A Possible Trifunctional β-Carotene Synthase Gene Identified in the Draft Genome of Aurantiochytrium sp. Strain KH105

Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids such as docosahexaenoic acid and docosapentaenoic acid, ω-3 oils, and terpenic hydrocarbons, such as sterols and squalene. A Thraustochytrid,...

Full description

Saved in:
Bibliographic Details
Published inGenes Vol. 9; no. 4; p. 200
Main Authors Iwasaka, Hiroaki, Koyanagi, Ryo, Satoh, Ryota, Nagano, Akiko, Watanabe, Kenshi, Hisata, Kanako, Satoh, Noriyuki, Aki, Tsunehiro
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 09.04.2018
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids such as docosahexaenoic acid and docosapentaenoic acid, ω-3 oils, and terpenic hydrocarbons, such as sterols and squalene. A Thraustochytrid, Aurantiochytrium sp. KH105 produces carotenoids, including astaxanthin, with strong antioxidant activity. To gain genomic insights into this capacity, we decoded its 97-Mbp genome and characterized genes for enzymes involved in carotenoid biosynthesis. Interestingly, all carotenogenic genes, as well as other eukaryotic genes, appeared duplicated, suggesting that this strain is diploid. In addition, among the five genes involved in the pathway from geranylgeranyl pyrophosphate to astaxanthin, geranylgeranyl phytoene synthase (crtB), phytoene desaturase (crtI) and lycopene cyclase (crtY) were fused into single gene (crtIBY) with no internal stop codons. Functionality of the trifunctional enzyme, CrtIBY, to catalyze the reaction from geranylgeranyl diphosphate to β-carotene was confirmed using a yeast assay system and mass spectrometry. Furthermore, analyses of differential gene expression showed characteristic up-regulation of carotenoid biosynthetic genes during stationary and starvation phases under these culture conditions. This suggests genetic engineering events to promote more efficient production of carotenoids. We also showed an occurrence of crtIBY in other Thraustochytrid species.
AbstractList Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids such as docosahexaenoic acid and docosapentaenoic acid, ω-3 oils, and terpenic hydrocarbons, such as sterols and squalene. A Thraustochytrid, sp. KH105 produces carotenoids, including astaxanthin, with strong antioxidant activity. To gain genomic insights into this capacity, we decoded its 97-Mbp genome and characterized genes for enzymes involved in carotenoid biosynthesis. Interestingly, all carotenogenic genes, as well as other eukaryotic genes, appeared duplicated, suggesting that this strain is diploid. In addition, among the five genes involved in the pathway from geranylgeranyl pyrophosphate to astaxanthin, geranylgeranyl phytoene synthase ( ), phytoene desaturase ( ) and lycopene cyclase ( ) were fused into single gene ( ) with no internal stop codons. Functionality of the trifunctional enzyme, CrtIBY, to catalyze the reaction from geranylgeranyl diphosphate to β-carotene was confirmed using a yeast assay system and mass spectrometry. Furthermore, analyses of differential gene expression showed characteristic up-regulation of carotenoid biosynthetic genes during stationary and starvation phases under these culture conditions. This suggests genetic engineering events to promote more efficient production of carotenoids. We also showed an occurrence of in other Thraustochytrid species.
Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids such as docosahexaenoic acid and docosapentaenoic acid, ω-3 oils, and terpenic hydrocarbons, such as sterols and squalene. A Thraustochytrid, Aurantiochytrium sp. KH105 produces carotenoids, including astaxanthin, with strong antioxidant activity. To gain genomic insights into this capacity, we decoded its 97-Mbp genome and characterized genes for enzymes involved in carotenoid biosynthesis. Interestingly, all carotenogenic genes, as well as other eukaryotic genes, appeared duplicated, suggesting that this strain is diploid. In addition, among the five genes involved in the pathway from geranylgeranyl pyrophosphate to astaxanthin, geranylgeranyl phytoene synthase (crtB), phytoene desaturase (crtI) and lycopene cyclase (crtY) were fused into single gene (crtIBY) with no internal stop codons. Functionality of the trifunctional enzyme, CrtIBY, to catalyze the reaction from geranylgeranyl diphosphate to β-carotene was confirmed using a yeast assay system and mass spectrometry. Furthermore, analyses of differential gene expression showed characteristic up-regulation of carotenoid biosynthetic genes during stationary and starvation phases under these culture conditions. This suggests genetic engineering events to promote more efficient production of carotenoids. We also showed an occurrence of crtIBY in other Thraustochytrid species.
Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids such as docosahexaenoic acid and docosapentaenoic acid, ω-3 oils, and terpenic hydrocarbons, such as sterols and squalene. A Thraustochytrid, Aurantiochytrium sp. KH105 produces carotenoids, including astaxanthin, with strong antioxidant activity. To gain genomic insights into this capacity, we decoded its 97-Mbp genome and characterized genes for enzymes involved in carotenoid biosynthesis. Interestingly, all carotenogenic genes, as well as other eukaryotic genes, appeared duplicated, suggesting that this strain is diploid. In addition, among the five genes involved in the pathway from geranylgeranyl pyrophosphate to astaxanthin, geranylgeranyl phytoene synthase ( crtB ), phytoene desaturase ( crtI ) and lycopene cyclase ( crtY ) were fused into single gene ( crtIBY ) with no internal stop codons. Functionality of the trifunctional enzyme, CrtIBY, to catalyze the reaction from geranylgeranyl diphosphate to β-carotene was confirmed using a yeast assay system and mass spectrometry. Furthermore, analyses of differential gene expression showed characteristic up-regulation of carotenoid biosynthetic genes during stationary and starvation phases under these culture conditions. This suggests genetic engineering events to promote more efficient production of carotenoids. We also showed an occurrence of crtIBY in other Thraustochytrid species.
Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids such as docosahexaenoic acid and docosapentaenoic acid, ω-3 oils, and terpenic hydrocarbons, such as sterols and squalene. A Thraustochytrid, Aurantiochytrium sp. KH105 produces carotenoids, including astaxanthin, with strong antioxidant activity. To gain genomic insights into this capacity, we decoded its 97-Mbp genome and characterized genes for enzymes involved in carotenoid biosynthesis. Interestingly, all carotenogenic genes, as well as other eukaryotic genes, appeared duplicated, suggesting that this strain is diploid. In addition, among the five genes involved in the pathway from geranylgeranyl pyrophosphate to astaxanthin, geranylgeranyl phytoene synthase (crtB), phytoene desaturase (crtI) and lycopene cyclase (crtY) were fused into single gene (crtIBY) with no internal stop codons. Functionality of the trifunctional enzyme, CrtIBY, to catalyze the reaction from geranylgeranyl diphosphate to β-carotene was confirmed using a yeast assay system and mass spectrometry. Furthermore, analyses of differential gene expression showed characteristic up-regulation of carotenoid biosynthetic genes during stationary and starvation phases under these culture conditions. This suggests genetic engineering events to promote more efficient production of carotenoids. We also showed an occurrence of crtIBY in other Thraustochytrid species.Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids such as docosahexaenoic acid and docosapentaenoic acid, ω-3 oils, and terpenic hydrocarbons, such as sterols and squalene. A Thraustochytrid, Aurantiochytrium sp. KH105 produces carotenoids, including astaxanthin, with strong antioxidant activity. To gain genomic insights into this capacity, we decoded its 97-Mbp genome and characterized genes for enzymes involved in carotenoid biosynthesis. Interestingly, all carotenogenic genes, as well as other eukaryotic genes, appeared duplicated, suggesting that this strain is diploid. In addition, among the five genes involved in the pathway from geranylgeranyl pyrophosphate to astaxanthin, geranylgeranyl phytoene synthase (crtB), phytoene desaturase (crtI) and lycopene cyclase (crtY) were fused into single gene (crtIBY) with no internal stop codons. Functionality of the trifunctional enzyme, CrtIBY, to catalyze the reaction from geranylgeranyl diphosphate to β-carotene was confirmed using a yeast assay system and mass spectrometry. Furthermore, analyses of differential gene expression showed characteristic up-regulation of carotenoid biosynthetic genes during stationary and starvation phases under these culture conditions. This suggests genetic engineering events to promote more efficient production of carotenoids. We also showed an occurrence of crtIBY in other Thraustochytrid species.
Author Iwasaka, Hiroaki
Nagano, Akiko
Hisata, Kanako
Satoh, Ryota
Satoh, Noriyuki
Koyanagi, Ryo
Watanabe, Kenshi
Aki, Tsunehiro
AuthorAffiliation 2 Marine Genomic Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0945, Japan; koyanagi@oist.jp (R.K.); kanako@oist.jp (K.H.)
1 Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan; wdzra2nhph@gmail.com (H.I.); ctsak9y9g9@gmail.com (R.S.); pnsptrui35@gmail.com (A.N.); kwatanabe@hiroshima-u.ac.jp (K.W.)
3 JST-CREST, Saitama 332-0012, Japan
AuthorAffiliation_xml – name: 3 JST-CREST, Saitama 332-0012, Japan
– name: 1 Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan; wdzra2nhph@gmail.com (H.I.); ctsak9y9g9@gmail.com (R.S.); pnsptrui35@gmail.com (A.N.); kwatanabe@hiroshima-u.ac.jp (K.W.)
– name: 2 Marine Genomic Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0945, Japan; koyanagi@oist.jp (R.K.); kanako@oist.jp (K.H.)
Author_xml – sequence: 1
  givenname: Hiroaki
  surname: Iwasaka
  fullname: Iwasaka, Hiroaki
– sequence: 2
  givenname: Ryo
  orcidid: 0000-0002-9694-0288
  surname: Koyanagi
  fullname: Koyanagi, Ryo
– sequence: 3
  givenname: Ryota
  surname: Satoh
  fullname: Satoh, Ryota
– sequence: 4
  givenname: Akiko
  surname: Nagano
  fullname: Nagano, Akiko
– sequence: 5
  givenname: Kenshi
  surname: Watanabe
  fullname: Watanabe, Kenshi
– sequence: 6
  givenname: Kanako
  surname: Hisata
  fullname: Hisata, Kanako
– sequence: 7
  givenname: Noriyuki
  surname: Satoh
  fullname: Satoh, Noriyuki
– sequence: 8
  givenname: Tsunehiro
  orcidid: 0000-0001-9753-2043
  surname: Aki
  fullname: Aki, Tsunehiro
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29642531$$D View this record in MEDLINE/PubMed
BookMark eNptkc1u1DAUhS1URMvQHWtkiU0XpDj-y3iDNBqgragEUsvacpybjqvEHmyn0rwWD8Iz4dAWDRXe2Nb97rlH97xEBz54QOh1TU4ZU-T9DXhIinBCCXmGjihpWMU5FQd770N0nNItKecPJl6gQ6pkKbD6CN2t8LeQkmsHwNfR9ZO32QVvBvzrZ7U2MeQyAV_tfN6YBPhs_l104LPrHXTYeZw3gD9G0-e5GEbAocerKZqCBLvZ5eimEaftKb7K0RT-y3lNxCv0vDdDguOHe4G-f_50vT6vLr-eXaxXl5UVlOaqURz6YpoR1bZQq5bIjhtrOGW8bmTNKemapWxbsSQUaNcS0SkrBYVe0s7WbIE-3Otup3aEzhbj0Qx6G91o4k4H4_S_Fe82-ibcaaEoF2XMAp08CMTwY4KU9eiShWEwHsKUNCWUc7lkUhT07RP0NkyxrHKmOFGCNVIW6s2-o79WHiMpAL0HbCzBROi1ddnMocz7G3RN9By93o--NL170vSo-1_8N2OisEU
CitedBy_id crossref_primary_10_1007_s00253_021_11425_5
crossref_primary_10_1111_jam_15527
crossref_primary_10_1007_s12010_022_04172_4
crossref_primary_10_3390_ijms252313172
crossref_primary_10_1080_07388551_2023_2208284
crossref_primary_10_1016_j_biotechadv_2021_107897
crossref_primary_10_3390_md19070386
crossref_primary_10_1016_j_tibtech_2022_03_008
crossref_primary_10_1016_j_margen_2021_100918
crossref_primary_10_1021_acs_jafc_3c09086
crossref_primary_10_1007_s00253_020_10927_y
crossref_primary_10_3390_fermentation11040168
crossref_primary_10_1186_s13068_020_01811_y
crossref_primary_10_3390_md21040249
crossref_primary_10_1016_j_biortech_2023_130250
crossref_primary_10_1016_j_tifs_2019_08_016
crossref_primary_10_1016_j_algal_2021_102238
crossref_primary_10_1007_s10452_024_10105_6
crossref_primary_10_1016_j_jbiosc_2020_11_013
crossref_primary_10_1007_s10126_021_10085_w
crossref_primary_10_3390_metabo11030135
crossref_primary_10_1038_s41598_020_77876_4
crossref_primary_10_3390_ani12202794
crossref_primary_10_1016_j_plipres_2020_101083
crossref_primary_10_1093_gbe_evad029
crossref_primary_10_1016_j_enzmictec_2022_110018
crossref_primary_10_1080_07388551_2023_2196373
crossref_primary_10_1016_j_plipres_2019_101007
crossref_primary_10_1111_1462_2920_14978
crossref_primary_10_1021_acssynbio_2c00490
crossref_primary_10_3390_md17010045
crossref_primary_10_1038_s41396_023_01412_1
crossref_primary_10_1002_aocs_12364
crossref_primary_10_3390_ani13152482
Cites_doi 10.3354/meps189027
10.1007/s11746-003-0773-2
10.1038/nature08696
10.1038/nbt.1621
10.1186/1471-2105-12-491
10.1038/nature03959
10.1007/s00253-010-2976-6
10.1093/bioinformatics/btm404
10.1016/j.abb.2010.07.028
10.1101/gr.1224503
10.1016/j.gdata.2016.04.013
10.1128/EC.00265-06
10.1038/nbt.1883
10.1007/s004380051105
10.1016/j.gde.2006.10.009
10.1093/nar/gkp985
10.1186/1471-2105-11-345
10.1093/molbev/msp259
10.1128/genomeA.01335-17
10.1073/pnas.98.4.1687
10.1038/nature08358
10.1007/s10126-001-0016-3
10.1093/nar/gkn916
10.1093/bioinformatics/btr011
10.1126/science.1128796
10.1101/gr.074492.107
10.1271/bbb.68.1594
10.3390/md9061101
10.1016/j.biotechadv.2012.02.014
10.1371/journal.pone.0011257
10.1101/gr.403602
10.1093/bioinformatics/btq683
10.1098/rstb.1994.0156
10.1038/nprot.2012.016
10.1128/genomeA.00819-15
10.3390/md9050757
10.1093/nar/gkg770
10.1021/jf9003972
10.3354/meps162105
10.1007/s11120-010-9583-3
10.1271/bbb.110430
10.1146/annurev.arplant.49.1.557
10.1007/S10267-006-0362-0
10.1007/s11745-016-4181-6
ContentType Journal Article
Copyright Copyright MDPI AG 2018
2018 by the authors. 2018
Copyright_xml – notice: Copyright MDPI AG 2018
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.3390/genes9040200
DatabaseName CrossRef
PubMed
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2073-4425
ExternalDocumentID PMC5924542
29642531
10_3390_genes9040200
Genre Journal Article
GroupedDBID ---
53G
5VS
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
ADRAZ
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
DIK
EBD
HCIFZ
HYE
IAO
IPNFZ
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RIG
RPM
GROUPED_DOAJ
NPM
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c522t-794ef020309bbe19b06d4aca42341761420d786bb5802e2db05d9c652ef62dc13
IEDL.DBID M48
ISSN 2073-4425
IngestDate Thu Aug 21 14:06:08 EDT 2025
Fri Jul 11 08:49:12 EDT 2025
Fri Jul 25 12:04:08 EDT 2025
Wed Feb 19 02:44:21 EST 2025
Thu Apr 24 22:55:35 EDT 2025
Tue Jul 01 02:54:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Aurantiochytrium sp. strain KH105
genome sequencing
CrtIBY
carotenoid biosynthesis
trifunctional enzyme gene
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-794ef020309bbe19b06d4aca42341761420d786bb5802e2db05d9c652ef62dc13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to the work.
ORCID 0000-0002-9694-0288
0000-0001-9753-2043
OpenAccessLink https://www.proquest.com/docview/2040953766?pq-origsite=%requestingapplication%
PMID 29642531
PQID 2040953766
PQPubID 2032392
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5924542
proquest_miscellaneous_2024468365
proquest_journals_2040953766
pubmed_primary_29642531
crossref_citationtrail_10_3390_genes9040200
crossref_primary_10_3390_genes9040200
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-09
PublicationDateYYYYMMDD 2018-04-09
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-09
  day: 09
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Genes
PublicationTitleAlternate Genes (Basel)
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Verdoes (ref_49) 1999; 262
Haas (ref_26) 2003; 31
Naganuma (ref_5) 1998; 162
ref_19
Boetzer (ref_20) 2011; 27
ref_16
Parra (ref_37) 2009; 37
Ji (ref_12) 2015; 3
Li (ref_21) 2010; 463
Kingsford (ref_22) 2011; 27
Li (ref_9) 2009; 57
Schmidt (ref_48) 2011; 89
Lichtenthaler (ref_44) 1999; 50
Yokoyama (ref_3) 2007; 48
Kimura (ref_4) 1999; 189
Gouy (ref_32) 2010; 27
Takaichi (ref_42) 2011; 9
Grabherr (ref_24) 2011; 29
Trapnell (ref_33) 2010; 28
Cunningham (ref_41) 2007; 6
ref_27
Zhu (ref_45) 2010; 504
Lemoine (ref_43) 2010; 106
Stein (ref_28) 2002; 12
Allsopp (ref_2) 1994; 346
Lewis (ref_7) 2001; 3
Li (ref_31) 2003; 13
ref_36
ref_30
Kaya (ref_10) 2011; 75
Trapnell (ref_34) 2012; 7
Cunningham (ref_40) 1998; 49
Yamaoka (ref_8) 2004; 68
Bentley (ref_18) 2006; 16
Haas (ref_35) 2009; 461
Larkin (ref_25) 2007; 23
ref_47
Arrach (ref_39) 2001; 98
Liu (ref_13) 2016; 8
Sediki (ref_15) 2018; 6
Margulies (ref_17) 2005; 437
Zerbino (ref_23) 2008; 18
Misawa (ref_46) 2011; 9
Zhao (ref_14) 2016; 51
Tyler (ref_38) 2006; 313
ref_1
Finn (ref_29) 2010; 38
Gupta (ref_6) 2012; 30
Aki (ref_11) 2003; 80
16946064 - Science. 2006 Sep 1;313(5791):1261-6
22192575 - BMC Bioinformatics. 2011 Dec 22;12:491
26251485 - Genome Announc. 2015 Aug 06;3(4):null
22056449 - Biosci Biotechnol Biochem. 2011;75(11):2246-8
27514858 - Lipids. 2016 Sep;51(9):1065-75
22406165 - Biotechnol Adv. 2012 Nov-Dec;30(6):1733-45
22383036 - Nat Protoc. 2012 Mar 01;7(3):562-78
12368253 - Genome Res. 2002 Oct;12(10):1599-610
14961336 - Mar Biotechnol (NY). 2001 Sep;3(5):439-47
11172012 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1687-92
19371138 - J Agric Food Chem. 2009 May 27;57(10):4267-72
15012246 - Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:557-583
15012203 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:47-65
16056220 - Nature. 2005 Sep 15;437(7057):376-80
19741609 - Nature. 2009 Sep 17;461(7262):393-8
19920124 - Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22
21572440 - Nat Biotechnol. 2011 May 15;29(7):644-52
21217122 - Bioinformatics. 2011 Mar 15;27(6):764-70
14500829 - Nucleic Acids Res. 2003 Oct 1;31(19):5654-66
21149342 - Bioinformatics. 2011 Feb 15;27(4):578-9
20576136 - BMC Bioinformatics. 2010 Jun 24;11:345
21747749 - Mar Drugs. 2011;9(6):1101-18
20688043 - Arch Biochem Biophys. 2010 Dec 1;504(1):132-41
17055251 - Curr Opin Genet Dev. 2006 Dec;16(6):545-52
20436464 - Nat Biotechnol. 2010 May;28(5):511-5
21046372 - Appl Microbiol Biotechnol. 2011 Feb;89(3):555-71
27222814 - Genom Data. 2016 Apr 29;8:115-6
21673887 - Mar Drugs. 2011;9(5):757-71
20706789 - Photosynth Res. 2010 Nov;106(1-2):155-77
15277770 - Biosci Biotechnol Biochem. 2004 Jul;68(7):1594-7
17085635 - Eukaryot Cell. 2007 Mar;6(3):533-45
20010809 - Nature. 2010 Jan 21;463(7279):311-7
18349386 - Genome Res. 2008 May;18(5):821-9
12952885 - Genome Res. 2003 Sep;13(9):2178-89
19854763 - Mol Biol Evol. 2010 Feb;27(2):221-4
29545303 - Genome Announc. 2018 Mar 15;6(11):null
20582313 - PLoS One. 2010 Jun 22;5(6):e11257
10589832 - Mol Gen Genet. 1999 Oct;262(3):453-61
19042974 - Nucleic Acids Res. 2009 Jan;37(1):289-97
17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8
References_xml – volume: 189
  start-page: 27
  year: 1999
  ident: ref_4
  article-title: Biomass of Thraustochytrid protoctists in coastal water
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps189027
– volume: 80
  start-page: 789
  year: 2003
  ident: ref_11
  article-title: Thraustochytrid as a potential source of carotenoids
  publication-title: J. Am. Oil Chem. Soc.
  doi: 10.1007/s11746-003-0773-2
– volume: 463
  start-page: 311
  year: 2010
  ident: ref_21
  article-title: The sequence and de novo assembly of the giant panda genome
  publication-title: Nature
  doi: 10.1038/nature08696
– volume: 28
  start-page: 511
  year: 2010
  ident: ref_33
  article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1621
– ident: ref_30
  doi: 10.1186/1471-2105-12-491
– volume: 437
  start-page: 376
  year: 2005
  ident: ref_17
  article-title: Genome sequencing in microfabricated high-density picolitre reactors
  publication-title: Nature
  doi: 10.1038/nature03959
– volume: 89
  start-page: 555
  year: 2011
  ident: ref_48
  article-title: Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-010-2976-6
– ident: ref_16
– volume: 23
  start-page: 2947
  year: 2007
  ident: ref_25
  article-title: Clustal W and Clustal X version 2.0
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm404
– volume: 504
  start-page: 132
  year: 2010
  ident: ref_45
  article-title: The regulation of carotenoid pigmentation in flowers
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2010.07.028
– ident: ref_1
– volume: 13
  start-page: 2178
  year: 2003
  ident: ref_31
  article-title: OrthoMCL: Identification of ortholog groups for eukaryotic genomes
  publication-title: Genome Res.
  doi: 10.1101/gr.1224503
– volume: 8
  start-page: 115
  year: 2016
  ident: ref_13
  article-title: Draft genome sequence of the docosahexaenoic acid producing Thraustochytrid Aurantiochytrium sp. T66
  publication-title: Genom. Data
  doi: 10.1016/j.gdata.2016.04.013
– volume: 6
  start-page: 533
  year: 2007
  ident: ref_41
  article-title: Carotenoid biosynthesis in the primitive red alga Cyanidioschyzon merolae
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.00265-06
– volume: 29
  start-page: 644
  year: 2011
  ident: ref_24
  article-title: Full-length transcriptome assembly from RNA-Seq data without a reference genome
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1883
– volume: 262
  start-page: 453
  year: 1999
  ident: ref_49
  article-title: Isolation and functional characterization of a novel type of carotenoid biosynthetic gene from Xanthophyllomyces dendrorhous
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/s004380051105
– ident: ref_27
– volume: 16
  start-page: 545
  year: 2006
  ident: ref_18
  article-title: Whole-genome re-sequencing
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2006.10.009
– volume: 38
  start-page: D211
  year: 2010
  ident: ref_29
  article-title: The Pfam protein families database
  publication-title: Nucleic Acid Res.
  doi: 10.1093/nar/gkp985
– ident: ref_19
  doi: 10.1186/1471-2105-11-345
– volume: 27
  start-page: 221
  year: 2010
  ident: ref_32
  article-title: SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msp259
– volume: 6
  start-page: e01335-17
  year: 2018
  ident: ref_15
  article-title: Sequencing, de novo assembly, and annotation of the complete genome of a new Thraustochytrid species, strain CCAP_4062/3
  publication-title: Genome Annunc.
  doi: 10.1128/genomeA.01335-17
– volume: 98
  start-page: 1687
  year: 2001
  ident: ref_39
  article-title: A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.98.4.1687
– volume: 461
  start-page: 393
  year: 2009
  ident: ref_35
  article-title: Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans
  publication-title: Nature
  doi: 10.1038/nature08358
– volume: 3
  start-page: 439
  year: 2001
  ident: ref_7
  article-title: Sterol and squalene content of a docosahexaenoic-acid-producing Thraustochytrid: Influence of culture age, temperature, and dissolved oxygen
  publication-title: Mar. Biotechnol.
  doi: 10.1007/s10126-001-0016-3
– volume: 50
  start-page: 47
  year: 1999
  ident: ref_44
  article-title: The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. ann. review plant physiol
  publication-title: Plant Mol. Biol.
– volume: 37
  start-page: 289
  year: 2009
  ident: ref_37
  article-title: Assessing the gene space in draft genomes
  publication-title: Nucleic Acid Res.
  doi: 10.1093/nar/gkn916
– volume: 27
  start-page: 764
  year: 2011
  ident: ref_22
  article-title: A fast, lock-free approach for efficient parallel counting of occurrences of k-mers
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr011
– volume: 313
  start-page: 1261
  year: 2006
  ident: ref_38
  article-title: Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis
  publication-title: Science
  doi: 10.1126/science.1128796
– volume: 18
  start-page: 821
  year: 2008
  ident: ref_23
  article-title: Velvet: Algorithms for de novo short read assembly using de Bruijn graphs
  publication-title: Genom. Res.
  doi: 10.1101/gr.074492.107
– volume: 68
  start-page: 1594
  year: 2004
  ident: ref_8
  article-title: Growth and carotenoid production of Thraustochytrium sp. CHN-1 cultured under superbright red and blue light-emitting diodes
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.68.1594
– volume: 9
  start-page: 1101
  year: 2011
  ident: ref_42
  article-title: Carotenoids in algae: Distributions, biosynthesis and functions
  publication-title: Mar. Drug
  doi: 10.3390/md9061101
– volume: 30
  start-page: 1733
  year: 2012
  ident: ref_6
  article-title: Omega-3 biotechnology: Thraustochytrids as a novel source of omega-3 oils
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2012.02.014
– ident: ref_47
  doi: 10.1371/journal.pone.0011257
– volume: 12
  start-page: 1599
  year: 2002
  ident: ref_28
  article-title: The generic genome browser: A building block for a model organism system database
  publication-title: Genome Res.
  doi: 10.1101/gr.403602
– volume: 27
  start-page: 578
  year: 2011
  ident: ref_20
  article-title: Scaffolding pre-assembled contigs using SSPACE
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq683
– volume: 346
  start-page: 387
  year: 1994
  ident: ref_2
  article-title: Thraustochytrids are chromists, not Fungi: 18S rRNA signatures of Heterokonta
  publication-title: Phil. Trans. R. Soc. Lond. B
  doi: 10.1098/rstb.1994.0156
– volume: 7
  start-page: 562
  year: 2012
  ident: ref_34
  article-title: Differential gene and transcript expression analysis of RNA-Seq experiments with TopHat and Cufflinks
  publication-title: Nat Protoc.
  doi: 10.1038/nprot.2012.016
– volume: 3
  start-page: e00819
  year: 2015
  ident: ref_12
  article-title: Genome sequence of Schizochytrium sp. CCTCC M209059, an effective producer of docosahexaenoic acid-rich lipids
  publication-title: Genome Announc.
  doi: 10.1128/genomeA.00819-15
– volume: 9
  start-page: 757
  year: 2011
  ident: ref_46
  article-title: Carotenoid β-ring hydroxylase and ketolase from marine bacteria-promiscuous enzymes for synthesizing functional xanthophylls
  publication-title: Mar. Drug
  doi: 10.3390/md9050757
– volume: 31
  start-page: 5654
  year: 2003
  ident: ref_26
  article-title: Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies
  publication-title: Nucleic Acid Res.
  doi: 10.1093/nar/gkg770
– volume: 57
  start-page: 4267
  year: 2009
  ident: ref_9
  article-title: Screening and characterization of squalene-producing Thraustochytrids from Hong Kong mangroves
  publication-title: J. Agric. Food. Chem.
  doi: 10.1021/jf9003972
– volume: 162
  start-page: 105
  year: 1998
  ident: ref_5
  article-title: Abundance of Thraustochytrids in coastal plankton
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps162105
– volume: 106
  start-page: 155
  year: 2010
  ident: ref_43
  article-title: Secondary ketocarotenoid astaxanthin biosynthesis in algae: A multifunctional response to stress
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-010-9583-3
– ident: ref_36
– volume: 75
  start-page: 2246
  year: 2011
  ident: ref_10
  article-title: Thraustochytrid Aurantiochytrium sp. 18W-13a accumulates high amounts of squalene
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.110430
– volume: 49
  start-page: 557
  year: 1998
  ident: ref_40
  article-title: Genes and enzymes of carotenoid biosynthesis in plants
  publication-title: Ann. Rev. Plant Phys. Plant Mol. Biol.
  doi: 10.1146/annurev.arplant.49.1.557
– volume: 48
  start-page: 199
  year: 2007
  ident: ref_3
  article-title: Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): Emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov.
  publication-title: Mycoscience
  doi: 10.1007/S10267-006-0362-0
– volume: 51
  start-page: 1065
  year: 2016
  ident: ref_14
  article-title: Genomic analysis of genes involved in the biosynthesis of very long chain polyunsaturated fatty acids in Thraustochytrium sp. 26185
  publication-title: Lipids
  doi: 10.1007/s11745-016-4181-6
– reference: 27222814 - Genom Data. 2016 Apr 29;8:115-6
– reference: 15012246 - Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:557-583
– reference: 10589832 - Mol Gen Genet. 1999 Oct;262(3):453-61
– reference: 21747749 - Mar Drugs. 2011;9(6):1101-18
– reference: 11172012 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1687-92
– reference: 19042974 - Nucleic Acids Res. 2009 Jan;37(1):289-97
– reference: 21046372 - Appl Microbiol Biotechnol. 2011 Feb;89(3):555-71
– reference: 18349386 - Genome Res. 2008 May;18(5):821-9
– reference: 21149342 - Bioinformatics. 2011 Feb 15;27(4):578-9
– reference: 17085635 - Eukaryot Cell. 2007 Mar;6(3):533-45
– reference: 19854763 - Mol Biol Evol. 2010 Feb;27(2):221-4
– reference: 19920124 - Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22
– reference: 20706789 - Photosynth Res. 2010 Nov;106(1-2):155-77
– reference: 20688043 - Arch Biochem Biophys. 2010 Dec 1;504(1):132-41
– reference: 21673887 - Mar Drugs. 2011;9(5):757-71
– reference: 14961336 - Mar Biotechnol (NY). 2001 Sep;3(5):439-47
– reference: 20010809 - Nature. 2010 Jan 21;463(7279):311-7
– reference: 29545303 - Genome Announc. 2018 Mar 15;6(11):null
– reference: 21572440 - Nat Biotechnol. 2011 May 15;29(7):644-52
– reference: 12368253 - Genome Res. 2002 Oct;12(10):1599-610
– reference: 27514858 - Lipids. 2016 Sep;51(9):1065-75
– reference: 22406165 - Biotechnol Adv. 2012 Nov-Dec;30(6):1733-45
– reference: 22383036 - Nat Protoc. 2012 Mar 01;7(3):562-78
– reference: 15277770 - Biosci Biotechnol Biochem. 2004 Jul;68(7):1594-7
– reference: 22192575 - BMC Bioinformatics. 2011 Dec 22;12:491
– reference: 15012203 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:47-65
– reference: 20582313 - PLoS One. 2010 Jun 22;5(6):e11257
– reference: 20436464 - Nat Biotechnol. 2010 May;28(5):511-5
– reference: 19741609 - Nature. 2009 Sep 17;461(7262):393-8
– reference: 17055251 - Curr Opin Genet Dev. 2006 Dec;16(6):545-52
– reference: 19371138 - J Agric Food Chem. 2009 May 27;57(10):4267-72
– reference: 12952885 - Genome Res. 2003 Sep;13(9):2178-89
– reference: 26251485 - Genome Announc. 2015 Aug 06;3(4):null
– reference: 14500829 - Nucleic Acids Res. 2003 Oct 1;31(19):5654-66
– reference: 20576136 - BMC Bioinformatics. 2010 Jun 24;11:345
– reference: 16946064 - Science. 2006 Sep 1;313(5791):1261-6
– reference: 22056449 - Biosci Biotechnol Biochem. 2011;75(11):2246-8
– reference: 21217122 - Bioinformatics. 2011 Mar 15;27(6):764-70
– reference: 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8
– reference: 16056220 - Nature. 2005 Sep 15;437(7057):376-80
SSID ssj0000402005
Score 2.284453
Snippet Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 200
SubjectTerms Antioxidants
Astaxanthin
Carotenoids
Codons
Desaturase
Docosahexaenoic acid
Gene duplication
Gene expression
Gene regulation
Genetic engineering
Genomes
Lycopene
Mass spectroscopy
Oils & fats
Phytoene synthase
Polyunsaturated fatty acids
Squalene
Sterols
β-Carotene
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB5BKyQuFeXpUtAiwQkZNo53vXtCobSKQFQVbaXeLO-LRGrtNHEq5W_xQ_hNzNiOaUBw9Y7slWdn5pvHzgC8LjyKXxAqzrQT6KBkOlbUcWjolEH54io0I1m-Hsvxefr5Qlx0AbdFV1a51omNonaVpRg5OukptUbLpPwwu45pahRlV7sRGndhG1WwQudr--Ph8cm3PsrCyT3ioq14H6J___47qRDdPt-0RX8BzD_rJG8ZnqMHsNMhRjZqWbwLd3z5EO61MyRXj-BmxE4qOtiXnp3Np2Sn2vAe-_kjpnIOBMWena7KeoIGi1Gbadbezg2IPtm0ZAgB2ad5EWparK48qwIbLdGG4XvsZFXPp8srtpi9Y6fNPAn2ZYxo6TGcHx2eHYzjbphCbBFi1ciL1AdKO3JtjB9ow6VLC1sgnEoHGRrphLtMSWOE4olPnOHCaStF4oNMnB0Mn8BWWZX-GbBgbaYGEpGl4ak3utDcCOudDyIYo5MI3q5_a267TuO0wcscPQ5iQn6bCRG86alnbYeNf9DtrzmUd3K2yH-fighe9csoIZT2KEpfLYkGIYxUQykieNoytP8QJZ0TVEMRZBus7gmo-_bmSjmdNF24BXquIk32_r-t53AfIZZqan30PmzV86V_gTCmNi-7s_oLfer1Sw
  priority: 102
  providerName: ProQuest
Title A Possible Trifunctional β-Carotene Synthase Gene Identified in the Draft Genome of Aurantiochytrium sp. Strain KH105
URI https://www.ncbi.nlm.nih.gov/pubmed/29642531
https://www.proquest.com/docview/2040953766
https://www.proquest.com/docview/2024468365
https://pubmed.ncbi.nlm.nih.gov/PMC5924542
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fa9swED9Ky2AvY91fr23QYHsa7hTFkq2HMbKtJWy0lLWBvhlLlpZAaneuU5qvtQ-yz9Q72wnNusGeT8hCd6f7_aTzHcCbzKH7eZmEsc4lEpRYhwlVHBrkiUH_4olvWrIcHavROPp6Ls83YNlttNvAq79SO-onNa5m-zc_Fx_R4T8Q40TK_v4HnQqaExNC8r6FMSkmFz3qgH5zJjdCymcUaNNhhJbaZsHfm2A9Pt0DnX_mTt4JRoeP4VGHItmwVfs2bLjiCTxo-0ounsL1kJ2UZOwzx86qKcWu9sqP_f4VUooHAmXHThdFPcEgxqj0NGv_2PWISNm0YAgL2Zcq8zUJywvHSs-Gc4xrOI-dLOpqOr9gV5f77LTpMcG-jRBBPYPx4cHZ51HYNVgILcKuGvUTOU9PkVwb4_racJVHmc0QYuEeYuAWPI8TZYxMuHAiN1zm2iopnFcit_3Bc9gsysK9BOatjZO-QrRpeOSMzjQ30rrceemN0SKAd8ttTW1XfZwWOEuRhZAS0rtKCODtavRlW3XjH-N2lxpKl6aTCpRpqlKjAni9EqPX0FNIVrhyTmMQ1qhkoGQAL1qFrj5ED9ECj6YA4jVVrwZQRe51STGdNJW5JbJZGYlX_7n8HXiI-CtpEoH0LmzW1dztIcapTQ-2Ph0cn3zvNWbcay6hbgFbqv4M
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgheEN8EBhiJPaGA68RO_IBQYZs6ulUT66S9ZbFj00pbUtoU1H-KB_4Q_ibO-SgrCN72GluO5fv6ne98B_AyNSh-lsd-JDOODkok_dhVHAqyWKF80dhWLVkOh6J_En485acb8L19C-PSKludWCnqrNDujhyd9NCVRouEeDf94ruuUS662rbQqNliYJbf0GWbv93fQfpuM7a3O_rQ95uuAr5GrFHipkJjXfyNSqVMVyoqsjDVKeKKsItOfchoFsVCKR5TZlimKM-kFpwZK1imuwGuew02wwBdmQ5svt8dHn1a3epQ545RXmfYB4Gkbz47lSXr7-u27y9A-2de5iVDt3cbbjUIlfRqlroDGya_C9frnpXLe_C1R44KJ0jnhoxmE2cX6-tE8vOH79JHEIQbcrzMyzEaSOLKWpP6NbBFtEsmOUHISXZmqS3dYHFhSGFJb4E2E9fR42U5mywuyHz6mhxX_SvIoI_o7D6cXMkxP4BOXuTmERCrdRR3BSJZRUOjZCqp4tpkxnKrlGQevGqPNdFNZXO3wfMEPRxHhOQyETzYXs2e1hU9_jFvq6VQ0sj1PPnNhR68WA2jRLowS5qbYuHmIGQScSC4Bw9rgq5-5ILcDNWeB9EaqVcTXLXv9ZF8Mq6qfnP0lHnIHv9_W8_hRn90eJAc7A8HT-Amwru4yjOSW9ApZwvzFCFUqZ41fEvg7KpF5Rf_dTEH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEN9kDDASe0JhbhI78QNCha7qKFQV26S9hdix10pbUtoU1H-LR_4I_ibO-WIFwdteYytxfF-_853vAF4kGsXPsMgNRcrQQQmFG9mKQ34aSZQvGpmyJcvHMR-eBO9P2ekW_Gjuwti0ykYnloo6zZU9I0cnPbCl0ULO902dFjHpD97Mv7i2g5SNtDbtNCoWGen1N3Tflq8P-0jrPc8bHBy_G7p1hwFXIe4ocIGBNjYWR4WUuisk5WmQqAQxRtBFBz_waBpGXEoWUU97qaQsFYozTxvuparr43uvwXaI_0g7sP32YDz51J7wUOuaUVZl2_u-oPtnVn2J6vmmHfwL3P6Zo3nJ6A1uw60arZJexV53YEtnd-F61b9yfQ--9sgkt0J1rsnxYmZtZHW0SH5-d20qCQJyTY7WWTFFY0lsiWtS3Qw2iHzJLCMIP0l_kZjCDuYXmuSG9FZoP_E9arouFrPVBVnOX5GjspcFGQ0Rqd2HkyvZ5gfQyfJMPwJilAqjLkdUK2mgpUgElUzpVBtmpBSeAy-bbY1VXeXcLvA8Rm_HEiG-TAQH9trZ86q6xz_m7TYUimsZX8a_OdKB5-0wSqcNuSSZzld2DsInHvmcOfCwImj7IRvw9lAFOhBukLqdYCt_b45ks2lZAZyh18wCb-f_y3oGN1BE4g-H49FjuIlILypTjsQudIrFSj9BNFXIpzXbEvh81ZLyC-shNTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Possible+Trifunctional+%CE%B2-Carotene+Synthase+Gene+Identified+in+the+Draft+Genome+of+Aurantiochytrium+sp.+Strain+KH105&rft.jtitle=Genes&rft.au=Iwasaka%2C+Hiroaki&rft.au=Koyanagi%2C+Ryo&rft.au=Satoh%2C+Ryota&rft.au=Nagano%2C+Akiko&rft.date=2018-04-09&rft.issn=2073-4425&rft.eissn=2073-4425&rft.volume=9&rft.issue=4&rft.spage=200&rft_id=info:doi/10.3390%2Fgenes9040200&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_genes9040200
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4425&client=summon