Cardiac resident macrophages: Spatiotemporal distribution, development, physiological functions, and their translational potential on cardiac diseases
Cardiac resident macrophages (CRMs) are the main population of cardiac immune cells. The role of these cells in regeneration, functional remodeling, and repair after cardiac injury is always the focus of research. However, in recent years, their dynamic changes and contributions in physiological sta...
Saved in:
Published in | Acta pharmaceutica Sinica. B Vol. 14; no. 4; pp. 1483 - 1493 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cardiac resident macrophages (CRMs) are the main population of cardiac immune cells. The role of these cells in regeneration, functional remodeling, and repair after cardiac injury is always the focus of research. However, in recent years, their dynamic changes and contributions in physiological states have a significant attention. CRMs have specific phenotypes and functions in different cardiac chambers or locations of the heart and at different stages. They further show specific differentiation and development processes. The present review will summarize the new progress about the spatiotemporal distribution, potential developmental regulation, and their roles in cardiac development and aging as well as the translational potential of CRMs on cardiac diseases. Of course, the research tools for CRMs, their respective advantages and disadvantages, and key issues on CRMs will further be discussed.
CRM subsets reside in different anatomical niches with high spatiotemporal heterogeneity and play different roles in cardiac development and pathophysiology. [Display omitted] |
---|---|
AbstractList | Cardiac resident macrophages (CRMs) are the main population of cardiac immune cells. The role of these cells in regeneration, functional remodeling, and repair after cardiac injury is always the focus of research. However, in recent years, their dynamic changes and contributions in physiological states have a significant attention. CRMs have specific phenotypes and functions in different cardiac chambers or locations of the heart and at different stages. They further show specific differentiation and development processes. The present review will summarize the new progress about the spatiotemporal distribution, potential developmental regulation, and their roles in cardiac development and aging as well as the translational potential of CRMs on cardiac diseases. Of course, the research tools for CRMs, their respective advantages and disadvantages, and key issues on CRMs will further be discussed.
CRM subsets reside in different anatomical niches with high spatiotemporal heterogeneity and play different roles in cardiac development and pathophysiology. [Display omitted] Cardiac resident macrophages (CRMs) are the main population of cardiac immune cells. The role of these cells in regeneration, functional remodeling, and repair after cardiac injury is always the focus of research. However, in recent years, their dynamic changes and contributions in physiological states have a significant attention. CRMs have specific phenotypes and functions in different cardiac chambers or locations of the heart and at different stages. They further show specific differentiation and development processes. The present review will summarize the new progress about the spatiotemporal distribution, potential developmental regulation, and their roles in cardiac development and aging as well as the translational potential of CRMs on cardiac diseases. Of course, the research tools for CRMs, their respective advantages and disadvantages, and key issues on CRMs will further be discussed. Cardiac resident macrophages (CRMs) are the main population of cardiac immune cells. The role of these cells in regeneration, functional remodeling, and repair after cardiac injury is always the focus of research. However, in recent years, their dynamic changes and contributions in physiological states have a significant attention. CRMs have specific phenotypes and functions in different cardiac chambers or locations of the heart and at different stages. They further show specific differentiation and development processes. The present review will summarize the new progress about the spatiotemporal distribution, potential developmental regulation, and their roles in cardiac development and aging as well as the translational potential of CRMs on cardiac diseases. Of course, the research tools for CRMs, their respective advantages and disadvantages, and key issues on CRMs will further be discussed. CRM subsets reside in different anatomical niches with high spatiotemporal heterogeneity and play different roles in cardiac development and pathophysiology. Image 1 Cardiac resident macrophages (CRMs) are the main population of cardiac immune cells. The role of these cells in regeneration, functional remodeling, and repair after cardiac injury is always the focus of research. However, in recent years, their dynamic changes and contributions in physiological states have a significant attention. CRMs have specific phenotypes and functions in different cardiac chambers or locations of the heart and at different stages. They further show specific differentiation and development processes. The present review will summarize the new progress about the spatiotemporal distribution, potential developmental regulation, and their roles in cardiac development and aging as well as the translational potential of CRMs on cardiac diseases. Of course, the research tools for CRMs, their respective advantages and disadvantages, and key issues on CRMs will further be discussed.Cardiac resident macrophages (CRMs) are the main population of cardiac immune cells. The role of these cells in regeneration, functional remodeling, and repair after cardiac injury is always the focus of research. However, in recent years, their dynamic changes and contributions in physiological states have a significant attention. CRMs have specific phenotypes and functions in different cardiac chambers or locations of the heart and at different stages. They further show specific differentiation and development processes. The present review will summarize the new progress about the spatiotemporal distribution, potential developmental regulation, and their roles in cardiac development and aging as well as the translational potential of CRMs on cardiac diseases. Of course, the research tools for CRMs, their respective advantages and disadvantages, and key issues on CRMs will further be discussed. |
Author | Su, Zhaoliang Wang, Yurou Liu, Yueqin Jin, Jing Chakrabarti, Subrata |
Author_xml | – sequence: 1 givenname: Jing orcidid: 0009-0001-9278-0379 surname: Jin fullname: Jin, Jing organization: International Genome Center, Jiangsu University, Zhenjiang 212013, China – sequence: 2 givenname: Yurou orcidid: 0000-0002-1512-0991 surname: Wang fullname: Wang, Yurou organization: International Genome Center, Jiangsu University, Zhenjiang 212013, China – sequence: 3 givenname: Yueqin surname: Liu fullname: Liu, Yueqin organization: Center Laboratory, the Fourth People's Hospital of Zhenjiang, Zhenjiang 212008, China – sequence: 4 givenname: Subrata orcidid: 0000-0002-0208-1401 surname: Chakrabarti fullname: Chakrabarti, Subrata organization: Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 5C1, Canada – sequence: 5 givenname: Zhaoliang orcidid: 0000-0002-5998-5575 surname: Su fullname: Su, Zhaoliang email: szl30@ujs.edu.cn organization: International Genome Center, Jiangsu University, Zhenjiang 212013, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38572111$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhSNUREvpC7BAWbKYGfyXxEFICI34qVSJBbC2HPtmxqPEDrZnpL4Iz8tNZ1pRFs0mln3Od-x778vizAcPRfGakhUltH63W-kpdStGGF9RtiJUPisuGKN0yaXgZw9rXp0XVyntCH41YaypXhTnXFYNHtOL4s9aR-u0KSMkZ8HnctQmhmmrN5Delz8mnV3IME4h6qG0LuXouj3u-UVp4QBDmEZ0Lcppe5tcGMLGGRT2e29mUVqU2tsyb8HFMkft0zADPUomxPrscBV8aU63wADQCdKr4nmvhwRXp_9l8evL55_rb8ub71-v159ulqZiLC8l67UxWjSUG65p3ZquFryvjBCckK7r6h6qRoBgXdVYCxWRQrRN11SSSsMYvyyuj1wb9E5N0Y063qqgnbrbCHGjdMzODKBIZ9umbbQgLRd9hX7NrLGyE1A3PdTI-nhkTftuBGvwdVizR9DHJ95t1SYcFCWtrAgXSHh7IsTwew8pq9ElA8OgPYR9UpxwfJakfL74m3_DHlLuO4sCeRRgN1OK0Cvj8l3tMdsNGKrmOVI7Nc-RmudIUaZwjtDK_rPe0580fTiaANt1cBBVMg68AesimIz1dE_Z_wLtauW9 |
CitedBy_id | crossref_primary_10_3389_fimmu_2024_1467089 crossref_primary_10_1038_s41392_024_02069_8 crossref_primary_10_1016_j_intimp_2024_113873 |
Cites_doi | 10.1002/art.11430 10.1161/CIRCRESAHA.115.307778 10.1007/s00395-019-0769-3 10.1016/j.coi.2020.09.005 10.1161/CIRCRESAHA.115.303567 10.1056/NEJMoa1609214 10.1161/CIRCRESAHA.119.315069 10.1002/advs.202100505 10.1038/s41467-019-11843-0 10.1089/ten.teb.2021.0036 10.1016/j.jacc.2019.10.036 10.1186/s12943-019-1022-2 10.1016/j.cell.2020.08.031 10.1007/s00395-016-0584-z 10.1016/j.immuni.2014.06.013 10.1016/j.trsl.2017.10.001 10.1182/blood-2011-09-379214 10.1016/j.it.2019.07.002 10.2741/2692 10.1016/j.immuni.2022.08.010 10.1126/science.1194637 10.1161/CIRCRESAHA.119.316428 10.1161/CIRCRESAHA.117.311071 10.1161/01.RES.87.5.346 10.1038/nature07472 10.1161/CIRCRESAHA.115.308270 10.1016/S0301-472X(00)00157-0 10.3389/fphar.2019.01420 10.7150/thno.67661 10.1073/pnas.1720065115 10.1016/j.cardiores.2004.11.029 10.1002/cti2.1167 10.1016/j.ydbio.2006.09.025 10.1002/ehf2.13832 10.1161/CIRCRESAHA.120.316363 10.1038/s41586-023-05795-1 10.1113/EP089450 10.1161/CIRCULATIONAHA.121.057549 10.1038/s41586-020-2797-4 10.1016/j.tcb.2004.09.016 10.1038/ni.2705 10.1161/CIRCRESAHA.119.315185 10.1111/imr.12224 10.1093/cvr/cvu059 10.1038/s41467-022-32284-2 10.1126/science.aaf4238 10.1093/eurheartj/ehad230 10.1161/ATVBAHA.117.310667 10.1038/s41577-018-0065-8 10.1182/blood-2012-02-408252 10.1038/s41586-021-03547-7 10.1016/j.immuni.2019.06.010 10.1301/nr.2007.dec.S173-S176 10.1016/j.immuni.2022.08.009 10.1016/j.immuni.2021.07.006 10.1126/sciimmunol.abf7777 10.1016/j.apsb.2022.05.010 10.1016/j.immuni.2013.12.005 10.1161/CIRCRESAHA.121.319737 10.1038/s41593-019-0393-4 10.1126/science.1204351 10.1016/j.devcel.2019.01.021 10.1002/cti2.1222 10.1093/cvr/cvx152 10.1021/acs.accounts.1c00550 10.1093/cvr/cvac113 10.1016/j.jacc.2018.08.2147 10.1038/nprot.2017.139 10.1172/JCI72181 10.15252/embj.201693801 10.1161/CIRCGENETICS.111.959981 10.1016/j.jhep.2016.05.037 10.1007/s00395-020-00836-6 10.1093/cvr/cvaa062 10.1016/j.cell.2017.03.050 10.1161/CIRCRESAHA.119.315862 10.1084/jem.20230339 10.1016/j.immuni.2012.12.001 10.1007/s00395-022-00971-2 10.1242/dev.194563 10.1016/j.yjmcc.2015.08.009 10.1002/JLB.6MR0118-041R 10.1007/s13238-022-00908-4 10.1183/13993003.00103-2018 10.1038/s41572-022-00347-9 10.1016/j.apsb.2021.10.022 10.3389/fimmu.2021.753940 10.1097/SHK.0000000000001625 10.1016/j.jacc.2018.08.2149 10.3389/fimmu.2023.1111819 10.1084/jem.20121999 10.1016/j.celrep.2022.111891 10.1161/CIRCULATIONAHA.119.045401 10.1371/journal.pone.0036814 10.1016/j.celrep.2016.09.008 10.18632/aging.100669 10.1016/j.immuni.2013.11.019 10.1016/j.apsb.2022.08.016 10.1182/blood-2015-01-624809 |
ContentType | Journal Article |
Copyright | 2024 The Authors 2024 The Authors. 2024 The Authors 2024 |
Copyright_xml | – notice: 2024 The Authors – notice: 2024 The Authors. – notice: 2024 The Authors 2024 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.apsb.2023.12.018 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 2211-3843 |
EndPage | 1493 |
ExternalDocumentID | oai_doaj_org_article_0bd9797a40934f518ca2dcd8b4e67fe6 PMC10985034 38572111 10_1016_j_apsb_2023_12_018 S2211383523005002 |
Genre | Journal Article Review |
GroupedDBID | --- --K -05 -0E -SE -S~ 0R~ 0SF 1~5 4.4 457 4G. 53G 5VR 5VS 6I. 7-5 92M 9D9 9DE AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXDM AAXUO ABKZE ABMAC ACGFS ADBBV ADEZE ADRAZ AEXQZ AFUIB AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV CAJEE CAJUS CCEZO CIEJG DIK EBS EJD FDB GROUPED_DOAJ GX1 HH5 HYE HZ~ IPNFZ IXB JUIAU KQ8 M41 M48 NCXOZ O-L O9- OK1 Q-- Q-4 R-E RIG ROL RPM RT5 SES SSZ T8U U1F U1G U5E U5O XH2 ~NG AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c522t-82facca4713c3a169cb643f5c44300bbb6fe574e42b57dde5084497b75818c223 |
IEDL.DBID | M48 |
ISSN | 2211-3835 |
IngestDate | Wed Aug 27 01:30:49 EDT 2025 Thu Aug 21 18:34:45 EDT 2025 Fri Jul 11 03:06:45 EDT 2025 Thu Jan 02 22:31:33 EST 2025 Thu Apr 24 23:10:39 EDT 2025 Tue Jul 01 01:53:13 EDT 2025 Sat Apr 06 16:24:58 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Cardiac resident macrophages Clinical translation Cardiac development Research tools Cardiac homeostasis Transcriptional characteristics Physiological functions Spatiotemporal distribution |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c522t-82facca4713c3a169cb643f5c44300bbb6fe574e42b57dde5084497b75818c223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 These authors made equal contributions to this work. |
ORCID | 0000-0002-1512-0991 0009-0001-9278-0379 0000-0002-0208-1401 0000-0002-5998-5575 |
OpenAccessLink | https://doaj.org/article/0bd9797a40934f518ca2dcd8b4e67fe6 |
PMID | 38572111 |
PQID | 3033008132 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0bd9797a40934f518ca2dcd8b4e67fe6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10985034 proquest_miscellaneous_3033008132 pubmed_primary_38572111 crossref_citationtrail_10_1016_j_apsb_2023_12_018 crossref_primary_10_1016_j_apsb_2023_12_018 elsevier_sciencedirect_doi_10_1016_j_apsb_2023_12_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Acta pharmaceutica Sinica. B |
PublicationTitleAlternate | Acta Pharm Sin B |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Sansonetti, Waleczek, Jung, Thum, Perbellini (bib74) 2020; 115 Pinto, Godwin, Chandran, Hersey, Ilinykh, Debuque (bib41) 2014; 6 Schyns, Bai, Ruscitti, Radermecker, De Schepper, Chakarov (bib22) 2019; 10 Li, Li, Fan (bib54) 2021; 55 Franceschi (bib61) 2007; 65 Wang, Lu, Zhao, Zhong, Lin, Sun (bib33) 2020; 115 Boada, Zinger, Tsao, Zhao, Martinez, Hartman (bib93) 2020; 126 Chen, Huang, Su, Wu, Hanna, Brickshawana (bib101) 2019; 125 Rizzo, Gropper, Piollet, Vafadarnejad, Rizakou, Bandi (bib85) 2023; 119 Jenkins, Ruckerl, Cook, Jones, Finkelman, van Rooijen (bib38) 2011; 332 Clancy, Kapur, Molad, Askanase, Buyon (bib53) 2004; 50 Cohen, Mosser (bib42) 2014; 40 Nattel, Heijman, Zhou, Dobrev (bib69) 2020; 127 Hou, Xiao, Tang, Xie (bib21) 2021; 12 Mass, Ballesteros, Farlik, Halbritter, Günther, Crozet (bib32) 2016; 353 Deniset, Belke, Lee, Jorch, Deppermann, Hassanabad (bib27) 2019; 51 Johnson, Balko, Compton, Chalkias, Gorham, Xu (bib100) 2016; 375 Zhou, Moore (bib45) 2018; 51 Lavine, Pinto, Epelman, Kopecky, Clemente-Casares, Godwin (bib2) 2018; 72 Sreejit, Fleetwood, Murphy, Nagareddy (bib23) 2020; 9 Brundel, Ai, Hills, Kuipers, Lip, de Groot (bib71) 2022; 8 Zhang, Deng, Kukanja, Agirre, Bartosovic, Dong (bib86) 2023; 616 Shigeta, Huang, Zuo, Besada, Nakashima, Lu (bib52) 2019; 48 Perbellini, Watson, Scigliano, Alayoubi, Tkach, Bardi (bib90) 2018; 114 Myers, Amend, Pienta (bib75) 2019; 18 Nunez-Toldra, Kirwin, Ferraro, Pitoulis, Nicastro, Bardi (bib91) 2022; 9 Litviňuková, Talavera-López, Maatz, Reichart, Worth, Lindberg (bib25) 2020; 588 Hagemeyer, Kierdorf, Frenzel, Xue, Ringelhan, Abdullah (bib103) 2016; 35 Kim, Xu, Yutzey (bib28) 2021; 117 Zhou, Liu, Zhao, Xian, Wu, Zhang (bib94) 2021; 8 Hulsmans, Clauss, Xiao, Aguirre, King, Hanley (bib30) 2017; 169 Gu, Zhou, Ju, Liu, Zhang, Guo (bib49) 2022; 41 Nicolás-Ávila, Hidalgo, Ballesteros (bib68) 2018; 104 Li, Yao, Yu, Li, Zhang, Mao (bib55) 2022; 13 Zaman, Hamidzada, Epelman (bib9) 2021; 68 Ginhoux, Greter, Leboeuf, Nandi, See, Gokhan (bib43) 2010; 330 Epelman, Lavine, Beaudin, Sojka, Carrero, Calderon (bib40) 2014; 40 Chen, Zhang, Liu, Xia, Wang, Sandoghchian Shotorbani (bib17) 2023; 13 Lichanska, Hume (bib44) 2000; 28 Zaman, Epelman (bib16) 2022; 55 Dick, Wong, Hamidzada, Nejat, Nechanitzky, Vohra (bib34) 2022; 7 Li, Cao, Li, Cui, Ni, Zhang (bib7) 2023; 10 Wang, Koenig, Lavine, Apte (bib65) 2019; 40 Ma, Mouton, Lindsey (bib60) 2018; 191 Yona, Kim, Wolf, Mildner, Varol, Breker (bib31) 2013; 38 Guo, Pu (bib57) 2020; 126 Zhang, Yeap, Grigoryeva, Dehn, DeBerge, Tye (bib77) 2015; 87 Chiao, Dai, Zhang, Lin, Lopez, Ahuja (bib62) 2011; 4 Honold, Nahrendorf (bib81) 2018; 122 Pinto, Ilinykh, Ivey, Kuwabara, D'Antoni, Debuque (bib3) 2016; 118 Liao, Shen, Zhang, Sugi, Vasudevan, Alaiti (bib79) 2018; 115 Kohyama, Ise, Edelson, Wilker, Hildner, Mejia (bib48) 2009; 457 Moore, Koplev, Fisher, Tabas, Björkegren, Doran (bib63) 2018; 72 Watson, Scigliano, Bardi, Ascione, Terracciano, Perbellini (bib89) 2017; 12 Beattie, Sawtell, Mann, Frame, Teal, de Labastida Rivera (bib47) 2016; 65 Leid, Carrelha, Boukarabila, Epelman, Jacobsen, Lavine (bib50) 2016; 118 Lo (bib70) 2000; 87 Zaman, Hamidzada, Kantores, Wong, Dick, Wang (bib15) 2021; 54 Yousefzadeh, Flores, Zhu, Schmiechen, Brooks, Trussoni (bib64) 2021; 594 Martinez, Sica, Mantovani, Locati (bib102) 2008; 13 Pixley, Stanley (bib36) 2004; 14 Gibbings, Goyal, Desch, Leach, Prabagar, Atif (bib46) 2015; 126 Cho, Lee, Rah, Chang, Yoon (bib88) 2022; 12 Lindsey, Goshorn, Squires, Escobar, Hendrick, Mingoia (bib59) 2005; 66 Xia, Li, Chen, Huang, Zhao, Liu (bib96) 2022; 12 Mass (bib98) 2023; 220 Zhang, Xu, Sun, Yang, Zhang, Bai (bib10) 2020; 127 Nicolas-Avila, Lechuga-Vieco, Esteban-Martinez, Sanchez-Diaz, Diaz-Garcia, Santiago (bib76) 2020; 183 Suku, Forrester, Biggs, Monaghan (bib12) 2022; 28 Galván-Peña, O'Neill (bib66) 2014; 5 Epelman, Lavine, Randolph (bib83) 2014; 41 Stadtfeld, Ye, Graf (bib84) 2007; 302 Sattler, Campos Ramos, Ludewig, Rainer (bib1) 2023; 44 Cahill, Sun, Ravaud, Villa Del Campo, Klaourakis, Lupu (bib51) 2021; 148 Tucker, Chaffin, Fleming, Hall, Parsons, Bedi (bib26) 2020; 142 Fan, Chen, Liu, Wang (bib56) 2021; 106 Jia, Chen, Bai, Luo, Liu, Sun (bib6) 2022; 145 Van den Bossche, Baardman, Otto, van der Velden, Neele, van den Berg (bib67) 2016; 17 Sun, Zhou, Xie, Wang, Wang, Zhao (bib73) 2016; 111 Pinto, Paolicelli, Salimova, Gospocic, Slonimsky, Bilbao-Cortes (bib18) 2012; 7 Revelo, Parthiban, Chen, Barrow, Fredrickson, Wang (bib82) 2021; 129 Zaman, Hamidzada, Kantores, Wong, Dick, Wang (bib58) 2021; 54 Isidoro, Deniset (bib78) 2023; 14 Zhang, Chen, Chakrabarti, Su (bib13) 2020; 9 Fujiu, Wang, Nagai (bib11) 2014; 102 Swirski, Nahrendorf (bib14) 2018; 18 Waleczek, Sansonetti, Xiao, Jung, Mitzka, Dendorfer (bib87) 2022; 117 Rückerl, Jenkins, Laqtom, Gallagher, Sutherland, Duncan (bib39) 2012; 120 Gentek, Molawi, Sieweke (bib8) 2014; 262 Hume, MacDonald (bib35) 2012; 119 Aegerter, Lambrecht, Jakubzick (bib20) 2022; 55 Dong, Zhang, Gao, Yin, Wang, Li (bib92) 2021; 6 Van Hove, Martens, Scheyltjens, De Vlaminck, Pombo Antunes, De Prijck (bib24) 2019; 22 Haider, Bosca, Zandbergen, Kovacic, Narula, Gonzalez-Ramos (bib99) 2019; 74 Heidt, Courties, Dutta, Sager, Sebas, Iwamoto (bib4) 2014; 115 Wang, Zhang, Dong (bib95) 2021; 54 Davies, Jenkins, Allen, Taylor (bib19) 2013; 14 Liu, Zhou, Li, Shen, Zhou, Liu (bib97) 2023; 13 Jung, Hwang, Shin, Park, Park, Kim (bib5) 2022; 13 Jenkins, Ruckerl, Thomas, Hewitson, Duncan, Brombacher (bib37) 2013; 210 Coppini, Santini, Palandri, Sartiani, Cerbai, Raimondi (bib72) 2019; 10 Aurora, Porrello, Tan, Mahmoud, Hill, Bassel-Duby (bib80) 2014; 124 Hulin, Anstine, Kim, Potter, DeFalco, Lincoln (bib29) 2018; 38 Ginhoux (10.1016/j.apsb.2023.12.018_bib43) 2010; 330 Cahill (10.1016/j.apsb.2023.12.018_bib51) 2021; 148 Li (10.1016/j.apsb.2023.12.018_bib55) 2022; 13 Hagemeyer (10.1016/j.apsb.2023.12.018_bib103) 2016; 35 Wang (10.1016/j.apsb.2023.12.018_bib65) 2019; 40 Dong (10.1016/j.apsb.2023.12.018_bib92) 2021; 6 Kohyama (10.1016/j.apsb.2023.12.018_bib48) 2009; 457 Coppini (10.1016/j.apsb.2023.12.018_bib72) 2019; 10 Jia (10.1016/j.apsb.2023.12.018_bib6) 2022; 145 Liu (10.1016/j.apsb.2023.12.018_bib97) 2023; 13 Shigeta (10.1016/j.apsb.2023.12.018_bib52) 2019; 48 Gentek (10.1016/j.apsb.2023.12.018_bib8) 2014; 262 Hulin (10.1016/j.apsb.2023.12.018_bib29) 2018; 38 Haider (10.1016/j.apsb.2023.12.018_bib99) 2019; 74 Galván-Peña (10.1016/j.apsb.2023.12.018_bib66) 2014; 5 Lavine (10.1016/j.apsb.2023.12.018_bib2) 2018; 72 Schyns (10.1016/j.apsb.2023.12.018_bib22) 2019; 10 Revelo (10.1016/j.apsb.2023.12.018_bib82) 2021; 129 Zhang (10.1016/j.apsb.2023.12.018_bib10) 2020; 127 Moore (10.1016/j.apsb.2023.12.018_bib63) 2018; 72 Ma (10.1016/j.apsb.2023.12.018_bib60) 2018; 191 Watson (10.1016/j.apsb.2023.12.018_bib89) 2017; 12 Cho (10.1016/j.apsb.2023.12.018_bib88) 2022; 12 Pinto (10.1016/j.apsb.2023.12.018_bib41) 2014; 6 Li (10.1016/j.apsb.2023.12.018_bib54) 2021; 55 Fan (10.1016/j.apsb.2023.12.018_bib56) 2021; 106 Mass (10.1016/j.apsb.2023.12.018_bib98) 2023; 220 Pinto (10.1016/j.apsb.2023.12.018_bib18) 2012; 7 Lindsey (10.1016/j.apsb.2023.12.018_bib59) 2005; 66 Epelman (10.1016/j.apsb.2023.12.018_bib40) 2014; 40 Aurora (10.1016/j.apsb.2023.12.018_bib80) 2014; 124 Rizzo (10.1016/j.apsb.2023.12.018_bib85) 2023; 119 Fujiu (10.1016/j.apsb.2023.12.018_bib11) 2014; 102 Aegerter (10.1016/j.apsb.2023.12.018_bib20) 2022; 55 Liao (10.1016/j.apsb.2023.12.018_bib79) 2018; 115 Li (10.1016/j.apsb.2023.12.018_bib7) 2023; 10 Jenkins (10.1016/j.apsb.2023.12.018_bib37) 2013; 210 Leid (10.1016/j.apsb.2023.12.018_bib50) 2016; 118 Litviňuková (10.1016/j.apsb.2023.12.018_bib25) 2020; 588 Wang (10.1016/j.apsb.2023.12.018_bib95) 2021; 54 Clancy (10.1016/j.apsb.2023.12.018_bib53) 2004; 50 Sreejit (10.1016/j.apsb.2023.12.018_bib23) 2020; 9 Chiao (10.1016/j.apsb.2023.12.018_bib62) 2011; 4 Deniset (10.1016/j.apsb.2023.12.018_bib27) 2019; 51 Zaman (10.1016/j.apsb.2023.12.018_bib9) 2021; 68 Van den Bossche (10.1016/j.apsb.2023.12.018_bib67) 2016; 17 Sattler (10.1016/j.apsb.2023.12.018_bib1) 2023; 44 Nunez-Toldra (10.1016/j.apsb.2023.12.018_bib91) 2022; 9 Zhang (10.1016/j.apsb.2023.12.018_bib77) 2015; 87 Epelman (10.1016/j.apsb.2023.12.018_bib83) 2014; 41 Lichanska (10.1016/j.apsb.2023.12.018_bib44) 2000; 28 Franceschi (10.1016/j.apsb.2023.12.018_bib61) 2007; 65 Lo (10.1016/j.apsb.2023.12.018_bib70) 2000; 87 Pixley (10.1016/j.apsb.2023.12.018_bib36) 2004; 14 Zhang (10.1016/j.apsb.2023.12.018_bib86) 2023; 616 Tucker (10.1016/j.apsb.2023.12.018_bib26) 2020; 142 Yona (10.1016/j.apsb.2023.12.018_bib31) 2013; 38 Heidt (10.1016/j.apsb.2023.12.018_bib4) 2014; 115 Rückerl (10.1016/j.apsb.2023.12.018_bib39) 2012; 120 Sun (10.1016/j.apsb.2023.12.018_bib73) 2016; 111 Suku (10.1016/j.apsb.2023.12.018_bib12) 2022; 28 Swirski (10.1016/j.apsb.2023.12.018_bib14) 2018; 18 Boada (10.1016/j.apsb.2023.12.018_bib93) 2020; 126 Zhou (10.1016/j.apsb.2023.12.018_bib45) 2018; 51 Pinto (10.1016/j.apsb.2023.12.018_bib3) 2016; 118 Nicolas-Avila (10.1016/j.apsb.2023.12.018_bib76) 2020; 183 Beattie (10.1016/j.apsb.2023.12.018_bib47) 2016; 65 Johnson (10.1016/j.apsb.2023.12.018_bib100) 2016; 375 Xia (10.1016/j.apsb.2023.12.018_bib96) 2022; 12 Isidoro (10.1016/j.apsb.2023.12.018_bib78) 2023; 14 Kim (10.1016/j.apsb.2023.12.018_bib28) 2021; 117 Mass (10.1016/j.apsb.2023.12.018_bib32) 2016; 353 Yousefzadeh (10.1016/j.apsb.2023.12.018_bib64) 2021; 594 Honold (10.1016/j.apsb.2023.12.018_bib81) 2018; 122 Cohen (10.1016/j.apsb.2023.12.018_bib42) 2014; 40 Brundel (10.1016/j.apsb.2023.12.018_bib71) 2022; 8 Chen (10.1016/j.apsb.2023.12.018_bib17) 2023; 13 Waleczek (10.1016/j.apsb.2023.12.018_bib87) 2022; 117 Zaman (10.1016/j.apsb.2023.12.018_bib15) 2021; 54 Sansonetti (10.1016/j.apsb.2023.12.018_bib74) 2020; 115 Perbellini (10.1016/j.apsb.2023.12.018_bib90) 2018; 114 Myers (10.1016/j.apsb.2023.12.018_bib75) 2019; 18 Wang (10.1016/j.apsb.2023.12.018_bib33) 2020; 115 Davies (10.1016/j.apsb.2023.12.018_bib19) 2013; 14 Jenkins (10.1016/j.apsb.2023.12.018_bib38) 2011; 332 Chen (10.1016/j.apsb.2023.12.018_bib101) 2019; 125 Hulsmans (10.1016/j.apsb.2023.12.018_bib30) 2017; 169 Gu (10.1016/j.apsb.2023.12.018_bib49) 2022; 41 Zaman (10.1016/j.apsb.2023.12.018_bib16) 2022; 55 Zaman (10.1016/j.apsb.2023.12.018_bib58) 2021; 54 Stadtfeld (10.1016/j.apsb.2023.12.018_bib84) 2007; 302 Jung (10.1016/j.apsb.2023.12.018_bib5) 2022; 13 Gibbings (10.1016/j.apsb.2023.12.018_bib46) 2015; 126 Dick (10.1016/j.apsb.2023.12.018_bib34) 2022; 7 Nattel (10.1016/j.apsb.2023.12.018_bib69) 2020; 127 Martinez (10.1016/j.apsb.2023.12.018_bib102) 2008; 13 Van Hove (10.1016/j.apsb.2023.12.018_bib24) 2019; 22 Hou (10.1016/j.apsb.2023.12.018_bib21) 2021; 12 Zhou (10.1016/j.apsb.2023.12.018_bib94) 2021; 8 Guo (10.1016/j.apsb.2023.12.018_bib57) 2020; 126 Hume (10.1016/j.apsb.2023.12.018_bib35) 2012; 119 Zhang (10.1016/j.apsb.2023.12.018_bib13) 2020; 9 Nicolás-Ávila (10.1016/j.apsb.2023.12.018_bib68) 2018; 104 |
References_xml | – volume: 125 start-page: 55 year: 2019 end-page: 70 ident: bib101 article-title: Macrophage Smad3 protects the infarcted heart, stimulating phagocytosis and regulating inflammation publication-title: Circ Res – volume: 145 start-page: 1542 year: 2022 end-page: 1556 ident: bib6 article-title: Cardiac resident macrophage-derived legumain improves cardiac repair by promoting clearance and degradation of apoptotic cardiomyocytes after myocardial infarction publication-title: Circulation – volume: 14 start-page: 986 year: 2013 end-page: 995 ident: bib19 article-title: Tissue-resident macrophages publication-title: Nat Immunol – volume: 129 start-page: 1086 year: 2021 end-page: 1101 ident: bib82 article-title: Cardiac resident macrophages prevent fibrosis and stimulate angiogenesis publication-title: Circ Res – volume: 111 start-page: 63 year: 2016 ident: bib73 article-title: Cross-talk between macrophages and atrial myocytes in atrial fibrillation publication-title: Basic Res Cardiol – volume: 14 year: 2023 ident: bib78 article-title: The role of macrophage subsets in and around the heart in modulating cardiac homeostasis and pathophysiology publication-title: Front Immunol – volume: 9 start-page: e1222 year: 2020 ident: bib23 article-title: Origins and diversity of macrophages in health and disease publication-title: Clin Transl Immunology – volume: 13 start-page: 128 year: 2023 end-page: 141 ident: bib17 article-title: Renewal of embryonic and neonatal-derived cardiac-resident macrophages in response to environmental cues abrogated their potential to promote cardiomyocyte proliferation publication-title: Acta Pharm Sin B – volume: 332 start-page: 1284 year: 2011 end-page: 1288 ident: bib38 article-title: Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation publication-title: Science – volume: 262 start-page: 56 year: 2014 end-page: 73 ident: bib8 article-title: Tissue macrophage identity and self-renewal publication-title: Immunol Rev – volume: 65 start-page: 758 year: 2016 end-page: 768 ident: bib47 article-title: Bone marrow-derived and resident liver macrophages display unique transcriptomic signatures but similar biological functions publication-title: J Hepatol – volume: 40 start-page: 91 year: 2014 end-page: 104 ident: bib40 article-title: Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation publication-title: Immunity – volume: 210 start-page: 2477 year: 2013 end-page: 2491 ident: bib37 article-title: IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1 publication-title: J Exp Med – volume: 13 start-page: 453 year: 2008 end-page: 461 ident: bib102 article-title: Macrophage activation and polarization publication-title: Front Biosci – volume: 127 start-page: 610 year: 2020 end-page: 627 ident: bib10 article-title: Self-maintenance of cardiac resident reparative macrophages attenuates doxorubicin-induced cardiomyopathy through the SR-A1–c-Myc axis publication-title: Circ Res – volume: 51 start-page: 131 year: 2019 end-page: 140.e5 ident: bib27 article-title: Gata6 publication-title: Immunity – volume: 48 start-page: 617 year: 2019 end-page: 630.e3 ident: bib52 article-title: Endocardially derived macrophages are essential for valvular remodeling publication-title: Dev Cell – volume: 6 start-page: 399 year: 2014 end-page: 413 ident: bib41 article-title: Age-related changes in tissue macrophages precede cardiac functional impairment publication-title: Aging – volume: 119 start-page: 772 year: 2023 end-page: 785 ident: bib85 article-title: Dynamics of monocyte-derived macrophage diversity in experimental myocardial infarction publication-title: Cardiovasc Res – volume: 330 start-page: 841 year: 2010 end-page: 845 ident: bib43 article-title: Fate mapping analysis reveals that adult microglia derive from primitive macrophages publication-title: Science – volume: 65 start-page: S173 year: 2007 end-page: S176 ident: bib61 article-title: Inflammaging as a major characteristic of old people: can it be prevented or cured? publication-title: Nutr Rev – volume: 104 start-page: 743 year: 2018 end-page: 756 ident: bib68 article-title: Specialized functions of resident macrophages in brain and heart publication-title: J Leukoc Biol – volume: 115 start-page: 8 year: 2020 ident: bib33 article-title: Distinct origins and functions of cardiac orthotopic macrophages publication-title: Basic Res Cardiol – volume: 115 start-page: 284 year: 2014 end-page: 295 ident: bib4 article-title: Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction publication-title: Circ Res – volume: 142 start-page: 466 year: 2020 end-page: 482 ident: bib26 article-title: Transcriptional and cellular diversity of the human heart publication-title: Circulation – volume: 126 start-page: 1357 year: 2015 end-page: 1366 ident: bib46 article-title: Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages publication-title: Blood – volume: 41 year: 2022 ident: bib49 article-title: Multi-omics profiling visualizes dynamics of cardiac development and functions publication-title: Cell Rep – volume: 9 start-page: 1400 year: 2022 end-page: 1412 ident: bib91 article-title: Mechanosensitive molecular mechanisms of myocardial fibrosis in living myocardial slices publication-title: ESC Heart Fail – volume: 72 start-page: 2213 year: 2018 end-page: 2230 ident: bib2 article-title: The macrophage in cardiac homeostasis and disease: JACC macrophage in CVD series (Part 4) publication-title: J Am Coll Cardiol – volume: 119 start-page: 1810 year: 2012 end-page: 1820 ident: bib35 article-title: Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling publication-title: Blood – volume: 594 start-page: 100 year: 2021 end-page: 105 ident: bib64 article-title: An aged immune system drives senescence and ageing of solid organs publication-title: Nature – volume: 13 start-page: 4580 year: 2022 ident: bib5 article-title: Spatiotemporal dynamics of macrophage heterogeneity and a potential function of Trem2 publication-title: Nat Commun – volume: 8 start-page: 21 year: 2022 ident: bib71 article-title: Atrial fibrillation publication-title: Nat Rev Dis Primers – volume: 169 start-page: 510 year: 2017 end-page: 522.e20 ident: bib30 article-title: Macrophages facilitate electrical conduction in the heart publication-title: Cell – volume: 4 start-page: 455 year: 2011 end-page: 462 ident: bib62 article-title: Multi-analyte profiling reveals matrix metalloproteinase-9 and monocyte chemotactic protein-1 as plasma biomarkers of cardiac aging publication-title: Circ Cardiovasc Genet – volume: 72 start-page: 2181 year: 2018 end-page: 2197 ident: bib63 article-title: Macrophage trafficking, inflammatory resolution, and genomics in atherosclerosis: JACC macrophage in CVD series (Part 2) publication-title: J Am Coll Cardiol – volume: 353 start-page: aaf4238 year: 2016 ident: bib32 article-title: Specification of tissue-resident macrophages during organogenesis publication-title: Science – volume: 54 start-page: 4283 year: 2021 end-page: 4293 ident: bib95 article-title: Lipid nanoparticle-mRNA formulations for therapeutic applications publication-title: Acc Chem Res – volume: 10 year: 2023 ident: bib7 article-title: M2 macrophage-derived sEV regulate pro-inflammatory CCR2 publication-title: Adv Sci – volume: 51 year: 2018 ident: bib45 article-title: Location or origin? What is critical for macrophage propagation of lung fibrosis? publication-title: Eur Respir J – volume: 18 start-page: 733 year: 2018 end-page: 744 ident: bib14 article-title: Cardioimmunology: the immune system in cardiac homeostasis and disease publication-title: Nat Rev Immunol – volume: 54 year: 2021 ident: bib15 article-title: Selective loss of resident macrophage-derived insulin-like growth factor-1 abolishes adaptive cardiac growth to stress publication-title: Immunity – volume: 14 start-page: 628 year: 2004 end-page: 638 ident: bib36 article-title: CSF-1 regulation of the wandering macrophage: complexity in action publication-title: Trends Cell Biol – volume: 375 start-page: 1749 year: 2016 end-page: 1755 ident: bib100 article-title: Fulminant myocarditis with combination immune checkpoint blockade publication-title: N Engl J Med – volume: 74 start-page: 3124 year: 2019 end-page: 3135 ident: bib99 article-title: Transition of macrophages to fibroblast-like cells in healing myocardial infarction publication-title: J Am Coll Cardiol – volume: 35 start-page: 1730 year: 2016 end-page: 1744 ident: bib103 article-title: Transcriptome-based profiling of yolk sac-derived macrophages reveals a role for Irf8 in macrophage maturation publication-title: EMBO J – volume: 10 start-page: 3964 year: 2019 ident: bib22 article-title: Non-classical tissue monocytes and two functionally distinct populations of interstitial macrophages populate the mouse lung publication-title: Nat Commun – volume: 87 start-page: 346 year: 2000 end-page: 348 ident: bib70 article-title: Role of gap junctions in cardiac conduction and development: insights from the connexin knockout mice publication-title: Circ Res – volume: 117 start-page: 63 year: 2022 ident: bib87 article-title: Chemical and mechanical activation of resident cardiac macrophages in the living myocardial slice publication-title: Basic Res Cardiol – volume: 28 start-page: 579 year: 2022 end-page: 591 ident: bib12 article-title: Resident macrophages and their potential in cardiac tissue engineering publication-title: Tissue Eng Part B Rev – volume: 38 start-page: 636 year: 2018 end-page: 644 ident: bib29 article-title: Macrophage transitions in heart valve development and myxomatous valve disease publication-title: Arterioscler Thromb Vasc Biol – volume: 9 start-page: e1167 year: 2020 ident: bib13 article-title: Resident macrophages as potential therapeutic targets for cardiac ageing and injury publication-title: Clin Transl Immunology – volume: 50 start-page: 173 year: 2004 end-page: 182 ident: bib53 article-title: Immunohistologic evidence supports apoptosis, IgG deposition, and novel macrophage/fibroblast crosstalk in the pathologic cascade leading to congenital heart block publication-title: Arthritis Rheum – volume: 457 start-page: 318 year: 2009 end-page: 321 ident: bib48 article-title: Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis publication-title: Nature – volume: 191 start-page: 15 year: 2018 end-page: 28 ident: bib60 article-title: Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction publication-title: Transl Res – volume: 38 start-page: 79 year: 2013 end-page: 91 ident: bib31 article-title: Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis publication-title: Immunity – volume: 55 start-page: 177 year: 2021 end-page: 188 ident: bib54 article-title: Macrophage efferocytosis in cardiac pathophysiology and repair publication-title: Shock – volume: 302 start-page: 195 year: 2007 end-page: 207 ident: bib84 article-title: Identification of interventricular septum precursor cells in the mouse embryo publication-title: Dev Biol – volume: 13 start-page: 842 year: 2022 end-page: 862 ident: bib55 article-title: Postnatal state transition of cardiomyocyte as a primary step in heart maturation publication-title: Protein Cell – volume: 40 start-page: 3 year: 2014 end-page: 5 ident: bib42 article-title: Cardiac macrophages: how to mend a broken heart publication-title: Immunity – volume: 87 start-page: 171 year: 2015 end-page: 179 ident: bib77 article-title: Cardiomyocytes induce macrophage receptor shedding to suppress phagocytosis publication-title: J Mol Cell Cardiol – volume: 220 year: 2023 ident: bib98 article-title: The stunning clodronate publication-title: J Exp Med – volume: 122 start-page: 113 year: 2018 end-page: 127 ident: bib81 article-title: Resident and monocyte-derived macrophages in cardiovascular disease publication-title: Circ Res – volume: 55 start-page: 1549 year: 2022 end-page: 1563 ident: bib16 article-title: Resident cardiac macrophages: heterogeneity and function in health and disease publication-title: Immunity – volume: 18 start-page: 94 year: 2019 ident: bib75 article-title: Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment publication-title: Mol Cancer – volume: 12 year: 2021 ident: bib21 article-title: Diversity of macrophages in lung homeostasis and diseases publication-title: Front Immunol – volume: 28 start-page: 601 year: 2000 end-page: 611 ident: bib44 article-title: Origins and functions of phagocytes in the embryo publication-title: Exp Hematol – volume: 13 start-page: 327 year: 2023 end-page: 343 ident: bib97 article-title: Macrophage-evading and tumor-specific apoptosis inducing nanoparticles for targeted cancer therapy publication-title: Acta Pharm Sin B – volume: 126 start-page: 25 year: 2020 end-page: 37 ident: bib93 article-title: Rapamycin-loaded biomimetic nanoparticles reverse vascular inflammation publication-title: Circ Res – volume: 44 start-page: 2355 year: 2023 end-page: 2357 ident: bib1 article-title: Cardioimmunology: the new frontier! publication-title: Eur Heart J – volume: 124 start-page: 1382 year: 2014 end-page: 1392 ident: bib80 article-title: Macrophages are required for neonatal heart regeneration publication-title: J Clin Invest – volume: 114 start-page: 77 year: 2018 end-page: 89 ident: bib90 article-title: Investigation of cardiac fibroblasts using myocardial slices publication-title: Cardiovasc Res – volume: 8 year: 2021 ident: bib94 article-title: Natural melanin/alginate hydrogels achieve cardiac repair through ROS scavenging and macrophage polarization publication-title: Adv Sci – volume: 6 start-page: 2870 year: 2021 end-page: 2880 ident: bib92 article-title: HIF1alpha epigenetically repressed macrophages publication-title: Bioact Mater – volume: 17 start-page: 684 year: 2016 end-page: 696 ident: bib67 article-title: Mitochondrial dysfunction prevents repolarization of inflammatory macrophages publication-title: Cell Rep – volume: 12 start-page: 2506 year: 2022 end-page: 2521 ident: bib96 article-title: Intravenous route to choroidal neovascularization by macrophage-disguised nanocarriers for mTOR modulation publication-title: Acta Pharm Sin B – volume: 5 start-page: 420 year: 2014 ident: bib66 article-title: Metabolic reprograming in macrophage polarization publication-title: Front Immunol – volume: 22 start-page: 1021 year: 2019 end-page: 1035 ident: bib24 article-title: A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment publication-title: Nat Neurosci – volume: 10 start-page: 1420 year: 2019 ident: bib72 article-title: Pharmacological inhibition of serine proteases to reduce cardiac inflammation and fibrosis in atrial fibrillation publication-title: Front Pharmacol – volume: 148 start-page: dev194563 year: 2021 ident: bib51 article-title: Tissue-resident macrophages regulate lymphatic vessel growth and patterning in the developing heart publication-title: Development – volume: 117 start-page: 663 year: 2021 end-page: 673 ident: bib28 article-title: Macrophage lineages in heart valve development and disease publication-title: Cardiovasc Res – volume: 120 start-page: 2307 year: 2012 end-page: 2316 ident: bib39 article-title: Induction of IL-4R publication-title: Blood – volume: 616 start-page: 113 year: 2023 end-page: 122 ident: bib86 article-title: Spatial epigenome-transcriptome co-profiling of mammalian tissues publication-title: Nature – volume: 106 start-page: 1559 year: 2021 end-page: 1571 ident: bib56 article-title: Fibrinogen-like protein 2 contributes to normal murine cardiomyocyte maturation and heart development publication-title: Exp Physiol – volume: 7 year: 2022 ident: bib34 article-title: Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles publication-title: Sci Immunol – volume: 68 start-page: 54 year: 2021 end-page: 63 ident: bib9 article-title: Exploring cardiac macrophage heterogeneity in the healthy and diseased myocardium publication-title: Curr Opin Immunol – volume: 127 start-page: 51 year: 2020 end-page: 72 ident: bib69 article-title: Molecular basis of atrial fibrillation pathophysiology and therapy: a translational perspective publication-title: Circ Res – volume: 55 start-page: 1564 year: 2022 end-page: 1580 ident: bib20 article-title: Biology of lung macrophages in health and disease publication-title: Immunity – volume: 12 start-page: 2623 year: 2017 end-page: 2639 ident: bib89 article-title: Preparation of viable adult ventricular myocardial slices from large and small mammals publication-title: Nat Protoc – volume: 40 start-page: 825 year: 2019 end-page: 841 ident: bib65 article-title: Macrophage plasticity and function in the eye and heart publication-title: Trends Immunol – volume: 54 start-page: 2057 year: 2021 end-page: 2071.e6 ident: bib58 article-title: Selective loss of resident macrophage-derived insulin-like growth factor-1 abolishes adaptive cardiac growth to stress publication-title: Immunity – volume: 118 start-page: 1498 year: 2016 end-page: 1511 ident: bib50 article-title: Primitive embryonic macrophages are required for coronary development and maturation publication-title: Circ Res – volume: 7 year: 2012 ident: bib18 article-title: An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile publication-title: PLoS One – volume: 41 start-page: 21 year: 2014 end-page: 35 ident: bib83 article-title: Origin and functions of tissue macrophages publication-title: Immunity – volume: 118 start-page: 400 year: 2016 end-page: 409 ident: bib3 article-title: Revisiting cardiac cellular composition publication-title: Circ Res – volume: 115 start-page: 77 year: 2020 ident: bib74 article-title: Resident cardiac macrophages: crucial modulators of cardiac (patho)physiology publication-title: Basic Res Cardiol – volume: 66 start-page: 410 year: 2005 end-page: 419 ident: bib59 article-title: Age-dependent changes in myocardial matrix metalloproteinase/tissue inhibitor of metalloproteinase profiles and fibroblast function publication-title: Cardiovasc Res – volume: 588 start-page: 466 year: 2020 end-page: 472 ident: bib25 article-title: Cells of the adult human heart publication-title: Nature – volume: 183 start-page: 94 year: 2020 end-page: 109 e23 ident: bib76 article-title: A Network of macrophages supports mitochondrial homeostasis in the heart publication-title: Cell – volume: 102 start-page: 232 year: 2014 end-page: 239 ident: bib11 article-title: Cardioprotective function of cardiac macrophages publication-title: Cardiovasc Res – volume: 115 year: 2018 ident: bib79 article-title: Distinct roles of resident and nonresident macrophages in nonischemic cardiomyopathy publication-title: Proc Natl Acad Sci USA – volume: 126 start-page: 1086 year: 2020 end-page: 1106 ident: bib57 article-title: Cardiomyocyte maturation: new phase in development publication-title: Circ Res – volume: 12 start-page: 2758 year: 2022 end-page: 2772 ident: bib88 article-title: From engineered heart tissue to cardiac organoid publication-title: Theranostics – volume: 50 start-page: 173 year: 2004 ident: 10.1016/j.apsb.2023.12.018_bib53 article-title: Immunohistologic evidence supports apoptosis, IgG deposition, and novel macrophage/fibroblast crosstalk in the pathologic cascade leading to congenital heart block publication-title: Arthritis Rheum doi: 10.1002/art.11430 – volume: 118 start-page: 400 year: 2016 ident: 10.1016/j.apsb.2023.12.018_bib3 article-title: Revisiting cardiac cellular composition publication-title: Circ Res doi: 10.1161/CIRCRESAHA.115.307778 – volume: 115 start-page: 8 year: 2020 ident: 10.1016/j.apsb.2023.12.018_bib33 article-title: Distinct origins and functions of cardiac orthotopic macrophages publication-title: Basic Res Cardiol doi: 10.1007/s00395-019-0769-3 – volume: 68 start-page: 54 year: 2021 ident: 10.1016/j.apsb.2023.12.018_bib9 article-title: Exploring cardiac macrophage heterogeneity in the healthy and diseased myocardium publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2020.09.005 – volume: 115 start-page: 284 year: 2014 ident: 10.1016/j.apsb.2023.12.018_bib4 article-title: Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction publication-title: Circ Res doi: 10.1161/CIRCRESAHA.115.303567 – volume: 375 start-page: 1749 year: 2016 ident: 10.1016/j.apsb.2023.12.018_bib100 article-title: Fulminant myocarditis with combination immune checkpoint blockade publication-title: N Engl J Med doi: 10.1056/NEJMoa1609214 – volume: 125 start-page: 55 year: 2019 ident: 10.1016/j.apsb.2023.12.018_bib101 article-title: Macrophage Smad3 protects the infarcted heart, stimulating phagocytosis and regulating inflammation publication-title: Circ Res doi: 10.1161/CIRCRESAHA.119.315069 – volume: 8 year: 2021 ident: 10.1016/j.apsb.2023.12.018_bib94 article-title: Natural melanin/alginate hydrogels achieve cardiac repair through ROS scavenging and macrophage polarization publication-title: Adv Sci doi: 10.1002/advs.202100505 – volume: 10 start-page: 3964 year: 2019 ident: 10.1016/j.apsb.2023.12.018_bib22 article-title: Non-classical tissue monocytes and two functionally distinct populations of interstitial macrophages populate the mouse lung publication-title: Nat Commun doi: 10.1038/s41467-019-11843-0 – volume: 28 start-page: 579 year: 2022 ident: 10.1016/j.apsb.2023.12.018_bib12 article-title: Resident macrophages and their potential in cardiac tissue engineering publication-title: Tissue Eng Part B Rev doi: 10.1089/ten.teb.2021.0036 – volume: 74 start-page: 3124 year: 2019 ident: 10.1016/j.apsb.2023.12.018_bib99 article-title: Transition of macrophages to fibroblast-like cells in healing myocardial infarction publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2019.10.036 – volume: 18 start-page: 94 year: 2019 ident: 10.1016/j.apsb.2023.12.018_bib75 article-title: Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment publication-title: Mol Cancer doi: 10.1186/s12943-019-1022-2 – volume: 183 start-page: 94 year: 2020 ident: 10.1016/j.apsb.2023.12.018_bib76 article-title: A Network of macrophages supports mitochondrial homeostasis in the heart publication-title: Cell doi: 10.1016/j.cell.2020.08.031 – volume: 111 start-page: 63 year: 2016 ident: 10.1016/j.apsb.2023.12.018_bib73 article-title: Cross-talk between macrophages and atrial myocytes in atrial fibrillation publication-title: Basic Res Cardiol doi: 10.1007/s00395-016-0584-z – volume: 41 start-page: 21 year: 2014 ident: 10.1016/j.apsb.2023.12.018_bib83 article-title: Origin and functions of tissue macrophages publication-title: Immunity doi: 10.1016/j.immuni.2014.06.013 – volume: 191 start-page: 15 year: 2018 ident: 10.1016/j.apsb.2023.12.018_bib60 article-title: Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction publication-title: Transl Res doi: 10.1016/j.trsl.2017.10.001 – volume: 119 start-page: 1810 year: 2012 ident: 10.1016/j.apsb.2023.12.018_bib35 article-title: Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling publication-title: Blood doi: 10.1182/blood-2011-09-379214 – volume: 6 start-page: 2870 year: 2021 ident: 10.1016/j.apsb.2023.12.018_bib92 article-title: HIF1alpha epigenetically repressed macrophages via CRISPR/Cas9-EZH2 system for enhanced cancer immunotherapy publication-title: Bioact Mater – volume: 40 start-page: 825 year: 2019 ident: 10.1016/j.apsb.2023.12.018_bib65 article-title: Macrophage plasticity and function in the eye and heart publication-title: Trends Immunol doi: 10.1016/j.it.2019.07.002 – volume: 13 start-page: 453 year: 2008 ident: 10.1016/j.apsb.2023.12.018_bib102 article-title: Macrophage activation and polarization publication-title: Front Biosci doi: 10.2741/2692 – volume: 55 start-page: 1564 year: 2022 ident: 10.1016/j.apsb.2023.12.018_bib20 article-title: Biology of lung macrophages in health and disease publication-title: Immunity doi: 10.1016/j.immuni.2022.08.010 – volume: 330 start-page: 841 year: 2010 ident: 10.1016/j.apsb.2023.12.018_bib43 article-title: Fate mapping analysis reveals that adult microglia derive from primitive macrophages publication-title: Science doi: 10.1126/science.1194637 – volume: 5 start-page: 420 year: 2014 ident: 10.1016/j.apsb.2023.12.018_bib66 article-title: Metabolic reprograming in macrophage polarization publication-title: Front Immunol – volume: 127 start-page: 610 year: 2020 ident: 10.1016/j.apsb.2023.12.018_bib10 article-title: Self-maintenance of cardiac resident reparative macrophages attenuates doxorubicin-induced cardiomyopathy through the SR-A1–c-Myc axis publication-title: Circ Res doi: 10.1161/CIRCRESAHA.119.316428 – volume: 122 start-page: 113 year: 2018 ident: 10.1016/j.apsb.2023.12.018_bib81 article-title: Resident and monocyte-derived macrophages in cardiovascular disease publication-title: Circ Res doi: 10.1161/CIRCRESAHA.117.311071 – volume: 87 start-page: 346 year: 2000 ident: 10.1016/j.apsb.2023.12.018_bib70 article-title: Role of gap junctions in cardiac conduction and development: insights from the connexin knockout mice publication-title: Circ Res doi: 10.1161/01.RES.87.5.346 – volume: 457 start-page: 318 year: 2009 ident: 10.1016/j.apsb.2023.12.018_bib48 article-title: Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis publication-title: Nature doi: 10.1038/nature07472 – volume: 118 start-page: 1498 year: 2016 ident: 10.1016/j.apsb.2023.12.018_bib50 article-title: Primitive embryonic macrophages are required for coronary development and maturation publication-title: Circ Res doi: 10.1161/CIRCRESAHA.115.308270 – volume: 28 start-page: 601 year: 2000 ident: 10.1016/j.apsb.2023.12.018_bib44 article-title: Origins and functions of phagocytes in the embryo publication-title: Exp Hematol doi: 10.1016/S0301-472X(00)00157-0 – volume: 10 start-page: 1420 year: 2019 ident: 10.1016/j.apsb.2023.12.018_bib72 article-title: Pharmacological inhibition of serine proteases to reduce cardiac inflammation and fibrosis in atrial fibrillation publication-title: Front Pharmacol doi: 10.3389/fphar.2019.01420 – volume: 12 start-page: 2758 year: 2022 ident: 10.1016/j.apsb.2023.12.018_bib88 article-title: From engineered heart tissue to cardiac organoid publication-title: Theranostics doi: 10.7150/thno.67661 – volume: 115 year: 2018 ident: 10.1016/j.apsb.2023.12.018_bib79 article-title: Distinct roles of resident and nonresident macrophages in nonischemic cardiomyopathy publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1720065115 – volume: 66 start-page: 410 year: 2005 ident: 10.1016/j.apsb.2023.12.018_bib59 article-title: Age-dependent changes in myocardial matrix metalloproteinase/tissue inhibitor of metalloproteinase profiles and fibroblast function publication-title: Cardiovasc Res doi: 10.1016/j.cardiores.2004.11.029 – volume: 9 start-page: e1167 year: 2020 ident: 10.1016/j.apsb.2023.12.018_bib13 article-title: Resident macrophages as potential therapeutic targets for cardiac ageing and injury publication-title: Clin Transl Immunology doi: 10.1002/cti2.1167 – volume: 302 start-page: 195 year: 2007 ident: 10.1016/j.apsb.2023.12.018_bib84 article-title: Identification of interventricular septum precursor cells in the mouse embryo publication-title: Dev Biol doi: 10.1016/j.ydbio.2006.09.025 – volume: 9 start-page: 1400 year: 2022 ident: 10.1016/j.apsb.2023.12.018_bib91 article-title: Mechanosensitive molecular mechanisms of myocardial fibrosis in living myocardial slices publication-title: ESC Heart Fail doi: 10.1002/ehf2.13832 – volume: 127 start-page: 51 year: 2020 ident: 10.1016/j.apsb.2023.12.018_bib69 article-title: Molecular basis of atrial fibrillation pathophysiology and therapy: a translational perspective publication-title: Circ Res doi: 10.1161/CIRCRESAHA.120.316363 – volume: 616 start-page: 113 year: 2023 ident: 10.1016/j.apsb.2023.12.018_bib86 article-title: Spatial epigenome-transcriptome co-profiling of mammalian tissues publication-title: Nature doi: 10.1038/s41586-023-05795-1 – volume: 106 start-page: 1559 year: 2021 ident: 10.1016/j.apsb.2023.12.018_bib56 article-title: Fibrinogen-like protein 2 contributes to normal murine cardiomyocyte maturation and heart development publication-title: Exp Physiol doi: 10.1113/EP089450 – volume: 10 year: 2023 ident: 10.1016/j.apsb.2023.12.018_bib7 article-title: M2 macrophage-derived sEV regulate pro-inflammatory CCR2+ macrophage subpopulations to favor post-AMI cardiac repair publication-title: Adv Sci – volume: 145 start-page: 1542 year: 2022 ident: 10.1016/j.apsb.2023.12.018_bib6 article-title: Cardiac resident macrophage-derived legumain improves cardiac repair by promoting clearance and degradation of apoptotic cardiomyocytes after myocardial infarction publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.121.057549 – volume: 588 start-page: 466 year: 2020 ident: 10.1016/j.apsb.2023.12.018_bib25 article-title: Cells of the adult human heart publication-title: Nature doi: 10.1038/s41586-020-2797-4 – volume: 14 start-page: 628 year: 2004 ident: 10.1016/j.apsb.2023.12.018_bib36 article-title: CSF-1 regulation of the wandering macrophage: complexity in action publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2004.09.016 – volume: 14 start-page: 986 year: 2013 ident: 10.1016/j.apsb.2023.12.018_bib19 article-title: Tissue-resident macrophages publication-title: Nat Immunol doi: 10.1038/ni.2705 – volume: 126 start-page: 25 year: 2020 ident: 10.1016/j.apsb.2023.12.018_bib93 article-title: Rapamycin-loaded biomimetic nanoparticles reverse vascular inflammation publication-title: Circ Res doi: 10.1161/CIRCRESAHA.119.315185 – volume: 262 start-page: 56 year: 2014 ident: 10.1016/j.apsb.2023.12.018_bib8 article-title: Tissue macrophage identity and self-renewal publication-title: Immunol Rev doi: 10.1111/imr.12224 – volume: 102 start-page: 232 year: 2014 ident: 10.1016/j.apsb.2023.12.018_bib11 article-title: Cardioprotective function of cardiac macrophages publication-title: Cardiovasc Res doi: 10.1093/cvr/cvu059 – volume: 13 start-page: 4580 year: 2022 ident: 10.1016/j.apsb.2023.12.018_bib5 article-title: Spatiotemporal dynamics of macrophage heterogeneity and a potential function of Trem2hi macrophages in infarcted hearts publication-title: Nat Commun doi: 10.1038/s41467-022-32284-2 – volume: 353 start-page: aaf4238 year: 2016 ident: 10.1016/j.apsb.2023.12.018_bib32 article-title: Specification of tissue-resident macrophages during organogenesis publication-title: Science doi: 10.1126/science.aaf4238 – volume: 44 start-page: 2355 year: 2023 ident: 10.1016/j.apsb.2023.12.018_bib1 article-title: Cardioimmunology: the new frontier! publication-title: Eur Heart J doi: 10.1093/eurheartj/ehad230 – volume: 38 start-page: 636 year: 2018 ident: 10.1016/j.apsb.2023.12.018_bib29 article-title: Macrophage transitions in heart valve development and myxomatous valve disease publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.117.310667 – volume: 18 start-page: 733 year: 2018 ident: 10.1016/j.apsb.2023.12.018_bib14 article-title: Cardioimmunology: the immune system in cardiac homeostasis and disease publication-title: Nat Rev Immunol doi: 10.1038/s41577-018-0065-8 – volume: 120 start-page: 2307 year: 2012 ident: 10.1016/j.apsb.2023.12.018_bib39 article-title: Induction of IL-4Rα-dependent microRNAs identifies PI3K/Akt signaling as essential for IL-4-driven murine macrophage proliferation in vivo publication-title: Blood doi: 10.1182/blood-2012-02-408252 – volume: 594 start-page: 100 year: 2021 ident: 10.1016/j.apsb.2023.12.018_bib64 article-title: An aged immune system drives senescence and ageing of solid organs publication-title: Nature doi: 10.1038/s41586-021-03547-7 – volume: 51 start-page: 131 year: 2019 ident: 10.1016/j.apsb.2023.12.018_bib27 article-title: Gata6+ pericardial cavity macrophages relocate to the injured heart and prevent cardiac fibrosis publication-title: Immunity doi: 10.1016/j.immuni.2019.06.010 – volume: 65 start-page: S173 year: 2007 ident: 10.1016/j.apsb.2023.12.018_bib61 article-title: Inflammaging as a major characteristic of old people: can it be prevented or cured? publication-title: Nutr Rev doi: 10.1301/nr.2007.dec.S173-S176 – volume: 55 start-page: 1549 year: 2022 ident: 10.1016/j.apsb.2023.12.018_bib16 article-title: Resident cardiac macrophages: heterogeneity and function in health and disease publication-title: Immunity doi: 10.1016/j.immuni.2022.08.009 – volume: 54 start-page: 2057 year: 2021 ident: 10.1016/j.apsb.2023.12.018_bib58 article-title: Selective loss of resident macrophage-derived insulin-like growth factor-1 abolishes adaptive cardiac growth to stress publication-title: Immunity doi: 10.1016/j.immuni.2021.07.006 – volume: 7 year: 2022 ident: 10.1016/j.apsb.2023.12.018_bib34 article-title: Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles publication-title: Sci Immunol doi: 10.1126/sciimmunol.abf7777 – volume: 13 start-page: 327 year: 2023 ident: 10.1016/j.apsb.2023.12.018_bib97 article-title: Macrophage-evading and tumor-specific apoptosis inducing nanoparticles for targeted cancer therapy publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2022.05.010 – volume: 40 start-page: 3 year: 2014 ident: 10.1016/j.apsb.2023.12.018_bib42 article-title: Cardiac macrophages: how to mend a broken heart publication-title: Immunity doi: 10.1016/j.immuni.2013.12.005 – volume: 129 start-page: 1086 year: 2021 ident: 10.1016/j.apsb.2023.12.018_bib82 article-title: Cardiac resident macrophages prevent fibrosis and stimulate angiogenesis publication-title: Circ Res doi: 10.1161/CIRCRESAHA.121.319737 – volume: 22 start-page: 1021 year: 2019 ident: 10.1016/j.apsb.2023.12.018_bib24 article-title: A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment publication-title: Nat Neurosci doi: 10.1038/s41593-019-0393-4 – volume: 332 start-page: 1284 year: 2011 ident: 10.1016/j.apsb.2023.12.018_bib38 article-title: Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation publication-title: Science doi: 10.1126/science.1204351 – volume: 48 start-page: 617 year: 2019 ident: 10.1016/j.apsb.2023.12.018_bib52 article-title: Endocardially derived macrophages are essential for valvular remodeling publication-title: Dev Cell doi: 10.1016/j.devcel.2019.01.021 – volume: 9 start-page: e1222 year: 2020 ident: 10.1016/j.apsb.2023.12.018_bib23 article-title: Origins and diversity of macrophages in health and disease publication-title: Clin Transl Immunology doi: 10.1002/cti2.1222 – volume: 114 start-page: 77 year: 2018 ident: 10.1016/j.apsb.2023.12.018_bib90 article-title: Investigation of cardiac fibroblasts using myocardial slices publication-title: Cardiovasc Res doi: 10.1093/cvr/cvx152 – volume: 54 start-page: 4283 year: 2021 ident: 10.1016/j.apsb.2023.12.018_bib95 article-title: Lipid nanoparticle-mRNA formulations for therapeutic applications publication-title: Acc Chem Res doi: 10.1021/acs.accounts.1c00550 – volume: 119 start-page: 772 year: 2023 ident: 10.1016/j.apsb.2023.12.018_bib85 article-title: Dynamics of monocyte-derived macrophage diversity in experimental myocardial infarction publication-title: Cardiovasc Res doi: 10.1093/cvr/cvac113 – volume: 72 start-page: 2181 year: 2018 ident: 10.1016/j.apsb.2023.12.018_bib63 article-title: Macrophage trafficking, inflammatory resolution, and genomics in atherosclerosis: JACC macrophage in CVD series (Part 2) publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2018.08.2147 – volume: 12 start-page: 2623 year: 2017 ident: 10.1016/j.apsb.2023.12.018_bib89 article-title: Preparation of viable adult ventricular myocardial slices from large and small mammals publication-title: Nat Protoc doi: 10.1038/nprot.2017.139 – volume: 124 start-page: 1382 year: 2014 ident: 10.1016/j.apsb.2023.12.018_bib80 article-title: Macrophages are required for neonatal heart regeneration publication-title: J Clin Invest doi: 10.1172/JCI72181 – volume: 35 start-page: 1730 year: 2016 ident: 10.1016/j.apsb.2023.12.018_bib103 article-title: Transcriptome-based profiling of yolk sac-derived macrophages reveals a role for Irf8 in macrophage maturation publication-title: EMBO J doi: 10.15252/embj.201693801 – volume: 4 start-page: 455 year: 2011 ident: 10.1016/j.apsb.2023.12.018_bib62 article-title: Multi-analyte profiling reveals matrix metalloproteinase-9 and monocyte chemotactic protein-1 as plasma biomarkers of cardiac aging publication-title: Circ Cardiovasc Genet doi: 10.1161/CIRCGENETICS.111.959981 – volume: 65 start-page: 758 year: 2016 ident: 10.1016/j.apsb.2023.12.018_bib47 article-title: Bone marrow-derived and resident liver macrophages display unique transcriptomic signatures but similar biological functions publication-title: J Hepatol doi: 10.1016/j.jhep.2016.05.037 – volume: 115 start-page: 77 year: 2020 ident: 10.1016/j.apsb.2023.12.018_bib74 article-title: Resident cardiac macrophages: crucial modulators of cardiac (patho)physiology publication-title: Basic Res Cardiol doi: 10.1007/s00395-020-00836-6 – volume: 117 start-page: 663 year: 2021 ident: 10.1016/j.apsb.2023.12.018_bib28 article-title: Macrophage lineages in heart valve development and disease publication-title: Cardiovasc Res doi: 10.1093/cvr/cvaa062 – volume: 169 start-page: 510 year: 2017 ident: 10.1016/j.apsb.2023.12.018_bib30 article-title: Macrophages facilitate electrical conduction in the heart publication-title: Cell doi: 10.1016/j.cell.2017.03.050 – volume: 126 start-page: 1086 year: 2020 ident: 10.1016/j.apsb.2023.12.018_bib57 article-title: Cardiomyocyte maturation: new phase in development publication-title: Circ Res doi: 10.1161/CIRCRESAHA.119.315862 – volume: 220 year: 2023 ident: 10.1016/j.apsb.2023.12.018_bib98 article-title: The stunning clodronate publication-title: J Exp Med doi: 10.1084/jem.20230339 – volume: 38 start-page: 79 year: 2013 ident: 10.1016/j.apsb.2023.12.018_bib31 article-title: Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis publication-title: Immunity doi: 10.1016/j.immuni.2012.12.001 – volume: 117 start-page: 63 year: 2022 ident: 10.1016/j.apsb.2023.12.018_bib87 article-title: Chemical and mechanical activation of resident cardiac macrophages in the living myocardial slice ex vivo model publication-title: Basic Res Cardiol doi: 10.1007/s00395-022-00971-2 – volume: 148 start-page: dev194563 year: 2021 ident: 10.1016/j.apsb.2023.12.018_bib51 article-title: Tissue-resident macrophages regulate lymphatic vessel growth and patterning in the developing heart publication-title: Development doi: 10.1242/dev.194563 – volume: 87 start-page: 171 year: 2015 ident: 10.1016/j.apsb.2023.12.018_bib77 article-title: Cardiomyocytes induce macrophage receptor shedding to suppress phagocytosis publication-title: J Mol Cell Cardiol doi: 10.1016/j.yjmcc.2015.08.009 – volume: 104 start-page: 743 year: 2018 ident: 10.1016/j.apsb.2023.12.018_bib68 article-title: Specialized functions of resident macrophages in brain and heart publication-title: J Leukoc Biol doi: 10.1002/JLB.6MR0118-041R – volume: 13 start-page: 842 year: 2022 ident: 10.1016/j.apsb.2023.12.018_bib55 article-title: Postnatal state transition of cardiomyocyte as a primary step in heart maturation publication-title: Protein Cell doi: 10.1007/s13238-022-00908-4 – volume: 51 year: 2018 ident: 10.1016/j.apsb.2023.12.018_bib45 article-title: Location or origin? What is critical for macrophage propagation of lung fibrosis? publication-title: Eur Respir J doi: 10.1183/13993003.00103-2018 – volume: 8 start-page: 21 year: 2022 ident: 10.1016/j.apsb.2023.12.018_bib71 article-title: Atrial fibrillation publication-title: Nat Rev Dis Primers doi: 10.1038/s41572-022-00347-9 – volume: 12 start-page: 2506 year: 2022 ident: 10.1016/j.apsb.2023.12.018_bib96 article-title: Intravenous route to choroidal neovascularization by macrophage-disguised nanocarriers for mTOR modulation publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2021.10.022 – volume: 12 year: 2021 ident: 10.1016/j.apsb.2023.12.018_bib21 article-title: Diversity of macrophages in lung homeostasis and diseases publication-title: Front Immunol doi: 10.3389/fimmu.2021.753940 – volume: 55 start-page: 177 year: 2021 ident: 10.1016/j.apsb.2023.12.018_bib54 article-title: Macrophage efferocytosis in cardiac pathophysiology and repair publication-title: Shock doi: 10.1097/SHK.0000000000001625 – volume: 72 start-page: 2213 year: 2018 ident: 10.1016/j.apsb.2023.12.018_bib2 article-title: The macrophage in cardiac homeostasis and disease: JACC macrophage in CVD series (Part 4) publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2018.08.2149 – volume: 54 year: 2021 ident: 10.1016/j.apsb.2023.12.018_bib15 article-title: Selective loss of resident macrophage-derived insulin-like growth factor-1 abolishes adaptive cardiac growth to stress publication-title: Immunity doi: 10.1016/j.immuni.2021.07.006 – volume: 14 year: 2023 ident: 10.1016/j.apsb.2023.12.018_bib78 article-title: The role of macrophage subsets in and around the heart in modulating cardiac homeostasis and pathophysiology publication-title: Front Immunol doi: 10.3389/fimmu.2023.1111819 – volume: 210 start-page: 2477 year: 2013 ident: 10.1016/j.apsb.2023.12.018_bib37 article-title: IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1 publication-title: J Exp Med doi: 10.1084/jem.20121999 – volume: 41 year: 2022 ident: 10.1016/j.apsb.2023.12.018_bib49 article-title: Multi-omics profiling visualizes dynamics of cardiac development and functions publication-title: Cell Rep doi: 10.1016/j.celrep.2022.111891 – volume: 142 start-page: 466 year: 2020 ident: 10.1016/j.apsb.2023.12.018_bib26 article-title: Transcriptional and cellular diversity of the human heart publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.119.045401 – volume: 7 year: 2012 ident: 10.1016/j.apsb.2023.12.018_bib18 article-title: An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile publication-title: PLoS One doi: 10.1371/journal.pone.0036814 – volume: 17 start-page: 684 year: 2016 ident: 10.1016/j.apsb.2023.12.018_bib67 article-title: Mitochondrial dysfunction prevents repolarization of inflammatory macrophages publication-title: Cell Rep doi: 10.1016/j.celrep.2016.09.008 – volume: 6 start-page: 399 year: 2014 ident: 10.1016/j.apsb.2023.12.018_bib41 article-title: Age-related changes in tissue macrophages precede cardiac functional impairment publication-title: Aging doi: 10.18632/aging.100669 – volume: 40 start-page: 91 year: 2014 ident: 10.1016/j.apsb.2023.12.018_bib40 article-title: Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation publication-title: Immunity doi: 10.1016/j.immuni.2013.11.019 – volume: 13 start-page: 128 year: 2023 ident: 10.1016/j.apsb.2023.12.018_bib17 article-title: Renewal of embryonic and neonatal-derived cardiac-resident macrophages in response to environmental cues abrogated their potential to promote cardiomyocyte proliferation via Jagged-1–Notch1 publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2022.08.016 – volume: 126 start-page: 1357 year: 2015 ident: 10.1016/j.apsb.2023.12.018_bib46 article-title: Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages publication-title: Blood doi: 10.1182/blood-2015-01-624809 |
SSID | ssj0000602275 |
Score | 2.3025928 |
SecondaryResourceType | review_article |
Snippet | Cardiac resident macrophages (CRMs) are the main population of cardiac immune cells. The role of these cells in regeneration, functional remodeling, and repair... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1483 |
SubjectTerms | Cardiac development Cardiac homeostasis Cardiac resident macrophages Clinical translation Physiological functions Research tools Review Spatiotemporal distribution Transcriptional characteristics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQbwIUGQn1QgJObMcJN6ioKiRQJVqpN8uvqEWr7KpJD_0j_N7OOM4-QCoXrkk2iXe-zHxjj78h5J1RlfS-UkUtO1UI521hDItYliIo7huFG4W__6iPz8S3c3m-1eoLa8ImeeDpj_vIrG9VqwzkIVx0smycqbzzjRWhVl2IYtsQ87aSqckHozQe1i9WFer0Ac9IO2am4i6zGuwH7Bwe5wKx48dWVIri_TvB6W_y-WcN5VZQOnpIHiQ2ST9Po3hE7oX-MTk4meSob3J6utldNeT0gJ5shKpvnpDfhxEejkLKjb1FRwrnrparC_Axwyf6MxZbJ-2qBfUosZu6Y-XUb4qNchqnR2YvSjFURjTn1PSexqUIOmJMXKSZR7qC2_bgWxZ02VOX3iKtFQ1PydnR19PD4yL1aSgcsLexaKrOABAgzHHHTVm3zgLP6aQTgjNmra27IJUIorJSgTsFTihEqyykKmBO4CfPyF6_7MMLQkUnpG1LaeJCMwrVmJo5JpnlTrZNl5FytpN2ScQce2ks9Fyt9kujbTXaVpeVBttm5P36N6tJwuPOq7-g-ddXovx2PACg1AmU-l-gzIicwaMTk5kYCtzq8s6Hv52RpuEzx7Ub04fl9aCBaXCkb7zKyPMJeetX5I3EPL7MSLODyZ0x7J7pLy-ilHjJ2kYyLl7-j1G_IvdhLKmu6TXZG6-uwz5QttG-iV_nLdpIQig priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free and Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELainHqp-i59yZWqXApdwDaG3ppVo6hSq0hJpL1ZtoFmqxWghRzyR_J7M2PMbmilHHpcMKxhPuZhz3xDyCctU1GWqYwyUcuI29JEWscOy4JXkpW5xELhn7-y00v-YyVWB2Q51cJgWqXX_aNOd9raH1n4t7no1uvFeQqxC0MHAhnXR0JJxnNXxLc63q2zxBmS5GEmI46P8AJfOzOmeemuN1-wh7hbFcTeH_fsk6Pxn5mpf93Qv7Mp75mnkyfksfcr6bdx6k_JQdU8I0dnIzH1TUgv9nVWfUiP6NmesvrmObldOqBYCsE3dhkdKJzbtt0VaJv-Kz13adeexWpDSyTb9X2yQlru045C6hZKJn1K0Wg6XIdUNyV1mxJ0QOu48WuQtIPbNqBlNrRtqPWz8LtG_QtyefL9Ynka-Y4NkQU_bojytNYACTB4zDKdZIU14PHUwnIOQjLGZHUlJK94aoQExQreIeeFNBC0JLkFT-UlOWzapnpNKK-5MEUitNtyRsoancUWBG2YFUVeBySZ5KSspzPHrhobNeWt_VEoW4WyVUmqQLYB-by7phvJPB4cfYzi341EIm53oN3-Vh6JKjZlIQupIUxmvBbwFDotbZkbXmWyrrKAiAk8aoZruNX6wT__OCFNwQePuzi6qdrrXoHPwdCRY2lAXo3I202R5QIj-iQg-QyTs2eYn2nWV45UPImLXMSMv_nPCb8lj-CXT2p6Rw6H7XX1Hvy1wXxwH-QdfIZB3g priority: 102 providerName: Elsevier |
Title | Cardiac resident macrophages: Spatiotemporal distribution, development, physiological functions, and their translational potential on cardiac diseases |
URI | https://dx.doi.org/10.1016/j.apsb.2023.12.018 https://www.ncbi.nlm.nih.gov/pubmed/38572111 https://www.proquest.com/docview/3033008132 https://pubmed.ncbi.nlm.nih.gov/PMC10985034 https://doaj.org/article/0bd9797a40934f518ca2dcd8b4e67fe6 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKuXBBvAmFykioF5Iqie04QUKIVlQFVFREV9qb5UdCi6Jku0kl9o_wexk7zi6BquKSQx6Ok5nxfGOPv0HoleQpMyblUcYqHlFtVCRl7HSZ0ZITk3O7UfjkS3Y8o5_mbL6FxnJH_gd214Z2tp7UbFnv_7xcvQODf7vJ1ZKLTu3bQuBuai_Jb6Hb4Jm4NdQTD_eHkdkS5tmsxjS17H2APvw-muubmfgqR-k_cVn_QtK_Myv_cFVH99BdjzHx-0Ep7qOtsnmA9k4HkupViM82e666EO_h0w199eoh-nXolEZjCMRtxdEew7VluziHkad7g7-5FGzPaFVjY4l3fc2sEJtNClKI3aTJOLZi60CdjodYNga7BQrcW09Z-_lIvIBmGxhxatw2WPte-BWk7hGaHX04OzyOfPWGSAOm66M8rSSoBzg_oolMskIrQD8V05SSOFZKZVXJOC1pqhiHQRaQIqUFVxDAJLkG1PIYbTdtUz5FmFaUqSJh0i0_W_oamcU6ZrEimhV5FaBklJPQntrcVtioxZjD9kNY2QorW5GkAmQboNfrZxYDsceNdx9Y8a_vtKTc7kS7_C68jYtYmYIXXELITGjF4CtkarTJFS0zXpVZgNioPMLjmwG3QFMXN7785ahpAozfrujIpmyvOgH4g1hQR9IAPRk0b91FkjMb3ScByic6OfmG6ZXm4twRjCdxkbOY0Gf_8eIddAe66pOZnqPtfnlVvgCc1qtdN78Bx4_zAzh-_prvOnP8DW1cQd4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoAL4k14Ggn1wobNw44TbnRFtYW2qtSttDfLdhK6aJVEm_TQP8LvZcZxdhuQeuAax1ln58vMZ3v8DSEflYh4nkfCT3gpfGZy7SsVWCxzVog4TwUeFD49S-aX7PuSL_fIbDgLg2mVzvf3Pt16a3dl6v7NabNaTS8imLvESCBQcd0KSt4DNiCwfsPx8nC70BIkqJKHqYzYwcce7vBMn-elmlZ_xiLidlkQi3_cClBWx38Up_7loX-nU96KT0ePyENHLOnXfuyPyV5RPSEH570y9c2ELnYHrdoJPaDnO83qm6fk98wixVCYfWOZ0Y5C26ZursDdtF_ohc27djJWa5qj2q4rlDWh-S7vaELtSsngUClGTQvsCVVVTu2uBO0wPK7dIiRt4LEVuJk1rStq3CjctlH7jFwefVvM5r4r2eAbIHKdn0alAkxAxItNrMIkMxooT8kNY2AlrXVSFlywgkWaC_CsQA8Zy4SGWUuYGqAqz8l-VVfFS0JZybjOQq7snjNq1qgkMGBpHRuepaVHwsFO0jg9cyyrsZZD4tovibaVaFsZRhJs65FP2z5Nr-Zx592HaP7tnajEbS_Um5_SQVEGOs9EJhTMk2NWcngLFeUmTzUrElEWiUf4AB45AjY8anXnj38YkCbhi8dtHFUV9XUrgXTEyOTiyCMveuRthxinHKf0oUfSESZH7zBuqVZXVlU8DLKUBzF79Z8Dfk_uzxenJ_Lk-OzHa_IAWlyG0xuy322ui7dA3jr9zn6cfwCYwUT9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cardiac+resident+macrophages%3A+Spatiotemporal+distribution%2C+development%2C+physiological+functions%2C+and+their+translational+potential+on+cardiac+diseases&rft.jtitle=Acta+pharmaceutica+Sinica.+B&rft.au=Jin%2C+Jing&rft.au=Wang%2C+Yurou&rft.au=Liu%2C+Yueqin&rft.au=Chakrabarti%2C+Subrata&rft.date=2024-04-01&rft.issn=2211-3835&rft.volume=14&rft.issue=4&rft.spage=1483&rft_id=info:doi/10.1016%2Fj.apsb.2023.12.018&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3835&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3835&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3835&client=summon |