Estimate of the Mutation Rate per Nucleotide in Humans
Many previous estimates of the mutation rate in humans have relied on screens of visible mutants. We investigated the rate and pattern of mutations at the nucleotide level by comparing pseudogenes in humans and chimpanzees to (i) provide an estimate of the average mutation rate per nucleotide, (ii)...
Saved in:
Published in | Genetics (Austin) Vol. 156; no. 1; pp. 297 - 304 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Genetics Society of America
01.09.2000
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many previous estimates of the mutation rate in humans have relied on screens of visible mutants. We investigated the rate and pattern of mutations at the nucleotide level by comparing pseudogenes in humans and chimpanzees to (i) provide an estimate of the average mutation rate per nucleotide, (ii) assess heterogeneity of mutation rate at different sites and for different types of mutations, (iii) test the hypothesis that the X chromosome has a lower mutation rate than autosomes, and (iv) estimate the deleterious mutation rate. Eighteen processed pseudogenes were sequenced, including 12 on autosomes and 6 on the X chromosome. The average mutation rate was estimated to be ~2.5 × 10−8 mutations per nucleotide site or 175 mutations per diploid genome per generation. Rates of mutation for both transitions and transversions at CpG dinucleotides are one order of magnitude higher than mutation rates at other sites. Single nucleotide substitutions are 10 times more frequent than length mutations. Comparison of rates of evolution for X-linked and autosomal pseudogenes suggests that the male mutation rate is 4 times the female mutation rate, but provides no evidence for a reduction in mutation rate that is specific to the X chromosome. Using conservative calculations of the proportion of the genome subject to purifying selection, we estimate that the genomic deleterious mutation rate (U) is at least 3. This high rate is difficult to reconcile with multiplicative fitness effects of individual mutations and suggests that synergistic epistasis among harmful mutations may be common. |
---|---|
AbstractList | Many previous estimates of the mutation rate in humans have relied on screens of visible mutants. We investigated the rate and pattern of mutations at the nucleotide level by comparing pseudogenes in humans and chimpanzees to (i) provide an estimate of the average mutation rate per nucleotide, (ii) assess heterogeneity of mutation rate at different sites and for different types of mutations, (iii) test the hypothesis that the X chromosome has a lower mutation rate than autosomes, and (iv) estimate the deleterious mutation rate. Eighteen processed pseudogenes were sequenced, including 12 on autosomes and 6 on the X chromosome. The average mutation rate was estimated to be [sim]2.5 x 10 super(-8) mutations per nucleotide site or 175 mutations per diploid genome per generation. Rates of mutation for both transitions and transversions at CpG dinucleotides are one order of magnitude higher than mutation rates at other sites. Single nucleotide substitutions are 10 times more frequent than length mutations. Comparison of rates of evolution for X-linked and autosomal pseudogenes suggests that the male mutation rate is 4 times the female mutation rate, but provides no evidence for a reduction in mutation rate that is specific to the X chromosome. Using conservative calculations of the proportion of the genome subject to purifying selection, we estimate that the genomic deleterious mutation rate (U) is at least 3. This high rate is difficult to reconcile with multiplicative fitness effects of individual mutations and suggests that synergistic epistasis among harmful mutations may be common. Many previous estimates of the mutation rate in humans have relied in screens of visible mutants. Nachman and Crowell investigated the rate and pattern of mutations at the nucleotide level by comparing pseudogenes in humans and chimpanzees. Many previous estimates of the mutation rate in humans have relied on screens of visible mutants. We investigated the rate and pattern of mutations at the nucleotide level by comparing pseudogenes in humans and chimpanzees to (i) provide an estimate of the average mutation rate per nucleotide, (ii) assess heterogeneity of mutation rate at different sites and for different types of mutations, (iii) test the hypothesis that the X chromosome has a lower mutation rate than autosomes, and (iv) estimate the deleterious mutation rate. Eighteen processed pseudogenes were sequenced, including 12 on autosomes and 6 on the X chromosome. The average mutation rate was estimated to be ~2.5 × 10−8 mutations per nucleotide site or 175 mutations per diploid genome per generation. Rates of mutation for both transitions and transversions at CpG dinucleotides are one order of magnitude higher than mutation rates at other sites. Single nucleotide substitutions are 10 times more frequent than length mutations. Comparison of rates of evolution for X-linked and autosomal pseudogenes suggests that the male mutation rate is 4 times the female mutation rate, but provides no evidence for a reduction in mutation rate that is specific to the X chromosome. Using conservative calculations of the proportion of the genome subject to purifying selection, we estimate that the genomic deleterious mutation rate (U) is at least 3. This high rate is difficult to reconcile with multiplicative fitness effects of individual mutations and suggests that synergistic epistasis among harmful mutations may be common. Many previous estimates of the mutation rate in humans have relied on screens of visible mutants. We investigated the rate and pattern of mutations at the nucleotide level by comparing pseudogenes in humans and chimpanzees to (i) provide an estimate of the average mutation rate per nucleotide, (ii) assess heterogeneity of mutation rate at different sites and for different types of mutations, (iii) test the hypothesis that the X chromosome has a lower mutation rate than autosomes, and (iv) estimate the deleterious mutation rate. Eighteen processed pseudogenes were sequenced, including 12 on autosomes and 6 on the X chromosome. The average mutation rate was estimated to be approximately 2.5 x 10(-8) mutations per nucleotide site or 175 mutations per diploid genome per generation. Rates of mutation for both transitions and transversions at CpG dinucleotides are one order of magnitude higher than mutation rates at other sites. Single nucleotide substitutions are 10 times more frequent than length mutations. Comparison of rates of evolution for X-linked and autosomal pseudogenes suggests that the male mutation rate is 4 times the female mutation rate, but provides no evidence for a reduction in mutation rate that is specific to the X chromosome. Using conservative calculations of the proportion of the genome subject to purifying selection, we estimate that the genomic deleterious mutation rate (U) is at least 3. This high rate is difficult to reconcile with multiplicative fitness effects of individual mutations and suggests that synergistic epistasis among harmful mutations may be common.Many previous estimates of the mutation rate in humans have relied on screens of visible mutants. We investigated the rate and pattern of mutations at the nucleotide level by comparing pseudogenes in humans and chimpanzees to (i) provide an estimate of the average mutation rate per nucleotide, (ii) assess heterogeneity of mutation rate at different sites and for different types of mutations, (iii) test the hypothesis that the X chromosome has a lower mutation rate than autosomes, and (iv) estimate the deleterious mutation rate. Eighteen processed pseudogenes were sequenced, including 12 on autosomes and 6 on the X chromosome. The average mutation rate was estimated to be approximately 2.5 x 10(-8) mutations per nucleotide site or 175 mutations per diploid genome per generation. Rates of mutation for both transitions and transversions at CpG dinucleotides are one order of magnitude higher than mutation rates at other sites. Single nucleotide substitutions are 10 times more frequent than length mutations. Comparison of rates of evolution for X-linked and autosomal pseudogenes suggests that the male mutation rate is 4 times the female mutation rate, but provides no evidence for a reduction in mutation rate that is specific to the X chromosome. Using conservative calculations of the proportion of the genome subject to purifying selection, we estimate that the genomic deleterious mutation rate (U) is at least 3. This high rate is difficult to reconcile with multiplicative fitness effects of individual mutations and suggests that synergistic epistasis among harmful mutations may be common. Many previous estimates of the mutation rate in humans have relied on screens of visible mutants. We investigated the rate and pattern of mutations at the nucleotide level by comparing pseudogenes in humans and chimpanzees to (i) provide an estimate of the average mutation rate per nucleotide, (ii) assess heterogeneity of mutation rate at different sites and for different types of mutations, (iii) test the hypothesis that the X chromosome has a lower mutation rate than autosomes, and (iv) estimate the deleterious mutation rate. Eighteen processed pseudogenes were sequenced, including 12 on autosomes and 6 on the X chromosome. The average mutation rate was estimated to be approximately 2.5 x 10(-8) mutations per nucleotide site or 175 mutations per diploid genome per generation. Rates of mutation for both transitions and transversions at CpG dinucleotides are one order of magnitude higher than mutation rates at other sites. Single nucleotide substitutions are 10 times more frequent than length mutations. Comparison of rates of evolution for X-linked and autosomal pseudogenes suggests that the male mutation rate is 4 times the female mutation rate, but provides no evidence for a reduction in mutation rate that is specific to the X chromosome. Using conservative calculations of the proportion of the genome subject to purifying selection, we estimate that the genomic deleterious mutation rate (U) is at least 3. This high rate is difficult to reconcile with multiplicative fitness effects of individual mutations and suggests that synergistic epistasis among harmful mutations may be common. |
Author | Crowell, Susan L Nachman, Michael W |
AuthorAffiliation | Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA. nachman@u.arizona.edu |
AuthorAffiliation_xml | – name: Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA. nachman@u.arizona.edu |
Author_xml | – sequence: 1 givenname: Michael W surname: Nachman fullname: Nachman, Michael W organization: Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721 – sequence: 2 givenname: Susan L surname: Crowell fullname: Crowell, Susan L organization: Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10978293$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLxDAUhYMovv-ACyku3M1Mb5ImzUYQ8QU-QHQd0vZWI51kbFLBf2-GURlnoau8zvk4uWeHrDvvkJADyMeQKzZ5RofR1mEChRjDmCq5RrZBcTaigsH60n6L7ITwmue5UEW5SbaSXZZUsW0izkO0UxMx820WXzC7HaKJ1rvsYX45wz67G-oOfbQNZtZlV8PUuLBHNlrTBdz_WnfJ08X549nV6Ob-8vrs9GZUF5TGkZJYNJIyVRrOOYOCA1QltACGSsWrqhLQgGjSCcu2EIZL0UpO81aZsmIF2yUnC-5sqKbY1Ohibzo961Pm_kN7Y_XvF2df9LN_18AFUCYS4PgL0Pu3AUPUUxtq7Drj0A9BS0o5U4r-KwQpEk_MiUcrwlc_9C5NQVPgQAFgTjtczv0T-HvwSUAXgrr3IfTYLknmKqa_29WpXQ06tZtM5Yqptou20t9t95f1E6eVq0Y |
CODEN | GENTAE |
CitedBy_id | crossref_primary_10_7717_peerj_2889 crossref_primary_10_1002_humu_20242 crossref_primary_10_1371_journal_pgen_0020163 crossref_primary_10_1371_journal_pgen_0020168 crossref_primary_10_1534_genetics_111_131276 crossref_primary_10_1534_genetics_111_134668 crossref_primary_10_1371_journal_pone_0192994 crossref_primary_10_1016_j_bbadis_2014_05_002 crossref_primary_10_1038_ng947 crossref_primary_10_1371_journal_pgen_1004561 crossref_primary_10_1093_icb_icac146 crossref_primary_10_1093_sysbio_sys024 crossref_primary_10_1111_j_1365_294X_2011_05333_x crossref_primary_10_1126_science_1186802 crossref_primary_10_1016_j_cell_2012_11_019 crossref_primary_10_1093_biolinnean_blx158 crossref_primary_10_1016_j_ajhg_2016_07_002 crossref_primary_10_3389_fimmu_2023_1236080 crossref_primary_10_1002_sec_1599 crossref_primary_10_1038_sj_ejhg_5201709 crossref_primary_10_1126_science_1217876 crossref_primary_10_1007_s00239_023_10127_y crossref_primary_10_1111_1556_4029_15475 crossref_primary_10_1038_nrg2529 crossref_primary_10_1093_molbev_msq198 crossref_primary_10_1095_biolreprod_112_103440 crossref_primary_10_47248_hpgg2303020004 crossref_primary_10_1007_s12018_009_9067_1 crossref_primary_10_1111_j_1365_2486_2012_02711_x crossref_primary_10_1093_genetics_iyab159 crossref_primary_10_1590_1678_4685_gmb_2022_0077 crossref_primary_10_1038_hdy_2012_120 crossref_primary_10_1101_gr_192971_115 crossref_primary_10_3389_fgene_2019_00038 crossref_primary_10_1002_ajpa_23768 crossref_primary_10_1098_rstb_2015_0138 crossref_primary_10_1139_cjfas_2019_0351 crossref_primary_10_1016_j_ijcard_2006_09_013 crossref_primary_10_1111_j_1365_294X_2005_02437_x crossref_primary_10_1016_j_jlumin_2016_08_007 crossref_primary_10_1093_molbev_msh157 crossref_primary_10_1186_1471_2156_9_66 crossref_primary_10_1371_journal_pbio_3001645 crossref_primary_10_1002_elps_201800412 crossref_primary_10_1038_ng2084 crossref_primary_10_1186_1742_4682_2_40 crossref_primary_10_1038_srep08260 crossref_primary_10_1038_s41467_018_08270_y crossref_primary_10_1073_pnas_0601324103 crossref_primary_10_1086_321272 crossref_primary_10_1093_carcin_bgw060 crossref_primary_10_1073_pnas_1720487115 crossref_primary_10_1093_genetics_iyac122 crossref_primary_10_1002_ece3_11706 crossref_primary_10_1086_321275 crossref_primary_10_1146_annurev_ecolsys_110411_160257 crossref_primary_10_1371_journal_pgen_1005527 crossref_primary_10_1152_ajprenal_00359_2019 crossref_primary_10_1007_s00414_019_02180_4 crossref_primary_10_1093_molbev_msab194 crossref_primary_10_1111_1467_9868_00355 crossref_primary_10_1073_pnas_1507300112 crossref_primary_10_1093_molbev_msr029 crossref_primary_10_2217_17410541_3_1_1 crossref_primary_10_1016_j_fsigen_2015_11_003 crossref_primary_10_1038_ncomms5240 crossref_primary_10_1086_430721 crossref_primary_10_1126_science_aaf7943 crossref_primary_10_1038_hdy_2016_56 crossref_primary_10_1038_ncomms6692 crossref_primary_10_1038_s41437_017_0037_y crossref_primary_10_1002_ece3_4530 crossref_primary_10_1016_j_yhbeh_2010_06_018 crossref_primary_10_1038_nature06967 crossref_primary_10_1016_j_fsigen_2013_06_013 crossref_primary_10_1103_PhysRevLett_117_208101 crossref_primary_10_5924_abgri_44_59 crossref_primary_10_1016_j_gene_2021_145648 crossref_primary_10_1080_10635150701435401 crossref_primary_10_1002_bies_200900017 crossref_primary_10_1016_j_ecoenv_2017_06_038 crossref_primary_10_1093_jhered_est133 crossref_primary_10_1093_molbev_mss231 crossref_primary_10_1534_genetics_113_150029 crossref_primary_10_1093_molbev_msad027 crossref_primary_10_1093_nar_gkaa877 crossref_primary_10_1038_s41467_018_05936_5 crossref_primary_10_7717_peerj_1647 crossref_primary_10_1080_20961790_2021_1898078 crossref_primary_10_1038_ng_470 crossref_primary_10_1016_j_ajhg_2009_01_008 crossref_primary_10_1371_journal_pgen_1002236 crossref_primary_10_1534_genetics_104_039107 crossref_primary_10_1111_mec_13827 crossref_primary_10_3389_frai_2023_1060879 crossref_primary_10_1186_s12864_015_1681_3 crossref_primary_10_1554_03_741 crossref_primary_10_1038_nrg1770 crossref_primary_10_1371_journal_pone_0032518 crossref_primary_10_1093_molbev_msi228 crossref_primary_10_1093_gbe_evx121 crossref_primary_10_1093_humupd_dmz047 crossref_primary_10_1016_j_fsigen_2019_102158 crossref_primary_10_1007_s10048_009_0231_z crossref_primary_10_1037_a0034391 crossref_primary_10_1002_mgg3_1083 crossref_primary_10_1093_molbev_mss002 crossref_primary_10_1073_pnas_1416622112 crossref_primary_10_1007_s00414_019_02181_3 crossref_primary_10_1093_genetics_164_1_259 crossref_primary_10_1038_ng1001_229 crossref_primary_10_1093_molbev_mss219 crossref_primary_10_1371_journal_pone_0052257 crossref_primary_10_1016_S0378_1119_02_00849_1 crossref_primary_10_1038_s41590_019_0433_y crossref_primary_10_1534_genetics_167_1_423 crossref_primary_10_1016_j_jtbi_2011_07_021 crossref_primary_10_1371_journal_pcbi_1000015 crossref_primary_10_1016_j_dnarep_2015_04_012 crossref_primary_10_1007_BF02717891 crossref_primary_10_3389_fgene_2023_1182028 crossref_primary_10_1371_journal_pgen_0020009 crossref_primary_10_1016_j_jhevol_2017_11_009 crossref_primary_10_1101_gr_107680_110 crossref_primary_10_1146_annurev_genom_090810_183123 crossref_primary_10_1093_jhered_92_6_481 crossref_primary_10_1002_bies_201100075 crossref_primary_10_1371_journal_pgen_1006549 crossref_primary_10_1186_1471_2164_13_172 crossref_primary_10_1186_s13100_021_00255_x crossref_primary_10_1016_j_fsigen_2011_09_005 crossref_primary_10_1093_hmg_ddp517 crossref_primary_10_1101_gr_3461105 crossref_primary_10_1371_journal_pone_0030238 crossref_primary_10_1093_hmg_ddad028 crossref_primary_10_1002_ece3_10538 crossref_primary_10_1093_molbev_mss108 crossref_primary_10_1002_imed_1052 crossref_primary_10_1093_gbe_evx067 crossref_primary_10_1111_j_1365_294X_2010_04965_x crossref_primary_10_3892_ol_2018_8679 crossref_primary_10_1093_hmg_ddl029 crossref_primary_10_1371_journal_pgen_1005681 crossref_primary_10_1186_1471_2164_7_45 crossref_primary_10_1016_j_ajhg_2014_03_019 crossref_primary_10_1089_109454503765361560 crossref_primary_10_1093_hmg_ddl025 crossref_primary_10_1007_s13353_011_0068_7 crossref_primary_10_1111_j_0014_3820_2004_tb00462_x crossref_primary_10_1038_nrg1985 crossref_primary_10_1038_ncomms15422 crossref_primary_10_1007_s00414_019_02106_0 crossref_primary_10_1093_jhered_92_6_497 crossref_primary_10_1371_journal_pgen_0030035 crossref_primary_10_1093_oxfordjournals_molbev_a004023 crossref_primary_10_1371_journal_pbio_0050094 crossref_primary_10_1517_14712590903379502 crossref_primary_10_1038_nrg760 crossref_primary_10_1534_genetics_112_140343 crossref_primary_10_1038_ng_680 crossref_primary_10_1016_j_fsigen_2012_12_007 crossref_primary_10_1093_molbev_msp169 crossref_primary_10_1186_1471_2148_10_298 crossref_primary_10_1093_bib_bbac202 crossref_primary_10_1111_jeb_14094 crossref_primary_10_1093_jmammal_gyae056 crossref_primary_10_1371_journal_pgen_0020148 crossref_primary_10_1534_genetics_118_301502 crossref_primary_10_1038_ncomms5438 crossref_primary_10_1016_j_blre_2021_100824 crossref_primary_10_1016_S0169_5347_01_02126_7 crossref_primary_10_1086_342260 crossref_primary_10_3390_ijms19061584 crossref_primary_10_4049_jimmunol_167_7_3858 crossref_primary_10_1016_j_fsigen_2019_04_008 crossref_primary_10_1111_jeb_12912 crossref_primary_10_1016_j_fsigen_2012_05_002 crossref_primary_10_1016_j_tig_2012_06_007 crossref_primary_10_1007_s10048_008_0120_x crossref_primary_10_1073_pnas_022614799 crossref_primary_10_1093_nar_gkae914 crossref_primary_10_1007_s00239_008_9096_2 crossref_primary_10_1016_j_ympev_2009_02_014 crossref_primary_10_12968_npre_2012_10_9_446 crossref_primary_10_3389_fpls_2022_873788 crossref_primary_10_1371_journal_pone_0097272 crossref_primary_10_1038_s41598_017_15516_0 crossref_primary_10_1038_nmeth_4606 crossref_primary_10_1002_humu_10147 crossref_primary_10_1016_j_ajhg_2015_05_008 crossref_primary_10_1073_pnas_1200567109 crossref_primary_10_1186_gb_2003_4_11_r72 crossref_primary_10_1002_humu_22115 crossref_primary_10_1016_S0168_9525_02_02757_9 crossref_primary_10_1186_gb_2003_4_11_r74 crossref_primary_10_1534_genetics_166_2_797 crossref_primary_10_1002_ajmg_a_30273 crossref_primary_10_1093_molbev_msp052 crossref_primary_10_1093_molbev_msp173 crossref_primary_10_1016_j_cub_2021_01_073 crossref_primary_10_1146_annurev_genom_090711_163825 crossref_primary_10_1080_03014460_2020_1797162 crossref_primary_10_1371_journal_pgen_1002420 crossref_primary_10_1007_s00251_013_0712_y crossref_primary_10_1093_nargab_lqab079 crossref_primary_10_1101_gr_276103_121 crossref_primary_10_1111_mec_13339 crossref_primary_10_1016_j_fsigen_2023_102847 crossref_primary_10_1038_s41598_021_03943_z crossref_primary_10_1086_374757 crossref_primary_10_1093_aob_mcx112 crossref_primary_10_3389_fimmu_2020_582804 crossref_primary_10_1016_j_mrfmmm_2006_03_009 crossref_primary_10_1186_s12864_016_3440_5 crossref_primary_10_1002_bies_202300025 crossref_primary_10_1046_j_1420_9101_2001_00307_x crossref_primary_10_1371_journal_pone_0033541 crossref_primary_10_1089_1066527041410300 crossref_primary_10_1038_nrmicro3003 crossref_primary_10_1093_molbev_msz047 crossref_primary_10_3389_fevo_2024_1335452 crossref_primary_10_1093_molbev_msae192 crossref_primary_10_1111_evo_13955 crossref_primary_10_1016_j_ympev_2018_10_031 crossref_primary_10_1111_mec_14416 crossref_primary_10_1098_rspb_2015_3065 crossref_primary_10_1126_science_1085710 crossref_primary_10_1249_JES_0000000000000265 crossref_primary_10_1101_gr_072751_107 crossref_primary_10_1371_journal_pgen_1000471 crossref_primary_10_4238_vol9_1gmr838 crossref_primary_10_1016_j_ajhg_2011_12_017 crossref_primary_10_1093_gbe_evs092 crossref_primary_10_1016_S0040_5809_03_00002_9 crossref_primary_10_1093_bioinformatics_btac784 crossref_primary_10_4137_CIN_S19965 crossref_primary_10_1016_j_gene_2004_02_043 crossref_primary_10_1007_s00425_023_04316_8 crossref_primary_10_1097_00008571_200203000_00009 crossref_primary_10_1111_j_1600_065X_2007_00577_x crossref_primary_10_1093_genetics_iyac087 crossref_primary_10_1093_molbev_msr212 crossref_primary_10_1093_molbev_msaf034 crossref_primary_10_1007_s00299_020_02529_9 crossref_primary_10_1016_j_neuropharm_2015_02_006 crossref_primary_10_1016_j_mrfmmm_2005_09_004 crossref_primary_10_1038_ejhg_2012_307 crossref_primary_10_1186_s12859_020_3384_2 crossref_primary_10_1111_mec_14404 crossref_primary_10_1371_journal_pgen_1001318 crossref_primary_10_1534_genetics_105_043976 crossref_primary_10_1038_s41467_019_12438_5 crossref_primary_10_1073_pnas_1212718109 crossref_primary_10_1073_pnas_1605660114 crossref_primary_10_1080_10495398_2022_2125404 crossref_primary_10_1038_ng1243 crossref_primary_10_1006_geno_2002_6694 crossref_primary_10_1093_genetics_161_3_1209 crossref_primary_10_1002_elps_202300142 crossref_primary_10_1371_journal_pone_0014316 crossref_primary_10_1016_j_jmb_2011_01_056 crossref_primary_10_1016_j_ygeno_2004_04_013 crossref_primary_10_1038_s41598_018_27219_1 crossref_primary_10_1002_ece3_5903 crossref_primary_10_1073_pnas_0500267102 crossref_primary_10_1007_s00414_011_0649_3 crossref_primary_10_1016_j_gene_2023_147180 crossref_primary_10_1016_S0168_9525_02_00033_1 crossref_primary_10_1002_humu_22967 crossref_primary_10_24072_pcjournal_83 crossref_primary_10_1016_j_bbamem_2019_183058 crossref_primary_10_1073_pnas_1003634107 crossref_primary_10_1093_molbev_msp018 crossref_primary_10_1073_pnas_1311381110 crossref_primary_10_1086_513149 crossref_primary_10_1002_gepi_20169 crossref_primary_10_1093_bioinformatics_btaa140 crossref_primary_10_1016_j_mrgentox_2016_09_009 crossref_primary_10_1093_gbe_evs075 crossref_primary_10_1038_nrg1247 crossref_primary_10_1038_nrg1124 crossref_primary_10_1517_17425255_4_6_827 crossref_primary_10_1186_s13059_014_0452_9 crossref_primary_10_1016_j_gde_2016_07_008 crossref_primary_10_1109_TCBB_2020_3045315 crossref_primary_10_1073_pnas_0730639100 crossref_primary_10_1016_j_jtbi_2014_05_009 crossref_primary_10_1038_srep20079 crossref_primary_10_1093_molbev_msq343 crossref_primary_10_1101_gr_238602 crossref_primary_10_1534_g3_115_022129 crossref_primary_10_1016_j_fsigen_2021_102495 crossref_primary_10_1093_molbev_msp133 crossref_primary_10_1021_acs_chemrestox_2c00155 crossref_primary_10_1016_j_ajhg_2007_09_006 crossref_primary_10_1111_j_1365_294X_2011_05051_x crossref_primary_10_1016_j_tig_2013_04_005 crossref_primary_10_1038_s41437_020_00393_7 crossref_primary_10_1038_nature09534 crossref_primary_10_1007_s12668_017_0488_x crossref_primary_10_1371_journal_pone_0289556 crossref_primary_10_1126_science_abg2365 crossref_primary_10_1038_nrg_2016_104 crossref_primary_10_1109_TCBB_2007_1063 crossref_primary_10_1371_journal_pgen_1000281 crossref_primary_10_1016_j_fsigen_2008_02_002 crossref_primary_10_1016_j_ygeno_2009_04_002 crossref_primary_10_1101_gr_103283_109 crossref_primary_10_1111_j_1365_294X_2008_04005_x crossref_primary_10_1038_416624a crossref_primary_10_1046_j_0022_202X_2003_22129_x crossref_primary_10_1074_jbc_RA120_013495 crossref_primary_10_1111_jeb_14036 crossref_primary_10_1186_s13323_015_0019_x crossref_primary_10_1038_s41598_017_14628_x crossref_primary_10_1098_rsfs_2019_0120 crossref_primary_10_1186_s12977_015_0232_y crossref_primary_10_1371_journal_pcbi_1008266 crossref_primary_10_1007_s12304_011_9122_4 crossref_primary_10_1038_ejhg_2012_124 crossref_primary_10_1371_journal_pone_0090240 crossref_primary_10_4306_jknpa_2022_61_2_63 crossref_primary_10_1038_sj_hdy_6800689 crossref_primary_10_1371_journal_pone_0033580 crossref_primary_10_1007_s10038_005_0242_z crossref_primary_10_1016_j_fsigss_2015_09_053 crossref_primary_10_1038_ng_862 crossref_primary_10_1111_j_1399_0004_2010_01535_x crossref_primary_10_1186_s13100_017_0099_7 crossref_primary_10_1111_cge_12708 crossref_primary_10_1093_bfgp_elab037 crossref_primary_10_1016_j_jmb_2004_09_058 crossref_primary_10_1080_10618600_2019_1647215 crossref_primary_10_1002_ajmg_a_36623 crossref_primary_10_1093_molbev_msp113 crossref_primary_10_1016_j_plrev_2021_03_004 crossref_primary_10_1142_S0219720014500115 crossref_primary_10_1111_mec_13524 crossref_primary_10_1534_genetics_113_152587 crossref_primary_10_1093_hmg_ddt260 crossref_primary_10_1186_s12859_015_0682_1 crossref_primary_10_1038_s41598_021_04621_w crossref_primary_10_3168_jds_2017_13309 crossref_primary_10_1016_j_ajhg_2007_09_022 crossref_primary_10_1126_science_344_6189_1272 crossref_primary_10_1002_humu_21400 crossref_primary_10_1016_j_mrrev_2011_11_002 crossref_primary_10_1534_genetics_109_105692 crossref_primary_10_3390_jof7050364 crossref_primary_10_1111_j_1439_0388_2006_00578_x crossref_primary_10_1534_genetics_109_107995 crossref_primary_10_1016_j_jembe_2005_03_006 crossref_primary_10_3892_ol_2023_13868 crossref_primary_10_1371_journal_pone_0094851 crossref_primary_10_1073_pnas_0804749105 crossref_primary_10_3389_fgene_2021_602429 crossref_primary_10_1007_s12110_006_1020_0 crossref_primary_10_1038_mp_2009_85 crossref_primary_10_1098_rsbl_2014_0801 crossref_primary_10_1007_s00414_021_02600_4 crossref_primary_10_1017_S0016672314000226 crossref_primary_10_1073_pnas_1220835110 crossref_primary_10_1016_j_fsigen_2015_10_003 crossref_primary_10_1093_gbe_evae142 crossref_primary_10_1214_09_STS304 crossref_primary_10_1101_gr_204669_116 crossref_primary_10_1016_j_reth_2016_06_003 crossref_primary_10_1002_humu_21557 crossref_primary_10_1073_pnas_0710234105 crossref_primary_10_1093_jn_135_10_2462 crossref_primary_10_1161_CIRCRESAHA_121_319004 crossref_primary_10_1371_journal_pone_0024670 crossref_primary_10_1086_318206 crossref_primary_10_1101_gr_3413205 crossref_primary_10_1038_sj_ejhg_5201288 crossref_primary_10_1093_molbev_msp219 crossref_primary_10_1073_pnas_98_3_864 crossref_primary_10_1038_s41525_024_00416_w crossref_primary_10_1186_s41021_016_0035_y crossref_primary_10_1371_journal_pbio_0050224 crossref_primary_10_1016_j_gde_2021_07_008 crossref_primary_10_3390_ijms21165699 crossref_primary_10_1007_s10709_007_9145_6 crossref_primary_10_1534_genetics_107_074732 crossref_primary_10_1038_ncomms1130 crossref_primary_10_1046_j_1529_8817_2003_00115_x crossref_primary_10_1016_j_jneuroim_2011_12_017 crossref_primary_10_1186_s12864_019_5867_y crossref_primary_10_1038_nrg3625 crossref_primary_10_1101_gr_091827_109 crossref_primary_10_1016_j_jtbi_2005_08_033 crossref_primary_10_1146_annurev_conmatphys_020911_125109 crossref_primary_10_1371_journal_pgen_1011144 crossref_primary_10_1016_j_ajhg_2011_05_002 crossref_primary_10_1038_s41598_021_88012_1 crossref_primary_10_1093_genetics_iyae006 crossref_primary_10_1007_s00414_024_03196_1 crossref_primary_10_1093_gbe_evad180 crossref_primary_10_1093_molbev_msy145 crossref_primary_10_1172_JCI30465 crossref_primary_10_1093_hmg_dds385 crossref_primary_10_1093_sysbio_syx033 crossref_primary_10_3390_cancers13174464 crossref_primary_10_1002_wfs2_1459 crossref_primary_10_1016_j_pain_2003_10_020 crossref_primary_10_1534_genetics_118_301120 crossref_primary_10_1101_gr_249599_119 crossref_primary_10_1086_444436 crossref_primary_10_1111_mec_17411 crossref_primary_10_1101_gr_227603_117 crossref_primary_10_1093_molbev_msz203 crossref_primary_10_1146_annurev_genom_9_081307_164217 crossref_primary_10_1186_1471_2148_6_25 crossref_primary_10_1186_gm415 crossref_primary_10_1007_s00122_006_0487_8 crossref_primary_10_1371_journal_pone_0090166 crossref_primary_10_1093_jhered_esab007 crossref_primary_10_1093_genetics_159_4_1845 crossref_primary_10_1093_genetics_165_3_1619 crossref_primary_10_1371_journal_pone_0115203 crossref_primary_10_1093_genetics_166_4_1887 crossref_primary_10_1111_eva_12731 crossref_primary_10_3389_fgene_2015_00004 crossref_primary_10_1016_j_fsigen_2024_103029 crossref_primary_10_1093_hmg_ddab209 crossref_primary_10_1534_g3_119_400438 crossref_primary_10_1111_ele_12792 crossref_primary_10_1007_s11692_007_9010_7 crossref_primary_10_1038_nmeth_4027 crossref_primary_10_1080_00450618_2023_2181395 crossref_primary_10_1109_TCBB_2021_3069503 crossref_primary_10_1371_journal_pone_0048638 crossref_primary_10_1007_s12264_023_01124_8 crossref_primary_10_1002_em_20390 crossref_primary_10_1371_journal_pone_0100191 crossref_primary_10_1038_ng_3015 crossref_primary_10_1098_rspb_2001_1834 crossref_primary_10_1089_dna_2012_1643 crossref_primary_10_1073_pnas_1901259116 crossref_primary_10_7717_peerj_12502 crossref_primary_10_1016_j_ajhg_2010_07_019 crossref_primary_10_1186_s13059_020_02254_2 crossref_primary_10_1016_j_ajhg_2022_10_015 crossref_primary_10_1016_j_forsciint_2025_112370 crossref_primary_10_1371_journal_pone_0163738 crossref_primary_10_1534_genetics_115_174425 crossref_primary_10_1534_genetics_120_303137 crossref_primary_10_1016_j_expneurol_2007_08_016 crossref_primary_10_1016_j_mrrev_2012_08_002 crossref_primary_10_1134_S2079086422050024 crossref_primary_10_1186_s13059_019_1684_5 crossref_primary_10_1017_S1473550424000223 crossref_primary_10_1016_j_tig_2020_10_003 crossref_primary_10_1016_j_cub_2009_07_032 crossref_primary_10_1534_genetics_109_104935 crossref_primary_10_1038_ng0502_9 crossref_primary_10_1371_journal_pone_0072993 crossref_primary_10_1016_j_fsigss_2019_09_074 crossref_primary_10_1103_PhysRevE_86_041907 crossref_primary_10_1200_PO_21_00505 crossref_primary_10_1093_molbev_msn116 crossref_primary_10_1007_s10709_005_4982_7 crossref_primary_10_1073_pnas_232568699 crossref_primary_10_3233_ISB_220253 crossref_primary_10_3390_genes12050743 crossref_primary_10_1101_gr_1597404 crossref_primary_10_1038_nrg3031 crossref_primary_10_1093_sysbio_syy034 crossref_primary_10_1016_j_forsciint_2004_06_018 crossref_primary_10_1111_1755_0998_12544 crossref_primary_10_1111_1755_0998_13755 crossref_primary_10_1016_j_ajhg_2015_10_006 crossref_primary_10_1016_j_jtbi_2015_11_028 crossref_primary_10_1016_j_ajhg_2008_02_018 crossref_primary_10_1038_s41467_020_16296_4 crossref_primary_10_1002_ana_20406 crossref_primary_10_1093_nar_gkad477 crossref_primary_10_1187_cbe_09_10_0076 crossref_primary_10_5808_GI_2009_7_1_001 crossref_primary_10_7554_eLife_71513 crossref_primary_10_1101_gr_076455_108 crossref_primary_10_1016_j_tig_2012_02_001 crossref_primary_10_1016_j_jaci_2010_10_026 crossref_primary_10_1038_ejhg_2016_147 crossref_primary_10_1098_rspb_2001_1650 crossref_primary_10_1371_journal_pgen_1000202 crossref_primary_10_1016_j_aca_2014_08_032 crossref_primary_10_1039_C4CS00351A crossref_primary_10_1371_journal_pgen_1008293 crossref_primary_10_1002_elps_4122 crossref_primary_10_1093_molbev_msv045 crossref_primary_10_1186_1471_2156_6_27 crossref_primary_10_1093_molbev_msx226 crossref_primary_10_1016_j_cell_2019_12_015 crossref_primary_10_1098_rstb_2009_0286 crossref_primary_10_1093_oxfordjournals_molbev_a003964 crossref_primary_10_1038_nmeth_4293 crossref_primary_10_1111_j_1399_0004_2010_01539_x crossref_primary_10_1002_humu_20843 crossref_primary_10_1534_g3_112_004366 crossref_primary_10_7554_eLife_80008 crossref_primary_10_1016_j_fsigss_2017_09_219 crossref_primary_10_1371_journal_pgen_1000558 crossref_primary_10_1016_j_fsigen_2020_102255 crossref_primary_10_1093_genetics_163_1_395 crossref_primary_10_1016_S0168_9525_01_02494_5 crossref_primary_10_1186_1471_2105_14_216 crossref_primary_10_1371_journal_pone_0085986 crossref_primary_10_1093_gbe_evr080 crossref_primary_10_2217_epi_2017_0071 crossref_primary_10_3402_mehd_v23i0_19008 crossref_primary_10_3389_fevo_2022_1003057 crossref_primary_10_1016_j_jtbi_2015_03_019 crossref_primary_10_1093_molbev_msy202 crossref_primary_10_1038_nrg2158 crossref_primary_10_1093_jhered_esp048 crossref_primary_10_1016_j_meegid_2015_09_018 crossref_primary_10_1038_nature10231 crossref_primary_10_1016_j_cell_2012_07_009 crossref_primary_10_1186_s12920_020_00806_w crossref_primary_10_1371_journal_pcbi_1010727 crossref_primary_10_1239_aap_1339878718 crossref_primary_10_1093_molbev_msab332 crossref_primary_10_1038_nrg3483 crossref_primary_10_1038_nature02601 crossref_primary_10_1371_journal_pone_0049666 crossref_primary_10_1007_s00414_011_0588_z crossref_primary_10_1007_s10545_008_0995_6 crossref_primary_10_7717_peerj_2391 crossref_primary_10_1038_s10038_019_0595_3 crossref_primary_10_1016_j_coi_2012_10_005 crossref_primary_10_1186_1471_2156_6_46 crossref_primary_10_1371_journal_pone_0000503 crossref_primary_10_1093_oxfordjournals_molbev_a003744 crossref_primary_10_1080_2159256X_2015_1006109 crossref_primary_10_1093_g3journal_jkae069 crossref_primary_10_1038_ng_2398 crossref_primary_10_1093_molbev_msj060 crossref_primary_10_1101_gr_1152803 crossref_primary_10_1042_BST20140245 crossref_primary_10_1186_1753_6561_8_S1_S24 crossref_primary_10_1016_j_gene_2012_09_089 crossref_primary_10_1103_PhysRevLett_93_208102 crossref_primary_10_1186_1753_6561_4_S1_S3 crossref_primary_10_1186_1471_2148_6_12 crossref_primary_10_1097_01_ede_0000135179_04563_35 crossref_primary_10_1016_j_schres_2009_08_014 crossref_primary_10_1186_s12915_023_01673_4 crossref_primary_10_1038_s41598_023_40256_9 crossref_primary_10_3390_genes15050588 crossref_primary_10_1016_S0020_1383_16_30605_2 crossref_primary_10_1093_molbev_msu186 crossref_primary_10_1016_j_fsigss_2011_08_004 crossref_primary_10_7717_peerj_6861 crossref_primary_10_1038_hdy_2010_21 crossref_primary_10_3389_fmicb_2020_584846 crossref_primary_10_1038_nature13600 crossref_primary_10_1186_1479_7364_6_11 crossref_primary_10_1111_j_1399_0004_2011_01795_x crossref_primary_10_1111_j_1365_294X_2004_02159_x crossref_primary_10_3389_fgene_2014_00421 crossref_primary_10_1016_j_ygeno_2010_01_002 crossref_primary_10_1042_EBC20160090 crossref_primary_10_1142_S1402925111001532 crossref_primary_10_1371_journal_pone_0250206 crossref_primary_10_1644_13_MAMM_A_268 crossref_primary_10_7554_eLife_46922 crossref_primary_10_1186_1471_2164_12_557 crossref_primary_10_1186_s12936_015_1077_5 crossref_primary_10_3341_jkos_2008_49_11_1794 crossref_primary_10_3390_cancers12113254 crossref_primary_10_1007_s11515_009_0010_0 crossref_primary_10_1371_journal_pcbi_1003297 crossref_primary_10_1371_journal_pone_0173954 crossref_primary_10_1534_genetics_105_052910 crossref_primary_10_1073_pnas_022629899 crossref_primary_10_1093_genetics_157_3_1285 crossref_primary_10_1111_mec_15197 crossref_primary_10_1046_j_1420_9101_2003_00596_x crossref_primary_10_1371_journal_pone_0076935 crossref_primary_10_1093_genetics_166_2_797 crossref_primary_10_1371_journal_pone_0037588 crossref_primary_10_1534_g3_116_029504 crossref_primary_10_1016_j_neuint_2014_06_006 crossref_primary_10_1534_genetics_114_168567 crossref_primary_10_1371_journal_pone_0287609 crossref_primary_10_1016_j_fsigen_2020_102458 crossref_primary_10_1017_S0016672309990358 crossref_primary_10_1007_s12064_008_0052_x crossref_primary_10_1016_j_fsigen_2020_102338 crossref_primary_10_1093_ajcn_83_2_436S crossref_primary_10_1101_gr_154971_113 crossref_primary_10_1007_s00414_019_02233_8 crossref_primary_10_1073_pnas_2233252100 crossref_primary_10_1093_molbev_msaa134 crossref_primary_10_1073_pnas_1221792110 crossref_primary_10_12968_npre_2012_10_11_551 crossref_primary_10_3390_ijms22168571 crossref_primary_10_1016_j_gim_2022_06_007 crossref_primary_10_1093_molbev_msw226 crossref_primary_10_1186_gb_2010_11_11_r113 crossref_primary_10_1038_ng_2448 crossref_primary_10_1098_rsbl_2008_0712 crossref_primary_10_1111_1755_0998_12606 crossref_primary_10_15406_jabb_2020_07_00235 crossref_primary_10_1093_molbev_msj050 crossref_primary_10_1111_cge_12062 crossref_primary_10_1186_s43042_019_0041_2 crossref_primary_10_1007_s11033_013_2521_7 crossref_primary_10_1007_s12154_010_0042_6 crossref_primary_10_1093_molbev_msu166 crossref_primary_10_1111_j_1467_8624_2012_01757_x crossref_primary_10_1038_nrg1828 crossref_primary_10_1038_s41598_017_06106_1 crossref_primary_10_1534_genetics_115_186171 crossref_primary_10_1086_497344 crossref_primary_10_1073_pnas_251396098 crossref_primary_10_1016_j_mcp_2013_09_002 crossref_primary_10_1073_pnas_0801267105 crossref_primary_10_1186_1471_2156_13_52 crossref_primary_10_1371_journal_pgen_0020101 crossref_primary_10_1016_j_fsigen_2019_102204 crossref_primary_10_3390_genes13010119 crossref_primary_10_1093_molbev_mss071 crossref_primary_10_1093_genetics_162_4_1811 crossref_primary_10_1146_annurev_genom_031714_125740 crossref_primary_10_1093_g3journal_jkab431 crossref_primary_10_1111_j_1365_294X_2012_05480_x crossref_primary_10_1016_j_fsigen_2018_03_012 crossref_primary_10_1371_journal_pgen_0030022 crossref_primary_10_1016_j_gene_2006_01_019 crossref_primary_10_3390_d16060308 crossref_primary_10_3390_genes13101683 crossref_primary_10_1101_gr_219956_116 crossref_primary_10_1186_2040_2392_5_28 crossref_primary_10_1371_journal_pbio_2000744 crossref_primary_10_1111_j_1749_6632_2010_05439_x crossref_primary_10_1371_journal_pone_0109186 crossref_primary_10_1002_humu_22034 crossref_primary_10_1375_twin_8_1_39 crossref_primary_10_1093_molbev_msaa155 crossref_primary_10_1016_j_jtbi_2012_07_032 crossref_primary_10_1266_ggs_90_123 crossref_primary_10_1093_evlett_qrad027 crossref_primary_10_1007_s00335_009_9238_x crossref_primary_10_1007_s12041_014_0402_z crossref_primary_10_1016_j_biocontrol_2021_104571 crossref_primary_10_1371_journal_pgen_1003293 crossref_primary_10_1038_s41598_018_23888_0 crossref_primary_10_1186_1471_2164_2_11 crossref_primary_10_1007_s11033_012_2028_7 crossref_primary_10_1016_j_compbiolchem_2014_08_013 crossref_primary_10_1186_s12864_016_2821_0 crossref_primary_10_1266_ggs_18_00015 crossref_primary_10_1101_gr_235754_118 crossref_primary_10_1093_genetics_160_2_493 crossref_primary_10_3389_fpsyg_2016_00857 crossref_primary_10_1101_gr_944903 crossref_primary_10_1089_cmb_2009_0231 crossref_primary_10_1016_j_jtbi_2009_09_016 crossref_primary_10_1016_j_jtbi_2005_10_020 crossref_primary_10_2217_rme_09_63 crossref_primary_10_1002_pro_2552 crossref_primary_10_1269_jrr_47_B75 crossref_primary_10_1093_nar_gky445 crossref_primary_10_1534_genetics_112_141846 crossref_primary_10_1371_journal_pgen_1007479 crossref_primary_10_1038_ng_2418 crossref_primary_10_1101_gr_1214603 crossref_primary_10_1016_j_biocon_2009_03_026 crossref_primary_10_1101_gr_122721_111 crossref_primary_10_1073_pnas_222673099 crossref_primary_10_1007_s00414_012_0768_5 crossref_primary_10_1038_nature02697 crossref_primary_10_1126_science_1100559 crossref_primary_10_1016_j_fsigen_2012_10_003 crossref_primary_10_1016_j_gpb_2022_02_001 crossref_primary_10_1534_genetics_104_037028 crossref_primary_10_1016_S0959_437X_00_00246_X crossref_primary_10_1038_nrg3098 crossref_primary_10_3389_fgene_2020_00926 crossref_primary_10_1038_s41467_023_39547_6 crossref_primary_10_3389_fgene_2019_00914 crossref_primary_10_1371_journal_pbio_0020273 crossref_primary_10_1002_evan_20283 crossref_primary_10_1016_j_neurobiolaging_2010_05_016 crossref_primary_10_1016_j_legalmed_2023_102256 crossref_primary_10_18273_saluduis_53_e_21031 crossref_primary_10_1111_j_1420_9101_2011_02431_x crossref_primary_10_1016_j_fsigss_2011_08_069 crossref_primary_10_1016_j_neuron_2013_08_013 crossref_primary_10_1093_genetics_158_3_1253 crossref_primary_10_1101_gr_220502 crossref_primary_10_1371_journal_pcbi_1003480 crossref_primary_10_1007_s00239_007_9000_5 crossref_primary_10_1093_molbev_mss061 crossref_primary_10_1016_j_jmb_2005_07_058 crossref_primary_10_1038_ng_2768 crossref_primary_10_1007_s00239_024_10225_5 crossref_primary_10_1016_j_forsciint_2004_10_004 crossref_primary_10_1007_s00294_008_0201_2 crossref_primary_10_1017_S0016672309990164 crossref_primary_10_1186_s12862_015_0485_z crossref_primary_10_1093_molbev_mst158 crossref_primary_10_1073_pnas_0909000107 crossref_primary_10_1101_gr_6409707 crossref_primary_10_1186_s12859_017_2002_4 crossref_primary_10_1534_genetics_166_1_351 crossref_primary_10_1002_ajpa_21474 crossref_primary_10_1375_twin_11_3_249 crossref_primary_10_1371_journal_pgen_1006130 crossref_primary_10_1016_j_ejphar_2023_175699 crossref_primary_10_1038_nature11396 crossref_primary_10_1073_pnas_1515798113 crossref_primary_10_1093_gbe_evr112 crossref_primary_10_1371_journal_pgen_1009758 crossref_primary_10_1186_1471_2148_8_195 crossref_primary_10_1093_molbev_mst005 crossref_primary_10_3346_jkms_2010_25_7_1086 crossref_primary_10_1101_gr_122937_111 crossref_primary_10_1016_j_cell_2010_03_032 crossref_primary_10_1038_s41576_020_0240_1 crossref_primary_10_1093_bioinformatics_btw528 crossref_primary_10_1177_15648265070281S109 crossref_primary_10_1371_journal_pgen_1000825 crossref_primary_10_1007_s00414_017_1564_z crossref_primary_10_1111_j_1095_8312_2005_00459_x crossref_primary_10_1016_j_dnarep_2014_09_009 crossref_primary_10_1093_bioinformatics_btt488 crossref_primary_10_1111_j_1365_294X_2011_05178_x crossref_primary_10_1002_humu_24493 crossref_primary_10_1016_j_fsigss_2019_10_090 crossref_primary_10_1093_molbev_msad100 crossref_primary_10_1002_elps_200900274 crossref_primary_10_1186_s12864_015_1938_x crossref_primary_10_1371_journal_pone_0007799 crossref_primary_10_1093_gbe_evq026 crossref_primary_10_1002_elps_201100508 crossref_primary_10_1021_bi100042b crossref_primary_10_1111_evo_13383 crossref_primary_10_1371_journal_pone_0064884 crossref_primary_10_1073_pnas_0502155102 crossref_primary_10_1016_j_fsigen_2013_11_004 crossref_primary_10_1016_S0168_9525_00_02188_0 crossref_primary_10_1093_humrep_det234 crossref_primary_10_1073_pnas_0500436102 crossref_primary_10_1146_annurev_genom_4_070802_110226 crossref_primary_10_1038_ng_3511 crossref_primary_10_1038_tp_2011_52 crossref_primary_10_1038_ng_2303 crossref_primary_10_1186_s12711_019_0456_8 crossref_primary_10_1002_bdra_23358 |
Cites_doi | 10.1086/302250 10.1016/S0168-9525(98)01577-7 10.1007/BF01731581 10.1093/genetics/72.2.335 10.1038/337283a0 10.1101/SQB.1987.052.01.094 10.1017/S0305004100015644 10.1126/science.2448875 10.1093/genetics/148.4.1667 10.1126/science.284.5422.1906 10.1126/science.3116671 10.1006/mpev.1998.0495 10.1017/CBO9780511623486 10.1007/PL00006431 10.1073/pnas.96.2.574 10.1016/S0168-9525(00)89009-5 10.1007/978-3-662-03356-2 10.1038/217624a0 10.1093/genetics/152.2.661 10.1002/humu.1380020312 10.7591/9781501739071 10.1038/381694a0 10.1038/386388a0 10.1016/S0168-9525(00)89028-9 10.1007/PL00006166 10.1038/16915 10.1093/hmg/5.Supplement_1.1505 10.1038/362745a0 10.1038/ng0594-48 10.1007/BF02603118 10.1038/ng1097-182 10.1007/BF00166595 10.1073/pnas.94.16.8380 10.1093/genetics/54.6.1337 10.1073/pnas.94.8.3823 10.1038/990031 10.1111/j.1469-1809.1946.tb02367.x 10.1006/jtbi.1995.0167 10.1038/31927 10.1093/genetics/144.4.1993 10.1038/378376a0 10.1073/pnas.94.9.4811 10.1007/BF02982403 |
ContentType | Journal Article |
Copyright | Copyright Genetics Society of America Sep 2000 |
Copyright_xml | – notice: Copyright Genetics Society of America Sep 2000 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 4T- 4U- 7QP 7SS 7TK 7TM 8FD FR3 K9. M7N P64 RC3 7X8 5PM |
DOI | 10.1093/genetics/156.1.297 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Docstoc University Readers Calcium & Calcified Tissue Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts University Readers Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Docstoc ProQuest Health & Medical Complete (Alumni) Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts Entomology Abstracts CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1943-2631 |
EndPage | 304 |
ExternalDocumentID | PMC1461236 62703963 10978293 10_1093_genetics_156_1_297 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Comparative Study |
GroupedDBID | --- --Z -DZ -~X .-4 .55 .GJ 0R~ 186 18M 29H 2WC 34G 39C 53G 5GY 5RE 5VS 5WD 85S 9M8 AABZA AACZT AAPXW AARHZ AAUAY AAUTI AAVAP AAYXX ABDFA ABDNZ ABEJV ABGNP ABMNT ABNHQ ABPPZ ABPTD ABVGC ABXVV ABXZS ACFRR ACGOD ACIHN ACIPB ACNCT ACPRK ACPVT ACUTJ ADBBV ADGKP ADIPN ADQBN ADVEK ADXHL AEAQA AENEX AFFNX AFFZL AFGWE AFRAH AGORE AHMBA AHMMS AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX AOIJS APEBS ATGXG BAWUL BCRHZ BEYMZ BKOMP BTFSW C1A CITATION CJ0 CS3 D0L DIK DU5 E3Z EBS EJD EMB EMOBN F5P F8P F9R FD6 FLUFQ FOEOM FRP GX1 H13 HYE H~9 INIJC JXSIZ KBUDW KOP KQ8 KSI KSN L7B MV1 MVM NHB NOMLY OBOKY OCZFY OHT OJZSN OK1 OPAEJ OWPYF QN7 R0Z RHI ROX RXW SJN SV3 TAE TGS TN5 TR2 TWZ U5U UHB UKR UNMZH UPT W8F WH7 WHG WOQ X7M XSW YHG YKV YSK YYP YYQ YZZ ZCA ZGI ZXP ~KM 2KS 36B 3V. 7X2 7X7 88A 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAYOK ABJNI ABTAH ABUWG ACYGS AEUYN AFFDN AFKRA AGMDO ATCPS AZQEC BBNVY BENPR BES BHPHI BKNYI BPHCQ BVXVI CCPQU CGR CUY CVF DWQXO EBD ECM EIF FYUFA GNUQQ GUQSH HCIFZ HMCUK K9- LK8 M0K M0L M0R M1P M2O M2P M7P NPM OMK PQQKQ PROAC PSQYO Q2X QF4 QM4 QM9 QO4 RHF RPM TH9 UKHRP VQA VXZ XOL YIF YIN ZY4 4T- 4U- 7QP 7SS 7TK 7TM 8FD FR3 K9. M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c522t-97e5d72398a444315411b81f11a2794bbb61d16da27e8f56a476f7420f9a8b353 |
ISSN | 1943-2631 0016-6731 |
IngestDate | Thu Aug 21 17:56:53 EDT 2025 Fri Jul 11 02:38:55 EDT 2025 Thu Jul 10 16:40:12 EDT 2025 Mon Jun 30 08:32:01 EDT 2025 Wed Feb 19 01:31:28 EST 2025 Tue Jul 01 00:33:01 EDT 2025 Thu Apr 24 23:02:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c522t-97e5d72398a444315411b81f11a2794bbb61d16da27e8f56a476f7420f9a8b353 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
OpenAccessLink | https://academic.oup.com/genetics/article-pdf/156/1/297/35159268/genetics0297.pdf |
PMID | 10978293 |
PQID | 214121112 |
PQPubID | 47453 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1461236 proquest_miscellaneous_72243992 proquest_miscellaneous_17623666 proquest_journals_214121112 pubmed_primary_10978293 crossref_primary_10_1093_genetics_156_1_297 crossref_citationtrail_10_1093_genetics_156_1_297 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2000-09-01 |
PublicationDateYYYYMMDD | 2000-09-01 |
PublicationDate_xml | – month: 09 year: 2000 text: 2000-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda |
PublicationTitle | Genetics (Austin) |
PublicationTitleAlternate | Genetics |
PublicationYear | 2000 |
Publisher | Genetics Society of America |
Publisher_xml | – name: Genetics Society of America |
References | Crow (2022010407032182700_R5) 1993; 9 Takahata (2022010407032182700_R47) 1997; 94 Haldane (2022010407032182700_R16) 1947; 13 Kibota (2022010407032182700_R23) 1996; 381 Miyata (2022010407032182700_R38) 1987; 52 Muller (2022010407032182700_R40) 1950; 2 Haldane (2022010407032182700_R15) 1935; 31 Li (2022010407032182700_R33) 1991 Haldane (2022010407032182700_R14) 1932 McVean (2022010407032182700_R36) 1997; 386 Huang (2022010407032182700_R18) 1997; 44 Hurst (2022010407032182700_R19) 1998; 14 Fry (2022010407032182700_R11) 1999; 96 Vogel (2022010407032182700_R48) 1997 Saiki (2022010407032182700_R42) 1988; 239 Shimmin (2022010407032182700_R43) 1993; 362 Arnason (2022010407032182700_R2) 1998; 47 Kimura (2022010407032182700_R28) 1966; 54 Smith (2022010407032182700_R44) 1999; 152 Wolfe (2022010407032182700_R51) 1989; 337 Mukai (2022010407032182700_R39) 1972; 72 Keightley (2022010407032182700_R21) 1997; 94 Kimura (2022010407032182700_R25) 1980; 16 Sommer (2022010407032182700_R46) 1996; 5 Kumar (2022010407032182700_R32) 1998; 392 Kondrashov (2022010407032182700_R29) 1995; 175 Sommer (2022010407032182700_R45) 1995; 11 Wallace (2022010407032182700_R49) 1981 Dunham (2022010407032182700_R8) 1999; 402 Anagnostopoulos (2022010407032182700_R1) 1999; 64 Kimura (2022010407032182700_R24) 1968; 217 Kimura (2022010407032182700_R26) 1983 Ellegren (2022010407032182700_R9) 1997; 17 Miyamoto (2022010407032182700_R37) 1987; 238 Ohta (2022010407032182700_R41) 1995; 40 Eyre-Walker (2022010407032182700_R10) 1999; 397 Wallace (2022010407032182700_R50) 1991 Haldane (2022010407032182700_R13) 1927; 23 Hammer (2022010407032182700_R17) 1995; 378 Ketterling (2022010407032182700_R22) 1993; 52 Li (2022010407032182700_R34) 1987; 25 Cooper (2022010407032182700_R4) 1993 Keightley (2022010407032182700_R20) 1996; 144 Kimura (2022010407032182700_R27) 1983; 1 Bird (2022010407032182700_R3) 1995; 11 Goodman (2022010407032182700_R12) 1998; 9 Marshall (2022010407032182700_R35) 1999; 284 Crow (2022010407032182700_R6) 1997; 94 Kondrashov (2022010407032182700_R30) 1993; 2 Koop (2022010407032182700_R31) 1994; 7 Drake (2022010407032182700_R7) 1998; 148 8434583 - Am J Hum Genet. 1993 Jan;52(1):152-66 9326938 - Nat Genet. 1997 Oct;17(2):182-4 4630587 - Genetics. 1972 Oct;72(2):335-55 7714912 - J Mol Evol. 1995 Jan;40(1):56-63 7477371 - Nature. 1995 Nov 23;378(6555):376-8 7732579 - Trends Genet. 1995 Mar;11(3):94-100 9121553 - Nature. 1997 Mar 27;386(6623):388-92 9825672 - Trends Genet. 1998 Nov;14(11):446-52 8875257 - Hum Mol Genet. 1996;5 Spec No:1505-14 8469284 - Nature. 1993 Apr 22;362(6422):745-7 9892675 - Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):574-9 9237985 - Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8380-6 10591208 - Nature. 1999 Dec 2;402(6761):489-95 8649513 - Nature. 1996 Jun 20;381(6584):694-6 9847414 - J Mol Evol. 1998 Dec;47(6):718-27 2911369 - Nature. 1989 Jan 19;337(6204):283-5 5637732 - Nature. 1968 Feb 17;217(5129):624-6 8075639 - Nat Genet. 1994 May;7(1):48-53 3116671 - Science. 1987 Oct 16;238(4825):369-73 2448875 - Science. 1988 Jan 29;239(4839):487-91 17248359 - Genetics. 1966 Dec;54(6):1337-51 9114074 - Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4811-5 10400531 - Science. 1999 Jun 18;284(5422):1906-9 8978082 - Genetics. 1996 Dec;144(4):1993-9 7732592 - Trends Genet. 1995 Apr;11(4):141-7 3118047 - J Mol Evol. 1987;25(4):330-42 3454295 - Cold Spring Harb Symp Quant Biol. 1987;52:863-7 9582070 - Nature. 1998 Apr 30;392(6679):917-20 9973287 - Am J Hum Genet. 1999 Feb;64(2):508-17 10353908 - Genetics. 1999 Jun;152(2):661-73 8364591 - Hum Mutat. 1993;2(3):229-34 9668008 - Mol Phylogenet Evol. 1998 Jun;9(3):585-98 9560386 - Genetics. 1998 Apr;148(4):1667-86 9950425 - Nature. 1999 Jan 28;397(6717):344-7 9089087 - J Mol Evol. 1997 Apr;44(4):463-5 |
References_xml | – volume: 64 start-page: 508 year: 1999 ident: 2022010407032182700_R1 article-title: DNA variation in a 5-Mb region of the X chromosome and estimates of sex-specific/type-specific mutation rates publication-title: Am. J. Hum. Genet. doi: 10.1086/302250 – volume: 1 start-page: 84 year: 1983 ident: 2022010407032182700_R27 article-title: Rare variant alleles in the light of the neutral theory publication-title: Mol. Biol. Evol. – volume: 14 start-page: 446 year: 1998 ident: 2022010407032182700_R19 article-title: Sex biases in the mutation rate publication-title: Trends Genet. doi: 10.1016/S0168-9525(98)01577-7 – volume: 16 start-page: 111 year: 1980 ident: 2022010407032182700_R25 article-title: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences publication-title: J. Mol. Evol. doi: 10.1007/BF01731581 – volume: 72 start-page: 335 year: 1972 ident: 2022010407032182700_R39 article-title: Mutation rate and dominance of genes affecting viability in Drosophila melanogaster publication-title: Genetics doi: 10.1093/genetics/72.2.335 – volume: 2 start-page: 111 year: 1950 ident: 2022010407032182700_R40 article-title: Our load of mutations publication-title: Am. J. Hum. Genet. – volume: 337 start-page: 283 year: 1989 ident: 2022010407032182700_R51 article-title: Mutation rates differ among regions of the mammalian genome publication-title: Nature doi: 10.1038/337283a0 – volume: 52 start-page: 863 year: 1987 ident: 2022010407032182700_R38 article-title: Male-driven molecular evolution: a model and nucleotide sequence analysis publication-title: Cold Spring Harbor Symp. Quant. Biol. doi: 10.1101/SQB.1987.052.01.094 – volume: 23 start-page: 838 year: 1927 ident: 2022010407032182700_R13 article-title: A mathematical theory of natural and artificial selection. Part V. Selection and mutation publication-title: Proc. Camb. Philos. Soc. doi: 10.1017/S0305004100015644 – volume: 9 start-page: 3 year: 1993 ident: 2022010407032182700_R5 article-title: Mutation, mean fitness, and genetic load publication-title: Oxf. Surv. Evol. Biol. – volume: 239 start-page: 487 year: 1988 ident: 2022010407032182700_R42 article-title: Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase publication-title: Science doi: 10.1126/science.2448875 – volume: 148 start-page: 1667 year: 1998 ident: 2022010407032182700_R7 article-title: Rates of spontaneous mutation publication-title: Genetics doi: 10.1093/genetics/148.4.1667 – volume: 284 start-page: 1906 year: 1999 ident: 2022010407032182700_R35 article-title: A high-stakes gamble on genome sequencing publication-title: Science doi: 10.1126/science.284.5422.1906 – volume: 238 start-page: 369 year: 1987 ident: 2022010407032182700_R37 article-title: Phylogenetic relations of human and African apes from DNA sequences in the ψη-globin region publication-title: Science doi: 10.1126/science.3116671 – volume: 9 start-page: 585 year: 1998 ident: 2022010407032182700_R12 article-title: Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence publication-title: Mol. Phylogenet. Evol. doi: 10.1006/mpev.1998.0495 – volume-title: The Neutral Theory of Molecular Evolution year: 1983 ident: 2022010407032182700_R26 doi: 10.1017/CBO9780511623486 – volume: 47 start-page: 718 year: 1998 ident: 2022010407032182700_R2 article-title: Molecular timing of primate divergences as estimated by two nonprimate calibration points publication-title: J. Mol. Evol. doi: 10.1007/PL00006431 – volume: 96 start-page: 574 year: 1999 ident: 2022010407032182700_R11 article-title: New estimates of the rates and effects of mildly deleterious mutation in Drosophila melanogaster publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.2.574 – volume: 11 start-page: 94 year: 1995 ident: 2022010407032182700_R3 article-title: Gene number, noise reduction and biological complexity publication-title: Trends Genet. doi: 10.1016/S0168-9525(00)89009-5 – volume-title: Human genetics: problems and approaches year: 1997 ident: 2022010407032182700_R48 doi: 10.1007/978-3-662-03356-2 – volume: 217 start-page: 624 year: 1968 ident: 2022010407032182700_R24 article-title: Evolutionary rate at the molecular level publication-title: Nature doi: 10.1038/217624a0 – volume: 152 start-page: 661 year: 1999 ident: 2022010407032182700_R44 article-title: The causes of synonymous rate variation in the rodent genome: can substitution rates be used to estimate the sex-bias in mutation rates? publication-title: Genetics doi: 10.1093/genetics/152.2.661 – volume: 2 start-page: 229 year: 1993 ident: 2022010407032182700_R30 article-title: A molecular approach to estimating the human deleterious mutation rate publication-title: Hum. Mutat. doi: 10.1002/humu.1380020312 – volume-title: Fifty Years of Genetic Load year: 1991 ident: 2022010407032182700_R50 doi: 10.7591/9781501739071 – volume: 381 start-page: 694 year: 1996 ident: 2022010407032182700_R23 article-title: Estimate of the genomic mutation rate deleterious to overall fitness in E. coli publication-title: Nature doi: 10.1038/381694a0 – volume: 386 start-page: 388 year: 1997 ident: 2022010407032182700_R36 article-title: Evidence for a selectively favourable reduction in the mutation rate of the X chromosome publication-title: Nature doi: 10.1038/386388a0 – volume: 52 start-page: 152 year: 1993 ident: 2022010407032182700_R22 article-title: Germ-line origins of mutation in families with Hemophilia B: the sex ratio varies with the type of mutation publication-title: Am. J. Hum. Genet. – volume: 11 start-page: 141 year: 1995 ident: 2022010407032182700_R45 article-title: Recent human germ-line mutation: inferences from patients with hemophilia B publication-title: Trends Genet. doi: 10.1016/S0168-9525(00)89028-9 – volume: 44 start-page: 463 year: 1997 ident: 2022010407032182700_R18 article-title: Sex differences in mutation rate in higher primates estimated from AMG intron sequences publication-title: J. Mol. Evol. doi: 10.1007/PL00006166 – volume: 397 start-page: 344 year: 1999 ident: 2022010407032182700_R10 article-title: High genomic deleterious mutation rates in hominids publication-title: Nature doi: 10.1038/16915 – volume: 5 start-page: 1505 year: 1996 ident: 2022010407032182700_R46 article-title: The factor IX gene as a model for analysis of human germline mutations: an update publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/5.Supplement_1.1505 – volume-title: The Causes of Evolution year: 1932 ident: 2022010407032182700_R14 – volume: 362 start-page: 745 year: 1993 ident: 2022010407032182700_R43 article-title: Male-driven evolution of DNA sequences publication-title: Nature doi: 10.1038/362745a0 – volume-title: Basic Population Genetics year: 1981 ident: 2022010407032182700_R49 – volume: 7 start-page: 48 year: 1994 ident: 2022010407032182700_R31 article-title: Striking sequence similarity over almost 100 kilobases of human and mouse T-cell receptor DNA publication-title: Nat. Genet. doi: 10.1038/ng0594-48 – volume: 25 start-page: 330 year: 1987 ident: 2022010407032182700_R34 article-title: An evaluation of the molecular clock hypothesis using mammalian DNA sequences publication-title: J. Mol. Evol. doi: 10.1007/BF02603118 – volume: 17 start-page: 182 year: 1997 ident: 2022010407032182700_R9 article-title: Male-driven evolution of DNA sequences in birds publication-title: Nat. Genet. doi: 10.1038/ng1097-182 – volume: 40 start-page: 56 year: 1995 ident: 2022010407032182700_R41 article-title: Synonymous and non-synonymous substitutions in mammalian genes and the nearly neutral theory publication-title: J. Mol. Evol. doi: 10.1007/BF00166595 – volume: 94 start-page: 8380 year: 1997 ident: 2022010407032182700_R6 article-title: The high spontaneous mutation rate: Is it a health risk? publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.16.8380 – volume: 54 start-page: 1337 year: 1966 ident: 2022010407032182700_R28 article-title: The mutational load with epistatic gene interactions in fitness publication-title: Genetics doi: 10.1093/genetics/54.6.1337 – volume: 94 start-page: 3823 year: 1997 ident: 2022010407032182700_R21 article-title: Genomic mutation rates for lifetime reproductive output and lifespan in Caenorhabditis elegans publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.8.3823 – volume: 402 start-page: 489 year: 1999 ident: 2022010407032182700_R8 article-title: The DNA sequence of human chromosome 22 publication-title: Nature doi: 10.1038/990031 – volume: 13 start-page: 262 year: 1947 ident: 2022010407032182700_R16 article-title: The mutation rate of the gene for hemophilia, and its segregation ratios in males and females publication-title: Ann. Eugen. doi: 10.1111/j.1469-1809.1946.tb02367.x – volume-title: Fundamentals of Molecular Evolution year: 1991 ident: 2022010407032182700_R33 – volume: 175 start-page: 583 year: 1995 ident: 2022010407032182700_R29 article-title: Contamination of the genome by very slightly deleterious mutations: why have we not died 100 times over? publication-title: J. Theor. Biol. doi: 10.1006/jtbi.1995.0167 – volume: 392 start-page: 917 year: 1998 ident: 2022010407032182700_R32 article-title: A molecular timescale for vertebrate evolution publication-title: Nature doi: 10.1038/31927 – volume: 144 start-page: 1993 year: 1996 ident: 2022010407032182700_R20 article-title: Nature of deleterious mutation load in Drosophila publication-title: Genetics doi: 10.1093/genetics/144.4.1993 – volume-title: Human Gene Mutation year: 1993 ident: 2022010407032182700_R4 – volume: 378 start-page: 376 year: 1995 ident: 2022010407032182700_R17 article-title: A recent common ancestry for human Y chromosomes publication-title: Nature doi: 10.1038/378376a0 – volume: 94 start-page: 4811 year: 1997 ident: 2022010407032182700_R47 article-title: Evolution of the primate lineage leading to modern humans: phylogenetic and demographic inferences from DNA sequences publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.9.4811 – volume: 31 start-page: 317 year: 1935 ident: 2022010407032182700_R15 article-title: The rate of spontaneous mutation of a human gene publication-title: J. Genet. doi: 10.1007/BF02982403 – reference: 9560386 - Genetics. 1998 Apr;148(4):1667-86 – reference: 8364591 - Hum Mutat. 1993;2(3):229-34 – reference: 3454295 - Cold Spring Harb Symp Quant Biol. 1987;52:863-7 – reference: 8649513 - Nature. 1996 Jun 20;381(6584):694-6 – reference: 9973287 - Am J Hum Genet. 1999 Feb;64(2):508-17 – reference: 9114074 - Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4811-5 – reference: 9089087 - J Mol Evol. 1997 Apr;44(4):463-5 – reference: 9892675 - Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):574-9 – reference: 9582070 - Nature. 1998 Apr 30;392(6679):917-20 – reference: 8469284 - Nature. 1993 Apr 22;362(6422):745-7 – reference: 9121553 - Nature. 1997 Mar 27;386(6623):388-92 – reference: 9847414 - J Mol Evol. 1998 Dec;47(6):718-27 – reference: 9326938 - Nat Genet. 1997 Oct;17(2):182-4 – reference: 9825672 - Trends Genet. 1998 Nov;14(11):446-52 – reference: 8978082 - Genetics. 1996 Dec;144(4):1993-9 – reference: 10400531 - Science. 1999 Jun 18;284(5422):1906-9 – reference: 8875257 - Hum Mol Genet. 1996;5 Spec No:1505-14 – reference: 7732579 - Trends Genet. 1995 Mar;11(3):94-100 – reference: 10591208 - Nature. 1999 Dec 2;402(6761):489-95 – reference: 17248359 - Genetics. 1966 Dec;54(6):1337-51 – reference: 7477371 - Nature. 1995 Nov 23;378(6555):376-8 – reference: 7732592 - Trends Genet. 1995 Apr;11(4):141-7 – reference: 3116671 - Science. 1987 Oct 16;238(4825):369-73 – reference: 4630587 - Genetics. 1972 Oct;72(2):335-55 – reference: 7714912 - J Mol Evol. 1995 Jan;40(1):56-63 – reference: 9668008 - Mol Phylogenet Evol. 1998 Jun;9(3):585-98 – reference: 10353908 - Genetics. 1999 Jun;152(2):661-73 – reference: 3118047 - J Mol Evol. 1987;25(4):330-42 – reference: 9237985 - Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8380-6 – reference: 8075639 - Nat Genet. 1994 May;7(1):48-53 – reference: 8434583 - Am J Hum Genet. 1993 Jan;52(1):152-66 – reference: 2911369 - Nature. 1989 Jan 19;337(6204):283-5 – reference: 9950425 - Nature. 1999 Jan 28;397(6717):344-7 – reference: 2448875 - Science. 1988 Jan 29;239(4839):487-91 – reference: 5637732 - Nature. 1968 Feb 17;217(5129):624-6 |
SSID | ssj0006958 |
Score | 2.2808578 |
Snippet | Many previous estimates of the mutation rate in humans have relied on screens of visible mutants. We investigated the rate and pattern of mutations at the... Many previous estimates of the mutation rate in humans have relied in screens of visible mutants. Nachman and Crowell investigated the rate and pattern of... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 297 |
SubjectTerms | Animals Cellular biology Chromosomes, Human - genetics DNA - genetics Evolution, Molecular Female Genetics Humans Male Monkeys & apes Mutation Pan troglodytes - genetics Pseudogenes Species Specificity X Chromosome - genetics |
Title | Estimate of the Mutation Rate per Nucleotide in Humans |
URI | https://www.ncbi.nlm.nih.gov/pubmed/10978293 https://www.proquest.com/docview/214121112 https://www.proquest.com/docview/17623666 https://www.proquest.com/docview/72243992 https://pubmed.ncbi.nlm.nih.gov/PMC1461236 |
Volume | 156 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCIkLojyXUvCBW5V2nThOfESotEIqB9RKe4v8SOhKKFvR7AF-PZ_jx-72gWgv0a7jjOLMeDwzHn9DyMdauHpIXZ0ZU00zaL8yk0bYDMavUcxypVu3o3vyTRyf8a-zchbr3YfTJYPeN39uPFdyH66iDXx1p2TvwNlEFA34Df7iCg7j-l88PsT8hMWZNvpPliF38LtrvHDneR1c8WKY2xEbZIzYX67bow51egRqhqHpwh5jmCAFiJU5DwHSkF2_t0LnhfsetizGxJ5weiHGD6YpQSqqPMmLLBdBF7c3tEU96RHANwQiaD2fYhsW0MLXE76mmz1u1Y8wLhcxKMU-XPT48DoU9pUlKiUO-i3zoolUGtBoWAMaD8mjHJ6CK2JxNFtl-Qg5lmhNAwrnpkDjINI4SO-xaZtccziu5s2uGSKnz8jT4EHQT14ctsmDtn9OHvuaor9fEBGFgi46CqGgUSioEwoKoaAroaDznnqheEnOvhyefj7OQnGMzMBkHjJZtaWtHHqj4hxWYMkZ0zXrGFM5dKzWWjDLhMW_tu5KoXgluorn006qWhdl8Yps9Yu-fUNo3uVFxYyt8TDvpNVKGCktTEOJGc6LCWHxszQmIMe7AiY_m9vZMSF76ZkLj5vyz9478Ws3YX5dNjnjDn-Q5RPyId2F8nM7WqpvF0sQwFJewAG_vQckwnncoPHa827tbSSsY4nRVRtcTR0c8PrmnX5-PgKww7pwoEVv7zTGHfJkNf3eka3h17LdhUE76PejyP4FofafiA |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimate+of+the+Mutation+Rate+per+Nucleotide+in+Humans&rft.jtitle=Genetics+%28Austin%29&rft.au=Nachman%2C+Michael+W&rft.au=Crowell%2C+Susan+L&rft.date=2000-09-01&rft.issn=1943-2631&rft.eissn=1943-2631&rft.volume=156&rft.issue=1&rft.spage=297&rft.epage=304&rft_id=info:doi/10.1093%2Fgenetics%2F156.1.297&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_genetics_156_1_297 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-2631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-2631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-2631&client=summon |