Carrier-free nanoplatforms from natural plants for enhanced bioactivity
[Display omitted] •Carrier-free nanoplatforms with self-assembly from natural plants.•Nano self-assembly of pure small molecules for enhanced bioactivity.•Extracellular vesicles containing active substances from fresh plants.•Charcoal nanocomponents with carbon skeleton structure from charred plants...
Saved in:
Published in | Journal of advanced research Vol. 50; pp. 159 - 176 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Egypt
Elsevier B.V
01.08.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Carrier-free nanoplatforms with self-assembly from natural plants.•Nano self-assembly of pure small molecules for enhanced bioactivity.•Extracellular vesicles containing active substances from fresh plants.•Charcoal nanocomponents with carbon skeleton structure from charred plants.•Nanoaggregate particles with wide curative effects from decoction of plants formulae.
Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis and major resource for drug innovation. Carrier-free nanoplatforms completely self-assembled by pure molecules or therapeutic components have attracted increasing attention due to their advantages of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug loading. In recent years, carrier-free nanoplatforms produced by self-assembly from natural plants have contributed to progress in a variety of therapeutic modalities. Notably, these nanoplatforms based on the interactions of components from different natural plants improve efficiency and depress toxicity.
In this review, different types of self-assembled nanoplatforms are first summarized, mainly including nanoassemblies of pure small molecules isolated from different plants, extracellular vesicles separated from fresh plants, charcoal nanocomponents obtained from charred plants, and nanoaggregates from plants formulae decoctions.
Key Scientific Concepts of Review: We mainly focus on composition, self-assembly mechanisms, biological activity and modes of action. Finally, a future perspective of existing challenges with respect to the clinical application of plant-based carrier-free nanoplatforms is discussed, which may be instructive to further develop effective carrier-free nanoplatforms from natural plants in the future. |
---|---|
AbstractList | Background: Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis and major resource for drug innovation. Carrier-free nanoplatforms completely self-assembled by pure molecules or therapeutic components have attracted increasing attention due to their advantages of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug loading. In recent years, carrier-free nanoplatforms produced by self-assembly from natural plants have contributed to progress in a variety of therapeutic modalities. Notably, these nanoplatforms based on the interactions of components from different natural plants improve efficiency and depress toxicity. Aim of Review: In this review, different types of self-assembled nanoplatforms are first summarized, mainly including nanoassemblies of pure small molecules isolated from different plants, extracellular vesicles separated from fresh plants, charcoal nanocomponents obtained from charred plants, and nanoaggregates from plants formulae decoctions.Key Scientific Concepts of Review: We mainly focus on composition, self-assembly mechanisms, biological activity and modes of action. Finally, a future perspective of existing challenges with respect to the clinical application of plant-based carrier-free nanoplatforms is discussed, which may be instructive to further develop effective carrier-free nanoplatforms from natural plants in the future. Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis and major resource for drug innovation. Carrier-free nanoplatforms completely self-assembled by pure molecules or therapeutic components have attracted increasing attention due to their advantages of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug loading. In recent years, carrier-free nanoplatforms produced by self-assembly from natural plants have contributed to progress in a variety of therapeutic modalities. Notably, these nanoplatforms based on the interactions of components from different natural plants improve efficiency and depress toxicity.BACKGROUNDNatural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis and major resource for drug innovation. Carrier-free nanoplatforms completely self-assembled by pure molecules or therapeutic components have attracted increasing attention due to their advantages of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug loading. In recent years, carrier-free nanoplatforms produced by self-assembly from natural plants have contributed to progress in a variety of therapeutic modalities. Notably, these nanoplatforms based on the interactions of components from different natural plants improve efficiency and depress toxicity.In this review, different types of self-assembled nanoplatforms are first summarized, mainly including nanoassemblies of pure small molecules isolated from different plants, extracellular vesicles separated from fresh plants, charcoal nanocomponents obtained from charred plants, and nanoaggregates from plants formulae decoctions. Key Scientific Concepts of Review: We mainly focus on composition, self-assembly mechanisms, biological activity and modes of action. Finally, a future perspective of existing challenges with respect to the clinical application of plant-based carrier-free nanoplatforms is discussed, which may be instructive to further develop effective carrier-free nanoplatforms from natural plants in the future.AIM OF REVIEWIn this review, different types of self-assembled nanoplatforms are first summarized, mainly including nanoassemblies of pure small molecules isolated from different plants, extracellular vesicles separated from fresh plants, charcoal nanocomponents obtained from charred plants, and nanoaggregates from plants formulae decoctions. Key Scientific Concepts of Review: We mainly focus on composition, self-assembly mechanisms, biological activity and modes of action. Finally, a future perspective of existing challenges with respect to the clinical application of plant-based carrier-free nanoplatforms is discussed, which may be instructive to further develop effective carrier-free nanoplatforms from natural plants in the future. [Display omitted] •Carrier-free nanoplatforms with self-assembly from natural plants.•Nano self-assembly of pure small molecules for enhanced bioactivity.•Extracellular vesicles containing active substances from fresh plants.•Charcoal nanocomponents with carbon skeleton structure from charred plants.•Nanoaggregate particles with wide curative effects from decoction of plants formulae. Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis and major resource for drug innovation. Carrier-free nanoplatforms completely self-assembled by pure molecules or therapeutic components have attracted increasing attention due to their advantages of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug loading. In recent years, carrier-free nanoplatforms produced by self-assembly from natural plants have contributed to progress in a variety of therapeutic modalities. Notably, these nanoplatforms based on the interactions of components from different natural plants improve efficiency and depress toxicity. In this review, different types of self-assembled nanoplatforms are first summarized, mainly including nanoassemblies of pure small molecules isolated from different plants, extracellular vesicles separated from fresh plants, charcoal nanocomponents obtained from charred plants, and nanoaggregates from plants formulae decoctions. Key Scientific Concepts of Review: We mainly focus on composition, self-assembly mechanisms, biological activity and modes of action. Finally, a future perspective of existing challenges with respect to the clinical application of plant-based carrier-free nanoplatforms is discussed, which may be instructive to further develop effective carrier-free nanoplatforms from natural plants in the future. Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis and major resource for drug innovation. Carrier-free nanoplatforms completely self-assembled by pure molecules or therapeutic components have attracted increasing attention due to their advantages of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug loading. In recent years, carrier-free nanoplatforms produced by self-assembly from natural plants have contributed to progress in a variety of therapeutic modalities. Notably, these nanoplatforms based on the interactions of components from different natural plants improve efficiency and depress toxicity. In this review, different types of self-assembled nanoplatforms are first summarized, mainly including nanoassemblies of pure small molecules isolated from different plants, extracellular vesicles separated from fresh plants, charcoal nanocomponents obtained from charred plants, and nanoaggregates from plants formulae decoctions. Key Scientific Concepts of Review: We mainly focus on composition, self-assembly mechanisms, biological activity and modes of action. Finally, a future perspective of existing challenges with respect to the clinical application of plant-based carrier-free nanoplatforms is discussed, which may be instructive to further develop effective carrier-free nanoplatforms from natural plants in the future. • Carrier-free nanoplatforms with self-assembly from natural plants. • Nano self-assembly of pure small molecules for enhanced bioactivity. • Extracellular vesicles containing active substances from fresh plants. • Charcoal nanocomponents with carbon skeleton structure from charred plants. • Nanoaggregate particles with wide curative effects from decoction of plants formulae. |
Author | Xu, Xiao Han, Chao Wang, Yun Kong, Lingyi Li, Zhongrui |
Author_xml | – sequence: 1 givenname: Zhongrui surname: Li fullname: Li, Zhongrui organization: State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China – sequence: 2 givenname: Xiao surname: Xu fullname: Xu, Xiao organization: State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China – sequence: 3 givenname: Yun surname: Wang fullname: Wang, Yun organization: State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China – sequence: 4 givenname: Lingyi surname: Kong fullname: Kong, Lingyi email: cpu_lykong@126.com organization: State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China – sequence: 5 givenname: Chao surname: Han fullname: Han, Chao email: hanchao@cpu.edu.cn organization: State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36208834$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustq3DAUFSWlSZP8QBfFy27s6mHrAYVShiYNBLpp1kKWrxIZ25pKmoH8feVMOjRdRAtJHN1z7uPoPTpZwgIIfSC4IZjwz2MzmggNxZQ2WDWYsDfojGKFa0Jpe3K8M3qKLlMacVlMSkXIO3TKOMVSsvYMXW9MjB5i7SJAtZglbCeTXYhzqlwMc4HyLpqpKvCSCxZiBcuDWSwMVe-DsdnvfX68QG-dmRJcPp_n6O7q-6_Nj_r25_XN5tttbTtKcy363josRMcNbU2HO9piLjol7WCUEIMjslOuU5ZK6BwoAdxIIqRh3DkuFDtHNwfdIZhRb6OfTXzUwXj9BIR4r03M3k6gWW_pAC0Z1l30UvLS9mC7vqelCNoXra8Hre2un2GwsOTS6QvRly-Lf9D3Ya8JbjHjQhaFT88KMfzeQcp69snCVGYFYZc0FZQRjnm7hn78N9kxy18rSgA9BNgYUorgjiEE69VyPerVcr1arrHSxfJCkv-RrM8m-7AW7KfXqV8OVCh27csX0Ml6WH31EWwu8_Sv0f8Ab3rHoQ |
CitedBy_id | crossref_primary_10_1016_j_fmre_2023_09_007 crossref_primary_10_2147_IJN_S467354 crossref_primary_10_1016_j_jpha_2025_101201 crossref_primary_10_1016_j_phrs_2023_107033 crossref_primary_10_37349_eff_2023_00010 crossref_primary_10_1016_j_cclet_2024_109733 crossref_primary_10_1002_wnan_1967 crossref_primary_10_3389_fphar_2024_1333087 crossref_primary_10_3389_fphar_2023_1158945 crossref_primary_10_1021_acsami_4c10175 crossref_primary_10_1039_D3CP04835G crossref_primary_10_3390_molecules29143326 crossref_primary_10_1016_j_foodchem_2024_140058 crossref_primary_10_1016_j_cclet_2024_110224 crossref_primary_10_2147_IJN_S422944 |
Cites_doi | 10.1016/j.jconrel.2018.11.014 10.1002/smll.201906206 10.2147/IJN.S293067 10.1016/j.jcis.2021.12.002 10.1002/smll.201902641 10.1039/C9MD00447E 10.3390/pharmaceutics14030476 10.1016/j.jcis.2012.06.018 10.1016/j.actbio.2018.01.028 10.3390/molecules21081094 10.1016/j.biopha.2021.111310 10.1021/mp500744m 10.1039/C8FO02295J 10.2217/nnm-2017-0297 10.1021/acs.jafc.9b03208 10.1016/j.ijbiomac.2020.05.070 10.3390/molecules24152751 10.1002/adfm.201805582 10.2217/nnm-2019-0255 10.1016/j.jconrel.2020.09.025 10.1016/j.jconrel.2019.12.011 10.1016/j.ymthe.2021.08.028 10.1016/j.semcancer.2020.05.011 10.1007/s11101-019-09623-1 10.1166/jbn.2018.2613 10.1016/j.jpba.2019.02.044 10.3390/molecules25102278 10.1002/adma.201703135 10.2147/IJN.S248467 10.1186/s12951-021-00847-y 10.2147/IJN.S289515 10.3389/fbioe.2021.799806 10.1093/rb/rbv011 10.1038/mt.2013.190 10.2147/IJN.S276470 10.1016/j.biomaterials.2019.119701 10.1016/S0254-6272(15)30110-2 10.1002/ajoc.201200032 10.1016/j.gene.2017.10.046 10.1016/j.apsb.2021.08.016 10.1016/j.jcis.2013.01.017 10.2174/1389201019666181017115755 10.1021/acs.molpharmaceut.9b00246 10.1186/s11658-019-0164-y 10.3390/molecules24010128 10.1186/s12951-020-00656-9 10.18632/oncotarget.4004 10.3390/ijms21165712 10.3390/pharmaceutics12020128 10.1039/C7RA02123B 10.1016/j.ejmech.2020.112081 10.1016/j.ajps.2021.05.006 10.3389/fphar.2019.00648 10.1158/0008-5472.CAN-12-3542 10.1038/mt.2016.159 10.1021/acs.jafc.7b05614 10.3390/cells9122722 10.3390/ijms21165920 10.1021/acsami.1c06968 10.1007/s12274-019-2470-0 10.1016/j.colsurfa.2020.124805 10.1016/j.ejps.2016.09.022 10.1016/j.ymthe.2017.01.025 10.1016/j.drudis.2018.01.006 10.3390/molecules27103268 10.1016/j.biomaterials.2014.04.106 10.3390/nu12020477 10.1016/S0308-8146(02)00184-X 10.1038/ncomms2886 10.3390/molecules27051511 10.3390/nano12010030 10.1186/s40425-019-0817-4 10.1158/0008-5472.CAN-14-3095 10.1080/21691401.2019.1699810 10.1002/anie.201403036 10.1016/j.jff.2021.104392 10.1155/2017/9217912 10.1039/C8RA06340K 10.1021/acsami.8b22336 10.1016/j.celrep.2022.110319 10.1038/s41467-019-09601-3 10.1021/acsami.9b17722 10.2217/nnm-2016-0353 10.1016/j.imlet.2016.05.011 10.1016/j.jpba.2020.113820 10.1016/j.cis.2018.11.004 10.1016/S0140-6736(08)61354-9 10.18632/oncotarget.8361 10.1016/j.jep.2020.113774 10.1021/acs.molpharmaceut.8b00444 10.2217/nnm-2018-0285 10.2147/IJN.S291670 10.7150/thno.55250 10.3390/molecules26061512 10.3389/fphar.2020.01210 10.2217/nnm-2017-0196 10.1021/acsami.7b14755 10.1016/j.jgr.2020.02.004 10.1166/jctn.2014.3605 10.1002/mnfr.201300729 10.1007/s00709-019-01435-6 10.1007/s11427-018-9508-0 10.3390/biom11010087 10.7717/peerj.5186 10.1038/mt.2013.64 10.1021/acsnano.9b01346 10.1186/s12951-017-0296-z 10.1088/2053-1591/ab4fd8 10.1080/20013078.2019.1703480 10.2147/IJN.S196974 10.1021/acsami.5b05347 10.1016/j.cej.2021.131420 10.3390/foods8060185 10.1039/C9TB02735A 10.1080/10408398.2018.1509201 10.2217/nnm-2019-0369 10.3390/molecules24224152 10.1038/mt.2015.188 10.1021/acsami.9b07404 10.3390/molecules23092300 10.1021/acsabm.9b01007 10.1039/D0TB01260B 10.1016/j.apsb.2019.12.014 10.1016/j.ymthe.2020.11.030 10.1016/j.bcp.2020.114232 10.1002/ptr.5693 10.1016/j.jconrel.2020.10.014 10.1007/s13659-020-00272-y 10.1021/acs.jafc.1c07306 10.2174/1567201817666201124121918 10.1016/j.biomaterials.2016.06.018 10.1186/s12951-018-0392-8 10.1007/s00709-019-01411-0 10.1007/s00253-020-10701-0 10.1002/tcr.201600123 10.1039/c2ra21051g 10.1021/acs.jnatprod.9b01285 10.1021/acsami.7b18809 10.1016/j.fitote.2021.104845 10.15212/AMM-2022-1001 10.1016/j.ijpharm.2019.01.047 10.2147/IJN.S281976 10.1080/21691401.2020.1862134 10.3390/molecules26237368 10.1016/j.chmed.2021.06.004 10.1016/j.jmgm.2015.01.002 10.1016/j.febslet.2009.09.041 10.1248/bpb.b18-00756 10.2174/1567201816666190313155117 10.1039/C8NR02700E 10.1039/C7BM00052A 10.1016/j.isci.2019.10.032 10.1039/D0FO01896A 10.1016/j.apsb.2020.07.026 10.1038/s41598-018-30690-5 10.1016/j.apsb.2021.08.012 10.1039/C9NR03872H 10.3390/ijms23010191 10.3390/molecules25030446 10.1016/j.biomaterials.2020.120557 10.1080/21691401.2018.1492419 10.3390/ijms22094599 10.1016/j.chom.2018.10.001 10.1166/jbn.2019.2675 10.1016/j.bioactmat.2021.06.035 10.1021/acs.est.8b01481 10.3402/jev.v4.28713 10.1021/acs.nanolett.9b05008 10.1039/D0FO02179B 10.1021/acs.bioconjchem.8b00657 10.1088/1748-605X/abe396 10.1039/C7TB02562A 10.1016/j.jtcme.2016.08.007 10.1002/jssc.201500100 10.1021/acsami.0c12641 10.1016/j.jcis.2021.03.101 10.1016/j.bioactmat.2021.04.023 10.3390/biomedicines9050480 10.3390/ph15060708 10.1016/j.ejmech.2018.06.053 10.1016/j.ijpharm.2019.118663 10.3390/ma13143224 10.1016/j.isci.2021.102511 10.1016/j.ijpharm.2021.120546 10.3390/molecules22091456 10.1016/j.jep.2013.12.029 10.1021/acsami.9b18443 10.1166/jbn.2018.2653 10.1002/adfm.201907857 10.1039/c3ra43306d 10.1016/j.jplph.2018.07.006 10.1016/j.biopha.2020.109826 10.3390/molecules22081247 10.1016/j.foodchem.2018.09.059 10.3390/molecules200916970 10.1038/s41573-020-00114-z 10.1016/j.bbrc.2014.01.148 |
ContentType | Journal Article |
Copyright | 2023 Copyright © 2023. Production and hosting by Elsevier B.V. 2023 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2023 |
Copyright_xml | – notice: 2023 – notice: Copyright © 2023. Production and hosting by Elsevier B.V. – notice: 2023 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2023 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.jare.2022.09.013 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2090-1224 |
EndPage | 176 |
ExternalDocumentID | oai_doaj_org_article_3bc2de41d2de47b886362dc5bb2bcf2b PMC10403678 36208834 10_1016_j_jare_2022_09_013 S2090123222002156 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --K 0R~ 0SF 1B1 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABFRF ABMAC ACGFS ADBBV ADEZE AEFWE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV E3Z EBS EJD FDB GROUPED_DOAJ GX1 HH5 HYE HZ~ IPNFZ IXB J1W KQ8 M41 NCXOZ O-L O9- OK1 OZT RIG ROL RPM SES SSZ UNMZH XH2 AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c522t-7bbcf07756a24a50524067598cda977df1859f59c28e5fe97e6a8178a36ff6793 |
IEDL.DBID | DOA |
ISSN | 2090-1232 2090-1224 |
IngestDate | Wed Aug 27 01:19:53 EDT 2025 Thu Aug 21 18:42:01 EDT 2025 Fri Jul 11 16:19:26 EDT 2025 Thu Apr 03 07:04:17 EDT 2025 Tue Jul 01 03:01:32 EDT 2025 Thu Apr 24 22:51:20 EDT 2025 Fri Feb 23 02:35:15 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Charcoal nanocomponent Natural plants Extracellular vesicle Carrier-free nanoplatform Nanoaggregates |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2023. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c522t-7bbcf07756a24a50524067598cda977df1859f59c28e5fe97e6a8178a36ff6793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://doaj.org/article/3bc2de41d2de47b886362dc5bb2bcf2b |
PMID | 36208834 |
PQID | 2723160648 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3bc2de41d2de47b886362dc5bb2bcf2b pubmedcentral_primary_oai_pubmedcentral_nih_gov_10403678 proquest_miscellaneous_2723160648 pubmed_primary_36208834 crossref_primary_10_1016_j_jare_2022_09_013 crossref_citationtrail_10_1016_j_jare_2022_09_013 elsevier_sciencedirect_doi_10_1016_j_jare_2022_09_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Egypt |
PublicationPlace_xml | – name: Egypt |
PublicationTitle | Journal of advanced research |
PublicationTitleAlternate | J Adv Res |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Tang, Liu, Ma (b0010) 2008; 372 Zhang, Wang, Han, Collins, Merlin (b0610) 2017; 12 Ghanbari-Movahed, Kaceli, Mondal, Farzaei, Bishayee (b0220) 2021; 9 Gao, Bao, Cao, Shan, Cheng, Jiang (b0785) 2019; 24 Chen, Yu, Wu, Pan, Wang, Liu (b0830) 2015; 20 Kong, Zhao, Zhu, Xiong, Luo, Cheng (b0905) 2020; 49 Shang, Yang, Yang, Li, Kong, Zhang (b0520) 2021; 425 Cui, Gao, He, Jiang (b0540) 2020; 257 Patra, Das, Fraceto, Campos, Rodriguez-Torres, Acosta-Torres (b0045) 2018; 16 Gao, Dong, Guo, Wang, Feng, Yan (b0930) 2022; 27 Ruwizhi, Aderibigbe (b0115) 2020; 21 Lin, Chang, Chu, Lin, Chang, Wang (b0925) 2019; 15 Han, Huang, Tian, Li, Liu, Li (b0130) 2021; 18 Zhang, Yang, Ren, Chen, Wu, Zheng (b0995) 2021; 13 Wu, Lu, Hu, Gao, Ma, Ju (b0410) 2013; 3 Liu, Wen, Peng, Liu, Tong (b0940) 2015; 35 Biswas, Dwivedi (b0270) 2019; 256 Lee, Ko, Kim, Sohn, Min, Kim (b0740) 2019; 9 Wang, Zhang, Zhang, Kong, Wang, Cheng (b0865) 2019; 24 Dijkgraaf, Moniek, Bart, Vogelpoel, Renske, Veena (b0190) 2013; 73 Hordyjewska, Ostapiuk, Horecka, Kurzepa (b0310) 2019; 18 Mao, Xu, Cao, Gan, Corke, Beta (b0570) 2019; 8 Wang, Zhao, Qiao, Cheng, Han, Yang (b0295) 2020; 12 Jiang, Han, Guo, Zheng, Fan, Shen (b0440) 2017; 5 Totary-Jain, Sionov, Gallily (b0195) 2016; 176 Yang, Liu, Luo, Xu, Chen (b0635) 2020; 18 Huang, Wang, Li, Tian, Guo, Xu (b0120) 2020; 12 Cheng, Zhang, Sun, Lu, Xiong, Luo (b0795) 2019; 14 Wang, Yang, Li, Yang, Du, Lu (b0135) 2020; 10 Zhu, Chen (b0175) 2019; 24 Zhuang, Deng, Mu, Zhang, Yan, Miller (b0595) 2015; 4 Abraham, Wiemann, Ambreen, Zhou, Engelhardt, Brüßler (b0730) 2022; 14 Yan, Zhu, Huang, Yang, Shen, Pan (b0335) 2022; 38 Malík, Velechovský, Tlustos (b0275) 2021; 151 Liu, Wang, Yan, Zhang, Zhang, Cheng (b0800) 2018; 13 Wang, Li, Xiang, Zhang, Fang, Wu (b0980) 2017; 22 Iitsuka, Koizumi, Inujima, Suzaki, Mizuno, Takeshita (b1005) 2018; 16 Mu, Zhuang, Wang, Jiang, Deng, Wang (b0685) 2014; 58 Chen, Yu, Wu, Pan, Wang, Liu (b0825) 2015; 38 Khwaza, Oyedeji, Aderibigbe (b0415) 2020; 21 Hou, Ma, Shen, Chi, Chao, Pei (b0245) 2020; 15 Rome (b0545) 2019; 10 Guo, Shao, Wang, Zhao, Wang (b0355) 2021; 12 Li, Lin, Wu, Zhao, Zou, Zhou (b0430) 2018; 29 Sundaram, Miller, Kumar, Teng, Sayed, Mu (b0600) 2019; 21 Chen, Li, Liang, Zu, Chen, Canup (b0725) 2022; 12 Lü, Su, Sun, Guo, Liu, Ping (b0950) 2018; 8 Newman, Cragg (b0020) 2020; 83 Qiao, Han, Gao, Shao, Wang, Sun (b0050) 2020; 8 Xiao, Guo, Liu, Liu, Wang, Li (b0255) 2020; 232 Memariani, Memariani (b0490) 2020; 104 Teng, Ren, Sayed, Hu, Lei, Kumar (b0580) 2018; 24 Meng, Ching, Ma (b1025) 2002; 79 Rauf, Abu-Izneid, Khalil, Imran, Shah, Emran (b0095) 2021; 26 Li, Cui, Li, Qi, Chen, Gao (b0110) 2020; 11 Hou, Liu, Xu (b0340) 2020; 189 Lin, Du, Wang, Gao, Zhou, Ke (b0960) 2017; 2017 Lu, Zhang, Cheng, Zhang, Luo, Qu (b0885) 2019; 6 Dai, Ding, Yin, Wan, Shi, Qiao (b0375) 2015; 57 Li, Liang, Du, Wang, Mei, Li (b1035) 2019; 62 Mei, Cai, Huang, Gao, Cao, He (b0080) 2022; 8 Zhang, Xiao, Wang, Han, Zhang, Viennois (b0605) 2016; 24 Munekata, Pateiro, Zhang, Dominguez, Xing, Fierro (b0250) 2021; 79 Bag, Majumdar (b0405) 2012; 2 Yang, Ma, Chen, Liu, Liu, Xie (b0315) 2019; 12 Huang, Zhao, Fang, Xu, Lan, Zhang (b0060) 2021; 268 Jiang, Fu, Zhang, Yu, Lu, Du (b0065) 2021; 9 Wang, Ren, Mu, Egilmez, Zhuang, Deng (b0660) 2015; 75 130-139. Zhang, Jiang, Wu, Zou, Le, Lin (b0455) 2021; 11 Cheng, Ji (b0170) 2020; 318 Dai, Shi, Yin, Ding, Qiao (b0370) 2013; 396 Tian, Wang, Li, Huang, Guo, Yang (b0145) 2020; 10 Bag, Majumdar (b0280) 2017; 17 Wang, Zhuang, Deng, Jiang, Mu, Wang (b0650) 2014; 22 Stanly, Alfieri, Ambrosone, Leone, Fiume, Pocsfalvi (b0655) 2020; 9 Dad, Gu, Zhu, Huang, Peng (b0555) 2021; 29 Xiao, Feng, Wang, Long, Luo, Wang (b0645) 2018; 6 Kaczmarek (b0475) 2020; 13 Zhao, Chen, Pan, Li, Xue, Ma (b0265) 2015; 7 Gudoityte, Arandarcikaite, Mazeikiene, Bendokas, Liobikas (b0290) 2021; 22 Chen, Zhao, Pan, Xue, Zhang, Kumar (b0260) 2015; 12 Patel, Mistry, Shinde, Syed, Singh, Shin (b0515) 2018; 155 Cao, Yan, Han, Weng, Wei, Sun (b0695) 2019; 7 Ma, Shi, Pei, Pei (b0240) 2022; 609 Tucker, Burley, Petkova, Hosking, Penfold, Thomas (b0390) 2021; 598 Deng, Rong, Teng, Mu, Zhuang, Tseng (b0715) 2017; 25 Zhao, Yu, Li, Gui, Li (b0745) 2018; 66 Chen, Pan, Hu, Peng, Hao, Pan (b0205) 2021; 16 Wang, Zhang, Ma, Wang, Shao, Huang (b0900) 2020; 8 Li, Wang, Liu, Han, Li, Lei (b0985) 2021; 56 Dai, Shi, Wang, Qiao (b0360) 2012; 384 Han, Wei, Lv, Weng, Huang, Wei (b0700) 2022; 30 Liao, Zhao, Wang, Liu, Zhang, Sun (b0530) 2019; 14 2022 2021 Mishra, Patil, Thakur, Kesharwani (b0765) 2018; 23 Selyutina, Polyakov (b0380) 2019; 559 Ren, Li, Ma, Sun, Pu, Dong (b0025) 2021; 137 Zheng, Fan, Wu, Yao, Yan, Liu (b0500) 2019; 10 Lin, Lin, Gao, Zhou, Chen, Ke (b1030) 2020; 159 2019 Henamayee, Banik, Sailo, Shabnam, Harsha, Srilakshmi (b0140) 2020; 25 Perut, Roncuzzi, Avnet, Massa, Zini, Sabbadini (b0720) 2021; 11 Khwaza, Oyedeji, Aderibigbe (b0285) 2018; 23 Dai, Shi, Ding, Yin, Qiao (b0365) 2014; 11 Chen, Zhou, Yu (b0590) 2019; 16 102511. Cheng, Xue, Su, Lu, Wang, Meng (b0840) 2019; 169 Sun, Russell, Scarlett, McCluskey (b0210) 2020; 11 Gao G, He C, Wang H, Guo J, Ke L, Zhou J, et al. Polysaccharide Nanoparticles from Wang, Wang, Ma, Zhou, Lu (b0565) 2022; 15 Teng, Mu, Hu, Samykutty, Zhuang, Deng (b0670) 2016; 7 Zhang, Zhao, Cheng, Liu, Wang, Yan (b0810) 2018; 46 Karamanidou, Tsouknidas (b0560) 2022; 23 Ju, Mu, Dokland, Zhuang, Wang, Jiang (b0690) 2013; 21 Ping, Li, Lü, Sun, Zhang, Wu (b0945) 2020; 124 Qiao, Fang, Zhang, Gu, Lu, Sun (b0485) 2018; 10 Zhao, Zhang, Gao, Lin, Hu (b0385) 2020; 3 Li, Xue, Yang, Zhou, Wang, Meng (b0835) 2019; 42 Li, Wang, Guo, Huang, Tian, Wu (b0105) 2019; 13 Wang, Zhao, Zhi, Yang (b0300) 2020; 12 Zhao, Zhang, Kong, Zhang, Cheng, Luo (b0815) 2020; 25 Zhuang, Teng, Samykutty, Mu, Deng, Zhang (b0675) 2016; 24 Luo, Kong, Zhang, Cheng, Sun, Xiong (b0870) 2019; 15 Raimondo, Naselli, Fontana, Monteleone, Dico, Saieva (b0630) 2015; 6 Ren, Zhang, Wang (b0030) 2020; 155 Zhao, Wang, Ren, Hu, Wang (b0895) 2021; 206 Han, Xian, Zhang, Liu, Liang (b0150) 2019; 10 Ratan, Haidere, Hong, Park, Lee, Lee (b0350) 2021; 45 O’Callaghan, McCarthy, O’Brien (b0325) 2014; 446 Zhao, Lu, Zhang, Zhang, Zhao, Luo (b0915) 2021; 16 Regente, Corti-Monzón, Maldonado, Pinedo, Jorrín, Canal (b0750) 2009; 583 Zhao, Zheng, Fan, Shen, Jiang, Guo (b0435) 2018; 70 Gao, Lan, Bao, Yao, Cao, Shan (b0790) 2021; 270 Hussain (b0395) 2019; 16 You, Kang, Rhee (b0735) 2021; 6 Li, Xu, Zhao, Liu, Feng, Li (b0760) 2022; 13 Wu, Zhang, Cheng, Zhang, Luo, Liu (b0845) 2020; 15 Ou, Xu, Guan, Zhang, Zhang, Kang (b0460) 2020; 30 Aggarwal, Tuli, Tania, Srivastava, Ritzer, Pandey (b0480) 2022; 80 You, Feng, Zhang, Chen, Liu, Sun (b0400) 2021; 601 Pocsfalvi, Turiákb, Ambrosone, Gaudio, Puska, Fiume (b0620) 2018; 229 Zhang, Collins, Merlin (b0615) 2016; 11 30. Fu, Li, Zang, Zhou, Shi, Zhai (b0055) 2022; 12 Zhou, Zhang, Gao, Wang, He, Chen (b1000) 2019; 67 Imenshahidi, Hosseinzadeh (b0100) 2016; 30 Peperidou, Pontiki, Hadjipavlou-Litina, Voulgari, Avgoustakis (b0125) 2017; 22 Bag, Paul (b0305) 2012; 1 Wang, Kong, Liu, Luo, Xiong, Zhu (b0775) 2018; 14 Zhang, Cheng, Zhang, Kong, Wang, Luo (b0910) 2020; 15 Cheng, Zhao, Yao, Li, Qi, Wang (b0330) 2019; 11 Zhou, Ding, Lin, Wang (b0505) 2018; 644 Deng, Gigliobianco, Censi, Martino (b0040) 2020; 10 Wang, Zhang, Kong, Cheng, Zhang, Sun (b0850) 2020; 48 Li, Kaslan, Lee, Yao, Gao (b0535) 2017; 7 Sun, Lu, Cheng, Zhang, Zhang, Xiong (b0805) 2018; 46 Qiao, Sun, Su, Xie, Chen, Zong (b0495) 2014; 35 Chen, Wang, Li, Li, Li, Bai (b0970) 2021; 195 Wang, Qiao, Zhao, Yang (b0320) 2020; 182 Zhou, Liu, Lin, Gao, Wang, Guo (b1010) 2017; 7 Wang, Wu, Li, Shen, Liu, Wu (b0465) 2019; 29 Wang, Guo, Huang, Zhen, Li, Li (b0155) 2021; 13 Qin, Peng, Rong, Li, Wang, Cheng (b0225) 2015; 2 Zhao, Zhang, Kong, Zhang, Cheng, Wu (b0860) 2020; 15 Bribi (b0090) 2018; 1 Zhang, Viennois, Prasad, Zhang, Wang, Zhang (b0575) 2016; 101 Baldini, Torreggiani, Roncuzzi, Perut, Zini, Avnet (b0625) 2018; 19 Liu, Lu, Chen, Muthuraj, Li, Pattabiraman (b0710) 2020; 12 Zhang, Zhao, Yan, Wang, Jia, Zhu (b0975) 2016; 21 Yang, Zhao, Fang, Jiang, Yuan, Shao (b0075) 2019; 570 Yan, Zhao, Luo, Xiong, Liu, Cheng (b0780) 2017; 15 Li, Wei, Xu (b0005) 2022; 1 Liu, Zheng, Jiang, Zhao, Wang, Pan (b0755) 2018; 52 Wang, Zhuang, Mu, Deng, Jiang, Zhang (b0665) 2013; 4 Weng, Cai, Zhang, Wang (b1020) 2019; 274 Zhao, Hong, Liu, Jiang, Peng, He (b0965) 2022; 27 Xiong, Wang, Wang, Yao (b0470) 2020; 20 Adejoke HT, Louis H, Amusan OO, Apebende. A review on classes, extraction, purification and pharmaceutical importance of plants alkaloid. Mlala, Oyedeji, Gondwe, Oyedeji (b0420) 2019; 24 Song, Lin, Yang, Xie, Hua, Li (b0165) 2019; 294 Zhang, Long, Xiong, Wang, Peng, Yuan (b0200) 2019; 11 Fan, Zhang, Xu, Shen, Guo, Zhao (b0425) 2018; 15 Pérez-Bermúdez, Blesa, Soriano, Marcilla (b0680) 2017; 98 Kim, Li, Zhang, Wang (b0550) 2022; 17 Tong, Hu, Zhou, Deng, Zhang, Tang (b0920) 2020; 16 Yin, Yan, Yu, Wang, Liu, Wang (b0585) 2022; 70 Ni, Hu, Cai (b0525) 2019; 59 Ezrahi, Aserin, Garti (b0180) 2019; 263 Lei C, Teng Y, He L, Sayed M, Mu J, Xu F, et al. Lemon exosome-like nanoparticles enhance stress survival of gut bacteria by RNase P-mediated specific tRNA decay. Zhao, Luan, Zheng, Tian, Zhao, Zhang (b0935) 2020; 12 Zhou, Piao, Hao, Wang, Zhou, Shen (b0230) 2019; 11 Wang, Zhang, Kong, Zhang, Cheng, Wang (b0875) 2019; 14 Atanasov, Zotchev, Dirsch (b0015) 2021; 20 Pei, Hu, Zhou, Liu, Xie (b0185) 2017; 5 Guo, Jiang, Shen, Zheng, Fan, Zhao (b0450) 2017; 9 Xiao, Liu, Guo, Zhou, Jin, Liu (b0345) 2018; 10 Liu, Zhao, Shen, Chang, Zhang, Yan (b0510) 2020; 598 Hu, Luo, Zhang, Wu, Zhang, Kong (b0855) 2021; 16 Zhou, Gao, Chu, Wang, Rao, Ke (b0955) 2014; 151 Bag, Das, Hasan, Barai (b0445) 2017; 7 Karaosmanoglu, Zhou, Shi, Zhang, Williams, Chen (b0070) 2021; 329 Sun, Lu, Cheng, Zhang, Zhu, Zhang (b0880) 2018; 14 Shen, Zou, Chen, Li, Rao, Yang (b0160) 2020; 328 Chen, Xie, Huang, Wan, Wang, Shi (b0215) 2021; 11 Liu, Zhang, Cheng, Zhang, Kong, Zhao (b0890) 2021; 26 Wu, Yang, Yuan, Xu, Chen, Ren (b0990) 2020; 11 Zhang, Cheng, Hu, Luo, Zhang, Lu (b0820) 2021; 19 Fort. Root Decoction: Diversity, Cytotoxicity, and Antiviral Activity. Sun, Zhang, Pang, Hyun Yang (10.1016/j.jare.2022.09.013_b0075) 2019; 570 Dai (10.1016/j.jare.2022.09.013_b0375) 2015; 57 Stanly (10.1016/j.jare.2022.09.013_b0655) 2020; 9 Zhou (10.1016/j.jare.2022.09.013_b0955) 2014; 151 Qiao (10.1016/j.jare.2022.09.013_b0485) 2018; 10 Peperidou (10.1016/j.jare.2022.09.013_b0125) 2017; 22 Sun (10.1016/j.jare.2022.09.013_b0210) 2020; 11 Guo (10.1016/j.jare.2022.09.013_b0355) 2021; 12 Zhang (10.1016/j.jare.2022.09.013_b0610) 2017; 12 Sun (10.1016/j.jare.2022.09.013_b0035) 2014; 53 Dad (10.1016/j.jare.2022.09.013_b0555) 2021; 29 Zhang (10.1016/j.jare.2022.09.013_b0975) 2016; 21 Newman (10.1016/j.jare.2022.09.013_b0020) 2020; 83 Zhao (10.1016/j.jare.2022.09.013_b0265) 2015; 7 Kaczmarek (10.1016/j.jare.2022.09.013_b0475) 2020; 13 Aggarwal (10.1016/j.jare.2022.09.013_b0480) 2022; 80 Chen (10.1016/j.jare.2022.09.013_b0970) 2021; 195 Li (10.1016/j.jare.2022.09.013_b0005) 2022; 1 Wang (10.1016/j.jare.2022.09.013_b0300) 2020; 12 Hou (10.1016/j.jare.2022.09.013_b0245) 2020; 15 Cheng (10.1016/j.jare.2022.09.013_b0795) 2019; 14 Zhu (10.1016/j.jare.2022.09.013_b0175) 2019; 24 Xiao (10.1016/j.jare.2022.09.013_b0345) 2018; 10 Deng (10.1016/j.jare.2022.09.013_b0040) 2020; 10 Li (10.1016/j.jare.2022.09.013_b0110) 2020; 11 Wu (10.1016/j.jare.2022.09.013_b0845) 2020; 15 Munekata (10.1016/j.jare.2022.09.013_b0250) 2021; 79 Henamayee (10.1016/j.jare.2022.09.013_b0140) 2020; 25 Atanasov (10.1016/j.jare.2022.09.013_b0015) 2021; 20 Cao (10.1016/j.jare.2022.09.013_b0695) 2019; 7 Weng (10.1016/j.jare.2022.09.013_b1020) 2019; 274 Lin (10.1016/j.jare.2022.09.013_b0925) 2019; 15 Bag (10.1016/j.jare.2022.09.013_b0305) 2012; 1 Zhang (10.1016/j.jare.2022.09.013_b0810) 2018; 46 Bag (10.1016/j.jare.2022.09.013_b0405) 2012; 2 Zhang (10.1016/j.jare.2022.09.013_b0705) 2021; 16 Pei (10.1016/j.jare.2022.09.013_b0185) 2017; 5 Chen (10.1016/j.jare.2022.09.013_b0215) 2021; 11 Liu (10.1016/j.jare.2022.09.013_b0510) 2020; 598 Memariani (10.1016/j.jare.2022.09.013_b0490) 2020; 104 Yang (10.1016/j.jare.2022.09.013_b0635) 2020; 18 Zhang (10.1016/j.jare.2022.09.013_b0820) 2021; 19 Chen (10.1016/j.jare.2022.09.013_b0260) 2015; 12 Karamanidou (10.1016/j.jare.2022.09.013_b0560) 2022; 23 Zhou (10.1016/j.jare.2022.09.013_b1000) 2019; 67 Jiang (10.1016/j.jare.2022.09.013_b0065) 2021; 9 Gao (10.1016/j.jare.2022.09.013_b0930) 2022; 27 Wang (10.1016/j.jare.2022.09.013_b0295) 2020; 12 Lin (10.1016/j.jare.2022.09.013_b0960) 2017; 2017 Wang (10.1016/j.jare.2022.09.013_b0565) 2022; 15 Dai (10.1016/j.jare.2022.09.013_b0365) 2014; 11 Qiao (10.1016/j.jare.2022.09.013_b0495) 2014; 35 Regente (10.1016/j.jare.2022.09.013_b0750) 2009; 583 Chen (10.1016/j.jare.2022.09.013_b0205) 2021; 16 Li (10.1016/j.jare.2022.09.013_b0105) 2019; 13 Qiao (10.1016/j.jare.2022.09.013_b0050) 2020; 8 Mei (10.1016/j.jare.2022.09.013_b0080) 2022; 8 Yan (10.1016/j.jare.2022.09.013_b0780) 2017; 15 Wang (10.1016/j.jare.2022.09.013_b0900) 2020; 8 Bribi (10.1016/j.jare.2022.09.013_b0090) 2018; 1 Fan (10.1016/j.jare.2022.09.013_b0425) 2018; 15 Wang (10.1016/j.jare.2022.09.013_b0775) 2018; 14 Luo (10.1016/j.jare.2022.09.013_b0870) 2019; 15 Rauf (10.1016/j.jare.2022.09.013_b0095) 2021; 26 Tucker (10.1016/j.jare.2022.09.013_b0390) 2021; 598 Cheng (10.1016/j.jare.2022.09.013_b0840) 2019; 169 Hussain (10.1016/j.jare.2022.09.013_b0395) 2019; 16 Yin (10.1016/j.jare.2022.09.013_b0585) 2022; 70 Yan (10.1016/j.jare.2022.09.013_b0335) 2022; 38 Perut (10.1016/j.jare.2022.09.013_b0720) 2021; 11 Zhao (10.1016/j.jare.2022.09.013_b0815) 2020; 25 Dijkgraaf (10.1016/j.jare.2022.09.013_b0190) 2013; 73 Sun (10.1016/j.jare.2022.09.013_b0805) 2018; 46 Li (10.1016/j.jare.2022.09.013_b0535) 2017; 7 You (10.1016/j.jare.2022.09.013_b0735) 2021; 6 Liu (10.1016/j.jare.2022.09.013_b0710) 2020; 12 Teng (10.1016/j.jare.2022.09.013_b0670) 2016; 7 Mishra (10.1016/j.jare.2022.09.013_b0765) 2018; 23 Ma (10.1016/j.jare.2022.09.013_b0240) 2022; 609 Ezrahi (10.1016/j.jare.2022.09.013_b0180) 2019; 263 Ping (10.1016/j.jare.2022.09.013_b0945) 2020; 124 Bag (10.1016/j.jare.2022.09.013_b0445) 2017; 7 Wang (10.1016/j.jare.2022.09.013_b0650) 2014; 22 Mao (10.1016/j.jare.2022.09.013_b0570) 2019; 8 Wang (10.1016/j.jare.2022.09.013_b0320) 2020; 182 Sun (10.1016/j.jare.2022.09.013_b0880) 2018; 14 Zhang (10.1016/j.jare.2022.09.013_b0910) 2020; 15 Zhou (10.1016/j.jare.2022.09.013_b0505) 2018; 644 Huang (10.1016/j.jare.2022.09.013_b0060) 2021; 268 Chen (10.1016/j.jare.2022.09.013_b0590) 2019; 16 Zhang (10.1016/j.jare.2022.09.013_b0615) 2016; 11 Chen (10.1016/j.jare.2022.09.013_b0825) 2015; 38 Meng (10.1016/j.jare.2022.09.013_b1025) 2002; 79 Song (10.1016/j.jare.2022.09.013_b0165) 2019; 294 Liang (10.1016/j.jare.2022.09.013_b0235) 2017; 29 Jiang (10.1016/j.jare.2022.09.013_b0440) 2017; 5 Yang (10.1016/j.jare.2022.09.013_b0315) 2019; 12 Shang (10.1016/j.jare.2022.09.013_b0520) 2021; 425 Malík (10.1016/j.jare.2022.09.013_b0275) 2021; 151 Lu (10.1016/j.jare.2022.09.013_b0885) 2019; 6 Li (10.1016/j.jare.2022.09.013_b0760) 2022; 13 Ruwizhi (10.1016/j.jare.2022.09.013_b0115) 2020; 21 Xiong (10.1016/j.jare.2022.09.013_b0470) 2020; 20 Abraham (10.1016/j.jare.2022.09.013_b0730) 2022; 14 Hordyjewska (10.1016/j.jare.2022.09.013_b0310) 2019; 18 Ren (10.1016/j.jare.2022.09.013_b0025) 2021; 137 Wang (10.1016/j.jare.2022.09.013_b0155) 2021; 13 Wang (10.1016/j.jare.2022.09.013_b0875) 2019; 14 Zhang (10.1016/j.jare.2022.09.013_b0995) 2021; 13 Lee (10.1016/j.jare.2022.09.013_b0740) 2019; 9 Hu (10.1016/j.jare.2022.09.013_b0855) 2021; 16 Wang (10.1016/j.jare.2022.09.013_b0660) 2015; 75 Ratan (10.1016/j.jare.2022.09.013_b0350) 2021; 45 Cui (10.1016/j.jare.2022.09.013_b0540) 2020; 257 Li (10.1016/j.jare.2022.09.013_b1035) 2019; 62 Lin (10.1016/j.jare.2022.09.013_b1030) 2020; 159 Pocsfalvi (10.1016/j.jare.2022.09.013_b0620) 2018; 229 Liu (10.1016/j.jare.2022.09.013_b0755) 2018; 52 Zhou (10.1016/j.jare.2022.09.013_b0230) 2019; 11 Han (10.1016/j.jare.2022.09.013_b0130) 2021; 18 Zhao (10.1016/j.jare.2022.09.013_b0895) 2021; 206 Baldini (10.1016/j.jare.2022.09.013_b0625) 2018; 19 Huang (10.1016/j.jare.2022.09.013_b0120) 2020; 12 Zhuang (10.1016/j.jare.2022.09.013_b0675) 2016; 24 Zhao (10.1016/j.jare.2022.09.013_b0965) 2022; 27 Zhao (10.1016/j.jare.2022.09.013_b0385) 2020; 3 Zhao (10.1016/j.jare.2022.09.013_b0915) 2021; 16 Mu (10.1016/j.jare.2022.09.013_b0685) 2014; 58 Tian (10.1016/j.jare.2022.09.013_b0145) 2020; 10 Khwaza (10.1016/j.jare.2022.09.013_b0415) 2020; 21 Gao (10.1016/j.jare.2022.09.013_b0790) 2021; 270 Zhou (10.1016/j.jare.2022.09.013_b1010) 2017; 7 Chen (10.1016/j.jare.2022.09.013_b0725) 2022; 12 Zhao (10.1016/j.jare.2022.09.013_b0935) 2020; 12 Lü (10.1016/j.jare.2022.09.013_b0950) 2018; 8 Shen (10.1016/j.jare.2022.09.013_b0160) 2020; 328 Iitsuka (10.1016/j.jare.2022.09.013_b1005) 2018; 16 Liu (10.1016/j.jare.2022.09.013_b0800) 2018; 13 Patra (10.1016/j.jare.2022.09.013_b0045) 2018; 16 10.1016/j.jare.2022.09.013_b1015 Wu (10.1016/j.jare.2022.09.013_b0990) 2020; 11 Li (10.1016/j.jare.2022.09.013_b0985) 2021; 56 Imenshahidi (10.1016/j.jare.2022.09.013_b0100) 2016; 30 Karaosmanoglu (10.1016/j.jare.2022.09.013_b0070) 2021; 329 Zhang (10.1016/j.jare.2022.09.013_b0200) 2019; 11 Gao (10.1016/j.jare.2022.09.013_b0785) 2019; 24 Wu (10.1016/j.jare.2022.09.013_b0410) 2013; 3 Han (10.1016/j.jare.2022.09.013_b0150) 2019; 10 Teng (10.1016/j.jare.2022.09.013_b0580) 2018; 24 Chen (10.1016/j.jare.2022.09.013_b0830) 2015; 20 Selyutina (10.1016/j.jare.2022.09.013_b0380) 2019; 559 Sundaram (10.1016/j.jare.2022.09.013_b0600) 2019; 21 Tang (10.1016/j.jare.2022.09.013_b0010) 2008; 372 Liu (10.1016/j.jare.2022.09.013_b0890) 2021; 26 Xiao (10.1016/j.jare.2022.09.013_b0645) 2018; 6 Rome (10.1016/j.jare.2022.09.013_b0545) 2019; 10 Wang (10.1016/j.jare.2022.09.013_b0850) 2020; 48 Dai (10.1016/j.jare.2022.09.013_b0360) 2012; 384 Wang (10.1016/j.jare.2022.09.013_b0665) 2013; 4 Zhao (10.1016/j.jare.2022.09.013_b0860) 2020; 15 Mlala (10.1016/j.jare.2022.09.013_b0420) 2019; 24 Zhang (10.1016/j.jare.2022.09.013_b0575) 2016; 101 Ghanbari-Movahed (10.1016/j.jare.2022.09.013_b0220) 2021; 9 Bag (10.1016/j.jare.2022.09.013_b0280) 2017; 17 Zheng (10.1016/j.jare.2022.09.013_b0500) 2019; 10 Patel (10.1016/j.jare.2022.09.013_b0515) 2018; 155 Hou (10.1016/j.jare.2022.09.013_b0340) 2020; 189 Kong (10.1016/j.jare.2022.09.013_b0905) 2020; 49 Khwaza (10.1016/j.jare.2022.09.013_b0285) 2018; 23 Luo (10.1016/j.jare.2022.09.013_b0770) 2018; 8 Totary-Jain (10.1016/j.jare.2022.09.013_b0195) 2016; 176 Raimondo (10.1016/j.jare.2022.09.013_b0630) 2015; 6 Ni (10.1016/j.jare.2022.09.013_b0525) 2019; 59 Kim (10.1016/j.jare.2022.09.013_b0550) 2022; 17 Liu (10.1016/j.jare.2022.09.013_b0940) 2015; 35 Wang (10.1016/j.jare.2022.09.013_b0465) 2019; 29 Dai (10.1016/j.jare.2022.09.013_b0370) 2013; 396 Wang (10.1016/j.jare.2022.09.013_b0865) 2019; 24 Guo (10.1016/j.jare.2022.09.013_b0450) 2017; 9 Fu (10.1016/j.jare.2022.09.013_b0055) 2022; 12 10.1016/j.jare.2022.09.013_b0085 Zhao (10.1016/j.jare.2022.09.013_b0435) 2018; 70 Xiao (10.1016/j.jare.2022.09.013_b0255) 2020; 232 Tong (10.1016/j.jare.2022.09.013_b0920) 2020; 16 Zhang (10.1016/j.jare.2022.09.013_b0455) 2021; 11 Pérez-Bermúdez (10.1016/j.jare.2022.09.013_b0680) 2017; 98 Zhao (10.1016/j.jare.2022.09.013_b0745) 2018; 66 10.1016/j.jare.2022.09.013_b0640 Liao (10.1016/j.jare.2022.09.013_b0530) 2019; 14 Ou (10.1016/j.jare.2022.09.013_b0460) 2020; 30 O’Callaghan (10.1016/j.jare.2022.09.013_b0325) 2014; 446 Wang (10.1016/j.jare.2022.09.013_b0135) 2020; 10 Zhang (10.1016/j.jare.2022.09.013_b0605) 2016; 24 Qin (10.1016/j.jare.2022.09.013_b0225) 2015; 2 Biswas (10.1016/j.jare.2022.09.013_b0270) 2019; 256 Deng (10.1016/j.jare.2022.09.013_b0715) 2017; 25 Ju (10.1016/j.jare.2022.09.013_b0690) 2013; 21 Li (10.1016/j.jare.2022.09.013_b0430) 2018; 29 Ren (10.1016/j.jare.2022.09.013_b0030) 2020; 155 Cheng (10.1016/j.jare.2022.09.013_b0330) 2019; 11 Gudoityte (10.1016/j.jare.2022.09.013_b0290) 2021; 22 Cheng (10.1016/j.jare.2022.09.013_b0170) 2020; 318 Han (10.1016/j.jare.2022.09.013_b0700) 2022; 30 Zhuang (10.1016/j.jare.2022.09.013_b0595) 2015; 4 Wang (10.1016/j.jare.2022.09.013_b0980) 2017; 22 Li (10.1016/j.jare.2022.09.013_b0835) 2019; 42 You (10.1016/j.jare.2022.09.013_b0400) 2021; 601 |
References_xml | – volume: 24 start-page: 96 year: 2016 end-page: 105 ident: b0675 article-title: Grapefruit-derived Nanovectors Delivering Therapeutic miR17 Through an Intranasal Route Inhibit Brain Tumor Progression publication-title: Mol Ther – volume: 16 year: 2021 ident: b0205 article-title: Recent progress in nanoformulations of cabazitaxel publication-title: Biomed Mater – volume: 24 start-page: 1783 year: 2016 end-page: 1796 ident: b0605 article-title: Edible Ginger-derived Nano-lipids Loaded with Doxorubicin as a Novel Drug-delivery Approach for Colon Cancer Therapy publication-title: Mol Ther – volume: 14 start-page: 2925 year: 2019 end-page: 2939 ident: b0875 article-title: Antihyperuricemic and anti-gouty arthritis activities of Aurantii fructus immaturus carbonisata-derived carbon dots publication-title: Nanomedicine – volume: 7 start-page: 25683 year: 2016 end-page: 25697 ident: b0670 article-title: Grapefruit-derived nanovectors deliver miR-18a for treatment of liver metastasis of colon cancer by induction of M1 macrophages publication-title: Oncotarget – volume: 14 start-page: 7963 year: 2019 end-page: 7973 ident: b0530 article-title: Self-Assembly Of Retinoid Nanoparticles For Melanoma Therapy publication-title: Int J Nanomed – volume: 83 start-page: 770 year: 2020 end-page: 803 ident: b0020 article-title: Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019 publication-title: J Nat Prod – volume: 24 start-page: 4152 year: 2019 ident: b0865 article-title: Novel Carbon Dots Derived from Puerariae lobatae Radix and Their Anti-Gout Effects publication-title: Molecules – volume: 328 start-page: 575 year: 2020 end-page: 586 ident: b0160 article-title: Antibacterial self-assembled nanodrugs composed of berberine derivatives and rhamnolipids against Helicobacter pylori publication-title: J Control Release – volume: 70 start-page: 4725 year: 2022 end-page: 4734 ident: b0585 article-title: Characterization of the MicroRNA Profile of Ginger Exosome-like Nanoparticles and Their Anti-Inflammatory Effects in Intestinal Caco-2 Cells publication-title: J Agric Food Chem – volume: 21 start-page: 5712 year: 2020 ident: b0115 article-title: Cinnamic Acid Derivatives and Their Biological Efficacy publication-title: Int J Mol Sci – volume: 229 start-page: 111 year: 2018 end-page: 121 ident: b0620 article-title: Protein biocargo of citrus fruit-derived vesicles reveals heterogeneous transport and extracellular vesicle populations publication-title: J Plant Physiol – volume: 11 start-page: 3035 year: 2016 end-page: 3037 ident: b0615 article-title: Do ginger-derived nanoparticles represent an attractive treatment strategy for inflammatory bowel diseases? publication-title: Nanomedicine – volume: 24 start-page: 40 year: 2019 ident: b0175 article-title: Progress in research on paclitaxel and tumor immunotherapy publication-title: Cell Mol Biol Lett – volume: 18 start-page: 929 year: 2019 end-page: 951 ident: b0310 article-title: Betulin and betulinic acid: triterpenoids derivatives with a powerful biological potential publication-title: Phytochem Rev – volume: 73 start-page: 2480 year: 2013 end-page: 2492 ident: b0190 article-title: Chemotherapy Alters Monocyte Differentiation to Favor Generation of Cancer-Supporting M2 Macrophages in the Tumor Microenvironment publication-title: Cancer Res – volume: 124 year: 2020 ident: b0945 article-title: A study of nanometre aggregates formation mechanism and antipyretic effect in Bai-Hu-Tang, an ancient Chinese herbal decoction publication-title: Biomed Pharmacother – volume: 6 start-page: 4321 year: 2021 end-page: 4332 ident: b0735 article-title: Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells publication-title: Bioact Mater – volume: 6 year: 2019 ident: b0885 article-title: Maltase and sucrase inhibitory activities and hypoglycemic effects of carbon dots derived from charred Fructus crataegi publication-title: Mater Res Express – volume: 12 start-page: 6827 year: 2020 end-page: 6839 ident: b0300 article-title: Exploration of the Natural Active Small-Molecule Drug-Loading Process and Highly Efficient Synergistic Antitumor Efficacy publication-title: ACS Appl Mater Interfaces – volume: 11 start-page: 87 year: 2021 ident: b0720 article-title: Strawberry-Derived Exosome-Like Nanoparticles Prevent Oxidative Stress in Human Mesenchymal Stromal Cells publication-title: Biomolecules – volume: 7 start-page: 178 year: 2017 end-page: 187 ident: b1010 article-title: Boiling-induced nanoparticles and their constitutive proteins from Isatis indigotica Fort. root decoction: Purification and identification publication-title: J Tradit Complement Med – volume: 67 start-page: 9354 year: 2019 end-page: 9361 ident: b1000 article-title: Boiling Licorice Produces Self-Assembled Protein Nanoparticles: A Novel Source of Bioactive Nanomaterials publication-title: J Agric Food Chem – volume: 176 start-page: 1 year: 2016 end-page: 7 ident: b0195 article-title: Indomethacin Sensitizes Resistant Transformed Cells to Macrophage Cytotoxicity publication-title: Immunol Lett – volume: 583 start-page: 3363 year: 2009 end-page: 3366 ident: b0750 article-title: Vesicular fractions of sunflower apoplastic fluids are associated with potential exosome marker proteins publication-title: FEBS Lett – volume: 2 start-page: 159 year: 2015 end-page: 166 ident: b0225 article-title: Self-defensive nano-assemblies from camptothecin-based antitumor drugs publication-title: Regen Biomater – volume: 25 start-page: 446 year: 2020 ident: b0815 article-title: Haemostatic Nanoparticles-Derived Bioactivity of from Selaginella tamariscina Carbonisata publication-title: Molecules – volume: 19 start-page: 105 year: 2021 ident: b0820 article-title: Green Phellodendri Chinensis Cortex-based carbon dots for ameliorating imiquimod-induced psoriasis-like inflammation in mice publication-title: J Nanobiotechnol – volume: 58 start-page: 1561 year: 2014 end-page: 1573 ident: b0685 article-title: Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles publication-title: Mol Nutr Food Res – volume: 56 start-page: 2119 year: 2021 end-page: 2126 ident: b0985 article-title: Based on weak bond chemistry, the interaction mechanism between glycyrrhiza protein and berberine in water decocting process of Rhizoma Coptidis and Liquorice was investigated publication-title: Acta Pharm Sin – volume: 12 start-page: 2468 year: 2019 end-page: 2476 ident: b0315 article-title: Single small molecule-assembled nanoparticles mediate efficient oral drug delivery publication-title: Nano Res – volume: 75 start-page: 2520 year: 2015 end-page: 2529 ident: b0660 article-title: Grapefruit-Derived Nanovectors Use an Activated Leukocyte Trafficking Pathway to Deliver Therapeutic Agents to Inflammatory Tumor Sites publication-title: Cancer Res – volume: 13 start-page: 391 year: 2018 end-page: 405 ident: b0800 article-title: Novel Phellodendri Cortex (Huang Bo)-derived carbon dots and their hemostatic effect publication-title: Nanomedicine – volume: 11 start-page: 164 year: 2020 end-page: 183 ident: b0210 article-title: Small molecule inhibitors in pancreatic cancer publication-title: RSC Med Chem – volume: 8 start-page: 12209 year: 2018 ident: b0950 article-title: Isolation and characterization of nanometre aggregates from a Bai-Hu-Tang decoction and their antipyretic effect publication-title: Sci Rep – volume: 29 start-page: 1703135 year: 2017 ident: b0235 article-title: Self-Assembly of an Amphiphilic Janus Camptothecin-Floxuridine Conjugate into Liposome-Like Nanocapsules for More Efficacious Combination Chemotherapy in Cancer publication-title: Adv Mater – reference: Lei C, Teng Y, He L, Sayed M, Mu J, Xu F, et al. Lemon exosome-like nanoparticles enhance stress survival of gut bacteria by RNase P-mediated specific tRNA decay. – volume: 24 start-page: 2751 year: 2019 ident: b0420 article-title: Ursolic Acid and Its Derivatives as Bioactive Agents publication-title: Molecules – volume: 49 start-page: 11 year: 2020 end-page: 19 ident: b0905 article-title: Carbon dots from Artemisiae Argyi Folium Carbonisata: strengthening the anti-frostbite ability publication-title: Artif Cell Nanomed B – volume: 10 start-page: 648 year: 2019 ident: b0150 article-title: Systematic Overview of Aristolochic Acids: Nephrotoxicity, Carcinogenicity, and Underlying Mechanisms publication-title: Front Pharmacol – volume: 57 start-page: 20 year: 2015 end-page: 26 ident: b0375 article-title: Dissipative particle dynamics study on self-assembled platycodin structures: The potential biocarriers for drug delivery publication-title: J Mol Graph Model – volume: 38 year: 2022 ident: b0335 article-title: Liquidambaric acid inhibits Wnt/β-catenin signaling and colon cancer via targeting TNF receptor-associated factor 2 publication-title: Cell Rep – volume: 8 start-page: 6333 year: 2020 end-page: 6351 ident: b0050 article-title: Research progress on nanotechnology for delivery of active ingredients from traditional Chinese medicines publication-title: J Mater Chem B – volume: 6 year: 2018 ident: b0645 article-title: Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables publication-title: PeerJ – volume: 257 start-page: 3 year: 2020 end-page: 12 ident: b0540 article-title: Plant extracellular vesicles publication-title: Protoplasma – volume: 23 start-page: 2300 year: 2018 ident: b0285 article-title: Antiviral Activities of Oleanolic Acid and Its Analogues publication-title: Molecules – volume: 425 year: 2021 ident: b0520 article-title: Metal ions-mediated self-assembly of nanomedicine for combinational therapy against triple-negative breast cancer publication-title: Chem Eng J – volume: 12 start-page: 42537 year: 2020 end-page: 42550 ident: b0295 article-title: Nanomedicine-Cum-Carrier by Co-Assembly of Natural Small Products for Synergistic Enhanced Antitumor with Tissues Protective Actions publication-title: ACS Appl Mater Interfaces – volume: 29 start-page: 13 year: 2021 end-page: 31 ident: b0555 article-title: Plant Exosome-like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms publication-title: Mol Ther – volume: 206 year: 2021 ident: b0895 article-title: One-pot synthesis of publication-title: Mater Design – volume: 23 start-page: 191 year: 2022 ident: b0560 article-title: Plant-Derived Extracellular Vesicles as Therapeutic Nanocarriers publication-title: Int J Mol Sci – volume: 79 year: 2021 ident: b0250 article-title: Health benefits, extraction and development of functional foods with curcuminoids publication-title: J Funct Foods – volume: 155 start-page: 889 year: 2018 end-page: 904 ident: b0515 article-title: Therapeutic potential of quercetin as a cardiovascular agent publication-title: Eur J Med Chem – volume: 21 start-page: 1094 year: 2016 ident: b0975 article-title: Compositions, Formation Mechanism, and Neuroprotective Effect of Compound Precipitation from the Traditional Chinese Prescription Huang-Lian-Jie-Du-Tang publication-title: Molecules – volume: 3 start-page: 24906 year: 2013 end-page: 24909 ident: b0410 article-title: Self-assembly of sodium glycyrrhetinate into a hydrogel: characterisation and properties publication-title: RSC Adv – volume: 15 start-page: 151 year: 2019 end-page: 161 ident: b0870 article-title: Novel Carbon Dots-Derived from Radix Puerariae Carbonisata Significantly Improve the Solubility and Bioavailability of Baicalin publication-title: J Biomed Nanotechnol – volume: 52 start-page: 10369 year: 2018 end-page: 10379 ident: b0755 article-title: Formation and Physicochemical Characteristics of Nano Biochar: Insight into Chemical and Colloidal Stability publication-title: Environ Sci Technol – volume: 151 start-page: 1116 year: 2014 end-page: 1123 ident: b0955 article-title: Chromatographic isolation of nanoparticles from Ma-Xing-Shi-Gan-Tang decoction and their characterization publication-title: J Ethnopharmacol – volume: 9 start-page: 1703480 year: 2019 ident: b0740 article-title: Anti-melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin publication-title: J Extracell Vesicles – volume: 22 start-page: 4599 year: 2021 ident: b0290 article-title: Ursolic and Oleanolic Acids: Plant Metabolites with Neuroprotective Potential publication-title: Int J Mol Sci – volume: 10 start-page: 1784 year: 2020 end-page: 1795 ident: b0145 article-title: Self-assembled natural phytochemicals for synergistically antibacterial application from the enlightenment of traditional Chinese medicine combination publication-title: Acta Pharm Sin B – volume: 26 start-page: 1512 year: 2021 ident: b0890 article-title: Novel Carbon Dots Derived from Glycyrrhizae Radix et Rhizoma and Their Anti-Gastric Ulcer Effect publication-title: Molecules – volume: 23 start-page: 1219 year: 2018 end-page: 1232 ident: b0765 article-title: Carbon dots: emerging theranostic nanoarchitectures publication-title: Drug Discov Today – volume: 13 year: 2022 ident: b0760 article-title: Chinese Medicinal Herb-Derived Carbon Dots for Common Diseases: Efficacies and Potential Mechanisms publication-title: Front Pharmacol – volume: 189 year: 2020 ident: b0340 article-title: Celastrol: Progresses in structure-modifications, structure-activity relationships, pharmacology and toxicology publication-title: Eur J Med Chem – volume: 35 start-page: 7157 year: 2014 end-page: 7171 ident: b0495 article-title: Kidney-specific drug delivery system for renal fibrosis based on coordination-driven assembly of catechol-derived chitosan publication-title: Biomaterials – volume: 8 start-page: 2666 year: 2020 end-page: 2672 ident: b0900 article-title: Selective inactivation of Gram-negative bacteria by carbon dots derived from natural biomass-Artemisia argyi leaves publication-title: J Mater Chem B – volume: 15 start-page: 2466 year: 2018 end-page: 2478 ident: b0425 article-title: Carrier-Free, Pure Nanodrug Formed by the Self-Assembly of an Anticancer Drug for Cancer Immune Therapy publication-title: Mol Pharmaceutics – volume: 27 start-page: 3268 year: 2022 ident: b0930 article-title: Study on Supramolecules in Traditional Chinese Medicine Decoction publication-title: Molecules – volume: 12 start-page: 477 year: 2020 ident: b0710 article-title: Protective Role of Shiitake Mushroom-Derived Exosome-Like Nanoparticles in D-Galactosamine and Lipopolysaccharide-Induced Acute Liver Injury in Mice publication-title: Nutrients – volume: 2017 start-page: 9217912 year: 2017 ident: b0960 article-title: Antidiabetic Micro-/Nanoaggregates from Ge-Gen-Qin-Lian-Tang Decoction Increase Absorption of Baicalin and Cellular Antioxidant Activity In Vitro publication-title: BioMed Res Int – volume: 598 year: 2020 ident: b0510 article-title: Coordination self-assembly of natural flavonoids into robust nanoparticles for enhanced in vitro chemo and photothermal cancer therapy publication-title: Colloid Surface A – reference: 2022; – volume: 22 start-page: 1247 year: 2017 ident: b0125 article-title: Multifunctional Cinnamic Acid Derivatives publication-title: Molecules – volume: 294 start-page: 27 year: 2019 end-page: 42 ident: b0165 article-title: Mitochondrial targeting nanodrugs self-assembled from 9-O-octadecyl substituted berberine derivative for cancer treatment by inducing mitochondrial apoptosis pathways publication-title: J Control Release – volume: 155 year: 2020 ident: b0030 article-title: Traditional Chinese medicine for COVID-19 treatment publication-title: Pharmacol Res – volume: 21 start-page: 5920 year: 2020 ident: b0415 article-title: Ursolic Acid-Based Derivatives as Potential Anti-Cancer Agents: An Update publication-title: Int J Mol Sci – volume: 80 start-page: 256 year: 2022 end-page: 275 ident: b0480 article-title: Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement publication-title: Semin Cancer Biol – volume: 7 start-page: 19295 year: 2015 end-page: 19305 ident: b0265 article-title: Nanodrug Formed by Coassembly of Dual Anticancer Drugs to Inhibit Cancer Cell Drug Resistance publication-title: ACS Appl Mater Interfaces – volume: 256 start-page: 1463 year: 2019 end-page: 1486 ident: b0270 article-title: Plant triterpenoid saponins: biosynthesis, in vitro production, and pharmacological relevance publication-title: Protoplasma – volume: 20 start-page: 200 year: 2021 end-page: 216 ident: b0015 article-title: the International Natural Product Sciences Taskforce, Supuran CT. Natural products in drug discovery: advances and opportunities publication-title: Nat Rev Drug Discov – volume: 644 start-page: 56 year: 2018 end-page: 65 ident: b0505 article-title: MiR-34a, as a suppressor, enhance the susceptibility of gastric cancer cell to luteolin by directly targeting HK1 publication-title: Gene – volume: 79 start-page: 93 year: 2002 end-page: 103 ident: b1025 article-title: Thermal aggregation of globulin from an indigenous Chinese legume, Phaseolus angularis (red bean) publication-title: Food Chem – volume: 11 start-page: 9872 year: 2019 end-page: 9883 ident: b0200 article-title: Facile Engineering of Indomethacin-Induced Paclitaxel Nanocrystal Aggregates as Carrier-Free Nanomedicine with Improved Synergetic Antitumor Activity publication-title: ACS Appl Mater Interfaces – volume: 20 start-page: 1781 year: 2020 end-page: 1790 ident: b0470 article-title: Transforming Complexity to Simplicity: Protein-Like Nanotransformer for Improving Tumor Drug Delivery Programmatically publication-title: Nano Lett – volume: 151 year: 2021 ident: b0275 article-title: Natural pentacyclic triterpenoid acids potentially useful as biocompatible nanocarriers publication-title: Fitoterapia – volume: 16 start-page: 2690 year: 2019 end-page: 2699 ident: b0590 article-title: Exosome-like Nanoparticles from Ginger Rhizomes Inhibited NLRP3 Inflammasome Activation publication-title: Mol Pharmaceutics – volume: 66 start-page: 2749 year: 2018 end-page: 2757 ident: b0745 article-title: Isolation of Exosome-Like Nanoparticles and Analysis of MicroRNAs Derived from Coconut Water Based on Small RNA High-Throughput Sequencing publication-title: J Agric Food Chem – volume: 15 start-page: 851 year: 2020 end-page: 869 ident: b0910 article-title: Green synthesis of Zingiberis rhizoma-based carbon dots attenuates chemical and thermal stimulus pain in mice publication-title: Nanomedicine – reference: 2019; – volume: 29 start-page: 3495 year: 2018 end-page: 3502 ident: b0430 article-title: Small Molecule Nanodrug Assembled of Dual-Anticancer Drug Conjugate for Synergetic Cancer Metastasis Therapy publication-title: Bioconjugate Chem – volume: 12 start-page: 92 year: 2022 end-page: 106 ident: b0055 article-title: Pure drug nano-assemblies: A facile carrier-free nanoplatform for efficient cancer therapy publication-title: Acta Pharm Sin B – volume: 14 start-page: 2146 year: 2018 end-page: 2155 ident: b0880 article-title: Hypoglycemic Bioactivity of Novel Eco-Friendly Carbon Dots Derived from Traditional Chinese Medicine publication-title: J Biomed Nanotechnol – volume: 26 start-page: 7368 year: 2021 ident: b0095 article-title: Berberine as a Potential Anticancer Agent: A Comprehensive Review publication-title: Molecules – volume: 601 year: 2021 ident: b0400 article-title: Preparation, optimization, characterization and in vitro release of baicalein-solubilizing glycyrrhizic acid nano-micelles publication-title: Int J Pharm – volume: 169 start-page: 151 year: 2019 end-page: 158 ident: b0840 article-title: 1H NMR-based metabonomic revealed protective effect of Moutan Cortex charcoal on blood-heat and hemorrhage rats publication-title: J Pharm Biomed Anal – volume: 25 start-page: 1641 year: 2017 end-page: 1654 ident: b0715 article-title: Broccoli-Derived Nanoparticle Inhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated Protein Kinase publication-title: Mol Ther – volume: 10 start-page: 1604 year: 2019 ident: b0500 article-title: Directed self-assembly of herbal small molecules into sustained release hydrogels for treating neural inflammation publication-title: Nat Commun – volume: 14 start-page: 431 year: 2019 end-page: 446 ident: b0795 article-title: Hemostatic and hepatoprotective bioactivity of Junci Medulla Carbonisata-derived Carbon Dots publication-title: Nanomedicine – reference: :102511. – volume: 14 start-page: 476 year: 2022 ident: b0730 article-title: Cucumber-Derived Exosome-like Vesicles and PlantCrystals for Improved Dermal Drug Delivery publication-title: Pharmaceutics – reference: Fort. Root Decoction: Diversity, Cytotoxicity, and Antiviral Activity. – volume: 11 start-page: 1210 year: 2020 ident: b0110 article-title: Synergistic Effect of Berberine-Based Chinese Medicine Assembled Nanostructures on DiarrheaPredominant Irritable Bowel Syndrome In Vivo publication-title: Front Pharmacol – volume: 15 start-page: 10417 year: 2020 end-page: 10424 ident: b0245 article-title: A GSH-Responsive Nanoprodrug System Based on Self-Assembly of Lactose Modified Camptothecin for Targeted Drug Delivery and Combination Chemotherapy publication-title: Int J Nanomed – volume: 11 start-page: 246 year: 2021 end-page: 257 ident: b0455 article-title: A smart dual-drug nanosystem based on coassembly of plant and food-derived natural products for synergistic HCC immunotherapy publication-title: Acta Pharm Sin B – volume: 11 start-page: 29498 year: 2019 end-page: 29511 ident: b0330 article-title: Simple and Multifunctional Natural Self-Assembled Sterols with Anticancer Activity-Mediated Supramolecular Photosensitizers for Enhanced Antitumor Photodynamic Therapy publication-title: ACS Appl Mater Interfaces – volume: 372 start-page: 1938 year: 2008 end-page: 1940 ident: b0010 article-title: Traditional Chinese medicine publication-title: Lancet – volume: 446 start-page: 786 year: 2014 end-page: 791 ident: b0325 article-title: Recent advances in Phytosterol Oxidation Products publication-title: Biochem Bioph Res Co – volume: 1 start-page: 1 year: 2018 end-page: 6 ident: b0090 article-title: Pharmacological activity of alkaloids: a review publication-title: Asian J Bot – volume: 384 start-page: 73 year: 2012 end-page: 80 ident: b0360 article-title: Solubilization of saikosaponin a by ginsenoside Ro biosurfactant in aqueous solution: Mesoscopic simulation publication-title: J Colloid Interf Sci – volume: 30 start-page: 327 year: 2022 end-page: 340 ident: b0700 article-title: Ginseng-derived nanoparticles potentiate immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment publication-title: Mol Ther – volume: 46 start-page: 1562 year: 2018 end-page: 1571 ident: b0810 article-title: Novel carbon dots derived from Schizonepetae Herba Carbonisata and investigation of their haemostatic efficacy publication-title: Artif Cell Nanomed B – volume: 21 start-page: 1345 year: 2013 end-page: 1357 ident: b0690 article-title: Grape Exosome-like Nanoparticles Induce Intestinal Stem Cells and Protect Mice From DSS-Induced Colitis publication-title: Mol Ther – volume: 8 start-page: 185 year: 2019 ident: b0570 article-title: Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe) publication-title: Foods – volume: 15 start-page: 60 year: 2017 ident: b0780 article-title: Hemostatic bioactivity of novel Pollen Typhae Carbonisata-derived carbon quantum dots publication-title: J Nanobiotechnol – volume: 12 start-page: 494 year: 2021 end-page: 518 ident: b0355 article-title: Recent progress in polysaccharides from Panax ginseng C publication-title: A Meyer – volume: 24 start-page: 637 year: 2018 end-page: 652 ident: b0580 article-title: Plant-Derived Exosomal MicroRNAs Shape the Gut Microbiota publication-title: Cell Host Microbe – volume: 11 start-page: 10480 year: 2020 end-page: 10492 ident: b0990 article-title: Role of particle aggregates in herbal medicine decoction showing they are not useless: considering Coptis chinensis decoction as an example publication-title: Food Funct – volume: 5 start-page: 1517 year: 2017 end-page: 1521 ident: b0185 article-title: Glutathione-responsive paclitaxel dimer nanovesicles with high drug content publication-title: Biomater Sci – volume: 16 start-page: 618 year: 2019 end-page: 627 ident: b0395 article-title: Molecular Dynamics Simulations of Glycyrrhizic Acid Aggregates as Drug-Carriers for Paclitaxel publication-title: Curr Drug Deliv – volume: 13 start-page: 32729 year: 2021 end-page: 32742 ident: b0155 article-title: Berberine-Based Heterogeneous Linear Supramolecules Neutralized the Acute Nephrotoxicity of Aristolochic Acid by the Self-Assembly Strategy publication-title: ACS Appl Mater Interfaces – volume: 46 start-page: S308 year: 2018 end-page: S317 ident: b0805 article-title: Haemostatic bioactivity of novel Schizonepetae Spica Carbonisata-derived carbon dots via platelet counts elevation publication-title: Artif Cell Nanomed B – volume: 10 start-page: 847 year: 2020 ident: b0040 article-title: Polymeric Nanocapsules as Nanotechnological Alternative for Drug Delivery System: Current Status publication-title: Challenges and Opportunities – reference: Adejoke HT, Louis H, Amusan OO, Apebende. A review on classes, extraction, purification and pharmaceutical importance of plants alkaloid. – volume: 182 year: 2020 ident: b0320 article-title: Paclitaxel and betulonic acid synergistically enhance antitumor efficacy by forming co-assembled nanoparticles publication-title: Biochem Pharmacol – volume: 274 start-page: 796 year: 2019 end-page: 802 ident: b1020 article-title: Fabrication of self-assembled Radix Pseudostellariae protein nanoparticles and the entrapment of curcumin publication-title: Food Chem – volume: 16 start-page: 71 year: 2018 ident: b0045 article-title: Nano based drug delivery systems: recent developments and future prospects publication-title: J Nanobiotechnol – volume: 15 start-page: 4139 year: 2020 end-page: 4149 ident: b0845 article-title: Effect of Lonicerae japonicae Flos Carbonisata-Derived Carbon Dots on Rat Models of Fever and Hypothermia Induced by Lipopolysaccharide publication-title: Int J Nanomed – volume: 35 start-page: 355 year: 2015 end-page: 360 ident: b0940 article-title: Review of the powder and decoction formulae in Traditional Chinese Medicine based on pharmacologically active substances and clinical evidence publication-title: J Tradit Chin Med – volume: 10 start-page: 12639 year: 2018 end-page: 12649 ident: b0345 article-title: Synergistic combination chemotherapy using carrier-free celastrol and doxorubicin nanocrystals for overcoming drug resistance publication-title: Nanoscale – volume: 263 start-page: 95 year: 2019 end-page: 130 ident: b0180 article-title: Basic principles of drug delivery systems – the case of paclitaxel publication-title: Adv Colloid Interfac – volume: 16 start-page: 2461 year: 2021 end-page: 2475 ident: b0855 article-title: Carbonisata-Based Carbon Dots Against Ethanol Induced Acute Gastric Ulcer in Rats: Anti-Inflammatory and Antioxidant Activities publication-title: Int J Nanomed – volume: 16 start-page: 2203 year: 2021 end-page: 2217 ident: b0915 article-title: Water-Soluble Carbon Dots in Cigarette Mainstream Smoke: Their Properties and the Behavioural, Neuroendocrinological, and Neurotransmitter Changes They Induce in Mice publication-title: Int J Nanomed – volume: 11 start-page: 15907 year: 2019 end-page: 15916 ident: b0230 article-title: Acidity-responsive shell-sheddable camptothecin-based nanofibers for carrier-free cancer drug delivery publication-title: Nanoscale – volume: 10 start-page: 445 year: 2020 end-page: 452 ident: b0135 article-title: Anti-inflammatory Effects and Mechanisms of Rhein, an Anthraquinone Compound, and Its Applications in Treating Arthritis: A Review publication-title: Nat Prod Bioprospect – volume: 5 start-page: 9121 year: 2017 end-page: 9129 ident: b0440 article-title: A carrier-free dual-drug nanodelivery system functionalized with aptamer specific targeting HER2-overexpressing cancer cells publication-title: J Mater Chem B – volume: 329 start-page: 805 year: 2021 end-page: 832 ident: b0070 article-title: Carrier-free nanodrugs for safe and effective cancer treatment publication-title: J Control Release – volume: 12 start-page: 1927 year: 2017 end-page: 1943 ident: b0610 article-title: Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis publication-title: Nanomedicine – volume: 62 start-page: 333 year: 2019 end-page: 348 ident: b1035 article-title: Herbal decoctosome is a novel form of medicine publication-title: Sci China Life Sci – volume: 396 start-page: 165 year: 2013 end-page: 172 ident: b0370 article-title: Multiscale study on the interaction mechanism between ginsenoside biosurfactant and saikosaponin a publication-title: J Colloid Interf Sci – volume: 8 start-page: 37707 year: 2018 end-page: 37714 ident: b0770 article-title: Hemostatic effect of novel carbon dots derived from Cirsium setosum Carbonisata publication-title: RSC Adv – volume: 3 start-page: 648 year: 2020 end-page: 653 ident: b0385 article-title: A Simple Injectable Moldable Hydrogel Assembled from Natural Glycyrrhizic Acid with Inherent Antibacterial Activity publication-title: ACS Appl Bio Mater – volume: 15 start-page: 9049 year: 2020 end-page: 9059 ident: b0860 article-title: Carbon Dots from Paeoniae Radix Alba Carbonisata: Hepatoprotective Effect publication-title: Int J Nanomed – volume: 27 start-page: 1511 year: 2022 ident: b0965 article-title: Isolation and Characterization of Natural Nanoparticles in Naoluo Xintong Decoction and Their Brain Protection Research publication-title: Molecules – volume: 11 start-page: 5713 year: 2021 end-page: 5727 ident: b0215 article-title: Quantitative self-assembly of pure drug cocktails as injectable nanomedicines for synergistic drug delivery and cancer therapy publication-title: Theranostics – volume: 14 start-page: 1635 year: 2018 end-page: 1644 ident: b0775 article-title: Novel Carbon Dots Derived from Cirsii Japonici Herba Carbonisata and Their Haemostatic Effect publication-title: J Biomed Nanotechnol – volume: 1 start-page: 1 year: 2022 end-page: 3 ident: b0005 article-title: Drug discovery is an eternal challenge for the biomedical sciences publication-title: Acta Materia Medica – volume: 53 start-page: 12320 year: 2014 end-page: 12364 ident: b0035 article-title: Engineered Nanoparticles for Drug Delivery in Cancer Therapy publication-title: Angew Chem Int Ed – volume: 9 year: 2021 ident: b0065 article-title: Research Progress of Carrier-Free Antitumor Nanoparticles Based on Phytochemicals publication-title: Front Bioeng Biotech – volume: 48 start-page: 68 year: 2020 end-page: 76 ident: b0850 article-title: Novel mulberry silkworm cocoon-derived carbon dots and their anti-inflammatory properties publication-title: Artif Cell Nanomed B – volume: 6 start-page: 19514 year: 2015 end-page: 19527 ident: b0630 article-title: Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death publication-title: Oncotarget – volume: 12 start-page: 227 year: 2020 end-page: 237 ident: b0120 article-title: Self-Assemblies Based on Traditional Medicine Berberine and Cinnamic Acid for Adhesion-Induced Inhibition Multidrug-Resistant Staphylococcus aureus publication-title: ACS Appl Mater Interfaces – volume: 30 start-page: 1907857 year: 2020 ident: b0460 article-title: Nanodrug Carrier Based on Poly(Ursolic Acid) with Self-Anticancer Activity against Colorectal Cancer publication-title: Adv Funct Mater – volume: 137 year: 2021 ident: b0025 article-title: Research progress of traditional Chinese medicine against COVID-19 publication-title: Biomed Pharmacother – reference: :30. – volume: 12 start-page: 128 year: 2020 ident: b0935 article-title: Synergistic Mechanisms of Constituents in Herbal Extracts during Intestinal Absorption: Focus on Natural Occurring Nanoparticles publication-title: Pharmaceutics – volume: 15 start-page: 708 year: 2022 ident: b0565 article-title: Focusing on Future Applications and Current Challenges of Plant Derived Extracellular Vesicles publication-title: Pharmaceuticals – volume: 20 start-page: 16970 year: 2015 end-page: 16986 ident: b0830 article-title: A Novel Reduplicate Strategy for Tracing Hemostatic Compounds from Heating Products of the Flavonoid Extract in Platycladi cacumen by Spectrum-Effect Relationships and Column Chromatography publication-title: Molecules – volume: 2 start-page: 8623 year: 2012 end-page: 8626 ident: b0405 article-title: Self-assembly of a renewable nano-sized triterpenoid 18β-glycyrrhetinic acid publication-title: RSC Adv – volume: 10 start-page: 4569 year: 2018 end-page: 4581 ident: b0485 article-title: Nanostructured Peptidotoxins as Natural Pro-Oxidants Induced Cancer Cell Death via Amplification of Oxidative Stress publication-title: ACS Appl Mater Interfaces – volume: 59 start-page: S71 year: 2019 end-page: S80 ident: b0525 article-title: The success and the challenge of all-trans retinoic acid in the treatment of cancer publication-title: Crit Rev Food Sci Nutr – volume: 16 start-page: 1906206 year: 2020 ident: b0920 article-title: Glycyrrhizic-Acid-Based Carbon Dots with High Antiviral Activity by Multisite Inhibition Mechanisms publication-title: Small – volume: 9 start-page: 480 year: 2021 ident: b0220 article-title: Recent Advances in Improved Anticancer Efficacies of Camptothecin Nano-Formulations: A Systematic Review publication-title: Biomedicines – volume: 22 start-page: 522 year: 2014 end-page: 534 ident: b0650 article-title: Targeted Drug Delivery to Intestinal Macrophages by Bioactive Nanovesicles Released from Grapefruit publication-title: Mol Ther – volume: 70 start-page: 197 year: 2018 end-page: 210 ident: b0435 article-title: Carrier-free nanodrug by co-assembly of chemotherapeutic agent and photosensitizer for cancer imaging and chemo-photo combination therapy publication-title: Acta Biomater – volume: 9 start-page: 2722 year: 2020 ident: b0655 article-title: Grapefruit-Derived Micro and Nanovesicles Show Distinct Metabolome Profiles and Anticancer Activities in the A375 Human Melanoma Cell Line publication-title: Cells – volume: 21 start-page: 308 year: 2019 end-page: 327 ident: b0600 article-title: Plant-Derived Exosomal Nanoparticles Inhibit Pathogenicity of Porphyromonas gingivalis publication-title: iScience – volume: 7 start-page: 789 year: 2017 end-page: 804 ident: b0535 publication-title: Progress in Exosome Isolation Techniques – volume: 4 start-page: 28713 year: 2015 ident: b0595 article-title: Ginger-derived nanoparticles protect against alcohol-induced liver damage publication-title: J Extracell Vesicles – volume: 570 year: 2019 ident: b0075 article-title: Carrier-free nanodrug: A novel strategy of cancer diagnosis and synergistic therapy publication-title: Int J Pharmaceut – volume: 19 start-page: 877 year: 2018 end-page: 885 ident: b0625 article-title: Exosome-like Nanovesicles Isolated from Citrus limon L publication-title: Exert Anti-oxidative Effect – volume: 17 start-page: 53 year: 2022 end-page: 69 ident: b0550 article-title: Plant-derived exosome-like nanoparticles and their therapeutic activities publication-title: Asian J Pharm Sci – reference: :130-139. – volume: 30 start-page: 1745 year: 2016 end-page: 1764 ident: b0100 article-title: Berberis Vulgaris and Berberine: An Update Review publication-title: Phytother Res – volume: 598 start-page: 444 year: 2021 end-page: 454 ident: b0390 article-title: Adsorption and self-assembly properties of the plant based biosurfactant publication-title: Glycyrrhizic acid – volume: 268 year: 2021 ident: b0060 article-title: Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy publication-title: Biomaterials – volume: 609 start-page: 353 year: 2022 end-page: 363 ident: b0240 article-title: A carrier-free supramolecular nanoprodrug based on lactosefunctionalized dimeric camptothecin via self-assembly in water for targeted and fluorescence imaging-guided chemo-photodynamic therapy publication-title: J Colloid Interf Sci – volume: 559 start-page: 271 year: 2019 end-page: 279 ident: b0380 article-title: Glycyrrhizic acid as a multifunctional drug carrier – From physicochemical properties to biomedical applications: A modern insight on the ancient drug publication-title: Int J Pharmaceut – volume: 12 start-page: 907 year: 2022 end-page: 923 ident: b0725 article-title: Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation publication-title: Acta Pharm Sin B – volume: 270 year: 2021 ident: b0790 article-title: Effects of carbonized process on quality control, chemical composition and pharmacology of Typhae Pollen: A review publication-title: J Ethnopharmacol – volume: 7 start-page: 18136 year: 2017 end-page: 18143 ident: b0445 article-title: Nanoarchitectures by hierarchical self-assembly of ursolic acid: entrapment and release of fluorophores including anticancer drug doxorubicin publication-title: RSC Adv – volume: 25 start-page: 2278 year: 2020 ident: b0140 article-title: Therapeutic Emergence of Rhein as a Potential Anticancer Drug: A Review of Its Molecular Targets and Anticancer Properties publication-title: Molecules – volume: 24 start-page: 128 year: 2019 ident: b0785 article-title: Chemical Property Changes and Thermal Analysis during the Carbonizing Process of the Pollen Grains of Typha publication-title: Molecules – volume: 7 start-page: 326 year: 2019 ident: b0695 article-title: Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth publication-title: J ImmunoTher Cancer – volume: 104 start-page: 6513 year: 2020 end-page: 6526 ident: b0490 article-title: Anti-fungal properties and mechanisms of melittin publication-title: Appl Microbiol Biotechnol – volume: 318 start-page: 38 year: 2020 end-page: 49 ident: b0170 article-title: Mitochondria-targeting nanomedicine self-assembled from GSH-responsive paclitaxel-ss-berberine conjugate for synergetic cancer treatment with enhanced cytotoxicity publication-title: J Control Release – volume: 29 start-page: 1805582 year: 2019 ident: b0465 article-title: Ultralong Circulating Lollipop-Like Nanoparticles Assembled with Gossypol, Doxorubicin, and Polydopamine via π–π Stacking for Synergistic Tumor Therapy publication-title: Adv Funct Mater – reference: Gao G, He C, Wang H, Guo J, Ke L, Zhou J, et al. Polysaccharide Nanoparticles from – volume: 13 start-page: 3224 year: 2020 ident: b0475 article-title: Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials—A Minireview publication-title: Materials – volume: 16 start-page: 1575 year: 2021 end-page: 1586 ident: b0705 article-title: Engineering Exosome-Like Nanovesicles Derived from Asparagus cochinchinensis Can Inhibit the Proliferation of Hepatocellular Carcinoma Cells with Better Safety Profile publication-title: Int J Nanomed – volume: 16 start-page: 62 year: 2018 end-page: 68 ident: b1005 article-title: Discovery of a sugar-based nanoparticle universally existing in boiling herbal water extracts and their immunostimulant effect publication-title: Biochem Biophys Rep – volume: 101 start-page: 321 year: 2016 end-page: 340 ident: b0575 article-title: Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer publication-title: Biomaterials – volume: 42 start-page: 432 year: 2019 end-page: 441 ident: b0835 article-title: A Network Pharmacology Approach Used to Estimate the Active Ingredients of Moutan Cortex Charcoal and the Potential Targets in Hemorrhagic Diseases publication-title: Biol Pharm Bull – volume: 15 start-page: 1902641 year: 2019 ident: b0925 article-title: High Amplification of the Antiviral Activity of Curcumin through Transformation into Carbon Quantum Dots publication-title: Small – volume: 12 start-page: 2237 year: 2015 end-page: 2244 ident: b0260 article-title: Synergistically Enhanced Therapeutic Effect of a Carrier-Free HCPT/DOX Nanodrug on Breast Cancer Cells through Improved Cellular Drug Accumulation publication-title: Mol Pharmaceutics – volume: 13 start-page: 370 year: 2021 end-page: 380 ident: b0995 article-title: Self-assembled aggregations in Coptidis Rhizoma decoction dynamically regulate intestinal tissue permeability through Peyer’s patch-associated immunity publication-title: Chin Herb Med – volume: 9 start-page: 43508 year: 2017 end-page: 43519 ident: b0450 article-title: A Small Molecule Nanodrug by Self-Assembly of Dual Anticancer Drugs and Photosensitizer for Synergistic near-Infrared Cancer Theranostics publication-title: ACS Appl Mater Interfaces – volume: 195 year: 2021 ident: b0970 article-title: Comprehensive analysis of Huanglian Jiedu decoction: Revealing the presence of a self-assembled phytochemical complex in its naturally-occurring precipitate publication-title: J Pharm Biomed Anal – volume: 11 start-page: 2046 year: 2014 end-page: 2054 ident: b0365 article-title: Dissipative Particle Dynamics Simulation of Ginsenoside Ro Vesicular Solubilization Systems publication-title: J Comput Theor Nanos – volume: 4 start-page: 1867 year: 2013 ident: b0665 article-title: Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids publication-title: Nat Commun – reference: 2021; – volume: 13 start-page: 6770 year: 2019 end-page: 6781 ident: b0105 article-title: Natural Berberine-Based Chinese Herb Medicine Assembled Nanostructures with Modified Antibacterial Application publication-title: ACS Nano – volume: 17 start-page: 841 year: 2017 end-page: 873 ident: b0280 article-title: Self-assembly of Renewable Nano-sized Triterpenoids publication-title: Chem Rec – volume: 38 start-page: 1691 year: 2015 end-page: 1699 ident: b0825 article-title: Tracing novel hemostatic compounds from heating products of total flavonoids in Flos Sophorae by spectrum–effect relationships and column chromatography publication-title: J Sep Sci – volume: 22 start-page: 1456 year: 2017 ident: b0980 article-title: Origin and Formation Mechanism Investigation of Compound Precipitation from the Traditional Chinese Prescription Huang-Lian-Jie-Du-Tang by Isothermal Titration Calorimetry publication-title: Molecules – volume: 98 start-page: 40 year: 2017 end-page: 50 ident: b0680 article-title: Extracellular vesicles in food: Experimental evidence of their secretion in grape fruits publication-title: Eur J Pharm Sci – volume: 18 start-page: 100 year: 2020 ident: b0635 article-title: An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy publication-title: J Nanobiotechnol – volume: 45 start-page: 199 year: 2021 end-page: 210 ident: b0350 article-title: Pharmacological potential of ginseng and its major component ginsenosides publication-title: J Ginseng Res – volume: 1 start-page: 150 year: 2012 end-page: 154 ident: b0305 article-title: Vesicular and fibrillar Gels by Self-Assembly of nanosized oleanolic acid publication-title: Asian J Organic Chem – volume: 159 start-page: 850 year: 2020 end-page: 858 ident: b1030 article-title: Purification and characterization of the major protein isolated from Semen Armeniacae Amarum and the properties of its thermally induced nanoparticles publication-title: Int J Biol Macromol – volume: 8 start-page: 220 year: 2022 end-page: 240 ident: b0080 article-title: Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: From intrinsic physicochemical properties to external modification publication-title: Bioact Mater – volume: 18 start-page: 914 year: 2021 end-page: 921 ident: b0130 article-title: Self-Assembled Nanoparticles of Natural Phytochemicals (Berberine and 3,4,5-Methoxycinnamic Acid) Originated from Traditional Chinese Medicine for Inhibiting Multidrug-Resistant Staphylococcus aureus publication-title: Curr Drug Deliv – volume: 232 year: 2020 ident: b0255 article-title: Structure-based design of charge-conversional drug self-delivery systems for better targeted cancer therapy publication-title: Biomaterials – volume: 10 start-page: 529 year: 2019 end-page: 538 ident: b0545 article-title: Biological properties of plant-derived extracellular vesicles publication-title: Food Funct – volume: 294 start-page: 27 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0165 article-title: Mitochondrial targeting nanodrugs self-assembled from 9-O-octadecyl substituted berberine derivative for cancer treatment by inducing mitochondrial apoptosis pathways publication-title: J Control Release doi: 10.1016/j.jconrel.2018.11.014 – volume: 16 start-page: 1906206 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0920 article-title: Glycyrrhizic-Acid-Based Carbon Dots with High Antiviral Activity by Multisite Inhibition Mechanisms publication-title: Small doi: 10.1002/smll.201906206 – volume: 16 start-page: 1575 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0705 article-title: Engineering Exosome-Like Nanovesicles Derived from Asparagus cochinchinensis Can Inhibit the Proliferation of Hepatocellular Carcinoma Cells with Better Safety Profile publication-title: Int J Nanomed doi: 10.2147/IJN.S293067 – volume: 609 start-page: 353 year: 2022 ident: 10.1016/j.jare.2022.09.013_b0240 article-title: A carrier-free supramolecular nanoprodrug based on lactosefunctionalized dimeric camptothecin via self-assembly in water for targeted and fluorescence imaging-guided chemo-photodynamic therapy publication-title: J Colloid Interf Sci doi: 10.1016/j.jcis.2021.12.002 – volume: 46 start-page: 1562 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0810 article-title: Novel carbon dots derived from Schizonepetae Herba Carbonisata and investigation of their haemostatic efficacy publication-title: Artif Cell Nanomed B – volume: 15 start-page: 1902641 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0925 article-title: High Amplification of the Antiviral Activity of Curcumin through Transformation into Carbon Quantum Dots publication-title: Small doi: 10.1002/smll.201902641 – volume: 11 start-page: 164 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0210 article-title: Small molecule inhibitors in pancreatic cancer publication-title: RSC Med Chem doi: 10.1039/C9MD00447E – volume: 14 start-page: 476 year: 2022 ident: 10.1016/j.jare.2022.09.013_b0730 article-title: Cucumber-Derived Exosome-like Vesicles and PlantCrystals for Improved Dermal Drug Delivery publication-title: Pharmaceutics doi: 10.3390/pharmaceutics14030476 – volume: 384 start-page: 73 year: 2012 ident: 10.1016/j.jare.2022.09.013_b0360 article-title: Solubilization of saikosaponin a by ginsenoside Ro biosurfactant in aqueous solution: Mesoscopic simulation publication-title: J Colloid Interf Sci doi: 10.1016/j.jcis.2012.06.018 – volume: 70 start-page: 197 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0435 article-title: Carrier-free nanodrug by co-assembly of chemotherapeutic agent and photosensitizer for cancer imaging and chemo-photo combination therapy publication-title: Acta Biomater doi: 10.1016/j.actbio.2018.01.028 – volume: 21 start-page: 1094 year: 2016 ident: 10.1016/j.jare.2022.09.013_b0975 article-title: Compositions, Formation Mechanism, and Neuroprotective Effect of Compound Precipitation from the Traditional Chinese Prescription Huang-Lian-Jie-Du-Tang publication-title: Molecules doi: 10.3390/molecules21081094 – volume: 137 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0025 article-title: Research progress of traditional Chinese medicine against COVID-19 publication-title: Biomed Pharmacother doi: 10.1016/j.biopha.2021.111310 – volume: 12 start-page: 2237 year: 2015 ident: 10.1016/j.jare.2022.09.013_b0260 article-title: Synergistically Enhanced Therapeutic Effect of a Carrier-Free HCPT/DOX Nanodrug on Breast Cancer Cells through Improved Cellular Drug Accumulation publication-title: Mol Pharmaceutics doi: 10.1021/mp500744m – volume: 10 start-page: 529 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0545 article-title: Biological properties of plant-derived extracellular vesicles publication-title: Food Funct doi: 10.1039/C8FO02295J – volume: 13 start-page: 391 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0800 article-title: Novel Phellodendri Cortex (Huang Bo)-derived carbon dots and their hemostatic effect publication-title: Nanomedicine doi: 10.2217/nnm-2017-0297 – volume: 67 start-page: 9354 year: 2019 ident: 10.1016/j.jare.2022.09.013_b1000 article-title: Boiling Licorice Produces Self-Assembled Protein Nanoparticles: A Novel Source of Bioactive Nanomaterials publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.9b03208 – volume: 159 start-page: 850 year: 2020 ident: 10.1016/j.jare.2022.09.013_b1030 article-title: Purification and characterization of the major protein isolated from Semen Armeniacae Amarum and the properties of its thermally induced nanoparticles publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2020.05.070 – volume: 24 start-page: 2751 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0420 article-title: Ursolic Acid and Its Derivatives as Bioactive Agents publication-title: Molecules doi: 10.3390/molecules24152751 – volume: 29 start-page: 1805582 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0465 article-title: Ultralong Circulating Lollipop-Like Nanoparticles Assembled with Gossypol, Doxorubicin, and Polydopamine via π–π Stacking for Synergistic Tumor Therapy publication-title: Adv Funct Mater doi: 10.1002/adfm.201805582 – volume: 14 start-page: 2925 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0875 article-title: Antihyperuricemic and anti-gouty arthritis activities of Aurantii fructus immaturus carbonisata-derived carbon dots publication-title: Nanomedicine doi: 10.2217/nnm-2019-0255 – volume: 328 start-page: 575 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0160 article-title: Antibacterial self-assembled nanodrugs composed of berberine derivatives and rhamnolipids against Helicobacter pylori publication-title: J Control Release doi: 10.1016/j.jconrel.2020.09.025 – volume: 318 start-page: 38 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0170 article-title: Mitochondria-targeting nanomedicine self-assembled from GSH-responsive paclitaxel-ss-berberine conjugate for synergetic cancer treatment with enhanced cytotoxicity publication-title: J Control Release doi: 10.1016/j.jconrel.2019.12.011 – volume: 30 start-page: 327 year: 2022 ident: 10.1016/j.jare.2022.09.013_b0700 article-title: Ginseng-derived nanoparticles potentiate immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment publication-title: Mol Ther doi: 10.1016/j.ymthe.2021.08.028 – volume: 80 start-page: 256 year: 2022 ident: 10.1016/j.jare.2022.09.013_b0480 article-title: Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement publication-title: Semin Cancer Biol doi: 10.1016/j.semcancer.2020.05.011 – volume: 18 start-page: 929 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0310 article-title: Betulin and betulinic acid: triterpenoids derivatives with a powerful biological potential publication-title: Phytochem Rev doi: 10.1007/s11101-019-09623-1 – volume: 56 start-page: 2119 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0985 article-title: Based on weak bond chemistry, the interaction mechanism between glycyrrhiza protein and berberine in water decocting process of Rhizoma Coptidis and Liquorice was investigated publication-title: Acta Pharm Sin – volume: 14 start-page: 1635 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0775 article-title: Novel Carbon Dots Derived from Cirsii Japonici Herba Carbonisata and Their Haemostatic Effect publication-title: J Biomed Nanotechnol doi: 10.1166/jbn.2018.2613 – volume: 169 start-page: 151 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0840 article-title: 1H NMR-based metabonomic revealed protective effect of Moutan Cortex charcoal on blood-heat and hemorrhage rats publication-title: J Pharm Biomed Anal doi: 10.1016/j.jpba.2019.02.044 – volume: 25 start-page: 2278 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0140 article-title: Therapeutic Emergence of Rhein as a Potential Anticancer Drug: A Review of Its Molecular Targets and Anticancer Properties publication-title: Molecules doi: 10.3390/molecules25102278 – volume: 29 start-page: 1703135 year: 2017 ident: 10.1016/j.jare.2022.09.013_b0235 article-title: Self-Assembly of an Amphiphilic Janus Camptothecin-Floxuridine Conjugate into Liposome-Like Nanocapsules for More Efficacious Combination Chemotherapy in Cancer publication-title: Adv Mater doi: 10.1002/adma.201703135 – volume: 15 start-page: 4139 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0845 article-title: Effect of Lonicerae japonicae Flos Carbonisata-Derived Carbon Dots on Rat Models of Fever and Hypothermia Induced by Lipopolysaccharide publication-title: Int J Nanomed doi: 10.2147/IJN.S248467 – volume: 19 start-page: 105 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0820 article-title: Green Phellodendri Chinensis Cortex-based carbon dots for ameliorating imiquimod-induced psoriasis-like inflammation in mice publication-title: J Nanobiotechnol doi: 10.1186/s12951-021-00847-y – volume: 16 start-page: 2461 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0855 article-title: Carbonisata-Based Carbon Dots Against Ethanol Induced Acute Gastric Ulcer in Rats: Anti-Inflammatory and Antioxidant Activities publication-title: Int J Nanomed doi: 10.2147/IJN.S289515 – volume: 9 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0065 article-title: Research Progress of Carrier-Free Antitumor Nanoparticles Based on Phytochemicals publication-title: Front Bioeng Biotech doi: 10.3389/fbioe.2021.799806 – volume: 2 start-page: 159 year: 2015 ident: 10.1016/j.jare.2022.09.013_b0225 article-title: Self-defensive nano-assemblies from camptothecin-based antitumor drugs publication-title: Regen Biomater doi: 10.1093/rb/rbv011 – volume: 22 start-page: 522 year: 2014 ident: 10.1016/j.jare.2022.09.013_b0650 article-title: Targeted Drug Delivery to Intestinal Macrophages by Bioactive Nanovesicles Released from Grapefruit publication-title: Mol Ther doi: 10.1038/mt.2013.190 – volume: 15 start-page: 10417 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0245 article-title: A GSH-Responsive Nanoprodrug System Based on Self-Assembly of Lactose Modified Camptothecin for Targeted Drug Delivery and Combination Chemotherapy publication-title: Int J Nanomed doi: 10.2147/IJN.S276470 – volume: 232 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0255 article-title: Structure-based design of charge-conversional drug self-delivery systems for better targeted cancer therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119701 – volume: 35 start-page: 355 year: 2015 ident: 10.1016/j.jare.2022.09.013_b0940 article-title: Review of the powder and decoction formulae in Traditional Chinese Medicine based on pharmacologically active substances and clinical evidence publication-title: J Tradit Chin Med doi: 10.1016/S0254-6272(15)30110-2 – volume: 1 start-page: 150 year: 2012 ident: 10.1016/j.jare.2022.09.013_b0305 article-title: Vesicular and fibrillar Gels by Self-Assembly of nanosized oleanolic acid publication-title: Asian J Organic Chem doi: 10.1002/ajoc.201200032 – volume: 644 start-page: 56 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0505 article-title: MiR-34a, as a suppressor, enhance the susceptibility of gastric cancer cell to luteolin by directly targeting HK1 publication-title: Gene doi: 10.1016/j.gene.2017.10.046 – volume: 12 start-page: 907 year: 2022 ident: 10.1016/j.jare.2022.09.013_b0725 article-title: Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2021.08.016 – volume: 396 start-page: 165 year: 2013 ident: 10.1016/j.jare.2022.09.013_b0370 article-title: Multiscale study on the interaction mechanism between ginsenoside biosurfactant and saikosaponin a publication-title: J Colloid Interf Sci doi: 10.1016/j.jcis.2013.01.017 – volume: 19 start-page: 877 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0625 article-title: Exosome-like Nanovesicles Isolated from Citrus limon L publication-title: Exert Anti-oxidative Effect Curr Pharm Biotechno doi: 10.2174/1389201019666181017115755 – volume: 13 year: 2022 ident: 10.1016/j.jare.2022.09.013_b0760 article-title: Chinese Medicinal Herb-Derived Carbon Dots for Common Diseases: Efficacies and Potential Mechanisms publication-title: Front Pharmacol – volume: 16 start-page: 2690 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0590 article-title: Exosome-like Nanoparticles from Ginger Rhizomes Inhibited NLRP3 Inflammasome Activation publication-title: Mol Pharmaceutics doi: 10.1021/acs.molpharmaceut.9b00246 – volume: 24 start-page: 40 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0175 article-title: Progress in research on paclitaxel and tumor immunotherapy publication-title: Cell Mol Biol Lett doi: 10.1186/s11658-019-0164-y – volume: 24 start-page: 128 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0785 article-title: Chemical Property Changes and Thermal Analysis during the Carbonizing Process of the Pollen Grains of Typha publication-title: Molecules doi: 10.3390/molecules24010128 – volume: 18 start-page: 100 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0635 article-title: An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy publication-title: J Nanobiotechnol doi: 10.1186/s12951-020-00656-9 – volume: 6 start-page: 19514 year: 2015 ident: 10.1016/j.jare.2022.09.013_b0630 article-title: Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death publication-title: Oncotarget doi: 10.18632/oncotarget.4004 – volume: 21 start-page: 5712 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0115 article-title: Cinnamic Acid Derivatives and Their Biological Efficacy publication-title: Int J Mol Sci doi: 10.3390/ijms21165712 – volume: 12 start-page: 128 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0935 article-title: Synergistic Mechanisms of Constituents in Herbal Extracts during Intestinal Absorption: Focus on Natural Occurring Nanoparticles publication-title: Pharmaceutics doi: 10.3390/pharmaceutics12020128 – volume: 7 start-page: 18136 year: 2017 ident: 10.1016/j.jare.2022.09.013_b0445 article-title: Nanoarchitectures by hierarchical self-assembly of ursolic acid: entrapment and release of fluorophores including anticancer drug doxorubicin publication-title: RSC Adv doi: 10.1039/C7RA02123B – volume: 189 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0340 article-title: Celastrol: Progresses in structure-modifications, structure-activity relationships, pharmacology and toxicology publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2020.112081 – volume: 17 start-page: 53 year: 2022 ident: 10.1016/j.jare.2022.09.013_b0550 article-title: Plant-derived exosome-like nanoparticles and their therapeutic activities publication-title: Asian J Pharm Sci doi: 10.1016/j.ajps.2021.05.006 – volume: 10 start-page: 648 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0150 article-title: Systematic Overview of Aristolochic Acids: Nephrotoxicity, Carcinogenicity, and Underlying Mechanisms publication-title: Front Pharmacol doi: 10.3389/fphar.2019.00648 – volume: 7 start-page: 789 year: 2017 ident: 10.1016/j.jare.2022.09.013_b0535 publication-title: Progress in Exosome Isolation Techniques Theranostics – volume: 73 start-page: 2480 year: 2013 ident: 10.1016/j.jare.2022.09.013_b0190 article-title: Chemotherapy Alters Monocyte Differentiation to Favor Generation of Cancer-Supporting M2 Macrophages in the Tumor Microenvironment publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-3542 – volume: 24 start-page: 1783 year: 2016 ident: 10.1016/j.jare.2022.09.013_b0605 article-title: Edible Ginger-derived Nano-lipids Loaded with Doxorubicin as a Novel Drug-delivery Approach for Colon Cancer Therapy publication-title: Mol Ther doi: 10.1038/mt.2016.159 – volume: 66 start-page: 2749 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0745 article-title: Isolation of Exosome-Like Nanoparticles and Analysis of MicroRNAs Derived from Coconut Water Based on Small RNA High-Throughput Sequencing publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.7b05614 – volume: 9 start-page: 2722 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0655 article-title: Grapefruit-Derived Micro and Nanovesicles Show Distinct Metabolome Profiles and Anticancer Activities in the A375 Human Melanoma Cell Line publication-title: Cells doi: 10.3390/cells9122722 – volume: 21 start-page: 5920 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0415 article-title: Ursolic Acid-Based Derivatives as Potential Anti-Cancer Agents: An Update publication-title: Int J Mol Sci doi: 10.3390/ijms21165920 – volume: 13 start-page: 32729 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0155 article-title: Berberine-Based Heterogeneous Linear Supramolecules Neutralized the Acute Nephrotoxicity of Aristolochic Acid by the Self-Assembly Strategy publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.1c06968 – volume: 12 start-page: 2468 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0315 article-title: Single small molecule-assembled nanoparticles mediate efficient oral drug delivery publication-title: Nano Res doi: 10.1007/s12274-019-2470-0 – volume: 598 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0510 article-title: Coordination self-assembly of natural flavonoids into robust nanoparticles for enhanced in vitro chemo and photothermal cancer therapy publication-title: Colloid Surface A doi: 10.1016/j.colsurfa.2020.124805 – volume: 98 start-page: 40 year: 2017 ident: 10.1016/j.jare.2022.09.013_b0680 article-title: Extracellular vesicles in food: Experimental evidence of their secretion in grape fruits publication-title: Eur J Pharm Sci doi: 10.1016/j.ejps.2016.09.022 – volume: 25 start-page: 1641 year: 2017 ident: 10.1016/j.jare.2022.09.013_b0715 article-title: Broccoli-Derived Nanoparticle Inhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated Protein Kinase publication-title: Mol Ther doi: 10.1016/j.ymthe.2017.01.025 – volume: 23 start-page: 1219 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0765 article-title: Carbon dots: emerging theranostic nanoarchitectures publication-title: Drug Discov Today doi: 10.1016/j.drudis.2018.01.006 – volume: 27 start-page: 3268 year: 2022 ident: 10.1016/j.jare.2022.09.013_b0930 article-title: Study on Supramolecules in Traditional Chinese Medicine Decoction publication-title: Molecules doi: 10.3390/molecules27103268 – volume: 35 start-page: 7157 year: 2014 ident: 10.1016/j.jare.2022.09.013_b0495 article-title: Kidney-specific drug delivery system for renal fibrosis based on coordination-driven assembly of catechol-derived chitosan publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.04.106 – volume: 12 start-page: 477 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0710 article-title: Protective Role of Shiitake Mushroom-Derived Exosome-Like Nanoparticles in D-Galactosamine and Lipopolysaccharide-Induced Acute Liver Injury in Mice publication-title: Nutrients doi: 10.3390/nu12020477 – volume: 79 start-page: 93 year: 2002 ident: 10.1016/j.jare.2022.09.013_b1025 article-title: Thermal aggregation of globulin from an indigenous Chinese legume, Phaseolus angularis (red bean) publication-title: Food Chem doi: 10.1016/S0308-8146(02)00184-X – volume: 4 start-page: 1867 year: 2013 ident: 10.1016/j.jare.2022.09.013_b0665 article-title: Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids publication-title: Nat Commun doi: 10.1038/ncomms2886 – volume: 27 start-page: 1511 year: 2022 ident: 10.1016/j.jare.2022.09.013_b0965 article-title: Isolation and Characterization of Natural Nanoparticles in Naoluo Xintong Decoction and Their Brain Protection Research publication-title: Molecules doi: 10.3390/molecules27051511 – ident: 10.1016/j.jare.2022.09.013_b1015 doi: 10.3390/nano12010030 – volume: 7 start-page: 326 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0695 article-title: Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth publication-title: J ImmunoTher Cancer doi: 10.1186/s40425-019-0817-4 – volume: 75 start-page: 2520 year: 2015 ident: 10.1016/j.jare.2022.09.013_b0660 article-title: Grapefruit-Derived Nanovectors Use an Activated Leukocyte Trafficking Pathway to Deliver Therapeutic Agents to Inflammatory Tumor Sites publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-3095 – ident: 10.1016/j.jare.2022.09.013_b0085 – volume: 48 start-page: 68 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0850 article-title: Novel mulberry silkworm cocoon-derived carbon dots and their anti-inflammatory properties publication-title: Artif Cell Nanomed B doi: 10.1080/21691401.2019.1699810 – volume: 53 start-page: 12320 year: 2014 ident: 10.1016/j.jare.2022.09.013_b0035 article-title: Engineered Nanoparticles for Drug Delivery in Cancer Therapy publication-title: Angew Chem Int Ed doi: 10.1002/anie.201403036 – volume: 79 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0250 article-title: Health benefits, extraction and development of functional foods with curcuminoids publication-title: J Funct Foods doi: 10.1016/j.jff.2021.104392 – volume: 2017 start-page: 9217912 year: 2017 ident: 10.1016/j.jare.2022.09.013_b0960 article-title: Antidiabetic Micro-/Nanoaggregates from Ge-Gen-Qin-Lian-Tang Decoction Increase Absorption of Baicalin and Cellular Antioxidant Activity In Vitro publication-title: BioMed Res Int doi: 10.1155/2017/9217912 – volume: 8 start-page: 37707 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0770 article-title: Hemostatic effect of novel carbon dots derived from Cirsium setosum Carbonisata publication-title: RSC Adv doi: 10.1039/C8RA06340K – volume: 1 start-page: 1 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0090 article-title: Pharmacological activity of alkaloids: a review publication-title: Asian J Bot – volume: 11 start-page: 9872 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0200 article-title: Facile Engineering of Indomethacin-Induced Paclitaxel Nanocrystal Aggregates as Carrier-Free Nanomedicine with Improved Synergetic Antitumor Activity publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.8b22336 – volume: 38 year: 2022 ident: 10.1016/j.jare.2022.09.013_b0335 article-title: Liquidambaric acid inhibits Wnt/β-catenin signaling and colon cancer via targeting TNF receptor-associated factor 2 publication-title: Cell Rep doi: 10.1016/j.celrep.2022.110319 – volume: 10 start-page: 1604 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0500 article-title: Directed self-assembly of herbal small molecules into sustained release hydrogels for treating neural inflammation publication-title: Nat Commun doi: 10.1038/s41467-019-09601-3 – volume: 12 start-page: 227 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0120 article-title: Self-Assemblies Based on Traditional Medicine Berberine and Cinnamic Acid for Adhesion-Induced Inhibition Multidrug-Resistant Staphylococcus aureus publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b17722 – volume: 11 start-page: 3035 year: 2016 ident: 10.1016/j.jare.2022.09.013_b0615 article-title: Do ginger-derived nanoparticles represent an attractive treatment strategy for inflammatory bowel diseases? publication-title: Nanomedicine doi: 10.2217/nnm-2016-0353 – volume: 176 start-page: 1 year: 2016 ident: 10.1016/j.jare.2022.09.013_b0195 article-title: Indomethacin Sensitizes Resistant Transformed Cells to Macrophage Cytotoxicity publication-title: Immunol Lett doi: 10.1016/j.imlet.2016.05.011 – volume: 195 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0970 article-title: Comprehensive analysis of Huanglian Jiedu decoction: Revealing the presence of a self-assembled phytochemical complex in its naturally-occurring precipitate publication-title: J Pharm Biomed Anal doi: 10.1016/j.jpba.2020.113820 – volume: 263 start-page: 95 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0180 article-title: Basic principles of drug delivery systems – the case of paclitaxel publication-title: Adv Colloid Interfac doi: 10.1016/j.cis.2018.11.004 – volume: 372 start-page: 1938 year: 2008 ident: 10.1016/j.jare.2022.09.013_b0010 article-title: Traditional Chinese medicine publication-title: Lancet doi: 10.1016/S0140-6736(08)61354-9 – volume: 7 start-page: 25683 year: 2016 ident: 10.1016/j.jare.2022.09.013_b0670 article-title: Grapefruit-derived nanovectors deliver miR-18a for treatment of liver metastasis of colon cancer by induction of M1 macrophages publication-title: Oncotarget doi: 10.18632/oncotarget.8361 – volume: 270 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0790 article-title: Effects of carbonized process on quality control, chemical composition and pharmacology of Typhae Pollen: A review publication-title: J Ethnopharmacol doi: 10.1016/j.jep.2020.113774 – volume: 15 start-page: 2466 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0425 article-title: Carrier-Free, Pure Nanodrug Formed by the Self-Assembly of an Anticancer Drug for Cancer Immune Therapy publication-title: Mol Pharmaceutics doi: 10.1021/acs.molpharmaceut.8b00444 – volume: 14 start-page: 431 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0795 article-title: Hemostatic and hepatoprotective bioactivity of Junci Medulla Carbonisata-derived Carbon Dots publication-title: Nanomedicine doi: 10.2217/nnm-2018-0285 – volume: 16 start-page: 2203 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0915 article-title: Water-Soluble Carbon Dots in Cigarette Mainstream Smoke: Their Properties and the Behavioural, Neuroendocrinological, and Neurotransmitter Changes They Induce in Mice publication-title: Int J Nanomed doi: 10.2147/IJN.S291670 – volume: 11 start-page: 5713 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0215 article-title: Quantitative self-assembly of pure drug cocktails as injectable nanomedicines for synergistic drug delivery and cancer therapy publication-title: Theranostics doi: 10.7150/thno.55250 – volume: 26 start-page: 1512 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0890 article-title: Novel Carbon Dots Derived from Glycyrrhizae Radix et Rhizoma and Their Anti-Gastric Ulcer Effect publication-title: Molecules doi: 10.3390/molecules26061512 – volume: 11 start-page: 1210 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0110 article-title: Synergistic Effect of Berberine-Based Chinese Medicine Assembled Nanostructures on DiarrheaPredominant Irritable Bowel Syndrome In Vivo publication-title: Front Pharmacol doi: 10.3389/fphar.2020.01210 – volume: 12 start-page: 1927 year: 2017 ident: 10.1016/j.jare.2022.09.013_b0610 article-title: Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis publication-title: Nanomedicine doi: 10.2217/nnm-2017-0196 – volume: 9 start-page: 43508 year: 2017 ident: 10.1016/j.jare.2022.09.013_b0450 article-title: A Small Molecule Nanodrug by Self-Assembly of Dual Anticancer Drugs and Photosensitizer for Synergistic near-Infrared Cancer Theranostics publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b14755 – volume: 45 start-page: 199 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0350 article-title: Pharmacological potential of ginseng and its major component ginsenosides publication-title: J Ginseng Res doi: 10.1016/j.jgr.2020.02.004 – volume: 11 start-page: 2046 year: 2014 ident: 10.1016/j.jare.2022.09.013_b0365 article-title: Dissipative Particle Dynamics Simulation of Ginsenoside Ro Vesicular Solubilization Systems publication-title: J Comput Theor Nanos doi: 10.1166/jctn.2014.3605 – volume: 58 start-page: 1561 year: 2014 ident: 10.1016/j.jare.2022.09.013_b0685 article-title: Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles publication-title: Mol Nutr Food Res doi: 10.1002/mnfr.201300729 – volume: 257 start-page: 3 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0540 article-title: Plant extracellular vesicles publication-title: Protoplasma doi: 10.1007/s00709-019-01435-6 – volume: 62 start-page: 333 year: 2019 ident: 10.1016/j.jare.2022.09.013_b1035 article-title: Herbal decoctosome is a novel form of medicine publication-title: Sci China Life Sci doi: 10.1007/s11427-018-9508-0 – volume: 11 start-page: 87 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0720 article-title: Strawberry-Derived Exosome-Like Nanoparticles Prevent Oxidative Stress in Human Mesenchymal Stromal Cells publication-title: Biomolecules doi: 10.3390/biom11010087 – volume: 6 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0645 article-title: Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables publication-title: PeerJ doi: 10.7717/peerj.5186 – volume: 21 start-page: 1345 year: 2013 ident: 10.1016/j.jare.2022.09.013_b0690 article-title: Grape Exosome-like Nanoparticles Induce Intestinal Stem Cells and Protect Mice From DSS-Induced Colitis publication-title: Mol Ther doi: 10.1038/mt.2013.64 – volume: 13 start-page: 6770 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0105 article-title: Natural Berberine-Based Chinese Herb Medicine Assembled Nanostructures with Modified Antibacterial Application publication-title: ACS Nano doi: 10.1021/acsnano.9b01346 – volume: 15 start-page: 60 year: 2017 ident: 10.1016/j.jare.2022.09.013_b0780 article-title: Hemostatic bioactivity of novel Pollen Typhae Carbonisata-derived carbon quantum dots publication-title: J Nanobiotechnol doi: 10.1186/s12951-017-0296-z – volume: 6 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0885 article-title: Maltase and sucrase inhibitory activities and hypoglycemic effects of carbon dots derived from charred Fructus crataegi publication-title: Mater Res Express doi: 10.1088/2053-1591/ab4fd8 – volume: 9 start-page: 1703480 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0740 article-title: Anti-melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin publication-title: J Extracell Vesicles doi: 10.1080/20013078.2019.1703480 – volume: 14 start-page: 7963 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0530 article-title: Self-Assembly Of Retinoid Nanoparticles For Melanoma Therapy publication-title: Int J Nanomed doi: 10.2147/IJN.S196974 – volume: 7 start-page: 19295 year: 2015 ident: 10.1016/j.jare.2022.09.013_b0265 article-title: Nanodrug Formed by Coassembly of Dual Anticancer Drugs to Inhibit Cancer Cell Drug Resistance publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b05347 – volume: 425 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0520 article-title: Metal ions-mediated self-assembly of nanomedicine for combinational therapy against triple-negative breast cancer publication-title: Chem Eng J doi: 10.1016/j.cej.2021.131420 – volume: 8 start-page: 185 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0570 article-title: Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe) publication-title: Foods doi: 10.3390/foods8060185 – volume: 8 start-page: 2666 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0900 article-title: Selective inactivation of Gram-negative bacteria by carbon dots derived from natural biomass-Artemisia argyi leaves publication-title: J Mater Chem B doi: 10.1039/C9TB02735A – volume: 59 start-page: S71 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0525 article-title: The success and the challenge of all-trans retinoic acid in the treatment of cancer publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408398.2018.1509201 – volume: 15 start-page: 851 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0910 article-title: Green synthesis of Zingiberis rhizoma-based carbon dots attenuates chemical and thermal stimulus pain in mice publication-title: Nanomedicine doi: 10.2217/nnm-2019-0369 – volume: 24 start-page: 4152 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0865 article-title: Novel Carbon Dots Derived from Puerariae lobatae Radix and Their Anti-Gout Effects publication-title: Molecules doi: 10.3390/molecules24224152 – volume: 24 start-page: 96 year: 2016 ident: 10.1016/j.jare.2022.09.013_b0675 article-title: Grapefruit-derived Nanovectors Delivering Therapeutic miR17 Through an Intranasal Route Inhibit Brain Tumor Progression publication-title: Mol Ther doi: 10.1038/mt.2015.188 – volume: 11 start-page: 29498 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0330 article-title: Simple and Multifunctional Natural Self-Assembled Sterols with Anticancer Activity-Mediated Supramolecular Photosensitizers for Enhanced Antitumor Photodynamic Therapy publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b07404 – volume: 23 start-page: 2300 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0285 article-title: Antiviral Activities of Oleanolic Acid and Its Analogues publication-title: Molecules doi: 10.3390/molecules23092300 – volume: 3 start-page: 648 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0385 article-title: A Simple Injectable Moldable Hydrogel Assembled from Natural Glycyrrhizic Acid with Inherent Antibacterial Activity publication-title: ACS Appl Bio Mater doi: 10.1021/acsabm.9b01007 – volume: 8 start-page: 6333 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0050 article-title: Research progress on nanotechnology for delivery of active ingredients from traditional Chinese medicines publication-title: J Mater Chem B doi: 10.1039/D0TB01260B – volume: 10 start-page: 1784 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0145 article-title: Self-assembled natural phytochemicals for synergistically antibacterial application from the enlightenment of traditional Chinese medicine combination publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2019.12.014 – volume: 29 start-page: 13 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0555 article-title: Plant Exosome-like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms publication-title: Mol Ther doi: 10.1016/j.ymthe.2020.11.030 – volume: 182 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0320 article-title: Paclitaxel and betulonic acid synergistically enhance antitumor efficacy by forming co-assembled nanoparticles publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2020.114232 – volume: 30 start-page: 1745 year: 2016 ident: 10.1016/j.jare.2022.09.013_b0100 article-title: Berberis Vulgaris and Berberine: An Update Review publication-title: Phytother Res doi: 10.1002/ptr.5693 – volume: 329 start-page: 805 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0070 article-title: Carrier-free nanodrugs for safe and effective cancer treatment publication-title: J Control Release doi: 10.1016/j.jconrel.2020.10.014 – volume: 10 start-page: 445 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0135 article-title: Anti-inflammatory Effects and Mechanisms of Rhein, an Anthraquinone Compound, and Its Applications in Treating Arthritis: A Review publication-title: Nat Prod Bioprospect doi: 10.1007/s13659-020-00272-y – volume: 70 start-page: 4725 year: 2022 ident: 10.1016/j.jare.2022.09.013_b0585 article-title: Characterization of the MicroRNA Profile of Ginger Exosome-like Nanoparticles and Their Anti-Inflammatory Effects in Intestinal Caco-2 Cells publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.1c07306 – volume: 18 start-page: 914 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0130 article-title: Self-Assembled Nanoparticles of Natural Phytochemicals (Berberine and 3,4,5-Methoxycinnamic Acid) Originated from Traditional Chinese Medicine for Inhibiting Multidrug-Resistant Staphylococcus aureus publication-title: Curr Drug Deliv doi: 10.2174/1567201817666201124121918 – volume: 101 start-page: 321 year: 2016 ident: 10.1016/j.jare.2022.09.013_b0575 article-title: Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.06.018 – volume: 16 start-page: 71 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0045 article-title: Nano based drug delivery systems: recent developments and future prospects publication-title: J Nanobiotechnol doi: 10.1186/s12951-018-0392-8 – volume: 256 start-page: 1463 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0270 article-title: Plant triterpenoid saponins: biosynthesis, in vitro production, and pharmacological relevance publication-title: Protoplasma doi: 10.1007/s00709-019-01411-0 – volume: 104 start-page: 6513 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0490 article-title: Anti-fungal properties and mechanisms of melittin publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-020-10701-0 – volume: 17 start-page: 841 year: 2017 ident: 10.1016/j.jare.2022.09.013_b0280 article-title: Self-assembly of Renewable Nano-sized Triterpenoids publication-title: Chem Rec doi: 10.1002/tcr.201600123 – volume: 2 start-page: 8623 year: 2012 ident: 10.1016/j.jare.2022.09.013_b0405 article-title: Self-assembly of a renewable nano-sized triterpenoid 18β-glycyrrhetinic acid publication-title: RSC Adv doi: 10.1039/c2ra21051g – volume: 83 start-page: 770 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0020 article-title: Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019 publication-title: J Nat Prod doi: 10.1021/acs.jnatprod.9b01285 – volume: 10 start-page: 847 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0040 article-title: Polymeric Nanocapsules as Nanotechnological Alternative for Drug Delivery System: Current Status publication-title: Challenges and Opportunities Nanomaterials – volume: 10 start-page: 4569 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0485 article-title: Nanostructured Peptidotoxins as Natural Pro-Oxidants Induced Cancer Cell Death via Amplification of Oxidative Stress publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b18809 – volume: 155 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0030 article-title: Traditional Chinese medicine for COVID-19 treatment publication-title: Pharmacol Res – volume: 151 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0275 article-title: Natural pentacyclic triterpenoid acids potentially useful as biocompatible nanocarriers publication-title: Fitoterapia doi: 10.1016/j.fitote.2021.104845 – volume: 16 start-page: 62 year: 2018 ident: 10.1016/j.jare.2022.09.013_b1005 article-title: Discovery of a sugar-based nanoparticle universally existing in boiling herbal water extracts and their immunostimulant effect publication-title: Biochem Biophys Rep – volume: 1 start-page: 1 year: 2022 ident: 10.1016/j.jare.2022.09.013_b0005 article-title: Drug discovery is an eternal challenge for the biomedical sciences publication-title: Acta Materia Medica doi: 10.15212/AMM-2022-1001 – volume: 559 start-page: 271 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0380 article-title: Glycyrrhizic acid as a multifunctional drug carrier – From physicochemical properties to biomedical applications: A modern insight on the ancient drug publication-title: Int J Pharmaceut doi: 10.1016/j.ijpharm.2019.01.047 – volume: 15 start-page: 9049 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0860 article-title: Carbon Dots from Paeoniae Radix Alba Carbonisata: Hepatoprotective Effect publication-title: Int J Nanomed doi: 10.2147/IJN.S281976 – volume: 49 start-page: 11 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0905 article-title: Carbon dots from Artemisiae Argyi Folium Carbonisata: strengthening the anti-frostbite ability publication-title: Artif Cell Nanomed B doi: 10.1080/21691401.2020.1862134 – volume: 26 start-page: 7368 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0095 article-title: Berberine as a Potential Anticancer Agent: A Comprehensive Review publication-title: Molecules doi: 10.3390/molecules26237368 – volume: 13 start-page: 370 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0995 article-title: Self-assembled aggregations in Coptidis Rhizoma decoction dynamically regulate intestinal tissue permeability through Peyer’s patch-associated immunity publication-title: Chin Herb Med doi: 10.1016/j.chmed.2021.06.004 – volume: 57 start-page: 20 year: 2015 ident: 10.1016/j.jare.2022.09.013_b0375 article-title: Dissipative particle dynamics study on self-assembled platycodin structures: The potential biocarriers for drug delivery publication-title: J Mol Graph Model doi: 10.1016/j.jmgm.2015.01.002 – volume: 583 start-page: 3363 year: 2009 ident: 10.1016/j.jare.2022.09.013_b0750 article-title: Vesicular fractions of sunflower apoplastic fluids are associated with potential exosome marker proteins publication-title: FEBS Lett doi: 10.1016/j.febslet.2009.09.041 – volume: 42 start-page: 432 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0835 article-title: A Network Pharmacology Approach Used to Estimate the Active Ingredients of Moutan Cortex Charcoal and the Potential Targets in Hemorrhagic Diseases publication-title: Biol Pharm Bull doi: 10.1248/bpb.b18-00756 – volume: 16 start-page: 618 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0395 article-title: Molecular Dynamics Simulations of Glycyrrhizic Acid Aggregates as Drug-Carriers for Paclitaxel publication-title: Curr Drug Deliv doi: 10.2174/1567201816666190313155117 – volume: 10 start-page: 12639 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0345 article-title: Synergistic combination chemotherapy using carrier-free celastrol and doxorubicin nanocrystals for overcoming drug resistance publication-title: Nanoscale doi: 10.1039/C8NR02700E – volume: 5 start-page: 1517 year: 2017 ident: 10.1016/j.jare.2022.09.013_b0185 article-title: Glutathione-responsive paclitaxel dimer nanovesicles with high drug content publication-title: Biomater Sci doi: 10.1039/C7BM00052A – volume: 21 start-page: 308 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0600 article-title: Plant-Derived Exosomal Nanoparticles Inhibit Pathogenicity of Porphyromonas gingivalis publication-title: iScience doi: 10.1016/j.isci.2019.10.032 – volume: 12 start-page: 494 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0355 article-title: Recent progress in polysaccharides from Panax ginseng C publication-title: A Meyer Food Funct doi: 10.1039/D0FO01896A – volume: 11 start-page: 246 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0455 article-title: A smart dual-drug nanosystem based on coassembly of plant and food-derived natural products for synergistic HCC immunotherapy publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2020.07.026 – volume: 8 start-page: 12209 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0950 article-title: Isolation and characterization of nanometre aggregates from a Bai-Hu-Tang decoction and their antipyretic effect publication-title: Sci Rep doi: 10.1038/s41598-018-30690-5 – volume: 12 start-page: 92 year: 2022 ident: 10.1016/j.jare.2022.09.013_b0055 article-title: Pure drug nano-assemblies: A facile carrier-free nanoplatform for efficient cancer therapy publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2021.08.012 – volume: 11 start-page: 15907 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0230 article-title: Acidity-responsive shell-sheddable camptothecin-based nanofibers for carrier-free cancer drug delivery publication-title: Nanoscale doi: 10.1039/C9NR03872H – volume: 23 start-page: 191 year: 2022 ident: 10.1016/j.jare.2022.09.013_b0560 article-title: Plant-Derived Extracellular Vesicles as Therapeutic Nanocarriers publication-title: Int J Mol Sci doi: 10.3390/ijms23010191 – volume: 25 start-page: 446 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0815 article-title: Haemostatic Nanoparticles-Derived Bioactivity of from Selaginella tamariscina Carbonisata publication-title: Molecules doi: 10.3390/molecules25030446 – volume: 268 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0060 article-title: Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120557 – volume: 46 start-page: S308 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0805 article-title: Haemostatic bioactivity of novel Schizonepetae Spica Carbonisata-derived carbon dots via platelet counts elevation publication-title: Artif Cell Nanomed B doi: 10.1080/21691401.2018.1492419 – volume: 22 start-page: 4599 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0290 article-title: Ursolic and Oleanolic Acids: Plant Metabolites with Neuroprotective Potential publication-title: Int J Mol Sci doi: 10.3390/ijms22094599 – volume: 24 start-page: 637 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0580 article-title: Plant-Derived Exosomal MicroRNAs Shape the Gut Microbiota publication-title: Cell Host Microbe doi: 10.1016/j.chom.2018.10.001 – volume: 15 start-page: 151 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0870 article-title: Novel Carbon Dots-Derived from Radix Puerariae Carbonisata Significantly Improve the Solubility and Bioavailability of Baicalin publication-title: J Biomed Nanotechnol doi: 10.1166/jbn.2019.2675 – volume: 8 start-page: 220 year: 2022 ident: 10.1016/j.jare.2022.09.013_b0080 article-title: Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: From intrinsic physicochemical properties to external modification publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2021.06.035 – volume: 52 start-page: 10369 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0755 article-title: Formation and Physicochemical Characteristics of Nano Biochar: Insight into Chemical and Colloidal Stability publication-title: Environ Sci Technol doi: 10.1021/acs.est.8b01481 – volume: 206 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0895 article-title: One-pot synthesis of Forsythia@carbon quantum dots with natural antiwood rot fungus activity publication-title: Mater Design – volume: 4 start-page: 28713 year: 2015 ident: 10.1016/j.jare.2022.09.013_b0595 article-title: Ginger-derived nanoparticles protect against alcohol-induced liver damage publication-title: J Extracell Vesicles doi: 10.3402/jev.v4.28713 – volume: 20 start-page: 1781 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0470 article-title: Transforming Complexity to Simplicity: Protein-Like Nanotransformer for Improving Tumor Drug Delivery Programmatically publication-title: Nano Lett doi: 10.1021/acs.nanolett.9b05008 – volume: 11 start-page: 10480 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0990 article-title: Role of particle aggregates in herbal medicine decoction showing they are not useless: considering Coptis chinensis decoction as an example publication-title: Food Funct doi: 10.1039/D0FO02179B – volume: 29 start-page: 3495 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0430 article-title: Small Molecule Nanodrug Assembled of Dual-Anticancer Drug Conjugate for Synergetic Cancer Metastasis Therapy publication-title: Bioconjugate Chem doi: 10.1021/acs.bioconjchem.8b00657 – volume: 16 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0205 article-title: Recent progress in nanoformulations of cabazitaxel publication-title: Biomed Mater doi: 10.1088/1748-605X/abe396 – volume: 5 start-page: 9121 year: 2017 ident: 10.1016/j.jare.2022.09.013_b0440 article-title: A carrier-free dual-drug nanodelivery system functionalized with aptamer specific targeting HER2-overexpressing cancer cells publication-title: J Mater Chem B doi: 10.1039/C7TB02562A – volume: 7 start-page: 178 year: 2017 ident: 10.1016/j.jare.2022.09.013_b1010 article-title: Boiling-induced nanoparticles and their constitutive proteins from Isatis indigotica Fort. root decoction: Purification and identification publication-title: J Tradit Complement Med doi: 10.1016/j.jtcme.2016.08.007 – volume: 38 start-page: 1691 year: 2015 ident: 10.1016/j.jare.2022.09.013_b0825 article-title: Tracing novel hemostatic compounds from heating products of total flavonoids in Flos Sophorae by spectrum–effect relationships and column chromatography publication-title: J Sep Sci doi: 10.1002/jssc.201500100 – volume: 12 start-page: 42537 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0295 article-title: Nanomedicine-Cum-Carrier by Co-Assembly of Natural Small Products for Synergistic Enhanced Antitumor with Tissues Protective Actions publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c12641 – volume: 598 start-page: 444 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0390 article-title: Adsorption and self-assembly properties of the plant based biosurfactant publication-title: Glycyrrhizic acid J Colloid Interf Sci doi: 10.1016/j.jcis.2021.03.101 – volume: 6 start-page: 4321 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0735 article-title: Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2021.04.023 – volume: 9 start-page: 480 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0220 article-title: Recent Advances in Improved Anticancer Efficacies of Camptothecin Nano-Formulations: A Systematic Review publication-title: Biomedicines doi: 10.3390/biomedicines9050480 – volume: 15 start-page: 708 year: 2022 ident: 10.1016/j.jare.2022.09.013_b0565 article-title: Focusing on Future Applications and Current Challenges of Plant Derived Extracellular Vesicles publication-title: Pharmaceuticals doi: 10.3390/ph15060708 – volume: 155 start-page: 889 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0515 article-title: Therapeutic potential of quercetin as a cardiovascular agent publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2018.06.053 – volume: 570 year: 2019 ident: 10.1016/j.jare.2022.09.013_b0075 article-title: Carrier-free nanodrug: A novel strategy of cancer diagnosis and synergistic therapy publication-title: Int J Pharmaceut doi: 10.1016/j.ijpharm.2019.118663 – volume: 13 start-page: 3224 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0475 article-title: Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials—A Minireview publication-title: Materials doi: 10.3390/ma13143224 – ident: 10.1016/j.jare.2022.09.013_b0640 doi: 10.1016/j.isci.2021.102511 – volume: 601 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0400 article-title: Preparation, optimization, characterization and in vitro release of baicalein-solubilizing glycyrrhizic acid nano-micelles publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2021.120546 – volume: 22 start-page: 1456 year: 2017 ident: 10.1016/j.jare.2022.09.013_b0980 article-title: Origin and Formation Mechanism Investigation of Compound Precipitation from the Traditional Chinese Prescription Huang-Lian-Jie-Du-Tang by Isothermal Titration Calorimetry publication-title: Molecules doi: 10.3390/molecules22091456 – volume: 151 start-page: 1116 year: 2014 ident: 10.1016/j.jare.2022.09.013_b0955 article-title: Chromatographic isolation of nanoparticles from Ma-Xing-Shi-Gan-Tang decoction and their characterization publication-title: J Ethnopharmacol doi: 10.1016/j.jep.2013.12.029 – volume: 12 start-page: 6827 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0300 article-title: Exploration of the Natural Active Small-Molecule Drug-Loading Process and Highly Efficient Synergistic Antitumor Efficacy publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b18443 – volume: 14 start-page: 2146 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0880 article-title: Hypoglycemic Bioactivity of Novel Eco-Friendly Carbon Dots Derived from Traditional Chinese Medicine publication-title: J Biomed Nanotechnol doi: 10.1166/jbn.2018.2653 – volume: 30 start-page: 1907857 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0460 article-title: Nanodrug Carrier Based on Poly(Ursolic Acid) with Self-Anticancer Activity against Colorectal Cancer publication-title: Adv Funct Mater doi: 10.1002/adfm.201907857 – volume: 3 start-page: 24906 year: 2013 ident: 10.1016/j.jare.2022.09.013_b0410 article-title: Self-assembly of sodium glycyrrhetinate into a hydrogel: characterisation and properties publication-title: RSC Adv doi: 10.1039/c3ra43306d – volume: 229 start-page: 111 year: 2018 ident: 10.1016/j.jare.2022.09.013_b0620 article-title: Protein biocargo of citrus fruit-derived vesicles reveals heterogeneous transport and extracellular vesicle populations publication-title: J Plant Physiol doi: 10.1016/j.jplph.2018.07.006 – volume: 124 year: 2020 ident: 10.1016/j.jare.2022.09.013_b0945 article-title: A study of nanometre aggregates formation mechanism and antipyretic effect in Bai-Hu-Tang, an ancient Chinese herbal decoction publication-title: Biomed Pharmacother doi: 10.1016/j.biopha.2020.109826 – volume: 22 start-page: 1247 year: 2017 ident: 10.1016/j.jare.2022.09.013_b0125 article-title: Multifunctional Cinnamic Acid Derivatives publication-title: Molecules doi: 10.3390/molecules22081247 – volume: 274 start-page: 796 year: 2019 ident: 10.1016/j.jare.2022.09.013_b1020 article-title: Fabrication of self-assembled Radix Pseudostellariae protein nanoparticles and the entrapment of curcumin publication-title: Food Chem doi: 10.1016/j.foodchem.2018.09.059 – volume: 20 start-page: 16970 year: 2015 ident: 10.1016/j.jare.2022.09.013_b0830 article-title: A Novel Reduplicate Strategy for Tracing Hemostatic Compounds from Heating Products of the Flavonoid Extract in Platycladi cacumen by Spectrum-Effect Relationships and Column Chromatography publication-title: Molecules doi: 10.3390/molecules200916970 – volume: 20 start-page: 200 year: 2021 ident: 10.1016/j.jare.2022.09.013_b0015 article-title: the International Natural Product Sciences Taskforce, Supuran CT. Natural products in drug discovery: advances and opportunities publication-title: Nat Rev Drug Discov doi: 10.1038/s41573-020-00114-z – volume: 446 start-page: 786 year: 2014 ident: 10.1016/j.jare.2022.09.013_b0325 article-title: Recent advances in Phytosterol Oxidation Products publication-title: Biochem Bioph Res Co doi: 10.1016/j.bbrc.2014.01.148 |
SSID | ssj0000388911 |
Score | 2.3722987 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Carrier-free nanoplatforms with self-assembly from natural plants.•Nano self-assembly of pure small molecules for enhanced... Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis... • Carrier-free nanoplatforms with self-assembly from natural plants. • Nano self-assembly of pure small molecules for enhanced bioactivity. • Extracellular... Background: Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 159 |
SubjectTerms | Carrier-free nanoplatform Charcoal nanocomponent Extracellular vesicle Humans Medicine, Chinese Traditional Nanoaggregates Nanoparticles Natural plants Plants, Medicinal Review |
SummonAdditionalLinks | – databaseName: ScienceDirect Free & Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELainHKpmj5p2opKPbSq0Abb-HFsVkmjSu2ljbQ3yzamIYpgxZL_3xljViWRcugFCWPADGPPNzDzDSEfAWLL2jFwcmSQBResLnTlwVVhzpWi1oFzTE7-8VNcXvHvm2pzQNZzLgyGVaa1f1rT42qdWlZJmqtt265-0VMdAQGNcQYV0m4zrmIS3-Zs_50F2U50LMOL_Qs8IeXOTGFeN3ZAtkxKI91pyRb2KdL4L8zUQxh6P5ryH_N08ZQ8Sbgy_zoN_ZgchO4ZOU4zd5d_SvTSn5-Tb2s7YJm6ohlCyDvb9dtbOyJ23eWYbJJHrk-4FjR3I7T1Qx666xgpkLu2x0wILDjxglxdnP9eXxapnELhAWSNhXTON8h4JyzlFgvYcXQXtPK1BRRYN2C6dVNpT1XAEDQZhFWlVJaJphEwj1-Sw67vwmuSK1fREIRmuvQc8LmyrmbeS2mbRslGZKSchWh84hrHkhe3Zg4quzEoeIOCN6fagOAz8mV_znZi2ni09xm-m31PZMmODf3wxyQ1Mcx5Wgde1riVTikB5rr2lXMUREFdRqr5zZqF0sGl2kdv_mFWAwOzEX-x2C70dztDJeBl8Am5ysirSS32Q4R7w5LOeEbUQmEWz7A80rXXkfEbfGZAGlK9-c8Bn5Aj2GNT4OJbcjgOd-EdgKnRvY-z5S8BfxzE priority: 102 providerName: Elsevier |
Title | Carrier-free nanoplatforms from natural plants for enhanced bioactivity |
URI | https://dx.doi.org/10.1016/j.jare.2022.09.013 https://www.ncbi.nlm.nih.gov/pubmed/36208834 https://www.proquest.com/docview/2723160648 https://pubmed.ncbi.nlm.nih.gov/PMC10403678 https://doaj.org/article/3bc2de41d2de47b886362dc5bb2bcf2b |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQ5RkKVZA4gFAEsR0_jm1FKUhwotLeLD_VrSqnyqb_nxknu9qAVC5cfHAcOx6PPd8o428IeQcQWwbHwMmRUTZcsNDozoOrwpxrRdCRc7yc_OOnuLjk31fdai_VF8aETfTAk-A-MedpiLwNWEqnlIAjN_jOOep8og5PX7B5e85UOYOZUrok34WHGH7A6HxjZgruurYDcmRSWkhOW7awSoW8f2Gc_gaff8ZQ7hml88fk0Ywm65NpFofkQcxPyOG8Xzf1-5lU-sNT8vXMDpicrklDjHW2ub-9sSMi1k2NV0zqwvAJfUF1HqGuH-qYr0p8QO3WPd5_wDQTz8jl-ZdfZxfNnESh8QCtxkY6EBPy3AlLucW0dRydBK18sID9QgKDrVOnPVURA89kFFa1UlkmUhKwe5-Tg9zn-JLUynU0RqGZbj0HVK6sC8x7KW1KSiZRkXYrRONnhnFMdHFjtqFk1wYFb1Dw5rM2IPiKfNy9czvxa9zb-hTXZtcSubFLBWiMmTXG_EtjKtJtV9bMMGOCD9DV-t7B327VwMAexB8rNsf-bmOoBJQMniBXFXkxqcXuE2FsOMgZr4haKMxiDssneX1VeL7BUwZ8IdWr_zHrI_IQ5sKm2MXX5GAc7uIbwFOjOy5bB8pvq9Pfh8QfAA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq9gAXRHkGCgQJJBCKtrET2zlwoIWySx8XWmlvxnYcmqpKVtlUiN_FH2TG8a4ISD0g9ZKD8_KOxzPfZGe-IeQVQGxRGgZBjnAiyTgrkyK3EKowY1JeFi7LsDj5-IRPz7Iv83y-QX6tamEwrTLY_sGme2sdRiZBmpNFXU--0t3CAwLq8wxyHjIrD93PHxC3Ld_PPsIiv6b04NPp_jQJrQUSC4CjT4QxtkL2N65pprGZW4bQuZC21ICIygrcWFHlhaXSYTqWcFzLVEjNeFVxgQxMYPe3AH0ItAaz-d76ww7SqxS-7y9OMMEZhmKdIa_sQndIz0mp51dN2cgh-r4BI7_4L-79O33zD394cJfcCUA2_jDIaptsuOYe2Q6mYhm_CXzWb--Tz_u6w754SdU5Fze6aReXukewvIyxuiX25KLwLBhuehhru9g15z41ITZ1i6UX2OHiATm7ESE_JJtN27jHJJYmp87xghWpzSAgkNqUzFohdFVJUfGIpCshKhvIzbHHxqVaZbFdKBS8QsGr3UKB4CPybn3PYqD2uPbqPVyb9ZVIy-0H2u67CnqpmLG0dFla4lEYKTngg9LmxlAQBTURyVcrq0ZaDo-qr335y5UaKNj--J-Oblx7tVRUAECHIDSTEXk0qMV6ivBu8CEsi4gcKczoN4zPNPW5pxiHIB2gjZBP_nPCL8it6enxkTqanRw-JbfhDBuyJnfIZt9duWeA5Hrz3O-cmHy76a36G4fqWQg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carrier-free+nanoplatforms+from+natural+plants+for+enhanced+bioactivity&rft.jtitle=Journal+of+advanced+research&rft.au=Li%2C+Zhongrui&rft.au=Xu%2C+Xiao&rft.au=Wang%2C+Yun&rft.au=Kong%2C+Lingyi&rft.date=2023-08-01&rft.issn=2090-1232&rft.volume=50&rft.spage=159&rft.epage=176&rft_id=info:doi/10.1016%2Fj.jare.2022.09.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jare_2022_09_013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-1232&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-1232&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-1232&client=summon |