Agricultural cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the Google Earth Engine cloud
The South Asia (India, Pakistan, Bangladesh, Nepal, Sri Lanka and Bhutan) has a staggering 900 million people (~43% of the population) who face food insecurity or severe food insecurity as per United Nations, Food and Agriculture Organization's (FAO) the Food Insecurity Experience Scale (FIES)....
Saved in:
Published in | GIScience and remote sensing Vol. 57; no. 3; pp. 302 - 322 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
02.04.2020
Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
ISSN | 1548-1603 1943-7226 1943-7226 |
DOI | 10.1080/15481603.2019.1690780 |
Cover
Abstract | The South Asia (India, Pakistan, Bangladesh, Nepal, Sri Lanka and Bhutan) has a staggering 900 million people (~43% of the population) who face food insecurity or severe food insecurity as per United Nations, Food and Agriculture Organization's (FAO) the Food Insecurity Experience Scale (FIES). The existing coarse-resolution (≥250-m) cropland maps lack precision in geo-location of individual farms and have low map accuracies. This also results in uncertainties in cropland areas calculated from such products. Thereby, the overarching goal of this study was to develop a high spatial resolution (30-m or better) baseline cropland extent product of South Asia for the year 2015 using Landsat satellite time-series big-data and machine learning algorithms (MLAs) on the Google Earth Engine (GEE) cloud computing platform. To eliminate the impact of clouds, 10 time-composited Landsat bands (blue, green, red, NIR, SWIR1, SWIR2, Thermal, EVI, NDVI, NDWI) were derived for each of the three time-periods over 12 months (monsoon: Days of the Year (DOY) 151-300; winter: DOY 301-365 plus 1-60; and summer: DOY 61-150), taking the every 8-day data from Landsat-8 and 7 for the years 2013-2015, for a total of 30-bands plus global digital elevation model (GDEM) derived slope band. This 31-band mega-file big data-cube was composed for each of the five agro-ecological zones (AEZ's) of South Asia and formed a baseline data for image classification and analysis. Knowledge-base for the Random Forest (RF) MLAs were developed using spatially well spread-out reference training data (N = 2179) in five AEZs. The classification was performed on GEE for each of the five AEZs using well-established knowledge-base and RF MLAs on the cloud. Map accuracies were measured using independent validation data (N = 1185). The survey showed that the South Asia cropland product had a producer's accuracy of 89.9% (errors of omissions of 10.1%), user's accuracy of 95.3% (errors of commission of 4.7%) and an overall accuracy of 88.7%. The National and sub-national (districts) areas computed from this cropland extent product explained 80-96% variability when compared with the National statistics of the South Asian Countries. The full-resolution imagery can be viewed at full-resolution, by zooming-in to any location in South Asia or the world, at
www.croplands.org
and the cropland products of South Asia downloaded from The Land Processes Distributed Active Archive Center (LP DAAC) of National Aeronautics and Space Administration (NASA) and the United States Geological Survey (USGS):
https://lpdaac.usgs.gov/products/gfsad30saafgircev001/
. |
---|---|
AbstractList | The South Asia (India, Pakistan, Bangladesh, Nepal, Sri Lanka and Bhutan) has a staggering 900 million people (~43% of the population) who face food insecurity or severe food insecurity as per United Nations, Food and Agriculture Organization's (FAO) the Food Insecurity Experience Scale (FIES). The existing coarse-resolution (≥250-m) cropland maps lack precision in geo-location of individual farms and have low map accuracies. This also results in uncertainties in cropland areas calculated from such products. Thereby, the overarching goal of this study was to develop a high spatial resolution (30-m or better) baseline cropland extent product of South Asia for the year 2015 using Landsat satellite time-series big-data and machine learning algorithms (MLAs) on the Google Earth Engine (GEE) cloud computing platform. To eliminate the impact of clouds, 10 time-composited Landsat bands (blue, green, red, NIR, SWIR1, SWIR2, Thermal, EVI, NDVI, NDWI) were derived for each of the three time-periods over 12 months (monsoon: Days of the Year (DOY) 151-300; winter: DOY 301-365 plus 1-60; and summer: DOY 61-150), taking the every 8-day data from Landsat-8 and 7 for the years 2013-2015, for a total of 30-bands plus global digital elevation model (GDEM) derived slope band. This 31-band mega-file big data-cube was composed for each of the five agro-ecological zones (AEZ's) of South Asia and formed a baseline data for image classification and analysis. Knowledge-base for the Random Forest (RF) MLAs were developed using spatially well spread-out reference training data (N = 2179) in five AEZs. The classification was performed on GEE for each of the five AEZs using well-established knowledge-base and RF MLAs on the cloud. Map accuracies were measured using independent validation data (N = 1185). The survey showed that the South Asia cropland product had a producer's accuracy of 89.9% (errors of omissions of 10.1%), user's accuracy of 95.3% (errors of commission of 4.7%) and an overall accuracy of 88.7%. The National and sub-national (districts) areas computed from this cropland extent product explained 80-96% variability when compared with the National statistics of the South Asian Countries. The full-resolution imagery can be viewed at full-resolution, by zooming-in to any location in South Asia or the world, at
www.croplands.org
and the cropland products of South Asia downloaded from The Land Processes Distributed Active Archive Center (LP DAAC) of National Aeronautics and Space Administration (NASA) and the United States Geological Survey (USGS):
https://lpdaac.usgs.gov/products/gfsad30saafgircev001/
. The South Asia (India, Pakistan, Bangladesh, Nepal, Sri Lanka and Bhutan) has a staggering 900 million people (~43% of the population) who face food insecurity or severe food insecurity as per United Nations, Food and Agriculture Organization’s (FAO) the Food Insecurity Experience Scale (FIES). The existing coarse-resolution (≥250-m) cropland maps lack precision in geo-location of individual farms and have low map accuracies. This also results in uncertainties in cropland areas calculated from such products. Thereby, the overarching goal of this study was to develop a high spatial resolution (30-m or better) baseline cropland extent product of South Asia for the year 2015 using Landsat satellite time-series big-data and machine learning algorithms (MLAs) on the Google Earth Engine (GEE) cloud computing platform. To eliminate the impact of clouds, 10 time-composited Landsat bands (blue, green, red, NIR, SWIR1, SWIR2, Thermal, EVI, NDVI, NDWI) were derived for each of the three time-periods over 12 months (monsoon: Days of the Year (DOY) 151–300; winter: DOY 301–365 plus 1–60; and summer: DOY 61–150), taking the every 8-day data from Landsat-8 and 7 for the years 2013–2015, for a total of 30-bands plus global digital elevation model (GDEM) derived slope band. This 31-band mega-file big data-cube was composed for each of the five agro-ecological zones (AEZ’s) of South Asia and formed a baseline data for image classification and analysis. Knowledge-base for the Random Forest (RF) MLAs were developed using spatially well spread-out reference training data (N = 2179) in five AEZs. The classification was performed on GEE for each of the five AEZs using well-established knowledge-base and RF MLAs on the cloud. Map accuracies were measured using independent validation data (N = 1185). The survey showed that the South Asia cropland product had a producer’s accuracy of 89.9% (errors of omissions of 10.1%), user’s accuracy of 95.3% (errors of commission of 4.7%) and an overall accuracy of 88.7%. The National and sub-national (districts) areas computed from this cropland extent product explained 80-96% variability when compared with the National statistics of the South Asian Countries. The full-resolution imagery can be viewed at full-resolution, by zooming-in to any location in South Asia or the world, at www.croplands.org and the cropland products of South Asia downloaded from The Land Processes Distributed Active Archive Center (LP DAAC) of National Aeronautics and Space Administration (NASA) and the United States Geological Survey (USGS): https://lpdaac.usgs.gov/products/gfsad30saafgircev001/. |
Author | Teluguntla, Pardhasaradhi G. Dixit, Sreenath Giri, Chandra Whitbread, Anthony M Oliphant, Adam Xiong, Jun Gumma, Murali Krishna Thenkabail, Prasad S. Pyla, Vineetha |
Author_xml | – sequence: 1 givenname: Murali Krishna orcidid: 0000-0002-3760-3935 surname: Gumma fullname: Gumma, Murali Krishna email: m.gumma@cgiar.org organization: RS/GIS Lab, Innovation Systems for the Drylands, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) – sequence: 2 givenname: Prasad S. orcidid: 0000-0002-2182-8822 surname: Thenkabail fullname: Thenkabail, Prasad S. email: pthenkabail@usgs.gov organization: U.S. Geological Survey (USGS) – sequence: 3 givenname: Pardhasaradhi G. orcidid: 0000-0001-8060-9841 surname: Teluguntla fullname: Teluguntla, Pardhasaradhi G. organization: NASA Research Park – sequence: 4 givenname: Adam orcidid: 0000-0001-8622-7932 surname: Oliphant fullname: Oliphant, Adam organization: U.S. Geological Survey (USGS) – sequence: 5 givenname: Jun orcidid: 0000-0002-2320-0780 surname: Xiong fullname: Xiong, Jun organization: U.S. Geological Survey (USGS) – sequence: 6 givenname: Chandra orcidid: 0000-0003-1938-4131 surname: Giri fullname: Giri, Chandra organization: U.S. Geological Survey (USGS) – sequence: 7 givenname: Vineetha orcidid: 0000-0002-9436-0394 surname: Pyla fullname: Pyla, Vineetha organization: Jawaharlal Nehru Technological University (JNTU) – sequence: 8 givenname: Sreenath orcidid: 0000-0002-3607-8729 surname: Dixit fullname: Dixit, Sreenath organization: RS/GIS Lab, Innovation Systems for the Drylands, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) – sequence: 9 givenname: Anthony M orcidid: 0000-0003-4840-7670 surname: Whitbread fullname: Whitbread, Anthony M organization: RS/GIS Lab, Innovation Systems for the Drylands, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) |
BookMark | eNqFUctuFDEQHKEgkQQ-AclHLrP4NS9xYRWFEGklDuRu9Xras4489mJ7gHwdv4aHXThwgIPlVndVdavqqrrwwWNVvWZ0w2hP37JG9qylYsMpGzasHWjX02fVJRukqDvO24tSF0y9gl5UVyk9UioaxprL6sd2ilYvLi8RHNExHB34keD3jD6TtYSIkEgw5HNY8oFskwUyYrRfcSRLsn4iuwJLkEl56JzNSAStZ5LtjHUqSExkb6d6hAxnRiyMMBMTIqZMZtAH65E4hOjXMbgpRJsPc9nrST4guQthckhuIZYTbv20wrULy_iyem7AJXx1_q-rhw-3Dzcf692nu_ub7a7WDee5BtPRXjd72e57wVqtixUU-8FQWQaCm_2eN2bgAjocDS_WFA_bVnQDHVGAuK7uT7JjgEd1jHaG-KQCWPWrEeKkymlWO1SNAdZ1rYahASkGCUMPvOsG3UreYN8WrTcnrWMMX5ZigJpt0sU58BiWpLikVEoue16gzQlagkkpovmzmlG1Zq9-Z6_W7NU5-8J79xdP2wzZBp8jWPdf9vsT2_qS0AzfQnSjyvDkQjQlOm2TEv-W-Albf8uW |
CitedBy_id | crossref_primary_10_1080_17538947_2024_2337221 crossref_primary_10_1109_JSTARS_2021_3103754 crossref_primary_10_61186_jgit_12_1_17 crossref_primary_10_3390_rs15082024 crossref_primary_10_1080_01431161_2021_1881181 crossref_primary_10_1080_15481603_2020_1835080 crossref_primary_10_1080_23311932_2024_2448597 crossref_primary_10_5194_essd_13_2437_2021 crossref_primary_10_47820_recima21_v6i2_6211 crossref_primary_10_1080_10549811_2024_2448027 crossref_primary_10_1080_15481603_2022_2088651 crossref_primary_10_3390_rs14061347 crossref_primary_10_3390_rs13091744 crossref_primary_10_1016_j_rse_2020_112095 crossref_primary_10_1016_j_jafr_2023_100819 crossref_primary_10_1016_j_isprsjprs_2021_11_016 crossref_primary_10_1016_j_isprsjprs_2023_11_014 crossref_primary_10_3390_rs13163339 crossref_primary_10_3390_rs14143253 crossref_primary_10_3390_rs15153792 crossref_primary_10_1080_15481603_2022_2126342 crossref_primary_10_3390_rs15051228 crossref_primary_10_3389_fpls_2023_1016890 crossref_primary_10_1007_s00477_022_02188_0 crossref_primary_10_1016_j_jag_2023_103193 crossref_primary_10_1016_j_envpol_2021_117711 crossref_primary_10_1080_15481603_2020_1763041 crossref_primary_10_3390_rs12030522 crossref_primary_10_34133_remotesensing_0065 crossref_primary_10_1080_01431161_2021_1954261 crossref_primary_10_3390_agriculture13081633 crossref_primary_10_1080_15481603_2023_2233756 crossref_primary_10_3390_rs13040787 crossref_primary_10_1007_s12517_024_11948_x crossref_primary_10_1080_01431161_2024_2388864 crossref_primary_10_1080_07038992_2024_2448169 crossref_primary_10_1016_j_scitotenv_2023_165660 crossref_primary_10_3390_su17062508 crossref_primary_10_3390_su12166583 crossref_primary_10_1007_s12517_022_10049_x crossref_primary_10_3390_rs14092100 crossref_primary_10_1080_15481603_2020_1848323 crossref_primary_10_3390_s24206664 crossref_primary_10_1109_JSTARS_2024_3498899 crossref_primary_10_1080_10106049_2023_2186493 crossref_primary_10_3390_agronomy12030748 crossref_primary_10_1016_j_asr_2021_10_020 crossref_primary_10_1007_s41748_023_00340_6 crossref_primary_10_3390_rs16244622 crossref_primary_10_1016_j_scitotenv_2024_171366 crossref_primary_10_1016_j_agwat_2024_109020 crossref_primary_10_1080_10106049_2022_2032396 crossref_primary_10_1186_s13717_020_00255_4 crossref_primary_10_2166_wp_2024_126 crossref_primary_10_1016_j_procs_2023_12_160 crossref_primary_10_1109_TGRS_2023_3299956 crossref_primary_10_1016_j_jag_2023_103564 crossref_primary_10_3390_rs13061066 crossref_primary_10_1016_j_envadv_2021_100147 crossref_primary_10_1016_j_isprsjprs_2021_02_019 crossref_primary_10_1007_s11769_021_1226_4 crossref_primary_10_1109_TGRS_2023_3308902 crossref_primary_10_1016_j_rsase_2021_100665 crossref_primary_10_1080_10095020_2022_2100287 crossref_primary_10_1016_j_scitotenv_2024_175058 crossref_primary_10_1007_s42489_022_00121_7 crossref_primary_10_1080_10106049_2022_2076923 crossref_primary_10_1007_s00484_023_02478_4 crossref_primary_10_1016_j_isprsjprs_2020_06_022 crossref_primary_10_1002_ldr_4612 crossref_primary_10_1016_j_atech_2023_100374 crossref_primary_10_3390_ijgi12020081 crossref_primary_10_3390_rs13214378 crossref_primary_10_3390_rs15164071 crossref_primary_10_1080_17538947_2022_2044397 crossref_primary_10_1016_j_apgeog_2023_103164 crossref_primary_10_3390_electronics10050552 crossref_primary_10_1007_s41651_024_00195_z crossref_primary_10_1002_ldr_3914 crossref_primary_10_1007_s12524_021_01341_6 crossref_primary_10_1002_ldr_5012 crossref_primary_10_1080_15481603_2021_1947623 crossref_primary_10_3390_agronomy13092302 crossref_primary_10_3390_rs16244797 crossref_primary_10_1016_j_compag_2025_110184 crossref_primary_10_1016_j_crsust_2021_100032 crossref_primary_10_1007_s12524_024_01901_6 crossref_primary_10_3390_rs12213644 crossref_primary_10_3390_su152115444 crossref_primary_10_48123_rsgis_1410250 crossref_primary_10_1016_j_atech_2023_100193 crossref_primary_10_3390_su142316131 crossref_primary_10_1016_j_jclepro_2022_132129 crossref_primary_10_1080_19475705_2023_2290350 crossref_primary_10_3390_jimaging9050098 crossref_primary_10_1016_j_rsase_2023_101029 crossref_primary_10_1016_j_compag_2024_109225 crossref_primary_10_3390_s23156729 |
Cites_doi | 10.1016/j.rse.2017.09.035 10.5194/hessd-2-1299-2005 10.3390/rs6053965 10.1117/1.3619838 10.1016/S0034-4257(97)00049-7 10.1016/j.isprsjprs.2018.07.017 10.1016/j.rse.2004.12.018 10.1016/j.isprsjprs.2016.01.011 10.1016/j.rse.2015.01.004 10.3390/rs2071844 10.1016/j.isprsjprs.2015.09.013 10.1080/01431160600851801 10.5194/isprsarchives-XL-1-339-2014 10.5067/MEaSUREs/GFSAD/GFSAD30VAL.001 10.5067/MEaSUREs/GFSAD/GFSAD30SEACE.001 10.1016/j.gsf.2015.07.003 10.1016/j.jag.2015.03.003 10.1016/j.jag.2016.12.012 10.1080/014311600210236 10.1016/j.jag.2018.11.014 10.1016/j.rse.2004.09.005 10.1111/j.1365-2486.2007.01519.x 10.1016/j.isprsjprs.2011.11.002 10.1016/j.rse.2014.12.014 10.1016/S0167-8809(02)00021-X 10.1007/s10530-016-1271-6 10.1016/S0034-4257(03)00132-9 10.1109/JSTARS.2014.2344630 10.1126/science.289.5477.284 10.3390/rs9101065 10.3390/data1010003 10.1016/j.jag.2015.01.014 10.1016/j.worlddev.2015.10.041 10.1016/j.rse.2007.11.013 10.1088/1748-9326/aaa866 10.1016/j.isprsjprs.2017.01.019 10.1080/15481603.2018.1482855 10.1023/A:1010933404324 10.3390/rs4102890 10.1080/01431161.2010.532826 10.3390/rs3040816 10.1080/01431161003749485 10.1016/j.jag.2008.11.002 10.1080/17538947.2016.1267269 10.1109/TGRS.2012.2183137 10.1080/01431160802698919 10.1029/2008GB003435 10.1029/2005RG000183 10.1016/j.rsase.2016.11.003 10.1201/9781420055139 10.1080/17538947.2016.1168489 10.1016/j.isprsjprs.2009.08.004 10.1016/j.rse.2011.11.020 10.1016/j.rse.2017.06.031 10.1016/j.rse.2017.04.003 10.1016/j.isprsjprs.2014.02.007 10.1016/j.rse.2005.10.004 10.3390/rs2010211 10.1016/j.jag.2009.11.002 10.3390/rs1020050 10.4337/9781781004296.00024 |
ContentType | Journal Article |
Copyright | 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2019 |
Copyright_xml | – notice: 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2019 |
DBID | 0YH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1080/15481603.2019.1690780 |
DatabaseName | Taylor & Francis Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Free Journals (Free resource, activated by CARLI) url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Statistics |
EISSN | 1943-7226 |
EndPage | 322 |
ExternalDocumentID | oai_doaj_org_article_5fa1776ca95a4394a98a2779c6425e86 10_1080_15481603_2019_1690780 1690780 |
Genre | Research Article |
GeographicLocations | Bangladesh Bhutan Pakistan Sri Lanka Nepal India |
GeographicLocations_xml | – name: Sri Lanka – name: Bangladesh – name: Bhutan – name: Nepal – name: India – name: Pakistan |
GroupedDBID | 0YH 30N 4.4 5GY AAHBH AAJMT ABCCY ABFIM ABPEM ABTAI ACGFS ACTIO ADCVX AEISY AENEX AEYOC AIJEM ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CS3 DGEBU DKSSO DU5 EBS E~A E~B GTTXZ H13 HZ~ H~P IPNFZ KYCEM LJTGL M4Z O9- OK1 RIG S-T SNACF TDBHL TEI TFL TFT TFW TTHFI UT5 ~02 AAYXX AIYEW CITATION 7S9 L.6 GROUPED_DOAJ |
ID | FETCH-LOGICAL-c522t-af708c5b46b8316cc1600e89f0470832fbb25f923a7edf2115078663790de3a3 |
IEDL.DBID | 0YH |
ISSN | 1548-1603 1943-7226 |
IngestDate | Wed Aug 27 01:22:05 EDT 2025 Mon May 05 21:11:05 EDT 2025 Tue Jul 01 02:27:27 EDT 2025 Thu Apr 24 22:58:09 EDT 2025 Wed Dec 25 09:02:46 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c522t-af708c5b46b8316cc1600e89f0470832fbb25f923a7edf2115078663790de3a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9436-0394 0000-0001-8060-9841 0000-0002-3607-8729 0000-0003-4840-7670 0000-0001-8622-7932 0000-0002-2182-8822 0000-0002-3760-3935 0000-0002-2320-0780 0000-0003-1938-4131 |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/15481603.2019.1690780 |
PQID | 2400442482 |
PQPubID | 24069 |
PageCount | 21 |
ParticipantIDs | crossref_primary_10_1080_15481603_2019_1690780 proquest_miscellaneous_2400442482 crossref_citationtrail_10_1080_15481603_2019_1690780 informaworld_taylorfrancis_310_1080_15481603_2019_1690780 doaj_primary_oai_doaj_org_article_5fa1776ca95a4394a98a2779c6425e86 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-02 |
PublicationDateYYYYMMDD | 2020-04-02 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-02 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | GIScience and remote sensing |
PublicationYear | 2020 |
Publisher | Taylor & Francis Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
References | e_1_3_4_3_1 e_1_3_4_61_1 e_1_3_4_63_1 e_1_3_4_9_1 e_1_3_4_42_1 e_1_3_4_7_1 e_1_3_4_40_1 e_1_3_4_5_1 e_1_3_4_23_1 e_1_3_4_46_1 e_1_3_4_69_1 e_1_3_4_21_1 e_1_3_4_27_1 e_1_3_4_65_1 e_1_3_4_25_1 e_1_3_4_48_1 e_1_3_4_67_1 e_1_3_4_29_1 Thenkabail P. S. (e_1_3_4_58_1) 2012; 78 e_1_3_4_72_1 Papademetriou M. K. (e_1_3_4_44_1) 2000 e_1_3_4_51_1 e_1_3_4_70_1 e_1_3_4_13_1 e_1_3_4_34_1 e_1_3_4_59_1 e_1_3_4_55_1 e_1_3_4_11_1 e_1_3_4_32_1 e_1_3_4_17_1 e_1_3_4_38_1 e_1_3_4_15_1 e_1_3_4_36_1 e_1_3_4_57_1 e_1_3_4_19_1 e_1_3_4_4_1 Thenkabail P. S. (e_1_3_4_60_1) 2007; 73 e_1_3_4_2_1 e_1_3_4_62_1 Thenkabail P. (e_1_3_4_56_1) 2007; 73 e_1_3_4_64_1 e_1_3_4_20_1 e_1_3_4_41_1 e_1_3_4_6_1 Claverie M. (e_1_3_4_8_1) 2017 e_1_3_4_24_1 Housman I. (e_1_3_4_30_1) 2015 e_1_3_4_45_1 e_1_3_4_22_1 e_1_3_4_43_1 e_1_3_4_28_1 e_1_3_4_49_1 e_1_3_4_66_1 e_1_3_4_26_1 e_1_3_4_47_1 e_1_3_4_68_1 e_1_3_4_73_1 e_1_3_4_52_1 Jenstrom D. (e_1_3_4_31_1) 2018 e_1_3_4_50_1 e_1_3_4_71_1 e_1_3_4_12_1 e_1_3_4_35_1 e_1_3_4_10_1 e_1_3_4_33_1 e_1_3_4_54_1 e_1_3_4_16_1 e_1_3_4_39_1 e_1_3_4_14_1 e_1_3_4_37_1 Teluguntla P. (e_1_3_4_53_1) 2015 e_1_3_4_18_1 |
References_xml | – ident: e_1_3_4_29_1 doi: 10.1016/j.rse.2017.09.035 – ident: e_1_3_4_52_1 doi: 10.5194/hessd-2-1299-2005 – ident: e_1_3_4_47_1 doi: 10.3390/rs6053965 – ident: e_1_3_4_21_1 doi: 10.1117/1.3619838 – volume: 73 start-page: 1029 year: 2007 ident: e_1_3_4_60_1 article-title: Spectral Matching Techniques to Determine Historical Land use/Land Cover (LULC) and Irrigated Areas Using Time-series AVHRR Pathfinder Datasets in the Krishna River Basin, India publication-title: Photogrammetric Engineering and Remote Sensing – start-page: 131 volume-title: “Remote Sensing handbook” Volume II: Land Resources: Monitoring, Modeling, and Mapping year: 2015 ident: e_1_3_4_53_1 – ident: e_1_3_4_16_1 doi: 10.1016/S0034-4257(97)00049-7 – ident: e_1_3_4_54_1 doi: 10.1016/j.isprsjprs.2018.07.017 – ident: e_1_3_4_59_1 doi: 10.1016/j.rse.2004.12.018 – ident: e_1_3_4_3_1 doi: 10.1016/j.isprsjprs.2016.01.011 – ident: e_1_3_4_27_1 – volume-title: Landsat Science Team Meeting year: 2018 ident: e_1_3_4_31_1 – ident: e_1_3_4_13_1 doi: 10.1016/j.rse.2015.01.004 – start-page: 220 volume-title: Bridging the Rice Yield Gap in the Asia-Pacific Region year: 2000 ident: e_1_3_4_44_1 – ident: e_1_3_4_45_1 doi: 10.3390/rs2071844 – ident: e_1_3_4_66_1 doi: 10.1016/j.isprsjprs.2015.09.013 – ident: e_1_3_4_4_1 doi: 10.1080/01431160600851801 – ident: e_1_3_4_38_1 doi: 10.5194/isprsarchives-XL-1-339-2014 – ident: e_1_3_4_9_1 doi: 10.5067/MEaSUREs/GFSAD/GFSAD30VAL.001 – ident: e_1_3_4_40_1 doi: 10.5067/MEaSUREs/GFSAD/GFSAD30SEACE.001 – ident: e_1_3_4_32_1 doi: 10.1016/j.gsf.2015.07.003 – ident: e_1_3_4_49_1 doi: 10.1016/j.jag.2015.03.003 – ident: e_1_3_4_65_1 doi: 10.1016/j.jag.2016.12.012 – ident: e_1_3_4_11_1 doi: 10.1080/014311600210236 – ident: e_1_3_4_37_1 doi: 10.1016/j.jag.2018.11.014 – ident: e_1_3_4_18_1 doi: 10.1016/j.rse.2004.09.005 – ident: e_1_3_4_17_1 doi: 10.1111/j.1365-2486.2007.01519.x – ident: e_1_3_4_48_1 doi: 10.1016/j.isprsjprs.2011.11.002 – volume: 73 start-page: 1029 year: 2007 ident: e_1_3_4_56_1 article-title: Spectral Matching Techniques to Determine Historical land-use/land-cover (LULC) and Irrigated Areas Using Time-series 0.1-degree AVHRR Pathfinder Datasets publication-title: Photogrammetric Engineering & Remote Sensing – ident: e_1_3_4_73_1 doi: 10.1016/j.rse.2014.12.014 – ident: e_1_3_4_34_1 doi: 10.1016/S0167-8809(02)00021-X – ident: e_1_3_4_39_1 doi: 10.1007/s10530-016-1271-6 – ident: e_1_3_4_43_1 doi: 10.1016/S0034-4257(03)00132-9 – ident: e_1_3_4_20_1 doi: 10.1109/JSTARS.2014.2344630 – ident: e_1_3_4_64_1 doi: 10.1126/science.289.5477.284 – ident: e_1_3_4_71_1 doi: 10.3390/rs9101065 – ident: e_1_3_4_67_1 doi: 10.3390/data1010003 – ident: e_1_3_4_50_1 doi: 10.1016/j.jag.2015.01.014 – ident: e_1_3_4_35_1 doi: 10.1016/j.worlddev.2015.10.041 – ident: e_1_3_4_28_1 doi: 10.1016/j.rse.2007.11.013 – ident: e_1_3_4_51_1 doi: 10.1088/1748-9326/aaa866 – ident: e_1_3_4_72_1 doi: 10.1016/j.isprsjprs.2017.01.019 – ident: e_1_3_4_25_1 doi: 10.1080/15481603.2018.1482855 – ident: e_1_3_4_6_1 doi: 10.1023/A:1010933404324 – ident: e_1_3_4_62_1 doi: 10.3390/rs4102890 – ident: e_1_3_4_36_1 doi: 10.1080/01431161.2010.532826 – ident: e_1_3_4_23_1 doi: 10.3390/rs3040816 – ident: e_1_3_4_24_1 doi: 10.1080/01431161003749485 – volume-title: Forest Change in Southeast Asia: Case Studies for USAID Lowering Emissions in Asia’s Forests” (No. RSAC-10108-RPT1) year: 2015 ident: e_1_3_4_30_1 – volume: 78 start-page: 773 year: 2012 ident: e_1_3_4_58_1 article-title: Assessing Future Risks to Agricultural Productivity, Water Resources and Food Security: How Can Remote Sensing Help? publication-title: Photogrammetric Engineering and Remote Sensing – ident: e_1_3_4_5_1 doi: 10.1016/j.jag.2008.11.002 – ident: e_1_3_4_69_1 – ident: e_1_3_4_55_1 doi: 10.1080/17538947.2016.1267269 – ident: e_1_3_4_7_1 doi: 10.1109/TGRS.2012.2183137 – ident: e_1_3_4_57_1 doi: 10.1080/01431160802698919 – ident: e_1_3_4_46_1 doi: 10.1029/2008GB003435 – ident: e_1_3_4_15_1 doi: 10.1029/2005RG000183 – ident: e_1_3_4_68_1 – ident: e_1_3_4_33_1 doi: 10.1016/j.rsase.2016.11.003 – ident: e_1_3_4_10_1 doi: 10.1201/9781420055139 – ident: e_1_3_4_26_1 doi: 10.1080/17538947.2016.1168489 – ident: e_1_3_4_12_1 doi: 10.1016/j.isprsjprs.2009.08.004 – ident: e_1_3_4_14_1 doi: 10.1016/j.rse.2011.11.020 – ident: e_1_3_4_19_1 doi: 10.1016/j.rse.2017.06.031 – ident: e_1_3_4_2_1 doi: 10.1016/j.rse.2017.04.003 – ident: e_1_3_4_22_1 doi: 10.1016/j.isprsjprs.2014.02.007 – ident: e_1_3_4_70_1 doi: 10.1016/j.rse.2005.10.004 – ident: e_1_3_4_63_1 doi: 10.3390/rs2010211 – ident: e_1_3_4_42_1 doi: 10.1016/j.jag.2009.11.002 – ident: e_1_3_4_61_1 doi: 10.3390/rs1020050 – ident: e_1_3_4_41_1 doi: 10.4337/9781781004296.00024 – volume-title: Harmonized Landsat-8 Sentinel-2 (HLS) Product User’s Guide year: 2017 ident: e_1_3_4_8_1 |
SSID | ssj0035115 |
Score | 2.4995384 |
Snippet | The South Asia (India, Pakistan, Bangladesh, Nepal, Sri Lanka and Bhutan) has a staggering 900 million people (~43% of the population) who face food insecurity... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 302 |
SubjectTerms | 30m-South Asia croplands agroecology Bangladesh Bhutan cloud computing cropland digital elevation models Food and Agriculture Organization food security forestry equipment Google Earth Engine image analysis India Internet Landsat monsoon season Nepal Pakistan random forest Sri Lanka statistics summer surveys time series analysis winter |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELVQT1wQFFAXKBokxC2t4zixc1xQS4WAU5F6sxzHTlfaJNVuFomv49eYcZLVCg574RApcjKK7RnH4_HzG8beizRUwtoqybnPEpmGPClDgcO9DFzUIdUqUmx8-17c_JBf7vK7g1RfhAkb6YHHjrvMg02VKpwtc0unOG2prVCqdOg4515Hsm1e8nkxNf6DaXcsj0ypEtdIBc_mszuaX1IZFRGsq7ygXSJFnJAHs1Ik7_-LuvSfX3Wcf66fsieT4wjLscLP2CPfnbKz5ZZC2X37Cz5AvB8jFdvn7Pey2ex5NYASdRGGEWLQewC6tYRHhz5ATKOH4isLNRrkT18DweEb-ErngO0AeBFv5-Ah40kLlI8-IdP1W6hWTUIo00kCZ766bwFbhE2ANiI1PUypKRqw66bfrIb7Fr_bAfqe8Lnvm7WHK1TEPYzkiODW_a5-wW6vr24_3SRTtobEoQ83JDYorl1eyaLSWVo4h53MvUadS3yQiVBVIg_oT1rl6yCiJ6rR31Elr31ms5fspOs7f8ZAW-tE5rQXVS6dTTVKeaeVyCpfFFItmJyVZdzEZE4JNdYmnQhPZx0b0rGZdLxgF3uxh5HK45jAR7KE_cvExB0L0D7NZJ_mmH0uWHloR2aIgZgwZk0x2ZEKvJuNzuCop60c2_l-tzWE_JVSSC1e_Y9KvmaPBcURCJEk3rCTYbPz5-hsDdXbOK7-AJfiIWQ priority: 102 providerName: Directory of Open Access Journals |
Title | Agricultural cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the Google Earth Engine cloud |
URI | https://www.tandfonline.com/doi/abs/10.1080/15481603.2019.1690780 https://www.proquest.com/docview/2400442482 https://doaj.org/article/5fa1776ca95a4394a98a2779c6425e86 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQuXBBlIe6PKpBQtxSEseOneOCWlYIeioSnCLbsdOVdhO0ySL11_HXmHGSFQ-hHjgkijaZbJKZscfjz98w9opnwXJjbCJTnyciCzIpQ4HuXoaU1yHTKlJsfLosVp_Fhy9yRhP2E6ySxtBhJIqIbTU5t7H9jIh7Q1E2VUcmYFZ5RvM8SuOo_S7HQJFQfenX1dwY0zSZjJSpAgdLKDMv4vnXbX7rniKL_x8cpn-12bEjunjA7k8RJCxHlR-zO759yE6WPeW0u-0NvIZ4PKYs-kfsx7LZHQg2gCp2EZgRYvZ7ADo0BEyHLkCsp4fiawM1WuZ3XwPh4hv4SAuCzQC4EYHn4CFPky1QYfqEbNj3YNdNQnDTSQK7wLrbAr4RvgJsI2TTw1SjogGzabrderje4v-2gEEovO-6ZuPhHE35GkaWRHCbbl8_ZlcX51fvVslUtiFxGMwNiQkq1U5aUVidZ4Vz-JFTr1H5Ak_kPFjLZcDA0ihfBx5DUo2BjyrT2ucmf8KO2q71Jwy0MY7nTntupXAm0yjlnVY8t74ohFowMSurchOlOVXW2FTZxHw667giHVeTjhfs7CD2beT0uE3gLVnC4WKi5I4_dLummjy8ksFkShXOlNLQcmNTasOVKh2O8KTXxYKVv9pRNcSMTBjLp1T5LQ_wcja6Ct2f5nRM67t9XxEEWAguNH_6H_d_xu5xyiMQIok_Z0fDbu9fYLA12NPoTrjP08vTmLD4CS7JIOY |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQcoAL4qnd5TVIiFuWxLFj51jQLgW6eyrScrIcx85WahvUpkj8Ov4aM05SLSC0Bw6VojaTNJkZe2b8-RvGXvMsVNzaKpGpzxORBZmUoUB3L0PK65BpFSk2zi-K6Rfx6VJeXtsLQ7BKyqFDTxQRx2pybipGj5C4txRmU3tkQmaVJ7TQozSm7belxmwCbTr9Oh1HY1onk5EzVWC2hDLjLp5_Xea3-SnS-P9BYvrXoB1norP77N4QQsKk1_kDdsuvH7LDyZaK2u3qB7yBeNzXLLaP2M9Js9kzbAC17CI0I8Tydwd0aAmZDm2A2FAPxRcWajTN774GAsY3MKMdwbYD_BCDZ-chT5MVUGf6hIzYb6FaNAnhTQcJnAPrdgX4RPgIsIqYTQ9Dk4oG7LJpN4vuaoX3XQNGofChbZulh1O05SvoaRLBLdtd_ZjNz07n76fJ0LchcRjNdYkNKtVOVqKodJ4VzuFLTr1G7Qv8IeehqrgMGFla5evAY0yqMfJRZVr73OZP2MG6XftDBtpax3OnPa-kcDbTKOWdVjyvfFEIdcTEqCzjBk5zaq2xNNlAfTrq2JCOzaDjI3ayF_vWk3rcJPCOLGF_MnFyxy_aTWMGFzcy2EypwtlSWtpvbEttuVKlwxRPel0csfK6HZkulmRC3z_F5Df8gVej0Rn0f1rUsWvf7raGMMBCcKH58X9c_yW7M52fz8zs48Xnp-wup6ICwZP4M3bQbXb-OUZeXfUiutYvKFMiig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQIiEuvNGW5yAhbimJ87BzLLBlgWXFYZG4WbZjZ6ttmlWbIsGf468x4yQVLEJ72EOlqO0ksT0zHo8_f8PYS554w7U2UR67NMoSn0elL9DcSx_zyidSBIqNz8fF4dfs47d8RBNuBlglraF9TxQRfDUZ93nlR0Tca4qyqToyAbPKKe3zCImr9usFhieE6kvj49EZ0zZZHihTM1wsocx4iOd_t_lregos_hc4TP_x2WEimt9mZmxCjz85m247M7U_L7A7XqmNd9itIUyFWa9Xd9k1t7rH9mcbSpy3zQ94BeG6z4ts7rNfs3q9Y_EAKgtGiEkIKfYO6FIT-h1aD6FoH4ovNFSo_t9dBQS-r-GITh3rDvBDLKGdgzSOGugWjYvIUNwGzKKOCNM6SOA8W7UNYLdhP0ETcKEOhkIYNehl3a4X3WmDz10BRrrwvm3rpYMDtJdT6KkYwS7bbfWAncwPTt4eRkNtiMhixNhF2otY2txkhZFpUliLnRU7iRqW4Q8p98bw3GP0qoWrPA9xr8ToSpRx5VKdPmR7q3bl9hlIrS1PrXTc5JnViUQpZ6XgqXFFkYkJy0aNUHbgTafyHUuVDPSq41gpGis1jNWETXdi5z1xyGUCb0jddn8m3u_wRbuu1eBGVO51IkRhdZlrOtOsS6m5EKXFZWTuZDFh5Z_KqrqQ9vF9jRaVXvICL0bNVuhjaONIr1y73SjCGWcZzyR_dIX7P2c3vrybq6MPx58es5uc8haEgOJP2F633rqnGNx15lkw399Nd0E5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Agricultural+cropland+extent+and+areas+of+South+Asia+derived+using+Landsat+satellite+30-m+time-series+big-data+using+random+forest+machine+learning+algorithms+on+the+Google+Earth+Engine+cloud&rft.jtitle=GIScience+and+remote+sensing&rft.au=Gumma%2C+Murali+Krishna&rft.au=Thenkabail%2C+Prasad+S&rft.au=Teluguntla%2C+Pardhasaradhi+G&rft.au=Oliphant%2C+Adam&rft.date=2020-04-02&rft.issn=1943-7226&rft.volume=57&rft.issue=3+p.302-322&rft.spage=302&rft.epage=322&rft_id=info:doi/10.1080%2F15481603.2019.1690780&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon |