Carrier-free nanoplatforms from natural plants for enhanced bioactivity

[Display omitted] •Carrier-free nanoplatforms with self-assembly from natural plants.•Nano self-assembly of pure small molecules for enhanced bioactivity.•Extracellular vesicles containing active substances from fresh plants.•Charcoal nanocomponents with carbon skeleton structure from charred plants...

Full description

Saved in:
Bibliographic Details
Published inJournal of advanced research Vol. 50; pp. 159 - 176
Main Authors Li, Zhongrui, Xu, Xiao, Wang, Yun, Kong, Lingyi, Han, Chao
Format Journal Article
LanguageEnglish
Published Egypt Elsevier B.V 01.08.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Carrier-free nanoplatforms with self-assembly from natural plants.•Nano self-assembly of pure small molecules for enhanced bioactivity.•Extracellular vesicles containing active substances from fresh plants.•Charcoal nanocomponents with carbon skeleton structure from charred plants.•Nanoaggregate particles with wide curative effects from decoction of plants formulae. Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis and major resource for drug innovation. Carrier-free nanoplatforms completely self-assembled by pure molecules or therapeutic components have attracted increasing attention due to their advantages of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug loading. In recent years, carrier-free nanoplatforms produced by self-assembly from natural plants have contributed to progress in a variety of therapeutic modalities. Notably, these nanoplatforms based on the interactions of components from different natural plants improve efficiency and depress toxicity. In this review, different types of self-assembled nanoplatforms are first summarized, mainly including nanoassemblies of pure small molecules isolated from different plants, extracellular vesicles separated from fresh plants, charcoal nanocomponents obtained from charred plants, and nanoaggregates from plants formulae decoctions. Key Scientific Concepts of Review: We mainly focus on composition, self-assembly mechanisms, biological activity and modes of action. Finally, a future perspective of existing challenges with respect to the clinical application of plant-based carrier-free nanoplatforms is discussed, which may be instructive to further develop effective carrier-free nanoplatforms from natural plants in the future.
AbstractList Background: Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis and major resource for drug innovation. Carrier-free nanoplatforms completely self-assembled by pure molecules or therapeutic components have attracted increasing attention due to their advantages of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug loading. In recent years, carrier-free nanoplatforms produced by self-assembly from natural plants have contributed to progress in a variety of therapeutic modalities. Notably, these nanoplatforms based on the interactions of components from different natural plants improve efficiency and depress toxicity. Aim of Review: In this review, different types of self-assembled nanoplatforms are first summarized, mainly including nanoassemblies of pure small molecules isolated from different plants, extracellular vesicles separated from fresh plants, charcoal nanocomponents obtained from charred plants, and nanoaggregates from plants formulae decoctions.Key Scientific Concepts of Review: We mainly focus on composition, self-assembly mechanisms, biological activity and modes of action. Finally, a future perspective of existing challenges with respect to the clinical application of plant-based carrier-free nanoplatforms is discussed, which may be instructive to further develop effective carrier-free nanoplatforms from natural plants in the future.
Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis and major resource for drug innovation. Carrier-free nanoplatforms completely self-assembled by pure molecules or therapeutic components have attracted increasing attention due to their advantages of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug loading. In recent years, carrier-free nanoplatforms produced by self-assembly from natural plants have contributed to progress in a variety of therapeutic modalities. Notably, these nanoplatforms based on the interactions of components from different natural plants improve efficiency and depress toxicity.BACKGROUNDNatural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis and major resource for drug innovation. Carrier-free nanoplatforms completely self-assembled by pure molecules or therapeutic components have attracted increasing attention due to their advantages of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug loading. In recent years, carrier-free nanoplatforms produced by self-assembly from natural plants have contributed to progress in a variety of therapeutic modalities. Notably, these nanoplatforms based on the interactions of components from different natural plants improve efficiency and depress toxicity.In this review, different types of self-assembled nanoplatforms are first summarized, mainly including nanoassemblies of pure small molecules isolated from different plants, extracellular vesicles separated from fresh plants, charcoal nanocomponents obtained from charred plants, and nanoaggregates from plants formulae decoctions. Key Scientific Concepts of Review: We mainly focus on composition, self-assembly mechanisms, biological activity and modes of action. Finally, a future perspective of existing challenges with respect to the clinical application of plant-based carrier-free nanoplatforms is discussed, which may be instructive to further develop effective carrier-free nanoplatforms from natural plants in the future.AIM OF REVIEWIn this review, different types of self-assembled nanoplatforms are first summarized, mainly including nanoassemblies of pure small molecules isolated from different plants, extracellular vesicles separated from fresh plants, charcoal nanocomponents obtained from charred plants, and nanoaggregates from plants formulae decoctions. Key Scientific Concepts of Review: We mainly focus on composition, self-assembly mechanisms, biological activity and modes of action. Finally, a future perspective of existing challenges with respect to the clinical application of plant-based carrier-free nanoplatforms is discussed, which may be instructive to further develop effective carrier-free nanoplatforms from natural plants in the future.
[Display omitted] •Carrier-free nanoplatforms with self-assembly from natural plants.•Nano self-assembly of pure small molecules for enhanced bioactivity.•Extracellular vesicles containing active substances from fresh plants.•Charcoal nanocomponents with carbon skeleton structure from charred plants.•Nanoaggregate particles with wide curative effects from decoction of plants formulae. Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis and major resource for drug innovation. Carrier-free nanoplatforms completely self-assembled by pure molecules or therapeutic components have attracted increasing attention due to their advantages of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug loading. In recent years, carrier-free nanoplatforms produced by self-assembly from natural plants have contributed to progress in a variety of therapeutic modalities. Notably, these nanoplatforms based on the interactions of components from different natural plants improve efficiency and depress toxicity. In this review, different types of self-assembled nanoplatforms are first summarized, mainly including nanoassemblies of pure small molecules isolated from different plants, extracellular vesicles separated from fresh plants, charcoal nanocomponents obtained from charred plants, and nanoaggregates from plants formulae decoctions. Key Scientific Concepts of Review: We mainly focus on composition, self-assembly mechanisms, biological activity and modes of action. Finally, a future perspective of existing challenges with respect to the clinical application of plant-based carrier-free nanoplatforms is discussed, which may be instructive to further develop effective carrier-free nanoplatforms from natural plants in the future.
Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis and major resource for drug innovation. Carrier-free nanoplatforms completely self-assembled by pure molecules or therapeutic components have attracted increasing attention due to their advantages of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug loading. In recent years, carrier-free nanoplatforms produced by self-assembly from natural plants have contributed to progress in a variety of therapeutic modalities. Notably, these nanoplatforms based on the interactions of components from different natural plants improve efficiency and depress toxicity. In this review, different types of self-assembled nanoplatforms are first summarized, mainly including nanoassemblies of pure small molecules isolated from different plants, extracellular vesicles separated from fresh plants, charcoal nanocomponents obtained from charred plants, and nanoaggregates from plants formulae decoctions. Key Scientific Concepts of Review: We mainly focus on composition, self-assembly mechanisms, biological activity and modes of action. Finally, a future perspective of existing challenges with respect to the clinical application of plant-based carrier-free nanoplatforms is discussed, which may be instructive to further develop effective carrier-free nanoplatforms from natural plants in the future.
• Carrier-free nanoplatforms with self-assembly from natural plants. • Nano self-assembly of pure small molecules for enhanced bioactivity. • Extracellular vesicles containing active substances from fresh plants. • Charcoal nanocomponents with carbon skeleton structure from charred plants. • Nanoaggregate particles with wide curative effects from decoction of plants formulae.
Author Xu, Xiao
Han, Chao
Wang, Yun
Kong, Lingyi
Li, Zhongrui
Author_xml – sequence: 1
  givenname: Zhongrui
  surname: Li
  fullname: Li, Zhongrui
  organization: State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
– sequence: 2
  givenname: Xiao
  surname: Xu
  fullname: Xu, Xiao
  organization: State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
– sequence: 3
  givenname: Yun
  surname: Wang
  fullname: Wang, Yun
  organization: State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
– sequence: 4
  givenname: Lingyi
  surname: Kong
  fullname: Kong, Lingyi
  email: cpu_lykong@126.com
  organization: State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
– sequence: 5
  givenname: Chao
  surname: Han
  fullname: Han, Chao
  email: hanchao@cpu.edu.cn
  organization: State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36208834$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustq3DAUFSWlSZP8QBfFy27s6mHrAYVShiYNBLpp1kKWrxIZ25pKmoH8feVMOjRdRAtJHN1z7uPoPTpZwgIIfSC4IZjwz2MzmggNxZQ2WDWYsDfojGKFa0Jpe3K8M3qKLlMacVlMSkXIO3TKOMVSsvYMXW9MjB5i7SJAtZglbCeTXYhzqlwMc4HyLpqpKvCSCxZiBcuDWSwMVe-DsdnvfX68QG-dmRJcPp_n6O7q-6_Nj_r25_XN5tttbTtKcy363josRMcNbU2HO9piLjol7WCUEIMjslOuU5ZK6BwoAdxIIqRh3DkuFDtHNwfdIZhRb6OfTXzUwXj9BIR4r03M3k6gWW_pAC0Z1l30UvLS9mC7vqelCNoXra8Hre2un2GwsOTS6QvRly-Lf9D3Ya8JbjHjQhaFT88KMfzeQcp69snCVGYFYZc0FZQRjnm7hn78N9kxy18rSgA9BNgYUorgjiEE69VyPerVcr1arrHSxfJCkv-RrM8m-7AW7KfXqV8OVCh27csX0Ml6WH31EWwu8_Sv0f8Ab3rHoQ
CitedBy_id crossref_primary_10_1016_j_fmre_2023_09_007
crossref_primary_10_2147_IJN_S467354
crossref_primary_10_1016_j_jpha_2025_101201
crossref_primary_10_1016_j_phrs_2023_107033
crossref_primary_10_37349_eff_2023_00010
crossref_primary_10_1016_j_cclet_2024_109733
crossref_primary_10_1002_wnan_1967
crossref_primary_10_3389_fphar_2024_1333087
crossref_primary_10_3389_fphar_2023_1158945
crossref_primary_10_1021_acsami_4c10175
crossref_primary_10_1039_D3CP04835G
crossref_primary_10_3390_molecules29143326
crossref_primary_10_1016_j_foodchem_2024_140058
crossref_primary_10_1016_j_cclet_2024_110224
crossref_primary_10_2147_IJN_S422944
Cites_doi 10.1016/j.jconrel.2018.11.014
10.1002/smll.201906206
10.2147/IJN.S293067
10.1016/j.jcis.2021.12.002
10.1002/smll.201902641
10.1039/C9MD00447E
10.3390/pharmaceutics14030476
10.1016/j.jcis.2012.06.018
10.1016/j.actbio.2018.01.028
10.3390/molecules21081094
10.1016/j.biopha.2021.111310
10.1021/mp500744m
10.1039/C8FO02295J
10.2217/nnm-2017-0297
10.1021/acs.jafc.9b03208
10.1016/j.ijbiomac.2020.05.070
10.3390/molecules24152751
10.1002/adfm.201805582
10.2217/nnm-2019-0255
10.1016/j.jconrel.2020.09.025
10.1016/j.jconrel.2019.12.011
10.1016/j.ymthe.2021.08.028
10.1016/j.semcancer.2020.05.011
10.1007/s11101-019-09623-1
10.1166/jbn.2018.2613
10.1016/j.jpba.2019.02.044
10.3390/molecules25102278
10.1002/adma.201703135
10.2147/IJN.S248467
10.1186/s12951-021-00847-y
10.2147/IJN.S289515
10.3389/fbioe.2021.799806
10.1093/rb/rbv011
10.1038/mt.2013.190
10.2147/IJN.S276470
10.1016/j.biomaterials.2019.119701
10.1016/S0254-6272(15)30110-2
10.1002/ajoc.201200032
10.1016/j.gene.2017.10.046
10.1016/j.apsb.2021.08.016
10.1016/j.jcis.2013.01.017
10.2174/1389201019666181017115755
10.1021/acs.molpharmaceut.9b00246
10.1186/s11658-019-0164-y
10.3390/molecules24010128
10.1186/s12951-020-00656-9
10.18632/oncotarget.4004
10.3390/ijms21165712
10.3390/pharmaceutics12020128
10.1039/C7RA02123B
10.1016/j.ejmech.2020.112081
10.1016/j.ajps.2021.05.006
10.3389/fphar.2019.00648
10.1158/0008-5472.CAN-12-3542
10.1038/mt.2016.159
10.1021/acs.jafc.7b05614
10.3390/cells9122722
10.3390/ijms21165920
10.1021/acsami.1c06968
10.1007/s12274-019-2470-0
10.1016/j.colsurfa.2020.124805
10.1016/j.ejps.2016.09.022
10.1016/j.ymthe.2017.01.025
10.1016/j.drudis.2018.01.006
10.3390/molecules27103268
10.1016/j.biomaterials.2014.04.106
10.3390/nu12020477
10.1016/S0308-8146(02)00184-X
10.1038/ncomms2886
10.3390/molecules27051511
10.3390/nano12010030
10.1186/s40425-019-0817-4
10.1158/0008-5472.CAN-14-3095
10.1080/21691401.2019.1699810
10.1002/anie.201403036
10.1016/j.jff.2021.104392
10.1155/2017/9217912
10.1039/C8RA06340K
10.1021/acsami.8b22336
10.1016/j.celrep.2022.110319
10.1038/s41467-019-09601-3
10.1021/acsami.9b17722
10.2217/nnm-2016-0353
10.1016/j.imlet.2016.05.011
10.1016/j.jpba.2020.113820
10.1016/j.cis.2018.11.004
10.1016/S0140-6736(08)61354-9
10.18632/oncotarget.8361
10.1016/j.jep.2020.113774
10.1021/acs.molpharmaceut.8b00444
10.2217/nnm-2018-0285
10.2147/IJN.S291670
10.7150/thno.55250
10.3390/molecules26061512
10.3389/fphar.2020.01210
10.2217/nnm-2017-0196
10.1021/acsami.7b14755
10.1016/j.jgr.2020.02.004
10.1166/jctn.2014.3605
10.1002/mnfr.201300729
10.1007/s00709-019-01435-6
10.1007/s11427-018-9508-0
10.3390/biom11010087
10.7717/peerj.5186
10.1038/mt.2013.64
10.1021/acsnano.9b01346
10.1186/s12951-017-0296-z
10.1088/2053-1591/ab4fd8
10.1080/20013078.2019.1703480
10.2147/IJN.S196974
10.1021/acsami.5b05347
10.1016/j.cej.2021.131420
10.3390/foods8060185
10.1039/C9TB02735A
10.1080/10408398.2018.1509201
10.2217/nnm-2019-0369
10.3390/molecules24224152
10.1038/mt.2015.188
10.1021/acsami.9b07404
10.3390/molecules23092300
10.1021/acsabm.9b01007
10.1039/D0TB01260B
10.1016/j.apsb.2019.12.014
10.1016/j.ymthe.2020.11.030
10.1016/j.bcp.2020.114232
10.1002/ptr.5693
10.1016/j.jconrel.2020.10.014
10.1007/s13659-020-00272-y
10.1021/acs.jafc.1c07306
10.2174/1567201817666201124121918
10.1016/j.biomaterials.2016.06.018
10.1186/s12951-018-0392-8
10.1007/s00709-019-01411-0
10.1007/s00253-020-10701-0
10.1002/tcr.201600123
10.1039/c2ra21051g
10.1021/acs.jnatprod.9b01285
10.1021/acsami.7b18809
10.1016/j.fitote.2021.104845
10.15212/AMM-2022-1001
10.1016/j.ijpharm.2019.01.047
10.2147/IJN.S281976
10.1080/21691401.2020.1862134
10.3390/molecules26237368
10.1016/j.chmed.2021.06.004
10.1016/j.jmgm.2015.01.002
10.1016/j.febslet.2009.09.041
10.1248/bpb.b18-00756
10.2174/1567201816666190313155117
10.1039/C8NR02700E
10.1039/C7BM00052A
10.1016/j.isci.2019.10.032
10.1039/D0FO01896A
10.1016/j.apsb.2020.07.026
10.1038/s41598-018-30690-5
10.1016/j.apsb.2021.08.012
10.1039/C9NR03872H
10.3390/ijms23010191
10.3390/molecules25030446
10.1016/j.biomaterials.2020.120557
10.1080/21691401.2018.1492419
10.3390/ijms22094599
10.1016/j.chom.2018.10.001
10.1166/jbn.2019.2675
10.1016/j.bioactmat.2021.06.035
10.1021/acs.est.8b01481
10.3402/jev.v4.28713
10.1021/acs.nanolett.9b05008
10.1039/D0FO02179B
10.1021/acs.bioconjchem.8b00657
10.1088/1748-605X/abe396
10.1039/C7TB02562A
10.1016/j.jtcme.2016.08.007
10.1002/jssc.201500100
10.1021/acsami.0c12641
10.1016/j.jcis.2021.03.101
10.1016/j.bioactmat.2021.04.023
10.3390/biomedicines9050480
10.3390/ph15060708
10.1016/j.ejmech.2018.06.053
10.1016/j.ijpharm.2019.118663
10.3390/ma13143224
10.1016/j.isci.2021.102511
10.1016/j.ijpharm.2021.120546
10.3390/molecules22091456
10.1016/j.jep.2013.12.029
10.1021/acsami.9b18443
10.1166/jbn.2018.2653
10.1002/adfm.201907857
10.1039/c3ra43306d
10.1016/j.jplph.2018.07.006
10.1016/j.biopha.2020.109826
10.3390/molecules22081247
10.1016/j.foodchem.2018.09.059
10.3390/molecules200916970
10.1038/s41573-020-00114-z
10.1016/j.bbrc.2014.01.148
ContentType Journal Article
Copyright 2023
Copyright © 2023. Production and hosting by Elsevier B.V.
2023 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2023
Copyright_xml – notice: 2023
– notice: Copyright © 2023. Production and hosting by Elsevier B.V.
– notice: 2023 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2023
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.jare.2022.09.013
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2090-1224
EndPage 176
ExternalDocumentID oai_doaj_org_article_3bc2de41d2de47b886362dc5bb2bcf2b
PMC10403678
36208834
10_1016_j_jare_2022_09_013
S2090123222002156
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID --K
0R~
0SF
1B1
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABFRF
ABMAC
ACGFS
ADBBV
ADEZE
AEFWE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
E3Z
EBS
EJD
FDB
GROUPED_DOAJ
GX1
HH5
HYE
HZ~
IPNFZ
IXB
J1W
KQ8
M41
NCXOZ
O-L
O9-
OK1
OZT
RIG
ROL
RPM
SES
SSZ
UNMZH
XH2
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c522t-7bbcf07756a24a50524067598cda977df1859f59c28e5fe97e6a8178a36ff6793
IEDL.DBID DOA
ISSN 2090-1232
2090-1224
IngestDate Wed Aug 27 01:19:53 EDT 2025
Thu Aug 21 18:42:01 EDT 2025
Fri Jul 11 16:19:26 EDT 2025
Thu Apr 03 07:04:17 EDT 2025
Tue Jul 01 03:01:32 EDT 2025
Thu Apr 24 22:51:20 EDT 2025
Fri Feb 23 02:35:15 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Charcoal nanocomponent
Natural plants
Extracellular vesicle
Carrier-free nanoplatform
Nanoaggregates
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2023. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-7bbcf07756a24a50524067598cda977df1859f59c28e5fe97e6a8178a36ff6793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://doaj.org/article/3bc2de41d2de47b886362dc5bb2bcf2b
PMID 36208834
PQID 2723160648
PQPubID 23479
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_3bc2de41d2de47b886362dc5bb2bcf2b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10403678
proquest_miscellaneous_2723160648
pubmed_primary_36208834
crossref_primary_10_1016_j_jare_2022_09_013
crossref_citationtrail_10_1016_j_jare_2022_09_013
elsevier_sciencedirect_doi_10_1016_j_jare_2022_09_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Egypt
PublicationPlace_xml – name: Egypt
PublicationTitle Journal of advanced research
PublicationTitleAlternate J Adv Res
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Tang, Liu, Ma (b0010) 2008; 372
Zhang, Wang, Han, Collins, Merlin (b0610) 2017; 12
Ghanbari-Movahed, Kaceli, Mondal, Farzaei, Bishayee (b0220) 2021; 9
Gao, Bao, Cao, Shan, Cheng, Jiang (b0785) 2019; 24
Chen, Yu, Wu, Pan, Wang, Liu (b0830) 2015; 20
Kong, Zhao, Zhu, Xiong, Luo, Cheng (b0905) 2020; 49
Shang, Yang, Yang, Li, Kong, Zhang (b0520) 2021; 425
Cui, Gao, He, Jiang (b0540) 2020; 257
Patra, Das, Fraceto, Campos, Rodriguez-Torres, Acosta-Torres (b0045) 2018; 16
Gao, Dong, Guo, Wang, Feng, Yan (b0930) 2022; 27
Ruwizhi, Aderibigbe (b0115) 2020; 21
Lin, Chang, Chu, Lin, Chang, Wang (b0925) 2019; 15
Han, Huang, Tian, Li, Liu, Li (b0130) 2021; 18
Zhang, Yang, Ren, Chen, Wu, Zheng (b0995) 2021; 13
Wu, Lu, Hu, Gao, Ma, Ju (b0410) 2013; 3
Liu, Wen, Peng, Liu, Tong (b0940) 2015; 35
Biswas, Dwivedi (b0270) 2019; 256
Lee, Ko, Kim, Sohn, Min, Kim (b0740) 2019; 9
Wang, Zhang, Zhang, Kong, Wang, Cheng (b0865) 2019; 24
Dijkgraaf, Moniek, Bart, Vogelpoel, Renske, Veena (b0190) 2013; 73
Hordyjewska, Ostapiuk, Horecka, Kurzepa (b0310) 2019; 18
Mao, Xu, Cao, Gan, Corke, Beta (b0570) 2019; 8
Wang, Zhao, Qiao, Cheng, Han, Yang (b0295) 2020; 12
Jiang, Han, Guo, Zheng, Fan, Shen (b0440) 2017; 5
Totary-Jain, Sionov, Gallily (b0195) 2016; 176
Yang, Liu, Luo, Xu, Chen (b0635) 2020; 18
Huang, Wang, Li, Tian, Guo, Xu (b0120) 2020; 12
Cheng, Zhang, Sun, Lu, Xiong, Luo (b0795) 2019; 14
Wang, Yang, Li, Yang, Du, Lu (b0135) 2020; 10
Zhu, Chen (b0175) 2019; 24
Zhuang, Deng, Mu, Zhang, Yan, Miller (b0595) 2015; 4
Abraham, Wiemann, Ambreen, Zhou, Engelhardt, Brüßler (b0730) 2022; 14
Yan, Zhu, Huang, Yang, Shen, Pan (b0335) 2022; 38
Malík, Velechovský, Tlustos (b0275) 2021; 151
Liu, Wang, Yan, Zhang, Zhang, Cheng (b0800) 2018; 13
Wang, Li, Xiang, Zhang, Fang, Wu (b0980) 2017; 22
Iitsuka, Koizumi, Inujima, Suzaki, Mizuno, Takeshita (b1005) 2018; 16
Mu, Zhuang, Wang, Jiang, Deng, Wang (b0685) 2014; 58
Chen, Yu, Wu, Pan, Wang, Liu (b0825) 2015; 38
Khwaza, Oyedeji, Aderibigbe (b0415) 2020; 21
Hou, Ma, Shen, Chi, Chao, Pei (b0245) 2020; 15
Rome (b0545) 2019; 10
Guo, Shao, Wang, Zhao, Wang (b0355) 2021; 12
Li, Lin, Wu, Zhao, Zou, Zhou (b0430) 2018; 29
Sundaram, Miller, Kumar, Teng, Sayed, Mu (b0600) 2019; 21
Chen, Li, Liang, Zu, Chen, Canup (b0725) 2022; 12
Lü, Su, Sun, Guo, Liu, Ping (b0950) 2018; 8
Newman, Cragg (b0020) 2020; 83
Qiao, Han, Gao, Shao, Wang, Sun (b0050) 2020; 8
Xiao, Guo, Liu, Liu, Wang, Li (b0255) 2020; 232
Memariani, Memariani (b0490) 2020; 104
Teng, Ren, Sayed, Hu, Lei, Kumar (b0580) 2018; 24
Meng, Ching, Ma (b1025) 2002; 79
Rauf, Abu-Izneid, Khalil, Imran, Shah, Emran (b0095) 2021; 26
Li, Cui, Li, Qi, Chen, Gao (b0110) 2020; 11
Hou, Liu, Xu (b0340) 2020; 189
Lin, Du, Wang, Gao, Zhou, Ke (b0960) 2017; 2017
Lu, Zhang, Cheng, Zhang, Luo, Qu (b0885) 2019; 6
Dai, Ding, Yin, Wan, Shi, Qiao (b0375) 2015; 57
Li, Liang, Du, Wang, Mei, Li (b1035) 2019; 62
Mei, Cai, Huang, Gao, Cao, He (b0080) 2022; 8
Zhang, Xiao, Wang, Han, Zhang, Viennois (b0605) 2016; 24
Munekata, Pateiro, Zhang, Dominguez, Xing, Fierro (b0250) 2021; 79
Bag, Majumdar (b0405) 2012; 2
Yang, Ma, Chen, Liu, Liu, Xie (b0315) 2019; 12
Huang, Zhao, Fang, Xu, Lan, Zhang (b0060) 2021; 268
Jiang, Fu, Zhang, Yu, Lu, Du (b0065) 2021; 9
Wang, Ren, Mu, Egilmez, Zhuang, Deng (b0660) 2015; 75
130-139.
Zhang, Jiang, Wu, Zou, Le, Lin (b0455) 2021; 11
Cheng, Ji (b0170) 2020; 318
Dai, Shi, Yin, Ding, Qiao (b0370) 2013; 396
Tian, Wang, Li, Huang, Guo, Yang (b0145) 2020; 10
Bag, Majumdar (b0280) 2017; 17
Wang, Zhuang, Deng, Jiang, Mu, Wang (b0650) 2014; 22
Stanly, Alfieri, Ambrosone, Leone, Fiume, Pocsfalvi (b0655) 2020; 9
Dad, Gu, Zhu, Huang, Peng (b0555) 2021; 29
Xiao, Feng, Wang, Long, Luo, Wang (b0645) 2018; 6
Kaczmarek (b0475) 2020; 13
Zhao, Chen, Pan, Li, Xue, Ma (b0265) 2015; 7
Gudoityte, Arandarcikaite, Mazeikiene, Bendokas, Liobikas (b0290) 2021; 22
Chen, Zhao, Pan, Xue, Zhang, Kumar (b0260) 2015; 12
Patel, Mistry, Shinde, Syed, Singh, Shin (b0515) 2018; 155
Cao, Yan, Han, Weng, Wei, Sun (b0695) 2019; 7
Ma, Shi, Pei, Pei (b0240) 2022; 609
Tucker, Burley, Petkova, Hosking, Penfold, Thomas (b0390) 2021; 598
Deng, Rong, Teng, Mu, Zhuang, Tseng (b0715) 2017; 25
Zhao, Yu, Li, Gui, Li (b0745) 2018; 66
Chen, Pan, Hu, Peng, Hao, Pan (b0205) 2021; 16
Wang, Zhang, Ma, Wang, Shao, Huang (b0900) 2020; 8
Li, Wang, Liu, Han, Li, Lei (b0985) 2021; 56
Dai, Shi, Wang, Qiao (b0360) 2012; 384
Han, Wei, Lv, Weng, Huang, Wei (b0700) 2022; 30
Liao, Zhao, Wang, Liu, Zhang, Sun (b0530) 2019; 14
2022
2021
Mishra, Patil, Thakur, Kesharwani (b0765) 2018; 23
Selyutina, Polyakov (b0380) 2019; 559
Ren, Li, Ma, Sun, Pu, Dong (b0025) 2021; 137
Zheng, Fan, Wu, Yao, Yan, Liu (b0500) 2019; 10
Lin, Lin, Gao, Zhou, Chen, Ke (b1030) 2020; 159
2019
Henamayee, Banik, Sailo, Shabnam, Harsha, Srilakshmi (b0140) 2020; 25
Perut, Roncuzzi, Avnet, Massa, Zini, Sabbadini (b0720) 2021; 11
Khwaza, Oyedeji, Aderibigbe (b0285) 2018; 23
Dai, Shi, Ding, Yin, Qiao (b0365) 2014; 11
Chen, Zhou, Yu (b0590) 2019; 16
102511.
Cheng, Xue, Su, Lu, Wang, Meng (b0840) 2019; 169
Sun, Russell, Scarlett, McCluskey (b0210) 2020; 11
Gao G, He C, Wang H, Guo J, Ke L, Zhou J, et al. Polysaccharide Nanoparticles from
Wang, Wang, Ma, Zhou, Lu (b0565) 2022; 15
Teng, Mu, Hu, Samykutty, Zhuang, Deng (b0670) 2016; 7
Zhang, Zhao, Cheng, Liu, Wang, Yan (b0810) 2018; 46
Karamanidou, Tsouknidas (b0560) 2022; 23
Ju, Mu, Dokland, Zhuang, Wang, Jiang (b0690) 2013; 21
Ping, Li, Lü, Sun, Zhang, Wu (b0945) 2020; 124
Qiao, Fang, Zhang, Gu, Lu, Sun (b0485) 2018; 10
Zhao, Zhang, Gao, Lin, Hu (b0385) 2020; 3
Li, Xue, Yang, Zhou, Wang, Meng (b0835) 2019; 42
Li, Wang, Guo, Huang, Tian, Wu (b0105) 2019; 13
Wang, Zhao, Zhi, Yang (b0300) 2020; 12
Zhao, Zhang, Kong, Zhang, Cheng, Luo (b0815) 2020; 25
Zhuang, Teng, Samykutty, Mu, Deng, Zhang (b0675) 2016; 24
Luo, Kong, Zhang, Cheng, Sun, Xiong (b0870) 2019; 15
Raimondo, Naselli, Fontana, Monteleone, Dico, Saieva (b0630) 2015; 6
Ren, Zhang, Wang (b0030) 2020; 155
Zhao, Wang, Ren, Hu, Wang (b0895) 2021; 206
Han, Xian, Zhang, Liu, Liang (b0150) 2019; 10
Ratan, Haidere, Hong, Park, Lee, Lee (b0350) 2021; 45
O’Callaghan, McCarthy, O’Brien (b0325) 2014; 446
Zhao, Lu, Zhang, Zhang, Zhao, Luo (b0915) 2021; 16
Regente, Corti-Monzón, Maldonado, Pinedo, Jorrín, Canal (b0750) 2009; 583
Zhao, Zheng, Fan, Shen, Jiang, Guo (b0435) 2018; 70
Gao, Lan, Bao, Yao, Cao, Shan (b0790) 2021; 270
Hussain (b0395) 2019; 16
You, Kang, Rhee (b0735) 2021; 6
Li, Xu, Zhao, Liu, Feng, Li (b0760) 2022; 13
Wu, Zhang, Cheng, Zhang, Luo, Liu (b0845) 2020; 15
Ou, Xu, Guan, Zhang, Zhang, Kang (b0460) 2020; 30
Aggarwal, Tuli, Tania, Srivastava, Ritzer, Pandey (b0480) 2022; 80
You, Feng, Zhang, Chen, Liu, Sun (b0400) 2021; 601
Pocsfalvi, Turiákb, Ambrosone, Gaudio, Puska, Fiume (b0620) 2018; 229
Zhang, Collins, Merlin (b0615) 2016; 11
30.
Fu, Li, Zang, Zhou, Shi, Zhai (b0055) 2022; 12
Zhou, Zhang, Gao, Wang, He, Chen (b1000) 2019; 67
Imenshahidi, Hosseinzadeh (b0100) 2016; 30
Peperidou, Pontiki, Hadjipavlou-Litina, Voulgari, Avgoustakis (b0125) 2017; 22
Bag, Paul (b0305) 2012; 1
Wang, Kong, Liu, Luo, Xiong, Zhu (b0775) 2018; 14
Zhang, Cheng, Zhang, Kong, Wang, Luo (b0910) 2020; 15
Cheng, Zhao, Yao, Li, Qi, Wang (b0330) 2019; 11
Zhou, Ding, Lin, Wang (b0505) 2018; 644
Deng, Gigliobianco, Censi, Martino (b0040) 2020; 10
Wang, Zhang, Kong, Cheng, Zhang, Sun (b0850) 2020; 48
Li, Kaslan, Lee, Yao, Gao (b0535) 2017; 7
Sun, Lu, Cheng, Zhang, Zhang, Xiong (b0805) 2018; 46
Qiao, Sun, Su, Xie, Chen, Zong (b0495) 2014; 35
Chen, Wang, Li, Li, Li, Bai (b0970) 2021; 195
Wang, Qiao, Zhao, Yang (b0320) 2020; 182
Zhou, Liu, Lin, Gao, Wang, Guo (b1010) 2017; 7
Wang, Wu, Li, Shen, Liu, Wu (b0465) 2019; 29
Wang, Guo, Huang, Zhen, Li, Li (b0155) 2021; 13
Qin, Peng, Rong, Li, Wang, Cheng (b0225) 2015; 2
Zhao, Zhang, Kong, Zhang, Cheng, Wu (b0860) 2020; 15
Bribi (b0090) 2018; 1
Zhang, Viennois, Prasad, Zhang, Wang, Zhang (b0575) 2016; 101
Baldini, Torreggiani, Roncuzzi, Perut, Zini, Avnet (b0625) 2018; 19
Liu, Lu, Chen, Muthuraj, Li, Pattabiraman (b0710) 2020; 12
Zhang, Zhao, Yan, Wang, Jia, Zhu (b0975) 2016; 21
Yang, Zhao, Fang, Jiang, Yuan, Shao (b0075) 2019; 570
Yan, Zhao, Luo, Xiong, Liu, Cheng (b0780) 2017; 15
Li, Wei, Xu (b0005) 2022; 1
Liu, Zheng, Jiang, Zhao, Wang, Pan (b0755) 2018; 52
Wang, Zhuang, Mu, Deng, Jiang, Zhang (b0665) 2013; 4
Weng, Cai, Zhang, Wang (b1020) 2019; 274
Zhao, Hong, Liu, Jiang, Peng, He (b0965) 2022; 27
Xiong, Wang, Wang, Yao (b0470) 2020; 20
Adejoke HT, Louis H, Amusan OO, Apebende. A review on classes, extraction, purification and pharmaceutical importance of plants alkaloid.
Mlala, Oyedeji, Gondwe, Oyedeji (b0420) 2019; 24
Song, Lin, Yang, Xie, Hua, Li (b0165) 2019; 294
Zhang, Long, Xiong, Wang, Peng, Yuan (b0200) 2019; 11
Fan, Zhang, Xu, Shen, Guo, Zhao (b0425) 2018; 15
Pérez-Bermúdez, Blesa, Soriano, Marcilla (b0680) 2017; 98
Kim, Li, Zhang, Wang (b0550) 2022; 17
Tong, Hu, Zhou, Deng, Zhang, Tang (b0920) 2020; 16
Yin, Yan, Yu, Wang, Liu, Wang (b0585) 2022; 70
Ni, Hu, Cai (b0525) 2019; 59
Ezrahi, Aserin, Garti (b0180) 2019; 263
Lei C, Teng Y, He L, Sayed M, Mu J, Xu F, et al. Lemon exosome-like nanoparticles enhance stress survival of gut bacteria by RNase P-mediated specific tRNA decay.
Zhao, Luan, Zheng, Tian, Zhao, Zhang (b0935) 2020; 12
Zhou, Piao, Hao, Wang, Zhou, Shen (b0230) 2019; 11
Wang, Zhang, Kong, Zhang, Cheng, Wang (b0875) 2019; 14
Atanasov, Zotchev, Dirsch (b0015) 2021; 20
Pei, Hu, Zhou, Liu, Xie (b0185) 2017; 5
Guo, Jiang, Shen, Zheng, Fan, Zhao (b0450) 2017; 9
Xiao, Liu, Guo, Zhou, Jin, Liu (b0345) 2018; 10
Liu, Zhao, Shen, Chang, Zhang, Yan (b0510) 2020; 598
Hu, Luo, Zhang, Wu, Zhang, Kong (b0855) 2021; 16
Zhou, Gao, Chu, Wang, Rao, Ke (b0955) 2014; 151
Bag, Das, Hasan, Barai (b0445) 2017; 7
Karaosmanoglu, Zhou, Shi, Zhang, Williams, Chen (b0070) 2021; 329
Sun, Lu, Cheng, Zhang, Zhu, Zhang (b0880) 2018; 14
Shen, Zou, Chen, Li, Rao, Yang (b0160) 2020; 328
Chen, Xie, Huang, Wan, Wang, Shi (b0215) 2021; 11
Liu, Zhang, Cheng, Zhang, Kong, Zhao (b0890) 2021; 26
Wu, Yang, Yuan, Xu, Chen, Ren (b0990) 2020; 11
Zhang, Cheng, Hu, Luo, Zhang, Lu (b0820) 2021; 19
Fort. Root Decoction: Diversity, Cytotoxicity, and Antiviral Activity.
Sun, Zhang, Pang, Hyun
Yang (10.1016/j.jare.2022.09.013_b0075) 2019; 570
Dai (10.1016/j.jare.2022.09.013_b0375) 2015; 57
Stanly (10.1016/j.jare.2022.09.013_b0655) 2020; 9
Zhou (10.1016/j.jare.2022.09.013_b0955) 2014; 151
Qiao (10.1016/j.jare.2022.09.013_b0485) 2018; 10
Peperidou (10.1016/j.jare.2022.09.013_b0125) 2017; 22
Sun (10.1016/j.jare.2022.09.013_b0210) 2020; 11
Guo (10.1016/j.jare.2022.09.013_b0355) 2021; 12
Zhang (10.1016/j.jare.2022.09.013_b0610) 2017; 12
Sun (10.1016/j.jare.2022.09.013_b0035) 2014; 53
Dad (10.1016/j.jare.2022.09.013_b0555) 2021; 29
Zhang (10.1016/j.jare.2022.09.013_b0975) 2016; 21
Newman (10.1016/j.jare.2022.09.013_b0020) 2020; 83
Zhao (10.1016/j.jare.2022.09.013_b0265) 2015; 7
Kaczmarek (10.1016/j.jare.2022.09.013_b0475) 2020; 13
Aggarwal (10.1016/j.jare.2022.09.013_b0480) 2022; 80
Chen (10.1016/j.jare.2022.09.013_b0970) 2021; 195
Li (10.1016/j.jare.2022.09.013_b0005) 2022; 1
Wang (10.1016/j.jare.2022.09.013_b0300) 2020; 12
Hou (10.1016/j.jare.2022.09.013_b0245) 2020; 15
Cheng (10.1016/j.jare.2022.09.013_b0795) 2019; 14
Zhu (10.1016/j.jare.2022.09.013_b0175) 2019; 24
Xiao (10.1016/j.jare.2022.09.013_b0345) 2018; 10
Deng (10.1016/j.jare.2022.09.013_b0040) 2020; 10
Li (10.1016/j.jare.2022.09.013_b0110) 2020; 11
Wu (10.1016/j.jare.2022.09.013_b0845) 2020; 15
Munekata (10.1016/j.jare.2022.09.013_b0250) 2021; 79
Henamayee (10.1016/j.jare.2022.09.013_b0140) 2020; 25
Atanasov (10.1016/j.jare.2022.09.013_b0015) 2021; 20
Cao (10.1016/j.jare.2022.09.013_b0695) 2019; 7
Weng (10.1016/j.jare.2022.09.013_b1020) 2019; 274
Lin (10.1016/j.jare.2022.09.013_b0925) 2019; 15
Bag (10.1016/j.jare.2022.09.013_b0305) 2012; 1
Zhang (10.1016/j.jare.2022.09.013_b0810) 2018; 46
Bag (10.1016/j.jare.2022.09.013_b0405) 2012; 2
Zhang (10.1016/j.jare.2022.09.013_b0705) 2021; 16
Pei (10.1016/j.jare.2022.09.013_b0185) 2017; 5
Chen (10.1016/j.jare.2022.09.013_b0215) 2021; 11
Liu (10.1016/j.jare.2022.09.013_b0510) 2020; 598
Memariani (10.1016/j.jare.2022.09.013_b0490) 2020; 104
Yang (10.1016/j.jare.2022.09.013_b0635) 2020; 18
Zhang (10.1016/j.jare.2022.09.013_b0820) 2021; 19
Chen (10.1016/j.jare.2022.09.013_b0260) 2015; 12
Karamanidou (10.1016/j.jare.2022.09.013_b0560) 2022; 23
Zhou (10.1016/j.jare.2022.09.013_b1000) 2019; 67
Jiang (10.1016/j.jare.2022.09.013_b0065) 2021; 9
Gao (10.1016/j.jare.2022.09.013_b0930) 2022; 27
Wang (10.1016/j.jare.2022.09.013_b0295) 2020; 12
Lin (10.1016/j.jare.2022.09.013_b0960) 2017; 2017
Wang (10.1016/j.jare.2022.09.013_b0565) 2022; 15
Dai (10.1016/j.jare.2022.09.013_b0365) 2014; 11
Qiao (10.1016/j.jare.2022.09.013_b0495) 2014; 35
Regente (10.1016/j.jare.2022.09.013_b0750) 2009; 583
Chen (10.1016/j.jare.2022.09.013_b0205) 2021; 16
Li (10.1016/j.jare.2022.09.013_b0105) 2019; 13
Qiao (10.1016/j.jare.2022.09.013_b0050) 2020; 8
Mei (10.1016/j.jare.2022.09.013_b0080) 2022; 8
Yan (10.1016/j.jare.2022.09.013_b0780) 2017; 15
Wang (10.1016/j.jare.2022.09.013_b0900) 2020; 8
Bribi (10.1016/j.jare.2022.09.013_b0090) 2018; 1
Fan (10.1016/j.jare.2022.09.013_b0425) 2018; 15
Wang (10.1016/j.jare.2022.09.013_b0775) 2018; 14
Luo (10.1016/j.jare.2022.09.013_b0870) 2019; 15
Rauf (10.1016/j.jare.2022.09.013_b0095) 2021; 26
Tucker (10.1016/j.jare.2022.09.013_b0390) 2021; 598
Cheng (10.1016/j.jare.2022.09.013_b0840) 2019; 169
Hussain (10.1016/j.jare.2022.09.013_b0395) 2019; 16
Yin (10.1016/j.jare.2022.09.013_b0585) 2022; 70
Yan (10.1016/j.jare.2022.09.013_b0335) 2022; 38
Perut (10.1016/j.jare.2022.09.013_b0720) 2021; 11
Zhao (10.1016/j.jare.2022.09.013_b0815) 2020; 25
Dijkgraaf (10.1016/j.jare.2022.09.013_b0190) 2013; 73
Sun (10.1016/j.jare.2022.09.013_b0805) 2018; 46
Li (10.1016/j.jare.2022.09.013_b0535) 2017; 7
You (10.1016/j.jare.2022.09.013_b0735) 2021; 6
Liu (10.1016/j.jare.2022.09.013_b0710) 2020; 12
Teng (10.1016/j.jare.2022.09.013_b0670) 2016; 7
Mishra (10.1016/j.jare.2022.09.013_b0765) 2018; 23
Ma (10.1016/j.jare.2022.09.013_b0240) 2022; 609
Ezrahi (10.1016/j.jare.2022.09.013_b0180) 2019; 263
Ping (10.1016/j.jare.2022.09.013_b0945) 2020; 124
Bag (10.1016/j.jare.2022.09.013_b0445) 2017; 7
Wang (10.1016/j.jare.2022.09.013_b0650) 2014; 22
Mao (10.1016/j.jare.2022.09.013_b0570) 2019; 8
Wang (10.1016/j.jare.2022.09.013_b0320) 2020; 182
Sun (10.1016/j.jare.2022.09.013_b0880) 2018; 14
Zhang (10.1016/j.jare.2022.09.013_b0910) 2020; 15
Zhou (10.1016/j.jare.2022.09.013_b0505) 2018; 644
Huang (10.1016/j.jare.2022.09.013_b0060) 2021; 268
Chen (10.1016/j.jare.2022.09.013_b0590) 2019; 16
Zhang (10.1016/j.jare.2022.09.013_b0615) 2016; 11
Chen (10.1016/j.jare.2022.09.013_b0825) 2015; 38
Meng (10.1016/j.jare.2022.09.013_b1025) 2002; 79
Song (10.1016/j.jare.2022.09.013_b0165) 2019; 294
Liang (10.1016/j.jare.2022.09.013_b0235) 2017; 29
Jiang (10.1016/j.jare.2022.09.013_b0440) 2017; 5
Yang (10.1016/j.jare.2022.09.013_b0315) 2019; 12
Shang (10.1016/j.jare.2022.09.013_b0520) 2021; 425
Malík (10.1016/j.jare.2022.09.013_b0275) 2021; 151
Lu (10.1016/j.jare.2022.09.013_b0885) 2019; 6
Li (10.1016/j.jare.2022.09.013_b0760) 2022; 13
Ruwizhi (10.1016/j.jare.2022.09.013_b0115) 2020; 21
Xiong (10.1016/j.jare.2022.09.013_b0470) 2020; 20
Abraham (10.1016/j.jare.2022.09.013_b0730) 2022; 14
Hordyjewska (10.1016/j.jare.2022.09.013_b0310) 2019; 18
Ren (10.1016/j.jare.2022.09.013_b0025) 2021; 137
Wang (10.1016/j.jare.2022.09.013_b0155) 2021; 13
Wang (10.1016/j.jare.2022.09.013_b0875) 2019; 14
Zhang (10.1016/j.jare.2022.09.013_b0995) 2021; 13
Lee (10.1016/j.jare.2022.09.013_b0740) 2019; 9
Hu (10.1016/j.jare.2022.09.013_b0855) 2021; 16
Wang (10.1016/j.jare.2022.09.013_b0660) 2015; 75
Ratan (10.1016/j.jare.2022.09.013_b0350) 2021; 45
Cui (10.1016/j.jare.2022.09.013_b0540) 2020; 257
Li (10.1016/j.jare.2022.09.013_b1035) 2019; 62
Lin (10.1016/j.jare.2022.09.013_b1030) 2020; 159
Pocsfalvi (10.1016/j.jare.2022.09.013_b0620) 2018; 229
Liu (10.1016/j.jare.2022.09.013_b0755) 2018; 52
Zhou (10.1016/j.jare.2022.09.013_b0230) 2019; 11
Han (10.1016/j.jare.2022.09.013_b0130) 2021; 18
Zhao (10.1016/j.jare.2022.09.013_b0895) 2021; 206
Baldini (10.1016/j.jare.2022.09.013_b0625) 2018; 19
Huang (10.1016/j.jare.2022.09.013_b0120) 2020; 12
Zhuang (10.1016/j.jare.2022.09.013_b0675) 2016; 24
Zhao (10.1016/j.jare.2022.09.013_b0965) 2022; 27
Zhao (10.1016/j.jare.2022.09.013_b0385) 2020; 3
Zhao (10.1016/j.jare.2022.09.013_b0915) 2021; 16
Mu (10.1016/j.jare.2022.09.013_b0685) 2014; 58
Tian (10.1016/j.jare.2022.09.013_b0145) 2020; 10
Khwaza (10.1016/j.jare.2022.09.013_b0415) 2020; 21
Gao (10.1016/j.jare.2022.09.013_b0790) 2021; 270
Zhou (10.1016/j.jare.2022.09.013_b1010) 2017; 7
Chen (10.1016/j.jare.2022.09.013_b0725) 2022; 12
Zhao (10.1016/j.jare.2022.09.013_b0935) 2020; 12
Lü (10.1016/j.jare.2022.09.013_b0950) 2018; 8
Shen (10.1016/j.jare.2022.09.013_b0160) 2020; 328
Iitsuka (10.1016/j.jare.2022.09.013_b1005) 2018; 16
Liu (10.1016/j.jare.2022.09.013_b0800) 2018; 13
Patra (10.1016/j.jare.2022.09.013_b0045) 2018; 16
10.1016/j.jare.2022.09.013_b1015
Wu (10.1016/j.jare.2022.09.013_b0990) 2020; 11
Li (10.1016/j.jare.2022.09.013_b0985) 2021; 56
Imenshahidi (10.1016/j.jare.2022.09.013_b0100) 2016; 30
Karaosmanoglu (10.1016/j.jare.2022.09.013_b0070) 2021; 329
Zhang (10.1016/j.jare.2022.09.013_b0200) 2019; 11
Gao (10.1016/j.jare.2022.09.013_b0785) 2019; 24
Wu (10.1016/j.jare.2022.09.013_b0410) 2013; 3
Han (10.1016/j.jare.2022.09.013_b0150) 2019; 10
Teng (10.1016/j.jare.2022.09.013_b0580) 2018; 24
Chen (10.1016/j.jare.2022.09.013_b0830) 2015; 20
Selyutina (10.1016/j.jare.2022.09.013_b0380) 2019; 559
Sundaram (10.1016/j.jare.2022.09.013_b0600) 2019; 21
Tang (10.1016/j.jare.2022.09.013_b0010) 2008; 372
Liu (10.1016/j.jare.2022.09.013_b0890) 2021; 26
Xiao (10.1016/j.jare.2022.09.013_b0645) 2018; 6
Rome (10.1016/j.jare.2022.09.013_b0545) 2019; 10
Wang (10.1016/j.jare.2022.09.013_b0850) 2020; 48
Dai (10.1016/j.jare.2022.09.013_b0360) 2012; 384
Wang (10.1016/j.jare.2022.09.013_b0665) 2013; 4
Zhao (10.1016/j.jare.2022.09.013_b0860) 2020; 15
Mlala (10.1016/j.jare.2022.09.013_b0420) 2019; 24
Zhang (10.1016/j.jare.2022.09.013_b0575) 2016; 101
Ghanbari-Movahed (10.1016/j.jare.2022.09.013_b0220) 2021; 9
Bag (10.1016/j.jare.2022.09.013_b0280) 2017; 17
Zheng (10.1016/j.jare.2022.09.013_b0500) 2019; 10
Patel (10.1016/j.jare.2022.09.013_b0515) 2018; 155
Hou (10.1016/j.jare.2022.09.013_b0340) 2020; 189
Kong (10.1016/j.jare.2022.09.013_b0905) 2020; 49
Khwaza (10.1016/j.jare.2022.09.013_b0285) 2018; 23
Luo (10.1016/j.jare.2022.09.013_b0770) 2018; 8
Totary-Jain (10.1016/j.jare.2022.09.013_b0195) 2016; 176
Raimondo (10.1016/j.jare.2022.09.013_b0630) 2015; 6
Ni (10.1016/j.jare.2022.09.013_b0525) 2019; 59
Kim (10.1016/j.jare.2022.09.013_b0550) 2022; 17
Liu (10.1016/j.jare.2022.09.013_b0940) 2015; 35
Wang (10.1016/j.jare.2022.09.013_b0465) 2019; 29
Dai (10.1016/j.jare.2022.09.013_b0370) 2013; 396
Wang (10.1016/j.jare.2022.09.013_b0865) 2019; 24
Guo (10.1016/j.jare.2022.09.013_b0450) 2017; 9
Fu (10.1016/j.jare.2022.09.013_b0055) 2022; 12
10.1016/j.jare.2022.09.013_b0085
Zhao (10.1016/j.jare.2022.09.013_b0435) 2018; 70
Xiao (10.1016/j.jare.2022.09.013_b0255) 2020; 232
Tong (10.1016/j.jare.2022.09.013_b0920) 2020; 16
Zhang (10.1016/j.jare.2022.09.013_b0455) 2021; 11
Pérez-Bermúdez (10.1016/j.jare.2022.09.013_b0680) 2017; 98
Zhao (10.1016/j.jare.2022.09.013_b0745) 2018; 66
10.1016/j.jare.2022.09.013_b0640
Liao (10.1016/j.jare.2022.09.013_b0530) 2019; 14
Ou (10.1016/j.jare.2022.09.013_b0460) 2020; 30
O’Callaghan (10.1016/j.jare.2022.09.013_b0325) 2014; 446
Wang (10.1016/j.jare.2022.09.013_b0135) 2020; 10
Zhang (10.1016/j.jare.2022.09.013_b0605) 2016; 24
Qin (10.1016/j.jare.2022.09.013_b0225) 2015; 2
Biswas (10.1016/j.jare.2022.09.013_b0270) 2019; 256
Deng (10.1016/j.jare.2022.09.013_b0715) 2017; 25
Ju (10.1016/j.jare.2022.09.013_b0690) 2013; 21
Li (10.1016/j.jare.2022.09.013_b0430) 2018; 29
Ren (10.1016/j.jare.2022.09.013_b0030) 2020; 155
Cheng (10.1016/j.jare.2022.09.013_b0330) 2019; 11
Gudoityte (10.1016/j.jare.2022.09.013_b0290) 2021; 22
Cheng (10.1016/j.jare.2022.09.013_b0170) 2020; 318
Han (10.1016/j.jare.2022.09.013_b0700) 2022; 30
Zhuang (10.1016/j.jare.2022.09.013_b0595) 2015; 4
Wang (10.1016/j.jare.2022.09.013_b0980) 2017; 22
Li (10.1016/j.jare.2022.09.013_b0835) 2019; 42
You (10.1016/j.jare.2022.09.013_b0400) 2021; 601
References_xml – volume: 24
  start-page: 96
  year: 2016
  end-page: 105
  ident: b0675
  article-title: Grapefruit-derived Nanovectors Delivering Therapeutic miR17 Through an Intranasal Route Inhibit Brain Tumor Progression
  publication-title: Mol Ther
– volume: 16
  year: 2021
  ident: b0205
  article-title: Recent progress in nanoformulations of cabazitaxel
  publication-title: Biomed Mater
– volume: 24
  start-page: 1783
  year: 2016
  end-page: 1796
  ident: b0605
  article-title: Edible Ginger-derived Nano-lipids Loaded with Doxorubicin as a Novel Drug-delivery Approach for Colon Cancer Therapy
  publication-title: Mol Ther
– volume: 14
  start-page: 2925
  year: 2019
  end-page: 2939
  ident: b0875
  article-title: Antihyperuricemic and anti-gouty arthritis activities of Aurantii fructus immaturus carbonisata-derived carbon dots
  publication-title: Nanomedicine
– volume: 7
  start-page: 25683
  year: 2016
  end-page: 25697
  ident: b0670
  article-title: Grapefruit-derived nanovectors deliver miR-18a for treatment of liver metastasis of colon cancer by induction of M1 macrophages
  publication-title: Oncotarget
– volume: 14
  start-page: 7963
  year: 2019
  end-page: 7973
  ident: b0530
  article-title: Self-Assembly Of Retinoid Nanoparticles For Melanoma Therapy
  publication-title: Int J Nanomed
– volume: 83
  start-page: 770
  year: 2020
  end-page: 803
  ident: b0020
  article-title: Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019
  publication-title: J Nat Prod
– volume: 24
  start-page: 4152
  year: 2019
  ident: b0865
  article-title: Novel Carbon Dots Derived from Puerariae lobatae Radix and Their Anti-Gout Effects
  publication-title: Molecules
– volume: 328
  start-page: 575
  year: 2020
  end-page: 586
  ident: b0160
  article-title: Antibacterial self-assembled nanodrugs composed of berberine derivatives and rhamnolipids against Helicobacter pylori
  publication-title: J Control Release
– volume: 70
  start-page: 4725
  year: 2022
  end-page: 4734
  ident: b0585
  article-title: Characterization of the MicroRNA Profile of Ginger Exosome-like Nanoparticles and Their Anti-Inflammatory Effects in Intestinal Caco-2 Cells
  publication-title: J Agric Food Chem
– volume: 21
  start-page: 5712
  year: 2020
  ident: b0115
  article-title: Cinnamic Acid Derivatives and Their Biological Efficacy
  publication-title: Int J Mol Sci
– volume: 229
  start-page: 111
  year: 2018
  end-page: 121
  ident: b0620
  article-title: Protein biocargo of citrus fruit-derived vesicles reveals heterogeneous transport and extracellular vesicle populations
  publication-title: J Plant Physiol
– volume: 11
  start-page: 3035
  year: 2016
  end-page: 3037
  ident: b0615
  article-title: Do ginger-derived nanoparticles represent an attractive treatment strategy for inflammatory bowel diseases?
  publication-title: Nanomedicine
– volume: 24
  start-page: 40
  year: 2019
  ident: b0175
  article-title: Progress in research on paclitaxel and tumor immunotherapy
  publication-title: Cell Mol Biol Lett
– volume: 18
  start-page: 929
  year: 2019
  end-page: 951
  ident: b0310
  article-title: Betulin and betulinic acid: triterpenoids derivatives with a powerful biological potential
  publication-title: Phytochem Rev
– volume: 73
  start-page: 2480
  year: 2013
  end-page: 2492
  ident: b0190
  article-title: Chemotherapy Alters Monocyte Differentiation to Favor Generation of Cancer-Supporting M2 Macrophages in the Tumor Microenvironment
  publication-title: Cancer Res
– volume: 124
  year: 2020
  ident: b0945
  article-title: A study of nanometre aggregates formation mechanism and antipyretic effect in Bai-Hu-Tang, an ancient Chinese herbal decoction
  publication-title: Biomed Pharmacother
– volume: 6
  start-page: 4321
  year: 2021
  end-page: 4332
  ident: b0735
  article-title: Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells
  publication-title: Bioact Mater
– volume: 6
  year: 2019
  ident: b0885
  article-title: Maltase and sucrase inhibitory activities and hypoglycemic effects of carbon dots derived from charred Fructus crataegi
  publication-title: Mater Res Express
– volume: 12
  start-page: 6827
  year: 2020
  end-page: 6839
  ident: b0300
  article-title: Exploration of the Natural Active Small-Molecule Drug-Loading Process and Highly Efficient Synergistic Antitumor Efficacy
  publication-title: ACS Appl Mater Interfaces
– volume: 11
  start-page: 87
  year: 2021
  ident: b0720
  article-title: Strawberry-Derived Exosome-Like Nanoparticles Prevent Oxidative Stress in Human Mesenchymal Stromal Cells
  publication-title: Biomolecules
– volume: 7
  start-page: 178
  year: 2017
  end-page: 187
  ident: b1010
  article-title: Boiling-induced nanoparticles and their constitutive proteins from Isatis indigotica Fort. root decoction: Purification and identification
  publication-title: J Tradit Complement Med
– volume: 67
  start-page: 9354
  year: 2019
  end-page: 9361
  ident: b1000
  article-title: Boiling Licorice Produces Self-Assembled Protein Nanoparticles: A Novel Source of Bioactive Nanomaterials
  publication-title: J Agric Food Chem
– volume: 176
  start-page: 1
  year: 2016
  end-page: 7
  ident: b0195
  article-title: Indomethacin Sensitizes Resistant Transformed Cells to Macrophage Cytotoxicity
  publication-title: Immunol Lett
– volume: 583
  start-page: 3363
  year: 2009
  end-page: 3366
  ident: b0750
  article-title: Vesicular fractions of sunflower apoplastic fluids are associated with potential exosome marker proteins
  publication-title: FEBS Lett
– volume: 2
  start-page: 159
  year: 2015
  end-page: 166
  ident: b0225
  article-title: Self-defensive nano-assemblies from camptothecin-based antitumor drugs
  publication-title: Regen Biomater
– volume: 25
  start-page: 446
  year: 2020
  ident: b0815
  article-title: Haemostatic Nanoparticles-Derived Bioactivity of from Selaginella tamariscina Carbonisata
  publication-title: Molecules
– volume: 19
  start-page: 105
  year: 2021
  ident: b0820
  article-title: Green Phellodendri Chinensis Cortex-based carbon dots for ameliorating imiquimod-induced psoriasis-like inflammation in mice
  publication-title: J Nanobiotechnol
– volume: 58
  start-page: 1561
  year: 2014
  end-page: 1573
  ident: b0685
  article-title: Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles
  publication-title: Mol Nutr Food Res
– volume: 56
  start-page: 2119
  year: 2021
  end-page: 2126
  ident: b0985
  article-title: Based on weak bond chemistry, the interaction mechanism between glycyrrhiza protein and berberine in water decocting process of Rhizoma Coptidis and Liquorice was investigated
  publication-title: Acta Pharm Sin
– volume: 12
  start-page: 2468
  year: 2019
  end-page: 2476
  ident: b0315
  article-title: Single small molecule-assembled nanoparticles mediate efficient oral drug delivery
  publication-title: Nano Res
– volume: 75
  start-page: 2520
  year: 2015
  end-page: 2529
  ident: b0660
  article-title: Grapefruit-Derived Nanovectors Use an Activated Leukocyte Trafficking Pathway to Deliver Therapeutic Agents to Inflammatory Tumor Sites
  publication-title: Cancer Res
– volume: 13
  start-page: 391
  year: 2018
  end-page: 405
  ident: b0800
  article-title: Novel Phellodendri Cortex (Huang Bo)-derived carbon dots and their hemostatic effect
  publication-title: Nanomedicine
– volume: 11
  start-page: 164
  year: 2020
  end-page: 183
  ident: b0210
  article-title: Small molecule inhibitors in pancreatic cancer
  publication-title: RSC Med Chem
– volume: 8
  start-page: 12209
  year: 2018
  ident: b0950
  article-title: Isolation and characterization of nanometre aggregates from a Bai-Hu-Tang decoction and their antipyretic effect
  publication-title: Sci Rep
– volume: 29
  start-page: 1703135
  year: 2017
  ident: b0235
  article-title: Self-Assembly of an Amphiphilic Janus Camptothecin-Floxuridine Conjugate into Liposome-Like Nanocapsules for More Efficacious Combination Chemotherapy in Cancer
  publication-title: Adv Mater
– reference: Lei C, Teng Y, He L, Sayed M, Mu J, Xu F, et al. Lemon exosome-like nanoparticles enhance stress survival of gut bacteria by RNase P-mediated specific tRNA decay.
– volume: 24
  start-page: 2751
  year: 2019
  ident: b0420
  article-title: Ursolic Acid and Its Derivatives as Bioactive Agents
  publication-title: Molecules
– volume: 49
  start-page: 11
  year: 2020
  end-page: 19
  ident: b0905
  article-title: Carbon dots from Artemisiae Argyi Folium Carbonisata: strengthening the anti-frostbite ability
  publication-title: Artif Cell Nanomed B
– volume: 10
  start-page: 648
  year: 2019
  ident: b0150
  article-title: Systematic Overview of Aristolochic Acids: Nephrotoxicity, Carcinogenicity, and Underlying Mechanisms
  publication-title: Front Pharmacol
– volume: 57
  start-page: 20
  year: 2015
  end-page: 26
  ident: b0375
  article-title: Dissipative particle dynamics study on self-assembled platycodin structures: The potential biocarriers for drug delivery
  publication-title: J Mol Graph Model
– volume: 38
  year: 2022
  ident: b0335
  article-title: Liquidambaric acid inhibits Wnt/β-catenin signaling and colon cancer via targeting TNF receptor-associated factor 2
  publication-title: Cell Rep
– volume: 8
  start-page: 6333
  year: 2020
  end-page: 6351
  ident: b0050
  article-title: Research progress on nanotechnology for delivery of active ingredients from traditional Chinese medicines
  publication-title: J Mater Chem B
– volume: 6
  year: 2018
  ident: b0645
  article-title: Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables
  publication-title: PeerJ
– volume: 257
  start-page: 3
  year: 2020
  end-page: 12
  ident: b0540
  article-title: Plant extracellular vesicles
  publication-title: Protoplasma
– volume: 23
  start-page: 2300
  year: 2018
  ident: b0285
  article-title: Antiviral Activities of Oleanolic Acid and Its Analogues
  publication-title: Molecules
– volume: 425
  year: 2021
  ident: b0520
  article-title: Metal ions-mediated self-assembly of nanomedicine for combinational therapy against triple-negative breast cancer
  publication-title: Chem Eng J
– volume: 12
  start-page: 42537
  year: 2020
  end-page: 42550
  ident: b0295
  article-title: Nanomedicine-Cum-Carrier by Co-Assembly of Natural Small Products for Synergistic Enhanced Antitumor with Tissues Protective Actions
  publication-title: ACS Appl Mater Interfaces
– volume: 29
  start-page: 13
  year: 2021
  end-page: 31
  ident: b0555
  article-title: Plant Exosome-like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms
  publication-title: Mol Ther
– volume: 206
  year: 2021
  ident: b0895
  article-title: One-pot synthesis of
  publication-title: Mater Design
– volume: 23
  start-page: 191
  year: 2022
  ident: b0560
  article-title: Plant-Derived Extracellular Vesicles as Therapeutic Nanocarriers
  publication-title: Int J Mol Sci
– volume: 79
  year: 2021
  ident: b0250
  article-title: Health benefits, extraction and development of functional foods with curcuminoids
  publication-title: J Funct Foods
– volume: 155
  start-page: 889
  year: 2018
  end-page: 904
  ident: b0515
  article-title: Therapeutic potential of quercetin as a cardiovascular agent
  publication-title: Eur J Med Chem
– volume: 21
  start-page: 1094
  year: 2016
  ident: b0975
  article-title: Compositions, Formation Mechanism, and Neuroprotective Effect of Compound Precipitation from the Traditional Chinese Prescription Huang-Lian-Jie-Du-Tang
  publication-title: Molecules
– volume: 3
  start-page: 24906
  year: 2013
  end-page: 24909
  ident: b0410
  article-title: Self-assembly of sodium glycyrrhetinate into a hydrogel: characterisation and properties
  publication-title: RSC Adv
– volume: 15
  start-page: 151
  year: 2019
  end-page: 161
  ident: b0870
  article-title: Novel Carbon Dots-Derived from Radix Puerariae Carbonisata Significantly Improve the Solubility and Bioavailability of Baicalin
  publication-title: J Biomed Nanotechnol
– volume: 52
  start-page: 10369
  year: 2018
  end-page: 10379
  ident: b0755
  article-title: Formation and Physicochemical Characteristics of Nano Biochar: Insight into Chemical and Colloidal Stability
  publication-title: Environ Sci Technol
– volume: 151
  start-page: 1116
  year: 2014
  end-page: 1123
  ident: b0955
  article-title: Chromatographic isolation of nanoparticles from Ma-Xing-Shi-Gan-Tang decoction and their characterization
  publication-title: J Ethnopharmacol
– volume: 9
  start-page: 1703480
  year: 2019
  ident: b0740
  article-title: Anti-melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin
  publication-title: J Extracell Vesicles
– volume: 22
  start-page: 4599
  year: 2021
  ident: b0290
  article-title: Ursolic and Oleanolic Acids: Plant Metabolites with Neuroprotective Potential
  publication-title: Int J Mol Sci
– volume: 10
  start-page: 1784
  year: 2020
  end-page: 1795
  ident: b0145
  article-title: Self-assembled natural phytochemicals for synergistically antibacterial application from the enlightenment of traditional Chinese medicine combination
  publication-title: Acta Pharm Sin B
– volume: 26
  start-page: 1512
  year: 2021
  ident: b0890
  article-title: Novel Carbon Dots Derived from Glycyrrhizae Radix et Rhizoma and Their Anti-Gastric Ulcer Effect
  publication-title: Molecules
– volume: 23
  start-page: 1219
  year: 2018
  end-page: 1232
  ident: b0765
  article-title: Carbon dots: emerging theranostic nanoarchitectures
  publication-title: Drug Discov Today
– volume: 13
  year: 2022
  ident: b0760
  article-title: Chinese Medicinal Herb-Derived Carbon Dots for Common Diseases: Efficacies and Potential Mechanisms
  publication-title: Front Pharmacol
– volume: 189
  year: 2020
  ident: b0340
  article-title: Celastrol: Progresses in structure-modifications, structure-activity relationships, pharmacology and toxicology
  publication-title: Eur J Med Chem
– volume: 35
  start-page: 7157
  year: 2014
  end-page: 7171
  ident: b0495
  article-title: Kidney-specific drug delivery system for renal fibrosis based on coordination-driven assembly of catechol-derived chitosan
  publication-title: Biomaterials
– volume: 8
  start-page: 2666
  year: 2020
  end-page: 2672
  ident: b0900
  article-title: Selective inactivation of Gram-negative bacteria by carbon dots derived from natural biomass-Artemisia argyi leaves
  publication-title: J Mater Chem B
– volume: 15
  start-page: 2466
  year: 2018
  end-page: 2478
  ident: b0425
  article-title: Carrier-Free, Pure Nanodrug Formed by the Self-Assembly of an Anticancer Drug for Cancer Immune Therapy
  publication-title: Mol Pharmaceutics
– volume: 27
  start-page: 3268
  year: 2022
  ident: b0930
  article-title: Study on Supramolecules in Traditional Chinese Medicine Decoction
  publication-title: Molecules
– volume: 12
  start-page: 477
  year: 2020
  ident: b0710
  article-title: Protective Role of Shiitake Mushroom-Derived Exosome-Like Nanoparticles in D-Galactosamine and Lipopolysaccharide-Induced Acute Liver Injury in Mice
  publication-title: Nutrients
– volume: 2017
  start-page: 9217912
  year: 2017
  ident: b0960
  article-title: Antidiabetic Micro-/Nanoaggregates from Ge-Gen-Qin-Lian-Tang Decoction Increase Absorption of Baicalin and Cellular Antioxidant Activity In Vitro
  publication-title: BioMed Res Int
– volume: 598
  year: 2020
  ident: b0510
  article-title: Coordination self-assembly of natural flavonoids into robust nanoparticles for enhanced in vitro chemo and photothermal cancer therapy
  publication-title: Colloid Surface A
– reference: 2022;
– volume: 22
  start-page: 1247
  year: 2017
  ident: b0125
  article-title: Multifunctional Cinnamic Acid Derivatives
  publication-title: Molecules
– volume: 294
  start-page: 27
  year: 2019
  end-page: 42
  ident: b0165
  article-title: Mitochondrial targeting nanodrugs self-assembled from 9-O-octadecyl substituted berberine derivative for cancer treatment by inducing mitochondrial apoptosis pathways
  publication-title: J Control Release
– volume: 155
  year: 2020
  ident: b0030
  article-title: Traditional Chinese medicine for COVID-19 treatment
  publication-title: Pharmacol Res
– volume: 21
  start-page: 5920
  year: 2020
  ident: b0415
  article-title: Ursolic Acid-Based Derivatives as Potential Anti-Cancer Agents: An Update
  publication-title: Int J Mol Sci
– volume: 80
  start-page: 256
  year: 2022
  end-page: 275
  ident: b0480
  article-title: Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement
  publication-title: Semin Cancer Biol
– volume: 7
  start-page: 19295
  year: 2015
  end-page: 19305
  ident: b0265
  article-title: Nanodrug Formed by Coassembly of Dual Anticancer Drugs to Inhibit Cancer Cell Drug Resistance
  publication-title: ACS Appl Mater Interfaces
– volume: 256
  start-page: 1463
  year: 2019
  end-page: 1486
  ident: b0270
  article-title: Plant triterpenoid saponins: biosynthesis, in vitro production, and pharmacological relevance
  publication-title: Protoplasma
– volume: 20
  start-page: 200
  year: 2021
  end-page: 216
  ident: b0015
  article-title: the International Natural Product Sciences Taskforce, Supuran CT. Natural products in drug discovery: advances and opportunities
  publication-title: Nat Rev Drug Discov
– volume: 644
  start-page: 56
  year: 2018
  end-page: 65
  ident: b0505
  article-title: MiR-34a, as a suppressor, enhance the susceptibility of gastric cancer cell to luteolin by directly targeting HK1
  publication-title: Gene
– volume: 79
  start-page: 93
  year: 2002
  end-page: 103
  ident: b1025
  article-title: Thermal aggregation of globulin from an indigenous Chinese legume, Phaseolus angularis (red bean)
  publication-title: Food Chem
– volume: 11
  start-page: 9872
  year: 2019
  end-page: 9883
  ident: b0200
  article-title: Facile Engineering of Indomethacin-Induced Paclitaxel Nanocrystal Aggregates as Carrier-Free Nanomedicine with Improved Synergetic Antitumor Activity
  publication-title: ACS Appl Mater Interfaces
– volume: 20
  start-page: 1781
  year: 2020
  end-page: 1790
  ident: b0470
  article-title: Transforming Complexity to Simplicity: Protein-Like Nanotransformer for Improving Tumor Drug Delivery Programmatically
  publication-title: Nano Lett
– volume: 151
  year: 2021
  ident: b0275
  article-title: Natural pentacyclic triterpenoid acids potentially useful as biocompatible nanocarriers
  publication-title: Fitoterapia
– volume: 16
  start-page: 2690
  year: 2019
  end-page: 2699
  ident: b0590
  article-title: Exosome-like Nanoparticles from Ginger Rhizomes Inhibited NLRP3 Inflammasome Activation
  publication-title: Mol Pharmaceutics
– volume: 66
  start-page: 2749
  year: 2018
  end-page: 2757
  ident: b0745
  article-title: Isolation of Exosome-Like Nanoparticles and Analysis of MicroRNAs Derived from Coconut Water Based on Small RNA High-Throughput Sequencing
  publication-title: J Agric Food Chem
– volume: 15
  start-page: 851
  year: 2020
  end-page: 869
  ident: b0910
  article-title: Green synthesis of Zingiberis rhizoma-based carbon dots attenuates chemical and thermal stimulus pain in mice
  publication-title: Nanomedicine
– reference: 2019;
– volume: 29
  start-page: 3495
  year: 2018
  end-page: 3502
  ident: b0430
  article-title: Small Molecule Nanodrug Assembled of Dual-Anticancer Drug Conjugate for Synergetic Cancer Metastasis Therapy
  publication-title: Bioconjugate Chem
– volume: 12
  start-page: 92
  year: 2022
  end-page: 106
  ident: b0055
  article-title: Pure drug nano-assemblies: A facile carrier-free nanoplatform for efficient cancer therapy
  publication-title: Acta Pharm Sin B
– volume: 14
  start-page: 2146
  year: 2018
  end-page: 2155
  ident: b0880
  article-title: Hypoglycemic Bioactivity of Novel Eco-Friendly Carbon Dots Derived from Traditional Chinese Medicine
  publication-title: J Biomed Nanotechnol
– volume: 26
  start-page: 7368
  year: 2021
  ident: b0095
  article-title: Berberine as a Potential Anticancer Agent: A Comprehensive Review
  publication-title: Molecules
– volume: 601
  year: 2021
  ident: b0400
  article-title: Preparation, optimization, characterization and in vitro release of baicalein-solubilizing glycyrrhizic acid nano-micelles
  publication-title: Int J Pharm
– volume: 169
  start-page: 151
  year: 2019
  end-page: 158
  ident: b0840
  article-title: 1H NMR-based metabonomic revealed protective effect of Moutan Cortex charcoal on blood-heat and hemorrhage rats
  publication-title: J Pharm Biomed Anal
– volume: 25
  start-page: 1641
  year: 2017
  end-page: 1654
  ident: b0715
  article-title: Broccoli-Derived Nanoparticle Inhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated Protein Kinase
  publication-title: Mol Ther
– volume: 10
  start-page: 1604
  year: 2019
  ident: b0500
  article-title: Directed self-assembly of herbal small molecules into sustained release hydrogels for treating neural inflammation
  publication-title: Nat Commun
– volume: 14
  start-page: 431
  year: 2019
  end-page: 446
  ident: b0795
  article-title: Hemostatic and hepatoprotective bioactivity of Junci Medulla Carbonisata-derived Carbon Dots
  publication-title: Nanomedicine
– reference: :102511.
– volume: 14
  start-page: 476
  year: 2022
  ident: b0730
  article-title: Cucumber-Derived Exosome-like Vesicles and PlantCrystals for Improved Dermal Drug Delivery
  publication-title: Pharmaceutics
– reference: Fort. Root Decoction: Diversity, Cytotoxicity, and Antiviral Activity.
– volume: 11
  start-page: 1210
  year: 2020
  ident: b0110
  article-title: Synergistic Effect of Berberine-Based Chinese Medicine Assembled Nanostructures on DiarrheaPredominant Irritable Bowel Syndrome In Vivo
  publication-title: Front Pharmacol
– volume: 15
  start-page: 10417
  year: 2020
  end-page: 10424
  ident: b0245
  article-title: A GSH-Responsive Nanoprodrug System Based on Self-Assembly of Lactose Modified Camptothecin for Targeted Drug Delivery and Combination Chemotherapy
  publication-title: Int J Nanomed
– volume: 11
  start-page: 246
  year: 2021
  end-page: 257
  ident: b0455
  article-title: A smart dual-drug nanosystem based on coassembly of plant and food-derived natural products for synergistic HCC immunotherapy
  publication-title: Acta Pharm Sin B
– volume: 11
  start-page: 29498
  year: 2019
  end-page: 29511
  ident: b0330
  article-title: Simple and Multifunctional Natural Self-Assembled Sterols with Anticancer Activity-Mediated Supramolecular Photosensitizers for Enhanced Antitumor Photodynamic Therapy
  publication-title: ACS Appl Mater Interfaces
– volume: 372
  start-page: 1938
  year: 2008
  end-page: 1940
  ident: b0010
  article-title: Traditional Chinese medicine
  publication-title: Lancet
– volume: 446
  start-page: 786
  year: 2014
  end-page: 791
  ident: b0325
  article-title: Recent advances in Phytosterol Oxidation Products
  publication-title: Biochem Bioph Res Co
– volume: 1
  start-page: 1
  year: 2018
  end-page: 6
  ident: b0090
  article-title: Pharmacological activity of alkaloids: a review
  publication-title: Asian J Bot
– volume: 384
  start-page: 73
  year: 2012
  end-page: 80
  ident: b0360
  article-title: Solubilization of saikosaponin a by ginsenoside Ro biosurfactant in aqueous solution: Mesoscopic simulation
  publication-title: J Colloid Interf Sci
– volume: 30
  start-page: 327
  year: 2022
  end-page: 340
  ident: b0700
  article-title: Ginseng-derived nanoparticles potentiate immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment
  publication-title: Mol Ther
– volume: 46
  start-page: 1562
  year: 2018
  end-page: 1571
  ident: b0810
  article-title: Novel carbon dots derived from Schizonepetae Herba Carbonisata and investigation of their haemostatic efficacy
  publication-title: Artif Cell Nanomed B
– volume: 21
  start-page: 1345
  year: 2013
  end-page: 1357
  ident: b0690
  article-title: Grape Exosome-like Nanoparticles Induce Intestinal Stem Cells and Protect Mice From DSS-Induced Colitis
  publication-title: Mol Ther
– volume: 8
  start-page: 185
  year: 2019
  ident: b0570
  article-title: Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe)
  publication-title: Foods
– volume: 15
  start-page: 60
  year: 2017
  ident: b0780
  article-title: Hemostatic bioactivity of novel Pollen Typhae Carbonisata-derived carbon quantum dots
  publication-title: J Nanobiotechnol
– volume: 12
  start-page: 494
  year: 2021
  end-page: 518
  ident: b0355
  article-title: Recent progress in polysaccharides from Panax ginseng C
  publication-title: A Meyer
– volume: 24
  start-page: 637
  year: 2018
  end-page: 652
  ident: b0580
  article-title: Plant-Derived Exosomal MicroRNAs Shape the Gut Microbiota
  publication-title: Cell Host Microbe
– volume: 11
  start-page: 10480
  year: 2020
  end-page: 10492
  ident: b0990
  article-title: Role of particle aggregates in herbal medicine decoction showing they are not useless: considering Coptis chinensis decoction as an example
  publication-title: Food Funct
– volume: 5
  start-page: 1517
  year: 2017
  end-page: 1521
  ident: b0185
  article-title: Glutathione-responsive paclitaxel dimer nanovesicles with high drug content
  publication-title: Biomater Sci
– volume: 16
  start-page: 618
  year: 2019
  end-page: 627
  ident: b0395
  article-title: Molecular Dynamics Simulations of Glycyrrhizic Acid Aggregates as Drug-Carriers for Paclitaxel
  publication-title: Curr Drug Deliv
– volume: 13
  start-page: 32729
  year: 2021
  end-page: 32742
  ident: b0155
  article-title: Berberine-Based Heterogeneous Linear Supramolecules Neutralized the Acute Nephrotoxicity of Aristolochic Acid by the Self-Assembly Strategy
  publication-title: ACS Appl Mater Interfaces
– volume: 46
  start-page: S308
  year: 2018
  end-page: S317
  ident: b0805
  article-title: Haemostatic bioactivity of novel Schizonepetae Spica Carbonisata-derived carbon dots via platelet counts elevation
  publication-title: Artif Cell Nanomed B
– volume: 10
  start-page: 847
  year: 2020
  ident: b0040
  article-title: Polymeric Nanocapsules as Nanotechnological Alternative for Drug Delivery System: Current Status
  publication-title: Challenges and Opportunities
– reference: Adejoke HT, Louis H, Amusan OO, Apebende. A review on classes, extraction, purification and pharmaceutical importance of plants alkaloid.
– volume: 182
  year: 2020
  ident: b0320
  article-title: Paclitaxel and betulonic acid synergistically enhance antitumor efficacy by forming co-assembled nanoparticles
  publication-title: Biochem Pharmacol
– volume: 274
  start-page: 796
  year: 2019
  end-page: 802
  ident: b1020
  article-title: Fabrication of self-assembled Radix Pseudostellariae protein nanoparticles and the entrapment of curcumin
  publication-title: Food Chem
– volume: 16
  start-page: 71
  year: 2018
  ident: b0045
  article-title: Nano based drug delivery systems: recent developments and future prospects
  publication-title: J Nanobiotechnol
– volume: 15
  start-page: 4139
  year: 2020
  end-page: 4149
  ident: b0845
  article-title: Effect of Lonicerae japonicae Flos Carbonisata-Derived Carbon Dots on Rat Models of Fever and Hypothermia Induced by Lipopolysaccharide
  publication-title: Int J Nanomed
– volume: 35
  start-page: 355
  year: 2015
  end-page: 360
  ident: b0940
  article-title: Review of the powder and decoction formulae in Traditional Chinese Medicine based on pharmacologically active substances and clinical evidence
  publication-title: J Tradit Chin Med
– volume: 10
  start-page: 12639
  year: 2018
  end-page: 12649
  ident: b0345
  article-title: Synergistic combination chemotherapy using carrier-free celastrol and doxorubicin nanocrystals for overcoming drug resistance
  publication-title: Nanoscale
– volume: 263
  start-page: 95
  year: 2019
  end-page: 130
  ident: b0180
  article-title: Basic principles of drug delivery systems – the case of paclitaxel
  publication-title: Adv Colloid Interfac
– volume: 16
  start-page: 2461
  year: 2021
  end-page: 2475
  ident: b0855
  article-title: Carbonisata-Based Carbon Dots Against Ethanol Induced Acute Gastric Ulcer in Rats: Anti-Inflammatory and Antioxidant Activities
  publication-title: Int J Nanomed
– volume: 16
  start-page: 2203
  year: 2021
  end-page: 2217
  ident: b0915
  article-title: Water-Soluble Carbon Dots in Cigarette Mainstream Smoke: Their Properties and the Behavioural, Neuroendocrinological, and Neurotransmitter Changes They Induce in Mice
  publication-title: Int J Nanomed
– volume: 11
  start-page: 15907
  year: 2019
  end-page: 15916
  ident: b0230
  article-title: Acidity-responsive shell-sheddable camptothecin-based nanofibers for carrier-free cancer drug delivery
  publication-title: Nanoscale
– volume: 10
  start-page: 445
  year: 2020
  end-page: 452
  ident: b0135
  article-title: Anti-inflammatory Effects and Mechanisms of Rhein, an Anthraquinone Compound, and Its Applications in Treating Arthritis: A Review
  publication-title: Nat Prod Bioprospect
– volume: 5
  start-page: 9121
  year: 2017
  end-page: 9129
  ident: b0440
  article-title: A carrier-free dual-drug nanodelivery system functionalized with aptamer specific targeting HER2-overexpressing cancer cells
  publication-title: J Mater Chem B
– volume: 329
  start-page: 805
  year: 2021
  end-page: 832
  ident: b0070
  article-title: Carrier-free nanodrugs for safe and effective cancer treatment
  publication-title: J Control Release
– volume: 12
  start-page: 1927
  year: 2017
  end-page: 1943
  ident: b0610
  article-title: Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis
  publication-title: Nanomedicine
– volume: 62
  start-page: 333
  year: 2019
  end-page: 348
  ident: b1035
  article-title: Herbal decoctosome is a novel form of medicine
  publication-title: Sci China Life Sci
– volume: 396
  start-page: 165
  year: 2013
  end-page: 172
  ident: b0370
  article-title: Multiscale study on the interaction mechanism between ginsenoside biosurfactant and saikosaponin a
  publication-title: J Colloid Interf Sci
– volume: 8
  start-page: 37707
  year: 2018
  end-page: 37714
  ident: b0770
  article-title: Hemostatic effect of novel carbon dots derived from Cirsium setosum Carbonisata
  publication-title: RSC Adv
– volume: 3
  start-page: 648
  year: 2020
  end-page: 653
  ident: b0385
  article-title: A Simple Injectable Moldable Hydrogel Assembled from Natural Glycyrrhizic Acid with Inherent Antibacterial Activity
  publication-title: ACS Appl Bio Mater
– volume: 15
  start-page: 9049
  year: 2020
  end-page: 9059
  ident: b0860
  article-title: Carbon Dots from Paeoniae Radix Alba Carbonisata: Hepatoprotective Effect
  publication-title: Int J Nanomed
– volume: 27
  start-page: 1511
  year: 2022
  ident: b0965
  article-title: Isolation and Characterization of Natural Nanoparticles in Naoluo Xintong Decoction and Their Brain Protection Research
  publication-title: Molecules
– volume: 11
  start-page: 5713
  year: 2021
  end-page: 5727
  ident: b0215
  article-title: Quantitative self-assembly of pure drug cocktails as injectable nanomedicines for synergistic drug delivery and cancer therapy
  publication-title: Theranostics
– volume: 14
  start-page: 1635
  year: 2018
  end-page: 1644
  ident: b0775
  article-title: Novel Carbon Dots Derived from Cirsii Japonici Herba Carbonisata and Their Haemostatic Effect
  publication-title: J Biomed Nanotechnol
– volume: 1
  start-page: 1
  year: 2022
  end-page: 3
  ident: b0005
  article-title: Drug discovery is an eternal challenge for the biomedical sciences
  publication-title: Acta Materia Medica
– volume: 53
  start-page: 12320
  year: 2014
  end-page: 12364
  ident: b0035
  article-title: Engineered Nanoparticles for Drug Delivery in Cancer Therapy
  publication-title: Angew Chem Int Ed
– volume: 9
  year: 2021
  ident: b0065
  article-title: Research Progress of Carrier-Free Antitumor Nanoparticles Based on Phytochemicals
  publication-title: Front Bioeng Biotech
– volume: 48
  start-page: 68
  year: 2020
  end-page: 76
  ident: b0850
  article-title: Novel mulberry silkworm cocoon-derived carbon dots and their anti-inflammatory properties
  publication-title: Artif Cell Nanomed B
– volume: 6
  start-page: 19514
  year: 2015
  end-page: 19527
  ident: b0630
  article-title: Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death
  publication-title: Oncotarget
– volume: 12
  start-page: 227
  year: 2020
  end-page: 237
  ident: b0120
  article-title: Self-Assemblies Based on Traditional Medicine Berberine and Cinnamic Acid for Adhesion-Induced Inhibition Multidrug-Resistant Staphylococcus aureus
  publication-title: ACS Appl Mater Interfaces
– volume: 30
  start-page: 1907857
  year: 2020
  ident: b0460
  article-title: Nanodrug Carrier Based on Poly(Ursolic Acid) with Self-Anticancer Activity against Colorectal Cancer
  publication-title: Adv Funct Mater
– volume: 137
  year: 2021
  ident: b0025
  article-title: Research progress of traditional Chinese medicine against COVID-19
  publication-title: Biomed Pharmacother
– reference: :30.
– volume: 12
  start-page: 128
  year: 2020
  ident: b0935
  article-title: Synergistic Mechanisms of Constituents in Herbal Extracts during Intestinal Absorption: Focus on Natural Occurring Nanoparticles
  publication-title: Pharmaceutics
– volume: 15
  start-page: 708
  year: 2022
  ident: b0565
  article-title: Focusing on Future Applications and Current Challenges of Plant Derived Extracellular Vesicles
  publication-title: Pharmaceuticals
– volume: 20
  start-page: 16970
  year: 2015
  end-page: 16986
  ident: b0830
  article-title: A Novel Reduplicate Strategy for Tracing Hemostatic Compounds from Heating Products of the Flavonoid Extract in Platycladi cacumen by Spectrum-Effect Relationships and Column Chromatography
  publication-title: Molecules
– volume: 2
  start-page: 8623
  year: 2012
  end-page: 8626
  ident: b0405
  article-title: Self-assembly of a renewable nano-sized triterpenoid 18β-glycyrrhetinic acid
  publication-title: RSC Adv
– volume: 10
  start-page: 4569
  year: 2018
  end-page: 4581
  ident: b0485
  article-title: Nanostructured Peptidotoxins as Natural Pro-Oxidants Induced Cancer Cell Death via Amplification of Oxidative Stress
  publication-title: ACS Appl Mater Interfaces
– volume: 59
  start-page: S71
  year: 2019
  end-page: S80
  ident: b0525
  article-title: The success and the challenge of all-trans retinoic acid in the treatment of cancer
  publication-title: Crit Rev Food Sci Nutr
– volume: 16
  start-page: 1906206
  year: 2020
  ident: b0920
  article-title: Glycyrrhizic-Acid-Based Carbon Dots with High Antiviral Activity by Multisite Inhibition Mechanisms
  publication-title: Small
– volume: 9
  start-page: 480
  year: 2021
  ident: b0220
  article-title: Recent Advances in Improved Anticancer Efficacies of Camptothecin Nano-Formulations: A Systematic Review
  publication-title: Biomedicines
– volume: 22
  start-page: 522
  year: 2014
  end-page: 534
  ident: b0650
  article-title: Targeted Drug Delivery to Intestinal Macrophages by Bioactive Nanovesicles Released from Grapefruit
  publication-title: Mol Ther
– volume: 70
  start-page: 197
  year: 2018
  end-page: 210
  ident: b0435
  article-title: Carrier-free nanodrug by co-assembly of chemotherapeutic agent and photosensitizer for cancer imaging and chemo-photo combination therapy
  publication-title: Acta Biomater
– volume: 9
  start-page: 2722
  year: 2020
  ident: b0655
  article-title: Grapefruit-Derived Micro and Nanovesicles Show Distinct Metabolome Profiles and Anticancer Activities in the A375 Human Melanoma Cell Line
  publication-title: Cells
– volume: 21
  start-page: 308
  year: 2019
  end-page: 327
  ident: b0600
  article-title: Plant-Derived Exosomal Nanoparticles Inhibit Pathogenicity of Porphyromonas gingivalis
  publication-title: iScience
– volume: 7
  start-page: 789
  year: 2017
  end-page: 804
  ident: b0535
  publication-title: Progress in Exosome Isolation Techniques
– volume: 4
  start-page: 28713
  year: 2015
  ident: b0595
  article-title: Ginger-derived nanoparticles protect against alcohol-induced liver damage
  publication-title: J Extracell Vesicles
– volume: 570
  year: 2019
  ident: b0075
  article-title: Carrier-free nanodrug: A novel strategy of cancer diagnosis and synergistic therapy
  publication-title: Int J Pharmaceut
– volume: 19
  start-page: 877
  year: 2018
  end-page: 885
  ident: b0625
  article-title: Exosome-like Nanovesicles Isolated from Citrus limon L
  publication-title: Exert Anti-oxidative Effect
– volume: 17
  start-page: 53
  year: 2022
  end-page: 69
  ident: b0550
  article-title: Plant-derived exosome-like nanoparticles and their therapeutic activities
  publication-title: Asian J Pharm Sci
– reference: :130-139.
– volume: 30
  start-page: 1745
  year: 2016
  end-page: 1764
  ident: b0100
  article-title: Berberis Vulgaris and Berberine: An Update Review
  publication-title: Phytother Res
– volume: 598
  start-page: 444
  year: 2021
  end-page: 454
  ident: b0390
  article-title: Adsorption and self-assembly properties of the plant based biosurfactant
  publication-title: Glycyrrhizic acid
– volume: 268
  year: 2021
  ident: b0060
  article-title: Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy
  publication-title: Biomaterials
– volume: 609
  start-page: 353
  year: 2022
  end-page: 363
  ident: b0240
  article-title: A carrier-free supramolecular nanoprodrug based on lactosefunctionalized dimeric camptothecin via self-assembly in water for targeted and fluorescence imaging-guided chemo-photodynamic therapy
  publication-title: J Colloid Interf Sci
– volume: 559
  start-page: 271
  year: 2019
  end-page: 279
  ident: b0380
  article-title: Glycyrrhizic acid as a multifunctional drug carrier – From physicochemical properties to biomedical applications: A modern insight on the ancient drug
  publication-title: Int J Pharmaceut
– volume: 12
  start-page: 907
  year: 2022
  end-page: 923
  ident: b0725
  article-title: Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation
  publication-title: Acta Pharm Sin B
– volume: 270
  year: 2021
  ident: b0790
  article-title: Effects of carbonized process on quality control, chemical composition and pharmacology of Typhae Pollen: A review
  publication-title: J Ethnopharmacol
– volume: 7
  start-page: 18136
  year: 2017
  end-page: 18143
  ident: b0445
  article-title: Nanoarchitectures by hierarchical self-assembly of ursolic acid: entrapment and release of fluorophores including anticancer drug doxorubicin
  publication-title: RSC Adv
– volume: 25
  start-page: 2278
  year: 2020
  ident: b0140
  article-title: Therapeutic Emergence of Rhein as a Potential Anticancer Drug: A Review of Its Molecular Targets and Anticancer Properties
  publication-title: Molecules
– volume: 24
  start-page: 128
  year: 2019
  ident: b0785
  article-title: Chemical Property Changes and Thermal Analysis during the Carbonizing Process of the Pollen Grains of Typha
  publication-title: Molecules
– volume: 7
  start-page: 326
  year: 2019
  ident: b0695
  article-title: Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth
  publication-title: J ImmunoTher Cancer
– volume: 104
  start-page: 6513
  year: 2020
  end-page: 6526
  ident: b0490
  article-title: Anti-fungal properties and mechanisms of melittin
  publication-title: Appl Microbiol Biotechnol
– volume: 318
  start-page: 38
  year: 2020
  end-page: 49
  ident: b0170
  article-title: Mitochondria-targeting nanomedicine self-assembled from GSH-responsive paclitaxel-ss-berberine conjugate for synergetic cancer treatment with enhanced cytotoxicity
  publication-title: J Control Release
– volume: 29
  start-page: 1805582
  year: 2019
  ident: b0465
  article-title: Ultralong Circulating Lollipop-Like Nanoparticles Assembled with Gossypol, Doxorubicin, and Polydopamine via π–π Stacking for Synergistic Tumor Therapy
  publication-title: Adv Funct Mater
– reference: Gao G, He C, Wang H, Guo J, Ke L, Zhou J, et al. Polysaccharide Nanoparticles from
– volume: 13
  start-page: 3224
  year: 2020
  ident: b0475
  article-title: Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials—A Minireview
  publication-title: Materials
– volume: 16
  start-page: 1575
  year: 2021
  end-page: 1586
  ident: b0705
  article-title: Engineering Exosome-Like Nanovesicles Derived from Asparagus cochinchinensis Can Inhibit the Proliferation of Hepatocellular Carcinoma Cells with Better Safety Profile
  publication-title: Int J Nanomed
– volume: 16
  start-page: 62
  year: 2018
  end-page: 68
  ident: b1005
  article-title: Discovery of a sugar-based nanoparticle universally existing in boiling herbal water extracts and their immunostimulant effect
  publication-title: Biochem Biophys Rep
– volume: 101
  start-page: 321
  year: 2016
  end-page: 340
  ident: b0575
  article-title: Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer
  publication-title: Biomaterials
– volume: 42
  start-page: 432
  year: 2019
  end-page: 441
  ident: b0835
  article-title: A Network Pharmacology Approach Used to Estimate the Active Ingredients of Moutan Cortex Charcoal and the Potential Targets in Hemorrhagic Diseases
  publication-title: Biol Pharm Bull
– volume: 15
  start-page: 1902641
  year: 2019
  ident: b0925
  article-title: High Amplification of the Antiviral Activity of Curcumin through Transformation into Carbon Quantum Dots
  publication-title: Small
– volume: 12
  start-page: 2237
  year: 2015
  end-page: 2244
  ident: b0260
  article-title: Synergistically Enhanced Therapeutic Effect of a Carrier-Free HCPT/DOX Nanodrug on Breast Cancer Cells through Improved Cellular Drug Accumulation
  publication-title: Mol Pharmaceutics
– volume: 13
  start-page: 370
  year: 2021
  end-page: 380
  ident: b0995
  article-title: Self-assembled aggregations in Coptidis Rhizoma decoction dynamically regulate intestinal tissue permeability through Peyer’s patch-associated immunity
  publication-title: Chin Herb Med
– volume: 9
  start-page: 43508
  year: 2017
  end-page: 43519
  ident: b0450
  article-title: A Small Molecule Nanodrug by Self-Assembly of Dual Anticancer Drugs and Photosensitizer for Synergistic near-Infrared Cancer Theranostics
  publication-title: ACS Appl Mater Interfaces
– volume: 195
  year: 2021
  ident: b0970
  article-title: Comprehensive analysis of Huanglian Jiedu decoction: Revealing the presence of a self-assembled phytochemical complex in its naturally-occurring precipitate
  publication-title: J Pharm Biomed Anal
– volume: 11
  start-page: 2046
  year: 2014
  end-page: 2054
  ident: b0365
  article-title: Dissipative Particle Dynamics Simulation of Ginsenoside Ro Vesicular Solubilization Systems
  publication-title: J Comput Theor Nanos
– volume: 4
  start-page: 1867
  year: 2013
  ident: b0665
  article-title: Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids
  publication-title: Nat Commun
– reference: 2021;
– volume: 13
  start-page: 6770
  year: 2019
  end-page: 6781
  ident: b0105
  article-title: Natural Berberine-Based Chinese Herb Medicine Assembled Nanostructures with Modified Antibacterial Application
  publication-title: ACS Nano
– volume: 17
  start-page: 841
  year: 2017
  end-page: 873
  ident: b0280
  article-title: Self-assembly of Renewable Nano-sized Triterpenoids
  publication-title: Chem Rec
– volume: 38
  start-page: 1691
  year: 2015
  end-page: 1699
  ident: b0825
  article-title: Tracing novel hemostatic compounds from heating products of total flavonoids in Flos Sophorae by spectrum–effect relationships and column chromatography
  publication-title: J Sep Sci
– volume: 22
  start-page: 1456
  year: 2017
  ident: b0980
  article-title: Origin and Formation Mechanism Investigation of Compound Precipitation from the Traditional Chinese Prescription Huang-Lian-Jie-Du-Tang by Isothermal Titration Calorimetry
  publication-title: Molecules
– volume: 98
  start-page: 40
  year: 2017
  end-page: 50
  ident: b0680
  article-title: Extracellular vesicles in food: Experimental evidence of their secretion in grape fruits
  publication-title: Eur J Pharm Sci
– volume: 18
  start-page: 100
  year: 2020
  ident: b0635
  article-title: An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy
  publication-title: J Nanobiotechnol
– volume: 45
  start-page: 199
  year: 2021
  end-page: 210
  ident: b0350
  article-title: Pharmacological potential of ginseng and its major component ginsenosides
  publication-title: J Ginseng Res
– volume: 1
  start-page: 150
  year: 2012
  end-page: 154
  ident: b0305
  article-title: Vesicular and fibrillar Gels by Self-Assembly of nanosized oleanolic acid
  publication-title: Asian J Organic Chem
– volume: 159
  start-page: 850
  year: 2020
  end-page: 858
  ident: b1030
  article-title: Purification and characterization of the major protein isolated from Semen Armeniacae Amarum and the properties of its thermally induced nanoparticles
  publication-title: Int J Biol Macromol
– volume: 8
  start-page: 220
  year: 2022
  end-page: 240
  ident: b0080
  article-title: Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: From intrinsic physicochemical properties to external modification
  publication-title: Bioact Mater
– volume: 18
  start-page: 914
  year: 2021
  end-page: 921
  ident: b0130
  article-title: Self-Assembled Nanoparticles of Natural Phytochemicals (Berberine and 3,4,5-Methoxycinnamic Acid) Originated from Traditional Chinese Medicine for Inhibiting Multidrug-Resistant Staphylococcus aureus
  publication-title: Curr Drug Deliv
– volume: 232
  year: 2020
  ident: b0255
  article-title: Structure-based design of charge-conversional drug self-delivery systems for better targeted cancer therapy
  publication-title: Biomaterials
– volume: 10
  start-page: 529
  year: 2019
  end-page: 538
  ident: b0545
  article-title: Biological properties of plant-derived extracellular vesicles
  publication-title: Food Funct
– volume: 294
  start-page: 27
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0165
  article-title: Mitochondrial targeting nanodrugs self-assembled from 9-O-octadecyl substituted berberine derivative for cancer treatment by inducing mitochondrial apoptosis pathways
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2018.11.014
– volume: 16
  start-page: 1906206
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0920
  article-title: Glycyrrhizic-Acid-Based Carbon Dots with High Antiviral Activity by Multisite Inhibition Mechanisms
  publication-title: Small
  doi: 10.1002/smll.201906206
– volume: 16
  start-page: 1575
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0705
  article-title: Engineering Exosome-Like Nanovesicles Derived from Asparagus cochinchinensis Can Inhibit the Proliferation of Hepatocellular Carcinoma Cells with Better Safety Profile
  publication-title: Int J Nanomed
  doi: 10.2147/IJN.S293067
– volume: 609
  start-page: 353
  year: 2022
  ident: 10.1016/j.jare.2022.09.013_b0240
  article-title: A carrier-free supramolecular nanoprodrug based on lactosefunctionalized dimeric camptothecin via self-assembly in water for targeted and fluorescence imaging-guided chemo-photodynamic therapy
  publication-title: J Colloid Interf Sci
  doi: 10.1016/j.jcis.2021.12.002
– volume: 46
  start-page: 1562
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0810
  article-title: Novel carbon dots derived from Schizonepetae Herba Carbonisata and investigation of their haemostatic efficacy
  publication-title: Artif Cell Nanomed B
– volume: 15
  start-page: 1902641
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0925
  article-title: High Amplification of the Antiviral Activity of Curcumin through Transformation into Carbon Quantum Dots
  publication-title: Small
  doi: 10.1002/smll.201902641
– volume: 11
  start-page: 164
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0210
  article-title: Small molecule inhibitors in pancreatic cancer
  publication-title: RSC Med Chem
  doi: 10.1039/C9MD00447E
– volume: 14
  start-page: 476
  year: 2022
  ident: 10.1016/j.jare.2022.09.013_b0730
  article-title: Cucumber-Derived Exosome-like Vesicles and PlantCrystals for Improved Dermal Drug Delivery
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics14030476
– volume: 384
  start-page: 73
  year: 2012
  ident: 10.1016/j.jare.2022.09.013_b0360
  article-title: Solubilization of saikosaponin a by ginsenoside Ro biosurfactant in aqueous solution: Mesoscopic simulation
  publication-title: J Colloid Interf Sci
  doi: 10.1016/j.jcis.2012.06.018
– volume: 70
  start-page: 197
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0435
  article-title: Carrier-free nanodrug by co-assembly of chemotherapeutic agent and photosensitizer for cancer imaging and chemo-photo combination therapy
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2018.01.028
– volume: 21
  start-page: 1094
  year: 2016
  ident: 10.1016/j.jare.2022.09.013_b0975
  article-title: Compositions, Formation Mechanism, and Neuroprotective Effect of Compound Precipitation from the Traditional Chinese Prescription Huang-Lian-Jie-Du-Tang
  publication-title: Molecules
  doi: 10.3390/molecules21081094
– volume: 137
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0025
  article-title: Research progress of traditional Chinese medicine against COVID-19
  publication-title: Biomed Pharmacother
  doi: 10.1016/j.biopha.2021.111310
– volume: 12
  start-page: 2237
  year: 2015
  ident: 10.1016/j.jare.2022.09.013_b0260
  article-title: Synergistically Enhanced Therapeutic Effect of a Carrier-Free HCPT/DOX Nanodrug on Breast Cancer Cells through Improved Cellular Drug Accumulation
  publication-title: Mol Pharmaceutics
  doi: 10.1021/mp500744m
– volume: 10
  start-page: 529
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0545
  article-title: Biological properties of plant-derived extracellular vesicles
  publication-title: Food Funct
  doi: 10.1039/C8FO02295J
– volume: 13
  start-page: 391
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0800
  article-title: Novel Phellodendri Cortex (Huang Bo)-derived carbon dots and their hemostatic effect
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2017-0297
– volume: 67
  start-page: 9354
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b1000
  article-title: Boiling Licorice Produces Self-Assembled Protein Nanoparticles: A Novel Source of Bioactive Nanomaterials
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.9b03208
– volume: 159
  start-page: 850
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b1030
  article-title: Purification and characterization of the major protein isolated from Semen Armeniacae Amarum and the properties of its thermally induced nanoparticles
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2020.05.070
– volume: 24
  start-page: 2751
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0420
  article-title: Ursolic Acid and Its Derivatives as Bioactive Agents
  publication-title: Molecules
  doi: 10.3390/molecules24152751
– volume: 29
  start-page: 1805582
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0465
  article-title: Ultralong Circulating Lollipop-Like Nanoparticles Assembled with Gossypol, Doxorubicin, and Polydopamine via π–π Stacking for Synergistic Tumor Therapy
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201805582
– volume: 14
  start-page: 2925
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0875
  article-title: Antihyperuricemic and anti-gouty arthritis activities of Aurantii fructus immaturus carbonisata-derived carbon dots
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2019-0255
– volume: 328
  start-page: 575
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0160
  article-title: Antibacterial self-assembled nanodrugs composed of berberine derivatives and rhamnolipids against Helicobacter pylori
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2020.09.025
– volume: 318
  start-page: 38
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0170
  article-title: Mitochondria-targeting nanomedicine self-assembled from GSH-responsive paclitaxel-ss-berberine conjugate for synergetic cancer treatment with enhanced cytotoxicity
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2019.12.011
– volume: 30
  start-page: 327
  year: 2022
  ident: 10.1016/j.jare.2022.09.013_b0700
  article-title: Ginseng-derived nanoparticles potentiate immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2021.08.028
– volume: 80
  start-page: 256
  year: 2022
  ident: 10.1016/j.jare.2022.09.013_b0480
  article-title: Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement
  publication-title: Semin Cancer Biol
  doi: 10.1016/j.semcancer.2020.05.011
– volume: 18
  start-page: 929
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0310
  article-title: Betulin and betulinic acid: triterpenoids derivatives with a powerful biological potential
  publication-title: Phytochem Rev
  doi: 10.1007/s11101-019-09623-1
– volume: 56
  start-page: 2119
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0985
  article-title: Based on weak bond chemistry, the interaction mechanism between glycyrrhiza protein and berberine in water decocting process of Rhizoma Coptidis and Liquorice was investigated
  publication-title: Acta Pharm Sin
– volume: 14
  start-page: 1635
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0775
  article-title: Novel Carbon Dots Derived from Cirsii Japonici Herba Carbonisata and Their Haemostatic Effect
  publication-title: J Biomed Nanotechnol
  doi: 10.1166/jbn.2018.2613
– volume: 169
  start-page: 151
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0840
  article-title: 1H NMR-based metabonomic revealed protective effect of Moutan Cortex charcoal on blood-heat and hemorrhage rats
  publication-title: J Pharm Biomed Anal
  doi: 10.1016/j.jpba.2019.02.044
– volume: 25
  start-page: 2278
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0140
  article-title: Therapeutic Emergence of Rhein as a Potential Anticancer Drug: A Review of Its Molecular Targets and Anticancer Properties
  publication-title: Molecules
  doi: 10.3390/molecules25102278
– volume: 29
  start-page: 1703135
  year: 2017
  ident: 10.1016/j.jare.2022.09.013_b0235
  article-title: Self-Assembly of an Amphiphilic Janus Camptothecin-Floxuridine Conjugate into Liposome-Like Nanocapsules for More Efficacious Combination Chemotherapy in Cancer
  publication-title: Adv Mater
  doi: 10.1002/adma.201703135
– volume: 15
  start-page: 4139
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0845
  article-title: Effect of Lonicerae japonicae Flos Carbonisata-Derived Carbon Dots on Rat Models of Fever and Hypothermia Induced by Lipopolysaccharide
  publication-title: Int J Nanomed
  doi: 10.2147/IJN.S248467
– volume: 19
  start-page: 105
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0820
  article-title: Green Phellodendri Chinensis Cortex-based carbon dots for ameliorating imiquimod-induced psoriasis-like inflammation in mice
  publication-title: J Nanobiotechnol
  doi: 10.1186/s12951-021-00847-y
– volume: 16
  start-page: 2461
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0855
  article-title: Carbonisata-Based Carbon Dots Against Ethanol Induced Acute Gastric Ulcer in Rats: Anti-Inflammatory and Antioxidant Activities
  publication-title: Int J Nanomed
  doi: 10.2147/IJN.S289515
– volume: 9
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0065
  article-title: Research Progress of Carrier-Free Antitumor Nanoparticles Based on Phytochemicals
  publication-title: Front Bioeng Biotech
  doi: 10.3389/fbioe.2021.799806
– volume: 2
  start-page: 159
  year: 2015
  ident: 10.1016/j.jare.2022.09.013_b0225
  article-title: Self-defensive nano-assemblies from camptothecin-based antitumor drugs
  publication-title: Regen Biomater
  doi: 10.1093/rb/rbv011
– volume: 22
  start-page: 522
  year: 2014
  ident: 10.1016/j.jare.2022.09.013_b0650
  article-title: Targeted Drug Delivery to Intestinal Macrophages by Bioactive Nanovesicles Released from Grapefruit
  publication-title: Mol Ther
  doi: 10.1038/mt.2013.190
– volume: 15
  start-page: 10417
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0245
  article-title: A GSH-Responsive Nanoprodrug System Based on Self-Assembly of Lactose Modified Camptothecin for Targeted Drug Delivery and Combination Chemotherapy
  publication-title: Int J Nanomed
  doi: 10.2147/IJN.S276470
– volume: 232
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0255
  article-title: Structure-based design of charge-conversional drug self-delivery systems for better targeted cancer therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119701
– volume: 35
  start-page: 355
  year: 2015
  ident: 10.1016/j.jare.2022.09.013_b0940
  article-title: Review of the powder and decoction formulae in Traditional Chinese Medicine based on pharmacologically active substances and clinical evidence
  publication-title: J Tradit Chin Med
  doi: 10.1016/S0254-6272(15)30110-2
– volume: 1
  start-page: 150
  year: 2012
  ident: 10.1016/j.jare.2022.09.013_b0305
  article-title: Vesicular and fibrillar Gels by Self-Assembly of nanosized oleanolic acid
  publication-title: Asian J Organic Chem
  doi: 10.1002/ajoc.201200032
– volume: 644
  start-page: 56
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0505
  article-title: MiR-34a, as a suppressor, enhance the susceptibility of gastric cancer cell to luteolin by directly targeting HK1
  publication-title: Gene
  doi: 10.1016/j.gene.2017.10.046
– volume: 12
  start-page: 907
  year: 2022
  ident: 10.1016/j.jare.2022.09.013_b0725
  article-title: Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2021.08.016
– volume: 396
  start-page: 165
  year: 2013
  ident: 10.1016/j.jare.2022.09.013_b0370
  article-title: Multiscale study on the interaction mechanism between ginsenoside biosurfactant and saikosaponin a
  publication-title: J Colloid Interf Sci
  doi: 10.1016/j.jcis.2013.01.017
– volume: 19
  start-page: 877
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0625
  article-title: Exosome-like Nanovesicles Isolated from Citrus limon L
  publication-title: Exert Anti-oxidative Effect Curr Pharm Biotechno
  doi: 10.2174/1389201019666181017115755
– volume: 13
  year: 2022
  ident: 10.1016/j.jare.2022.09.013_b0760
  article-title: Chinese Medicinal Herb-Derived Carbon Dots for Common Diseases: Efficacies and Potential Mechanisms
  publication-title: Front Pharmacol
– volume: 16
  start-page: 2690
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0590
  article-title: Exosome-like Nanoparticles from Ginger Rhizomes Inhibited NLRP3 Inflammasome Activation
  publication-title: Mol Pharmaceutics
  doi: 10.1021/acs.molpharmaceut.9b00246
– volume: 24
  start-page: 40
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0175
  article-title: Progress in research on paclitaxel and tumor immunotherapy
  publication-title: Cell Mol Biol Lett
  doi: 10.1186/s11658-019-0164-y
– volume: 24
  start-page: 128
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0785
  article-title: Chemical Property Changes and Thermal Analysis during the Carbonizing Process of the Pollen Grains of Typha
  publication-title: Molecules
  doi: 10.3390/molecules24010128
– volume: 18
  start-page: 100
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0635
  article-title: An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy
  publication-title: J Nanobiotechnol
  doi: 10.1186/s12951-020-00656-9
– volume: 6
  start-page: 19514
  year: 2015
  ident: 10.1016/j.jare.2022.09.013_b0630
  article-title: Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.4004
– volume: 21
  start-page: 5712
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0115
  article-title: Cinnamic Acid Derivatives and Their Biological Efficacy
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21165712
– volume: 12
  start-page: 128
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0935
  article-title: Synergistic Mechanisms of Constituents in Herbal Extracts during Intestinal Absorption: Focus on Natural Occurring Nanoparticles
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics12020128
– volume: 7
  start-page: 18136
  year: 2017
  ident: 10.1016/j.jare.2022.09.013_b0445
  article-title: Nanoarchitectures by hierarchical self-assembly of ursolic acid: entrapment and release of fluorophores including anticancer drug doxorubicin
  publication-title: RSC Adv
  doi: 10.1039/C7RA02123B
– volume: 189
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0340
  article-title: Celastrol: Progresses in structure-modifications, structure-activity relationships, pharmacology and toxicology
  publication-title: Eur J Med Chem
  doi: 10.1016/j.ejmech.2020.112081
– volume: 17
  start-page: 53
  year: 2022
  ident: 10.1016/j.jare.2022.09.013_b0550
  article-title: Plant-derived exosome-like nanoparticles and their therapeutic activities
  publication-title: Asian J Pharm Sci
  doi: 10.1016/j.ajps.2021.05.006
– volume: 10
  start-page: 648
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0150
  article-title: Systematic Overview of Aristolochic Acids: Nephrotoxicity, Carcinogenicity, and Underlying Mechanisms
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2019.00648
– volume: 7
  start-page: 789
  year: 2017
  ident: 10.1016/j.jare.2022.09.013_b0535
  publication-title: Progress in Exosome Isolation Techniques Theranostics
– volume: 73
  start-page: 2480
  year: 2013
  ident: 10.1016/j.jare.2022.09.013_b0190
  article-title: Chemotherapy Alters Monocyte Differentiation to Favor Generation of Cancer-Supporting M2 Macrophages in the Tumor Microenvironment
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-3542
– volume: 24
  start-page: 1783
  year: 2016
  ident: 10.1016/j.jare.2022.09.013_b0605
  article-title: Edible Ginger-derived Nano-lipids Loaded with Doxorubicin as a Novel Drug-delivery Approach for Colon Cancer Therapy
  publication-title: Mol Ther
  doi: 10.1038/mt.2016.159
– volume: 66
  start-page: 2749
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0745
  article-title: Isolation of Exosome-Like Nanoparticles and Analysis of MicroRNAs Derived from Coconut Water Based on Small RNA High-Throughput Sequencing
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.7b05614
– volume: 9
  start-page: 2722
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0655
  article-title: Grapefruit-Derived Micro and Nanovesicles Show Distinct Metabolome Profiles and Anticancer Activities in the A375 Human Melanoma Cell Line
  publication-title: Cells
  doi: 10.3390/cells9122722
– volume: 21
  start-page: 5920
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0415
  article-title: Ursolic Acid-Based Derivatives as Potential Anti-Cancer Agents: An Update
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21165920
– volume: 13
  start-page: 32729
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0155
  article-title: Berberine-Based Heterogeneous Linear Supramolecules Neutralized the Acute Nephrotoxicity of Aristolochic Acid by the Self-Assembly Strategy
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.1c06968
– volume: 12
  start-page: 2468
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0315
  article-title: Single small molecule-assembled nanoparticles mediate efficient oral drug delivery
  publication-title: Nano Res
  doi: 10.1007/s12274-019-2470-0
– volume: 598
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0510
  article-title: Coordination self-assembly of natural flavonoids into robust nanoparticles for enhanced in vitro chemo and photothermal cancer therapy
  publication-title: Colloid Surface A
  doi: 10.1016/j.colsurfa.2020.124805
– volume: 98
  start-page: 40
  year: 2017
  ident: 10.1016/j.jare.2022.09.013_b0680
  article-title: Extracellular vesicles in food: Experimental evidence of their secretion in grape fruits
  publication-title: Eur J Pharm Sci
  doi: 10.1016/j.ejps.2016.09.022
– volume: 25
  start-page: 1641
  year: 2017
  ident: 10.1016/j.jare.2022.09.013_b0715
  article-title: Broccoli-Derived Nanoparticle Inhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated Protein Kinase
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2017.01.025
– volume: 23
  start-page: 1219
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0765
  article-title: Carbon dots: emerging theranostic nanoarchitectures
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2018.01.006
– volume: 27
  start-page: 3268
  year: 2022
  ident: 10.1016/j.jare.2022.09.013_b0930
  article-title: Study on Supramolecules in Traditional Chinese Medicine Decoction
  publication-title: Molecules
  doi: 10.3390/molecules27103268
– volume: 35
  start-page: 7157
  year: 2014
  ident: 10.1016/j.jare.2022.09.013_b0495
  article-title: Kidney-specific drug delivery system for renal fibrosis based on coordination-driven assembly of catechol-derived chitosan
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.04.106
– volume: 12
  start-page: 477
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0710
  article-title: Protective Role of Shiitake Mushroom-Derived Exosome-Like Nanoparticles in D-Galactosamine and Lipopolysaccharide-Induced Acute Liver Injury in Mice
  publication-title: Nutrients
  doi: 10.3390/nu12020477
– volume: 79
  start-page: 93
  year: 2002
  ident: 10.1016/j.jare.2022.09.013_b1025
  article-title: Thermal aggregation of globulin from an indigenous Chinese legume, Phaseolus angularis (red bean)
  publication-title: Food Chem
  doi: 10.1016/S0308-8146(02)00184-X
– volume: 4
  start-page: 1867
  year: 2013
  ident: 10.1016/j.jare.2022.09.013_b0665
  article-title: Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids
  publication-title: Nat Commun
  doi: 10.1038/ncomms2886
– volume: 27
  start-page: 1511
  year: 2022
  ident: 10.1016/j.jare.2022.09.013_b0965
  article-title: Isolation and Characterization of Natural Nanoparticles in Naoluo Xintong Decoction and Their Brain Protection Research
  publication-title: Molecules
  doi: 10.3390/molecules27051511
– ident: 10.1016/j.jare.2022.09.013_b1015
  doi: 10.3390/nano12010030
– volume: 7
  start-page: 326
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0695
  article-title: Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth
  publication-title: J ImmunoTher Cancer
  doi: 10.1186/s40425-019-0817-4
– volume: 75
  start-page: 2520
  year: 2015
  ident: 10.1016/j.jare.2022.09.013_b0660
  article-title: Grapefruit-Derived Nanovectors Use an Activated Leukocyte Trafficking Pathway to Deliver Therapeutic Agents to Inflammatory Tumor Sites
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-14-3095
– ident: 10.1016/j.jare.2022.09.013_b0085
– volume: 48
  start-page: 68
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0850
  article-title: Novel mulberry silkworm cocoon-derived carbon dots and their anti-inflammatory properties
  publication-title: Artif Cell Nanomed B
  doi: 10.1080/21691401.2019.1699810
– volume: 53
  start-page: 12320
  year: 2014
  ident: 10.1016/j.jare.2022.09.013_b0035
  article-title: Engineered Nanoparticles for Drug Delivery in Cancer Therapy
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201403036
– volume: 79
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0250
  article-title: Health benefits, extraction and development of functional foods with curcuminoids
  publication-title: J Funct Foods
  doi: 10.1016/j.jff.2021.104392
– volume: 2017
  start-page: 9217912
  year: 2017
  ident: 10.1016/j.jare.2022.09.013_b0960
  article-title: Antidiabetic Micro-/Nanoaggregates from Ge-Gen-Qin-Lian-Tang Decoction Increase Absorption of Baicalin and Cellular Antioxidant Activity In Vitro
  publication-title: BioMed Res Int
  doi: 10.1155/2017/9217912
– volume: 8
  start-page: 37707
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0770
  article-title: Hemostatic effect of novel carbon dots derived from Cirsium setosum Carbonisata
  publication-title: RSC Adv
  doi: 10.1039/C8RA06340K
– volume: 1
  start-page: 1
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0090
  article-title: Pharmacological activity of alkaloids: a review
  publication-title: Asian J Bot
– volume: 11
  start-page: 9872
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0200
  article-title: Facile Engineering of Indomethacin-Induced Paclitaxel Nanocrystal Aggregates as Carrier-Free Nanomedicine with Improved Synergetic Antitumor Activity
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.8b22336
– volume: 38
  year: 2022
  ident: 10.1016/j.jare.2022.09.013_b0335
  article-title: Liquidambaric acid inhibits Wnt/β-catenin signaling and colon cancer via targeting TNF receptor-associated factor 2
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2022.110319
– volume: 10
  start-page: 1604
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0500
  article-title: Directed self-assembly of herbal small molecules into sustained release hydrogels for treating neural inflammation
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09601-3
– volume: 12
  start-page: 227
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0120
  article-title: Self-Assemblies Based on Traditional Medicine Berberine and Cinnamic Acid for Adhesion-Induced Inhibition Multidrug-Resistant Staphylococcus aureus
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b17722
– volume: 11
  start-page: 3035
  year: 2016
  ident: 10.1016/j.jare.2022.09.013_b0615
  article-title: Do ginger-derived nanoparticles represent an attractive treatment strategy for inflammatory bowel diseases?
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2016-0353
– volume: 176
  start-page: 1
  year: 2016
  ident: 10.1016/j.jare.2022.09.013_b0195
  article-title: Indomethacin Sensitizes Resistant Transformed Cells to Macrophage Cytotoxicity
  publication-title: Immunol Lett
  doi: 10.1016/j.imlet.2016.05.011
– volume: 195
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0970
  article-title: Comprehensive analysis of Huanglian Jiedu decoction: Revealing the presence of a self-assembled phytochemical complex in its naturally-occurring precipitate
  publication-title: J Pharm Biomed Anal
  doi: 10.1016/j.jpba.2020.113820
– volume: 263
  start-page: 95
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0180
  article-title: Basic principles of drug delivery systems – the case of paclitaxel
  publication-title: Adv Colloid Interfac
  doi: 10.1016/j.cis.2018.11.004
– volume: 372
  start-page: 1938
  year: 2008
  ident: 10.1016/j.jare.2022.09.013_b0010
  article-title: Traditional Chinese medicine
  publication-title: Lancet
  doi: 10.1016/S0140-6736(08)61354-9
– volume: 7
  start-page: 25683
  year: 2016
  ident: 10.1016/j.jare.2022.09.013_b0670
  article-title: Grapefruit-derived nanovectors deliver miR-18a for treatment of liver metastasis of colon cancer by induction of M1 macrophages
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.8361
– volume: 270
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0790
  article-title: Effects of carbonized process on quality control, chemical composition and pharmacology of Typhae Pollen: A review
  publication-title: J Ethnopharmacol
  doi: 10.1016/j.jep.2020.113774
– volume: 15
  start-page: 2466
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0425
  article-title: Carrier-Free, Pure Nanodrug Formed by the Self-Assembly of an Anticancer Drug for Cancer Immune Therapy
  publication-title: Mol Pharmaceutics
  doi: 10.1021/acs.molpharmaceut.8b00444
– volume: 14
  start-page: 431
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0795
  article-title: Hemostatic and hepatoprotective bioactivity of Junci Medulla Carbonisata-derived Carbon Dots
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2018-0285
– volume: 16
  start-page: 2203
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0915
  article-title: Water-Soluble Carbon Dots in Cigarette Mainstream Smoke: Their Properties and the Behavioural, Neuroendocrinological, and Neurotransmitter Changes They Induce in Mice
  publication-title: Int J Nanomed
  doi: 10.2147/IJN.S291670
– volume: 11
  start-page: 5713
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0215
  article-title: Quantitative self-assembly of pure drug cocktails as injectable nanomedicines for synergistic drug delivery and cancer therapy
  publication-title: Theranostics
  doi: 10.7150/thno.55250
– volume: 26
  start-page: 1512
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0890
  article-title: Novel Carbon Dots Derived from Glycyrrhizae Radix et Rhizoma and Their Anti-Gastric Ulcer Effect
  publication-title: Molecules
  doi: 10.3390/molecules26061512
– volume: 11
  start-page: 1210
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0110
  article-title: Synergistic Effect of Berberine-Based Chinese Medicine Assembled Nanostructures on DiarrheaPredominant Irritable Bowel Syndrome In Vivo
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2020.01210
– volume: 12
  start-page: 1927
  year: 2017
  ident: 10.1016/j.jare.2022.09.013_b0610
  article-title: Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2017-0196
– volume: 9
  start-page: 43508
  year: 2017
  ident: 10.1016/j.jare.2022.09.013_b0450
  article-title: A Small Molecule Nanodrug by Self-Assembly of Dual Anticancer Drugs and Photosensitizer for Synergistic near-Infrared Cancer Theranostics
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b14755
– volume: 45
  start-page: 199
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0350
  article-title: Pharmacological potential of ginseng and its major component ginsenosides
  publication-title: J Ginseng Res
  doi: 10.1016/j.jgr.2020.02.004
– volume: 11
  start-page: 2046
  year: 2014
  ident: 10.1016/j.jare.2022.09.013_b0365
  article-title: Dissipative Particle Dynamics Simulation of Ginsenoside Ro Vesicular Solubilization Systems
  publication-title: J Comput Theor Nanos
  doi: 10.1166/jctn.2014.3605
– volume: 58
  start-page: 1561
  year: 2014
  ident: 10.1016/j.jare.2022.09.013_b0685
  article-title: Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles
  publication-title: Mol Nutr Food Res
  doi: 10.1002/mnfr.201300729
– volume: 257
  start-page: 3
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0540
  article-title: Plant extracellular vesicles
  publication-title: Protoplasma
  doi: 10.1007/s00709-019-01435-6
– volume: 62
  start-page: 333
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b1035
  article-title: Herbal decoctosome is a novel form of medicine
  publication-title: Sci China Life Sci
  doi: 10.1007/s11427-018-9508-0
– volume: 11
  start-page: 87
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0720
  article-title: Strawberry-Derived Exosome-Like Nanoparticles Prevent Oxidative Stress in Human Mesenchymal Stromal Cells
  publication-title: Biomolecules
  doi: 10.3390/biom11010087
– volume: 6
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0645
  article-title: Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables
  publication-title: PeerJ
  doi: 10.7717/peerj.5186
– volume: 21
  start-page: 1345
  year: 2013
  ident: 10.1016/j.jare.2022.09.013_b0690
  article-title: Grape Exosome-like Nanoparticles Induce Intestinal Stem Cells and Protect Mice From DSS-Induced Colitis
  publication-title: Mol Ther
  doi: 10.1038/mt.2013.64
– volume: 13
  start-page: 6770
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0105
  article-title: Natural Berberine-Based Chinese Herb Medicine Assembled Nanostructures with Modified Antibacterial Application
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b01346
– volume: 15
  start-page: 60
  year: 2017
  ident: 10.1016/j.jare.2022.09.013_b0780
  article-title: Hemostatic bioactivity of novel Pollen Typhae Carbonisata-derived carbon quantum dots
  publication-title: J Nanobiotechnol
  doi: 10.1186/s12951-017-0296-z
– volume: 6
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0885
  article-title: Maltase and sucrase inhibitory activities and hypoglycemic effects of carbon dots derived from charred Fructus crataegi
  publication-title: Mater Res Express
  doi: 10.1088/2053-1591/ab4fd8
– volume: 9
  start-page: 1703480
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0740
  article-title: Anti-melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin
  publication-title: J Extracell Vesicles
  doi: 10.1080/20013078.2019.1703480
– volume: 14
  start-page: 7963
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0530
  article-title: Self-Assembly Of Retinoid Nanoparticles For Melanoma Therapy
  publication-title: Int J Nanomed
  doi: 10.2147/IJN.S196974
– volume: 7
  start-page: 19295
  year: 2015
  ident: 10.1016/j.jare.2022.09.013_b0265
  article-title: Nanodrug Formed by Coassembly of Dual Anticancer Drugs to Inhibit Cancer Cell Drug Resistance
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.5b05347
– volume: 425
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0520
  article-title: Metal ions-mediated self-assembly of nanomedicine for combinational therapy against triple-negative breast cancer
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.131420
– volume: 8
  start-page: 185
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0570
  article-title: Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe)
  publication-title: Foods
  doi: 10.3390/foods8060185
– volume: 8
  start-page: 2666
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0900
  article-title: Selective inactivation of Gram-negative bacteria by carbon dots derived from natural biomass-Artemisia argyi leaves
  publication-title: J Mater Chem B
  doi: 10.1039/C9TB02735A
– volume: 59
  start-page: S71
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0525
  article-title: The success and the challenge of all-trans retinoic acid in the treatment of cancer
  publication-title: Crit Rev Food Sci Nutr
  doi: 10.1080/10408398.2018.1509201
– volume: 15
  start-page: 851
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0910
  article-title: Green synthesis of Zingiberis rhizoma-based carbon dots attenuates chemical and thermal stimulus pain in mice
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2019-0369
– volume: 24
  start-page: 4152
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0865
  article-title: Novel Carbon Dots Derived from Puerariae lobatae Radix and Their Anti-Gout Effects
  publication-title: Molecules
  doi: 10.3390/molecules24224152
– volume: 24
  start-page: 96
  year: 2016
  ident: 10.1016/j.jare.2022.09.013_b0675
  article-title: Grapefruit-derived Nanovectors Delivering Therapeutic miR17 Through an Intranasal Route Inhibit Brain Tumor Progression
  publication-title: Mol Ther
  doi: 10.1038/mt.2015.188
– volume: 11
  start-page: 29498
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0330
  article-title: Simple and Multifunctional Natural Self-Assembled Sterols with Anticancer Activity-Mediated Supramolecular Photosensitizers for Enhanced Antitumor Photodynamic Therapy
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b07404
– volume: 23
  start-page: 2300
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0285
  article-title: Antiviral Activities of Oleanolic Acid and Its Analogues
  publication-title: Molecules
  doi: 10.3390/molecules23092300
– volume: 3
  start-page: 648
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0385
  article-title: A Simple Injectable Moldable Hydrogel Assembled from Natural Glycyrrhizic Acid with Inherent Antibacterial Activity
  publication-title: ACS Appl Bio Mater
  doi: 10.1021/acsabm.9b01007
– volume: 8
  start-page: 6333
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0050
  article-title: Research progress on nanotechnology for delivery of active ingredients from traditional Chinese medicines
  publication-title: J Mater Chem B
  doi: 10.1039/D0TB01260B
– volume: 10
  start-page: 1784
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0145
  article-title: Self-assembled natural phytochemicals for synergistically antibacterial application from the enlightenment of traditional Chinese medicine combination
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2019.12.014
– volume: 29
  start-page: 13
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0555
  article-title: Plant Exosome-like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2020.11.030
– volume: 182
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0320
  article-title: Paclitaxel and betulonic acid synergistically enhance antitumor efficacy by forming co-assembled nanoparticles
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2020.114232
– volume: 30
  start-page: 1745
  year: 2016
  ident: 10.1016/j.jare.2022.09.013_b0100
  article-title: Berberis Vulgaris and Berberine: An Update Review
  publication-title: Phytother Res
  doi: 10.1002/ptr.5693
– volume: 329
  start-page: 805
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0070
  article-title: Carrier-free nanodrugs for safe and effective cancer treatment
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2020.10.014
– volume: 10
  start-page: 445
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0135
  article-title: Anti-inflammatory Effects and Mechanisms of Rhein, an Anthraquinone Compound, and Its Applications in Treating Arthritis: A Review
  publication-title: Nat Prod Bioprospect
  doi: 10.1007/s13659-020-00272-y
– volume: 70
  start-page: 4725
  year: 2022
  ident: 10.1016/j.jare.2022.09.013_b0585
  article-title: Characterization of the MicroRNA Profile of Ginger Exosome-like Nanoparticles and Their Anti-Inflammatory Effects in Intestinal Caco-2 Cells
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.1c07306
– volume: 18
  start-page: 914
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0130
  article-title: Self-Assembled Nanoparticles of Natural Phytochemicals (Berberine and 3,4,5-Methoxycinnamic Acid) Originated from Traditional Chinese Medicine for Inhibiting Multidrug-Resistant Staphylococcus aureus
  publication-title: Curr Drug Deliv
  doi: 10.2174/1567201817666201124121918
– volume: 101
  start-page: 321
  year: 2016
  ident: 10.1016/j.jare.2022.09.013_b0575
  article-title: Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.06.018
– volume: 16
  start-page: 71
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0045
  article-title: Nano based drug delivery systems: recent developments and future prospects
  publication-title: J Nanobiotechnol
  doi: 10.1186/s12951-018-0392-8
– volume: 256
  start-page: 1463
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0270
  article-title: Plant triterpenoid saponins: biosynthesis, in vitro production, and pharmacological relevance
  publication-title: Protoplasma
  doi: 10.1007/s00709-019-01411-0
– volume: 104
  start-page: 6513
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0490
  article-title: Anti-fungal properties and mechanisms of melittin
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-020-10701-0
– volume: 17
  start-page: 841
  year: 2017
  ident: 10.1016/j.jare.2022.09.013_b0280
  article-title: Self-assembly of Renewable Nano-sized Triterpenoids
  publication-title: Chem Rec
  doi: 10.1002/tcr.201600123
– volume: 2
  start-page: 8623
  year: 2012
  ident: 10.1016/j.jare.2022.09.013_b0405
  article-title: Self-assembly of a renewable nano-sized triterpenoid 18β-glycyrrhetinic acid
  publication-title: RSC Adv
  doi: 10.1039/c2ra21051g
– volume: 83
  start-page: 770
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0020
  article-title: Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019
  publication-title: J Nat Prod
  doi: 10.1021/acs.jnatprod.9b01285
– volume: 10
  start-page: 847
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0040
  article-title: Polymeric Nanocapsules as Nanotechnological Alternative for Drug Delivery System: Current Status
  publication-title: Challenges and Opportunities Nanomaterials
– volume: 10
  start-page: 4569
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0485
  article-title: Nanostructured Peptidotoxins as Natural Pro-Oxidants Induced Cancer Cell Death via Amplification of Oxidative Stress
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b18809
– volume: 155
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0030
  article-title: Traditional Chinese medicine for COVID-19 treatment
  publication-title: Pharmacol Res
– volume: 151
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0275
  article-title: Natural pentacyclic triterpenoid acids potentially useful as biocompatible nanocarriers
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2021.104845
– volume: 16
  start-page: 62
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b1005
  article-title: Discovery of a sugar-based nanoparticle universally existing in boiling herbal water extracts and their immunostimulant effect
  publication-title: Biochem Biophys Rep
– volume: 1
  start-page: 1
  year: 2022
  ident: 10.1016/j.jare.2022.09.013_b0005
  article-title: Drug discovery is an eternal challenge for the biomedical sciences
  publication-title: Acta Materia Medica
  doi: 10.15212/AMM-2022-1001
– volume: 559
  start-page: 271
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0380
  article-title: Glycyrrhizic acid as a multifunctional drug carrier – From physicochemical properties to biomedical applications: A modern insight on the ancient drug
  publication-title: Int J Pharmaceut
  doi: 10.1016/j.ijpharm.2019.01.047
– volume: 15
  start-page: 9049
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0860
  article-title: Carbon Dots from Paeoniae Radix Alba Carbonisata: Hepatoprotective Effect
  publication-title: Int J Nanomed
  doi: 10.2147/IJN.S281976
– volume: 49
  start-page: 11
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0905
  article-title: Carbon dots from Artemisiae Argyi Folium Carbonisata: strengthening the anti-frostbite ability
  publication-title: Artif Cell Nanomed B
  doi: 10.1080/21691401.2020.1862134
– volume: 26
  start-page: 7368
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0095
  article-title: Berberine as a Potential Anticancer Agent: A Comprehensive Review
  publication-title: Molecules
  doi: 10.3390/molecules26237368
– volume: 13
  start-page: 370
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0995
  article-title: Self-assembled aggregations in Coptidis Rhizoma decoction dynamically regulate intestinal tissue permeability through Peyer’s patch-associated immunity
  publication-title: Chin Herb Med
  doi: 10.1016/j.chmed.2021.06.004
– volume: 57
  start-page: 20
  year: 2015
  ident: 10.1016/j.jare.2022.09.013_b0375
  article-title: Dissipative particle dynamics study on self-assembled platycodin structures: The potential biocarriers for drug delivery
  publication-title: J Mol Graph Model
  doi: 10.1016/j.jmgm.2015.01.002
– volume: 583
  start-page: 3363
  year: 2009
  ident: 10.1016/j.jare.2022.09.013_b0750
  article-title: Vesicular fractions of sunflower apoplastic fluids are associated with potential exosome marker proteins
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2009.09.041
– volume: 42
  start-page: 432
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0835
  article-title: A Network Pharmacology Approach Used to Estimate the Active Ingredients of Moutan Cortex Charcoal and the Potential Targets in Hemorrhagic Diseases
  publication-title: Biol Pharm Bull
  doi: 10.1248/bpb.b18-00756
– volume: 16
  start-page: 618
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0395
  article-title: Molecular Dynamics Simulations of Glycyrrhizic Acid Aggregates as Drug-Carriers for Paclitaxel
  publication-title: Curr Drug Deliv
  doi: 10.2174/1567201816666190313155117
– volume: 10
  start-page: 12639
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0345
  article-title: Synergistic combination chemotherapy using carrier-free celastrol and doxorubicin nanocrystals for overcoming drug resistance
  publication-title: Nanoscale
  doi: 10.1039/C8NR02700E
– volume: 5
  start-page: 1517
  year: 2017
  ident: 10.1016/j.jare.2022.09.013_b0185
  article-title: Glutathione-responsive paclitaxel dimer nanovesicles with high drug content
  publication-title: Biomater Sci
  doi: 10.1039/C7BM00052A
– volume: 21
  start-page: 308
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0600
  article-title: Plant-Derived Exosomal Nanoparticles Inhibit Pathogenicity of Porphyromonas gingivalis
  publication-title: iScience
  doi: 10.1016/j.isci.2019.10.032
– volume: 12
  start-page: 494
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0355
  article-title: Recent progress in polysaccharides from Panax ginseng C
  publication-title: A Meyer Food Funct
  doi: 10.1039/D0FO01896A
– volume: 11
  start-page: 246
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0455
  article-title: A smart dual-drug nanosystem based on coassembly of plant and food-derived natural products for synergistic HCC immunotherapy
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2020.07.026
– volume: 8
  start-page: 12209
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0950
  article-title: Isolation and characterization of nanometre aggregates from a Bai-Hu-Tang decoction and their antipyretic effect
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-30690-5
– volume: 12
  start-page: 92
  year: 2022
  ident: 10.1016/j.jare.2022.09.013_b0055
  article-title: Pure drug nano-assemblies: A facile carrier-free nanoplatform for efficient cancer therapy
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2021.08.012
– volume: 11
  start-page: 15907
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0230
  article-title: Acidity-responsive shell-sheddable camptothecin-based nanofibers for carrier-free cancer drug delivery
  publication-title: Nanoscale
  doi: 10.1039/C9NR03872H
– volume: 23
  start-page: 191
  year: 2022
  ident: 10.1016/j.jare.2022.09.013_b0560
  article-title: Plant-Derived Extracellular Vesicles as Therapeutic Nanocarriers
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms23010191
– volume: 25
  start-page: 446
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0815
  article-title: Haemostatic Nanoparticles-Derived Bioactivity of from Selaginella tamariscina Carbonisata
  publication-title: Molecules
  doi: 10.3390/molecules25030446
– volume: 268
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0060
  article-title: Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120557
– volume: 46
  start-page: S308
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0805
  article-title: Haemostatic bioactivity of novel Schizonepetae Spica Carbonisata-derived carbon dots via platelet counts elevation
  publication-title: Artif Cell Nanomed B
  doi: 10.1080/21691401.2018.1492419
– volume: 22
  start-page: 4599
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0290
  article-title: Ursolic and Oleanolic Acids: Plant Metabolites with Neuroprotective Potential
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22094599
– volume: 24
  start-page: 637
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0580
  article-title: Plant-Derived Exosomal MicroRNAs Shape the Gut Microbiota
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2018.10.001
– volume: 15
  start-page: 151
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0870
  article-title: Novel Carbon Dots-Derived from Radix Puerariae Carbonisata Significantly Improve the Solubility and Bioavailability of Baicalin
  publication-title: J Biomed Nanotechnol
  doi: 10.1166/jbn.2019.2675
– volume: 8
  start-page: 220
  year: 2022
  ident: 10.1016/j.jare.2022.09.013_b0080
  article-title: Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: From intrinsic physicochemical properties to external modification
  publication-title: Bioact Mater
  doi: 10.1016/j.bioactmat.2021.06.035
– volume: 52
  start-page: 10369
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0755
  article-title: Formation and Physicochemical Characteristics of Nano Biochar: Insight into Chemical and Colloidal Stability
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.8b01481
– volume: 206
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0895
  article-title: One-pot synthesis of Forsythia@carbon quantum dots with natural antiwood rot fungus activity
  publication-title: Mater Design
– volume: 4
  start-page: 28713
  year: 2015
  ident: 10.1016/j.jare.2022.09.013_b0595
  article-title: Ginger-derived nanoparticles protect against alcohol-induced liver damage
  publication-title: J Extracell Vesicles
  doi: 10.3402/jev.v4.28713
– volume: 20
  start-page: 1781
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0470
  article-title: Transforming Complexity to Simplicity: Protein-Like Nanotransformer for Improving Tumor Drug Delivery Programmatically
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.9b05008
– volume: 11
  start-page: 10480
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0990
  article-title: Role of particle aggregates in herbal medicine decoction showing they are not useless: considering Coptis chinensis decoction as an example
  publication-title: Food Funct
  doi: 10.1039/D0FO02179B
– volume: 29
  start-page: 3495
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0430
  article-title: Small Molecule Nanodrug Assembled of Dual-Anticancer Drug Conjugate for Synergetic Cancer Metastasis Therapy
  publication-title: Bioconjugate Chem
  doi: 10.1021/acs.bioconjchem.8b00657
– volume: 16
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0205
  article-title: Recent progress in nanoformulations of cabazitaxel
  publication-title: Biomed Mater
  doi: 10.1088/1748-605X/abe396
– volume: 5
  start-page: 9121
  year: 2017
  ident: 10.1016/j.jare.2022.09.013_b0440
  article-title: A carrier-free dual-drug nanodelivery system functionalized with aptamer specific targeting HER2-overexpressing cancer cells
  publication-title: J Mater Chem B
  doi: 10.1039/C7TB02562A
– volume: 7
  start-page: 178
  year: 2017
  ident: 10.1016/j.jare.2022.09.013_b1010
  article-title: Boiling-induced nanoparticles and their constitutive proteins from Isatis indigotica Fort. root decoction: Purification and identification
  publication-title: J Tradit Complement Med
  doi: 10.1016/j.jtcme.2016.08.007
– volume: 38
  start-page: 1691
  year: 2015
  ident: 10.1016/j.jare.2022.09.013_b0825
  article-title: Tracing novel hemostatic compounds from heating products of total flavonoids in Flos Sophorae by spectrum–effect relationships and column chromatography
  publication-title: J Sep Sci
  doi: 10.1002/jssc.201500100
– volume: 12
  start-page: 42537
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0295
  article-title: Nanomedicine-Cum-Carrier by Co-Assembly of Natural Small Products for Synergistic Enhanced Antitumor with Tissues Protective Actions
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c12641
– volume: 598
  start-page: 444
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0390
  article-title: Adsorption and self-assembly properties of the plant based biosurfactant
  publication-title: Glycyrrhizic acid J Colloid Interf Sci
  doi: 10.1016/j.jcis.2021.03.101
– volume: 6
  start-page: 4321
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0735
  article-title: Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells
  publication-title: Bioact Mater
  doi: 10.1016/j.bioactmat.2021.04.023
– volume: 9
  start-page: 480
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0220
  article-title: Recent Advances in Improved Anticancer Efficacies of Camptothecin Nano-Formulations: A Systematic Review
  publication-title: Biomedicines
  doi: 10.3390/biomedicines9050480
– volume: 15
  start-page: 708
  year: 2022
  ident: 10.1016/j.jare.2022.09.013_b0565
  article-title: Focusing on Future Applications and Current Challenges of Plant Derived Extracellular Vesicles
  publication-title: Pharmaceuticals
  doi: 10.3390/ph15060708
– volume: 155
  start-page: 889
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0515
  article-title: Therapeutic potential of quercetin as a cardiovascular agent
  publication-title: Eur J Med Chem
  doi: 10.1016/j.ejmech.2018.06.053
– volume: 570
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b0075
  article-title: Carrier-free nanodrug: A novel strategy of cancer diagnosis and synergistic therapy
  publication-title: Int J Pharmaceut
  doi: 10.1016/j.ijpharm.2019.118663
– volume: 13
  start-page: 3224
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0475
  article-title: Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials—A Minireview
  publication-title: Materials
  doi: 10.3390/ma13143224
– ident: 10.1016/j.jare.2022.09.013_b0640
  doi: 10.1016/j.isci.2021.102511
– volume: 601
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0400
  article-title: Preparation, optimization, characterization and in vitro release of baicalein-solubilizing glycyrrhizic acid nano-micelles
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2021.120546
– volume: 22
  start-page: 1456
  year: 2017
  ident: 10.1016/j.jare.2022.09.013_b0980
  article-title: Origin and Formation Mechanism Investigation of Compound Precipitation from the Traditional Chinese Prescription Huang-Lian-Jie-Du-Tang by Isothermal Titration Calorimetry
  publication-title: Molecules
  doi: 10.3390/molecules22091456
– volume: 151
  start-page: 1116
  year: 2014
  ident: 10.1016/j.jare.2022.09.013_b0955
  article-title: Chromatographic isolation of nanoparticles from Ma-Xing-Shi-Gan-Tang decoction and their characterization
  publication-title: J Ethnopharmacol
  doi: 10.1016/j.jep.2013.12.029
– volume: 12
  start-page: 6827
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0300
  article-title: Exploration of the Natural Active Small-Molecule Drug-Loading Process and Highly Efficient Synergistic Antitumor Efficacy
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b18443
– volume: 14
  start-page: 2146
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0880
  article-title: Hypoglycemic Bioactivity of Novel Eco-Friendly Carbon Dots Derived from Traditional Chinese Medicine
  publication-title: J Biomed Nanotechnol
  doi: 10.1166/jbn.2018.2653
– volume: 30
  start-page: 1907857
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0460
  article-title: Nanodrug Carrier Based on Poly(Ursolic Acid) with Self-Anticancer Activity against Colorectal Cancer
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201907857
– volume: 3
  start-page: 24906
  year: 2013
  ident: 10.1016/j.jare.2022.09.013_b0410
  article-title: Self-assembly of sodium glycyrrhetinate into a hydrogel: characterisation and properties
  publication-title: RSC Adv
  doi: 10.1039/c3ra43306d
– volume: 229
  start-page: 111
  year: 2018
  ident: 10.1016/j.jare.2022.09.013_b0620
  article-title: Protein biocargo of citrus fruit-derived vesicles reveals heterogeneous transport and extracellular vesicle populations
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2018.07.006
– volume: 124
  year: 2020
  ident: 10.1016/j.jare.2022.09.013_b0945
  article-title: A study of nanometre aggregates formation mechanism and antipyretic effect in Bai-Hu-Tang, an ancient Chinese herbal decoction
  publication-title: Biomed Pharmacother
  doi: 10.1016/j.biopha.2020.109826
– volume: 22
  start-page: 1247
  year: 2017
  ident: 10.1016/j.jare.2022.09.013_b0125
  article-title: Multifunctional Cinnamic Acid Derivatives
  publication-title: Molecules
  doi: 10.3390/molecules22081247
– volume: 274
  start-page: 796
  year: 2019
  ident: 10.1016/j.jare.2022.09.013_b1020
  article-title: Fabrication of self-assembled Radix Pseudostellariae protein nanoparticles and the entrapment of curcumin
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2018.09.059
– volume: 20
  start-page: 16970
  year: 2015
  ident: 10.1016/j.jare.2022.09.013_b0830
  article-title: A Novel Reduplicate Strategy for Tracing Hemostatic Compounds from Heating Products of the Flavonoid Extract in Platycladi cacumen by Spectrum-Effect Relationships and Column Chromatography
  publication-title: Molecules
  doi: 10.3390/molecules200916970
– volume: 20
  start-page: 200
  year: 2021
  ident: 10.1016/j.jare.2022.09.013_b0015
  article-title: the International Natural Product Sciences Taskforce, Supuran CT. Natural products in drug discovery: advances and opportunities
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/s41573-020-00114-z
– volume: 446
  start-page: 786
  year: 2014
  ident: 10.1016/j.jare.2022.09.013_b0325
  article-title: Recent advances in Phytosterol Oxidation Products
  publication-title: Biochem Bioph Res Co
  doi: 10.1016/j.bbrc.2014.01.148
SSID ssj0000388911
Score 2.3722987
SecondaryResourceType review_article
Snippet [Display omitted] •Carrier-free nanoplatforms with self-assembly from natural plants.•Nano self-assembly of pure small molecules for enhanced...
Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis...
• Carrier-free nanoplatforms with self-assembly from natural plants. • Nano self-assembly of pure small molecules for enhanced bioactivity. • Extracellular...
Background: Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 159
SubjectTerms Carrier-free nanoplatform
Charcoal nanocomponent
Extracellular vesicle
Humans
Medicine, Chinese Traditional
Nanoaggregates
Nanoparticles
Natural plants
Plants, Medicinal
Review
SummonAdditionalLinks – databaseName: ScienceDirect Free & Delayed Access Titles
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELainHKpmj5p2opKPbSq0Abb-HFsVkmjSu2ljbQ3yzamIYpgxZL_3xljViWRcugFCWPADGPPNzDzDSEfAWLL2jFwcmSQBResLnTlwVVhzpWi1oFzTE7-8VNcXvHvm2pzQNZzLgyGVaa1f1rT42qdWlZJmqtt265-0VMdAQGNcQYV0m4zrmIS3-Zs_50F2U50LMOL_Qs8IeXOTGFeN3ZAtkxKI91pyRb2KdL4L8zUQxh6P5ryH_N08ZQ8Sbgy_zoN_ZgchO4ZOU4zd5d_SvTSn5-Tb2s7YJm6ohlCyDvb9dtbOyJ23eWYbJJHrk-4FjR3I7T1Qx666xgpkLu2x0wILDjxglxdnP9eXxapnELhAWSNhXTON8h4JyzlFgvYcXQXtPK1BRRYN2C6dVNpT1XAEDQZhFWlVJaJphEwj1-Sw67vwmuSK1fREIRmuvQc8LmyrmbeS2mbRslGZKSchWh84hrHkhe3Zg4quzEoeIOCN6fagOAz8mV_znZi2ni09xm-m31PZMmODf3wxyQ1Mcx5Wgde1riVTikB5rr2lXMUREFdRqr5zZqF0sGl2kdv_mFWAwOzEX-x2C70dztDJeBl8Am5ysirSS32Q4R7w5LOeEbUQmEWz7A80rXXkfEbfGZAGlK9-c8Bn5Aj2GNT4OJbcjgOd-EdgKnRvY-z5S8BfxzE
  priority: 102
  providerName: Elsevier
Title Carrier-free nanoplatforms from natural plants for enhanced bioactivity
URI https://dx.doi.org/10.1016/j.jare.2022.09.013
https://www.ncbi.nlm.nih.gov/pubmed/36208834
https://www.proquest.com/docview/2723160648
https://pubmed.ncbi.nlm.nih.gov/PMC10403678
https://doaj.org/article/3bc2de41d2de47b886362dc5bb2bcf2b
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQ5RkKVZA4gFAEsR0_jm1FKUhwotLeLD_VrSqnyqb_nxknu9qAVC5cfHAcOx6PPd8o428IeQcQWwbHwMmRUTZcsNDozoOrwpxrRdCRc7yc_OOnuLjk31fdai_VF8aETfTAk-A-MedpiLwNWEqnlIAjN_jOOep8og5PX7B5e85UOYOZUrok34WHGH7A6HxjZgruurYDcmRSWkhOW7awSoW8f2Gc_gaff8ZQ7hml88fk0Ywm65NpFofkQcxPyOG8Xzf1-5lU-sNT8vXMDpicrklDjHW2ub-9sSMi1k2NV0zqwvAJfUF1HqGuH-qYr0p8QO3WPd5_wDQTz8jl-ZdfZxfNnESh8QCtxkY6EBPy3AlLucW0dRydBK18sID9QgKDrVOnPVURA89kFFa1UlkmUhKwe5-Tg9zn-JLUynU0RqGZbj0HVK6sC8x7KW1KSiZRkXYrRONnhnFMdHFjtqFk1wYFb1Dw5rM2IPiKfNy9czvxa9zb-hTXZtcSubFLBWiMmTXG_EtjKtJtV9bMMGOCD9DV-t7B327VwMAexB8rNsf-bmOoBJQMniBXFXkxqcXuE2FsOMgZr4haKMxiDssneX1VeL7BUwZ8IdWr_zHrI_IQ5sKm2MXX5GAc7uIbwFOjOy5bB8pvq9Pfh8QfAA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq9gAXRHkGCgQJJBCKtrET2zlwoIWySx8XWmlvxnYcmqpKVtlUiN_FH2TG8a4ISD0g9ZKD8_KOxzPfZGe-IeQVQGxRGgZBjnAiyTgrkyK3EKowY1JeFi7LsDj5-IRPz7Iv83y-QX6tamEwrTLY_sGme2sdRiZBmpNFXU--0t3CAwLq8wxyHjIrD93PHxC3Ld_PPsIiv6b04NPp_jQJrQUSC4CjT4QxtkL2N65pprGZW4bQuZC21ICIygrcWFHlhaXSYTqWcFzLVEjNeFVxgQxMYPe3AH0ItAaz-d76ww7SqxS-7y9OMMEZhmKdIa_sQndIz0mp51dN2cgh-r4BI7_4L-79O33zD394cJfcCUA2_jDIaptsuOYe2Q6mYhm_CXzWb--Tz_u6w754SdU5Fze6aReXukewvIyxuiX25KLwLBhuehhru9g15z41ITZ1i6UX2OHiATm7ESE_JJtN27jHJJYmp87xghWpzSAgkNqUzFohdFVJUfGIpCshKhvIzbHHxqVaZbFdKBS8QsGr3UKB4CPybn3PYqD2uPbqPVyb9ZVIy-0H2u67CnqpmLG0dFla4lEYKTngg9LmxlAQBTURyVcrq0ZaDo-qr335y5UaKNj--J-Oblx7tVRUAECHIDSTEXk0qMV6ivBu8CEsi4gcKczoN4zPNPW5pxiHIB2gjZBP_nPCL8it6enxkTqanRw-JbfhDBuyJnfIZt9duWeA5Hrz3O-cmHy76a36G4fqWQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carrier-free+nanoplatforms+from+natural+plants+for+enhanced+bioactivity&rft.jtitle=Journal+of+advanced+research&rft.au=Li%2C+Zhongrui&rft.au=Xu%2C+Xiao&rft.au=Wang%2C+Yun&rft.au=Kong%2C+Lingyi&rft.date=2023-08-01&rft.issn=2090-1232&rft.volume=50&rft.spage=159&rft.epage=176&rft_id=info:doi/10.1016%2Fj.jare.2022.09.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jare_2022_09_013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-1232&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-1232&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-1232&client=summon