artificial synapse based on the cu/p(vdf-trfe)/ni organic memtranstor publication-title: ACS Appl. Mater. Interfaces – volume: 334 start-page: 623 year: 2011 end-page: 628 ident: bib0040 article-title: The cell biology of synaptic plasticity publication-title: Science – volume: 24 year: 2015 ident: bib0003 article-title: Synaptic electronics: materials, devices and applications publication-title: Nanotechnology – volume: 6 year: 2019 ident: bib0019 article-title: A threshold switching selector based on highly ordered ag nanodots for x-point memory applications publication-title: Adv. Sci. – volume: 25 start-page: 4290 year: 2015 end-page: 4299 ident: bib0039 article-title: Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics publication-title: Adv. Funct. Mater. – volume: 47 start-page: 126 year: 2017 end-page: 132 ident: bib0020 article-title: Long-term synaptic plasticity simulated in ionic liquid/polymer hybrid electrolyte gated organic transistors publication-title: Org. Electron. – volume: 431 start-page: 796 year: 2004 end-page: 803 ident: bib0006 article-title: Synaptic computation publication-title: Nature – volume: 104 start-page: 229 year: 2011 end-page: 240 ident: bib0027 article-title: Recent advances in ferroelectric polymers publication-title: Ferroelectrics – volume: 2 start-page: 6249 year: 2014 end-page: 6255 ident: bib0038 article-title: Chitosan-based biopolysaccharide proton conductors for synaptic transistors on paper substrates publication-title: J. Mater. Chem. C – volume: 28 start-page: 3557 year: 2016 end-page: 3563 ident: bib0036 article-title: Proton-conducting graphene oxide-coupled neuron transistors for brain-inspired cognitive systems publication-title: Adv. Mater. – volume: 103 start-page: 1379 year: 2015 end-page: 1397 ident: bib0011 article-title: Memory and information processing in neuromorphic systems publication-title: Proc. IEEE – volume: 10 start-page: 16881 year: 2018 end-page: 16886 ident: bib0010 article-title: Chitosan-based polysaccharide-gated flexible indium tin oxide synaptic transistor with learning abilities publication-title: ACS Appl. Mater. Interfaces – volume: 29 year: 2019 ident: bib0044 article-title: Bioinspired artificial sensory nerve based on nafion memristor publication-title: Adv. Funct. Mater. – volume: 11 year: 2019 ident: bib0024 article-title: High-k fluoropolymer gate dielectric in electrically stable organic field-effect transistors publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 33 year: 2014 end-page: 41 ident: bib0025 article-title: Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (pvdf-trfe) thin film publication-title: Nano Energy – volume: 6 start-page: 139 year: 2021 end-page: 147 ident: bib0021 article-title: Ferroelectric polymer-based artificial synapse for neuromorphic computing publication-title: Nanoscale Horiz. – volume: 22 start-page: 933 year: 2010 end-page: 945 ident: bib0023 article-title: Organic nonvolatile memory devices based on ferroelectricity publication-title: Adv. Mater. – volume: 18 start-page: 141 year: 2019 ident: bib0009 article-title: Ionic modulation and ionic coupling effects in mos2 devices for neuromorphic computing publication-title: Nat. Mater. – volume: 115 year: 2019 ident: bib0018 article-title: On the area scalability of valence-change memristors for neuromorphic computing publication-title: Appl. Phys. Lett. – volume: 23 start-page: 3853 year: 2011 end-page: 3858 ident: bib0030 article-title: Multiferroic polymer composites with greatly enhanced magnetoelectric effect under a low magnetic bias publication-title: Adv. Mater. – volume: 18 start-page: 143 year: 1989 end-page: 211 ident: bib0029 article-title: Ferroelectric properties of vinylidene fluoride copolymers publication-title: Phase Trans. A Multinatl. J. – volume: 8 start-page: 1 year: 2017 end-page: 7 ident: bib0042 article-title: Learning through ferroelectric domain dynamics in solid-state synapses publication-title: Nat. Commun. – volume: 12 start-page: 784 year: 2017 end-page: 789 ident: bib0005 article-title: Sparse coding with memristor networks publication-title: Nat. Nanotechnol. – volume: 10 start-page: 625 year: 2011 end-page: 630 ident: bib0014 article-title: A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5x/TaO2x bilayer structures publication-title: Nat. Mater. – volume: 296 start-page: 1 year: 1990 end-page: 22 ident: bib0002 article-title: Unbiased stereological estimation of the number of neurons in the human hippocampus publication-title: J. Comp. Neurol. – volume: 7 start-page: 118 year: 2013 ident: bib0001 article-title: Finding a roadmap to achieve large neuromorphic hardware systems publication-title: Front. Neurosci. – reference: H. Lodish, A. Berk, S.L. Zipursky, et al. Overview of neuron structure and function - molecular cell biology - ncbi bookshelf. W.h.freeman. (2000). – volume: 4 year: 2018 ident: bib0016 article-title: Low-temperature-processed siox one diode–one resistor crossbar array and its flexible memory application publication-title: Adv. Electron. Mater. – volume: 19 start-page: 4190 year: 2017 end-page: 4198 ident: bib0037 article-title: Electrochemical-reaction-induced synaptic plasticity in moo x-based solid state electrochemical cells publication-title: Phys. Chem. Chem. Phys. – volume: 453 start-page: 80 year: 2008 end-page: 83 ident: bib0013 article-title: The missing memristor found publication-title: Nature – volume: 55 start-page: 501 year: 1973 end-page: 506 ident: bib0028 article-title: New aspects of polymorphism in polyvinylidenfluoride - its relations with morphology and crystallization kinetics publication-title: Chim. Ind. – volume: 3 year: 2017 ident: bib0026 article-title: Pvdf-based ferroelectric polymers in modern flexible electronics publication-title: Adv. Electron. Mater. – volume: 71 start-page: 183 year: 1997 end-page: 208 ident: bib0032 article-title: Structure and functional properties of ferroelectric polymers publication-title: Adv. Colloid Interface Sci. – volume: 81 year: 2021 ident: bib0043 article-title: Flexible electro-optical neuromorphic transistors with tunable synaptic plasticity and nociceptive behavior publication-title: Nano Energy – volume: 64 start-page: 355 year: 2002 end-page: 405 ident: bib0035 article-title: Short-term synaptic plasticity publication-title: Annu. Rev. Physiol. – start-page: 181 year: 2015 ident: bib0031 article-title: Ferroelectric polymer thin films for organic electronics publication-title: J. Nanomater. – volume: 100 start-page: 198 year: 2008 end-page: 205 ident: bib0033 article-title: Properties of ferroelectric p (vdf-trfe) 70/30 copolymer films as a gate dielectric publication-title: Integr. Ferroelectr. – volume: 1 start-page: 22 issue: 1 year: 2018 ident: 10.1016/j.fmre.2022.02.004_bib0004 article-title: The future of electronics based on memristive systems publication-title: Nat. Electron. doi: 10.1038/s41928-017-0006-8 – volume: 11 start-page: 693 issue: 8 year: 2016 ident: 10.1016/j.fmre.2022.02.004_bib0012 article-title: Stochastic phase-change neurons publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.70 – volume: 3 issue: 5 year: 2017 ident: 10.1016/j.fmre.2022.02.004_bib0026 article-title: Pvdf-based ferroelectric polymers in modern flexible electronics publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201600460 – volume: 334 start-page: 623 issue: 6056 year: 2011 ident: 10.1016/j.fmre.2022.02.004_bib0040 article-title: The cell biology of synaptic plasticity publication-title: Science doi: 10.1126/science.1209236 – volume: 81 year: 2021 ident: 10.1016/j.fmre.2022.02.004_bib0043 article-title: Flexible electro-optical neuromorphic transistors with tunable synaptic plasticity and nociceptive behavior publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105648 – volume: 7 start-page: 118 issue: 7 year: 2013 ident: 10.1016/j.fmre.2022.02.004_bib0001 article-title: Finding a roadmap to achieve large neuromorphic hardware systems publication-title: Front. Neurosci. – volume: 29 issue: 20 year: 2019 ident: 10.1016/j.fmre.2022.02.004_bib0044 article-title: Bioinspired artificial sensory nerve based on nafion memristor publication-title: Adv. Funct. Mater. – volume: 104 start-page: 229 issue: 1 year: 2011 ident: 10.1016/j.fmre.2022.02.004_bib0027 article-title: Recent advances in ferroelectric polymers publication-title: Ferroelectrics doi: 10.1080/00150199008223826 – volume: 10 start-page: 625 issue: 8 year: 2011 ident: 10.1016/j.fmre.2022.02.004_bib0014 article-title: A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5x/TaO2x bilayer structures publication-title: Nat. Mater. doi: 10.1038/nmat3070 – volume: 22 start-page: 933 issue: 9 year: 2010 ident: 10.1016/j.fmre.2022.02.004_bib0023 article-title: Organic nonvolatile memory devices based on ferroelectricity publication-title: Adv. Mater. doi: 10.1002/adma.200900759 – volume: 10 start-page: 16881 issue: 19 year: 2018 ident: 10.1016/j.fmre.2022.02.004_bib0010 article-title: Chitosan-based polysaccharide-gated flexible indium tin oxide synaptic transistor with learning abilities publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b03274 – volume: 25 start-page: 4290 issue: 27 year: 2015 ident: 10.1016/j.fmre.2022.02.004_bib0039 article-title: Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201501427 – volume: 47 start-page: 126 year: 2017 ident: 10.1016/j.fmre.2022.02.004_bib0020 article-title: Long-term synaptic plasticity simulated in ionic liquid/polymer hybrid electrolyte gated organic transistors publication-title: Org. Electron. doi: 10.1016/j.orgel.2017.05.017 – volume: 19 start-page: 4190 issue: 6 year: 2017 ident: 10.1016/j.fmre.2022.02.004_bib0037 article-title: Electrochemical-reaction-induced synaptic plasticity in moo x-based solid state electrochemical cells publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP06004H – volume: 6 start-page: 139 issue: 2 year: 2021 ident: 10.1016/j.fmre.2022.02.004_bib0021 article-title: Ferroelectric polymer-based artificial synapse for neuromorphic computing publication-title: Nanoscale Horiz. doi: 10.1039/D0NH00559B – volume: 64 start-page: 355 issue: 1 year: 2002 ident: 10.1016/j.fmre.2022.02.004_bib0035 article-title: Short-term synaptic plasticity publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev.physiol.64.092501.114547 – volume: 2 start-page: 6249 issue: 31 year: 2014 ident: 10.1016/j.fmre.2022.02.004_bib0038 article-title: Chitosan-based biopolysaccharide proton conductors for synaptic transistors on paper substrates publication-title: J. Mater. Chem. C doi: 10.1039/C4TC00652F – volume: 5 start-page: 11046 issue: 42 year: 2017 ident: 10.1016/j.fmre.2022.02.004_bib0017 article-title: Highly improved performance in Zr0.5Hf0.5O2 films inserted with graphene oxide quantum dots layer for resistive switching non-volatile memory publication-title: J. Mater. Chem. C doi: 10.1039/C7TC03037A – start-page: 181 year: 2015 ident: 10.1016/j.fmre.2022.02.004_bib0031 article-title: Ferroelectric polymer thin films for organic electronics publication-title: J. Nanomater. – volume: 12 start-page: 4673 issue: 4 year: 2020 ident: 10.1016/j.fmre.2022.02.004_bib0022 article-title: Nonvolatile memory and artificial synapse based on the cu/p(vdf-trfe)/ni organic memtranstor publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b19510 – volume: 12 start-page: 26496 issue: 23 year: 2020 ident: 10.1016/j.fmre.2022.02.004_bib0045 article-title: Highly sensitive strain sensor based on a stretchable and conductive poly (vinyl alcohol)/phytic acid/nh2-poss hydrogel with a 3d microporous structure publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c07717 – volume: 296 start-page: 1 issue: 1 year: 1990 ident: 10.1016/j.fmre.2022.02.004_bib0002 article-title: Unbiased stereological estimation of the number of neurons in the human hippocampus publication-title: J. Comp. Neurol. doi: 10.1002/cne.902960102 – volume: 23 start-page: 3853 issue: 33 year: 2011 ident: 10.1016/j.fmre.2022.02.004_bib0030 article-title: Multiferroic polymer composites with greatly enhanced magnetoelectric effect under a low magnetic bias publication-title: Adv. Mater. doi: 10.1002/adma.201101790 – ident: 10.1016/j.fmre.2022.02.004_bib0007 – volume: 18 start-page: 143 issue: 3-4 year: 1989 ident: 10.1016/j.fmre.2022.02.004_bib0029 article-title: Ferroelectric properties of vinylidene fluoride copolymers publication-title: Phase Trans. A Multinatl. J. doi: 10.1080/01411598908206863 – volume: 8 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.fmre.2022.02.004_bib0042 article-title: Learning through ferroelectric domain dynamics in solid-state synapses publication-title: Nat. Commun. doi: 10.1038/ncomms14736 – volume: 24 issue: 38 year: 2015 ident: 10.1016/j.fmre.2022.02.004_bib0003 article-title: Synaptic electronics: materials, devices and applications publication-title: Nanotechnology doi: 10.1088/0957-4484/24/38/382001 – volume: 12 start-page: 784 issue: 8 year: 2017 ident: 10.1016/j.fmre.2022.02.004_bib0005 article-title: Sparse coding with memristor networks publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.83 – volume: 71 start-page: 183 year: 1997 ident: 10.1016/j.fmre.2022.02.004_bib0032 article-title: Structure and functional properties of ferroelectric polymers publication-title: Adv. Colloid Interface Sci. doi: 10.1016/S0001-8686(97)00017-1 – volume: 9 start-page: 2514 issue: 1 year: 2017 ident: 10.1016/j.fmre.2022.02.004_bib0008 article-title: Neuromorphic computing with multi-memristive synapses publication-title: Nat. Commun. – volume: 28 start-page: 3557 issue: 18 year: 2016 ident: 10.1016/j.fmre.2022.02.004_bib0036 article-title: Proton-conducting graphene oxide-coupled neuron transistors for brain-inspired cognitive systems publication-title: Adv. Mater. doi: 10.1002/adma.201505898 – volume: 7 start-page: 33 year: 2014 ident: 10.1016/j.fmre.2022.02.004_bib0025 article-title: Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (pvdf-trfe) thin film publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.04.016 – volume: 431 start-page: 796 issue: 7010 year: 2004 ident: 10.1016/j.fmre.2022.02.004_bib0006 article-title: Synaptic computation publication-title: Nature doi: 10.1038/nature03010 – volume: 100 start-page: 198 issue: 1 year: 2008 ident: 10.1016/j.fmre.2022.02.004_bib0033 article-title: Properties of ferroelectric p (vdf-trfe) 70/30 copolymer films as a gate dielectric publication-title: Integr. Ferroelectr. doi: 10.1080/10584580802541106 – volume: 6 issue: 10 year: 2019 ident: 10.1016/j.fmre.2022.02.004_bib0019 article-title: A threshold switching selector based on highly ordered ag nanodots for x-point memory applications publication-title: Adv. Sci. – volume: 103 start-page: 1379 issue: 8 year: 2015 ident: 10.1016/j.fmre.2022.02.004_bib0011 article-title: Memory and information processing in neuromorphic systems publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2444094 – issue: 2013 year: 2013 ident: 10.1016/j.fmre.2022.02.004_bib0034 article-title: Effect of annealing temperature on the morphology and piezoresponsecharacterisation of poly (vinylidene fluoride-trifluoroethylene) films via scanning probe microscopy publication-title: Adv. Condens. Matter Phys. – volume: 55 start-page: 501 issue: 6 year: 1973 ident: 10.1016/j.fmre.2022.02.004_bib0028 article-title: New aspects of polymorphism in polyvinylidenfluoride - its relations with morphology and crystallization kinetics publication-title: Chim. Ind. – volume: 18 start-page: 141 issue: 2 year: 2019 ident: 10.1016/j.fmre.2022.02.004_bib0009 article-title: Ionic modulation and ionic coupling effects in mos2 devices for neuromorphic computing publication-title: Nat. Mater. doi: 10.1038/s41563-018-0248-5 – volume: 115 issue: 17 year: 2019 ident: 10.1016/j.fmre.2022.02.004_bib0018 article-title: On the area scalability of valence-change memristors for neuromorphic computing publication-title: Appl. Phys. Lett. doi: 10.1063/1.5116270 – volume: 7 start-page: 12805 year: 2016 ident: 10.1016/j.fmre.2022.02.004_bib0015 article-title: Real-time encoding and compression of neuronal spikes by metal-oxide memristors publication-title: Nat. Commun. doi: 10.1038/ncomms12805 – volume: 453 start-page: 80 issue: 7191 year: 2008 ident: 10.1016/j.fmre.2022.02.004_bib0013 article-title: The missing memristor found publication-title: Nature doi: 10.1038/nature06932 – volume: 11 start-page: 1360 issue: 3 year: 2019 ident: 10.1016/j.fmre.2022.02.004_bib0041 article-title: 2d electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration publication-title: Nanoscale doi: 10.1039/C8NR07133K – volume: 11 issue: 17 year: 2019 ident: 10.1016/j.fmre.2022.02.004_bib0024 article-title: High-k fluoropolymer gate dielectric in electrically stable organic field-effect transistors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b20827 – volume: 4 issue: 6 year: 2018 ident: 10.1016/j.fmre.2022.02.004_bib0016 article-title: Low-temperature-processed siox one diode–one resistor crossbar array and its flexible memory application publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201700665 |
SSID | ssj0002811332 ssib052855697 |
Score | 2.323639 |
Snippet | Research of artificial synapses is increasing in popularity with the development of bioelectronics and the appearance of wearable devices. Because the... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 960 |
SubjectTerms | Ferroelectric Neuromorphic computing Organic artificial synapse Synaptic devices Wearable electronics |
Title | Ferroelectric artificial synapse for neuromorphic computing and flexible applications |
URI | https://dx.doi.org/10.1016/j.fmre.2022.02.004 https://www.ncbi.nlm.nih.gov/pubmed/38933007 https://www.proquest.com/docview/3072814357 https://pubmed.ncbi.nlm.nih.gov/PMC11197568 https://doaj.org/article/f0819efb909c482ca4db9133f3ba5295 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykxfx2_oxInhQpJg2TdsdVZQh6MnBbiGfuKGdbPPgf-97TTdWBb0IPTVpmuS95P2Sl_weIWeOg41MrYuL3PI4U0LhPMhjnWjBfK4KbdGj-_iU9wfZw1AMV0J94ZmwQA8cOu7Ko81yXvdYz2RlalRmdQ8WVp5rhU4qnH3B5q0spsb1llECedLmlkw40OXfpsiLmaaBpDNrWaKasL9lkH4Czu_nJlcM0f0m2WgQJL0ONd8ia67aJlvNGJ3R84ZI-mKHDO7ddDoJgW5GhmJbA18EnX1W6n3mKCBWWjNavk2gvyGPqYM8gDmjqrLUI1umfnV01c29C-XePd_24yaMQmwAXM1jg6jDeQtYiUPH-CQxHhZpBoBFD9Aqy5yxljELKYCubJk4wQz3qfDMwOrP8z3SqSaVOyCUGW2VyxNdiDTLdaFy50TBVVqUIHTFIpIsulSahmMcQ128ysVhsrFEMUgUg2TwsCwil8tv3gPDxq-5b1BSy5zIjl2_AJ2Rjc7Iv3QmImIhZ9kAjQAgoKjRrz8_XSiFhFGIrhVVucnHTMJMCSoH0LOIyH5QkmUVERJygGIRKVvq02pDO6UavdRM3wk6eUVeHv5Hq4_IOrSFh4uUx6Qzn364E0BUc92tB0-33ur6AtvQIRo |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ferroelectric+artificial+synapse+for+neuromorphic+computing+and+flexible+applications&rft.jtitle=Fundamental+research+%28Beijing%29&rft.au=Li%2C+Qing-Xuan&rft.au=Liu%2C+Yi-Lun&rft.au=Cao%2C+Yuan-Yuan&rft.au=Wang%2C+Tian-Yu&rft.date=2023-11-01&rft.pub=KeAi+Publishing&rft.issn=2096-9457&rft.eissn=2667-3258&rft.volume=3&rft.issue=6&rft.spage=960&rft.epage=966&rft_id=info:doi/10.1016%2Fj.fmre.2022.02.004&rft.externalDocID=PMC11197568 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-3258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-3258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-3258&client=summon |