Chronic Hyperglycemia, Independent of Plasma Lipid Levels, Is Sufficient for the Loss of β-Cell Differentiation and Secretory Function in the db/db Mouse Model of Diabetes
Chronic Hyperglycemia, Independent of Plasma Lipid Levels, Is Sufficient for the Loss of β-Cell Differentiation and Secretory Function in the db/db Mouse Model of Diabetes Cecilie Kjørholt , Mia C. Åkerfeldt , Trevor J. Biden and D. Ross Laybutt From the Diabetes and Obesity Research Program, Garvan...
Saved in:
Published in | Diabetes (New York, N.Y.) Vol. 54; no. 9; pp. 2755 - 2763 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
American Diabetes Association
01.09.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chronic Hyperglycemia, Independent of Plasma Lipid Levels, Is Sufficient for the Loss of β-Cell Differentiation and Secretory
Function in the db/db Mouse Model of Diabetes
Cecilie Kjørholt ,
Mia C. Åkerfeldt ,
Trevor J. Biden and
D. Ross Laybutt
From the Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St Vincent’s Hospital, Sydney, Australia
Address correspondence and reprint requests to Ross Laybutt, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst,
Sydney 2010, Australia. E-mail: r.laybutt{at}garvan.org.au
Abstract
The β-cell is a highly specialized cell with a unique differentiation that optimizes glucose-induced insulin secretion (GIIS).
Here, we evaluated changes in gene expression that accompany β-cell dysfunction in the db/db mouse model of type 2 diabetes. In db/db islets, mRNA levels of many genes implicated in β-cell glucose sensing were progressively reduced with time, as were several
transcription factors important for the maintenance of β-cell differentiation. Conversely, genes normally suppressed in β-cells,
such as a variety of stress response mediators and inhibitor of differentiation/DNA binding 1, a gene capable of inhibiting
differentiation, were markedly increased. We assessed whether this global alteration in the pattern of β-cell gene expression
was related more to chronic hyperglycemia or hyperlipidemia; db/db mice were treated with phlorizin, which selectively lowered plasma glucose, or bezafibrate, which selectively lowered plasma
lipids. GIIS as well as the majority of the changes in gene expression were completely normalized by lowering glucose but
were unaffected by lowering lipids. However, the restoration of GIIS was not accompanied by normalized uncoupling protein
2 or peroxisome proliferator–activated receptor γ mRNA levels, which were upregulated in db/db islets. These studies demonstrate that hyperglycemia, independent of plasma lipid levels, is sufficient for the loss of β-cell
differentiation and secretory function in db/db mice.
ATF-3, activating transcription factor 3
Β2/NeuroD, β-cell E-box trans-activator 2
CPT-1, carnitine palmitoyl transferase 1
GIIS, glucose-induced insulin secretion
HNF1α, hepatocyte nuclear factor 1α
IAPP, islet amyloid polypeptide
ID-1, inhibitor of differentiation/DNA binding 1
KRHB, Krebs-Ringer HEPES buffer
mGPDH, mitochondrial glycerol phosphate dehydrogenase
NEFA, nonesterified fatty acid
PDX-1, pancreatic duodenal homeobox-1
PPAR, peroxisome proliferator–activated receptor
SNAP25, synaptosomal-associated protein of 25 kDa
UCP-2, uncoupling protein 2
Footnotes
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore
be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Accepted June 3, 2005.
Received April 19, 2005.
DIABETES |
---|---|
AbstractList | The β-cell is a highly specialized cell with a unique differentiation that optimizes glucose-induced insulin secretion (GIIS). Here, we evaluated changes in gene expression that accompany β-cell dysfunction in the db/db mouse model of type 2 diabetes. In db/db islets, mRNA levels of many genes implicated in β-cell glucose sensing were progressively reduced with time, as were several transcription factors important for the maintenance of β-cell differentiation. Conversely, genes normally suppressed in β-cell, such as a variety of stress response mediators and inhibitor of differentiation/ DNA binding 1, a gene capable of inhibiting differentiation, were markedly increased. We assessed whether this global alteration in the pattern of β-cell gene expression was related more to chronic hyperglycemia or hyperlipidemia; db/db mice were treated with phlorizin, which selectively lowered plasma glucose, or bezafibrate, which selectively lowered plasma lipids. GIIS as well as the majority of the changes in gene expression were completely normalized by lowering glucose but were unaffected by lowering lipids. However, the restoration of GIIS was not accompanied by normalized uncoupling protein 2 or peroxisome proliferator-activated receptor γ mRNA levels, which were upregulated in db/db islets. These studies demonstrate that hyperglycemia, independent of plasma lipid levels, is sufficient for the loss of β-cell differentiation and secretory function in db/db mice. The β-cell is a highly specialized cell with a unique differentiation that optimizes glucose-induced insulin secretion (GIIS). Here, we evaluated changes in gene expression that accompany β-cell dysfunction in the db/db mouse model of type 2 diabetes. In db/db islets, mRNA levels of many genes implicated in β-cell glucose sensing were progressively reduced with time, as were several transcription factors important for the maintenance of β-cell differentiation. Conversely, genes normally suppressed in β-cells, such as a variety of stress response mediators and inhibitor of differentiation/DNA binding 1, a gene capable of inhibiting differentiation, were markedly increased. We assessed whether this global alteration in the pattern of β-cell gene expression was related more to chronic hyperglycemia or hyperlipidemia; db/db mice were treated with phlorizin, which selectively lowered plasma glucose, or bezafibrate, which selectively lowered plasma lipids. GIIS as well as the majority of the changes in gene expression were completely normalized by lowering glucose but were unaffected by lowering lipids. However, the restoration of GIIS was not accompanied by normalized uncoupling protein 2 or peroxisome proliferator–activated receptor γ mRNA levels, which were upregulated in db/db islets. These studies demonstrate that hyperglycemia, independent of plasma lipid levels, is sufficient for the loss of β-cell differentiation and secretory function in db/db mice. The beta-cell is a highly specialized cell with a unique differentiation that optimizes glucose-induced insulin secretion (GIIS). Here, we evaluated changes in gene expression that accompany beta-cell dysfunction in the db/db mouse model of type 2 diabetes. In db/db islets, mRNA levels of many genes implicated in beta-cell glucose sensing were progressively reduced with time, as were several transcription factors important for the maintenance of beta-cell differentiation. Conversely, genes normally suppressed in beta-cells, such as a variety of stress response mediators and inhibitor of differentiation/DNA binding 1, a gene capable of inhibiting differentiation, were markedly increased. We assessed whether this global alteration in the pattern of beta-cell gene expression was related more to chronic hyperglycemia or hyperlipidemia; db/db mice were treated with phlorizin, which selectively lowered plasma glucose, or bezafibrate, which selectively lowered plasma lipids. GIIS as well as the majority of the changes in gene expression were completely normalized by lowering glucose but were unaffected by lowering lipids. However, the restoration of GIIS was not accompanied by normalized uncoupling protein 2 or peroxisome proliferator-activated receptor gamma mRNA levels, which were upregulated in db/db islets. These studies demonstrate that hyperglycemia, independent of plasma lipid levels, is sufficient for the loss of beta-cell differentiation and secretory function in db/db mice. Chronic Hyperglycemia, Independent of Plasma Lipid Levels, Is Sufficient for the Loss of β-Cell Differentiation and Secretory Function in the db/db Mouse Model of Diabetes Cecilie Kjørholt , Mia C. Åkerfeldt , Trevor J. Biden and D. Ross Laybutt From the Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St Vincent’s Hospital, Sydney, Australia Address correspondence and reprint requests to Ross Laybutt, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, Sydney 2010, Australia. E-mail: r.laybutt{at}garvan.org.au Abstract The β-cell is a highly specialized cell with a unique differentiation that optimizes glucose-induced insulin secretion (GIIS). Here, we evaluated changes in gene expression that accompany β-cell dysfunction in the db/db mouse model of type 2 diabetes. In db/db islets, mRNA levels of many genes implicated in β-cell glucose sensing were progressively reduced with time, as were several transcription factors important for the maintenance of β-cell differentiation. Conversely, genes normally suppressed in β-cells, such as a variety of stress response mediators and inhibitor of differentiation/DNA binding 1, a gene capable of inhibiting differentiation, were markedly increased. We assessed whether this global alteration in the pattern of β-cell gene expression was related more to chronic hyperglycemia or hyperlipidemia; db/db mice were treated with phlorizin, which selectively lowered plasma glucose, or bezafibrate, which selectively lowered plasma lipids. GIIS as well as the majority of the changes in gene expression were completely normalized by lowering glucose but were unaffected by lowering lipids. However, the restoration of GIIS was not accompanied by normalized uncoupling protein 2 or peroxisome proliferator–activated receptor γ mRNA levels, which were upregulated in db/db islets. These studies demonstrate that hyperglycemia, independent of plasma lipid levels, is sufficient for the loss of β-cell differentiation and secretory function in db/db mice. ATF-3, activating transcription factor 3 Β2/NeuroD, β-cell E-box trans-activator 2 CPT-1, carnitine palmitoyl transferase 1 GIIS, glucose-induced insulin secretion HNF1α, hepatocyte nuclear factor 1α IAPP, islet amyloid polypeptide ID-1, inhibitor of differentiation/DNA binding 1 KRHB, Krebs-Ringer HEPES buffer mGPDH, mitochondrial glycerol phosphate dehydrogenase NEFA, nonesterified fatty acid PDX-1, pancreatic duodenal homeobox-1 PPAR, peroxisome proliferator–activated receptor SNAP25, synaptosomal-associated protein of 25 kDa UCP-2, uncoupling protein 2 Footnotes The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Accepted June 3, 2005. Received April 19, 2005. DIABETES |
Audience | Professional |
Author | Cecilie Kjørholt D. Ross Laybutt Mia C. Åkerfeldt Trevor J. Biden |
Author_xml | – sequence: 1 givenname: Cecilie surname: KJØRHOLT fullname: KJØRHOLT, Cecilie organization: Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia – sequence: 2 givenname: Mia C surname: AKERFELDT fullname: AKERFELDT, Mia C organization: Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia – sequence: 3 givenname: Trevor J surname: BIDEN fullname: BIDEN, Trevor J organization: Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia – sequence: 4 givenname: D. Ross surname: LAYBUTT fullname: LAYBUTT, D. Ross organization: Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17075837$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16123366$$D View this record in MEDLINE/PubMed |
BookMark | eNptkt2KEzEUx4OsuN3VF_BCcqMgOt0kM0lmLpfuJ4worIJ3QyY5aSPTTDeZ0e07eeWD-Eym20pZKAdO4PD7n5PzcYKOfO8BodeUTFmeyzPjVAsDxCkvptWUSc6foQmt8irLmfx-hCaEUJZRWcljdBLjD0KISPYCHVNBUwYhJuj3bBF67zS-Wa8gzLu1hqVTH_GtN7CC5PyAe4u_dCouFa7dyhlcw0_oYmIivhutddptKNsHPCwA132MG8nfP9kMug5fOGshJMKpwfUeK2_wHegAQx_W-Gr0-jHs_KPatGemxZ_6MULyBrpNqotdoy_Rc6u6CK927yn6dnX5dXaT1Z-vb2fndaY5Y0NWSkWVkIa3hipTiIqzsqCiYjSnhklTlAIkKaluuSnbtiqkYtwCEAFMqIrnp-jdNu8q9PcjxKFZuqhTM8pD-lkjSk5zWZUJzLbgXHXQOG_7ISg9Bw9BdWlZ1qXwOc3TuAnJ88RPD_DJTJq6Pih4_0SQmAEehrkaY2zK6_opy7asDmkFAWyzCm6pwrqhpNkcTPP_YBpeNFWzOZgkerNrdWyXYPaS3YUk4O0OUFGrzgbltYt7ThLJy1wm7sOWW7j54pcLsK92oOw_6uvb9g |
CODEN | DIAEAZ |
CitedBy_id | crossref_primary_10_1016_j_semcdb_2020_01_003 crossref_primary_10_1111_j_1463_1326_2010_01291_x crossref_primary_10_1016_j_ejphar_2008_11_017 crossref_primary_10_1016_j_metabol_2024_155813 crossref_primary_10_1016_j_tem_2014_01_003 crossref_primary_10_1007_s00125_012_2776_x crossref_primary_10_2337_db12_0701 crossref_primary_10_1016_j_devcel_2015_10_019 crossref_primary_10_1097_GME_0b013e31828f5e3c crossref_primary_10_2337_db11_1084 crossref_primary_10_3390_ijms23095104 crossref_primary_10_3390_metabo11040218 crossref_primary_10_1124_jpet_106_115337 crossref_primary_10_1016_S2213_8587_20_30022_X crossref_primary_10_1210_en_2016_1393 crossref_primary_10_3390_biology10030176 crossref_primary_10_1016_j_jcyt_2021_01_005 crossref_primary_10_1016_j_bbrc_2015_10_038 crossref_primary_10_1016_j_jep_2008_09_036 crossref_primary_10_1111_j_1463_1326_2011_01445_x crossref_primary_10_1210_en_2012_1425 crossref_primary_10_3390_ijms23052846 crossref_primary_10_1016_j_mce_2012_08_003 crossref_primary_10_1111_j_2040_1124_2010_00021_x crossref_primary_10_2337_db19_0138 crossref_primary_10_3390_ijms23010324 crossref_primary_10_1007_s00125_011_2139_z crossref_primary_10_1111_j_1872_034X_2007_00069_x crossref_primary_10_1152_ajpendo_00145_2005 crossref_primary_10_3390_biom12091228 crossref_primary_10_3389_fendo_2020_00378 crossref_primary_10_1111_j_1463_1326_2008_00940_x crossref_primary_10_1016_j_nut_2008_12_010 crossref_primary_10_1210_en_2013_1523 crossref_primary_10_1016_j_vascn_2010_04_001 crossref_primary_10_1016_j_jaut_2016_02_001 crossref_primary_10_1016_j_mce_2019_110524 crossref_primary_10_1371_journal_pone_0029807 crossref_primary_10_1016_j_jgg_2022_03_002 crossref_primary_10_1007_s00125_015_3503_1 crossref_primary_10_4093_dmj_2011_35_5_458 crossref_primary_10_3390_cells12050773 crossref_primary_10_1152_ajpendo_90235_2008 crossref_primary_10_1371_journal_pone_0082813 crossref_primary_10_1111_nyas_12031 crossref_primary_10_1016_j_molmet_2017_04_003 crossref_primary_10_1111_j_1463_1326_2009_01156_x crossref_primary_10_1126_sciadv_aba0145 crossref_primary_10_1530_JME_13_0016 crossref_primary_10_1016_j_cytogfr_2015_12_009 crossref_primary_10_1016_j_ejphar_2008_04_018 crossref_primary_10_1016_S1001_9294_09_60023_7 crossref_primary_10_1210_me_2011_1256 crossref_primary_10_1002_dmrr_653 crossref_primary_10_1530_JOE_17_0516 crossref_primary_10_1007_s00125_011_2197_2 crossref_primary_10_1186_s12974_024_03021_x crossref_primary_10_1111_dom_12732 crossref_primary_10_3727_096368915X687958 crossref_primary_10_1172_JCI64151 crossref_primary_10_1155_2014_618652 crossref_primary_10_1038_ncomms15652 crossref_primary_10_1155_2016_6035046 crossref_primary_10_1111_j_1476_5381_2009_00145_x crossref_primary_10_3389_fgene_2014_00193 crossref_primary_10_1152_ajpendo_00388_2009 crossref_primary_10_2337_db07_1252 crossref_primary_10_1016_j_taap_2018_12_011 crossref_primary_10_1038_s41467_022_32162_x crossref_primary_10_1038_s41419_023_05906_w crossref_primary_10_2337_db18_0201 crossref_primary_10_1111_j_1872_034X_2008_00363_x crossref_primary_10_1016_j_tem_2014_02_003 crossref_primary_10_2337_db06_1033 crossref_primary_10_2337_db10_0450 crossref_primary_10_2337_db07_1802 crossref_primary_10_1016_j_npep_2006_08_002 crossref_primary_10_1096_fj_202100009R crossref_primary_10_1007_s00125_007_0749_2 crossref_primary_10_1016_j_molmet_2018_01_010 crossref_primary_10_1016_j_bbrc_2006_10_076 crossref_primary_10_1007_s00125_006_0590_z crossref_primary_10_1007_s00125_022_05669_7 crossref_primary_10_1038_ncomms11740 crossref_primary_10_2337_db11_1179 crossref_primary_10_2337_db14_1752 crossref_primary_10_1371_journal_pone_0252607 crossref_primary_10_1038_aps_2013_196 crossref_primary_10_2337_db11_0083 crossref_primary_10_1007_s00424_008_0548_8 crossref_primary_10_1016_j_molmet_2024_101955 crossref_primary_10_1111_dom_14459 crossref_primary_10_1074_jbc_M114_595579 crossref_primary_10_1016_j_phymed_2024_155396 crossref_primary_10_1111_1440_1681_12368 crossref_primary_10_1210_me_2008_0482 crossref_primary_10_2337_db20_0881 crossref_primary_10_1101_gad_227785_113 crossref_primary_10_1007_s00125_016_3942_3 crossref_primary_10_1080_19382014_2018_1503027 crossref_primary_10_1155_2018_4561309 crossref_primary_10_3390_nu13051635 crossref_primary_10_1111_j_1463_1326_2009_01112_x crossref_primary_10_1016_j_celrep_2019_08_073 crossref_primary_10_2337_db13_0272 crossref_primary_10_1007_s00125_014_3226_8 crossref_primary_10_1111_j_1463_1326_2012_01655_x crossref_primary_10_1111_dom_13378 crossref_primary_10_1111_1753_0407_12022 crossref_primary_10_1210_me_2014_1299 crossref_primary_10_2337_db11_1054 crossref_primary_10_1016_j_celrep_2022_110872 crossref_primary_10_1016_j_cmet_2007_08_012 |
Cites_doi | 10.1128/MCB.23.20.7222-7229.2003 10.1007/s001250051643 10.2337/diabetes.53.4.1007 10.1016/S0303-7207(97)00190-1 10.1210/en.2003-0410 10.1073/pnas.87.17.6492 10.1093/jn/113.1.184 10.1242/dev.127.24.5533 10.1172/JCI420 10.1016/S0021-9258(17)32299-8 10.1007/s00125-004-1454-z 10.2337/diabetes.50.1.63 10.1186/1743-7075-2-1 10.1016/S0021-9258(17)37581-6 10.2337/diabetes.50.11.2481 10.1152/ajpendo.00426.2003 10.1073/pnas.91.23.10878 10.2337/diabetes.50.2007.S89 10.1074/jbc.272.48.30261 10.2337/diabetes.45.5.580 10.1007/s00109-003-0450-y 10.2337/diab.40.2.166 10.1111/j.1749-6632.1999.tb07798.x 10.1083/jcb.128.6.1019 10.1016/S1535-6108(03)00141-7 10.2337/diabetes.45.11.1626 10.2337/diabetes.51.4.977 10.1128/mcb.11.3.1734-1738.1991 10.1073/pnas.122686299 10.1172/JCI115858 10.1073/pnas.91.20.9253 10.2337/diabetes.44.12.1447 10.1016/j.bbrc.2004.03.067 10.1074/jbc.274.20.14112 10.1128/MCB.14.10.6704 10.1210/jc.84.2.670 10.2337/diabetes.52.1.1 10.1074/jbc.M100986200 10.1074/jbc.M210581200 10.1016/S0092-8674(01)00378-6 10.2337/diabetes.51.3.662 10.2337/diabetes.48.7.1482 10.1007/BF00429772 10.1073/pnas.95.5.2498 10.1161/01.CIR.98.19.2088 10.1210/jcem-42-2-222 10.1097/00007890-198709000-00015 10.1016/j.metabol.2003.11.021 10.1007/s00125-004-1368-9 10.1016/S0891-5849(99)00084-2 10.1073/pnas.0305683101 10.2337/diabetes.50.2007.S154 10.2337/diabetes.54.3.727 10.2337/diabetes.51.2.413 10.1152/ajpendo.00149.2002 10.2337/diabetes.50.10.2181 |
ContentType | Journal Article |
Copyright | 2005 INIST-CNRS COPYRIGHT 2005 American Diabetes Association |
Copyright_xml | – notice: 2005 INIST-CNRS – notice: COPYRIGHT 2005 American Diabetes Association |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 8GL 7X8 |
DOI | 10.2337/diabetes.54.9.2755 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Gale In Context: High School MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1939-327X |
EndPage | 2763 |
ExternalDocumentID | A136120033 10_2337_diabetes_54_9_2755 16123366 17075837 diabetes_54_9_2755 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Australia |
GeographicLocations_xml | – name: Australia |
GroupedDBID | - 08R 0R 1AW 29F 2WC 3V. 4.4 53G 55 5GY 5RE 5RS 5VS 7RV 7X7 88E 88I 8AF 8AO 8C1 8F7 8FE 8FH 8FI 8FJ 8G5 8GL 8R4 8R5 AAQQT AAWTL AAYEP AAYJJ ABFLS ABOCM ABPTK ABUWG ACDCL ACGOD ACPRK ADACO ADBBV ADBIT AENEX AFFNX AFKRA AHMBA ALMA_UNASSIGNED_HOLDINGS AZQEC BAWUL BBAFP BBNVY BCR BCU BEC BENPR BES BHPHI BKEYQ BKNYI BLC BPHCQ BVXVI C1A CS3 DIK DU5 DWQXO E3Z EBS EDB EJD EX3 F5P FRP FYUFA GICCO GJ GNUQQ GUQSH GX1 H13 HCIFZ HZ IAG IAO IEA IHR INH INR IOF IPO J5H K-O K9- KM KQ8 L7B LK8 M0R M1P M2O M2P M2Q M5 M7P MBDVC O0- O9- OB3 OBH OK1 OVD P2P PADUT PCD PEA PQEST PQQKQ PQUKI PRINS PROAC PSQYO Q2X RHF RHI RPM S0X SJFOW SJN SV3 TDI WH7 WOQ WOW X7M XZ ZA5 ZGI ZXP ZY1 --- .55 .GJ .XZ 08P 0R~ 18M 1CY 354 6PF AAKAS AAUGY AAYOK ACGFO ADZCM AEGXH AERZD AFHIN AI. AIAGR BTFSW CCPQU EMOBN HZ~ H~9 IQODW ITC K2M M5~ MVM N4W NAPCQ O5R O5S OHH TEORI TR2 UKHRP VH1 VVN W8F XOL YFH YHG YOC YQJ ~KM AIZAD ALIPV CGR CUY CVF ECM EIF HMCUK NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c522t-87a1a67d5bd1ad46952841692131d27d486e7081cb5d8bb947a25fee06e26a953 |
ISSN | 0012-1797 |
IngestDate | Fri Oct 25 05:03:31 EDT 2024 Thu Nov 14 22:02:10 EST 2024 Wed Nov 13 00:16:45 EST 2024 Thu Aug 01 19:33:57 EDT 2024 Fri Dec 06 04:21:00 EST 2024 Sat Sep 28 08:38:40 EDT 2024 Sun Oct 22 16:06:41 EDT 2023 Fri Jan 15 19:45:53 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Endocrinopathy Animal model Diabetes mellitus Langerhans islet Rodentia Lipids Cell differentiation Vertebrata Chronic Hyperglycemia Mammalia Mouse Animal β Cell Endocrine pancreas |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c522t-87a1a67d5bd1ad46952841692131d27d486e7081cb5d8bb947a25fee06e26a953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://diabetesjournals.org/diabetes/article-pdf/54/9/2755/383074/zdb00905002755.pdf |
PMID | 16123366 |
PQID | 68513798 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_68513798 pubmed_primary_16123366 gale_incontextgauss_8GL_A136120033 highwire_diabetes_diabetes_54_9_2755 gale_infotracgeneralonefile_A136120033 crossref_primary_10_2337_diabetes_54_9_2755 pascalfrancis_primary_17075837 gale_infotracacademiconefile_A136120033 |
ProviderPackageCode | RHF RHI |
PublicationCentury | 2000 |
PublicationDate | 2005-09-01 |
PublicationDateYYYYMMDD | 2005-09-01 |
PublicationDate_xml | – month: 09 year: 2005 text: 2005-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Alexandria, VA |
PublicationPlace_xml | – name: Alexandria, VA – name: United States |
PublicationTitle | Diabetes (New York, N.Y.) |
PublicationTitleAlternate | Diabetes |
PublicationYear | 2005 |
Publisher | American Diabetes Association |
Publisher_xml | – name: American Diabetes Association |
References | 21949000 - Diabetes. 2011 Oct;60(10):2455-6 2022031208155745000_R30 2022031208155745000_R39 2022031208155745000_R38 2022031208155745000_R37 2022031208155745000_R36 2022031208155745000_R35 2022031208155745000_R34 2022031208155745000_R33 2022031208155745000_R32 2022031208155745000_R31 2022031208155745000_R41 2022031208155745000_R40 2022031208155745000_R6 2022031208155745000_R7 2022031208155745000_R8 2022031208155745000_R9 2022031208155745000_R2 2022031208155745000_R3 2022031208155745000_R4 2022031208155745000_R5 2022031208155745000_R49 2022031208155745000_R48 2022031208155745000_R47 2022031208155745000_R46 2022031208155745000_R45 2022031208155745000_R44 2022031208155745000_R43 2022031208155745000_R42 2022031208155745000_R52 2022031208155745000_R51 2022031208155745000_R50 2022031208155745000_R1 2022031208155745000_R19 2022031208155745000_R18 2022031208155745000_R17 2022031208155745000_R16 2022031208155745000_R15 2022031208155745000_R14 2022031208155745000_R13 2022031208155745000_R12 2022031208155745000_R56 2022031208155745000_R11 2022031208155745000_R55 2022031208155745000_R10 2022031208155745000_R54 2022031208155745000_R53 2022031208155745000_R29 2022031208155745000_R28 2022031208155745000_R27 2022031208155745000_R26 2022031208155745000_R25 2022031208155745000_R24 2022031208155745000_R23 2022031208155745000_R22 2022031208155745000_R21 2022031208155745000_R20 |
References_xml | – ident: 2022031208155745000_R13 doi: 10.1128/MCB.23.20.7222-7229.2003 – ident: 2022031208155745000_R11 doi: 10.1007/s001250051643 – ident: 2022031208155745000_R52 doi: 10.2337/diabetes.53.4.1007 – ident: 2022031208155745000_R21 doi: 10.1016/S0303-7207(97)00190-1 – ident: 2022031208155745000_R54 doi: 10.1210/en.2003-0410 – ident: 2022031208155745000_R16 doi: 10.1073/pnas.87.17.6492 – ident: 2022031208155745000_R8 doi: 10.1093/jn/113.1.184 – ident: 2022031208155745000_R34 doi: 10.1242/dev.127.24.5533 – ident: 2022031208155745000_R49 doi: 10.1172/JCI420 – ident: 2022031208155745000_R19 doi: 10.1016/S0021-9258(17)32299-8 – ident: 2022031208155745000_R45 doi: 10.1007/s00125-004-1454-z – ident: 2022031208155745000_R43 doi: 10.2337/diabetes.50.1.63 – ident: 2022031208155745000_R14 doi: 10.1186/1743-7075-2-1 – ident: 2022031208155745000_R22 doi: 10.1016/S0021-9258(17)37581-6 – ident: 2022031208155745000_R46 doi: 10.2337/diabetes.50.11.2481 – ident: 2022031208155745000_R31 doi: 10.1152/ajpendo.00426.2003 – ident: 2022031208155745000_R47 doi: 10.1073/pnas.91.23.10878 – ident: 2022031208155745000_R56 doi: 10.2337/diabetes.50.2007.S89 – ident: 2022031208155745000_R48 doi: 10.1074/jbc.272.48.30261 – ident: 2022031208155745000_R6 doi: 10.2337/diabetes.45.5.580 – ident: 2022031208155745000_R25 doi: 10.1007/s00109-003-0450-y – ident: 2022031208155745000_R3 doi: 10.2337/diab.40.2.166 – ident: 2022031208155745000_R7 doi: 10.1111/j.1749-6632.1999.tb07798.x – ident: 2022031208155745000_R23 doi: 10.1083/jcb.128.6.1019 – ident: 2022031208155745000_R12 doi: 10.1016/S1535-6108(03)00141-7 – ident: 2022031208155745000_R55 doi: 10.2337/diabetes.45.11.1626 – ident: 2022031208155745000_R51 doi: 10.2337/diabetes.51.4.977 – ident: 2022031208155745000_R36 doi: 10.1128/mcb.11.3.1734-1738.1991 – ident: 2022031208155745000_R29 doi: 10.1073/pnas.122686299 – ident: 2022031208155745000_R15 doi: 10.1172/JCI115858 – ident: 2022031208155745000_R38 doi: 10.1073/pnas.91.20.9253 – ident: 2022031208155745000_R4 doi: 10.2337/diabetes.44.12.1447 – ident: 2022031208155745000_R24 doi: 10.1016/j.bbrc.2004.03.067 – ident: 2022031208155745000_R32 doi: 10.1074/jbc.274.20.14112 – ident: 2022031208155745000_R37 doi: 10.1128/MCB.14.10.6704 – ident: 2022031208155745000_R41 doi: 10.1210/jc.84.2.670 – ident: 2022031208155745000_R26 doi: 10.2337/diabetes.52.1.1 – ident: 2022031208155745000_R28 doi: 10.1074/jbc.M100986200 – ident: 2022031208155745000_R33 doi: 10.1074/jbc.M210581200 – ident: 2022031208155745000_R18 doi: 10.1016/S0092-8674(01)00378-6 – ident: 2022031208155745000_R53 doi: 10.2337/diabetes.51.3.662 – ident: 2022031208155745000_R17 doi: 10.2337/diabetes.48.7.1482 – ident: 2022031208155745000_R20 doi: 10.1007/BF00429772 – ident: 2022031208155745000_R50 doi: 10.1073/pnas.95.5.2498 – ident: 2022031208155745000_R30 doi: 10.1161/01.CIR.98.19.2088 – ident: 2022031208155745000_R2 doi: 10.1210/jcem-42-2-222 – ident: 2022031208155745000_R39 doi: 10.1097/00007890-198709000-00015 – ident: 2022031208155745000_R9 doi: 10.1016/j.metabol.2003.11.021 – ident: 2022031208155745000_R35 doi: 10.1007/s00125-004-1368-9 – ident: 2022031208155745000_R40 doi: 10.1016/S0891-5849(99)00084-2 – ident: 2022031208155745000_R42 doi: 10.1073/pnas.0305683101 – ident: 2022031208155745000_R5 doi: 10.2337/diabetes.50.2007.S154 – ident: 2022031208155745000_R44 doi: 10.2337/diabetes.54.3.727 – ident: 2022031208155745000_R27 doi: 10.2337/diabetes.51.2.413 – ident: 2022031208155745000_R10 doi: 10.1152/ajpendo.00149.2002 – ident: 2022031208155745000_R1 doi: 10.2337/diabetes.50.10.2181 |
SSID | ssj0006060 |
Score | 2.252775 |
Snippet | Chronic Hyperglycemia, Independent of Plasma Lipid Levels, Is Sufficient for the Loss of β-Cell Differentiation and Secretory
Function in the db/db Mouse Model... The beta-cell is a highly specialized cell with a unique differentiation that optimizes glucose-induced insulin secretion (GIIS). Here, we evaluated changes in... The β-cell is a highly specialized cell with a unique differentiation that optimizes glucose-induced insulin secretion (GIIS). Here, we evaluated changes in... |
SourceID | proquest gale crossref pubmed pascalfrancis highwire |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2755 |
SubjectTerms | Aging Animals Biological and medical sciences Blood lipids Cell Differentiation - physiology Diabetes Mellitus - physiopathology Diabetes. Impaired glucose tolerance Endocrine pancreas. Apud cells (diseases) Endocrinopathies Etiopathogenesis. Screening. Investigations. Target tissue resistance Gene Expression Regulation - physiology Hyperglycemia Hyperglycemia - physiopathology Insulin - metabolism Islets of Langerhans - cytology Islets of Langerhans - metabolism Lipids - blood Medical sciences Mice Observations Pancreatic beta cells RNA, Messenger - metabolism |
Title | Chronic Hyperglycemia, Independent of Plasma Lipid Levels, Is Sufficient for the Loss of β-Cell Differentiation and Secretory Function in the db/db Mouse Model of Diabetes |
URI | http://diabetes.diabetesjournals.org/content/54/9/2755.abstract https://www.ncbi.nlm.nih.gov/pubmed/16123366 https://search.proquest.com/docview/68513798 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELVKKyFeEHeWS7FQBQ9ht02cOMljr1SwLajaSvsW2bFTAtvdapNFKh_FV_BhzMTOZUsRl5coiuzEyZyMZ8bjM4RsiDTlQsitvnQj2QftB3pQBarP0yyQLBWKCdzvfHTMD0_9d-NgvLLyo5O1tCjlIP127b6S_5EqXAO54i7Zf5Bsc1O4AOcgXziChOH4VzK2zLbOJ3Am52eTy1Sfm9zXvCluWy30X4CJfC6cSX6RK2eCaUKV9PLCKRYVhUTF0GTzDScwbWInqUvRx7h-U0SlNGKs1hsKNDerBXqcGbsZk0rCCynpYExBm0o7eLs6yNu1hvc6gd-rJYE6IYr3n3E5fyeag6Y2WSo6zSd5C9Yvep7piTKZJ7loI787uVWro7n-Cu_XBMWH4lIuzLrYnnMyK5ajH0GT3tVodNdDitWwq9ENLbVFbtxVz6HhBLZTvWeV69VpxGMVEUH9YQaBP4gHbd8uZ_fxh-TgdDhMRvvj0Q2yhnSM_ipZ29k__njSWATgJJqtUHasZvMWPmXz12csGUi1mVBzV2Pqrijg781M2ZXf-0WVfTS6Q25bx4ZuG5TeJSt6eo_cPLKpG_fJdwtWugTWN7QDVTrLqIEqraBKDVShTUFboFIAKgWgUQQqdmmASq8AlQJQaQNUWgMVHln1V3JTSVrBlFYwxZvVX-oBOT3YH-0e9m2xkH4KLkQJs7pwBQ9VIJUrlM_jwMMV9dhzmau8UPkR1yHYv6kMVCRl7IfCCzKtt7j2uIgD9pCsTmdT_ZhQlsIkKFgYcgn2uogkZ77vb6ksCJjivuoRp5ZQcmE4YRLwpVGeST3KJPCTOEF59shLFGKCZCtTzOY6E4uiSKK3w2TbZeBgYDnFHnltG2Wzci5SYTfHwICQn22p5aullmeGnf66hhs1atpRXTe89SVEtW8UgjcRsbBHXtQQS2DqQXGKqQbZJBy8NRbGUY88Mshr-yKpE-P8yR_7PiW32t_6GVkt5wv9HMz8Uq6TG-E4hGO0667bP-onMT8GGg |
link.rule.ids | 314,780,784,27924,27925,31720,33267,33745 |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chronic+hyperglycemia%2C+independent+of+plasma+lipid+levels%2C+is+sufficient+for+the+loss+of+beta-cell+differentiation+and+secretory+function+in+the+db%2Fdb+mouse+model+of+diabetes&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Kj%C3%B8rholt%2C+Cecilie&rft.au=Akerfeldt%2C+Mia+C&rft.au=Biden%2C+Trevor+J&rft.au=Laybutt%2C+D+Ross&rft.date=2005-09-01&rft.issn=0012-1797&rft.volume=54&rft.issue=9&rft.spage=2755&rft.epage=2763&rft_id=info:doi/10.2337%2Fdiabetes.54.9.2755&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon |