Estimate of the Mutation Rate per Nucleotide in Humans

Many previous estimates of the mutation rate in humans have relied on screens of visible mutants. We investigated the rate and pattern of mutations at the nucleotide level by comparing pseudogenes in humans and chimpanzees to (i) provide an estimate of the average mutation rate per nucleotide, (ii)...

Full description

Saved in:
Bibliographic Details
Published inGenetics (Austin) Vol. 156; no. 1; pp. 297 - 304
Main Authors Nachman, Michael W, Crowell, Susan L
Format Journal Article
LanguageEnglish
Published United States Genetics Society of America 01.09.2000
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many previous estimates of the mutation rate in humans have relied on screens of visible mutants. We investigated the rate and pattern of mutations at the nucleotide level by comparing pseudogenes in humans and chimpanzees to (i) provide an estimate of the average mutation rate per nucleotide, (ii) assess heterogeneity of mutation rate at different sites and for different types of mutations, (iii) test the hypothesis that the X chromosome has a lower mutation rate than autosomes, and (iv) estimate the deleterious mutation rate. Eighteen processed pseudogenes were sequenced, including 12 on autosomes and 6 on the X chromosome. The average mutation rate was estimated to be ~2.5 × 10−8 mutations per nucleotide site or 175 mutations per diploid genome per generation. Rates of mutation for both transitions and transversions at CpG dinucleotides are one order of magnitude higher than mutation rates at other sites. Single nucleotide substitutions are 10 times more frequent than length mutations. Comparison of rates of evolution for X-linked and autosomal pseudogenes suggests that the male mutation rate is 4 times the female mutation rate, but provides no evidence for a reduction in mutation rate that is specific to the X chromosome. Using conservative calculations of the proportion of the genome subject to purifying selection, we estimate that the genomic deleterious mutation rate (U) is at least 3. This high rate is difficult to reconcile with multiplicative fitness effects of individual mutations and suggests that synergistic epistasis among harmful mutations may be common.
AbstractList Many previous estimates of the mutation rate in humans have relied on screens of visible mutants. We investigated the rate and pattern of mutations at the nucleotide level by comparing pseudogenes in humans and chimpanzees to (i) provide an estimate of the average mutation rate per nucleotide, (ii) assess heterogeneity of mutation rate at different sites and for different types of mutations, (iii) test the hypothesis that the X chromosome has a lower mutation rate than autosomes, and (iv) estimate the deleterious mutation rate. Eighteen processed pseudogenes were sequenced, including 12 on autosomes and 6 on the X chromosome. The average mutation rate was estimated to be [sim]2.5 x 10 super(-8) mutations per nucleotide site or 175 mutations per diploid genome per generation. Rates of mutation for both transitions and transversions at CpG dinucleotides are one order of magnitude higher than mutation rates at other sites. Single nucleotide substitutions are 10 times more frequent than length mutations. Comparison of rates of evolution for X-linked and autosomal pseudogenes suggests that the male mutation rate is 4 times the female mutation rate, but provides no evidence for a reduction in mutation rate that is specific to the X chromosome. Using conservative calculations of the proportion of the genome subject to purifying selection, we estimate that the genomic deleterious mutation rate (U) is at least 3. This high rate is difficult to reconcile with multiplicative fitness effects of individual mutations and suggests that synergistic epistasis among harmful mutations may be common.
Many previous estimates of the mutation rate in humans have relied in screens of visible mutants. Nachman and Crowell investigated the rate and pattern of mutations at the nucleotide level by comparing pseudogenes in humans and chimpanzees.
Many previous estimates of the mutation rate in humans have relied on screens of visible mutants. We investigated the rate and pattern of mutations at the nucleotide level by comparing pseudogenes in humans and chimpanzees to (i) provide an estimate of the average mutation rate per nucleotide, (ii) assess heterogeneity of mutation rate at different sites and for different types of mutations, (iii) test the hypothesis that the X chromosome has a lower mutation rate than autosomes, and (iv) estimate the deleterious mutation rate. Eighteen processed pseudogenes were sequenced, including 12 on autosomes and 6 on the X chromosome. The average mutation rate was estimated to be ~2.5 × 10−8 mutations per nucleotide site or 175 mutations per diploid genome per generation. Rates of mutation for both transitions and transversions at CpG dinucleotides are one order of magnitude higher than mutation rates at other sites. Single nucleotide substitutions are 10 times more frequent than length mutations. Comparison of rates of evolution for X-linked and autosomal pseudogenes suggests that the male mutation rate is 4 times the female mutation rate, but provides no evidence for a reduction in mutation rate that is specific to the X chromosome. Using conservative calculations of the proportion of the genome subject to purifying selection, we estimate that the genomic deleterious mutation rate (U) is at least 3. This high rate is difficult to reconcile with multiplicative fitness effects of individual mutations and suggests that synergistic epistasis among harmful mutations may be common.
Many previous estimates of the mutation rate in humans have relied on screens of visible mutants. We investigated the rate and pattern of mutations at the nucleotide level by comparing pseudogenes in humans and chimpanzees to (i) provide an estimate of the average mutation rate per nucleotide, (ii) assess heterogeneity of mutation rate at different sites and for different types of mutations, (iii) test the hypothesis that the X chromosome has a lower mutation rate than autosomes, and (iv) estimate the deleterious mutation rate. Eighteen processed pseudogenes were sequenced, including 12 on autosomes and 6 on the X chromosome. The average mutation rate was estimated to be approximately 2.5 x 10(-8) mutations per nucleotide site or 175 mutations per diploid genome per generation. Rates of mutation for both transitions and transversions at CpG dinucleotides are one order of magnitude higher than mutation rates at other sites. Single nucleotide substitutions are 10 times more frequent than length mutations. Comparison of rates of evolution for X-linked and autosomal pseudogenes suggests that the male mutation rate is 4 times the female mutation rate, but provides no evidence for a reduction in mutation rate that is specific to the X chromosome. Using conservative calculations of the proportion of the genome subject to purifying selection, we estimate that the genomic deleterious mutation rate (U) is at least 3. This high rate is difficult to reconcile with multiplicative fitness effects of individual mutations and suggests that synergistic epistasis among harmful mutations may be common.Many previous estimates of the mutation rate in humans have relied on screens of visible mutants. We investigated the rate and pattern of mutations at the nucleotide level by comparing pseudogenes in humans and chimpanzees to (i) provide an estimate of the average mutation rate per nucleotide, (ii) assess heterogeneity of mutation rate at different sites and for different types of mutations, (iii) test the hypothesis that the X chromosome has a lower mutation rate than autosomes, and (iv) estimate the deleterious mutation rate. Eighteen processed pseudogenes were sequenced, including 12 on autosomes and 6 on the X chromosome. The average mutation rate was estimated to be approximately 2.5 x 10(-8) mutations per nucleotide site or 175 mutations per diploid genome per generation. Rates of mutation for both transitions and transversions at CpG dinucleotides are one order of magnitude higher than mutation rates at other sites. Single nucleotide substitutions are 10 times more frequent than length mutations. Comparison of rates of evolution for X-linked and autosomal pseudogenes suggests that the male mutation rate is 4 times the female mutation rate, but provides no evidence for a reduction in mutation rate that is specific to the X chromosome. Using conservative calculations of the proportion of the genome subject to purifying selection, we estimate that the genomic deleterious mutation rate (U) is at least 3. This high rate is difficult to reconcile with multiplicative fitness effects of individual mutations and suggests that synergistic epistasis among harmful mutations may be common.
Many previous estimates of the mutation rate in humans have relied on screens of visible mutants. We investigated the rate and pattern of mutations at the nucleotide level by comparing pseudogenes in humans and chimpanzees to (i) provide an estimate of the average mutation rate per nucleotide, (ii) assess heterogeneity of mutation rate at different sites and for different types of mutations, (iii) test the hypothesis that the X chromosome has a lower mutation rate than autosomes, and (iv) estimate the deleterious mutation rate. Eighteen processed pseudogenes were sequenced, including 12 on autosomes and 6 on the X chromosome. The average mutation rate was estimated to be approximately 2.5 x 10(-8) mutations per nucleotide site or 175 mutations per diploid genome per generation. Rates of mutation for both transitions and transversions at CpG dinucleotides are one order of magnitude higher than mutation rates at other sites. Single nucleotide substitutions are 10 times more frequent than length mutations. Comparison of rates of evolution for X-linked and autosomal pseudogenes suggests that the male mutation rate is 4 times the female mutation rate, but provides no evidence for a reduction in mutation rate that is specific to the X chromosome. Using conservative calculations of the proportion of the genome subject to purifying selection, we estimate that the genomic deleterious mutation rate (U) is at least 3. This high rate is difficult to reconcile with multiplicative fitness effects of individual mutations and suggests that synergistic epistasis among harmful mutations may be common.
Author Crowell, Susan L
Nachman, Michael W
AuthorAffiliation Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA. nachman@u.arizona.edu
AuthorAffiliation_xml – name: Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA. nachman@u.arizona.edu
Author_xml – sequence: 1
  givenname: Michael W
  surname: Nachman
  fullname: Nachman, Michael W
  organization: Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721
– sequence: 2
  givenname: Susan L
  surname: Crowell
  fullname: Crowell, Susan L
  organization: Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10978293$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLxDAUhYMovv-ACyku3M1Mb5ImzUYQ8QU-QHQd0vZWI51kbFLBf2-GURlnoau8zvk4uWeHrDvvkJADyMeQKzZ5RofR1mEChRjDmCq5RrZBcTaigsH60n6L7ITwmue5UEW5SbaSXZZUsW0izkO0UxMx820WXzC7HaKJ1rvsYX45wz67G-oOfbQNZtZlV8PUuLBHNlrTBdz_WnfJ08X549nV6Ob-8vrs9GZUF5TGkZJYNJIyVRrOOYOCA1QltACGSsWrqhLQgGjSCcu2EIZL0UpO81aZsmIF2yUnC-5sqKbY1Ohibzo961Pm_kN7Y_XvF2df9LN_18AFUCYS4PgL0Pu3AUPUUxtq7Drj0A9BS0o5U4r-KwQpEk_MiUcrwlc_9C5NQVPgQAFgTjtczv0T-HvwSUAXgrr3IfTYLknmKqa_29WpXQ06tZtM5Yqptou20t9t95f1E6eVq0Y
CODEN GENTAE
CitedBy_id crossref_primary_10_7717_peerj_2889
crossref_primary_10_1002_humu_20242
crossref_primary_10_1371_journal_pgen_0020163
crossref_primary_10_1371_journal_pgen_0020168
crossref_primary_10_1534_genetics_111_131276
crossref_primary_10_1534_genetics_111_134668
crossref_primary_10_1371_journal_pone_0192994
crossref_primary_10_1016_j_bbadis_2014_05_002
crossref_primary_10_1038_ng947
crossref_primary_10_1371_journal_pgen_1004561
crossref_primary_10_1093_icb_icac146
crossref_primary_10_1093_sysbio_sys024
crossref_primary_10_1111_j_1365_294X_2011_05333_x
crossref_primary_10_1126_science_1186802
crossref_primary_10_1016_j_cell_2012_11_019
crossref_primary_10_1093_biolinnean_blx158
crossref_primary_10_1016_j_ajhg_2016_07_002
crossref_primary_10_3389_fimmu_2023_1236080
crossref_primary_10_1002_sec_1599
crossref_primary_10_1038_sj_ejhg_5201709
crossref_primary_10_1126_science_1217876
crossref_primary_10_1007_s00239_023_10127_y
crossref_primary_10_1111_1556_4029_15475
crossref_primary_10_1038_nrg2529
crossref_primary_10_1093_molbev_msq198
crossref_primary_10_1095_biolreprod_112_103440
crossref_primary_10_47248_hpgg2303020004
crossref_primary_10_1007_s12018_009_9067_1
crossref_primary_10_1111_j_1365_2486_2012_02711_x
crossref_primary_10_1093_genetics_iyab159
crossref_primary_10_1590_1678_4685_gmb_2022_0077
crossref_primary_10_1038_hdy_2012_120
crossref_primary_10_1101_gr_192971_115
crossref_primary_10_3389_fgene_2019_00038
crossref_primary_10_1002_ajpa_23768
crossref_primary_10_1098_rstb_2015_0138
crossref_primary_10_1139_cjfas_2019_0351
crossref_primary_10_1016_j_ijcard_2006_09_013
crossref_primary_10_1111_j_1365_294X_2005_02437_x
crossref_primary_10_1016_j_jlumin_2016_08_007
crossref_primary_10_1093_molbev_msh157
crossref_primary_10_1186_1471_2156_9_66
crossref_primary_10_1371_journal_pbio_3001645
crossref_primary_10_1002_elps_201800412
crossref_primary_10_1038_ng2084
crossref_primary_10_1186_1742_4682_2_40
crossref_primary_10_1038_srep08260
crossref_primary_10_1038_s41467_018_08270_y
crossref_primary_10_1073_pnas_0601324103
crossref_primary_10_1086_321272
crossref_primary_10_1093_carcin_bgw060
crossref_primary_10_1073_pnas_1720487115
crossref_primary_10_1093_genetics_iyac122
crossref_primary_10_1002_ece3_11706
crossref_primary_10_1086_321275
crossref_primary_10_1146_annurev_ecolsys_110411_160257
crossref_primary_10_1371_journal_pgen_1005527
crossref_primary_10_1152_ajprenal_00359_2019
crossref_primary_10_1007_s00414_019_02180_4
crossref_primary_10_1093_molbev_msab194
crossref_primary_10_1111_1467_9868_00355
crossref_primary_10_1073_pnas_1507300112
crossref_primary_10_1093_molbev_msr029
crossref_primary_10_2217_17410541_3_1_1
crossref_primary_10_1016_j_fsigen_2015_11_003
crossref_primary_10_1038_ncomms5240
crossref_primary_10_1086_430721
crossref_primary_10_1126_science_aaf7943
crossref_primary_10_1038_hdy_2016_56
crossref_primary_10_1038_ncomms6692
crossref_primary_10_1038_s41437_017_0037_y
crossref_primary_10_1002_ece3_4530
crossref_primary_10_1016_j_yhbeh_2010_06_018
crossref_primary_10_1038_nature06967
crossref_primary_10_1016_j_fsigen_2013_06_013
crossref_primary_10_1103_PhysRevLett_117_208101
crossref_primary_10_5924_abgri_44_59
crossref_primary_10_1016_j_gene_2021_145648
crossref_primary_10_1080_10635150701435401
crossref_primary_10_1002_bies_200900017
crossref_primary_10_1016_j_ecoenv_2017_06_038
crossref_primary_10_1093_jhered_est133
crossref_primary_10_1093_molbev_mss231
crossref_primary_10_1534_genetics_113_150029
crossref_primary_10_1093_molbev_msad027
crossref_primary_10_1093_nar_gkaa877
crossref_primary_10_1038_s41467_018_05936_5
crossref_primary_10_7717_peerj_1647
crossref_primary_10_1080_20961790_2021_1898078
crossref_primary_10_1038_ng_470
crossref_primary_10_1016_j_ajhg_2009_01_008
crossref_primary_10_1371_journal_pgen_1002236
crossref_primary_10_1534_genetics_104_039107
crossref_primary_10_1111_mec_13827
crossref_primary_10_3389_frai_2023_1060879
crossref_primary_10_1186_s12864_015_1681_3
crossref_primary_10_1554_03_741
crossref_primary_10_1038_nrg1770
crossref_primary_10_1371_journal_pone_0032518
crossref_primary_10_1093_molbev_msi228
crossref_primary_10_1093_gbe_evx121
crossref_primary_10_1093_humupd_dmz047
crossref_primary_10_1016_j_fsigen_2019_102158
crossref_primary_10_1007_s10048_009_0231_z
crossref_primary_10_1037_a0034391
crossref_primary_10_1002_mgg3_1083
crossref_primary_10_1093_molbev_mss002
crossref_primary_10_1073_pnas_1416622112
crossref_primary_10_1007_s00414_019_02181_3
crossref_primary_10_1093_genetics_164_1_259
crossref_primary_10_1038_ng1001_229
crossref_primary_10_1093_molbev_mss219
crossref_primary_10_1371_journal_pone_0052257
crossref_primary_10_1016_S0378_1119_02_00849_1
crossref_primary_10_1038_s41590_019_0433_y
crossref_primary_10_1534_genetics_167_1_423
crossref_primary_10_1016_j_jtbi_2011_07_021
crossref_primary_10_1371_journal_pcbi_1000015
crossref_primary_10_1016_j_dnarep_2015_04_012
crossref_primary_10_1007_BF02717891
crossref_primary_10_3389_fgene_2023_1182028
crossref_primary_10_1371_journal_pgen_0020009
crossref_primary_10_1016_j_jhevol_2017_11_009
crossref_primary_10_1101_gr_107680_110
crossref_primary_10_1146_annurev_genom_090810_183123
crossref_primary_10_1093_jhered_92_6_481
crossref_primary_10_1002_bies_201100075
crossref_primary_10_1371_journal_pgen_1006549
crossref_primary_10_1186_1471_2164_13_172
crossref_primary_10_1186_s13100_021_00255_x
crossref_primary_10_1016_j_fsigen_2011_09_005
crossref_primary_10_1093_hmg_ddp517
crossref_primary_10_1101_gr_3461105
crossref_primary_10_1371_journal_pone_0030238
crossref_primary_10_1093_hmg_ddad028
crossref_primary_10_1002_ece3_10538
crossref_primary_10_1093_molbev_mss108
crossref_primary_10_1002_imed_1052
crossref_primary_10_1093_gbe_evx067
crossref_primary_10_1111_j_1365_294X_2010_04965_x
crossref_primary_10_3892_ol_2018_8679
crossref_primary_10_1093_hmg_ddl029
crossref_primary_10_1371_journal_pgen_1005681
crossref_primary_10_1186_1471_2164_7_45
crossref_primary_10_1016_j_ajhg_2014_03_019
crossref_primary_10_1089_109454503765361560
crossref_primary_10_1093_hmg_ddl025
crossref_primary_10_1007_s13353_011_0068_7
crossref_primary_10_1111_j_0014_3820_2004_tb00462_x
crossref_primary_10_1038_nrg1985
crossref_primary_10_1038_ncomms15422
crossref_primary_10_1007_s00414_019_02106_0
crossref_primary_10_1093_jhered_92_6_497
crossref_primary_10_1371_journal_pgen_0030035
crossref_primary_10_1093_oxfordjournals_molbev_a004023
crossref_primary_10_1371_journal_pbio_0050094
crossref_primary_10_1517_14712590903379502
crossref_primary_10_1038_nrg760
crossref_primary_10_1534_genetics_112_140343
crossref_primary_10_1038_ng_680
crossref_primary_10_1016_j_fsigen_2012_12_007
crossref_primary_10_1093_molbev_msp169
crossref_primary_10_1186_1471_2148_10_298
crossref_primary_10_1093_bib_bbac202
crossref_primary_10_1111_jeb_14094
crossref_primary_10_1093_jmammal_gyae056
crossref_primary_10_1371_journal_pgen_0020148
crossref_primary_10_1534_genetics_118_301502
crossref_primary_10_1038_ncomms5438
crossref_primary_10_1016_j_blre_2021_100824
crossref_primary_10_1016_S0169_5347_01_02126_7
crossref_primary_10_1086_342260
crossref_primary_10_3390_ijms19061584
crossref_primary_10_4049_jimmunol_167_7_3858
crossref_primary_10_1016_j_fsigen_2019_04_008
crossref_primary_10_1111_jeb_12912
crossref_primary_10_1016_j_fsigen_2012_05_002
crossref_primary_10_1016_j_tig_2012_06_007
crossref_primary_10_1007_s10048_008_0120_x
crossref_primary_10_1073_pnas_022614799
crossref_primary_10_1093_nar_gkae914
crossref_primary_10_1007_s00239_008_9096_2
crossref_primary_10_1016_j_ympev_2009_02_014
crossref_primary_10_12968_npre_2012_10_9_446
crossref_primary_10_3389_fpls_2022_873788
crossref_primary_10_1371_journal_pone_0097272
crossref_primary_10_1038_s41598_017_15516_0
crossref_primary_10_1038_nmeth_4606
crossref_primary_10_1002_humu_10147
crossref_primary_10_1016_j_ajhg_2015_05_008
crossref_primary_10_1073_pnas_1200567109
crossref_primary_10_1186_gb_2003_4_11_r72
crossref_primary_10_1002_humu_22115
crossref_primary_10_1016_S0168_9525_02_02757_9
crossref_primary_10_1186_gb_2003_4_11_r74
crossref_primary_10_1534_genetics_166_2_797
crossref_primary_10_1002_ajmg_a_30273
crossref_primary_10_1093_molbev_msp052
crossref_primary_10_1093_molbev_msp173
crossref_primary_10_1016_j_cub_2021_01_073
crossref_primary_10_1146_annurev_genom_090711_163825
crossref_primary_10_1080_03014460_2020_1797162
crossref_primary_10_1371_journal_pgen_1002420
crossref_primary_10_1007_s00251_013_0712_y
crossref_primary_10_1093_nargab_lqab079
crossref_primary_10_1101_gr_276103_121
crossref_primary_10_1111_mec_13339
crossref_primary_10_1016_j_fsigen_2023_102847
crossref_primary_10_1038_s41598_021_03943_z
crossref_primary_10_1086_374757
crossref_primary_10_1093_aob_mcx112
crossref_primary_10_3389_fimmu_2020_582804
crossref_primary_10_1016_j_mrfmmm_2006_03_009
crossref_primary_10_1186_s12864_016_3440_5
crossref_primary_10_1002_bies_202300025
crossref_primary_10_1046_j_1420_9101_2001_00307_x
crossref_primary_10_1371_journal_pone_0033541
crossref_primary_10_1089_1066527041410300
crossref_primary_10_1038_nrmicro3003
crossref_primary_10_1093_molbev_msz047
crossref_primary_10_3389_fevo_2024_1335452
crossref_primary_10_1093_molbev_msae192
crossref_primary_10_1111_evo_13955
crossref_primary_10_1016_j_ympev_2018_10_031
crossref_primary_10_1111_mec_14416
crossref_primary_10_1098_rspb_2015_3065
crossref_primary_10_1126_science_1085710
crossref_primary_10_1249_JES_0000000000000265
crossref_primary_10_1101_gr_072751_107
crossref_primary_10_1371_journal_pgen_1000471
crossref_primary_10_4238_vol9_1gmr838
crossref_primary_10_1016_j_ajhg_2011_12_017
crossref_primary_10_1093_gbe_evs092
crossref_primary_10_1016_S0040_5809_03_00002_9
crossref_primary_10_1093_bioinformatics_btac784
crossref_primary_10_4137_CIN_S19965
crossref_primary_10_1016_j_gene_2004_02_043
crossref_primary_10_1007_s00425_023_04316_8
crossref_primary_10_1097_00008571_200203000_00009
crossref_primary_10_1111_j_1600_065X_2007_00577_x
crossref_primary_10_1093_genetics_iyac087
crossref_primary_10_1093_molbev_msr212
crossref_primary_10_1093_molbev_msaf034
crossref_primary_10_1007_s00299_020_02529_9
crossref_primary_10_1016_j_neuropharm_2015_02_006
crossref_primary_10_1016_j_mrfmmm_2005_09_004
crossref_primary_10_1038_ejhg_2012_307
crossref_primary_10_1186_s12859_020_3384_2
crossref_primary_10_1111_mec_14404
crossref_primary_10_1371_journal_pgen_1001318
crossref_primary_10_1534_genetics_105_043976
crossref_primary_10_1038_s41467_019_12438_5
crossref_primary_10_1073_pnas_1212718109
crossref_primary_10_1073_pnas_1605660114
crossref_primary_10_1080_10495398_2022_2125404
crossref_primary_10_1038_ng1243
crossref_primary_10_1006_geno_2002_6694
crossref_primary_10_1093_genetics_161_3_1209
crossref_primary_10_1002_elps_202300142
crossref_primary_10_1371_journal_pone_0014316
crossref_primary_10_1016_j_jmb_2011_01_056
crossref_primary_10_1016_j_ygeno_2004_04_013
crossref_primary_10_1038_s41598_018_27219_1
crossref_primary_10_1002_ece3_5903
crossref_primary_10_1073_pnas_0500267102
crossref_primary_10_1007_s00414_011_0649_3
crossref_primary_10_1016_j_gene_2023_147180
crossref_primary_10_1016_S0168_9525_02_00033_1
crossref_primary_10_1002_humu_22967
crossref_primary_10_24072_pcjournal_83
crossref_primary_10_1016_j_bbamem_2019_183058
crossref_primary_10_1073_pnas_1003634107
crossref_primary_10_1093_molbev_msp018
crossref_primary_10_1073_pnas_1311381110
crossref_primary_10_1086_513149
crossref_primary_10_1002_gepi_20169
crossref_primary_10_1093_bioinformatics_btaa140
crossref_primary_10_1016_j_mrgentox_2016_09_009
crossref_primary_10_1093_gbe_evs075
crossref_primary_10_1038_nrg1247
crossref_primary_10_1038_nrg1124
crossref_primary_10_1517_17425255_4_6_827
crossref_primary_10_1186_s13059_014_0452_9
crossref_primary_10_1016_j_gde_2016_07_008
crossref_primary_10_1109_TCBB_2020_3045315
crossref_primary_10_1073_pnas_0730639100
crossref_primary_10_1016_j_jtbi_2014_05_009
crossref_primary_10_1038_srep20079
crossref_primary_10_1093_molbev_msq343
crossref_primary_10_1101_gr_238602
crossref_primary_10_1534_g3_115_022129
crossref_primary_10_1016_j_fsigen_2021_102495
crossref_primary_10_1093_molbev_msp133
crossref_primary_10_1021_acs_chemrestox_2c00155
crossref_primary_10_1016_j_ajhg_2007_09_006
crossref_primary_10_1111_j_1365_294X_2011_05051_x
crossref_primary_10_1016_j_tig_2013_04_005
crossref_primary_10_1038_s41437_020_00393_7
crossref_primary_10_1038_nature09534
crossref_primary_10_1007_s12668_017_0488_x
crossref_primary_10_1371_journal_pone_0289556
crossref_primary_10_1126_science_abg2365
crossref_primary_10_1038_nrg_2016_104
crossref_primary_10_1109_TCBB_2007_1063
crossref_primary_10_1371_journal_pgen_1000281
crossref_primary_10_1016_j_fsigen_2008_02_002
crossref_primary_10_1016_j_ygeno_2009_04_002
crossref_primary_10_1101_gr_103283_109
crossref_primary_10_1111_j_1365_294X_2008_04005_x
crossref_primary_10_1038_416624a
crossref_primary_10_1046_j_0022_202X_2003_22129_x
crossref_primary_10_1074_jbc_RA120_013495
crossref_primary_10_1111_jeb_14036
crossref_primary_10_1186_s13323_015_0019_x
crossref_primary_10_1038_s41598_017_14628_x
crossref_primary_10_1098_rsfs_2019_0120
crossref_primary_10_1186_s12977_015_0232_y
crossref_primary_10_1371_journal_pcbi_1008266
crossref_primary_10_1007_s12304_011_9122_4
crossref_primary_10_1038_ejhg_2012_124
crossref_primary_10_1371_journal_pone_0090240
crossref_primary_10_4306_jknpa_2022_61_2_63
crossref_primary_10_1038_sj_hdy_6800689
crossref_primary_10_1371_journal_pone_0033580
crossref_primary_10_1007_s10038_005_0242_z
crossref_primary_10_1016_j_fsigss_2015_09_053
crossref_primary_10_1038_ng_862
crossref_primary_10_1111_j_1399_0004_2010_01535_x
crossref_primary_10_1186_s13100_017_0099_7
crossref_primary_10_1111_cge_12708
crossref_primary_10_1093_bfgp_elab037
crossref_primary_10_1016_j_jmb_2004_09_058
crossref_primary_10_1080_10618600_2019_1647215
crossref_primary_10_1002_ajmg_a_36623
crossref_primary_10_1093_molbev_msp113
crossref_primary_10_1016_j_plrev_2021_03_004
crossref_primary_10_1142_S0219720014500115
crossref_primary_10_1111_mec_13524
crossref_primary_10_1534_genetics_113_152587
crossref_primary_10_1093_hmg_ddt260
crossref_primary_10_1186_s12859_015_0682_1
crossref_primary_10_1038_s41598_021_04621_w
crossref_primary_10_3168_jds_2017_13309
crossref_primary_10_1016_j_ajhg_2007_09_022
crossref_primary_10_1126_science_344_6189_1272
crossref_primary_10_1002_humu_21400
crossref_primary_10_1016_j_mrrev_2011_11_002
crossref_primary_10_1534_genetics_109_105692
crossref_primary_10_3390_jof7050364
crossref_primary_10_1111_j_1439_0388_2006_00578_x
crossref_primary_10_1534_genetics_109_107995
crossref_primary_10_1016_j_jembe_2005_03_006
crossref_primary_10_3892_ol_2023_13868
crossref_primary_10_1371_journal_pone_0094851
crossref_primary_10_1073_pnas_0804749105
crossref_primary_10_3389_fgene_2021_602429
crossref_primary_10_1007_s12110_006_1020_0
crossref_primary_10_1038_mp_2009_85
crossref_primary_10_1098_rsbl_2014_0801
crossref_primary_10_1007_s00414_021_02600_4
crossref_primary_10_1017_S0016672314000226
crossref_primary_10_1073_pnas_1220835110
crossref_primary_10_1016_j_fsigen_2015_10_003
crossref_primary_10_1093_gbe_evae142
crossref_primary_10_1214_09_STS304
crossref_primary_10_1101_gr_204669_116
crossref_primary_10_1016_j_reth_2016_06_003
crossref_primary_10_1002_humu_21557
crossref_primary_10_1073_pnas_0710234105
crossref_primary_10_1093_jn_135_10_2462
crossref_primary_10_1161_CIRCRESAHA_121_319004
crossref_primary_10_1371_journal_pone_0024670
crossref_primary_10_1086_318206
crossref_primary_10_1101_gr_3413205
crossref_primary_10_1038_sj_ejhg_5201288
crossref_primary_10_1093_molbev_msp219
crossref_primary_10_1073_pnas_98_3_864
crossref_primary_10_1038_s41525_024_00416_w
crossref_primary_10_1186_s41021_016_0035_y
crossref_primary_10_1371_journal_pbio_0050224
crossref_primary_10_1016_j_gde_2021_07_008
crossref_primary_10_3390_ijms21165699
crossref_primary_10_1007_s10709_007_9145_6
crossref_primary_10_1534_genetics_107_074732
crossref_primary_10_1038_ncomms1130
crossref_primary_10_1046_j_1529_8817_2003_00115_x
crossref_primary_10_1016_j_jneuroim_2011_12_017
crossref_primary_10_1186_s12864_019_5867_y
crossref_primary_10_1038_nrg3625
crossref_primary_10_1101_gr_091827_109
crossref_primary_10_1016_j_jtbi_2005_08_033
crossref_primary_10_1146_annurev_conmatphys_020911_125109
crossref_primary_10_1371_journal_pgen_1011144
crossref_primary_10_1016_j_ajhg_2011_05_002
crossref_primary_10_1038_s41598_021_88012_1
crossref_primary_10_1093_genetics_iyae006
crossref_primary_10_1007_s00414_024_03196_1
crossref_primary_10_1093_gbe_evad180
crossref_primary_10_1093_molbev_msy145
crossref_primary_10_1172_JCI30465
crossref_primary_10_1093_hmg_dds385
crossref_primary_10_1093_sysbio_syx033
crossref_primary_10_3390_cancers13174464
crossref_primary_10_1002_wfs2_1459
crossref_primary_10_1016_j_pain_2003_10_020
crossref_primary_10_1534_genetics_118_301120
crossref_primary_10_1101_gr_249599_119
crossref_primary_10_1086_444436
crossref_primary_10_1111_mec_17411
crossref_primary_10_1101_gr_227603_117
crossref_primary_10_1093_molbev_msz203
crossref_primary_10_1146_annurev_genom_9_081307_164217
crossref_primary_10_1186_1471_2148_6_25
crossref_primary_10_1186_gm415
crossref_primary_10_1007_s00122_006_0487_8
crossref_primary_10_1371_journal_pone_0090166
crossref_primary_10_1093_jhered_esab007
crossref_primary_10_1093_genetics_159_4_1845
crossref_primary_10_1093_genetics_165_3_1619
crossref_primary_10_1371_journal_pone_0115203
crossref_primary_10_1093_genetics_166_4_1887
crossref_primary_10_1111_eva_12731
crossref_primary_10_3389_fgene_2015_00004
crossref_primary_10_1016_j_fsigen_2024_103029
crossref_primary_10_1093_hmg_ddab209
crossref_primary_10_1534_g3_119_400438
crossref_primary_10_1111_ele_12792
crossref_primary_10_1007_s11692_007_9010_7
crossref_primary_10_1038_nmeth_4027
crossref_primary_10_1080_00450618_2023_2181395
crossref_primary_10_1109_TCBB_2021_3069503
crossref_primary_10_1371_journal_pone_0048638
crossref_primary_10_1007_s12264_023_01124_8
crossref_primary_10_1002_em_20390
crossref_primary_10_1371_journal_pone_0100191
crossref_primary_10_1038_ng_3015
crossref_primary_10_1098_rspb_2001_1834
crossref_primary_10_1089_dna_2012_1643
crossref_primary_10_1073_pnas_1901259116
crossref_primary_10_7717_peerj_12502
crossref_primary_10_1016_j_ajhg_2010_07_019
crossref_primary_10_1186_s13059_020_02254_2
crossref_primary_10_1016_j_ajhg_2022_10_015
crossref_primary_10_1016_j_forsciint_2025_112370
crossref_primary_10_1371_journal_pone_0163738
crossref_primary_10_1534_genetics_115_174425
crossref_primary_10_1534_genetics_120_303137
crossref_primary_10_1016_j_expneurol_2007_08_016
crossref_primary_10_1016_j_mrrev_2012_08_002
crossref_primary_10_1134_S2079086422050024
crossref_primary_10_1186_s13059_019_1684_5
crossref_primary_10_1017_S1473550424000223
crossref_primary_10_1016_j_tig_2020_10_003
crossref_primary_10_1016_j_cub_2009_07_032
crossref_primary_10_1534_genetics_109_104935
crossref_primary_10_1038_ng0502_9
crossref_primary_10_1371_journal_pone_0072993
crossref_primary_10_1016_j_fsigss_2019_09_074
crossref_primary_10_1103_PhysRevE_86_041907
crossref_primary_10_1200_PO_21_00505
crossref_primary_10_1093_molbev_msn116
crossref_primary_10_1007_s10709_005_4982_7
crossref_primary_10_1073_pnas_232568699
crossref_primary_10_3233_ISB_220253
crossref_primary_10_3390_genes12050743
crossref_primary_10_1101_gr_1597404
crossref_primary_10_1038_nrg3031
crossref_primary_10_1093_sysbio_syy034
crossref_primary_10_1016_j_forsciint_2004_06_018
crossref_primary_10_1111_1755_0998_12544
crossref_primary_10_1111_1755_0998_13755
crossref_primary_10_1016_j_ajhg_2015_10_006
crossref_primary_10_1016_j_jtbi_2015_11_028
crossref_primary_10_1016_j_ajhg_2008_02_018
crossref_primary_10_1038_s41467_020_16296_4
crossref_primary_10_1002_ana_20406
crossref_primary_10_1093_nar_gkad477
crossref_primary_10_1187_cbe_09_10_0076
crossref_primary_10_5808_GI_2009_7_1_001
crossref_primary_10_7554_eLife_71513
crossref_primary_10_1101_gr_076455_108
crossref_primary_10_1016_j_tig_2012_02_001
crossref_primary_10_1016_j_jaci_2010_10_026
crossref_primary_10_1038_ejhg_2016_147
crossref_primary_10_1098_rspb_2001_1650
crossref_primary_10_1371_journal_pgen_1000202
crossref_primary_10_1016_j_aca_2014_08_032
crossref_primary_10_1039_C4CS00351A
crossref_primary_10_1371_journal_pgen_1008293
crossref_primary_10_1002_elps_4122
crossref_primary_10_1093_molbev_msv045
crossref_primary_10_1186_1471_2156_6_27
crossref_primary_10_1093_molbev_msx226
crossref_primary_10_1016_j_cell_2019_12_015
crossref_primary_10_1098_rstb_2009_0286
crossref_primary_10_1093_oxfordjournals_molbev_a003964
crossref_primary_10_1038_nmeth_4293
crossref_primary_10_1111_j_1399_0004_2010_01539_x
crossref_primary_10_1002_humu_20843
crossref_primary_10_1534_g3_112_004366
crossref_primary_10_7554_eLife_80008
crossref_primary_10_1016_j_fsigss_2017_09_219
crossref_primary_10_1371_journal_pgen_1000558
crossref_primary_10_1016_j_fsigen_2020_102255
crossref_primary_10_1093_genetics_163_1_395
crossref_primary_10_1016_S0168_9525_01_02494_5
crossref_primary_10_1186_1471_2105_14_216
crossref_primary_10_1371_journal_pone_0085986
crossref_primary_10_1093_gbe_evr080
crossref_primary_10_2217_epi_2017_0071
crossref_primary_10_3402_mehd_v23i0_19008
crossref_primary_10_3389_fevo_2022_1003057
crossref_primary_10_1016_j_jtbi_2015_03_019
crossref_primary_10_1093_molbev_msy202
crossref_primary_10_1038_nrg2158
crossref_primary_10_1093_jhered_esp048
crossref_primary_10_1016_j_meegid_2015_09_018
crossref_primary_10_1038_nature10231
crossref_primary_10_1016_j_cell_2012_07_009
crossref_primary_10_1186_s12920_020_00806_w
crossref_primary_10_1371_journal_pcbi_1010727
crossref_primary_10_1239_aap_1339878718
crossref_primary_10_1093_molbev_msab332
crossref_primary_10_1038_nrg3483
crossref_primary_10_1038_nature02601
crossref_primary_10_1371_journal_pone_0049666
crossref_primary_10_1007_s00414_011_0588_z
crossref_primary_10_1007_s10545_008_0995_6
crossref_primary_10_7717_peerj_2391
crossref_primary_10_1038_s10038_019_0595_3
crossref_primary_10_1016_j_coi_2012_10_005
crossref_primary_10_1186_1471_2156_6_46
crossref_primary_10_1371_journal_pone_0000503
crossref_primary_10_1093_oxfordjournals_molbev_a003744
crossref_primary_10_1080_2159256X_2015_1006109
crossref_primary_10_1093_g3journal_jkae069
crossref_primary_10_1038_ng_2398
crossref_primary_10_1093_molbev_msj060
crossref_primary_10_1101_gr_1152803
crossref_primary_10_1042_BST20140245
crossref_primary_10_1186_1753_6561_8_S1_S24
crossref_primary_10_1016_j_gene_2012_09_089
crossref_primary_10_1103_PhysRevLett_93_208102
crossref_primary_10_1186_1753_6561_4_S1_S3
crossref_primary_10_1186_1471_2148_6_12
crossref_primary_10_1097_01_ede_0000135179_04563_35
crossref_primary_10_1016_j_schres_2009_08_014
crossref_primary_10_1186_s12915_023_01673_4
crossref_primary_10_1038_s41598_023_40256_9
crossref_primary_10_3390_genes15050588
crossref_primary_10_1016_S0020_1383_16_30605_2
crossref_primary_10_1093_molbev_msu186
crossref_primary_10_1016_j_fsigss_2011_08_004
crossref_primary_10_7717_peerj_6861
crossref_primary_10_1038_hdy_2010_21
crossref_primary_10_3389_fmicb_2020_584846
crossref_primary_10_1038_nature13600
crossref_primary_10_1186_1479_7364_6_11
crossref_primary_10_1111_j_1399_0004_2011_01795_x
crossref_primary_10_1111_j_1365_294X_2004_02159_x
crossref_primary_10_3389_fgene_2014_00421
crossref_primary_10_1016_j_ygeno_2010_01_002
crossref_primary_10_1042_EBC20160090
crossref_primary_10_1142_S1402925111001532
crossref_primary_10_1371_journal_pone_0250206
crossref_primary_10_1644_13_MAMM_A_268
crossref_primary_10_7554_eLife_46922
crossref_primary_10_1186_1471_2164_12_557
crossref_primary_10_1186_s12936_015_1077_5
crossref_primary_10_3341_jkos_2008_49_11_1794
crossref_primary_10_3390_cancers12113254
crossref_primary_10_1007_s11515_009_0010_0
crossref_primary_10_1371_journal_pcbi_1003297
crossref_primary_10_1371_journal_pone_0173954
crossref_primary_10_1534_genetics_105_052910
crossref_primary_10_1073_pnas_022629899
crossref_primary_10_1093_genetics_157_3_1285
crossref_primary_10_1111_mec_15197
crossref_primary_10_1046_j_1420_9101_2003_00596_x
crossref_primary_10_1371_journal_pone_0076935
crossref_primary_10_1093_genetics_166_2_797
crossref_primary_10_1371_journal_pone_0037588
crossref_primary_10_1534_g3_116_029504
crossref_primary_10_1016_j_neuint_2014_06_006
crossref_primary_10_1534_genetics_114_168567
crossref_primary_10_1371_journal_pone_0287609
crossref_primary_10_1016_j_fsigen_2020_102458
crossref_primary_10_1017_S0016672309990358
crossref_primary_10_1007_s12064_008_0052_x
crossref_primary_10_1016_j_fsigen_2020_102338
crossref_primary_10_1093_ajcn_83_2_436S
crossref_primary_10_1101_gr_154971_113
crossref_primary_10_1007_s00414_019_02233_8
crossref_primary_10_1073_pnas_2233252100
crossref_primary_10_1093_molbev_msaa134
crossref_primary_10_1073_pnas_1221792110
crossref_primary_10_12968_npre_2012_10_11_551
crossref_primary_10_3390_ijms22168571
crossref_primary_10_1016_j_gim_2022_06_007
crossref_primary_10_1093_molbev_msw226
crossref_primary_10_1186_gb_2010_11_11_r113
crossref_primary_10_1038_ng_2448
crossref_primary_10_1098_rsbl_2008_0712
crossref_primary_10_1111_1755_0998_12606
crossref_primary_10_15406_jabb_2020_07_00235
crossref_primary_10_1093_molbev_msj050
crossref_primary_10_1111_cge_12062
crossref_primary_10_1186_s43042_019_0041_2
crossref_primary_10_1007_s11033_013_2521_7
crossref_primary_10_1007_s12154_010_0042_6
crossref_primary_10_1093_molbev_msu166
crossref_primary_10_1111_j_1467_8624_2012_01757_x
crossref_primary_10_1038_nrg1828
crossref_primary_10_1038_s41598_017_06106_1
crossref_primary_10_1534_genetics_115_186171
crossref_primary_10_1086_497344
crossref_primary_10_1073_pnas_251396098
crossref_primary_10_1016_j_mcp_2013_09_002
crossref_primary_10_1073_pnas_0801267105
crossref_primary_10_1186_1471_2156_13_52
crossref_primary_10_1371_journal_pgen_0020101
crossref_primary_10_1016_j_fsigen_2019_102204
crossref_primary_10_3390_genes13010119
crossref_primary_10_1093_molbev_mss071
crossref_primary_10_1093_genetics_162_4_1811
crossref_primary_10_1146_annurev_genom_031714_125740
crossref_primary_10_1093_g3journal_jkab431
crossref_primary_10_1111_j_1365_294X_2012_05480_x
crossref_primary_10_1016_j_fsigen_2018_03_012
crossref_primary_10_1371_journal_pgen_0030022
crossref_primary_10_1016_j_gene_2006_01_019
crossref_primary_10_3390_d16060308
crossref_primary_10_3390_genes13101683
crossref_primary_10_1101_gr_219956_116
crossref_primary_10_1186_2040_2392_5_28
crossref_primary_10_1371_journal_pbio_2000744
crossref_primary_10_1111_j_1749_6632_2010_05439_x
crossref_primary_10_1371_journal_pone_0109186
crossref_primary_10_1002_humu_22034
crossref_primary_10_1375_twin_8_1_39
crossref_primary_10_1093_molbev_msaa155
crossref_primary_10_1016_j_jtbi_2012_07_032
crossref_primary_10_1266_ggs_90_123
crossref_primary_10_1093_evlett_qrad027
crossref_primary_10_1007_s00335_009_9238_x
crossref_primary_10_1007_s12041_014_0402_z
crossref_primary_10_1016_j_biocontrol_2021_104571
crossref_primary_10_1371_journal_pgen_1003293
crossref_primary_10_1038_s41598_018_23888_0
crossref_primary_10_1186_1471_2164_2_11
crossref_primary_10_1007_s11033_012_2028_7
crossref_primary_10_1016_j_compbiolchem_2014_08_013
crossref_primary_10_1186_s12864_016_2821_0
crossref_primary_10_1266_ggs_18_00015
crossref_primary_10_1101_gr_235754_118
crossref_primary_10_1093_genetics_160_2_493
crossref_primary_10_3389_fpsyg_2016_00857
crossref_primary_10_1101_gr_944903
crossref_primary_10_1089_cmb_2009_0231
crossref_primary_10_1016_j_jtbi_2009_09_016
crossref_primary_10_1016_j_jtbi_2005_10_020
crossref_primary_10_2217_rme_09_63
crossref_primary_10_1002_pro_2552
crossref_primary_10_1269_jrr_47_B75
crossref_primary_10_1093_nar_gky445
crossref_primary_10_1534_genetics_112_141846
crossref_primary_10_1371_journal_pgen_1007479
crossref_primary_10_1038_ng_2418
crossref_primary_10_1101_gr_1214603
crossref_primary_10_1016_j_biocon_2009_03_026
crossref_primary_10_1101_gr_122721_111
crossref_primary_10_1073_pnas_222673099
crossref_primary_10_1007_s00414_012_0768_5
crossref_primary_10_1038_nature02697
crossref_primary_10_1126_science_1100559
crossref_primary_10_1016_j_fsigen_2012_10_003
crossref_primary_10_1016_j_gpb_2022_02_001
crossref_primary_10_1534_genetics_104_037028
crossref_primary_10_1016_S0959_437X_00_00246_X
crossref_primary_10_1038_nrg3098
crossref_primary_10_3389_fgene_2020_00926
crossref_primary_10_1038_s41467_023_39547_6
crossref_primary_10_3389_fgene_2019_00914
crossref_primary_10_1371_journal_pbio_0020273
crossref_primary_10_1002_evan_20283
crossref_primary_10_1016_j_neurobiolaging_2010_05_016
crossref_primary_10_1016_j_legalmed_2023_102256
crossref_primary_10_18273_saluduis_53_e_21031
crossref_primary_10_1111_j_1420_9101_2011_02431_x
crossref_primary_10_1016_j_fsigss_2011_08_069
crossref_primary_10_1016_j_neuron_2013_08_013
crossref_primary_10_1093_genetics_158_3_1253
crossref_primary_10_1101_gr_220502
crossref_primary_10_1371_journal_pcbi_1003480
crossref_primary_10_1007_s00239_007_9000_5
crossref_primary_10_1093_molbev_mss061
crossref_primary_10_1016_j_jmb_2005_07_058
crossref_primary_10_1038_ng_2768
crossref_primary_10_1007_s00239_024_10225_5
crossref_primary_10_1016_j_forsciint_2004_10_004
crossref_primary_10_1007_s00294_008_0201_2
crossref_primary_10_1017_S0016672309990164
crossref_primary_10_1186_s12862_015_0485_z
crossref_primary_10_1093_molbev_mst158
crossref_primary_10_1073_pnas_0909000107
crossref_primary_10_1101_gr_6409707
crossref_primary_10_1186_s12859_017_2002_4
crossref_primary_10_1534_genetics_166_1_351
crossref_primary_10_1002_ajpa_21474
crossref_primary_10_1375_twin_11_3_249
crossref_primary_10_1371_journal_pgen_1006130
crossref_primary_10_1016_j_ejphar_2023_175699
crossref_primary_10_1038_nature11396
crossref_primary_10_1073_pnas_1515798113
crossref_primary_10_1093_gbe_evr112
crossref_primary_10_1371_journal_pgen_1009758
crossref_primary_10_1186_1471_2148_8_195
crossref_primary_10_1093_molbev_mst005
crossref_primary_10_3346_jkms_2010_25_7_1086
crossref_primary_10_1101_gr_122937_111
crossref_primary_10_1016_j_cell_2010_03_032
crossref_primary_10_1038_s41576_020_0240_1
crossref_primary_10_1093_bioinformatics_btw528
crossref_primary_10_1177_15648265070281S109
crossref_primary_10_1371_journal_pgen_1000825
crossref_primary_10_1007_s00414_017_1564_z
crossref_primary_10_1111_j_1095_8312_2005_00459_x
crossref_primary_10_1016_j_dnarep_2014_09_009
crossref_primary_10_1093_bioinformatics_btt488
crossref_primary_10_1111_j_1365_294X_2011_05178_x
crossref_primary_10_1002_humu_24493
crossref_primary_10_1016_j_fsigss_2019_10_090
crossref_primary_10_1093_molbev_msad100
crossref_primary_10_1002_elps_200900274
crossref_primary_10_1186_s12864_015_1938_x
crossref_primary_10_1371_journal_pone_0007799
crossref_primary_10_1093_gbe_evq026
crossref_primary_10_1002_elps_201100508
crossref_primary_10_1021_bi100042b
crossref_primary_10_1111_evo_13383
crossref_primary_10_1371_journal_pone_0064884
crossref_primary_10_1073_pnas_0502155102
crossref_primary_10_1016_j_fsigen_2013_11_004
crossref_primary_10_1016_S0168_9525_00_02188_0
crossref_primary_10_1093_humrep_det234
crossref_primary_10_1073_pnas_0500436102
crossref_primary_10_1146_annurev_genom_4_070802_110226
crossref_primary_10_1038_ng_3511
crossref_primary_10_1038_tp_2011_52
crossref_primary_10_1038_ng_2303
crossref_primary_10_1186_s12711_019_0456_8
crossref_primary_10_1002_bdra_23358
Cites_doi 10.1086/302250
10.1016/S0168-9525(98)01577-7
10.1007/BF01731581
10.1093/genetics/72.2.335
10.1038/337283a0
10.1101/SQB.1987.052.01.094
10.1017/S0305004100015644
10.1126/science.2448875
10.1093/genetics/148.4.1667
10.1126/science.284.5422.1906
10.1126/science.3116671
10.1006/mpev.1998.0495
10.1017/CBO9780511623486
10.1007/PL00006431
10.1073/pnas.96.2.574
10.1016/S0168-9525(00)89009-5
10.1007/978-3-662-03356-2
10.1038/217624a0
10.1093/genetics/152.2.661
10.1002/humu.1380020312
10.7591/9781501739071
10.1038/381694a0
10.1038/386388a0
10.1016/S0168-9525(00)89028-9
10.1007/PL00006166
10.1038/16915
10.1093/hmg/5.Supplement_1.1505
10.1038/362745a0
10.1038/ng0594-48
10.1007/BF02603118
10.1038/ng1097-182
10.1007/BF00166595
10.1073/pnas.94.16.8380
10.1093/genetics/54.6.1337
10.1073/pnas.94.8.3823
10.1038/990031
10.1111/j.1469-1809.1946.tb02367.x
10.1006/jtbi.1995.0167
10.1038/31927
10.1093/genetics/144.4.1993
10.1038/378376a0
10.1073/pnas.94.9.4811
10.1007/BF02982403
ContentType Journal Article
Copyright Copyright Genetics Society of America Sep 2000
Copyright_xml – notice: Copyright Genetics Society of America Sep 2000
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
4T-
4U-
7QP
7SS
7TK
7TM
8FD
FR3
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.1093/genetics/156.1.297
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Docstoc
University Readers
Calcium & Calcified Tissue Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
University Readers
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Docstoc
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
Entomology Abstracts
CrossRef
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1943-2631
EndPage 304
ExternalDocumentID PMC1461236
62703963
10978293
10_1093_genetics_156_1_297
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Comparative Study
GroupedDBID ---
--Z
-DZ
-~X
.-4
.55
.GJ
0R~
186
18M
29H
2WC
34G
39C
53G
5GY
5RE
5VS
5WD
85S
9M8
AABZA
AACZT
AAPXW
AARHZ
AAUAY
AAUTI
AAVAP
AAYXX
ABDFA
ABDNZ
ABEJV
ABGNP
ABMNT
ABNHQ
ABPPZ
ABPTD
ABVGC
ABXVV
ABXZS
ACFRR
ACGOD
ACIHN
ACIPB
ACNCT
ACPRK
ACPVT
ACUTJ
ADBBV
ADGKP
ADIPN
ADQBN
ADVEK
ADXHL
AEAQA
AENEX
AFFNX
AFFZL
AFGWE
AFRAH
AGORE
AHMBA
AHMMS
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
AOIJS
APEBS
ATGXG
BAWUL
BCRHZ
BEYMZ
BKOMP
BTFSW
C1A
CITATION
CJ0
CS3
D0L
DIK
DU5
E3Z
EBS
EJD
EMB
EMOBN
F5P
F8P
F9R
FD6
FLUFQ
FOEOM
FRP
GX1
H13
HYE
H~9
INIJC
JXSIZ
KBUDW
KOP
KQ8
KSI
KSN
L7B
MV1
MVM
NHB
NOMLY
OBOKY
OCZFY
OHT
OJZSN
OK1
OPAEJ
OWPYF
QN7
R0Z
RHI
ROX
RXW
SJN
SV3
TAE
TGS
TN5
TR2
TWZ
U5U
UHB
UKR
UNMZH
UPT
W8F
WH7
WHG
WOQ
X7M
XSW
YHG
YKV
YSK
YYP
YYQ
YZZ
ZCA
ZGI
ZXP
~KM
2KS
36B
3V.
7X2
7X7
88A
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAYOK
ABJNI
ABTAH
ABUWG
ACYGS
AEUYN
AFFDN
AFKRA
AGMDO
ATCPS
AZQEC
BBNVY
BENPR
BES
BHPHI
BKNYI
BPHCQ
BVXVI
CCPQU
CGR
CUY
CVF
DWQXO
EBD
ECM
EIF
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
K9-
LK8
M0K
M0L
M0R
M1P
M2O
M2P
M7P
NPM
OMK
PQQKQ
PROAC
PSQYO
Q2X
QF4
QM4
QM9
QO4
RHF
RPM
TH9
UKHRP
VQA
VXZ
XOL
YIF
YIN
ZY4
4T-
4U-
7QP
7SS
7TK
7TM
8FD
FR3
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c522t-97e5d72398a444315411b81f11a2794bbb61d16da27e8f56a476f7420f9a8b353
ISSN 1943-2631
0016-6731
IngestDate Thu Aug 21 17:56:53 EDT 2025
Fri Jul 11 02:38:55 EDT 2025
Thu Jul 10 16:40:12 EDT 2025
Mon Jun 30 08:32:01 EDT 2025
Wed Feb 19 01:31:28 EST 2025
Tue Jul 01 00:33:01 EDT 2025
Thu Apr 24 23:02:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c522t-97e5d72398a444315411b81f11a2794bbb61d16da27e8f56a476f7420f9a8b353
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
OpenAccessLink https://academic.oup.com/genetics/article-pdf/156/1/297/35159268/genetics0297.pdf
PMID 10978293
PQID 214121112
PQPubID 47453
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1461236
proquest_miscellaneous_72243992
proquest_miscellaneous_17623666
proquest_journals_214121112
pubmed_primary_10978293
crossref_primary_10_1093_genetics_156_1_297
crossref_citationtrail_10_1093_genetics_156_1_297
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2000-09-01
PublicationDateYYYYMMDD 2000-09-01
PublicationDate_xml – month: 09
  year: 2000
  text: 2000-09-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
PublicationTitle Genetics (Austin)
PublicationTitleAlternate Genetics
PublicationYear 2000
Publisher Genetics Society of America
Publisher_xml – name: Genetics Society of America
References Crow (2022010407032182700_R5) 1993; 9
Takahata (2022010407032182700_R47) 1997; 94
Haldane (2022010407032182700_R16) 1947; 13
Kibota (2022010407032182700_R23) 1996; 381
Miyata (2022010407032182700_R38) 1987; 52
Muller (2022010407032182700_R40) 1950; 2
Haldane (2022010407032182700_R15) 1935; 31
Li (2022010407032182700_R33) 1991
Haldane (2022010407032182700_R14) 1932
McVean (2022010407032182700_R36) 1997; 386
Huang (2022010407032182700_R18) 1997; 44
Hurst (2022010407032182700_R19) 1998; 14
Fry (2022010407032182700_R11) 1999; 96
Vogel (2022010407032182700_R48) 1997
Saiki (2022010407032182700_R42) 1988; 239
Shimmin (2022010407032182700_R43) 1993; 362
Arnason (2022010407032182700_R2) 1998; 47
Kimura (2022010407032182700_R28) 1966; 54
Smith (2022010407032182700_R44) 1999; 152
Wolfe (2022010407032182700_R51) 1989; 337
Mukai (2022010407032182700_R39) 1972; 72
Keightley (2022010407032182700_R21) 1997; 94
Kimura (2022010407032182700_R25) 1980; 16
Sommer (2022010407032182700_R46) 1996; 5
Kumar (2022010407032182700_R32) 1998; 392
Kondrashov (2022010407032182700_R29) 1995; 175
Sommer (2022010407032182700_R45) 1995; 11
Wallace (2022010407032182700_R49) 1981
Dunham (2022010407032182700_R8) 1999; 402
Anagnostopoulos (2022010407032182700_R1) 1999; 64
Kimura (2022010407032182700_R24) 1968; 217
Kimura (2022010407032182700_R26) 1983
Ellegren (2022010407032182700_R9) 1997; 17
Miyamoto (2022010407032182700_R37) 1987; 238
Ohta (2022010407032182700_R41) 1995; 40
Eyre-Walker (2022010407032182700_R10) 1999; 397
Wallace (2022010407032182700_R50) 1991
Haldane (2022010407032182700_R13) 1927; 23
Hammer (2022010407032182700_R17) 1995; 378
Ketterling (2022010407032182700_R22) 1993; 52
Li (2022010407032182700_R34) 1987; 25
Cooper (2022010407032182700_R4) 1993
Keightley (2022010407032182700_R20) 1996; 144
Kimura (2022010407032182700_R27) 1983; 1
Bird (2022010407032182700_R3) 1995; 11
Goodman (2022010407032182700_R12) 1998; 9
Marshall (2022010407032182700_R35) 1999; 284
Crow (2022010407032182700_R6) 1997; 94
Kondrashov (2022010407032182700_R30) 1993; 2
Koop (2022010407032182700_R31) 1994; 7
Drake (2022010407032182700_R7) 1998; 148
8434583 - Am J Hum Genet. 1993 Jan;52(1):152-66
9326938 - Nat Genet. 1997 Oct;17(2):182-4
4630587 - Genetics. 1972 Oct;72(2):335-55
7714912 - J Mol Evol. 1995 Jan;40(1):56-63
7477371 - Nature. 1995 Nov 23;378(6555):376-8
7732579 - Trends Genet. 1995 Mar;11(3):94-100
9121553 - Nature. 1997 Mar 27;386(6623):388-92
9825672 - Trends Genet. 1998 Nov;14(11):446-52
8875257 - Hum Mol Genet. 1996;5 Spec No:1505-14
8469284 - Nature. 1993 Apr 22;362(6422):745-7
9892675 - Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):574-9
9237985 - Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8380-6
10591208 - Nature. 1999 Dec 2;402(6761):489-95
8649513 - Nature. 1996 Jun 20;381(6584):694-6
9847414 - J Mol Evol. 1998 Dec;47(6):718-27
2911369 - Nature. 1989 Jan 19;337(6204):283-5
5637732 - Nature. 1968 Feb 17;217(5129):624-6
8075639 - Nat Genet. 1994 May;7(1):48-53
3116671 - Science. 1987 Oct 16;238(4825):369-73
2448875 - Science. 1988 Jan 29;239(4839):487-91
17248359 - Genetics. 1966 Dec;54(6):1337-51
9114074 - Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4811-5
10400531 - Science. 1999 Jun 18;284(5422):1906-9
8978082 - Genetics. 1996 Dec;144(4):1993-9
7732592 - Trends Genet. 1995 Apr;11(4):141-7
3118047 - J Mol Evol. 1987;25(4):330-42
3454295 - Cold Spring Harb Symp Quant Biol. 1987;52:863-7
9582070 - Nature. 1998 Apr 30;392(6679):917-20
9973287 - Am J Hum Genet. 1999 Feb;64(2):508-17
10353908 - Genetics. 1999 Jun;152(2):661-73
8364591 - Hum Mutat. 1993;2(3):229-34
9668008 - Mol Phylogenet Evol. 1998 Jun;9(3):585-98
9560386 - Genetics. 1998 Apr;148(4):1667-86
9950425 - Nature. 1999 Jan 28;397(6717):344-7
9089087 - J Mol Evol. 1997 Apr;44(4):463-5
References_xml – volume: 64
  start-page: 508
  year: 1999
  ident: 2022010407032182700_R1
  article-title: DNA variation in a 5-Mb region of the X chromosome and estimates of sex-specific/type-specific mutation rates
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/302250
– volume: 1
  start-page: 84
  year: 1983
  ident: 2022010407032182700_R27
  article-title: Rare variant alleles in the light of the neutral theory
  publication-title: Mol. Biol. Evol.
– volume: 14
  start-page: 446
  year: 1998
  ident: 2022010407032182700_R19
  article-title: Sex biases in the mutation rate
  publication-title: Trends Genet.
  doi: 10.1016/S0168-9525(98)01577-7
– volume: 16
  start-page: 111
  year: 1980
  ident: 2022010407032182700_R25
  article-title: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences
  publication-title: J. Mol. Evol.
  doi: 10.1007/BF01731581
– volume: 72
  start-page: 335
  year: 1972
  ident: 2022010407032182700_R39
  article-title: Mutation rate and dominance of genes affecting viability in Drosophila melanogaster
  publication-title: Genetics
  doi: 10.1093/genetics/72.2.335
– volume: 2
  start-page: 111
  year: 1950
  ident: 2022010407032182700_R40
  article-title: Our load of mutations
  publication-title: Am. J. Hum. Genet.
– volume: 337
  start-page: 283
  year: 1989
  ident: 2022010407032182700_R51
  article-title: Mutation rates differ among regions of the mammalian genome
  publication-title: Nature
  doi: 10.1038/337283a0
– volume: 52
  start-page: 863
  year: 1987
  ident: 2022010407032182700_R38
  article-title: Male-driven molecular evolution: a model and nucleotide sequence analysis
  publication-title: Cold Spring Harbor Symp. Quant. Biol.
  doi: 10.1101/SQB.1987.052.01.094
– volume: 23
  start-page: 838
  year: 1927
  ident: 2022010407032182700_R13
  article-title: A mathematical theory of natural and artificial selection. Part V. Selection and mutation
  publication-title: Proc. Camb. Philos. Soc.
  doi: 10.1017/S0305004100015644
– volume: 9
  start-page: 3
  year: 1993
  ident: 2022010407032182700_R5
  article-title: Mutation, mean fitness, and genetic load
  publication-title: Oxf. Surv. Evol. Biol.
– volume: 239
  start-page: 487
  year: 1988
  ident: 2022010407032182700_R42
  article-title: Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase
  publication-title: Science
  doi: 10.1126/science.2448875
– volume: 148
  start-page: 1667
  year: 1998
  ident: 2022010407032182700_R7
  article-title: Rates of spontaneous mutation
  publication-title: Genetics
  doi: 10.1093/genetics/148.4.1667
– volume: 284
  start-page: 1906
  year: 1999
  ident: 2022010407032182700_R35
  article-title: A high-stakes gamble on genome sequencing
  publication-title: Science
  doi: 10.1126/science.284.5422.1906
– volume: 238
  start-page: 369
  year: 1987
  ident: 2022010407032182700_R37
  article-title: Phylogenetic relations of human and African apes from DNA sequences in the ψη-globin region
  publication-title: Science
  doi: 10.1126/science.3116671
– volume: 9
  start-page: 585
  year: 1998
  ident: 2022010407032182700_R12
  article-title: Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1006/mpev.1998.0495
– volume-title: The Neutral Theory of Molecular Evolution
  year: 1983
  ident: 2022010407032182700_R26
  doi: 10.1017/CBO9780511623486
– volume: 47
  start-page: 718
  year: 1998
  ident: 2022010407032182700_R2
  article-title: Molecular timing of primate divergences as estimated by two nonprimate calibration points
  publication-title: J. Mol. Evol.
  doi: 10.1007/PL00006431
– volume: 96
  start-page: 574
  year: 1999
  ident: 2022010407032182700_R11
  article-title: New estimates of the rates and effects of mildly deleterious mutation in Drosophila melanogaster
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.2.574
– volume: 11
  start-page: 94
  year: 1995
  ident: 2022010407032182700_R3
  article-title: Gene number, noise reduction and biological complexity
  publication-title: Trends Genet.
  doi: 10.1016/S0168-9525(00)89009-5
– volume-title: Human genetics: problems and approaches
  year: 1997
  ident: 2022010407032182700_R48
  doi: 10.1007/978-3-662-03356-2
– volume: 217
  start-page: 624
  year: 1968
  ident: 2022010407032182700_R24
  article-title: Evolutionary rate at the molecular level
  publication-title: Nature
  doi: 10.1038/217624a0
– volume: 152
  start-page: 661
  year: 1999
  ident: 2022010407032182700_R44
  article-title: The causes of synonymous rate variation in the rodent genome: can substitution rates be used to estimate the sex-bias in mutation rates?
  publication-title: Genetics
  doi: 10.1093/genetics/152.2.661
– volume: 2
  start-page: 229
  year: 1993
  ident: 2022010407032182700_R30
  article-title: A molecular approach to estimating the human deleterious mutation rate
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.1380020312
– volume-title: Fifty Years of Genetic Load
  year: 1991
  ident: 2022010407032182700_R50
  doi: 10.7591/9781501739071
– volume: 381
  start-page: 694
  year: 1996
  ident: 2022010407032182700_R23
  article-title: Estimate of the genomic mutation rate deleterious to overall fitness in E. coli
  publication-title: Nature
  doi: 10.1038/381694a0
– volume: 386
  start-page: 388
  year: 1997
  ident: 2022010407032182700_R36
  article-title: Evidence for a selectively favourable reduction in the mutation rate of the X chromosome
  publication-title: Nature
  doi: 10.1038/386388a0
– volume: 52
  start-page: 152
  year: 1993
  ident: 2022010407032182700_R22
  article-title: Germ-line origins of mutation in families with Hemophilia B: the sex ratio varies with the type of mutation
  publication-title: Am. J. Hum. Genet.
– volume: 11
  start-page: 141
  year: 1995
  ident: 2022010407032182700_R45
  article-title: Recent human germ-line mutation: inferences from patients with hemophilia B
  publication-title: Trends Genet.
  doi: 10.1016/S0168-9525(00)89028-9
– volume: 44
  start-page: 463
  year: 1997
  ident: 2022010407032182700_R18
  article-title: Sex differences in mutation rate in higher primates estimated from AMG intron sequences
  publication-title: J. Mol. Evol.
  doi: 10.1007/PL00006166
– volume: 397
  start-page: 344
  year: 1999
  ident: 2022010407032182700_R10
  article-title: High genomic deleterious mutation rates in hominids
  publication-title: Nature
  doi: 10.1038/16915
– volume: 5
  start-page: 1505
  year: 1996
  ident: 2022010407032182700_R46
  article-title: The factor IX gene as a model for analysis of human germline mutations: an update
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/5.Supplement_1.1505
– volume-title: The Causes of Evolution
  year: 1932
  ident: 2022010407032182700_R14
– volume: 362
  start-page: 745
  year: 1993
  ident: 2022010407032182700_R43
  article-title: Male-driven evolution of DNA sequences
  publication-title: Nature
  doi: 10.1038/362745a0
– volume-title: Basic Population Genetics
  year: 1981
  ident: 2022010407032182700_R49
– volume: 7
  start-page: 48
  year: 1994
  ident: 2022010407032182700_R31
  article-title: Striking sequence similarity over almost 100 kilobases of human and mouse T-cell receptor DNA
  publication-title: Nat. Genet.
  doi: 10.1038/ng0594-48
– volume: 25
  start-page: 330
  year: 1987
  ident: 2022010407032182700_R34
  article-title: An evaluation of the molecular clock hypothesis using mammalian DNA sequences
  publication-title: J. Mol. Evol.
  doi: 10.1007/BF02603118
– volume: 17
  start-page: 182
  year: 1997
  ident: 2022010407032182700_R9
  article-title: Male-driven evolution of DNA sequences in birds
  publication-title: Nat. Genet.
  doi: 10.1038/ng1097-182
– volume: 40
  start-page: 56
  year: 1995
  ident: 2022010407032182700_R41
  article-title: Synonymous and non-synonymous substitutions in mammalian genes and the nearly neutral theory
  publication-title: J. Mol. Evol.
  doi: 10.1007/BF00166595
– volume: 94
  start-page: 8380
  year: 1997
  ident: 2022010407032182700_R6
  article-title: The high spontaneous mutation rate: Is it a health risk?
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.16.8380
– volume: 54
  start-page: 1337
  year: 1966
  ident: 2022010407032182700_R28
  article-title: The mutational load with epistatic gene interactions in fitness
  publication-title: Genetics
  doi: 10.1093/genetics/54.6.1337
– volume: 94
  start-page: 3823
  year: 1997
  ident: 2022010407032182700_R21
  article-title: Genomic mutation rates for lifetime reproductive output and lifespan in Caenorhabditis elegans
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.8.3823
– volume: 402
  start-page: 489
  year: 1999
  ident: 2022010407032182700_R8
  article-title: The DNA sequence of human chromosome 22
  publication-title: Nature
  doi: 10.1038/990031
– volume: 13
  start-page: 262
  year: 1947
  ident: 2022010407032182700_R16
  article-title: The mutation rate of the gene for hemophilia, and its segregation ratios in males and females
  publication-title: Ann. Eugen.
  doi: 10.1111/j.1469-1809.1946.tb02367.x
– volume-title: Fundamentals of Molecular Evolution
  year: 1991
  ident: 2022010407032182700_R33
– volume: 175
  start-page: 583
  year: 1995
  ident: 2022010407032182700_R29
  article-title: Contamination of the genome by very slightly deleterious mutations: why have we not died 100 times over?
  publication-title: J. Theor. Biol.
  doi: 10.1006/jtbi.1995.0167
– volume: 392
  start-page: 917
  year: 1998
  ident: 2022010407032182700_R32
  article-title: A molecular timescale for vertebrate evolution
  publication-title: Nature
  doi: 10.1038/31927
– volume: 144
  start-page: 1993
  year: 1996
  ident: 2022010407032182700_R20
  article-title: Nature of deleterious mutation load in Drosophila
  publication-title: Genetics
  doi: 10.1093/genetics/144.4.1993
– volume-title: Human Gene Mutation
  year: 1993
  ident: 2022010407032182700_R4
– volume: 378
  start-page: 376
  year: 1995
  ident: 2022010407032182700_R17
  article-title: A recent common ancestry for human Y chromosomes
  publication-title: Nature
  doi: 10.1038/378376a0
– volume: 94
  start-page: 4811
  year: 1997
  ident: 2022010407032182700_R47
  article-title: Evolution of the primate lineage leading to modern humans: phylogenetic and demographic inferences from DNA sequences
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.9.4811
– volume: 31
  start-page: 317
  year: 1935
  ident: 2022010407032182700_R15
  article-title: The rate of spontaneous mutation of a human gene
  publication-title: J. Genet.
  doi: 10.1007/BF02982403
– reference: 9560386 - Genetics. 1998 Apr;148(4):1667-86
– reference: 8364591 - Hum Mutat. 1993;2(3):229-34
– reference: 3454295 - Cold Spring Harb Symp Quant Biol. 1987;52:863-7
– reference: 8649513 - Nature. 1996 Jun 20;381(6584):694-6
– reference: 9973287 - Am J Hum Genet. 1999 Feb;64(2):508-17
– reference: 9114074 - Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4811-5
– reference: 9089087 - J Mol Evol. 1997 Apr;44(4):463-5
– reference: 9892675 - Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):574-9
– reference: 9582070 - Nature. 1998 Apr 30;392(6679):917-20
– reference: 8469284 - Nature. 1993 Apr 22;362(6422):745-7
– reference: 9121553 - Nature. 1997 Mar 27;386(6623):388-92
– reference: 9847414 - J Mol Evol. 1998 Dec;47(6):718-27
– reference: 9326938 - Nat Genet. 1997 Oct;17(2):182-4
– reference: 9825672 - Trends Genet. 1998 Nov;14(11):446-52
– reference: 8978082 - Genetics. 1996 Dec;144(4):1993-9
– reference: 10400531 - Science. 1999 Jun 18;284(5422):1906-9
– reference: 8875257 - Hum Mol Genet. 1996;5 Spec No:1505-14
– reference: 7732579 - Trends Genet. 1995 Mar;11(3):94-100
– reference: 10591208 - Nature. 1999 Dec 2;402(6761):489-95
– reference: 17248359 - Genetics. 1966 Dec;54(6):1337-51
– reference: 7477371 - Nature. 1995 Nov 23;378(6555):376-8
– reference: 7732592 - Trends Genet. 1995 Apr;11(4):141-7
– reference: 3116671 - Science. 1987 Oct 16;238(4825):369-73
– reference: 4630587 - Genetics. 1972 Oct;72(2):335-55
– reference: 7714912 - J Mol Evol. 1995 Jan;40(1):56-63
– reference: 9668008 - Mol Phylogenet Evol. 1998 Jun;9(3):585-98
– reference: 10353908 - Genetics. 1999 Jun;152(2):661-73
– reference: 3118047 - J Mol Evol. 1987;25(4):330-42
– reference: 9237985 - Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8380-6
– reference: 8075639 - Nat Genet. 1994 May;7(1):48-53
– reference: 8434583 - Am J Hum Genet. 1993 Jan;52(1):152-66
– reference: 2911369 - Nature. 1989 Jan 19;337(6204):283-5
– reference: 9950425 - Nature. 1999 Jan 28;397(6717):344-7
– reference: 2448875 - Science. 1988 Jan 29;239(4839):487-91
– reference: 5637732 - Nature. 1968 Feb 17;217(5129):624-6
SSID ssj0006958
Score 2.2808578
Snippet Many previous estimates of the mutation rate in humans have relied on screens of visible mutants. We investigated the rate and pattern of mutations at the...
Many previous estimates of the mutation rate in humans have relied in screens of visible mutants. Nachman and Crowell investigated the rate and pattern of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 297
SubjectTerms Animals
Cellular biology
Chromosomes, Human - genetics
DNA - genetics
Evolution, Molecular
Female
Genetics
Humans
Male
Monkeys & apes
Mutation
Pan troglodytes - genetics
Pseudogenes
Species Specificity
X Chromosome - genetics
Title Estimate of the Mutation Rate per Nucleotide in Humans
URI https://www.ncbi.nlm.nih.gov/pubmed/10978293
https://www.proquest.com/docview/214121112
https://www.proquest.com/docview/17623666
https://www.proquest.com/docview/72243992
https://pubmed.ncbi.nlm.nih.gov/PMC1461236
Volume 156
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCIkLojyXUvCBW5V2nThOfESotEIqB9RKe4v8SOhKKFvR7AF-PZ_jx-72gWgv0a7jjOLMeDwzHn9DyMdauHpIXZ0ZU00zaL8yk0bYDMavUcxypVu3o3vyTRyf8a-zchbr3YfTJYPeN39uPFdyH66iDXx1p2TvwNlEFA34Df7iCg7j-l88PsT8hMWZNvpPliF38LtrvHDneR1c8WKY2xEbZIzYX67bow51egRqhqHpwh5jmCAFiJU5DwHSkF2_t0LnhfsetizGxJ5weiHGD6YpQSqqPMmLLBdBF7c3tEU96RHANwQiaD2fYhsW0MLXE76mmz1u1Y8wLhcxKMU-XPT48DoU9pUlKiUO-i3zoolUGtBoWAMaD8mjHJ6CK2JxNFtl-Qg5lmhNAwrnpkDjINI4SO-xaZtccziu5s2uGSKnz8jT4EHQT14ctsmDtn9OHvuaor9fEBGFgi46CqGgUSioEwoKoaAroaDznnqheEnOvhyefj7OQnGMzMBkHjJZtaWtHHqj4hxWYMkZ0zXrGFM5dKzWWjDLhMW_tu5KoXgluorn006qWhdl8Yps9Yu-fUNo3uVFxYyt8TDvpNVKGCktTEOJGc6LCWHxszQmIMe7AiY_m9vZMSF76ZkLj5vyz9478Ws3YX5dNjnjDn-Q5RPyId2F8nM7WqpvF0sQwFJewAG_vQckwnncoPHa827tbSSsY4nRVRtcTR0c8PrmnX5-PgKww7pwoEVv7zTGHfJkNf3eka3h17LdhUE76PejyP4FofafiA
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimate+of+the+Mutation+Rate+per+Nucleotide+in+Humans&rft.jtitle=Genetics+%28Austin%29&rft.au=Nachman%2C+Michael+W&rft.au=Crowell%2C+Susan+L&rft.date=2000-09-01&rft.issn=1943-2631&rft.eissn=1943-2631&rft.volume=156&rft.issue=1&rft.spage=297&rft.epage=304&rft_id=info:doi/10.1093%2Fgenetics%2F156.1.297&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_genetics_156_1_297
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-2631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-2631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-2631&client=summon