Transchromosomic bovine-derived anti-SARS-CoV-2 polyclonal human antibodies protects hACE2 transgenic hamsters against multiple variants
Pandemic SARS-CoV-2 has undergone rapid evolution resulting in the emergence of many variants with mutations in the spike protein, some of which appear to evade antibody neutralization, transmit more efficiently, and/or exhibit altered virulence. This raises significant concerns regarding the effica...
Saved in:
Published in | iScience Vol. 26; no. 10; p. 107764 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
20.10.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pandemic SARS-CoV-2 has undergone rapid evolution resulting in the emergence of many variants with mutations in the spike protein, some of which appear to evade antibody neutralization, transmit more efficiently, and/or exhibit altered virulence. This raises significant concerns regarding the efficacy of anti-S monoclonal antibody-based therapeutics which have failed against variant SARS-CoV-2 viruses. To address this concern, SAB-185, a human anti-SARS-CoV-2 polyclonal antibody was generated in the DiversitAb platform. SAB-185 exhibited equivalent, robust in vitro neutralization for Munich, Alpha, Beta, Gamma, and Δ144-146 variants and, although diminished, retained PRNT50 and PRNT80 neutralization endpoints for Delta and Omicron variants. Human ACE2 transgenic Syrian hamsters, which exhibit lethal SARS-CoV-2 disease, were protected from mortality after challenge with the Munich, Alpha, Beta, Delta, and Δ144-146 variants and clinical signs after non-lethal Omicron BA.1 infection. This suggests that SAB-185 may be an effective immunotherapy even in the presence of ongoing viral mutation.
[Display omitted]
•A transchromosomic bovine polyclonal antibody neutralizes variants of SARS-CoV-2•We use a novel human ACE2 (hACE2) transgenic hamster model of SARS-CoV-2 infection•The polyclonal antibody protects hACE2 hamsters from all variants tested•Hyperimmunization of the bovines may promote protection against SARS-CoV-2 variants
Immunology; Immune response; Virology |
---|---|
AbstractList | Pandemic SARS-CoV-2 has undergone rapid evolution resulting in the emergence of many variants with mutations in the spike protein, some of which appear to evade antibody neutralization, transmit more efficiently, and/or exhibit altered virulence. This raises significant concerns regarding the efficacy of anti-S monoclonal antibody-based therapeutics which have failed against variant SARS-CoV-2 viruses. To address this concern, SAB-185, a human anti-SARS-CoV-2 polyclonal antibody was generated in the DiversitAb platform. SAB-185 exhibited equivalent, robust in vitro neutralization for Munich, Alpha, Beta, Gamma, and Δ144-146 variants and, although diminished, retained PRNT50 and PRNT80 neutralization endpoints for Delta and Omicron variants. Human ACE2 transgenic Syrian hamsters, which exhibit lethal SARS-CoV-2 disease, were protected from mortality after challenge with the Munich, Alpha, Beta, Delta, and Δ144-146 variants and clinical signs after non-lethal Omicron BA.1 infection. This suggests that SAB-185 may be an effective immunotherapy even in the presence of ongoing viral mutation.Pandemic SARS-CoV-2 has undergone rapid evolution resulting in the emergence of many variants with mutations in the spike protein, some of which appear to evade antibody neutralization, transmit more efficiently, and/or exhibit altered virulence. This raises significant concerns regarding the efficacy of anti-S monoclonal antibody-based therapeutics which have failed against variant SARS-CoV-2 viruses. To address this concern, SAB-185, a human anti-SARS-CoV-2 polyclonal antibody was generated in the DiversitAb platform. SAB-185 exhibited equivalent, robust in vitro neutralization for Munich, Alpha, Beta, Gamma, and Δ144-146 variants and, although diminished, retained PRNT50 and PRNT80 neutralization endpoints for Delta and Omicron variants. Human ACE2 transgenic Syrian hamsters, which exhibit lethal SARS-CoV-2 disease, were protected from mortality after challenge with the Munich, Alpha, Beta, Delta, and Δ144-146 variants and clinical signs after non-lethal Omicron BA.1 infection. This suggests that SAB-185 may be an effective immunotherapy even in the presence of ongoing viral mutation. Pandemic SARS-CoV-2 has undergone rapid evolution resulting in the emergence of many variants with mutations in the spike protein, some of which appear to evade antibody neutralization, transmit more efficiently, and/or exhibit altered virulence. This raises significant concerns regarding the efficacy of anti-S monoclonal antibody-based therapeutics which have failed against variant SARS-CoV-2 viruses. To address this concern, SAB-185, a human anti-SARS-CoV-2 polyclonal antibody was generated in the DiversitAb platform. SAB-185 exhibited equivalent, robust neutralization for Munich, Alpha, Beta, Gamma, and Δ144-146 variants and, although diminished, retained PRNT and PRNT neutralization endpoints for Delta and Omicron variants. Human ACE2 transgenic Syrian hamsters, which exhibit lethal SARS-CoV-2 disease, were protected from mortality after challenge with the Munich, Alpha, Beta, Delta, and Δ144-146 variants and clinical signs after non-lethal Omicron BA.1 infection. This suggests that SAB-185 may be an effective immunotherapy even in the presence of ongoing viral mutation. Pandemic SARS-CoV-2 has undergone rapid evolution resulting in the emergence of many variants with mutations in the spike protein, some of which appear to evade antibody neutralization, transmit more efficiently, and/or exhibit altered virulence. This raises significant concerns regarding the efficacy of anti-S monoclonal antibody-based therapeutics which have failed against variant SARS-CoV-2 viruses. To address this concern, SAB-185, a human anti-SARS-CoV-2 polyclonal antibody was generated in the DiversitAb platform. SAB-185 exhibited equivalent, robust in vitro neutralization for Munich, Alpha, Beta, Gamma, and Δ144-146 variants and, although diminished, retained PRNT 50 and PRNT 80 neutralization endpoints for Delta and Omicron variants. Human ACE2 transgenic Syrian hamsters, which exhibit lethal SARS-CoV-2 disease, were protected from mortality after challenge with the Munich, Alpha, Beta, Delta, and Δ144-146 variants and clinical signs after non-lethal Omicron BA.1 infection. This suggests that SAB-185 may be an effective immunotherapy even in the presence of ongoing viral mutation. • A transchromosomic bovine polyclonal antibody neutralizes variants of SARS-CoV-2 • We use a novel human ACE2 (hACE2) transgenic hamster model of SARS-CoV-2 infection • The polyclonal antibody protects hACE2 hamsters from all variants tested • Hyperimmunization of the bovines may promote protection against SARS-CoV-2 variants Immunology; Immune response; Virology Pandemic SARS-CoV-2 has undergone rapid evolution resulting in the emergence of many variants with mutations in the spike protein, some of which appear to evade antibody neutralization, transmit more efficiently, and/or exhibit altered virulence. This raises significant concerns regarding the efficacy of anti-S monoclonal antibody-based therapeutics which have failed against variant SARS-CoV-2 viruses. To address this concern, SAB-185, a human anti-SARS-CoV-2 polyclonal antibody was generated in the DiversitAb platform. SAB-185 exhibited equivalent, robust in vitro neutralization for Munich, Alpha, Beta, Gamma, and Δ144-146 variants and, although diminished, retained PRNT50 and PRNT80 neutralization endpoints for Delta and Omicron variants. Human ACE2 transgenic Syrian hamsters, which exhibit lethal SARS-CoV-2 disease, were protected from mortality after challenge with the Munich, Alpha, Beta, Delta, and Δ144-146 variants and clinical signs after non-lethal Omicron BA.1 infection. This suggests that SAB-185 may be an effective immunotherapy even in the presence of ongoing viral mutation. [Display omitted] •A transchromosomic bovine polyclonal antibody neutralizes variants of SARS-CoV-2•We use a novel human ACE2 (hACE2) transgenic hamster model of SARS-CoV-2 infection•The polyclonal antibody protects hACE2 hamsters from all variants tested•Hyperimmunization of the bovines may promote protection against SARS-CoV-2 variants Immunology; Immune response; Virology Pandemic SARS-CoV-2 has undergone rapid evolution resulting in the emergence of many variants with mutations in the spike protein, some of which appear to evade antibody neutralization, transmit more efficiently, and/or exhibit altered virulence. This raises significant concerns regarding the efficacy of anti-S monoclonal antibody-based therapeutics which have failed against variant SARS-CoV-2 viruses. To address this concern, SAB-185, a human anti-SARS-CoV-2 polyclonal antibody was generated in the DiversitAb platform. SAB-185 exhibited equivalent, robust in vitro neutralization for Munich, Alpha, Beta, Gamma, and Δ144-146 variants and, although diminished, retained PRNT50 and PRNT80 neutralization endpoints for Delta and Omicron variants. Human ACE2 transgenic Syrian hamsters, which exhibit lethal SARS-CoV-2 disease, were protected from mortality after challenge with the Munich, Alpha, Beta, Delta, and Δ144-146 variants and clinical signs after non-lethal Omicron BA.1 infection. This suggests that SAB-185 may be an effective immunotherapy even in the presence of ongoing viral mutation. |
ArticleNumber | 107764 |
Author | Lundy, Jeneveve Li, Rong Vasilatos, Shauna Wu, Hua Gilliland, Theron Sullivan, Eddie Terada, Yutaka Wang, Zhongde Liu, Yanan Luke, Thomas Alcorn, Maria D.H. Duprex, Paul Nambulli, Sham Egland, Kristi Dunn, Matthew Klimstra, William B. Bausch, Christoph Larson, Deanna |
Author_xml | – sequence: 1 givenname: Theron orcidid: 0000-0001-8373-0057 surname: Gilliland fullname: Gilliland, Theron organization: Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA – sequence: 2 givenname: Matthew surname: Dunn fullname: Dunn, Matthew organization: Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA – sequence: 3 givenname: Yanan surname: Liu fullname: Liu, Yanan organization: Department of Animal Dairy, Veterinary Sciences, Utah State University, Logan, UT 84341, USA – sequence: 4 givenname: Maria D.H. surname: Alcorn fullname: Alcorn, Maria D.H. organization: Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA – sequence: 5 givenname: Yutaka surname: Terada fullname: Terada, Yutaka organization: Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA – sequence: 6 givenname: Shauna surname: Vasilatos fullname: Vasilatos, Shauna organization: Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA – sequence: 7 givenname: Jeneveve surname: Lundy fullname: Lundy, Jeneveve organization: Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA – sequence: 8 givenname: Rong surname: Li fullname: Li, Rong organization: Department of Animal Dairy, Veterinary Sciences, Utah State University, Logan, UT 84341, USA – sequence: 9 givenname: Sham surname: Nambulli fullname: Nambulli, Sham organization: Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA – sequence: 10 givenname: Deanna surname: Larson fullname: Larson, Deanna organization: Department of Animal Dairy, Veterinary Sciences, Utah State University, Logan, UT 84341, USA – sequence: 11 givenname: Paul surname: Duprex fullname: Duprex, Paul organization: Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA – sequence: 12 givenname: Hua surname: Wu fullname: Wu, Hua organization: SAb Biotherapeutics, Inc, Sioux Falls, SD 57104, USA – sequence: 13 givenname: Thomas surname: Luke fullname: Luke, Thomas organization: SAb Biotherapeutics, Inc, Sioux Falls, SD 57104, USA – sequence: 14 givenname: Christoph surname: Bausch fullname: Bausch, Christoph organization: SAb Biotherapeutics, Inc, Sioux Falls, SD 57104, USA – sequence: 15 givenname: Kristi surname: Egland fullname: Egland, Kristi organization: SAb Biotherapeutics, Inc, Sioux Falls, SD 57104, USA – sequence: 16 givenname: Eddie surname: Sullivan fullname: Sullivan, Eddie organization: SAb Biotherapeutics, Inc, Sioux Falls, SD 57104, USA – sequence: 17 givenname: Zhongde surname: Wang fullname: Wang, Zhongde organization: Department of Animal Dairy, Veterinary Sciences, Utah State University, Logan, UT 84341, USA – sequence: 18 givenname: William B. surname: Klimstra fullname: Klimstra, William B. email: klimstra@pitt.edu organization: Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37736038$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kt1qGzEQhZeS0qRpXqAXZS97s65-9hcKxZi0DQQKTdpbMZJmbRmt5EqyIW-Qx64cJyHJRUAgMTrnG6Q574sj5x0WxUdKZpTQ9st6ZqIyM0YYz4Wua-s3xQlr-qEipGZHT87HxVmMa0IIy6se2nfFMe863hLenxS31wFcVKvgJx_9ZFQp_c44rDQGs0Ndgkumupr_vqoW_m_Fyo23N8p6B7ZcbSdwdwLptcFYboJPqFIsV_PFOSvTHr1El6ErmGLCEEtYgnExldPWJrOxWO4gmIyIH4q3I9iIZ_f7afHn-_n14md1-evHxWJ-WamGsVR1mnHSST5q3WjUEroRuVLQjgoVHYByxcaaQ6MbkMOoG5TIWtk3uuVatshPi4sDV3tYi00wE4Qb4cGIu4IPSwEhGWVRaMVZMyKykYy1pDgASM6BNgCo6pZm1rcDa7OVE2qFLj_ZPoM-v3FmJZZ-JyhpyMCGPhM-3xOC_7fFmMSUx4rWgkO_jYL1bU8Z7fs2Sz89bfbY5WGWWdAfBCr4GAOOQpkEyfh9b2NzU7FPjliLfXLEPjnikJxsZS-sD_RXTV8PJszj2hkMIivQKdQm5BTk_zSv2f8DCuPiIg |
CitedBy_id | crossref_primary_10_1038_s44298_025_00092_2 crossref_primary_10_3390_v16101625 crossref_primary_10_1016_j_isci_2024_110624 crossref_primary_10_1038_s42003_024_06015_w crossref_primary_10_1093_infdis_jiae369 |
Cites_doi | 10.1016/j.chom.2021.02.020 10.1016/S0140-6736(21)02844-0 10.1038/s41591-021-01678-y 10.1038/s41586-020-2787-6 10.1038/s41577-021-00542-x 10.1128/JVI.00226-17 10.1038/nbt.1521 10.1038/s41591-021-01255-3 10.1038/s41586-020-2895-3 10.7554/eLife.61312 10.1126/science.abe8499 10.1038/s41598-020-72528-z 10.1002/rmv.2231 10.1371/journal.pone.0130699 10.1126/sciadv.abh0319 10.1016/S2213-2600(21)00005-9 10.1371/journal.pone.0090383 10.1126/science.abf6950 10.1007/s15010-020-01548-8 10.1371/journal.ppat.1008903 10.1093/infdis/jiy377 10.1038/s41577-021-00544-9 10.1038/s41579-020-00459-7 10.1172/jci.insight.142032 10.1128/JVI.02012-06 10.1371/journal.pone.0144261 10.1126/science.abc6952 10.1016/j.bbrc.2020.10.109 10.1093/infdis/jiac031 10.1080/21645515.2021.1940652 10.1126/scitranslmed.aaf1061 10.1128/mbio.02906-21 10.1099/jgv.0.001481 10.7150/ijbs.47827 10.1038/s41586-022-04441-6 10.1038/s41541-020-00279-z 10.1080/14737159.2021.1917998 10.1099/jgv.0.001584 |
ContentType | Journal Article |
Copyright | 2023 The Authors 2023 The Authors. 2023 The Authors 2023 |
Copyright_xml | – notice: 2023 The Authors – notice: 2023 The Authors. – notice: 2023 The Authors 2023 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.isci.2023.107764 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
ExternalDocumentID | oai_doaj_org_article_dc325fee2f0f4b1e9aab33a15aaec461 PMC10509298 37736038 10_1016_j_isci_2023_107764 S2589004223018412 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: UC7 AI180311 |
GroupedDBID | 0R~ 53G 6I. AAEDW AAFTH AALRI AAMRU AAXUO AAYWO ABMAC ACVFH ADBBV ADCNI ADVLN AEUPX AEXQZ AFPUW AFTJW AIGII AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BCNDV EBS FDB GROUPED_DOAJ HYE M41 OK1 ROL RPM SSZ AAYXX CITATION EJD AACTN NPM 7X8 5PM |
ID | FETCH-LOGICAL-c522t-7d2307b3fdd5dedba7fe3cca6fcec19a13c2f43a5d5ab9fd5ebe26b85d63db6e3 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:26:57 EDT 2025 Thu Aug 21 18:36:37 EDT 2025 Fri Jul 11 01:26:12 EDT 2025 Thu Apr 03 07:03:24 EDT 2025 Thu Aug 07 06:33:10 EDT 2025 Thu Apr 24 23:04:25 EDT 2025 Sat Aug 30 17:17:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Immunology Immune response Virology |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2023 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c522t-7d2307b3fdd5dedba7fe3cca6fcec19a13c2f43a5d5ab9fd5ebe26b85d63db6e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally Lead contact |
ORCID | 0000-0001-8373-0057 |
OpenAccessLink | https://doaj.org/article/dc325fee2f0f4b1e9aab33a15aaec461 |
PMID | 37736038 |
PQID | 2868121886 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dc325fee2f0f4b1e9aab33a15aaec461 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10509298 proquest_miscellaneous_2868121886 pubmed_primary_37736038 crossref_citationtrail_10_1016_j_isci_2023_107764 crossref_primary_10_1016_j_isci_2023_107764 elsevier_sciencedirect_doi_10_1016_j_isci_2023_107764 |
PublicationCentury | 2000 |
PublicationDate | 2023-10-20 |
PublicationDateYYYYMMDD | 2023-10-20 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2023 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Asati, Kachurina, Karol, Dhir, Nguyen, Parkhill, Kouiavskaia, Chumakov, Warren, Kachurin (bib41) 2016; 11 Luke, Wu, Zhao, Channappanavar, Coleman, Jiao, Matsushita, Liu, Postnikova, Ork (bib24) 2016; 8 Zella, Giovanetti, Cella, Borsetti, Ciotti, Ceccarelli, D'Ettorre, Pezzuto, Tambone, Campanozzi (bib5) 2021; 21 Awadasseid, Wu, Tanaka, Zhang (bib6) 2021; 17 Matsushita, Sano, Wu, Wang, Jiao, Kasinathan, Sullivan, Kuroiwa (bib21) 2015; 10 Golden, Cline, Zeng, Garrison, Carey, Mucker, White, Shamblin, Brocato, Liu (bib27) 2020; 5 Taylor, Adams, Hufford, de la Torre, Winthrop, Gottlieb (bib18) 2021; 21 Groves, Rowland-Jones, Angyal (bib7) 2021; 538 Chi, Yan, Zhang, Zhang, Zhang, Hao, Zhang, Fan, Dong, Yang (bib43) 2020; 369 Kemp, Collier, Datir, Ferreira, Gayed, Jahun, Hosmillo, Rees-Spear, Mlcochova, Lumb (bib9) 2020 Matsushita, Sano, Wu, Jiao, Kasinathan, Sullivan, Wang, Kuroiwa (bib22) 2014; 9 McCray, Pewe, Wohlford-Lenane, Hickey, Manzel, Shi, Netland, Jia, Halabi, Sigmund (bib33) 2007; 81 Dejnirattisai, Shaw, Supasa, Liu, Stuart, Pollard, Liu, Lambe, Crook, Stuart (bib15) 2022; 399 Cobey, Larremore, Grad, Lipsitch (bib17) 2021; 21 Nambulli, Xiang, Tilston-Lunel, Rennick, Sang, Klimstra, Reed, Crossland, Shi, Duprex (bib36) 2021; 7 Brocato, Kwilas, Kim, Zeng, Principe, Smith, Hooper (bib38) 2021; 6 Tang, Grubbs, Lee, Wu, Luke, Egland, Bausch, Sullivan, Khurana (bib28) 2022; 226 Hasanoglu, Korukluoglu, Asilturk, Cosgun, Kalem, Altas, Kayaaslan, Eser, Kuzucu, Guner (bib35) 2021; 49 Hartman, Nambulli, McMillen, White, Tilston-Lunel, Albe, Cottle, Dunn, Frye, Gilliland (bib37) 2020; 16 Gomez, Perdiguero, Esteban (bib11) 2021; 9 Plante, Mitchell, Plante, Debbink, Weaver, Menachery (bib2) 2021; 29 Peacock, Penrice-Randal, Hiscox, Barclay (bib12) 2021; 102 VanBlargan, Errico, Halfmann, Zost, Crowe, Purcell, Kawaoka, Corti, Fremont, Diamond (bib16) 2022; 28 McCarthy, Rennick, Nambulli, Robinson-McCarthy, Bain, Haidar, Duprex (bib8) 2021; 371 Starr, Greaney, Dingens, Bloom (bib14) 2021; 2 Klimstra, Tilston-Lunel, Nambulli, Boslett, McMillen, Gilliland, Dunn, Sun, Wheeler, Wells (bib42) 2020; 101 Plante, Liu, Liu, Xia, Johnson, Lokugamage, Zhang, Muruato, Zou, Fontes-Garfias (bib13) 2021; 592 Focosi, Maggi (bib19) 2021; 31 Liu, Wu, Egland, Gilliland, Dunn, Luke, Sullivan, Klimstra, Bausch, Whelan (bib26) 2022; 18 Weisblum, Schmidt, Zhang, DaSilva, Poston, Lorenzi, Muecksch, Rutkowska, Hoffmann, Michailidis (bib39) 2020; 9 Hou, Chiba, Halfmann, Ehre, Kuroda, Dinnon, Leist, Schäfer, Nakajima, Takahashi (bib10) 2020; 370 Luke, Bennett, Gerhardt, Burdette, Postnikova, Mazur, Honko, Oberlander, Byrum, Ragland (bib23) 2018; 218 Kuroiwa, Kasinathan, Sathiyaseelan, Jiao, Matsushita, Sathiyaseelan, Wu, Mellquist, Hammitt, Koster (bib20) 2009; 27 Liu, VanBlargan, Bloyet, Rothlauf, Chen, Stumpf, Zhao, Errico, Theel, Liebeskind (bib40) 2021 Hu, Guo, Zhou, Shi (bib1) 2021; 19 Kirby (bib4) 2021; 9 Halfmann, Iida, Iwatsuki-Horimoto, Maemura, Kiso, Scheaffer, Darling, Joshi, Loeber, Singh (bib34) 2022; 603 Muñoz-Fontela, Dowling, Funnell, Gsell, Riveros-Balta, Albrecht, Andersen, Baric, Carroll, Cavaleri (bib29) 2020; 586 Brooke, Prischi (bib31) 2020; 10 Gardner, Sun, Luke, Raviprakash, Wu, Jiao, Sullivan, Reed, Ryman, Klimstra (bib25) 2017; 91 Golden, Li, Cline, Zeng, Mucker, Fuentes-Lao, Spik, Williams, Twenhafel, Davis (bib32) 2022 Tegally, Wilkinson, Lessells, Giandhari, Pillay, Msomi, Mlisana, Bhiman, von Gottberg, Walaza (bib3) 2021; 27 Damas, Hughes, Keough, Painter, Persky, Corbo, Hiller, Koepfli, Pfenning, Zhao (bib30) 2020; 117 VanBlargan (10.1016/j.isci.2023.107764_bib16) 2022; 28 Tang (10.1016/j.isci.2023.107764_bib28) 2022; 226 Nambulli (10.1016/j.isci.2023.107764_bib36) 2021; 7 Matsushita (10.1016/j.isci.2023.107764_bib22) 2014; 9 Weisblum (10.1016/j.isci.2023.107764_bib39) 2020; 9 Tegally (10.1016/j.isci.2023.107764_bib3) 2021; 27 Liu (10.1016/j.isci.2023.107764_bib40) 2021 Gomez (10.1016/j.isci.2023.107764_bib11) 2021; 9 Luke (10.1016/j.isci.2023.107764_bib24) 2016; 8 Starr (10.1016/j.isci.2023.107764_bib14) 2021; 2 Focosi (10.1016/j.isci.2023.107764_bib19) 2021; 31 Halfmann (10.1016/j.isci.2023.107764_bib34) 2022; 603 Gardner (10.1016/j.isci.2023.107764_bib25) 2017; 91 Cobey (10.1016/j.isci.2023.107764_bib17) 2021; 21 Kemp (10.1016/j.isci.2023.107764_bib9) 2020 Dejnirattisai (10.1016/j.isci.2023.107764_bib15) 2022; 399 Kirby (10.1016/j.isci.2023.107764_bib4) 2021; 9 Awadasseid (10.1016/j.isci.2023.107764_bib6) 2021; 17 Asati (10.1016/j.isci.2023.107764_bib41) 2016; 11 Hasanoglu (10.1016/j.isci.2023.107764_bib35) 2021; 49 Hu (10.1016/j.isci.2023.107764_bib1) 2021; 19 Peacock (10.1016/j.isci.2023.107764_bib12) 2021; 102 Golden (10.1016/j.isci.2023.107764_bib32) 2022 Hou (10.1016/j.isci.2023.107764_bib10) 2020; 370 Zella (10.1016/j.isci.2023.107764_bib5) 2021; 21 Taylor (10.1016/j.isci.2023.107764_bib18) 2021; 21 Luke (10.1016/j.isci.2023.107764_bib23) 2018; 218 Groves (10.1016/j.isci.2023.107764_bib7) 2021; 538 Brooke (10.1016/j.isci.2023.107764_bib31) 2020; 10 Chi (10.1016/j.isci.2023.107764_bib43) 2020; 369 Hartman (10.1016/j.isci.2023.107764_bib37) 2020; 16 Klimstra (10.1016/j.isci.2023.107764_bib42) 2020; 101 Plante (10.1016/j.isci.2023.107764_bib13) 2021; 592 Brocato (10.1016/j.isci.2023.107764_bib38) 2021; 6 Golden (10.1016/j.isci.2023.107764_bib27) 2020; 5 Liu (10.1016/j.isci.2023.107764_bib26) 2022; 18 Matsushita (10.1016/j.isci.2023.107764_bib21) 2015; 10 Damas (10.1016/j.isci.2023.107764_bib30) 2020; 117 Plante (10.1016/j.isci.2023.107764_bib2) 2021; 29 McCray (10.1016/j.isci.2023.107764_bib33) 2007; 81 McCarthy (10.1016/j.isci.2023.107764_bib8) 2021; 371 Kuroiwa (10.1016/j.isci.2023.107764_bib20) 2009; 27 Muñoz-Fontela (10.1016/j.isci.2023.107764_bib29) 2020; 586 |
References_xml | – year: 2020 ident: bib9 article-title: Neutralising antibodies in Spike mediated SARS-CoV-2 adaptation publication-title: medRxiv – volume: 102 year: 2021 ident: bib12 article-title: SARS-CoV-2 one year on: evidence for ongoing viral adaptation publication-title: J. Gen. Virol. – volume: 9 year: 2014 ident: bib22 article-title: Triple immunoglobulin gene knockout transchromosomic cattle: bovine lambda cluster deletion and its effect on fully human polyclonal antibody production publication-title: PLoS One – volume: 18 year: 2022 ident: bib26 article-title: Human immunoglobulin from transchromosomic bovines hyperimmunized with SARS-CoV-2 spike antigen efficiently neutralizes viral variants publication-title: Hum. Vaccines Immunother. – volume: 29 start-page: 508 year: 2021 end-page: 515 ident: bib2 article-title: The variant gambit: COVID-19's next move publication-title: Cell Host Microbe – volume: 226 start-page: 655 year: 2022 end-page: 663 ident: bib28 article-title: Increased antibody avidity and cross-neutralization of SARS-CoV-2 variants by hyperimmunized Tc-Bovine derived human immunoglobulins for treatment of COVID-19 publication-title: J. Infect. Dis. – volume: 9 year: 2020 ident: bib39 article-title: Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants publication-title: Elife – volume: 11 year: 2016 ident: bib41 article-title: Fluorescence Adherence Inhibition Assay: A Novel Functional Assessment of Blocking Virus Attachment by Vaccine-Induced Antibodies publication-title: PLoS One – volume: 399 start-page: 234 year: 2022 end-page: 236 ident: bib15 article-title: Reduced neutralisation of SARS-CoV-2 omicron B.1.1.529 variant by post-immunisation serum publication-title: Lancet – volume: 371 start-page: 1139 year: 2021 end-page: 1142 ident: bib8 article-title: Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape publication-title: Science – volume: 21 start-page: 330 year: 2021 end-page: 335 ident: bib17 article-title: Concerns about SARS-CoV-2 evolution should not hold back efforts to expand vaccination publication-title: Nat. Rev. Immunol. – volume: 592 start-page: 116 year: 2021 end-page: 121 ident: bib13 article-title: Spike mutation D614G alters SARS-CoV-2 fitness publication-title: Nature – year: 2022 ident: bib32 article-title: Hamsters Expressing Human Angiotensin-Converting Enzyme 2 Develop Severe Disease Following Exposure to SARS-CoV-2 publication-title: mBio – volume: 538 start-page: 104 year: 2021 end-page: 107 ident: bib7 article-title: The D614G mutations in the SARS-CoV-2 spike protein: Implications for viral infectivity, disease severity and vaccine design publication-title: Biochem. Biophys. Res. Commun. – volume: 27 start-page: 173 year: 2009 end-page: 181 ident: bib20 article-title: Antigen-specific human polyclonal antibodies from hyperimmunized cattle publication-title: Nat. Biotechnol. – volume: 101 start-page: 1156 year: 2020 end-page: 1169 ident: bib42 article-title: SARS-CoV-2 growth, furin-cleavage-site adaptation and neutralization using serum from acutely infected hospitalized COVID-19 patients publication-title: J. Gen. Virol. – volume: 10 year: 2015 ident: bib21 article-title: Species-Specific Chromosome Engineering Greatly Improves Fully Human Polyclonal Antibody Production Profile in Cattle publication-title: PLoS One – volume: 10 year: 2020 ident: bib31 article-title: Structural and functional modelling of SARS-CoV-2 entry in animal models publication-title: Sci. Rep. – volume: 7 year: 2021 ident: bib36 article-title: Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses publication-title: Sci. Adv. – volume: 9 start-page: e20 year: 2021 end-page: e21 ident: bib4 article-title: New variant of SARS-CoV-2 in UK causes surge of COVID-19 publication-title: Lancet Respir. Med. – volume: 17 start-page: 97 year: 2021 end-page: 106 ident: bib6 article-title: SARS-CoV-2 variants evolved during the early stage of the pandemic and effects of mutations on adaptation in Wuhan populations publication-title: Int. J. Biol. Sci. – volume: 21 start-page: 547 year: 2021 end-page: 562 ident: bib5 article-title: The importance of genomic analysis in cracking the coronavirus pandemic publication-title: Expert Rev. Mol. Diagn. – volume: 9 year: 2021 ident: bib11 article-title: Emerging SARS-CoV-2 Variants and Impact in Global Vaccination Programs against SARS-CoV-2/covid-19 publication-title: Vaccines (Basel) – volume: 117 start-page: 22311 year: 2020 end-page: 22322 ident: bib30 article-title: Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates – volume: 2 year: 2021 ident: bib14 article-title: Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016 publication-title: Cell Rep. Med. – volume: 28 start-page: 490 year: 2022 end-page: 495 ident: bib16 article-title: An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies publication-title: Nat. Med. – volume: 19 start-page: 141 year: 2021 end-page: 154 ident: bib1 article-title: Characteristics of SARS-CoV-2 and COVID-19 publication-title: Nat. Rev. Microbiol. – volume: 27 start-page: 440 year: 2021 end-page: 446 ident: bib3 article-title: Sixteen novel lineages of SARS-CoV-2 in South Africa publication-title: Nat. Med. – volume: 21 start-page: 382 year: 2021 end-page: 393 ident: bib18 article-title: Neutralizing monoclonal antibodies for treatment of COVID-19 publication-title: Nature Rev. Immunol. – year: 2021 ident: bib40 article-title: Landscape analysis of escape variants identifies SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization publication-title: bioRxiv – volume: 218 start-page: S636 year: 2018 end-page: S648 ident: bib23 article-title: Fully Human Immunoglobulin G From Transchromosomic Bovines Treats Nonhuman Primates Infected With Ebola Virus Makona Isolate publication-title: J. Infect. Dis. – volume: 603 start-page: 687 year: 2022 end-page: 692 ident: bib34 article-title: SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters publication-title: Nature – volume: 586 start-page: 509 year: 2020 end-page: 515 ident: bib29 article-title: Animal models for COVID-19 publication-title: Nature – volume: 49 start-page: 117 year: 2021 end-page: 126 ident: bib35 article-title: Higher viral loads in asymptomatic COVID-19 patients might be the invisible part of the iceberg publication-title: Infection – volume: 81 start-page: 813 year: 2007 end-page: 821 ident: bib33 article-title: Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus publication-title: J. Virol. – volume: 369 start-page: 650 year: 2020 end-page: 655 ident: bib43 article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2 publication-title: Science – volume: 370 start-page: 1464 year: 2020 end-page: 1468 ident: bib10 article-title: SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo publication-title: Science – volume: 91 year: 2017 ident: bib25 article-title: Antibody preparations from human transchromosomic cows exhibit prophylactic and therapeutic efficacy versus Venezuelan equine encephalitis virus publication-title: J. Virol. – volume: 16 year: 2020 ident: bib37 article-title: SARS-CoV-2 infection of African green monkeys results in mild respiratory disease discernible by PET/CT imaging and shedding of infectious virus from both respiratory and gastrointestinal tracts publication-title: PLoS Pathog. – volume: 8 start-page: 326ra21 year: 2016 ident: bib24 article-title: Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo publication-title: Sci. Transl. Med. – volume: 5 year: 2020 ident: bib27 article-title: Human angiotensin-converting enzyme 2 transgenic mice infected with SARS-CoV-2 develop severe and fatal respiratory disease publication-title: JCI Insight – volume: 6 start-page: 16 year: 2021 ident: bib38 article-title: Protective efficacy of a SARS-CoV-2 DNA vaccine in wild-type and immunosuppressed Syrian hamsters publication-title: NPJ Vaccines – volume: 31 start-page: e2231 year: 2021 ident: bib19 article-title: Neutralising antibody escape of SARS-CoV-2 spike protein: Risk assessment for antibody-based Covid-19 therapeutics and vaccines publication-title: Rev. Med. Virol. – volume: 29 start-page: 508 year: 2021 ident: 10.1016/j.isci.2023.107764_bib2 article-title: The variant gambit: COVID-19's next move publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.02.020 – volume: 399 start-page: 234 year: 2022 ident: 10.1016/j.isci.2023.107764_bib15 article-title: Reduced neutralisation of SARS-CoV-2 omicron B.1.1.529 variant by post-immunisation serum publication-title: Lancet doi: 10.1016/S0140-6736(21)02844-0 – volume: 28 start-page: 490 year: 2022 ident: 10.1016/j.isci.2023.107764_bib16 article-title: An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies publication-title: Nat. Med. doi: 10.1038/s41591-021-01678-y – volume: 586 start-page: 509 year: 2020 ident: 10.1016/j.isci.2023.107764_bib29 article-title: Animal models for COVID-19 publication-title: Nature doi: 10.1038/s41586-020-2787-6 – volume: 21 start-page: 382 year: 2021 ident: 10.1016/j.isci.2023.107764_bib18 article-title: Neutralizing monoclonal antibodies for treatment of COVID-19 publication-title: Nature Rev. Immunol. doi: 10.1038/s41577-021-00542-x – volume: 91 year: 2017 ident: 10.1016/j.isci.2023.107764_bib25 article-title: Antibody preparations from human transchromosomic cows exhibit prophylactic and therapeutic efficacy versus Venezuelan equine encephalitis virus publication-title: J. Virol. doi: 10.1128/JVI.00226-17 – volume: 27 start-page: 173 year: 2009 ident: 10.1016/j.isci.2023.107764_bib20 article-title: Antigen-specific human polyclonal antibodies from hyperimmunized cattle publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1521 – volume: 27 start-page: 440 year: 2021 ident: 10.1016/j.isci.2023.107764_bib3 article-title: Sixteen novel lineages of SARS-CoV-2 in South Africa publication-title: Nat. Med. doi: 10.1038/s41591-021-01255-3 – volume: 592 start-page: 116 year: 2021 ident: 10.1016/j.isci.2023.107764_bib13 article-title: Spike mutation D614G alters SARS-CoV-2 fitness publication-title: Nature doi: 10.1038/s41586-020-2895-3 – volume: 2 year: 2021 ident: 10.1016/j.isci.2023.107764_bib14 article-title: Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016 publication-title: Cell Rep. Med. – volume: 9 year: 2020 ident: 10.1016/j.isci.2023.107764_bib39 article-title: Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants publication-title: Elife doi: 10.7554/eLife.61312 – volume: 370 start-page: 1464 year: 2020 ident: 10.1016/j.isci.2023.107764_bib10 article-title: SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo publication-title: Science doi: 10.1126/science.abe8499 – volume: 10 year: 2020 ident: 10.1016/j.isci.2023.107764_bib31 article-title: Structural and functional modelling of SARS-CoV-2 entry in animal models publication-title: Sci. Rep. doi: 10.1038/s41598-020-72528-z – volume: 31 start-page: e2231 year: 2021 ident: 10.1016/j.isci.2023.107764_bib19 article-title: Neutralising antibody escape of SARS-CoV-2 spike protein: Risk assessment for antibody-based Covid-19 therapeutics and vaccines publication-title: Rev. Med. Virol. doi: 10.1002/rmv.2231 – volume: 10 year: 2015 ident: 10.1016/j.isci.2023.107764_bib21 article-title: Species-Specific Chromosome Engineering Greatly Improves Fully Human Polyclonal Antibody Production Profile in Cattle publication-title: PLoS One doi: 10.1371/journal.pone.0130699 – volume: 117 start-page: 22311 year: 2020 ident: 10.1016/j.isci.2023.107764_bib30 article-title: Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates – volume: 7 year: 2021 ident: 10.1016/j.isci.2023.107764_bib36 article-title: Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses publication-title: Sci. Adv. doi: 10.1126/sciadv.abh0319 – volume: 9 start-page: e20 year: 2021 ident: 10.1016/j.isci.2023.107764_bib4 article-title: New variant of SARS-CoV-2 in UK causes surge of COVID-19 publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(21)00005-9 – volume: 9 year: 2014 ident: 10.1016/j.isci.2023.107764_bib22 article-title: Triple immunoglobulin gene knockout transchromosomic cattle: bovine lambda cluster deletion and its effect on fully human polyclonal antibody production publication-title: PLoS One doi: 10.1371/journal.pone.0090383 – volume: 371 start-page: 1139 year: 2021 ident: 10.1016/j.isci.2023.107764_bib8 article-title: Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape publication-title: Science doi: 10.1126/science.abf6950 – volume: 49 start-page: 117 year: 2021 ident: 10.1016/j.isci.2023.107764_bib35 article-title: Higher viral loads in asymptomatic COVID-19 patients might be the invisible part of the iceberg publication-title: Infection doi: 10.1007/s15010-020-01548-8 – volume: 16 year: 2020 ident: 10.1016/j.isci.2023.107764_bib37 article-title: SARS-CoV-2 infection of African green monkeys results in mild respiratory disease discernible by PET/CT imaging and shedding of infectious virus from both respiratory and gastrointestinal tracts publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1008903 – year: 2021 ident: 10.1016/j.isci.2023.107764_bib40 article-title: Landscape analysis of escape variants identifies SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization publication-title: bioRxiv – volume: 218 start-page: S636 year: 2018 ident: 10.1016/j.isci.2023.107764_bib23 article-title: Fully Human Immunoglobulin G From Transchromosomic Bovines Treats Nonhuman Primates Infected With Ebola Virus Makona Isolate publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiy377 – year: 2020 ident: 10.1016/j.isci.2023.107764_bib9 article-title: Neutralising antibodies in Spike mediated SARS-CoV-2 adaptation publication-title: medRxiv – volume: 21 start-page: 330 year: 2021 ident: 10.1016/j.isci.2023.107764_bib17 article-title: Concerns about SARS-CoV-2 evolution should not hold back efforts to expand vaccination publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-021-00544-9 – volume: 9 year: 2021 ident: 10.1016/j.isci.2023.107764_bib11 article-title: Emerging SARS-CoV-2 Variants and Impact in Global Vaccination Programs against SARS-CoV-2/covid-19 publication-title: Vaccines (Basel) – volume: 19 start-page: 141 year: 2021 ident: 10.1016/j.isci.2023.107764_bib1 article-title: Characteristics of SARS-CoV-2 and COVID-19 publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-020-00459-7 – volume: 5 year: 2020 ident: 10.1016/j.isci.2023.107764_bib27 article-title: Human angiotensin-converting enzyme 2 transgenic mice infected with SARS-CoV-2 develop severe and fatal respiratory disease publication-title: JCI Insight doi: 10.1172/jci.insight.142032 – volume: 81 start-page: 813 year: 2007 ident: 10.1016/j.isci.2023.107764_bib33 article-title: Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus publication-title: J. Virol. doi: 10.1128/JVI.02012-06 – volume: 11 year: 2016 ident: 10.1016/j.isci.2023.107764_bib41 article-title: Fluorescence Adherence Inhibition Assay: A Novel Functional Assessment of Blocking Virus Attachment by Vaccine-Induced Antibodies publication-title: PLoS One doi: 10.1371/journal.pone.0144261 – volume: 369 start-page: 650 year: 2020 ident: 10.1016/j.isci.2023.107764_bib43 article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2 publication-title: Science doi: 10.1126/science.abc6952 – volume: 538 start-page: 104 year: 2021 ident: 10.1016/j.isci.2023.107764_bib7 article-title: The D614G mutations in the SARS-CoV-2 spike protein: Implications for viral infectivity, disease severity and vaccine design publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.10.109 – volume: 226 start-page: 655 year: 2022 ident: 10.1016/j.isci.2023.107764_bib28 article-title: Increased antibody avidity and cross-neutralization of SARS-CoV-2 variants by hyperimmunized Tc-Bovine derived human immunoglobulins for treatment of COVID-19 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiac031 – volume: 18 year: 2022 ident: 10.1016/j.isci.2023.107764_bib26 article-title: Human immunoglobulin from transchromosomic bovines hyperimmunized with SARS-CoV-2 spike antigen efficiently neutralizes viral variants publication-title: Hum. Vaccines Immunother. doi: 10.1080/21645515.2021.1940652 – volume: 8 start-page: 326ra21 year: 2016 ident: 10.1016/j.isci.2023.107764_bib24 article-title: Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaf1061 – year: 2022 ident: 10.1016/j.isci.2023.107764_bib32 article-title: Hamsters Expressing Human Angiotensin-Converting Enzyme 2 Develop Severe Disease Following Exposure to SARS-CoV-2 publication-title: mBio doi: 10.1128/mbio.02906-21 – volume: 101 start-page: 1156 year: 2020 ident: 10.1016/j.isci.2023.107764_bib42 article-title: SARS-CoV-2 growth, furin-cleavage-site adaptation and neutralization using serum from acutely infected hospitalized COVID-19 patients publication-title: J. Gen. Virol. doi: 10.1099/jgv.0.001481 – volume: 17 start-page: 97 year: 2021 ident: 10.1016/j.isci.2023.107764_bib6 article-title: SARS-CoV-2 variants evolved during the early stage of the pandemic and effects of mutations on adaptation in Wuhan populations publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.47827 – volume: 603 start-page: 687 year: 2022 ident: 10.1016/j.isci.2023.107764_bib34 article-title: SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters publication-title: Nature doi: 10.1038/s41586-022-04441-6 – volume: 6 start-page: 16 year: 2021 ident: 10.1016/j.isci.2023.107764_bib38 article-title: Protective efficacy of a SARS-CoV-2 DNA vaccine in wild-type and immunosuppressed Syrian hamsters publication-title: NPJ Vaccines doi: 10.1038/s41541-020-00279-z – volume: 21 start-page: 547 year: 2021 ident: 10.1016/j.isci.2023.107764_bib5 article-title: The importance of genomic analysis in cracking the coronavirus pandemic publication-title: Expert Rev. Mol. Diagn. doi: 10.1080/14737159.2021.1917998 – volume: 102 year: 2021 ident: 10.1016/j.isci.2023.107764_bib12 article-title: SARS-CoV-2 one year on: evidence for ongoing viral adaptation publication-title: J. Gen. Virol. doi: 10.1099/jgv.0.001584 |
SSID | ssj0002002496 |
Score | 2.2827222 |
Snippet | Pandemic SARS-CoV-2 has undergone rapid evolution resulting in the emergence of many variants with mutations in the spike protein, some of which appear to... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 107764 |
SubjectTerms | Immune response Immunology Virology |
Title | Transchromosomic bovine-derived anti-SARS-CoV-2 polyclonal human antibodies protects hACE2 transgenic hamsters against multiple variants |
URI | https://dx.doi.org/10.1016/j.isci.2023.107764 https://www.ncbi.nlm.nih.gov/pubmed/37736038 https://www.proquest.com/docview/2868121886 https://pubmed.ncbi.nlm.nih.gov/PMC10509298 https://doaj.org/article/dc325fee2f0f4b1e9aab33a15aaec461 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQV2wQiFd4yUjskGFsx46zHEatKiRYUIq6s_xkphqSqjOtxB_0s3tvHqMJSGXDNnGc2PdE9zg5PpeQd0pFHVQULEP6ZPiNgTnjMgtaC6517WWnqvzyVR-flp_P1NleqS_UhPX2wP3EfYxBCpVTEnmWS89T7ZyX0nHlXAplv_CBnLe3mDrvfq-hFZ4edsn0gi7c5foBq4XDgarS5SQTdYb9k4T0N-H8Uze5l4iOHpIHA4Ok8_7JH5F7qXlMbrqcE5YortvgRmPq8VNBYhEQdp0ihQlcsZP5txO2aH8wQS_a9e-wRhpOuzJ9XQPfoqaQDt4NG7qcLw4F3WLXgDPodOl-obHChrqfbgXEko56RHoNa26U1Dwhp0eH3xfHbCiywAJQry2rIkrBvcwxqpiid1VOEsKqc0iB147LIHIpnYrK-TpHBVEX2huIsYxeJ_mUHDRtk54TmniodCwVz-hxH7NJwEZdcLj7Fu6hCsLHCbdhcCDHQhhrO0rNzi0GyWKQbB-kgrzfXXPR-2_c2foTxnHXEr2zuwOAKDsgyv4LUQVRIwrsQEN6egFdre68-dsRMhbeUfzx4prUXm2sMOjyxo3RBXnWQ2j3iLKqpJ5JUxAzAddkDNMzzWrZ-YBz9O4RtXnxP0b9ktzHsWBaFrNX5GB7eZVeA9_a-jfdq3ULXJ0vdw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transchromosomic+bovine-derived+anti-SARS-CoV-2+polyclonal+human+antibodies+protects+hACE2+transgenic+hamsters+against+multiple+variants&rft.jtitle=iScience&rft.au=Gilliland%2C+Theron&rft.au=Dunn%2C+Matthew&rft.au=Liu%2C+Yanan&rft.au=Alcorn%2C+Maria+D+H&rft.date=2023-10-20&rft.eissn=2589-0042&rft.volume=26&rft.issue=10&rft.spage=107764&rft_id=info:doi/10.1016%2Fj.isci.2023.107764&rft_id=info%3Apmid%2F37736038&rft.externalDocID=37736038 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |