Agricultural cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the Google Earth Engine cloud

The South Asia (India, Pakistan, Bangladesh, Nepal, Sri Lanka and Bhutan) has a staggering 900 million people (~43% of the population) who face food insecurity or severe food insecurity as per United Nations, Food and Agriculture Organization's (FAO) the Food Insecurity Experience Scale (FIES)....

Full description

Saved in:
Bibliographic Details
Published inGIScience and remote sensing Vol. 57; no. 3; pp. 302 - 322
Main Authors Gumma, Murali Krishna, Thenkabail, Prasad S., Teluguntla, Pardhasaradhi G., Oliphant, Adam, Xiong, Jun, Giri, Chandra, Pyla, Vineetha, Dixit, Sreenath, Whitbread, Anthony M
Format Journal Article
LanguageEnglish
Published Taylor & Francis 02.04.2020
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN1548-1603
1943-7226
1943-7226
DOI10.1080/15481603.2019.1690780

Cover

Abstract The South Asia (India, Pakistan, Bangladesh, Nepal, Sri Lanka and Bhutan) has a staggering 900 million people (~43% of the population) who face food insecurity or severe food insecurity as per United Nations, Food and Agriculture Organization's (FAO) the Food Insecurity Experience Scale (FIES). The existing coarse-resolution (≥250-m) cropland maps lack precision in geo-location of individual farms and have low map accuracies. This also results in uncertainties in cropland areas calculated from such products. Thereby, the overarching goal of this study was to develop a high spatial resolution (30-m or better) baseline cropland extent product of South Asia for the year 2015 using Landsat satellite time-series big-data and machine learning algorithms (MLAs) on the Google Earth Engine (GEE) cloud computing platform. To eliminate the impact of clouds, 10 time-composited Landsat bands (blue, green, red, NIR, SWIR1, SWIR2, Thermal, EVI, NDVI, NDWI) were derived for each of the three time-periods over 12 months (monsoon: Days of the Year (DOY) 151-300; winter: DOY 301-365 plus 1-60; and summer: DOY 61-150), taking the every 8-day data from Landsat-8 and 7 for the years 2013-2015, for a total of 30-bands plus global digital elevation model (GDEM) derived slope band. This 31-band mega-file big data-cube was composed for each of the five agro-ecological zones (AEZ's) of South Asia and formed a baseline data for image classification and analysis. Knowledge-base for the Random Forest (RF) MLAs were developed using spatially well spread-out reference training data (N = 2179) in five AEZs. The classification was performed on GEE for each of the five AEZs using well-established knowledge-base and RF MLAs on the cloud. Map accuracies were measured using independent validation data (N = 1185). The survey showed that the South Asia cropland product had a producer's accuracy of 89.9% (errors of omissions of 10.1%), user's accuracy of 95.3% (errors of commission of 4.7%) and an overall accuracy of 88.7%. The National and sub-national (districts) areas computed from this cropland extent product explained 80-96% variability when compared with the National statistics of the South Asian Countries. The full-resolution imagery can be viewed at full-resolution, by zooming-in to any location in South Asia or the world, at www.croplands.org and the cropland products of South Asia downloaded from The Land Processes Distributed Active Archive Center (LP DAAC) of National Aeronautics and Space Administration (NASA) and the United States Geological Survey (USGS): https://lpdaac.usgs.gov/products/gfsad30saafgircev001/ .
AbstractList The South Asia (India, Pakistan, Bangladesh, Nepal, Sri Lanka and Bhutan) has a staggering 900 million people (~43% of the population) who face food insecurity or severe food insecurity as per United Nations, Food and Agriculture Organization's (FAO) the Food Insecurity Experience Scale (FIES). The existing coarse-resolution (≥250-m) cropland maps lack precision in geo-location of individual farms and have low map accuracies. This also results in uncertainties in cropland areas calculated from such products. Thereby, the overarching goal of this study was to develop a high spatial resolution (30-m or better) baseline cropland extent product of South Asia for the year 2015 using Landsat satellite time-series big-data and machine learning algorithms (MLAs) on the Google Earth Engine (GEE) cloud computing platform. To eliminate the impact of clouds, 10 time-composited Landsat bands (blue, green, red, NIR, SWIR1, SWIR2, Thermal, EVI, NDVI, NDWI) were derived for each of the three time-periods over 12 months (monsoon: Days of the Year (DOY) 151-300; winter: DOY 301-365 plus 1-60; and summer: DOY 61-150), taking the every 8-day data from Landsat-8 and 7 for the years 2013-2015, for a total of 30-bands plus global digital elevation model (GDEM) derived slope band. This 31-band mega-file big data-cube was composed for each of the five agro-ecological zones (AEZ's) of South Asia and formed a baseline data for image classification and analysis. Knowledge-base for the Random Forest (RF) MLAs were developed using spatially well spread-out reference training data (N = 2179) in five AEZs. The classification was performed on GEE for each of the five AEZs using well-established knowledge-base and RF MLAs on the cloud. Map accuracies were measured using independent validation data (N = 1185). The survey showed that the South Asia cropland product had a producer's accuracy of 89.9% (errors of omissions of 10.1%), user's accuracy of 95.3% (errors of commission of 4.7%) and an overall accuracy of 88.7%. The National and sub-national (districts) areas computed from this cropland extent product explained 80-96% variability when compared with the National statistics of the South Asian Countries. The full-resolution imagery can be viewed at full-resolution, by zooming-in to any location in South Asia or the world, at www.croplands.org and the cropland products of South Asia downloaded from The Land Processes Distributed Active Archive Center (LP DAAC) of National Aeronautics and Space Administration (NASA) and the United States Geological Survey (USGS): https://lpdaac.usgs.gov/products/gfsad30saafgircev001/ .
The South Asia (India, Pakistan, Bangladesh, Nepal, Sri Lanka and Bhutan) has a staggering 900 million people (~43% of the population) who face food insecurity or severe food insecurity as per United Nations, Food and Agriculture Organization’s (FAO) the Food Insecurity Experience Scale (FIES). The existing coarse-resolution (≥250-m) cropland maps lack precision in geo-location of individual farms and have low map accuracies. This also results in uncertainties in cropland areas calculated from such products. Thereby, the overarching goal of this study was to develop a high spatial resolution (30-m or better) baseline cropland extent product of South Asia for the year 2015 using Landsat satellite time-series big-data and machine learning algorithms (MLAs) on the Google Earth Engine (GEE) cloud computing platform. To eliminate the impact of clouds, 10 time-composited Landsat bands (blue, green, red, NIR, SWIR1, SWIR2, Thermal, EVI, NDVI, NDWI) were derived for each of the three time-periods over 12 months (monsoon: Days of the Year (DOY) 151–300; winter: DOY 301–365 plus 1–60; and summer: DOY 61–150), taking the every 8-day data from Landsat-8 and 7 for the years 2013–2015, for a total of 30-bands plus global digital elevation model (GDEM) derived slope band. This 31-band mega-file big data-cube was composed for each of the five agro-ecological zones (AEZ’s) of South Asia and formed a baseline data for image classification and analysis. Knowledge-base for the Random Forest (RF) MLAs were developed using spatially well spread-out reference training data (N = 2179) in five AEZs. The classification was performed on GEE for each of the five AEZs using well-established knowledge-base and RF MLAs on the cloud. Map accuracies were measured using independent validation data (N = 1185). The survey showed that the South Asia cropland product had a producer’s accuracy of 89.9% (errors of omissions of 10.1%), user’s accuracy of 95.3% (errors of commission of 4.7%) and an overall accuracy of 88.7%. The National and sub-national (districts) areas computed from this cropland extent product explained 80-96% variability when compared with the National statistics of the South Asian Countries. The full-resolution imagery can be viewed at full-resolution, by zooming-in to any location in South Asia or the world, at www.croplands.org and the cropland products of South Asia downloaded from The Land Processes Distributed Active Archive Center (LP DAAC) of National Aeronautics and Space Administration (NASA) and the United States Geological Survey (USGS): https://lpdaac.usgs.gov/products/gfsad30saafgircev001/.
Author Teluguntla, Pardhasaradhi G.
Dixit, Sreenath
Giri, Chandra
Whitbread, Anthony M
Oliphant, Adam
Xiong, Jun
Gumma, Murali Krishna
Thenkabail, Prasad S.
Pyla, Vineetha
Author_xml – sequence: 1
  givenname: Murali Krishna
  orcidid: 0000-0002-3760-3935
  surname: Gumma
  fullname: Gumma, Murali Krishna
  email: m.gumma@cgiar.org
  organization: RS/GIS Lab, Innovation Systems for the Drylands, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)
– sequence: 2
  givenname: Prasad S.
  orcidid: 0000-0002-2182-8822
  surname: Thenkabail
  fullname: Thenkabail, Prasad S.
  email: pthenkabail@usgs.gov
  organization: U.S. Geological Survey (USGS)
– sequence: 3
  givenname: Pardhasaradhi G.
  orcidid: 0000-0001-8060-9841
  surname: Teluguntla
  fullname: Teluguntla, Pardhasaradhi G.
  organization: NASA Research Park
– sequence: 4
  givenname: Adam
  orcidid: 0000-0001-8622-7932
  surname: Oliphant
  fullname: Oliphant, Adam
  organization: U.S. Geological Survey (USGS)
– sequence: 5
  givenname: Jun
  orcidid: 0000-0002-2320-0780
  surname: Xiong
  fullname: Xiong, Jun
  organization: U.S. Geological Survey (USGS)
– sequence: 6
  givenname: Chandra
  orcidid: 0000-0003-1938-4131
  surname: Giri
  fullname: Giri, Chandra
  organization: U.S. Geological Survey (USGS)
– sequence: 7
  givenname: Vineetha
  orcidid: 0000-0002-9436-0394
  surname: Pyla
  fullname: Pyla, Vineetha
  organization: Jawaharlal Nehru Technological University (JNTU)
– sequence: 8
  givenname: Sreenath
  orcidid: 0000-0002-3607-8729
  surname: Dixit
  fullname: Dixit, Sreenath
  organization: RS/GIS Lab, Innovation Systems for the Drylands, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)
– sequence: 9
  givenname: Anthony M
  orcidid: 0000-0003-4840-7670
  surname: Whitbread
  fullname: Whitbread, Anthony M
  organization: RS/GIS Lab, Innovation Systems for the Drylands, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)
BookMark eNqFUctuFDEQHKEgkQQ-AclHLrP4NS9xYRWFEGklDuRu9Xras4489mJ7gHwdv4aHXThwgIPlVndVdavqqrrwwWNVvWZ0w2hP37JG9qylYsMpGzasHWjX02fVJRukqDvO24tSF0y9gl5UVyk9UioaxprL6sd2ilYvLi8RHNExHB34keD3jD6TtYSIkEgw5HNY8oFskwUyYrRfcSRLsn4iuwJLkEl56JzNSAStZ5LtjHUqSExkb6d6hAxnRiyMMBMTIqZMZtAH65E4hOjXMbgpRJsPc9nrST4guQthckhuIZYTbv20wrULy_iyem7AJXx1_q-rhw-3Dzcf692nu_ub7a7WDee5BtPRXjd72e57wVqtixUU-8FQWQaCm_2eN2bgAjocDS_WFA_bVnQDHVGAuK7uT7JjgEd1jHaG-KQCWPWrEeKkymlWO1SNAdZ1rYahASkGCUMPvOsG3UreYN8WrTcnrWMMX5ZigJpt0sU58BiWpLikVEoue16gzQlagkkpovmzmlG1Zq9-Z6_W7NU5-8J79xdP2wzZBp8jWPdf9vsT2_qS0AzfQnSjyvDkQjQlOm2TEv-W-Albf8uW
CitedBy_id crossref_primary_10_1080_17538947_2024_2337221
crossref_primary_10_1109_JSTARS_2021_3103754
crossref_primary_10_61186_jgit_12_1_17
crossref_primary_10_3390_rs15082024
crossref_primary_10_1080_01431161_2021_1881181
crossref_primary_10_1080_15481603_2020_1835080
crossref_primary_10_1080_23311932_2024_2448597
crossref_primary_10_5194_essd_13_2437_2021
crossref_primary_10_47820_recima21_v6i2_6211
crossref_primary_10_1080_10549811_2024_2448027
crossref_primary_10_1080_15481603_2022_2088651
crossref_primary_10_3390_rs14061347
crossref_primary_10_3390_rs13091744
crossref_primary_10_1016_j_rse_2020_112095
crossref_primary_10_1016_j_jafr_2023_100819
crossref_primary_10_1016_j_isprsjprs_2021_11_016
crossref_primary_10_1016_j_isprsjprs_2023_11_014
crossref_primary_10_3390_rs13163339
crossref_primary_10_3390_rs14143253
crossref_primary_10_3390_rs15153792
crossref_primary_10_1080_15481603_2022_2126342
crossref_primary_10_3390_rs15051228
crossref_primary_10_3389_fpls_2023_1016890
crossref_primary_10_1007_s00477_022_02188_0
crossref_primary_10_1016_j_jag_2023_103193
crossref_primary_10_1016_j_envpol_2021_117711
crossref_primary_10_1080_15481603_2020_1763041
crossref_primary_10_3390_rs12030522
crossref_primary_10_34133_remotesensing_0065
crossref_primary_10_1080_01431161_2021_1954261
crossref_primary_10_3390_agriculture13081633
crossref_primary_10_1080_15481603_2023_2233756
crossref_primary_10_3390_rs13040787
crossref_primary_10_1007_s12517_024_11948_x
crossref_primary_10_1080_01431161_2024_2388864
crossref_primary_10_1080_07038992_2024_2448169
crossref_primary_10_1016_j_scitotenv_2023_165660
crossref_primary_10_3390_su17062508
crossref_primary_10_3390_su12166583
crossref_primary_10_1007_s12517_022_10049_x
crossref_primary_10_3390_rs14092100
crossref_primary_10_1080_15481603_2020_1848323
crossref_primary_10_3390_s24206664
crossref_primary_10_1109_JSTARS_2024_3498899
crossref_primary_10_1080_10106049_2023_2186493
crossref_primary_10_3390_agronomy12030748
crossref_primary_10_1016_j_asr_2021_10_020
crossref_primary_10_1007_s41748_023_00340_6
crossref_primary_10_3390_rs16244622
crossref_primary_10_1016_j_scitotenv_2024_171366
crossref_primary_10_1016_j_agwat_2024_109020
crossref_primary_10_1080_10106049_2022_2032396
crossref_primary_10_1186_s13717_020_00255_4
crossref_primary_10_2166_wp_2024_126
crossref_primary_10_1016_j_procs_2023_12_160
crossref_primary_10_1109_TGRS_2023_3299956
crossref_primary_10_1016_j_jag_2023_103564
crossref_primary_10_3390_rs13061066
crossref_primary_10_1016_j_envadv_2021_100147
crossref_primary_10_1016_j_isprsjprs_2021_02_019
crossref_primary_10_1007_s11769_021_1226_4
crossref_primary_10_1109_TGRS_2023_3308902
crossref_primary_10_1016_j_rsase_2021_100665
crossref_primary_10_1080_10095020_2022_2100287
crossref_primary_10_1016_j_scitotenv_2024_175058
crossref_primary_10_1007_s42489_022_00121_7
crossref_primary_10_1080_10106049_2022_2076923
crossref_primary_10_1007_s00484_023_02478_4
crossref_primary_10_1016_j_isprsjprs_2020_06_022
crossref_primary_10_1002_ldr_4612
crossref_primary_10_1016_j_atech_2023_100374
crossref_primary_10_3390_ijgi12020081
crossref_primary_10_3390_rs13214378
crossref_primary_10_3390_rs15164071
crossref_primary_10_1080_17538947_2022_2044397
crossref_primary_10_1016_j_apgeog_2023_103164
crossref_primary_10_3390_electronics10050552
crossref_primary_10_1007_s41651_024_00195_z
crossref_primary_10_1002_ldr_3914
crossref_primary_10_1007_s12524_021_01341_6
crossref_primary_10_1002_ldr_5012
crossref_primary_10_1080_15481603_2021_1947623
crossref_primary_10_3390_agronomy13092302
crossref_primary_10_3390_rs16244797
crossref_primary_10_1016_j_compag_2025_110184
crossref_primary_10_1016_j_crsust_2021_100032
crossref_primary_10_1007_s12524_024_01901_6
crossref_primary_10_3390_rs12213644
crossref_primary_10_3390_su152115444
crossref_primary_10_48123_rsgis_1410250
crossref_primary_10_1016_j_atech_2023_100193
crossref_primary_10_3390_su142316131
crossref_primary_10_1016_j_jclepro_2022_132129
crossref_primary_10_1080_19475705_2023_2290350
crossref_primary_10_3390_jimaging9050098
crossref_primary_10_1016_j_rsase_2023_101029
crossref_primary_10_1016_j_compag_2024_109225
crossref_primary_10_3390_s23156729
Cites_doi 10.1016/j.rse.2017.09.035
10.5194/hessd-2-1299-2005
10.3390/rs6053965
10.1117/1.3619838
10.1016/S0034-4257(97)00049-7
10.1016/j.isprsjprs.2018.07.017
10.1016/j.rse.2004.12.018
10.1016/j.isprsjprs.2016.01.011
10.1016/j.rse.2015.01.004
10.3390/rs2071844
10.1016/j.isprsjprs.2015.09.013
10.1080/01431160600851801
10.5194/isprsarchives-XL-1-339-2014
10.5067/MEaSUREs/GFSAD/GFSAD30VAL.001
10.5067/MEaSUREs/GFSAD/GFSAD30SEACE.001
10.1016/j.gsf.2015.07.003
10.1016/j.jag.2015.03.003
10.1016/j.jag.2016.12.012
10.1080/014311600210236
10.1016/j.jag.2018.11.014
10.1016/j.rse.2004.09.005
10.1111/j.1365-2486.2007.01519.x
10.1016/j.isprsjprs.2011.11.002
10.1016/j.rse.2014.12.014
10.1016/S0167-8809(02)00021-X
10.1007/s10530-016-1271-6
10.1016/S0034-4257(03)00132-9
10.1109/JSTARS.2014.2344630
10.1126/science.289.5477.284
10.3390/rs9101065
10.3390/data1010003
10.1016/j.jag.2015.01.014
10.1016/j.worlddev.2015.10.041
10.1016/j.rse.2007.11.013
10.1088/1748-9326/aaa866
10.1016/j.isprsjprs.2017.01.019
10.1080/15481603.2018.1482855
10.1023/A:1010933404324
10.3390/rs4102890
10.1080/01431161.2010.532826
10.3390/rs3040816
10.1080/01431161003749485
10.1016/j.jag.2008.11.002
10.1080/17538947.2016.1267269
10.1109/TGRS.2012.2183137
10.1080/01431160802698919
10.1029/2008GB003435
10.1029/2005RG000183
10.1016/j.rsase.2016.11.003
10.1201/9781420055139
10.1080/17538947.2016.1168489
10.1016/j.isprsjprs.2009.08.004
10.1016/j.rse.2011.11.020
10.1016/j.rse.2017.06.031
10.1016/j.rse.2017.04.003
10.1016/j.isprsjprs.2014.02.007
10.1016/j.rse.2005.10.004
10.3390/rs2010211
10.1016/j.jag.2009.11.002
10.3390/rs1020050
10.4337/9781781004296.00024
ContentType Journal Article
Copyright 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2019
Copyright_xml – notice: 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2019
DBID 0YH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1080/15481603.2019.1690780
DatabaseName Taylor & Francis Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Free Journals (Free resource, activated by CARLI)
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Statistics
EISSN 1943-7226
EndPage 322
ExternalDocumentID oai_doaj_org_article_5fa1776ca95a4394a98a2779c6425e86
10_1080_15481603_2019_1690780
1690780
Genre Research Article
GeographicLocations Bangladesh
Bhutan
Pakistan
Sri Lanka
Nepal
India
GeographicLocations_xml – name: Sri Lanka
– name: Bangladesh
– name: Bhutan
– name: Nepal
– name: India
– name: Pakistan
GroupedDBID 0YH
30N
4.4
5GY
AAHBH
AAJMT
ABCCY
ABFIM
ABPEM
ABTAI
ACGFS
ACTIO
ADCVX
AEISY
AENEX
AEYOC
AIJEM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
KYCEM
LJTGL
M4Z
O9-
OK1
RIG
S-T
SNACF
TDBHL
TEI
TFL
TFT
TFW
TTHFI
UT5
~02
AAYXX
AIYEW
CITATION
7S9
L.6
GROUPED_DOAJ
ID FETCH-LOGICAL-c522t-af708c5b46b8316cc1600e89f0470832fbb25f923a7edf2115078663790de3a3
IEDL.DBID 0YH
ISSN 1548-1603
1943-7226
IngestDate Wed Aug 27 01:22:05 EDT 2025
Mon May 05 21:11:05 EDT 2025
Tue Jul 01 02:27:27 EDT 2025
Thu Apr 24 22:58:09 EDT 2025
Wed Dec 25 09:02:46 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-af708c5b46b8316cc1600e89f0470832fbb25f923a7edf2115078663790de3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9436-0394
0000-0001-8060-9841
0000-0002-3607-8729
0000-0003-4840-7670
0000-0001-8622-7932
0000-0002-2182-8822
0000-0002-3760-3935
0000-0002-2320-0780
0000-0003-1938-4131
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/15481603.2019.1690780
PQID 2400442482
PQPubID 24069
PageCount 21
ParticipantIDs crossref_primary_10_1080_15481603_2019_1690780
proquest_miscellaneous_2400442482
crossref_citationtrail_10_1080_15481603_2019_1690780
informaworld_taylorfrancis_310_1080_15481603_2019_1690780
doaj_primary_oai_doaj_org_article_5fa1776ca95a4394a98a2779c6425e86
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-02
PublicationDateYYYYMMDD 2020-04-02
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-02
  day: 02
PublicationDecade 2020
PublicationTitle GIScience and remote sensing
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References e_1_3_4_3_1
e_1_3_4_61_1
e_1_3_4_63_1
e_1_3_4_9_1
e_1_3_4_42_1
e_1_3_4_7_1
e_1_3_4_40_1
e_1_3_4_5_1
e_1_3_4_23_1
e_1_3_4_46_1
e_1_3_4_69_1
e_1_3_4_21_1
e_1_3_4_27_1
e_1_3_4_65_1
e_1_3_4_25_1
e_1_3_4_48_1
e_1_3_4_67_1
e_1_3_4_29_1
Thenkabail P. S. (e_1_3_4_58_1) 2012; 78
e_1_3_4_72_1
Papademetriou M. K. (e_1_3_4_44_1) 2000
e_1_3_4_51_1
e_1_3_4_70_1
e_1_3_4_13_1
e_1_3_4_34_1
e_1_3_4_59_1
e_1_3_4_55_1
e_1_3_4_11_1
e_1_3_4_32_1
e_1_3_4_17_1
e_1_3_4_38_1
e_1_3_4_15_1
e_1_3_4_36_1
e_1_3_4_57_1
e_1_3_4_19_1
e_1_3_4_4_1
Thenkabail P. S. (e_1_3_4_60_1) 2007; 73
e_1_3_4_2_1
e_1_3_4_62_1
Thenkabail P. (e_1_3_4_56_1) 2007; 73
e_1_3_4_64_1
e_1_3_4_20_1
e_1_3_4_41_1
e_1_3_4_6_1
Claverie M. (e_1_3_4_8_1) 2017
e_1_3_4_24_1
Housman I. (e_1_3_4_30_1) 2015
e_1_3_4_45_1
e_1_3_4_22_1
e_1_3_4_43_1
e_1_3_4_28_1
e_1_3_4_49_1
e_1_3_4_66_1
e_1_3_4_26_1
e_1_3_4_47_1
e_1_3_4_68_1
e_1_3_4_73_1
e_1_3_4_52_1
Jenstrom D. (e_1_3_4_31_1) 2018
e_1_3_4_50_1
e_1_3_4_71_1
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_54_1
e_1_3_4_16_1
e_1_3_4_39_1
e_1_3_4_14_1
e_1_3_4_37_1
Teluguntla P. (e_1_3_4_53_1) 2015
e_1_3_4_18_1
References_xml – ident: e_1_3_4_29_1
  doi: 10.1016/j.rse.2017.09.035
– ident: e_1_3_4_52_1
  doi: 10.5194/hessd-2-1299-2005
– ident: e_1_3_4_47_1
  doi: 10.3390/rs6053965
– ident: e_1_3_4_21_1
  doi: 10.1117/1.3619838
– volume: 73
  start-page: 1029
  year: 2007
  ident: e_1_3_4_60_1
  article-title: Spectral Matching Techniques to Determine Historical Land use/Land Cover (LULC) and Irrigated Areas Using Time-series AVHRR Pathfinder Datasets in the Krishna River Basin, India
  publication-title: Photogrammetric Engineering and Remote Sensing
– start-page: 131
  volume-title: “Remote Sensing handbook” Volume II: Land Resources: Monitoring, Modeling, and Mapping
  year: 2015
  ident: e_1_3_4_53_1
– ident: e_1_3_4_16_1
  doi: 10.1016/S0034-4257(97)00049-7
– ident: e_1_3_4_54_1
  doi: 10.1016/j.isprsjprs.2018.07.017
– ident: e_1_3_4_59_1
  doi: 10.1016/j.rse.2004.12.018
– ident: e_1_3_4_3_1
  doi: 10.1016/j.isprsjprs.2016.01.011
– ident: e_1_3_4_27_1
– volume-title: Landsat Science Team Meeting
  year: 2018
  ident: e_1_3_4_31_1
– ident: e_1_3_4_13_1
  doi: 10.1016/j.rse.2015.01.004
– start-page: 220
  volume-title: Bridging the Rice Yield Gap in the Asia-Pacific Region
  year: 2000
  ident: e_1_3_4_44_1
– ident: e_1_3_4_45_1
  doi: 10.3390/rs2071844
– ident: e_1_3_4_66_1
  doi: 10.1016/j.isprsjprs.2015.09.013
– ident: e_1_3_4_4_1
  doi: 10.1080/01431160600851801
– ident: e_1_3_4_38_1
  doi: 10.5194/isprsarchives-XL-1-339-2014
– ident: e_1_3_4_9_1
  doi: 10.5067/MEaSUREs/GFSAD/GFSAD30VAL.001
– ident: e_1_3_4_40_1
  doi: 10.5067/MEaSUREs/GFSAD/GFSAD30SEACE.001
– ident: e_1_3_4_32_1
  doi: 10.1016/j.gsf.2015.07.003
– ident: e_1_3_4_49_1
  doi: 10.1016/j.jag.2015.03.003
– ident: e_1_3_4_65_1
  doi: 10.1016/j.jag.2016.12.012
– ident: e_1_3_4_11_1
  doi: 10.1080/014311600210236
– ident: e_1_3_4_37_1
  doi: 10.1016/j.jag.2018.11.014
– ident: e_1_3_4_18_1
  doi: 10.1016/j.rse.2004.09.005
– ident: e_1_3_4_17_1
  doi: 10.1111/j.1365-2486.2007.01519.x
– ident: e_1_3_4_48_1
  doi: 10.1016/j.isprsjprs.2011.11.002
– volume: 73
  start-page: 1029
  year: 2007
  ident: e_1_3_4_56_1
  article-title: Spectral Matching Techniques to Determine Historical land-use/land-cover (LULC) and Irrigated Areas Using Time-series 0.1-degree AVHRR Pathfinder Datasets
  publication-title: Photogrammetric Engineering & Remote Sensing
– ident: e_1_3_4_73_1
  doi: 10.1016/j.rse.2014.12.014
– ident: e_1_3_4_34_1
  doi: 10.1016/S0167-8809(02)00021-X
– ident: e_1_3_4_39_1
  doi: 10.1007/s10530-016-1271-6
– ident: e_1_3_4_43_1
  doi: 10.1016/S0034-4257(03)00132-9
– ident: e_1_3_4_20_1
  doi: 10.1109/JSTARS.2014.2344630
– ident: e_1_3_4_64_1
  doi: 10.1126/science.289.5477.284
– ident: e_1_3_4_71_1
  doi: 10.3390/rs9101065
– ident: e_1_3_4_67_1
  doi: 10.3390/data1010003
– ident: e_1_3_4_50_1
  doi: 10.1016/j.jag.2015.01.014
– ident: e_1_3_4_35_1
  doi: 10.1016/j.worlddev.2015.10.041
– ident: e_1_3_4_28_1
  doi: 10.1016/j.rse.2007.11.013
– ident: e_1_3_4_51_1
  doi: 10.1088/1748-9326/aaa866
– ident: e_1_3_4_72_1
  doi: 10.1016/j.isprsjprs.2017.01.019
– ident: e_1_3_4_25_1
  doi: 10.1080/15481603.2018.1482855
– ident: e_1_3_4_6_1
  doi: 10.1023/A:1010933404324
– ident: e_1_3_4_62_1
  doi: 10.3390/rs4102890
– ident: e_1_3_4_36_1
  doi: 10.1080/01431161.2010.532826
– ident: e_1_3_4_23_1
  doi: 10.3390/rs3040816
– ident: e_1_3_4_24_1
  doi: 10.1080/01431161003749485
– volume-title: Forest Change in Southeast Asia: Case Studies for USAID Lowering Emissions in Asia’s Forests” (No. RSAC-10108-RPT1)
  year: 2015
  ident: e_1_3_4_30_1
– volume: 78
  start-page: 773
  year: 2012
  ident: e_1_3_4_58_1
  article-title: Assessing Future Risks to Agricultural Productivity, Water Resources and Food Security: How Can Remote Sensing Help?
  publication-title: Photogrammetric Engineering and Remote Sensing
– ident: e_1_3_4_5_1
  doi: 10.1016/j.jag.2008.11.002
– ident: e_1_3_4_69_1
– ident: e_1_3_4_55_1
  doi: 10.1080/17538947.2016.1267269
– ident: e_1_3_4_7_1
  doi: 10.1109/TGRS.2012.2183137
– ident: e_1_3_4_57_1
  doi: 10.1080/01431160802698919
– ident: e_1_3_4_46_1
  doi: 10.1029/2008GB003435
– ident: e_1_3_4_15_1
  doi: 10.1029/2005RG000183
– ident: e_1_3_4_68_1
– ident: e_1_3_4_33_1
  doi: 10.1016/j.rsase.2016.11.003
– ident: e_1_3_4_10_1
  doi: 10.1201/9781420055139
– ident: e_1_3_4_26_1
  doi: 10.1080/17538947.2016.1168489
– ident: e_1_3_4_12_1
  doi: 10.1016/j.isprsjprs.2009.08.004
– ident: e_1_3_4_14_1
  doi: 10.1016/j.rse.2011.11.020
– ident: e_1_3_4_19_1
  doi: 10.1016/j.rse.2017.06.031
– ident: e_1_3_4_2_1
  doi: 10.1016/j.rse.2017.04.003
– ident: e_1_3_4_22_1
  doi: 10.1016/j.isprsjprs.2014.02.007
– ident: e_1_3_4_70_1
  doi: 10.1016/j.rse.2005.10.004
– ident: e_1_3_4_63_1
  doi: 10.3390/rs2010211
– ident: e_1_3_4_42_1
  doi: 10.1016/j.jag.2009.11.002
– ident: e_1_3_4_61_1
  doi: 10.3390/rs1020050
– ident: e_1_3_4_41_1
  doi: 10.4337/9781781004296.00024
– volume-title: Harmonized Landsat-8 Sentinel-2 (HLS) Product User’s Guide
  year: 2017
  ident: e_1_3_4_8_1
SSID ssj0035115
Score 2.4995384
Snippet The South Asia (India, Pakistan, Bangladesh, Nepal, Sri Lanka and Bhutan) has a staggering 900 million people (~43% of the population) who face food insecurity...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 302
SubjectTerms 30m-South Asia croplands
agroecology
Bangladesh
Bhutan
cloud computing
cropland
digital elevation models
Food and Agriculture Organization
food security
forestry equipment
Google Earth Engine
image analysis
India
Internet
Landsat
monsoon season
Nepal
Pakistan
random forest
Sri Lanka
statistics
summer
surveys
time series analysis
winter
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELVQT1wQFFAXKBokxC2t4zixc1xQS4WAU5F6sxzHTlfaJNVuFomv49eYcZLVCg574RApcjKK7RnH4_HzG8beizRUwtoqybnPEpmGPClDgcO9DFzUIdUqUmx8-17c_JBf7vK7g1RfhAkb6YHHjrvMg02VKpwtc0unOG2prVCqdOg4515Hsm1e8nkxNf6DaXcsj0ypEtdIBc_mszuaX1IZFRGsq7ygXSJFnJAHs1Ik7_-LuvSfX3Wcf66fsieT4wjLscLP2CPfnbKz5ZZC2X37Cz5AvB8jFdvn7Pey2ex5NYASdRGGEWLQewC6tYRHhz5ATKOH4isLNRrkT18DweEb-ErngO0AeBFv5-Ah40kLlI8-IdP1W6hWTUIo00kCZ766bwFbhE2ANiI1PUypKRqw66bfrIb7Fr_bAfqe8Lnvm7WHK1TEPYzkiODW_a5-wW6vr24_3SRTtobEoQ83JDYorl1eyaLSWVo4h53MvUadS3yQiVBVIg_oT1rl6yCiJ6rR31Elr31ms5fspOs7f8ZAW-tE5rQXVS6dTTVKeaeVyCpfFFItmJyVZdzEZE4JNdYmnQhPZx0b0rGZdLxgF3uxh5HK45jAR7KE_cvExB0L0D7NZJ_mmH0uWHloR2aIgZgwZk0x2ZEKvJuNzuCop60c2_l-tzWE_JVSSC1e_Y9KvmaPBcURCJEk3rCTYbPz5-hsDdXbOK7-AJfiIWQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Agricultural cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the Google Earth Engine cloud
URI https://www.tandfonline.com/doi/abs/10.1080/15481603.2019.1690780
https://www.proquest.com/docview/2400442482
https://doaj.org/article/5fa1776ca95a4394a98a2779c6425e86
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQuXBBlIe6PKpBQtxSEseOneOCWlYIeioSnCLbsdOVdhO0ySL11_HXmHGSFQ-hHjgkijaZbJKZscfjz98w9opnwXJjbCJTnyciCzIpQ4HuXoaU1yHTKlJsfLosVp_Fhy9yRhP2E6ySxtBhJIqIbTU5t7H9jIh7Q1E2VUcmYFZ5RvM8SuOo_S7HQJFQfenX1dwY0zSZjJSpAgdLKDMv4vnXbX7rniKL_x8cpn-12bEjunjA7k8RJCxHlR-zO759yE6WPeW0u-0NvIZ4PKYs-kfsx7LZHQg2gCp2EZgRYvZ7ADo0BEyHLkCsp4fiawM1WuZ3XwPh4hv4SAuCzQC4EYHn4CFPky1QYfqEbNj3YNdNQnDTSQK7wLrbAr4RvgJsI2TTw1SjogGzabrderje4v-2gEEovO-6ZuPhHE35GkaWRHCbbl8_ZlcX51fvVslUtiFxGMwNiQkq1U5aUVidZ4Vz-JFTr1H5Ak_kPFjLZcDA0ihfBx5DUo2BjyrT2ucmf8KO2q71Jwy0MY7nTntupXAm0yjlnVY8t74ohFowMSurchOlOVXW2FTZxHw667giHVeTjhfs7CD2beT0uE3gLVnC4WKi5I4_dLummjy8ksFkShXOlNLQcmNTasOVKh2O8KTXxYKVv9pRNcSMTBjLp1T5LQ_wcja6Ct2f5nRM67t9XxEEWAguNH_6H_d_xu5xyiMQIok_Z0fDbu9fYLA12NPoTrjP08vTmLD4CS7JIOY
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQcoAL4qnd5TVIiFuWxLFj51jQLgW6eyrScrIcx85WahvUpkj8Ov4aM05SLSC0Bw6VojaTNJkZe2b8-RvGXvMsVNzaKpGpzxORBZmUoUB3L0PK65BpFSk2zi-K6Rfx6VJeXtsLQ7BKyqFDTxQRx2pybipGj5C4txRmU3tkQmaVJ7TQozSm7belxmwCbTr9Oh1HY1onk5EzVWC2hDLjLp5_Xea3-SnS-P9BYvrXoB1norP77N4QQsKk1_kDdsuvH7LDyZaK2u3qB7yBeNzXLLaP2M9Js9kzbAC17CI0I8Tydwd0aAmZDm2A2FAPxRcWajTN774GAsY3MKMdwbYD_BCDZ-chT5MVUGf6hIzYb6FaNAnhTQcJnAPrdgX4RPgIsIqYTQ9Dk4oG7LJpN4vuaoX3XQNGofChbZulh1O05SvoaRLBLdtd_ZjNz07n76fJ0LchcRjNdYkNKtVOVqKodJ4VzuFLTr1G7Qv8IeehqrgMGFla5evAY0yqMfJRZVr73OZP2MG6XftDBtpax3OnPa-kcDbTKOWdVjyvfFEIdcTEqCzjBk5zaq2xNNlAfTrq2JCOzaDjI3ayF_vWk3rcJPCOLGF_MnFyxy_aTWMGFzcy2EypwtlSWtpvbEttuVKlwxRPel0csfK6HZkulmRC3z_F5Df8gVej0Rn0f1rUsWvf7raGMMBCcKH58X9c_yW7M52fz8zs48Xnp-wup6ICwZP4M3bQbXb-OUZeXfUiutYvKFMiig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQIiEuvNGW5yAhbimJ87BzLLBlgWXFYZG4WbZjZ6ttmlWbIsGf468x4yQVLEJ72EOlqO0ksT0zHo8_f8PYS554w7U2UR67NMoSn0elL9DcSx_zyidSBIqNz8fF4dfs47d8RBNuBlglraF9TxQRfDUZ93nlR0Tca4qyqToyAbPKKe3zCImr9usFhieE6kvj49EZ0zZZHihTM1wsocx4iOd_t_lregos_hc4TP_x2WEimt9mZmxCjz85m247M7U_L7A7XqmNd9itIUyFWa9Xd9k1t7rH9mcbSpy3zQ94BeG6z4ts7rNfs3q9Y_EAKgtGiEkIKfYO6FIT-h1aD6FoH4ovNFSo_t9dBQS-r-GITh3rDvBDLKGdgzSOGugWjYvIUNwGzKKOCNM6SOA8W7UNYLdhP0ETcKEOhkIYNehl3a4X3WmDz10BRrrwvm3rpYMDtJdT6KkYwS7bbfWAncwPTt4eRkNtiMhixNhF2otY2txkhZFpUliLnRU7iRqW4Q8p98bw3GP0qoWrPA9xr8ToSpRx5VKdPmR7q3bl9hlIrS1PrXTc5JnViUQpZ6XgqXFFkYkJy0aNUHbgTafyHUuVDPSq41gpGis1jNWETXdi5z1xyGUCb0jddn8m3u_wRbuu1eBGVO51IkRhdZlrOtOsS6m5EKXFZWTuZDFh5Z_KqrqQ9vF9jRaVXvICL0bNVuhjaONIr1y73SjCGWcZzyR_dIX7P2c3vrybq6MPx58es5uc8haEgOJP2F633rqnGNx15lkw399Nd0E5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Agricultural+cropland+extent+and+areas+of+South+Asia+derived+using+Landsat+satellite+30-m+time-series+big-data+using+random+forest+machine+learning+algorithms+on+the+Google+Earth+Engine+cloud&rft.jtitle=GIScience+and+remote+sensing&rft.au=Gumma%2C+Murali+Krishna&rft.au=Thenkabail%2C+Prasad+S&rft.au=Teluguntla%2C+Pardhasaradhi+G&rft.au=Oliphant%2C+Adam&rft.date=2020-04-02&rft.issn=1943-7226&rft.volume=57&rft.issue=3+p.302-322&rft.spage=302&rft.epage=322&rft_id=info:doi/10.1080%2F15481603.2019.1690780&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon