Diurnal rhythm and stress regulate dendritic architecture and spine density of pyramidal neurons in the rat infralimbic cortex
The medial prefrontal cortex (mPFC) participates in several higher order cognitive functions and is involved in the regulation of the stress response. The infralimbic cortex (ILC), the most ventral part of the mPFC, receives a strong afferent input from the master circadian pacemaker, the suprachias...
Saved in:
Published in | Behavioural brain research Vol. 205; no. 2; pp. 406 - 413 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Shannon
Elsevier B.V
28.12.2009
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The medial prefrontal cortex (mPFC) participates in several higher order cognitive functions and is involved in the regulation of the stress response. The infralimbic cortex (ILC), the most ventral part of the mPFC, receives a strong afferent input from the master circadian pacemaker, the suprachiasmatic nucleus. This fact raises the possibility that, similarly to stress, the diurnal rhythm may affect structural plasticity of neurons in the ILC. Here we investigated, whether diurnal changes in combination with immobilization stress have any impact on the dendritic morphology of layer III pyramidal neurons in the ILC. Prefrontal cortices were collected from control rats at two different time points of the diurnal cycle (12
h apart), and from rats exposed to 1-week of daily restraint stress either during their active or resting period. Dendritic architecture and spine density of Golgi–Cox stained neurons were digitally reconstructed and analyzed. We found that in control rats during the active period, the basilar dendrites were always longer and more complex, and had more spines than during the resting period. Similar although less pronounced diurnal differences exist in the apical dendrites. Stress affected dendritic architecture in a way that the diurnal differences either disappeared or became reduced in their magnitude. Our findings indicate that the diurnal rhythm has a unique impact on the structural plasticity of pyramidal cells in the ILC and that stress interferes with this form of neuroplasticity. |
---|---|
AbstractList | The medial prefrontal cortex (mPFC) participates in several higher order cognitive functions and is involved in the regulation of the stress response. The infralimbic cortex (ILC), the most ventral part of the mPFC, receives a strong afferent input from the master circadian pacemaker, the suprachiasmatic nucleus. This fact raises the possibility that, similarly to stress, the diurnal rhythm may affect structural plasticity of neurons in the ILC. Here we investigated, whether diurnal changes in combination with immobilization stress have any impact on the dendritic morphology of layer III pyramidal neurons in the ILC. Prefrontal cortices were collected from control rats at two different time points of the diurnal cycle (12h apart), and from rats exposed to 1-week of daily restraint stress either during their active or resting period. Dendritic architecture and spine density of Golgi-Cox stained neurons were digitally reconstructed and analyzed. We found that in control rats during the active period, the basilar dendrites were always longer and more complex, and had more spines than during the resting period. Similar although less pronounced diurnal differences exist in the apical dendrites. Stress affected dendritic architecture in a way that the diurnal differences either disappeared or became reduced in their magnitude. Our findings indicate that the diurnal rhythm has a unique impact on the structural plasticity of pyramidal cells in the ILC and that stress interferes with this form of neuroplasticity. The medial prefrontal cortex (mPFC) participates in several higher order cognitive functions and is involved in the regulation of the stress response. The infralimbic cortex (ILC), the most ventral part of the mPFC, receives a strong afferent input from the master circadian pacemaker, the suprachiasmatic nucleus. This fact raises the possibility that, similarly to stress, the diurnal rhythm may affect structural plasticity of neurons in the ILC. Here we investigated, whether diurnal changes in combination with immobilization stress have any impact on the dendritic morphology of layer III pyramidal neurons in the ILC. Prefrontal cortices were collected from control rats at two different time points of the diurnal cycle (12h apart), and from rats exposed to 1-week of daily restraint stress either during their active or resting period. Dendritic architecture and spine density of Golgi-Cox stained neurons were digitally reconstructed and analyzed. We found that in control rats during the active period, the basilar dendrites were always longer and more complex, and had more spines than during the resting period. Similar although less pronounced diurnal differences exist in the apical dendrites. Stress affected dendritic architecture in a way that the diurnal differences either disappeared or became reduced in their magnitude. Our findings indicate that the diurnal rhythm has a unique impact on the structural plasticity of pyramidal cells in the ILC and that stress interferes with this form of neuroplasticity.The medial prefrontal cortex (mPFC) participates in several higher order cognitive functions and is involved in the regulation of the stress response. The infralimbic cortex (ILC), the most ventral part of the mPFC, receives a strong afferent input from the master circadian pacemaker, the suprachiasmatic nucleus. This fact raises the possibility that, similarly to stress, the diurnal rhythm may affect structural plasticity of neurons in the ILC. Here we investigated, whether diurnal changes in combination with immobilization stress have any impact on the dendritic morphology of layer III pyramidal neurons in the ILC. Prefrontal cortices were collected from control rats at two different time points of the diurnal cycle (12h apart), and from rats exposed to 1-week of daily restraint stress either during their active or resting period. Dendritic architecture and spine density of Golgi-Cox stained neurons were digitally reconstructed and analyzed. We found that in control rats during the active period, the basilar dendrites were always longer and more complex, and had more spines than during the resting period. Similar although less pronounced diurnal differences exist in the apical dendrites. Stress affected dendritic architecture in a way that the diurnal differences either disappeared or became reduced in their magnitude. Our findings indicate that the diurnal rhythm has a unique impact on the structural plasticity of pyramidal cells in the ILC and that stress interferes with this form of neuroplasticity. The medial prefrontal cortex (mPFC) participates in several higher order cognitive functions and is involved in the regulation of the stress response. The infralimbic cortex (ILC), the most ventral part of the mPFC, receives a strong afferent input from the master circadian pacemaker, the suprachiasmatic nucleus. This fact raises the possibility that, similarly to stress, the diurnal rhythm may affect structural plasticity of neurons in the ILC. Here we investigated, whether diurnal changes in combination with immobilization stress have any impact on the dendritic morphology of layer III pyramidal neurons in the ILC. Prefrontal cortices were collected from control rats at two different time points of the diurnal cycle (12 h apart), and from rats exposed to 1-week of daily restraint stress either during their active or resting period. Dendritic architecture and spine density of Golgi–Cox stained neurons were digitally reconstructed and analyzed. We found that in control rats during the active period, the basilar dendrites were always longer and more complex, and had more spines than during the resting period. Similar although less pronounced diurnal differences exist in the apical dendrites. Stress affected dendritic architecture in a way that the diurnal differences either disappeared or became reduced in their magnitude. Our findings indicate that the diurnal rhythm has a unique impact on the structural plasticity of pyramidal cells in the ILC and that stress interferes with this form of neuroplasticity. |
Author | Fuchs, Eberhard Czéh, Boldizsár Flügge, Gabriele Perez-Cruz, Claudia Simon, Mária |
Author_xml | – sequence: 1 givenname: Claudia surname: Perez-Cruz fullname: Perez-Cruz, Claudia organization: Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany – sequence: 2 givenname: Mária surname: Simon fullname: Simon, Mária organization: Department of Psychiatry and Psychotherapy, Medical School, University of Pécs, Hungary – sequence: 3 givenname: Gabriele surname: Flügge fullname: Flügge, Gabriele organization: Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany – sequence: 4 givenname: Eberhard surname: Fuchs fullname: Fuchs, Eberhard organization: Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany – sequence: 5 givenname: Boldizsár surname: Czéh fullname: Czéh, Boldizsár email: bczeh@cnl-dpz.de, czeh@mpipsykl.mpg.de organization: Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22119745$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19643147$$D View this record in MEDLINE/PubMed |
BookMark | eNp90U-P1CAYBnBi1rizqx_Ai-Gie-r4QqG08WTW9U-yiRc9EwpvHSYtHYFunIufXcYZNfEwJ0j4PW-A54pchDkgIc8ZrBmw5vV23fdxzQG6Nag1cPaIrFireKWk6C7IqpimEjVvL8lVSlsAECDZE3LJukbUTKgV-fnOLzGYkcbNPm8maoKjKUdMiUb8towmI3UYXPTZW2qi3fiMNi8Rj3Tnw2-QfN7TeaC7fTSTd2VgwCXOIVEfaN4gjSaX7RDN6Ke-jLJzzPjjKXk8mDHhs9N6Tb6-v_ty-7G6__zh0-3b-8pKznPVM8MbiVINALauD7dvZddgjw23UDuBgwNnhq6VrLOyHsoJQitkV6hirr4mN8e5uzh_XzBlPflkcRxNwHlJWtUCVAtCFPnqrOTQSeAcCnxxgks_odO76CcT9_rP3xbw8gRMsmYsTw_Wp7-Oc8Y6JWRx7OhsnFOKOPwbBfrQs97q0rM-9KxB6dJzyaj_MtZnk_0ccjR-PJt8c0xi-e4Hj1En6zFYdD6WYrWb_Zn0L1vYwzk |
CODEN | BBREDI |
CitedBy_id | crossref_primary_10_1177_1179069518795875 crossref_primary_10_3389_fcimb_2021_696554 crossref_primary_10_1016_j_brainres_2015_04_058 crossref_primary_10_1523_ENEURO_0455_18_2018 crossref_primary_10_1177_1179069517733453 crossref_primary_10_3389_fnins_2020_00474 crossref_primary_10_3389_fpsyt_2015_00187 crossref_primary_10_1155_2014_541870 crossref_primary_10_17795_ajmb_33530 crossref_primary_10_1002_dev_20570 crossref_primary_10_1016_j_applanim_2014_11_005 crossref_primary_10_1159_000541592 crossref_primary_10_3389_fnbeh_2022_885849 crossref_primary_10_1016_j_brainres_2015_03_054 crossref_primary_10_1111_jne_13212 crossref_primary_10_3389_fncel_2019_00503 crossref_primary_10_1016_j_yfrne_2015_02_001 crossref_primary_10_1016_j_bbr_2011_01_011 crossref_primary_10_1002_0471142301_ns0833s70 crossref_primary_10_3389_fpsyt_2015_00018 crossref_primary_10_1016_j_bbr_2015_03_006 crossref_primary_10_1016_j_physbeh_2013_02_009 crossref_primary_10_3109_07420528_2013_800090 crossref_primary_10_1016_j_neubiorev_2014_06_012 crossref_primary_10_1530_JOE_15_0078 crossref_primary_10_1016_j_cophys_2019_12_007 crossref_primary_10_1016_j_neubiorev_2020_07_023 crossref_primary_10_1126_sciadv_adh9251 crossref_primary_10_1530_JOE_12_0267 crossref_primary_10_1177_0192623312466452 crossref_primary_10_3389_fnbeh_2014_00082 crossref_primary_10_1074_jbc_M110_195859 crossref_primary_10_1371_journal_pone_0225394 crossref_primary_10_1038_s41598_019_45833_5 crossref_primary_10_1111_jnc_14944 crossref_primary_10_1177_0269881110368873 crossref_primary_10_1007_s11920_017_0764_z crossref_primary_10_1371_journal_pone_0163245 crossref_primary_10_1016_j_ynstr_2016_10_001 crossref_primary_10_1186_s10194_021_01299_3 crossref_primary_10_1016_j_neuroscience_2014_04_002 crossref_primary_10_1111_ejn_13045 crossref_primary_10_3389_fncir_2018_00032 crossref_primary_10_1007_s00221_012_3293_3 crossref_primary_10_1371_journal_pone_0099208 crossref_primary_10_1016_j_jchemneu_2013_07_001 crossref_primary_10_1210_en_2015_1884 crossref_primary_10_3389_fncel_2018_00148 crossref_primary_10_3389_fncel_2018_00024 crossref_primary_10_3389_fnins_2020_578881 |
ContentType | Journal Article |
Copyright | 2009 Elsevier B.V. 2009 INIST-CNRS |
Copyright_xml | – notice: 2009 Elsevier B.V. – notice: 2009 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QG 7TK 7X8 |
DOI | 10.1016/j.bbr.2009.07.021 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts Animal Behavior Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1872-7549 |
EndPage | 413 |
ExternalDocumentID | 19643147 22119745 10_1016_j_bbr_2009_07_021 S0166432809004422 |
Genre | Journal Article |
GroupedDBID | --- --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 41~ 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMQ HVGLF HZ~ IHE J1W KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SNS SPCBC SSN SSZ T5K TEORI TN5 VH1 WH7 WUQ XJT YR2 ZGI ZXP ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGRNS AIIUN AKBMS AKRWK AKYEP ANKPU CITATION SSH AFJKZ BNPGV IQODW CGR CUY CVF ECM EFKBS EIF NPM 7QG 7TK 7X8 |
ID | FETCH-LOGICAL-c522t-b1a265e57f00c3396438596ebe62c03d4efd0daf98519c53febee0845996471d3 |
IEDL.DBID | .~1 |
ISSN | 0166-4328 1872-7549 |
IngestDate | Sun Aug 24 03:41:26 EDT 2025 Fri Jul 11 06:14:06 EDT 2025 Mon Jul 21 05:54:35 EDT 2025 Mon Mar 31 10:56:57 EDT 2025 Tue Jul 01 04:24:41 EDT 2025 Thu Apr 24 23:04:19 EDT 2025 Fri Feb 23 02:25:20 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Immobilization Medial prefrontal cortex Chronic stress Diurnal changes Dendrite Architecture Rat Rodentia Biological rhythm Circadian rhythm Diurnal variation Density Stress Vertebrata Chronic Mammalia Animal Dendritic spine Pyramidal neuron |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c522t-b1a265e57f00c3396438596ebe62c03d4efd0daf98519c53febee0845996471d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://resolver.sub.uni-goettingen.de/purl?gro-2/55678 |
PMID | 19643147 |
PQID | 20950220 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_734078044 proquest_miscellaneous_20950220 pubmed_primary_19643147 pascalfrancis_primary_22119745 crossref_primary_10_1016_j_bbr_2009_07_021 crossref_citationtrail_10_1016_j_bbr_2009_07_021 elsevier_sciencedirect_doi_10_1016_j_bbr_2009_07_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-12-28 |
PublicationDateYYYYMMDD | 2009-12-28 |
PublicationDate_xml | – month: 12 year: 2009 text: 2009-12-28 day: 28 |
PublicationDecade | 2000 |
PublicationPlace | Shannon |
PublicationPlace_xml | – name: Shannon – name: Netherlands |
PublicationTitle | Behavioural brain research |
PublicationTitleAlternate | Behav Brain Res |
PublicationYear | 2009 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Conde, Maire-Lepoivre, Audinat, Crepel (bib7) 1995; 352 Wellman, Izquierdo, Garrett, Martin, Carroll, Millstein (bib48) 2007; 27 Radley, Arias, Sawchenko (bib34) 2006; 26 Arnsten (bib1) 2009; 10 Cook, Wellman (bib8) 2004; 60 Kalsbeek, Palm, La Fleur, Scheer, Perreau-Lenz, Ruiter (bib19) 2006; 21 Wang, Deutch (bib46) 2008; 33 Gabbott, Warner, Jays, Salway, Busby (bib11) 2005; 492 Perez-Cruz, Muller-Keuker, Heilbronner, Fuchs, Flugge (bib29) 2007; 2007 Bova, Micheli, Qualadrucci, Zucconi (bib2) 1998; 57 Holtmaat, Trachtenberg, Wilbrecht, Shepherd, Zhang, Knott (bib15) 2005; 45 Sylvester, Krout, Loewy (bib42) 2002; 114 Magarinos, McEwen, Saboureau, Pevet (bib23) 2006; 103 Izquierdo, Wellman, Holmes (bib17) 2006; 26 Larkman (bib21) 1991; 306 Cho, Ennaceur, Cole, Suh (bib6) 2000; 20 Matchock, Mordkoff (bib24) 2009; 192 Rueter, Jacobs (bib38) 1996; 7 Perez-Cruz, Simon, Czeh, Flugge, Fuchs (bib30) 2009; 29 Sholl (bib41) 1953; 87 Wellman (bib47) 2001; 49 Vertes (bib45) 2006; 142 Owens, Macdonald, Tucker, Sytnik, Totterdell, Minors (bib28) 2000; 91 Czeh, Perez-Cruz, Fuchs, Flugge (bib9) 2008; 190 Hoover, Vertes (bib16) 2007; 212 McLaughlin, Gomez, Baran, Conrad (bib26) 2007; 1161 Herman, Figueiredo, Mueller, Ulrich-Lai, Ostrander, Choi (bib13) 2003; 24 Buckley, Schatzberg (bib4) 2005; 90 Radley, Sisti, Hao, Rocher, McCall, Hof (bib33) 2004; 125 Robinson, Kolb (bib36) 2004; 47 Shansky, Hamo, Hof, McEwen, Morrison JH (bib40) 2009 Tavares, Correa, Resstel LB (bib43) 2009; 87 Magarinos, McEwen (bib22) 1995; 69 Cerqueira, Mailliet, Almeida, Jay, Sousa (bib5) 2007; 27 Nakayama (bib27) 2002; 26 Vertes (bib44) 2004; 51 Brown, Henning, Wellman (bib3) 2005; 15 Rouch, Wild, Ansiau, Marquie (bib37) 2005; 48 Schmidt, Collette, Cajochen, Peigneux (bib39) 2007; 24 Perez-Vega, Feria-Velasco, Gonzalez-Burgos (bib31) 2000; 53 Gibb, Kolb (bib12) 1998; 79 Krettek, Price (bib20) 1977; 171 Kahn-Greene, Killgore, Kamimori, Balkin, Killgore (bib18) 2007; 8 Popov, Bocharova, Bragin (bib32) 1992; 48 Radley, Rocher, Miller, Janssen, Liston, Hof (bib35) 2006; 16 Holmes, Wellman (bib14) 2009; 33 McAllister, Katz, Lo (bib25) 1996; 17 Feenstra, Botterblom, Mastenbroek (bib10) 2000; 100 |
References_xml | – volume: 27 start-page: 2781 year: 2007 end-page: 2787 ident: bib5 article-title: The prefrontal cortex as a key target of the maladaptive response to stress publication-title: J Neurosci – volume: 212 start-page: 149 year: 2007 end-page: 179 ident: bib16 article-title: Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat publication-title: Brain Struct Funct – volume: 2007 start-page: 46276 year: 2007 ident: bib29 article-title: Morphology of pyramidal neurons in the rat prefrontal cortex: lateralized dendritic remodeling by chronic stress publication-title: Neural Plast – volume: 45 start-page: 279 year: 2005 end-page: 291 ident: bib15 article-title: Transient and persistent dendritic spines in the neocortex in vivo publication-title: Neuron – volume: 26 start-page: 1383 year: 2002 end-page: 1388 ident: bib27 article-title: Diurnal rhythm in extracellular levels of 5-hydroxyindoleacetic acid in the medial prefrontal cortex of freely moving rats: an in vivo microdialysis study publication-title: Prog Neuropsychopharmacol Biol Psychiatry – volume: 53 start-page: 291 year: 2000 end-page: 300 ident: bib31 article-title: Prefrontocortical serotonin depletion results in plastic changes of prefrontocortical pyramidal neurons, underlying a greater efficiency of short-term memory publication-title: Brain Res Bull – volume: 49 start-page: 245 year: 2001 end-page: 253 ident: bib47 article-title: Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration publication-title: J Neurobiol – year: 2009 ident: bib40 article-title: Stress-induced dendritic remodeling in the prefrontal cortex is circuit specific publication-title: Cereb Cortex – volume: 27 start-page: 684 year: 2007 end-page: 691 ident: bib48 article-title: Impaired stress-coping and fear extinction and abnormal corticolimbic morphology in serotonin transporter knock-out mice publication-title: J Neurosci – volume: 192 start-page: 189 year: 2009 end-page: 198 ident: bib24 article-title: Chronotype and time-of-day influences on the alerting, orienting, and executive components of attention publication-title: Exp Brain Res – volume: 8 start-page: 215 year: 2007 end-page: 221 ident: bib18 article-title: The effects of sleep deprivation on symptoms of psychopathology in healthy adults publication-title: Sleep Med – volume: 47 start-page: 33 year: 2004 end-page: 46 ident: bib36 article-title: Structural plasticity associated with exposure to drugs of abuse publication-title: Neuropharmacology – volume: 87 start-page: 387 year: 1953 end-page: 406 ident: bib41 article-title: Dendritic organization in the neurons of the visual and motor cortices of the cat publication-title: J Anat – volume: 90 start-page: 3106 year: 2005 end-page: 3114 ident: bib4 article-title: On the interactions of the hypothalamic–pituitary–adrenal (HPA) axis and sleep: normal HPA axis activity and circadian rhythm, exemplary sleep disorders publication-title: J Clin Endocrinol Metab – volume: 492 start-page: 145 year: 2005 end-page: 177 ident: bib11 article-title: Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers publication-title: J Comp Neurol – volume: 16 start-page: 313 year: 2006 end-page: 320 ident: bib35 article-title: Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex publication-title: Cereb Cortex – volume: 48 start-page: 1282 year: 2005 end-page: 1293 ident: bib37 article-title: Shiftwork experience, age and cognitive performance publication-title: Ergonomics – volume: 142 start-page: 1 year: 2006 end-page: 20 ident: bib45 article-title: Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat publication-title: Neuroscience – volume: 60 start-page: 236 year: 2004 end-page: 248 ident: bib8 article-title: Chronic stress alters dendritic morphology in rat medial prefrontal cortex publication-title: J Neurobiol – volume: 79 start-page: 1 year: 1998 end-page: 4 ident: bib12 article-title: A method for vibratome sectioning of Golgi–Cox stained whole rat brain publication-title: J Neurosci Methods – volume: 171 start-page: 157 year: 1977 end-page: 191 ident: bib20 article-title: The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat publication-title: J Comp Neurol – volume: 29 start-page: 738 year: 2009 end-page: 747 ident: bib30 article-title: Hemispheric differences in basilar dendrites and spines of pyramidal neurons in the rat prelimbic cortex: activity- and stress-induced changes publication-title: Eur J Neurosci – volume: 125 start-page: 1 year: 2004 end-page: 6 ident: bib33 article-title: Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex publication-title: Neuroscience – volume: 352 start-page: 567 year: 1995 end-page: 593 ident: bib7 article-title: Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents publication-title: J Comp Neurol – volume: 100 start-page: 741 year: 2000 end-page: 748 ident: bib10 article-title: Dopamine and noradrenaline efflux in the prefrontal cortex in the light and dark period: effects of novelty and handling and comparison to the nucleus accumbens publication-title: Neuroscience – volume: 26 start-page: 5733 year: 2006 end-page: 5738 ident: bib17 article-title: Brief uncontrollable stress causes dendritic retraction in infralimbic cortex and resistance to fear extinction in mice publication-title: J Neurosci – volume: 33 start-page: 1276 year: 2008 end-page: 1286 ident: bib46 article-title: Dopamine depletion of the prefrontal cortex induces dendritic spine loss: reversal by atypical antipsychotic drug treatment publication-title: Neuropsychopharmacology – volume: 33 start-page: 773 year: 2009 end-page: 783 ident: bib14 article-title: Stress-induced prefrontal reorganization and executive dysfunction in rodents publication-title: Neurosci Biobehav Rev – volume: 306 start-page: 332 year: 1991 end-page: 343 ident: bib21 article-title: Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions publication-title: J Comp Neurol – volume: 91 start-page: 41 year: 2000 end-page: 60 ident: bib28 article-title: Diurnal variations in the mood and performance of highly practised young women living under strictly controlled conditions publication-title: Br J Psychol – volume: 48 start-page: 45 year: 1992 end-page: 51 ident: bib32 article-title: Repeated changes of dendritic morphology in the hippocampus of ground squirrels in the course of hibernation publication-title: Neuroscience – volume: 20 start-page: RC66 year: 2000 ident: bib6 article-title: Chronic jet lag produces cognitive deficits publication-title: J Neurosci – volume: 26 start-page: 12967 year: 2006 end-page: 12976 ident: bib34 article-title: Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress publication-title: J Neurosci – volume: 69 start-page: 83 year: 1995 end-page: 88 ident: bib22 article-title: Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: comparison of stressors publication-title: Neuroscience – volume: 114 start-page: 1071 year: 2002 end-page: 1080 ident: bib42 article-title: Suprachiasmatic nucleus projection to the medial prefrontal cortex: a viral transneuronal tracing study publication-title: Neuroscience – volume: 51 start-page: 32 year: 2004 end-page: 58 ident: bib44 article-title: Differential projections of the infralimbic and prelimbic cortex in the rat publication-title: Synapse – volume: 57 start-page: 321 year: 1998 end-page: 324 ident: bib2 article-title: BDNF and trkB mRNAs oscillate in rat brain during the light–dark cycle publication-title: Brain Res Mol – volume: 24 start-page: 151 year: 2003 end-page: 180 ident: bib13 article-title: Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness publication-title: Front Neuroendocrinol – volume: 103 start-page: 18775 year: 2006 end-page: 18780 ident: bib23 article-title: Rapid and reversible changes in intrahippocampal connectivity during the course of hibernation in European hamsters publication-title: Proc Natl Acad Sci USA – volume: 7 start-page: 1107 year: 1996 end-page: 1111 ident: bib38 article-title: Changes in forebrain serotonin at the light–dark transition: correlation with behaviour publication-title: Neuroreport – volume: 190 start-page: 1 year: 2008 end-page: 13 ident: bib9 article-title: Chronic stress-induced cellular changes in the medial prefrontal cortex and their potential clinical implications: does hemisphere location matter? publication-title: Behav Brain Res – volume: 1161 start-page: 56 year: 2007 end-page: 64 ident: bib26 article-title: The effects of chronic stress on hippocampal morphology and function: an evaluation of chronic restraint paradigms publication-title: Brain Res – volume: 87 start-page: 2601 year: 2009 end-page: 2607 ident: bib43 article-title: Opposite role of infralimbic and prelimbic cortex in the tachycardiac response evoked by acute restraint stress in rats publication-title: J Neurosci Res – volume: 10 start-page: 410 year: 2009 end-page: 422 ident: bib1 article-title: Stress signalling pathways that impair prefrontal cortex structure and function publication-title: Nat Rev Neurosci – volume: 17 start-page: 1057 year: 1996 end-page: 1064 ident: bib25 article-title: Neurotrophin regulation of cortical dendritic growth requires activity publication-title: Neuron – volume: 24 start-page: 755 year: 2007 end-page: 789 ident: bib39 article-title: A time to think: circadian rhythms in human cognition publication-title: Cogn Neuropsychol – volume: 21 start-page: 458 year: 2006 end-page: 469 ident: bib19 article-title: SCN outputs and the hypothalamic balance of life publication-title: J Biol Rhythms – volume: 15 start-page: 1714 year: 2005 end-page: 1722 ident: bib3 article-title: Mild, short-term stress alters dendritic morphology in rat medial prefrontal cortex publication-title: Cereb Cortex |
SSID | ssj0004051 |
Score | 2.2083051 |
Snippet | The medial prefrontal cortex (mPFC) participates in several higher order cognitive functions and is involved in the regulation of the stress response. The... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 406 |
SubjectTerms | Animals Behavioral psychophysiology Biological and medical sciences Body Weight - physiology Chronic stress Circadian Rhythm - physiology Dendrite Dendrites - physiology Dendritic Spines - physiology Diurnal changes Fundamental and applied biological sciences. Psychology Immobilization Male Medial prefrontal cortex Neuronal Plasticity - physiology Neurons - cytology Neurons - physiology Photoperiod Prefrontal Cortex - cytology Prefrontal Cortex - physiology Prefrontal Cortex - physiopathology Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Pyramidal Cells - cytology Pyramidal Cells - physiology Pyramidal Cells - physiopathology Rats Rats, Sprague-Dawley Restraint, Physical - adverse effects Stress, Psychological - physiopathology Time Factors Wakefulness - physiology |
Title | Diurnal rhythm and stress regulate dendritic architecture and spine density of pyramidal neurons in the rat infralimbic cortex |
URI | https://dx.doi.org/10.1016/j.bbr.2009.07.021 https://www.ncbi.nlm.nih.gov/pubmed/19643147 https://www.proquest.com/docview/20950220 https://www.proquest.com/docview/734078044 |
Volume | 205 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELai9FKpqpqmD5p060PVQyWyxg_Ax1XSaNuqubSRckMY2wpRl0XsRupe8tszgyGPw-ZQTgjGxniGmQ_PeIaQzyZRjnvnYqMrHksnXZxL7mJmDRw64dzgbuRfZ-n8XP64UBc75HjcC4NhlYPuDzq919bDlekwm9O2rqe_AayAOeU50-iV5KiHpcxQyo9u7sM8AJCEmoRpGiP16NnsY7yM6YaUldkR48k22_SiLVcwYz6UutiORXubdPqKvBzAJJ2F8e6RHde8JvuzBn6kFxv6hfbhnf26-T65OakDdXe5WV8uaNlYGjaK0C7Uo3cUdJDtSx_Qh_6FQNoCHEUCjOGgS0_bTVcuagsd9ikxmxWtGwpokoJIwanHBZSFga4qDOf994acn377czyPh-ILcQWQbB2bpOSpcirzjFVCYNquXOkUeJ7yigkrnbfMll4DZNOVEh7uOJZLTPcCBs-Kt2S3WTbuPaGAKRSgkpQ7kUsLKrJiukyYs4lIBU98RNg47UU1ZCbHAhl_izEE7aoATmHFTF2wrABOReTrXZM2pOV4iliOvCweyVYBZuOpZpNHfL97EMeseJlUEfk0CkIBHyV6WsrGLa9X0ItWuIU5InQLRSbQgQpyG5F3QYTu3wPnOpHZh_8b9gF5zocaFzw_JLvr7tp9BOC0NpP-y5iQZ7PvP-dnt_8pGMs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgCpQkB5hEfrA3BAStdxnNeBQ0WptvRxoZV6C0ls06BuNspuBXvpn-IPMhM7LT1sD0jNKUomju2xx18y4_kA3pVBpIXR2i-zSvhSS-2nUmifqxKPLBCipN3Ih0fx-ER-PY1OV-DPsBeGwiqd7bc2vbfW7srI9eaorevRNwQruJyKlGfklRTCRVbu68Uv_G6bfdrbQSW_F2L3y_Hnse-oBfwKAcfcL4NCxJGOEsN5FYaUlCqNshhbFIuKh0pqo7gqTIaAJKui0OAdzVNJyUzQnKsQy70H9yWaC6JN2Lq8jitBBGRJEOPYp-oNrtQ-qKwsO5cjM9niIli2GK61xQxVZCy3xnLw2y-Cu4_hkUOvbNt20BNY0c1TWN9u8Mt9smAfWB9P2v-oX4fLndpKd2eL-dmEFY1idmcK6_QPYg3TDI2e6rkW2L8ODSvaIv4lAQoaYVPD2kVXTGqFBfY5OJsZqxuG8JXhGMZTQ39sJiUWVVH88O9ncHInKnkOq8200S-BIYiJEAbFQoepVGiTK54VAdcqCONQBMYDPnR7XrlU6MTIcZ4PMW8_c9QUUXRmOU9y1JQHH68eaW0ekNuE5aDL_MZgznGduu2xjRt6v3qRoDR8iYw82BwGQo5WgFw7RaOnFzMsJYtoz7QHbIlEEpLHFieKBy_sELpuB_V1IJNX_1ftTXgwPj48yA_2jvZfw0PhCDZE-gZW592FfouobV5u9LOEwfe7npZ_AU7HU_U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diurnal+rhythm+and+stress+regulate+dendritic+architecture+and+spine+density+of+pyramidal+neurons+in+the+rat+infralimbic+cortex&rft.jtitle=Behavioural+brain+research&rft.au=Perez-Cruz%2C+Claudia&rft.au=Simon%2C+M%C3%A1ria&rft.au=Fl%C3%BCgge%2C+Gabriele&rft.au=Fuchs%2C+Eberhard&rft.date=2009-12-28&rft.issn=0166-4328&rft.volume=205&rft.issue=2&rft.spage=406&rft.epage=413&rft_id=info:doi/10.1016%2Fj.bbr.2009.07.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbr_2009_07_021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-4328&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-4328&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-4328&client=summon |