Ferroelectric artificial synapse for neuromorphic computing and flexible applications

Research of artificial synapses is increasing in popularity with the development of bioelectronics and the appearance of wearable devices. Because the high-temperature treatment process of inorganic materials is not compatible with flexible substrates, organic ferroelectric materials that are easier...

Full description

Saved in:
Bibliographic Details
Published inFundamental research (Beijing) Vol. 3; no. 6; pp. 960 - 966
Main Authors Li, Qing-Xuan, Liu, Yi-Lun, Cao, Yuan-Yuan, Wang, Tian-Yu, Zhu, Hao, Ji, Li, Liu, Wen-Jun, Sun, Qing-Qing, Zhang, David Wei, Chen, Lin
Format Journal Article
LanguageEnglish
Published China Elsevier B.V 01.11.2023
KeAi Publishing
KeAi Communications Co. Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Research of artificial synapses is increasing in popularity with the development of bioelectronics and the appearance of wearable devices. Because the high-temperature treatment process of inorganic materials is not compatible with flexible substrates, organic ferroelectric materials that are easier to process have emerged as alternatives. An organic synaptic device based on P(VDF-TrFE) was prepared in this study. The device showed reliable P/E endurance over 104 cycles and a data storage retention capability at 80 °C over 104 s. Simultaneously, it possessed excellent synaptic functions, including short-term/ long-term synaptic plasticity and spike-timing-dependent plasticity. In addition, the ferroelectric performance of the device remained stable even under bending (7 mm bending radius) or after 500 bending cycles. This work shows that low-temperature processed organic ferroelectric materials can provide new ideas for the future development of wearable electronics and flexible artificial synapses. [Display omitted]
AbstractList Research of artificial synapses is increasing in popularity with the development of bioelectronics and the appearance of wearable devices. Because the high-temperature treatment process of inorganic materials is not compatible with flexible substrates, organic ferroelectric materials that are easier to process have emerged as alternatives. An organic synaptic device based on P(VDF-TrFE) was prepared in this study. The device showed reliable P/E endurance over 104 cycles and a data storage retention capability at 80 °C over 104 s. Simultaneously, it possessed excellent synaptic functions, including short-term/ long-term synaptic plasticity and spike-timing-dependent plasticity. In addition, the ferroelectric performance of the device remained stable even under bending (7 mm bending radius) or after 500 bending cycles. This work shows that low-temperature processed organic ferroelectric materials can provide new ideas for the future development of wearable electronics and flexible artificial synapses.Research of artificial synapses is increasing in popularity with the development of bioelectronics and the appearance of wearable devices. Because the high-temperature treatment process of inorganic materials is not compatible with flexible substrates, organic ferroelectric materials that are easier to process have emerged as alternatives. An organic synaptic device based on P(VDF-TrFE) was prepared in this study. The device showed reliable P/E endurance over 104 cycles and a data storage retention capability at 80 °C over 104 s. Simultaneously, it possessed excellent synaptic functions, including short-term/ long-term synaptic plasticity and spike-timing-dependent plasticity. In addition, the ferroelectric performance of the device remained stable even under bending (7 mm bending radius) or after 500 bending cycles. This work shows that low-temperature processed organic ferroelectric materials can provide new ideas for the future development of wearable electronics and flexible artificial synapses.
Research of artificial synapses is increasing in popularity with the development of bioelectronics and the appearance of wearable devices. Because the high-temperature treatment process of inorganic materials is not compatible with flexible substrates, organic ferroelectric materials that are easier to process have emerged as alternatives. An organic synaptic device based on P(VDF-TrFE) was prepared in this study. The device showed reliable P/E endurance over 104 cycles and a data storage retention capability at 80 °C over 104 s. Simultaneously, it possessed excellent synaptic functions, including short-term/ long-term synaptic plasticity and spike-timing-dependent plasticity. In addition, the ferroelectric performance of the device remained stable even under bending (7 mm bending radius) or after 500 bending cycles. This work shows that low-temperature processed organic ferroelectric materials can provide new ideas for the future development of wearable electronics and flexible artificial synapses. [Display omitted]
Research of artificial synapses is increasing in popularity with the development of bioelectronics and the appearance of wearable devices. Because the high-temperature treatment process of inorganic materials is not compatible with flexible substrates, organic ferroelectric materials that are easier to process have emerged as alternatives. An organic synaptic device based on P(VDF-TrFE) was prepared in this study. The device showed reliable P/E endurance over 10 cycles and a data storage retention capability at 80 °C over 10 s. Simultaneously, it possessed excellent synaptic functions, including short-term/ long-term synaptic plasticity and spike-timing-dependent plasticity. In addition, the ferroelectric performance of the device remained stable even under bending (7 mm bending radius) or after 500 bending cycles. This work shows that low-temperature processed organic ferroelectric materials can provide new ideas for the future development of wearable electronics and flexible artificial synapses.
Research of artificial synapses is increasing in popularity with the development of bioelectronics and the appearance of wearable devices. Because the high-temperature treatment process of inorganic materials is not compatible with flexible substrates, organic ferroelectric materials that are easier to process have emerged as alternatives. An organic synaptic device based on P(VDF-TrFE) was prepared in this study. The device showed reliable P/E endurance over 104 cycles and a data storage retention capability at 80 °C over 104 s. Simultaneously, it possessed excellent synaptic functions, including short-term/ long-term synaptic plasticity and spike-timing-dependent plasticity. In addition, the ferroelectric performance of the device remained stable even under bending (7 mm bending radius) or after 500 bending cycles. This work shows that low-temperature processed organic ferroelectric materials can provide new ideas for the future development of wearable electronics and flexible artificial synapses.
Research of artificial synapses is increasing in popularity with the development of bioelectronics and the appearance of wearable devices. Because the high-temperature treatment process of inorganic materials is not compatible with flexible substrates, organic ferroelectric materials that are easier to process have emerged as alternatives. An organic synaptic device based on P(VDF-TrFE) was prepared in this study. The device showed reliable P/E endurance over 10 4 cycles and a data storage retention capability at 80 °C over 10 4 s. Simultaneously, it possessed excellent synaptic functions, including short-term/ long-term synaptic plasticity and spike-timing-dependent plasticity. In addition, the ferroelectric performance of the device remained stable even under bending (7 mm bending radius) or after 500 bending cycles. This work shows that low-temperature processed organic ferroelectric materials can provide new ideas for the future development of wearable electronics and flexible artificial synapses. Image, graphical abstract
Author Wang, Tian-Yu
Ji, Li
Sun, Qing-Qing
Li, Qing-Xuan
Liu, Wen-Jun
Liu, Yi-Lun
Cao, Yuan-Yuan
Chen, Lin
Zhang, David Wei
Zhu, Hao
Author_xml – sequence: 1
  givenname: Qing-Xuan
  orcidid: 0000-0001-5163-7958
  surname: Li
  fullname: Li, Qing-Xuan
  organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
– sequence: 2
  givenname: Yi-Lun
  surname: Liu
  fullname: Liu, Yi-Lun
  organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
– sequence: 3
  givenname: Yuan-Yuan
  surname: Cao
  fullname: Cao, Yuan-Yuan
  organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
– sequence: 4
  givenname: Tian-Yu
  surname: Wang
  fullname: Wang, Tian-Yu
  organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
– sequence: 5
  givenname: Hao
  surname: Zhu
  fullname: Zhu, Hao
  organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
– sequence: 6
  givenname: Li
  surname: Ji
  fullname: Ji, Li
  organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
– sequence: 7
  givenname: Wen-Jun
  surname: Liu
  fullname: Liu, Wen-Jun
  email: wjliu@fudan.edu.cn
  organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
– sequence: 8
  givenname: Qing-Qing
  surname: Sun
  fullname: Sun, Qing-Qing
  email: qqsun@fudan.edu.cn
  organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
– sequence: 9
  givenname: David Wei
  surname: Zhang
  fullname: Zhang, David Wei
  organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
– sequence: 10
  givenname: Lin
  surname: Chen
  fullname: Chen, Lin
  email: linchen@fudan.edu.cn
  organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38933007$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1rHDEMHUpKk6b5Az2UOfayG9meDw8USgltEwj00p6NR5Y3Xjz21J4Nzb-vN5uGpIeAwMZ670nW09vqKMRAVfWewZoB6863azslWnPgfA0loHlVnfCu61eCt_Loyf24Ost5CwBcMiYEf1MdCzkIAdCfVL--UUqRPOGSHNY6Lc46dNrX-S7oOVNtY6oD7VKcYppvCgbjNO8WFza1Dqa2nv640VOt59k71IuLIb-rXlvtM509nKelztefF5er6x_fry6-XK-w5XxZIXSNIGvaphWlO8sY2oH1yKUYJDPQEBoDYEpG8MZIRi2gsLy1gA0MVpxWVwddE_VWzclNOt2pqJ26f4hpo_Y_Qk_KgmQD2XGAARvJUTdmHMo4rBh1y4e2aH0-aM27cSKDFJak_TPR55ngbtQm3irG2NC3nSwKHx8UUvy9o7yoyWUk73WguMtKQF8saETbF-iHp8Ueq_wzpgD4AYAp5pzIPkIYqP0CqK3aL4DaL4CCEtAUkvyPhG65d6Q07PzL1E8HKhW7bh0lldFRQDIuld0o83Qv0f8CubPM2A
CitedBy_id crossref_primary_10_1016_j_mtphys_2024_101607
crossref_primary_10_1021_acsami_4c21545
crossref_primary_10_20517_ss_2024_77
crossref_primary_10_1088_2053_1583_adb8c3
crossref_primary_10_1002_adfm_202412832
crossref_primary_10_1021_acs_chemrev_4c00369
crossref_primary_10_1038_s41467_024_46878_5
crossref_primary_10_1021_acsanm_3c03397
crossref_primary_10_1109_LED_2024_3386710
crossref_primary_10_35848_1347_4065_adb820
Cites_doi 10.1038/s41928-017-0006-8
10.1038/nnano.2016.70
10.1002/aelm.201600460
10.1126/science.1209236
10.1016/j.nanoen.2020.105648
10.1080/00150199008223826
10.1038/nmat3070
10.1002/adma.200900759
10.1021/acsami.8b03274
10.1002/adfm.201501427
10.1016/j.orgel.2017.05.017
10.1039/C6CP06004H
10.1039/D0NH00559B
10.1146/annurev.physiol.64.092501.114547
10.1039/C4TC00652F
10.1039/C7TC03037A
10.1021/acsami.9b19510
10.1021/acsami.0c07717
10.1002/cne.902960102
10.1002/adma.201101790
10.1080/01411598908206863
10.1038/ncomms14736
10.1088/0957-4484/24/38/382001
10.1038/nnano.2017.83
10.1016/S0001-8686(97)00017-1
10.1002/adma.201505898
10.1016/j.nanoen.2014.04.016
10.1038/nature03010
10.1080/10584580802541106
10.1109/JPROC.2015.2444094
10.1038/s41563-018-0248-5
10.1063/1.5116270
10.1038/ncomms12805
10.1038/nature06932
10.1039/C8NR07133K
10.1021/acsami.8b20827
10.1002/aelm.201700665
ContentType Journal Article
Copyright 2022
2022 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
2022 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. 2022
Copyright_xml – notice: 2022
– notice: 2022 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
– notice: 2022 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. 2022
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.fmre.2022.02.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2667-3258
EndPage 966
ExternalDocumentID oai_doaj_org_article_f0819efb909c482ca4db9133f3ba5295
PMC11197568
38933007
10_1016_j_fmre_2022_02_004
S2667325822001091
Genre Journal Article
GroupedDBID 6I.
AAEDW
AAFTH
AAXUO
AEXQZ
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
ROL
0R~
AALRI
AAYWO
AAYXX
ABDBF
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
CITATION
M~E
OK1
PGMZT
RPM
NPM
7X8
5PM
ID FETCH-LOGICAL-c522t-c0643efd5453028f11cf917c283981d04ecdd00d8f1324d81e50c3f25f0c409f3
IEDL.DBID DOA
ISSN 2667-3258
2096-9457
IngestDate Wed Aug 27 01:19:55 EDT 2025
Thu Aug 21 18:33:02 EDT 2025
Thu Jul 10 23:10:10 EDT 2025
Thu Jan 02 22:37:25 EST 2025
Tue Jul 01 01:56:15 EDT 2025
Thu Apr 24 23:02:20 EDT 2025
Fri Feb 23 02:40:19 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Ferroelectric
Synaptic devices
Wearable electronics
Organic artificial synapse
Neuromorphic computing
Language English
License This is an open access article under the CC BY-NC-ND license.
2022 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-c0643efd5453028f11cf917c283981d04ecdd00d8f1324d81e50c3f25f0c409f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5163-7958
OpenAccessLink https://doaj.org/article/f0819efb909c482ca4db9133f3ba5295
PMID 38933007
PQID 3072814357
PQPubID 23479
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_f0819efb909c482ca4db9133f3ba5295
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11197568
proquest_miscellaneous_3072814357
pubmed_primary_38933007
crossref_primary_10_1016_j_fmre_2022_02_004
crossref_citationtrail_10_1016_j_fmre_2022_02_004
elsevier_sciencedirect_doi_10_1016_j_fmre_2022_02_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace China
PublicationPlace_xml – name: China
PublicationTitle Fundamental research (Beijing)
PublicationTitleAlternate Fundam Res
PublicationYear 2023
Publisher Elsevier B.V
KeAi Publishing
KeAi Communications Co. Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Publishing
– name: KeAi Communications Co. Ltd
References Pi, Zhang, Wen (bib0025) 2014; 7
Yan, Zhang, Yang (bib0017) 2017; 5
Lu, Shen, Shang (bib0022) 2020; 12
Wan, Zhu, Liu (bib0036) 2016; 28
Ho, Lee, Martin (bib0040) 2011; 334
Strukov, Snider, Stewart (bib0013) 2008; 453
Kong, Sun, Qian (bib0020) 2017; 47
Gianotti, Capizzi, Zamboni (bib0028) 1973; 55
Boyn, Grollier, Lecerf (bib0042) 2017; 8
Zhang, Ye, Zhou (bib0044) 2019; 29
Naber, Asadi, Blom (bib0023) 2010; 22
Lee, Lee, Lee (bib0014) 2011; 10
Jiang, Hu, Xie (bib0041) 2019; 11
West, Gundersen (bib0002) 1990; 296
Kuzum, Yu, Wong (bib0003) 2015; 24
H. Lodish, A. Berk, S.L. Zipursky, et al. Overview of neuron structure and function - molecular cell biology - ncbi bookshelf. W.h.freeman. (2000).
Tuma, Pantazi, Gallo (bib0012) 2016; 11
Yoon, Ji, Lee (bib0016) 2018; 4
Wu, Zhang, Wan (bib0038) 2014; 2
Hua, Wu, Gao (bib0019) 2019; 6
Wei, Ni, Sun (bib0043) 2021; 81
Furukawa (bib0027) 2011; 104
Jin, Lu, Chanthad (bib0030) 2011; 23
Abbott, Regehr (bib0006) 2004; 431
Kim, Heo, Lee (bib0021) 2021; 6
Sheridan, Cai, Du (bib0005) 2017; 12
Lau, Liu, Chen (bib0034) 2013
Zidan, Strachan, Lu (bib0004) 2018; 1
Gupta, Serb, Khiat (bib0015) 2016; 7
Shao, Li, Ma (bib0045) 2020; 12
Indiveri, Liu (bib0011) 2015; 103
Ang, Zhou, Yew (bib0018) 2019; 115
Zucker, Regehr (bib0035) 2002; 64
Hasler, Marr (bib0001) 2013; 7
Furukawa (bib0029) 1989; 18
Yu, Zhu, Gao (bib0010) 2018; 10
Chen, Han, Shen (bib0026) 2017; 3
Furukawa (bib0032) 1997; 71
Yang, Shang, Chai (bib0037) 2017; 19
Irem, Manuel, Nandakumar (bib0008) 2017; 9
Zhu, Li, Liang (bib0009) 2019; 18
Jung, Yoon, Kang (bib0033) 2008; 100
Lill, Eftaiha, Huang (bib0024) 2019; 11
Du, Ma, Chang (bib0039) 2015; 25
Manfang, Shanming, Peng (bib0031) 2015
Lee (10.1016/j.fmre.2022.02.004_bib0014) 2011; 10
West (10.1016/j.fmre.2022.02.004_bib0002) 1990; 296
Kuzum (10.1016/j.fmre.2022.02.004_bib0003) 2015; 24
Boyn (10.1016/j.fmre.2022.02.004_bib0042) 2017; 8
Zidan (10.1016/j.fmre.2022.02.004_bib0004) 2018; 1
Hua (10.1016/j.fmre.2022.02.004_bib0019) 2019; 6
Indiveri (10.1016/j.fmre.2022.02.004_bib0011) 2015; 103
Manfang (10.1016/j.fmre.2022.02.004_bib0031) 2015
Yu (10.1016/j.fmre.2022.02.004_bib0010) 2018; 10
Du (10.1016/j.fmre.2022.02.004_bib0039) 2015; 25
Zhu (10.1016/j.fmre.2022.02.004_bib0009) 2019; 18
Jung (10.1016/j.fmre.2022.02.004_bib0033) 2008; 100
Gupta (10.1016/j.fmre.2022.02.004_bib0015) 2016; 7
Furukawa (10.1016/j.fmre.2022.02.004_bib0029) 1989; 18
Yoon (10.1016/j.fmre.2022.02.004_bib0016) 2018; 4
Furukawa (10.1016/j.fmre.2022.02.004_bib0032) 1997; 71
Hasler (10.1016/j.fmre.2022.02.004_bib0001) 2013; 7
Lu (10.1016/j.fmre.2022.02.004_bib0022) 2020; 12
Ho (10.1016/j.fmre.2022.02.004_bib0040) 2011; 334
Wan (10.1016/j.fmre.2022.02.004_bib0036) 2016; 28
Yang (10.1016/j.fmre.2022.02.004_bib0037) 2017; 19
Yan (10.1016/j.fmre.2022.02.004_bib0017) 2017; 5
Shao (10.1016/j.fmre.2022.02.004_bib0045) 2020; 12
Strukov (10.1016/j.fmre.2022.02.004_bib0013) 2008; 453
Kim (10.1016/j.fmre.2022.02.004_bib0021) 2021; 6
Irem (10.1016/j.fmre.2022.02.004_bib0008) 2017; 9
Lill (10.1016/j.fmre.2022.02.004_bib0024) 2019; 11
Ang (10.1016/j.fmre.2022.02.004_bib0018) 2019; 115
10.1016/j.fmre.2022.02.004_bib0007
Sheridan (10.1016/j.fmre.2022.02.004_bib0005) 2017; 12
Jin (10.1016/j.fmre.2022.02.004_bib0030) 2011; 23
Lau (10.1016/j.fmre.2022.02.004_bib0034) 2013
Zucker (10.1016/j.fmre.2022.02.004_bib0035) 2002; 64
Tuma (10.1016/j.fmre.2022.02.004_bib0012) 2016; 11
Jiang (10.1016/j.fmre.2022.02.004_bib0041) 2019; 11
Wei (10.1016/j.fmre.2022.02.004_bib0043) 2021; 81
Abbott (10.1016/j.fmre.2022.02.004_bib0006) 2004; 431
Wu (10.1016/j.fmre.2022.02.004_bib0038) 2014; 2
Furukawa (10.1016/j.fmre.2022.02.004_bib0027) 2011; 104
Zhang (10.1016/j.fmre.2022.02.004_bib0044) 2019; 29
Kong (10.1016/j.fmre.2022.02.004_bib0020) 2017; 47
Chen (10.1016/j.fmre.2022.02.004_bib0026) 2017; 3
Naber (10.1016/j.fmre.2022.02.004_bib0023) 2010; 22
Pi (10.1016/j.fmre.2022.02.004_bib0025) 2014; 7
Gianotti (10.1016/j.fmre.2022.02.004_bib0028) 1973; 55
References_xml – volume: 9
  start-page: 2514
  year: 2017
  ident: bib0008
  article-title: Neuromorphic computing with multi-memristive synapses
  publication-title: Nat. Commun.
– volume: 5
  start-page: 11046
  year: 2017
  end-page: 11052
  ident: bib0017
  article-title: Highly improved performance in Zr
  publication-title: J. Mater. Chem. C
– volume: 7
  start-page: 12805
  year: 2016
  ident: bib0015
  article-title: Real-time encoding and compression of neuronal spikes by metal-oxide memristors
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1360
  year: 2019
  end-page: 1369
  ident: bib0041
  article-title: 2d electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration
  publication-title: Nanoscale
– volume: 12
  start-page: 26496
  year: 2020
  end-page: 26508
  ident: bib0045
  article-title: Highly sensitive strain sensor based on a stretchable and conductive poly (vinyl alcohol)/phytic acid/nh2-poss hydrogel with a 3d microporous structure
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 693
  year: 2016
  end-page: 699
  ident: bib0012
  article-title: Stochastic phase-change neurons
  publication-title: Nat. Nanotechnol.
– year: 2013
  ident: bib0034
  article-title: Effect of annealing temperature on the morphology and piezoresponsecharacterisation of poly (vinylidene fluoride-trifluoroethylene) films via scanning probe microscopy
  publication-title: Adv. Condens. Matter Phys.
– volume: 1
  start-page: 22
  year: 2018
  end-page: 29
  ident: bib0004
  article-title: The future of electronics based on memristive systems
  publication-title: Nat. Electron.
– volume: 12
  start-page: 4673
  year: 2020
  end-page: 4677
  ident: bib0022
  article-title: Nonvolatile memory and artificial synapse based on the cu/p(vdf-trfe)/ni organic memtranstor
  publication-title: ACS Appl. Mater. Interfaces
– volume: 334
  start-page: 623
  year: 2011
  end-page: 628
  ident: bib0040
  article-title: The cell biology of synaptic plasticity
  publication-title: Science
– volume: 24
  year: 2015
  ident: bib0003
  article-title: Synaptic electronics: materials, devices and applications
  publication-title: Nanotechnology
– volume: 6
  year: 2019
  ident: bib0019
  article-title: A threshold switching selector based on highly ordered ag nanodots for x-point memory applications
  publication-title: Adv. Sci.
– volume: 25
  start-page: 4290
  year: 2015
  end-page: 4299
  ident: bib0039
  article-title: Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics
  publication-title: Adv. Funct. Mater.
– volume: 47
  start-page: 126
  year: 2017
  end-page: 132
  ident: bib0020
  article-title: Long-term synaptic plasticity simulated in ionic liquid/polymer hybrid electrolyte gated organic transistors
  publication-title: Org. Electron.
– volume: 431
  start-page: 796
  year: 2004
  end-page: 803
  ident: bib0006
  article-title: Synaptic computation
  publication-title: Nature
– volume: 104
  start-page: 229
  year: 2011
  end-page: 240
  ident: bib0027
  article-title: Recent advances in ferroelectric polymers
  publication-title: Ferroelectrics
– volume: 2
  start-page: 6249
  year: 2014
  end-page: 6255
  ident: bib0038
  article-title: Chitosan-based biopolysaccharide proton conductors for synaptic transistors on paper substrates
  publication-title: J. Mater. Chem. C
– volume: 28
  start-page: 3557
  year: 2016
  end-page: 3563
  ident: bib0036
  article-title: Proton-conducting graphene oxide-coupled neuron transistors for brain-inspired cognitive systems
  publication-title: Adv. Mater.
– volume: 103
  start-page: 1379
  year: 2015
  end-page: 1397
  ident: bib0011
  article-title: Memory and information processing in neuromorphic systems
  publication-title: Proc. IEEE
– volume: 10
  start-page: 16881
  year: 2018
  end-page: 16886
  ident: bib0010
  article-title: Chitosan-based polysaccharide-gated flexible indium tin oxide synaptic transistor with learning abilities
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  year: 2019
  ident: bib0044
  article-title: Bioinspired artificial sensory nerve based on nafion memristor
  publication-title: Adv. Funct. Mater.
– volume: 11
  year: 2019
  ident: bib0024
  article-title: High-k fluoropolymer gate dielectric in electrically stable organic field-effect transistors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 33
  year: 2014
  end-page: 41
  ident: bib0025
  article-title: Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (pvdf-trfe) thin film
  publication-title: Nano Energy
– volume: 6
  start-page: 139
  year: 2021
  end-page: 147
  ident: bib0021
  article-title: Ferroelectric polymer-based artificial synapse for neuromorphic computing
  publication-title: Nanoscale Horiz.
– volume: 22
  start-page: 933
  year: 2010
  end-page: 945
  ident: bib0023
  article-title: Organic nonvolatile memory devices based on ferroelectricity
  publication-title: Adv. Mater.
– volume: 18
  start-page: 141
  year: 2019
  ident: bib0009
  article-title: Ionic modulation and ionic coupling effects in mos2 devices for neuromorphic computing
  publication-title: Nat. Mater.
– volume: 115
  year: 2019
  ident: bib0018
  article-title: On the area scalability of valence-change memristors for neuromorphic computing
  publication-title: Appl. Phys. Lett.
– volume: 23
  start-page: 3853
  year: 2011
  end-page: 3858
  ident: bib0030
  article-title: Multiferroic polymer composites with greatly enhanced magnetoelectric effect under a low magnetic bias
  publication-title: Adv. Mater.
– volume: 18
  start-page: 143
  year: 1989
  end-page: 211
  ident: bib0029
  article-title: Ferroelectric properties of vinylidene fluoride copolymers
  publication-title: Phase Trans. A Multinatl. J.
– volume: 8
  start-page: 1
  year: 2017
  end-page: 7
  ident: bib0042
  article-title: Learning through ferroelectric domain dynamics in solid-state synapses
  publication-title: Nat. Commun.
– volume: 12
  start-page: 784
  year: 2017
  end-page: 789
  ident: bib0005
  article-title: Sparse coding with memristor networks
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 625
  year: 2011
  end-page: 630
  ident: bib0014
  article-title: A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5x/TaO2x bilayer structures
  publication-title: Nat. Mater.
– volume: 296
  start-page: 1
  year: 1990
  end-page: 22
  ident: bib0002
  article-title: Unbiased stereological estimation of the number of neurons in the human hippocampus
  publication-title: J. Comp. Neurol.
– volume: 7
  start-page: 118
  year: 2013
  ident: bib0001
  article-title: Finding a roadmap to achieve large neuromorphic hardware systems
  publication-title: Front. Neurosci.
– reference: H. Lodish, A. Berk, S.L. Zipursky, et al. Overview of neuron structure and function - molecular cell biology - ncbi bookshelf. W.h.freeman. (2000).
– volume: 4
  year: 2018
  ident: bib0016
  article-title: Low-temperature-processed siox one diode–one resistor crossbar array and its flexible memory application
  publication-title: Adv. Electron. Mater.
– volume: 19
  start-page: 4190
  year: 2017
  end-page: 4198
  ident: bib0037
  article-title: Electrochemical-reaction-induced synaptic plasticity in moo x-based solid state electrochemical cells
  publication-title: Phys. Chem. Chem. Phys.
– volume: 453
  start-page: 80
  year: 2008
  end-page: 83
  ident: bib0013
  article-title: The missing memristor found
  publication-title: Nature
– volume: 55
  start-page: 501
  year: 1973
  end-page: 506
  ident: bib0028
  article-title: New aspects of polymorphism in polyvinylidenfluoride - its relations with morphology and crystallization kinetics
  publication-title: Chim. Ind.
– volume: 3
  year: 2017
  ident: bib0026
  article-title: Pvdf-based ferroelectric polymers in modern flexible electronics
  publication-title: Adv. Electron. Mater.
– volume: 71
  start-page: 183
  year: 1997
  end-page: 208
  ident: bib0032
  article-title: Structure and functional properties of ferroelectric polymers
  publication-title: Adv. Colloid Interface Sci.
– volume: 81
  year: 2021
  ident: bib0043
  article-title: Flexible electro-optical neuromorphic transistors with tunable synaptic plasticity and nociceptive behavior
  publication-title: Nano Energy
– volume: 64
  start-page: 355
  year: 2002
  end-page: 405
  ident: bib0035
  article-title: Short-term synaptic plasticity
  publication-title: Annu. Rev. Physiol.
– start-page: 181
  year: 2015
  ident: bib0031
  article-title: Ferroelectric polymer thin films for organic electronics
  publication-title: J. Nanomater.
– volume: 100
  start-page: 198
  year: 2008
  end-page: 205
  ident: bib0033
  article-title: Properties of ferroelectric p (vdf-trfe) 70/30 copolymer films as a gate dielectric
  publication-title: Integr. Ferroelectr.
– volume: 1
  start-page: 22
  issue: 1
  year: 2018
  ident: 10.1016/j.fmre.2022.02.004_bib0004
  article-title: The future of electronics based on memristive systems
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-017-0006-8
– volume: 11
  start-page: 693
  issue: 8
  year: 2016
  ident: 10.1016/j.fmre.2022.02.004_bib0012
  article-title: Stochastic phase-change neurons
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.70
– volume: 3
  issue: 5
  year: 2017
  ident: 10.1016/j.fmre.2022.02.004_bib0026
  article-title: Pvdf-based ferroelectric polymers in modern flexible electronics
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201600460
– volume: 334
  start-page: 623
  issue: 6056
  year: 2011
  ident: 10.1016/j.fmre.2022.02.004_bib0040
  article-title: The cell biology of synaptic plasticity
  publication-title: Science
  doi: 10.1126/science.1209236
– volume: 81
  year: 2021
  ident: 10.1016/j.fmre.2022.02.004_bib0043
  article-title: Flexible electro-optical neuromorphic transistors with tunable synaptic plasticity and nociceptive behavior
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105648
– volume: 7
  start-page: 118
  issue: 7
  year: 2013
  ident: 10.1016/j.fmre.2022.02.004_bib0001
  article-title: Finding a roadmap to achieve large neuromorphic hardware systems
  publication-title: Front. Neurosci.
– volume: 29
  issue: 20
  year: 2019
  ident: 10.1016/j.fmre.2022.02.004_bib0044
  article-title: Bioinspired artificial sensory nerve based on nafion memristor
  publication-title: Adv. Funct. Mater.
– volume: 104
  start-page: 229
  issue: 1
  year: 2011
  ident: 10.1016/j.fmre.2022.02.004_bib0027
  article-title: Recent advances in ferroelectric polymers
  publication-title: Ferroelectrics
  doi: 10.1080/00150199008223826
– volume: 10
  start-page: 625
  issue: 8
  year: 2011
  ident: 10.1016/j.fmre.2022.02.004_bib0014
  article-title: A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5x/TaO2x bilayer structures
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3070
– volume: 22
  start-page: 933
  issue: 9
  year: 2010
  ident: 10.1016/j.fmre.2022.02.004_bib0023
  article-title: Organic nonvolatile memory devices based on ferroelectricity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200900759
– volume: 10
  start-page: 16881
  issue: 19
  year: 2018
  ident: 10.1016/j.fmre.2022.02.004_bib0010
  article-title: Chitosan-based polysaccharide-gated flexible indium tin oxide synaptic transistor with learning abilities
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b03274
– volume: 25
  start-page: 4290
  issue: 27
  year: 2015
  ident: 10.1016/j.fmre.2022.02.004_bib0039
  article-title: Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201501427
– volume: 47
  start-page: 126
  year: 2017
  ident: 10.1016/j.fmre.2022.02.004_bib0020
  article-title: Long-term synaptic plasticity simulated in ionic liquid/polymer hybrid electrolyte gated organic transistors
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2017.05.017
– volume: 19
  start-page: 4190
  issue: 6
  year: 2017
  ident: 10.1016/j.fmre.2022.02.004_bib0037
  article-title: Electrochemical-reaction-induced synaptic plasticity in moo x-based solid state electrochemical cells
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP06004H
– volume: 6
  start-page: 139
  issue: 2
  year: 2021
  ident: 10.1016/j.fmre.2022.02.004_bib0021
  article-title: Ferroelectric polymer-based artificial synapse for neuromorphic computing
  publication-title: Nanoscale Horiz.
  doi: 10.1039/D0NH00559B
– volume: 64
  start-page: 355
  issue: 1
  year: 2002
  ident: 10.1016/j.fmre.2022.02.004_bib0035
  article-title: Short-term synaptic plasticity
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev.physiol.64.092501.114547
– volume: 2
  start-page: 6249
  issue: 31
  year: 2014
  ident: 10.1016/j.fmre.2022.02.004_bib0038
  article-title: Chitosan-based biopolysaccharide proton conductors for synaptic transistors on paper substrates
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC00652F
– volume: 5
  start-page: 11046
  issue: 42
  year: 2017
  ident: 10.1016/j.fmre.2022.02.004_bib0017
  article-title: Highly improved performance in Zr0.5Hf0.5O2 films inserted with graphene oxide quantum dots layer for resistive switching non-volatile memory
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC03037A
– start-page: 181
  year: 2015
  ident: 10.1016/j.fmre.2022.02.004_bib0031
  article-title: Ferroelectric polymer thin films for organic electronics
  publication-title: J. Nanomater.
– volume: 12
  start-page: 4673
  issue: 4
  year: 2020
  ident: 10.1016/j.fmre.2022.02.004_bib0022
  article-title: Nonvolatile memory and artificial synapse based on the cu/p(vdf-trfe)/ni organic memtranstor
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b19510
– volume: 12
  start-page: 26496
  issue: 23
  year: 2020
  ident: 10.1016/j.fmre.2022.02.004_bib0045
  article-title: Highly sensitive strain sensor based on a stretchable and conductive poly (vinyl alcohol)/phytic acid/nh2-poss hydrogel with a 3d microporous structure
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c07717
– volume: 296
  start-page: 1
  issue: 1
  year: 1990
  ident: 10.1016/j.fmre.2022.02.004_bib0002
  article-title: Unbiased stereological estimation of the number of neurons in the human hippocampus
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.902960102
– volume: 23
  start-page: 3853
  issue: 33
  year: 2011
  ident: 10.1016/j.fmre.2022.02.004_bib0030
  article-title: Multiferroic polymer composites with greatly enhanced magnetoelectric effect under a low magnetic bias
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201101790
– ident: 10.1016/j.fmre.2022.02.004_bib0007
– volume: 18
  start-page: 143
  issue: 3-4
  year: 1989
  ident: 10.1016/j.fmre.2022.02.004_bib0029
  article-title: Ferroelectric properties of vinylidene fluoride copolymers
  publication-title: Phase Trans. A Multinatl. J.
  doi: 10.1080/01411598908206863
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.fmre.2022.02.004_bib0042
  article-title: Learning through ferroelectric domain dynamics in solid-state synapses
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14736
– volume: 24
  issue: 38
  year: 2015
  ident: 10.1016/j.fmre.2022.02.004_bib0003
  article-title: Synaptic electronics: materials, devices and applications
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/38/382001
– volume: 12
  start-page: 784
  issue: 8
  year: 2017
  ident: 10.1016/j.fmre.2022.02.004_bib0005
  article-title: Sparse coding with memristor networks
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.83
– volume: 71
  start-page: 183
  year: 1997
  ident: 10.1016/j.fmre.2022.02.004_bib0032
  article-title: Structure and functional properties of ferroelectric polymers
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/S0001-8686(97)00017-1
– volume: 9
  start-page: 2514
  issue: 1
  year: 2017
  ident: 10.1016/j.fmre.2022.02.004_bib0008
  article-title: Neuromorphic computing with multi-memristive synapses
  publication-title: Nat. Commun.
– volume: 28
  start-page: 3557
  issue: 18
  year: 2016
  ident: 10.1016/j.fmre.2022.02.004_bib0036
  article-title: Proton-conducting graphene oxide-coupled neuron transistors for brain-inspired cognitive systems
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505898
– volume: 7
  start-page: 33
  year: 2014
  ident: 10.1016/j.fmre.2022.02.004_bib0025
  article-title: Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (pvdf-trfe) thin film
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.04.016
– volume: 431
  start-page: 796
  issue: 7010
  year: 2004
  ident: 10.1016/j.fmre.2022.02.004_bib0006
  article-title: Synaptic computation
  publication-title: Nature
  doi: 10.1038/nature03010
– volume: 100
  start-page: 198
  issue: 1
  year: 2008
  ident: 10.1016/j.fmre.2022.02.004_bib0033
  article-title: Properties of ferroelectric p (vdf-trfe) 70/30 copolymer films as a gate dielectric
  publication-title: Integr. Ferroelectr.
  doi: 10.1080/10584580802541106
– volume: 6
  issue: 10
  year: 2019
  ident: 10.1016/j.fmre.2022.02.004_bib0019
  article-title: A threshold switching selector based on highly ordered ag nanodots for x-point memory applications
  publication-title: Adv. Sci.
– volume: 103
  start-page: 1379
  issue: 8
  year: 2015
  ident: 10.1016/j.fmre.2022.02.004_bib0011
  article-title: Memory and information processing in neuromorphic systems
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2444094
– issue: 2013
  year: 2013
  ident: 10.1016/j.fmre.2022.02.004_bib0034
  article-title: Effect of annealing temperature on the morphology and piezoresponsecharacterisation of poly (vinylidene fluoride-trifluoroethylene) films via scanning probe microscopy
  publication-title: Adv. Condens. Matter Phys.
– volume: 55
  start-page: 501
  issue: 6
  year: 1973
  ident: 10.1016/j.fmre.2022.02.004_bib0028
  article-title: New aspects of polymorphism in polyvinylidenfluoride - its relations with morphology and crystallization kinetics
  publication-title: Chim. Ind.
– volume: 18
  start-page: 141
  issue: 2
  year: 2019
  ident: 10.1016/j.fmre.2022.02.004_bib0009
  article-title: Ionic modulation and ionic coupling effects in mos2 devices for neuromorphic computing
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0248-5
– volume: 115
  issue: 17
  year: 2019
  ident: 10.1016/j.fmre.2022.02.004_bib0018
  article-title: On the area scalability of valence-change memristors for neuromorphic computing
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5116270
– volume: 7
  start-page: 12805
  year: 2016
  ident: 10.1016/j.fmre.2022.02.004_bib0015
  article-title: Real-time encoding and compression of neuronal spikes by metal-oxide memristors
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12805
– volume: 453
  start-page: 80
  issue: 7191
  year: 2008
  ident: 10.1016/j.fmre.2022.02.004_bib0013
  article-title: The missing memristor found
  publication-title: Nature
  doi: 10.1038/nature06932
– volume: 11
  start-page: 1360
  issue: 3
  year: 2019
  ident: 10.1016/j.fmre.2022.02.004_bib0041
  article-title: 2d electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration
  publication-title: Nanoscale
  doi: 10.1039/C8NR07133K
– volume: 11
  issue: 17
  year: 2019
  ident: 10.1016/j.fmre.2022.02.004_bib0024
  article-title: High-k fluoropolymer gate dielectric in electrically stable organic field-effect transistors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b20827
– volume: 4
  issue: 6
  year: 2018
  ident: 10.1016/j.fmre.2022.02.004_bib0016
  article-title: Low-temperature-processed siox one diode–one resistor crossbar array and its flexible memory application
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201700665
SSID ssj0002811332
ssib052855697
Score 2.323639
Snippet Research of artificial synapses is increasing in popularity with the development of bioelectronics and the appearance of wearable devices. Because the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 960
SubjectTerms Ferroelectric
Neuromorphic computing
Organic artificial synapse
Synaptic devices
Wearable electronics
Title Ferroelectric artificial synapse for neuromorphic computing and flexible applications
URI https://dx.doi.org/10.1016/j.fmre.2022.02.004
https://www.ncbi.nlm.nih.gov/pubmed/38933007
https://www.proquest.com/docview/3072814357
https://pubmed.ncbi.nlm.nih.gov/PMC11197568
https://doaj.org/article/f0819efb909c482ca4db9133f3ba5295
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykxfx2_oxInhQpJg2TdsdVZQh6MnBbiGfuKGdbPPgf-97TTdWBb0IPTVpmuS95P2Sl_weIWeOg41MrYuL3PI4U0LhPMhjnWjBfK4KbdGj-_iU9wfZw1AMV0J94ZmwQA8cOu7Ko81yXvdYz2RlalRmdQ8WVp5rhU4qnH3B5q0spsb1llECedLmlkw40OXfpsiLmaaBpDNrWaKasL9lkH4Czu_nJlcM0f0m2WgQJL0ONd8ia67aJlvNGJ3R84ZI-mKHDO7ddDoJgW5GhmJbA18EnX1W6n3mKCBWWjNavk2gvyGPqYM8gDmjqrLUI1umfnV01c29C-XePd_24yaMQmwAXM1jg6jDeQtYiUPH-CQxHhZpBoBFD9Aqy5yxljELKYCubJk4wQz3qfDMwOrP8z3SqSaVOyCUGW2VyxNdiDTLdaFy50TBVVqUIHTFIpIsulSahmMcQ128ysVhsrFEMUgUg2TwsCwil8tv3gPDxq-5b1BSy5zIjl2_AJ2Rjc7Iv3QmImIhZ9kAjQAgoKjRrz8_XSiFhFGIrhVVucnHTMJMCSoH0LOIyH5QkmUVERJygGIRKVvq02pDO6UavdRM3wk6eUVeHv5Hq4_IOrSFh4uUx6Qzn364E0BUc92tB0-33ur6AtvQIRo
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ferroelectric+artificial+synapse+for+neuromorphic+computing+and+flexible+applications&rft.jtitle=Fundamental+research+%28Beijing%29&rft.au=Li%2C+Qing-Xuan&rft.au=Liu%2C+Yi-Lun&rft.au=Cao%2C+Yuan-Yuan&rft.au=Wang%2C+Tian-Yu&rft.date=2023-11-01&rft.pub=KeAi+Publishing&rft.issn=2096-9457&rft.eissn=2667-3258&rft.volume=3&rft.issue=6&rft.spage=960&rft.epage=966&rft_id=info:doi/10.1016%2Fj.fmre.2022.02.004&rft.externalDocID=PMC11197568
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-3258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-3258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-3258&client=summon