A Possible Trifunctional β-Carotene Synthase Gene Identified in the Draft Genome of Aurantiochytrium sp. Strain KH105
Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids such as docosahexaenoic acid and docosapentaenoic acid, ω-3 oils, and terpenic hydrocarbons, such as sterols and squalene. A Thraustochytrid,...
Saved in:
Published in | Genes Vol. 9; no. 4; p. 200 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
09.04.2018
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids such as docosahexaenoic acid and docosapentaenoic acid, ω-3 oils, and terpenic hydrocarbons, such as sterols and squalene. A Thraustochytrid, Aurantiochytrium sp. KH105 produces carotenoids, including astaxanthin, with strong antioxidant activity. To gain genomic insights into this capacity, we decoded its 97-Mbp genome and characterized genes for enzymes involved in carotenoid biosynthesis. Interestingly, all carotenogenic genes, as well as other eukaryotic genes, appeared duplicated, suggesting that this strain is diploid. In addition, among the five genes involved in the pathway from geranylgeranyl pyrophosphate to astaxanthin, geranylgeranyl phytoene synthase (crtB), phytoene desaturase (crtI) and lycopene cyclase (crtY) were fused into single gene (crtIBY) with no internal stop codons. Functionality of the trifunctional enzyme, CrtIBY, to catalyze the reaction from geranylgeranyl diphosphate to β-carotene was confirmed using a yeast assay system and mass spectrometry. Furthermore, analyses of differential gene expression showed characteristic up-regulation of carotenoid biosynthetic genes during stationary and starvation phases under these culture conditions. This suggests genetic engineering events to promote more efficient production of carotenoids. We also showed an occurrence of crtIBY in other Thraustochytrid species. |
---|---|
AbstractList | Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids such as docosahexaenoic acid and docosapentaenoic acid, ω-3 oils, and terpenic hydrocarbons, such as sterols and squalene. A Thraustochytrid,
sp. KH105 produces carotenoids, including astaxanthin, with strong antioxidant activity. To gain genomic insights into this capacity, we decoded its 97-Mbp genome and characterized genes for enzymes involved in carotenoid biosynthesis. Interestingly, all carotenogenic genes, as well as other eukaryotic genes, appeared duplicated, suggesting that this strain is diploid. In addition, among the five genes involved in the pathway from geranylgeranyl pyrophosphate to astaxanthin, geranylgeranyl phytoene synthase (
), phytoene desaturase (
) and lycopene cyclase (
) were fused into single gene (
) with no internal stop codons. Functionality of the trifunctional enzyme, CrtIBY, to catalyze the reaction from geranylgeranyl diphosphate to β-carotene was confirmed using a yeast assay system and mass spectrometry. Furthermore, analyses of differential gene expression showed characteristic up-regulation of carotenoid biosynthetic genes during stationary and starvation phases under these culture conditions. This suggests genetic engineering events to promote more efficient production of carotenoids. We also showed an occurrence of
in other Thraustochytrid species. Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids such as docosahexaenoic acid and docosapentaenoic acid, ω-3 oils, and terpenic hydrocarbons, such as sterols and squalene. A Thraustochytrid, Aurantiochytrium sp. KH105 produces carotenoids, including astaxanthin, with strong antioxidant activity. To gain genomic insights into this capacity, we decoded its 97-Mbp genome and characterized genes for enzymes involved in carotenoid biosynthesis. Interestingly, all carotenogenic genes, as well as other eukaryotic genes, appeared duplicated, suggesting that this strain is diploid. In addition, among the five genes involved in the pathway from geranylgeranyl pyrophosphate to astaxanthin, geranylgeranyl phytoene synthase (crtB), phytoene desaturase (crtI) and lycopene cyclase (crtY) were fused into single gene (crtIBY) with no internal stop codons. Functionality of the trifunctional enzyme, CrtIBY, to catalyze the reaction from geranylgeranyl diphosphate to β-carotene was confirmed using a yeast assay system and mass spectrometry. Furthermore, analyses of differential gene expression showed characteristic up-regulation of carotenoid biosynthetic genes during stationary and starvation phases under these culture conditions. This suggests genetic engineering events to promote more efficient production of carotenoids. We also showed an occurrence of crtIBY in other Thraustochytrid species. Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids such as docosahexaenoic acid and docosapentaenoic acid, ω-3 oils, and terpenic hydrocarbons, such as sterols and squalene. A Thraustochytrid, Aurantiochytrium sp. KH105 produces carotenoids, including astaxanthin, with strong antioxidant activity. To gain genomic insights into this capacity, we decoded its 97-Mbp genome and characterized genes for enzymes involved in carotenoid biosynthesis. Interestingly, all carotenogenic genes, as well as other eukaryotic genes, appeared duplicated, suggesting that this strain is diploid. In addition, among the five genes involved in the pathway from geranylgeranyl pyrophosphate to astaxanthin, geranylgeranyl phytoene synthase ( crtB ), phytoene desaturase ( crtI ) and lycopene cyclase ( crtY ) were fused into single gene ( crtIBY ) with no internal stop codons. Functionality of the trifunctional enzyme, CrtIBY, to catalyze the reaction from geranylgeranyl diphosphate to β-carotene was confirmed using a yeast assay system and mass spectrometry. Furthermore, analyses of differential gene expression showed characteristic up-regulation of carotenoid biosynthetic genes during stationary and starvation phases under these culture conditions. This suggests genetic engineering events to promote more efficient production of carotenoids. We also showed an occurrence of crtIBY in other Thraustochytrid species. Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids such as docosahexaenoic acid and docosapentaenoic acid, ω-3 oils, and terpenic hydrocarbons, such as sterols and squalene. A Thraustochytrid, Aurantiochytrium sp. KH105 produces carotenoids, including astaxanthin, with strong antioxidant activity. To gain genomic insights into this capacity, we decoded its 97-Mbp genome and characterized genes for enzymes involved in carotenoid biosynthesis. Interestingly, all carotenogenic genes, as well as other eukaryotic genes, appeared duplicated, suggesting that this strain is diploid. In addition, among the five genes involved in the pathway from geranylgeranyl pyrophosphate to astaxanthin, geranylgeranyl phytoene synthase (crtB), phytoene desaturase (crtI) and lycopene cyclase (crtY) were fused into single gene (crtIBY) with no internal stop codons. Functionality of the trifunctional enzyme, CrtIBY, to catalyze the reaction from geranylgeranyl diphosphate to β-carotene was confirmed using a yeast assay system and mass spectrometry. Furthermore, analyses of differential gene expression showed characteristic up-regulation of carotenoid biosynthetic genes during stationary and starvation phases under these culture conditions. This suggests genetic engineering events to promote more efficient production of carotenoids. We also showed an occurrence of crtIBY in other Thraustochytrid species.Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids such as docosahexaenoic acid and docosapentaenoic acid, ω-3 oils, and terpenic hydrocarbons, such as sterols and squalene. A Thraustochytrid, Aurantiochytrium sp. KH105 produces carotenoids, including astaxanthin, with strong antioxidant activity. To gain genomic insights into this capacity, we decoded its 97-Mbp genome and characterized genes for enzymes involved in carotenoid biosynthesis. Interestingly, all carotenogenic genes, as well as other eukaryotic genes, appeared duplicated, suggesting that this strain is diploid. In addition, among the five genes involved in the pathway from geranylgeranyl pyrophosphate to astaxanthin, geranylgeranyl phytoene synthase (crtB), phytoene desaturase (crtI) and lycopene cyclase (crtY) were fused into single gene (crtIBY) with no internal stop codons. Functionality of the trifunctional enzyme, CrtIBY, to catalyze the reaction from geranylgeranyl diphosphate to β-carotene was confirmed using a yeast assay system and mass spectrometry. Furthermore, analyses of differential gene expression showed characteristic up-regulation of carotenoid biosynthetic genes during stationary and starvation phases under these culture conditions. This suggests genetic engineering events to promote more efficient production of carotenoids. We also showed an occurrence of crtIBY in other Thraustochytrid species. |
Author | Iwasaka, Hiroaki Nagano, Akiko Hisata, Kanako Satoh, Ryota Satoh, Noriyuki Koyanagi, Ryo Watanabe, Kenshi Aki, Tsunehiro |
AuthorAffiliation | 2 Marine Genomic Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0945, Japan; koyanagi@oist.jp (R.K.); kanako@oist.jp (K.H.) 1 Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan; wdzra2nhph@gmail.com (H.I.); ctsak9y9g9@gmail.com (R.S.); pnsptrui35@gmail.com (A.N.); kwatanabe@hiroshima-u.ac.jp (K.W.) 3 JST-CREST, Saitama 332-0012, Japan |
AuthorAffiliation_xml | – name: 3 JST-CREST, Saitama 332-0012, Japan – name: 1 Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan; wdzra2nhph@gmail.com (H.I.); ctsak9y9g9@gmail.com (R.S.); pnsptrui35@gmail.com (A.N.); kwatanabe@hiroshima-u.ac.jp (K.W.) – name: 2 Marine Genomic Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0945, Japan; koyanagi@oist.jp (R.K.); kanako@oist.jp (K.H.) |
Author_xml | – sequence: 1 givenname: Hiroaki surname: Iwasaka fullname: Iwasaka, Hiroaki – sequence: 2 givenname: Ryo orcidid: 0000-0002-9694-0288 surname: Koyanagi fullname: Koyanagi, Ryo – sequence: 3 givenname: Ryota surname: Satoh fullname: Satoh, Ryota – sequence: 4 givenname: Akiko surname: Nagano fullname: Nagano, Akiko – sequence: 5 givenname: Kenshi surname: Watanabe fullname: Watanabe, Kenshi – sequence: 6 givenname: Kanako surname: Hisata fullname: Hisata, Kanako – sequence: 7 givenname: Noriyuki surname: Satoh fullname: Satoh, Noriyuki – sequence: 8 givenname: Tsunehiro orcidid: 0000-0001-9753-2043 surname: Aki fullname: Aki, Tsunehiro |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29642531$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1u1DAUhS1URMvQHWtkiU0XpDj-y3iDNBqgragEUsvacpybjqvEHmyn0rwWD8Iz4dAWDRXe2Nb97rlH97xEBz54QOh1TU4ZU-T9DXhIinBCCXmGjihpWMU5FQd770N0nNItKecPJl6gQ6pkKbD6CN2t8LeQkmsHwNfR9ZO32QVvBvzrZ7U2MeQyAV_tfN6YBPhs_l104LPrHXTYeZw3gD9G0-e5GEbAocerKZqCBLvZ5eimEaftKb7K0RT-y3lNxCv0vDdDguOHe4G-f_50vT6vLr-eXaxXl5UVlOaqURz6YpoR1bZQq5bIjhtrOGW8bmTNKemapWxbsSQUaNcS0SkrBYVe0s7WbIE-3Otup3aEzhbj0Qx6G91o4k4H4_S_Fe82-ibcaaEoF2XMAp08CMTwY4KU9eiShWEwHsKUNCWUc7lkUhT07RP0NkyxrHKmOFGCNVIW6s2-o79WHiMpAL0HbCzBROi1ddnMocz7G3RN9By93o--NL170vSo-1_8N2OisEU |
CitedBy_id | crossref_primary_10_1007_s00253_021_11425_5 crossref_primary_10_1111_jam_15527 crossref_primary_10_1007_s12010_022_04172_4 crossref_primary_10_3390_ijms252313172 crossref_primary_10_1080_07388551_2023_2208284 crossref_primary_10_1016_j_biotechadv_2021_107897 crossref_primary_10_3390_md19070386 crossref_primary_10_1016_j_tibtech_2022_03_008 crossref_primary_10_1016_j_margen_2021_100918 crossref_primary_10_1021_acs_jafc_3c09086 crossref_primary_10_1007_s00253_020_10927_y crossref_primary_10_3390_fermentation11040168 crossref_primary_10_1186_s13068_020_01811_y crossref_primary_10_3390_md21040249 crossref_primary_10_1016_j_biortech_2023_130250 crossref_primary_10_1016_j_tifs_2019_08_016 crossref_primary_10_1016_j_algal_2021_102238 crossref_primary_10_1007_s10452_024_10105_6 crossref_primary_10_1016_j_jbiosc_2020_11_013 crossref_primary_10_1007_s10126_021_10085_w crossref_primary_10_3390_metabo11030135 crossref_primary_10_1038_s41598_020_77876_4 crossref_primary_10_3390_ani12202794 crossref_primary_10_1016_j_plipres_2020_101083 crossref_primary_10_1093_gbe_evad029 crossref_primary_10_1016_j_enzmictec_2022_110018 crossref_primary_10_1080_07388551_2023_2196373 crossref_primary_10_1016_j_plipres_2019_101007 crossref_primary_10_1111_1462_2920_14978 crossref_primary_10_1021_acssynbio_2c00490 crossref_primary_10_3390_md17010045 crossref_primary_10_1038_s41396_023_01412_1 crossref_primary_10_1002_aocs_12364 crossref_primary_10_3390_ani13152482 |
Cites_doi | 10.3354/meps189027 10.1007/s11746-003-0773-2 10.1038/nature08696 10.1038/nbt.1621 10.1186/1471-2105-12-491 10.1038/nature03959 10.1007/s00253-010-2976-6 10.1093/bioinformatics/btm404 10.1016/j.abb.2010.07.028 10.1101/gr.1224503 10.1016/j.gdata.2016.04.013 10.1128/EC.00265-06 10.1038/nbt.1883 10.1007/s004380051105 10.1016/j.gde.2006.10.009 10.1093/nar/gkp985 10.1186/1471-2105-11-345 10.1093/molbev/msp259 10.1128/genomeA.01335-17 10.1073/pnas.98.4.1687 10.1038/nature08358 10.1007/s10126-001-0016-3 10.1093/nar/gkn916 10.1093/bioinformatics/btr011 10.1126/science.1128796 10.1101/gr.074492.107 10.1271/bbb.68.1594 10.3390/md9061101 10.1016/j.biotechadv.2012.02.014 10.1371/journal.pone.0011257 10.1101/gr.403602 10.1093/bioinformatics/btq683 10.1098/rstb.1994.0156 10.1038/nprot.2012.016 10.1128/genomeA.00819-15 10.3390/md9050757 10.1093/nar/gkg770 10.1021/jf9003972 10.3354/meps162105 10.1007/s11120-010-9583-3 10.1271/bbb.110430 10.1146/annurev.arplant.49.1.557 10.1007/S10267-006-0362-0 10.1007/s11745-016-4181-6 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2018 2018 by the authors. 2018 |
Copyright_xml | – notice: Copyright MDPI AG 2018 – notice: 2018 by the authors. 2018 |
DBID | AAYXX CITATION NPM 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
DOI | 10.3390/genes9040200 |
DatabaseName | CrossRef PubMed Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Genetics Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2073-4425 |
ExternalDocumentID | PMC5924542 29642531 10_3390_genes9040200 |
Genre | Journal Article |
GroupedDBID | --- 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV ADRAZ AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK EBD HCIFZ HYE IAO IPNFZ KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RIG RPM GROUPED_DOAJ NPM 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
ID | FETCH-LOGICAL-c522t-794ef020309bbe19b06d4aca42341761420d786bb5802e2db05d9c652ef62dc13 |
IEDL.DBID | M48 |
ISSN | 2073-4425 |
IngestDate | Thu Aug 21 14:06:08 EDT 2025 Fri Jul 11 08:49:12 EDT 2025 Fri Jul 25 12:04:08 EDT 2025 Wed Feb 19 02:44:21 EST 2025 Thu Apr 24 22:55:35 EDT 2025 Tue Jul 01 02:54:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Aurantiochytrium sp. strain KH105 genome sequencing CrtIBY carotenoid biosynthesis trifunctional enzyme gene |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c522t-794ef020309bbe19b06d4aca42341761420d786bb5802e2db05d9c652ef62dc13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to the work. |
ORCID | 0000-0002-9694-0288 0000-0001-9753-2043 |
OpenAccessLink | https://www.proquest.com/docview/2040953766?pq-origsite=%requestingapplication% |
PMID | 29642531 |
PQID | 2040953766 |
PQPubID | 2032392 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5924542 proquest_miscellaneous_2024468365 proquest_journals_2040953766 pubmed_primary_29642531 crossref_citationtrail_10_3390_genes9040200 crossref_primary_10_3390_genes9040200 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-09 |
PublicationDateYYYYMMDD | 2018-04-09 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Genes |
PublicationTitleAlternate | Genes (Basel) |
PublicationYear | 2018 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Verdoes (ref_49) 1999; 262 Haas (ref_26) 2003; 31 Naganuma (ref_5) 1998; 162 ref_19 Boetzer (ref_20) 2011; 27 ref_16 Parra (ref_37) 2009; 37 Ji (ref_12) 2015; 3 Li (ref_21) 2010; 463 Kingsford (ref_22) 2011; 27 Li (ref_9) 2009; 57 Schmidt (ref_48) 2011; 89 Lichtenthaler (ref_44) 1999; 50 Yokoyama (ref_3) 2007; 48 Kimura (ref_4) 1999; 189 Gouy (ref_32) 2010; 27 Takaichi (ref_42) 2011; 9 Grabherr (ref_24) 2011; 29 Trapnell (ref_33) 2010; 28 Cunningham (ref_41) 2007; 6 ref_27 Zhu (ref_45) 2010; 504 Lemoine (ref_43) 2010; 106 Stein (ref_28) 2002; 12 Allsopp (ref_2) 1994; 346 Lewis (ref_7) 2001; 3 Li (ref_31) 2003; 13 ref_36 ref_30 Kaya (ref_10) 2011; 75 Trapnell (ref_34) 2012; 7 Cunningham (ref_40) 1998; 49 Yamaoka (ref_8) 2004; 68 Bentley (ref_18) 2006; 16 Haas (ref_35) 2009; 461 Larkin (ref_25) 2007; 23 ref_47 Arrach (ref_39) 2001; 98 Liu (ref_13) 2016; 8 Sediki (ref_15) 2018; 6 Margulies (ref_17) 2005; 437 Zerbino (ref_23) 2008; 18 Misawa (ref_46) 2011; 9 Zhao (ref_14) 2016; 51 Tyler (ref_38) 2006; 313 ref_1 Finn (ref_29) 2010; 38 Gupta (ref_6) 2012; 30 Aki (ref_11) 2003; 80 16946064 - Science. 2006 Sep 1;313(5791):1261-6 22192575 - BMC Bioinformatics. 2011 Dec 22;12:491 26251485 - Genome Announc. 2015 Aug 06;3(4):null 22056449 - Biosci Biotechnol Biochem. 2011;75(11):2246-8 27514858 - Lipids. 2016 Sep;51(9):1065-75 22406165 - Biotechnol Adv. 2012 Nov-Dec;30(6):1733-45 22383036 - Nat Protoc. 2012 Mar 01;7(3):562-78 12368253 - Genome Res. 2002 Oct;12(10):1599-610 14961336 - Mar Biotechnol (NY). 2001 Sep;3(5):439-47 11172012 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1687-92 19371138 - J Agric Food Chem. 2009 May 27;57(10):4267-72 15012246 - Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:557-583 15012203 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:47-65 16056220 - Nature. 2005 Sep 15;437(7057):376-80 19741609 - Nature. 2009 Sep 17;461(7262):393-8 19920124 - Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22 21572440 - Nat Biotechnol. 2011 May 15;29(7):644-52 21217122 - Bioinformatics. 2011 Mar 15;27(6):764-70 14500829 - Nucleic Acids Res. 2003 Oct 1;31(19):5654-66 21149342 - Bioinformatics. 2011 Feb 15;27(4):578-9 20576136 - BMC Bioinformatics. 2010 Jun 24;11:345 21747749 - Mar Drugs. 2011;9(6):1101-18 20688043 - Arch Biochem Biophys. 2010 Dec 1;504(1):132-41 17055251 - Curr Opin Genet Dev. 2006 Dec;16(6):545-52 20436464 - Nat Biotechnol. 2010 May;28(5):511-5 21046372 - Appl Microbiol Biotechnol. 2011 Feb;89(3):555-71 27222814 - Genom Data. 2016 Apr 29;8:115-6 21673887 - Mar Drugs. 2011;9(5):757-71 20706789 - Photosynth Res. 2010 Nov;106(1-2):155-77 15277770 - Biosci Biotechnol Biochem. 2004 Jul;68(7):1594-7 17085635 - Eukaryot Cell. 2007 Mar;6(3):533-45 20010809 - Nature. 2010 Jan 21;463(7279):311-7 18349386 - Genome Res. 2008 May;18(5):821-9 12952885 - Genome Res. 2003 Sep;13(9):2178-89 19854763 - Mol Biol Evol. 2010 Feb;27(2):221-4 29545303 - Genome Announc. 2018 Mar 15;6(11):null 20582313 - PLoS One. 2010 Jun 22;5(6):e11257 10589832 - Mol Gen Genet. 1999 Oct;262(3):453-61 19042974 - Nucleic Acids Res. 2009 Jan;37(1):289-97 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8 |
References_xml | – volume: 189 start-page: 27 year: 1999 ident: ref_4 article-title: Biomass of Thraustochytrid protoctists in coastal water publication-title: Mar. Ecol. Prog. Ser. doi: 10.3354/meps189027 – volume: 80 start-page: 789 year: 2003 ident: ref_11 article-title: Thraustochytrid as a potential source of carotenoids publication-title: J. Am. Oil Chem. Soc. doi: 10.1007/s11746-003-0773-2 – volume: 463 start-page: 311 year: 2010 ident: ref_21 article-title: The sequence and de novo assembly of the giant panda genome publication-title: Nature doi: 10.1038/nature08696 – volume: 28 start-page: 511 year: 2010 ident: ref_33 article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1621 – ident: ref_30 doi: 10.1186/1471-2105-12-491 – volume: 437 start-page: 376 year: 2005 ident: ref_17 article-title: Genome sequencing in microfabricated high-density picolitre reactors publication-title: Nature doi: 10.1038/nature03959 – volume: 89 start-page: 555 year: 2011 ident: ref_48 article-title: Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-010-2976-6 – ident: ref_16 – volume: 23 start-page: 2947 year: 2007 ident: ref_25 article-title: Clustal W and Clustal X version 2.0 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm404 – volume: 504 start-page: 132 year: 2010 ident: ref_45 article-title: The regulation of carotenoid pigmentation in flowers publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2010.07.028 – ident: ref_1 – volume: 13 start-page: 2178 year: 2003 ident: ref_31 article-title: OrthoMCL: Identification of ortholog groups for eukaryotic genomes publication-title: Genome Res. doi: 10.1101/gr.1224503 – volume: 8 start-page: 115 year: 2016 ident: ref_13 article-title: Draft genome sequence of the docosahexaenoic acid producing Thraustochytrid Aurantiochytrium sp. T66 publication-title: Genom. Data doi: 10.1016/j.gdata.2016.04.013 – volume: 6 start-page: 533 year: 2007 ident: ref_41 article-title: Carotenoid biosynthesis in the primitive red alga Cyanidioschyzon merolae publication-title: Eukaryot. Cell doi: 10.1128/EC.00265-06 – volume: 29 start-page: 644 year: 2011 ident: ref_24 article-title: Full-length transcriptome assembly from RNA-Seq data without a reference genome publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1883 – volume: 262 start-page: 453 year: 1999 ident: ref_49 article-title: Isolation and functional characterization of a novel type of carotenoid biosynthetic gene from Xanthophyllomyces dendrorhous publication-title: Mol. Gen. Genet. doi: 10.1007/s004380051105 – ident: ref_27 – volume: 16 start-page: 545 year: 2006 ident: ref_18 article-title: Whole-genome re-sequencing publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2006.10.009 – volume: 38 start-page: D211 year: 2010 ident: ref_29 article-title: The Pfam protein families database publication-title: Nucleic Acid Res. doi: 10.1093/nar/gkp985 – ident: ref_19 doi: 10.1186/1471-2105-11-345 – volume: 27 start-page: 221 year: 2010 ident: ref_32 article-title: SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msp259 – volume: 6 start-page: e01335-17 year: 2018 ident: ref_15 article-title: Sequencing, de novo assembly, and annotation of the complete genome of a new Thraustochytrid species, strain CCAP_4062/3 publication-title: Genome Annunc. doi: 10.1128/genomeA.01335-17 – volume: 98 start-page: 1687 year: 2001 ident: ref_39 article-title: A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.98.4.1687 – volume: 461 start-page: 393 year: 2009 ident: ref_35 article-title: Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans publication-title: Nature doi: 10.1038/nature08358 – volume: 3 start-page: 439 year: 2001 ident: ref_7 article-title: Sterol and squalene content of a docosahexaenoic-acid-producing Thraustochytrid: Influence of culture age, temperature, and dissolved oxygen publication-title: Mar. Biotechnol. doi: 10.1007/s10126-001-0016-3 – volume: 50 start-page: 47 year: 1999 ident: ref_44 article-title: The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. ann. review plant physiol publication-title: Plant Mol. Biol. – volume: 37 start-page: 289 year: 2009 ident: ref_37 article-title: Assessing the gene space in draft genomes publication-title: Nucleic Acid Res. doi: 10.1093/nar/gkn916 – volume: 27 start-page: 764 year: 2011 ident: ref_22 article-title: A fast, lock-free approach for efficient parallel counting of occurrences of k-mers publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr011 – volume: 313 start-page: 1261 year: 2006 ident: ref_38 article-title: Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis publication-title: Science doi: 10.1126/science.1128796 – volume: 18 start-page: 821 year: 2008 ident: ref_23 article-title: Velvet: Algorithms for de novo short read assembly using de Bruijn graphs publication-title: Genom. Res. doi: 10.1101/gr.074492.107 – volume: 68 start-page: 1594 year: 2004 ident: ref_8 article-title: Growth and carotenoid production of Thraustochytrium sp. CHN-1 cultured under superbright red and blue light-emitting diodes publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.68.1594 – volume: 9 start-page: 1101 year: 2011 ident: ref_42 article-title: Carotenoids in algae: Distributions, biosynthesis and functions publication-title: Mar. Drug doi: 10.3390/md9061101 – volume: 30 start-page: 1733 year: 2012 ident: ref_6 article-title: Omega-3 biotechnology: Thraustochytrids as a novel source of omega-3 oils publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2012.02.014 – ident: ref_47 doi: 10.1371/journal.pone.0011257 – volume: 12 start-page: 1599 year: 2002 ident: ref_28 article-title: The generic genome browser: A building block for a model organism system database publication-title: Genome Res. doi: 10.1101/gr.403602 – volume: 27 start-page: 578 year: 2011 ident: ref_20 article-title: Scaffolding pre-assembled contigs using SSPACE publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq683 – volume: 346 start-page: 387 year: 1994 ident: ref_2 article-title: Thraustochytrids are chromists, not Fungi: 18S rRNA signatures of Heterokonta publication-title: Phil. Trans. R. Soc. Lond. B doi: 10.1098/rstb.1994.0156 – volume: 7 start-page: 562 year: 2012 ident: ref_34 article-title: Differential gene and transcript expression analysis of RNA-Seq experiments with TopHat and Cufflinks publication-title: Nat Protoc. doi: 10.1038/nprot.2012.016 – volume: 3 start-page: e00819 year: 2015 ident: ref_12 article-title: Genome sequence of Schizochytrium sp. CCTCC M209059, an effective producer of docosahexaenoic acid-rich lipids publication-title: Genome Announc. doi: 10.1128/genomeA.00819-15 – volume: 9 start-page: 757 year: 2011 ident: ref_46 article-title: Carotenoid β-ring hydroxylase and ketolase from marine bacteria-promiscuous enzymes for synthesizing functional xanthophylls publication-title: Mar. Drug doi: 10.3390/md9050757 – volume: 31 start-page: 5654 year: 2003 ident: ref_26 article-title: Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies publication-title: Nucleic Acid Res. doi: 10.1093/nar/gkg770 – volume: 57 start-page: 4267 year: 2009 ident: ref_9 article-title: Screening and characterization of squalene-producing Thraustochytrids from Hong Kong mangroves publication-title: J. Agric. Food. Chem. doi: 10.1021/jf9003972 – volume: 162 start-page: 105 year: 1998 ident: ref_5 article-title: Abundance of Thraustochytrids in coastal plankton publication-title: Mar. Ecol. Prog. Ser. doi: 10.3354/meps162105 – volume: 106 start-page: 155 year: 2010 ident: ref_43 article-title: Secondary ketocarotenoid astaxanthin biosynthesis in algae: A multifunctional response to stress publication-title: Photosynth. Res. doi: 10.1007/s11120-010-9583-3 – ident: ref_36 – volume: 75 start-page: 2246 year: 2011 ident: ref_10 article-title: Thraustochytrid Aurantiochytrium sp. 18W-13a accumulates high amounts of squalene publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.110430 – volume: 49 start-page: 557 year: 1998 ident: ref_40 article-title: Genes and enzymes of carotenoid biosynthesis in plants publication-title: Ann. Rev. Plant Phys. Plant Mol. Biol. doi: 10.1146/annurev.arplant.49.1.557 – volume: 48 start-page: 199 year: 2007 ident: ref_3 article-title: Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): Emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. publication-title: Mycoscience doi: 10.1007/S10267-006-0362-0 – volume: 51 start-page: 1065 year: 2016 ident: ref_14 article-title: Genomic analysis of genes involved in the biosynthesis of very long chain polyunsaturated fatty acids in Thraustochytrium sp. 26185 publication-title: Lipids doi: 10.1007/s11745-016-4181-6 – reference: 27222814 - Genom Data. 2016 Apr 29;8:115-6 – reference: 15012246 - Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:557-583 – reference: 10589832 - Mol Gen Genet. 1999 Oct;262(3):453-61 – reference: 21747749 - Mar Drugs. 2011;9(6):1101-18 – reference: 11172012 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1687-92 – reference: 19042974 - Nucleic Acids Res. 2009 Jan;37(1):289-97 – reference: 21046372 - Appl Microbiol Biotechnol. 2011 Feb;89(3):555-71 – reference: 18349386 - Genome Res. 2008 May;18(5):821-9 – reference: 21149342 - Bioinformatics. 2011 Feb 15;27(4):578-9 – reference: 17085635 - Eukaryot Cell. 2007 Mar;6(3):533-45 – reference: 19854763 - Mol Biol Evol. 2010 Feb;27(2):221-4 – reference: 19920124 - Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22 – reference: 20706789 - Photosynth Res. 2010 Nov;106(1-2):155-77 – reference: 20688043 - Arch Biochem Biophys. 2010 Dec 1;504(1):132-41 – reference: 21673887 - Mar Drugs. 2011;9(5):757-71 – reference: 14961336 - Mar Biotechnol (NY). 2001 Sep;3(5):439-47 – reference: 20010809 - Nature. 2010 Jan 21;463(7279):311-7 – reference: 29545303 - Genome Announc. 2018 Mar 15;6(11):null – reference: 21572440 - Nat Biotechnol. 2011 May 15;29(7):644-52 – reference: 12368253 - Genome Res. 2002 Oct;12(10):1599-610 – reference: 27514858 - Lipids. 2016 Sep;51(9):1065-75 – reference: 22406165 - Biotechnol Adv. 2012 Nov-Dec;30(6):1733-45 – reference: 22383036 - Nat Protoc. 2012 Mar 01;7(3):562-78 – reference: 15277770 - Biosci Biotechnol Biochem. 2004 Jul;68(7):1594-7 – reference: 22192575 - BMC Bioinformatics. 2011 Dec 22;12:491 – reference: 15012203 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:47-65 – reference: 20582313 - PLoS One. 2010 Jun 22;5(6):e11257 – reference: 20436464 - Nat Biotechnol. 2010 May;28(5):511-5 – reference: 19741609 - Nature. 2009 Sep 17;461(7262):393-8 – reference: 17055251 - Curr Opin Genet Dev. 2006 Dec;16(6):545-52 – reference: 19371138 - J Agric Food Chem. 2009 May 27;57(10):4267-72 – reference: 12952885 - Genome Res. 2003 Sep;13(9):2178-89 – reference: 26251485 - Genome Announc. 2015 Aug 06;3(4):null – reference: 14500829 - Nucleic Acids Res. 2003 Oct 1;31(19):5654-66 – reference: 20576136 - BMC Bioinformatics. 2010 Jun 24;11:345 – reference: 16946064 - Science. 2006 Sep 1;313(5791):1261-6 – reference: 22056449 - Biosci Biotechnol Biochem. 2011;75(11):2246-8 – reference: 21217122 - Bioinformatics. 2011 Mar 15;27(6):764-70 – reference: 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8 – reference: 16056220 - Nature. 2005 Sep 15;437(7057):376-80 |
SSID | ssj0000402005 |
Score | 2.284453 |
Snippet | Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 200 |
SubjectTerms | Antioxidants Astaxanthin Carotenoids Codons Desaturase Docosahexaenoic acid Gene duplication Gene expression Gene regulation Genetic engineering Genomes Lycopene Mass spectroscopy Oils & fats Phytoene synthase Polyunsaturated fatty acids Squalene Sterols β-Carotene |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB5BKyQuFeXpUtAiwQkZNo53vXtCobSKQFQVbaXeLO-LRGrtNHEq5W_xQ_hNzNiOaUBw9Y7slWdn5pvHzgC8LjyKXxAqzrQT6KBkOlbUcWjolEH54io0I1m-Hsvxefr5Qlx0AbdFV1a51omNonaVpRg5OukptUbLpPwwu45pahRlV7sRGndhG1WwQudr--Ph8cm3PsrCyT3ioq14H6J___47qRDdPt-0RX8BzD_rJG8ZnqMHsNMhRjZqWbwLd3z5EO61MyRXj-BmxE4qOtiXnp3Np2Sn2vAe-_kjpnIOBMWena7KeoIGi1Gbadbezg2IPtm0ZAgB2ad5EWparK48qwIbLdGG4XvsZFXPp8srtpi9Y6fNPAn2ZYxo6TGcHx2eHYzjbphCbBFi1ciL1AdKO3JtjB9ow6VLC1sgnEoHGRrphLtMSWOE4olPnOHCaStF4oNMnB0Mn8BWWZX-GbBgbaYGEpGl4ak3utDcCOudDyIYo5MI3q5_a267TuO0wcscPQ5iQn6bCRG86alnbYeNf9DtrzmUd3K2yH-fighe9csoIZT2KEpfLYkGIYxUQykieNoytP8QJZ0TVEMRZBus7gmo-_bmSjmdNF24BXquIk32_r-t53AfIZZqan30PmzV86V_gTCmNi-7s_oLfer1Sw priority: 102 providerName: ProQuest |
Title | A Possible Trifunctional β-Carotene Synthase Gene Identified in the Draft Genome of Aurantiochytrium sp. Strain KH105 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29642531 https://www.proquest.com/docview/2040953766 https://www.proquest.com/docview/2024468365 https://pubmed.ncbi.nlm.nih.gov/PMC5924542 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fa9swED9Ky2AvY91fr23QYHsa7hTFkq2HMbKtJWy0lLWBvhlLlpZAaneuU5qvtQ-yz9Q72wnNusGeT8hCd6f7_aTzHcCbzKH7eZmEsc4lEpRYhwlVHBrkiUH_4olvWrIcHavROPp6Ls83YNlttNvAq79SO-onNa5m-zc_Fx_R4T8Q40TK_v4HnQqaExNC8r6FMSkmFz3qgH5zJjdCymcUaNNhhJbaZsHfm2A9Pt0DnX_mTt4JRoeP4VGHItmwVfs2bLjiCTxo-0ounsL1kJ2UZOwzx86qKcWu9sqP_f4VUooHAmXHThdFPcEgxqj0NGv_2PWISNm0YAgL2Zcq8zUJywvHSs-Gc4xrOI-dLOpqOr9gV5f77LTpMcG-jRBBPYPx4cHZ51HYNVgILcKuGvUTOU9PkVwb4_racJVHmc0QYuEeYuAWPI8TZYxMuHAiN1zm2iopnFcit_3Bc9gsysK9BOatjZO-QrRpeOSMzjQ30rrceemN0SKAd8ttTW1XfZwWOEuRhZAS0rtKCODtavRlW3XjH-N2lxpKl6aTCpRpqlKjAni9EqPX0FNIVrhyTmMQ1qhkoGQAL1qFrj5ED9ECj6YA4jVVrwZQRe51STGdNJW5JbJZGYlX_7n8HXiI-CtpEoH0LmzW1dztIcapTQ-2Ph0cn3zvNWbcay6hbgFbqv4M |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgheEN8EBhiJPaGA68RO_IBQYZs6ulUT66S9ZbFj00pbUtoU1H-KB_4Q_ibO-SgrCN72GluO5fv6ne98B_AyNSh-lsd-JDOODkok_dhVHAqyWKF80dhWLVkOh6J_En485acb8L19C-PSKludWCnqrNDujhyd9NCVRouEeDf94ruuUS662rbQqNliYJbf0GWbv93fQfpuM7a3O_rQ95uuAr5GrFHipkJjXfyNSqVMVyoqsjDVKeKKsItOfchoFsVCKR5TZlimKM-kFpwZK1imuwGuew02wwBdmQ5svt8dHn1a3epQ545RXmfYB4Gkbz47lSXr7-u27y9A-2de5iVDt3cbbjUIlfRqlroDGya_C9frnpXLe_C1R44KJ0jnhoxmE2cX6-tE8vOH79JHEIQbcrzMyzEaSOLKWpP6NbBFtEsmOUHISXZmqS3dYHFhSGFJb4E2E9fR42U5mywuyHz6mhxX_SvIoI_o7D6cXMkxP4BOXuTmERCrdRR3BSJZRUOjZCqp4tpkxnKrlGQevGqPNdFNZXO3wfMEPRxHhOQyETzYXs2e1hU9_jFvq6VQ0sj1PPnNhR68WA2jRLowS5qbYuHmIGQScSC4Bw9rgq5-5ILcDNWeB9EaqVcTXLXv9ZF8Mq6qfnP0lHnIHv9_W8_hRn90eJAc7A8HT-Amwru4yjOSW9ApZwvzFCFUqZ41fEvg7KpF5Rf_dTEH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEN9kDDASe0JhbhI78QNCha7qKFQV26S9hdix10pbUtoU1H-LR_4I_ibO-WIFwdteYytxfF-_853vAF4kGsXPsMgNRcrQQQmFG9mKQ34aSZQvGpmyJcvHMR-eBO9P2ekW_Gjuwti0ykYnloo6zZU9I0cnPbCl0ULO902dFjHpD97Mv7i2g5SNtDbtNCoWGen1N3Tflq8P-0jrPc8bHBy_G7p1hwFXIe4ocIGBNjYWR4WUuisk5WmQqAQxRtBFBz_waBpGXEoWUU97qaQsFYozTxvuparr43uvwXaI_0g7sP32YDz51J7wUOuaUVZl2_u-oPtnVn2J6vmmHfwL3P6Zo3nJ6A1uw60arZJexV53YEtnd-F61b9yfQ--9sgkt0J1rsnxYmZtZHW0SH5-d20qCQJyTY7WWTFFY0lsiWtS3Qw2iHzJLCMIP0l_kZjCDuYXmuSG9FZoP_E9arouFrPVBVnOX5GjspcFGQ0Rqd2HkyvZ5gfQyfJMPwJilAqjLkdUK2mgpUgElUzpVBtmpBSeAy-bbY1VXeXcLvA8Rm_HEiG-TAQH9trZ86q6xz_m7TYUimsZX8a_OdKB5-0wSqcNuSSZzld2DsInHvmcOfCwImj7IRvw9lAFOhBukLqdYCt_b45ks2lZAZyh18wCb-f_y3oGN1BE4g-H49FjuIlILypTjsQudIrFSj9BNFXIpzXbEvh81ZLyC-shNTw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Possible+Trifunctional+%CE%B2-Carotene+Synthase+Gene+Identified+in+the+Draft+Genome+of+Aurantiochytrium+sp.+Strain+KH105&rft.jtitle=Genes&rft.au=Iwasaka%2C+Hiroaki&rft.au=Koyanagi%2C+Ryo&rft.au=Satoh%2C+Ryota&rft.au=Nagano%2C+Akiko&rft.date=2018-04-09&rft.issn=2073-4425&rft.eissn=2073-4425&rft.volume=9&rft.issue=4&rft.spage=200&rft_id=info:doi/10.3390%2Fgenes9040200&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_genes9040200 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4425&client=summon |