Einstein–Bumblebee-dilaton black hole solution

We obtain new black hole solutions in a Einstein–Bumblebee-scalar theory. By starting with a Einstein–Bumblebee theory in ( D + d ) dimensions, the scalar dilaton field and its interaction with the gravitational and Bumblebee fields are obtained by Kaluza–Klein (KK) reduction over the extra dimensio...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. C, Particles and fields Vol. 83; no. 11; pp. 1035 - 9
Main Authors Lessa, L. A., Silva, J. E. G.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2023
Springer
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We obtain new black hole solutions in a Einstein–Bumblebee-scalar theory. By starting with a Einstein–Bumblebee theory in ( D + d ) dimensions, the scalar dilaton field and its interaction with the gravitational and Bumblebee fields are obtained by Kaluza–Klein (KK) reduction over the extra dimensions. Considering the effects of both the Bumblebee vacuum expectation value (VEV) and the fluctuations over the VEV, we obtained new charged solutions in ( 3 + 1 ) dimensions. For a vanishing dilaton, the black hole turned out to be a charged de Sitter-Reissner–Nordstrom solution, where the transverse mode is the Maxwell field and the longitudinal mode is the cosmological constant. The stability of these new solutions is investigated by means of the analysis of the black hole thermodynamics. The temperature, entropy, and heat capacity show that these modified black holes are thermodynamic stable.
AbstractList We obtain new black hole solutions in a Einstein–Bumblebee-scalar theory. By starting with a Einstein–Bumblebee theory in (D+d) dimensions, the scalar dilaton field and its interaction with the gravitational and Bumblebee fields are obtained by Kaluza–Klein (KK) reduction over the extra dimensions. Considering the effects of both the Bumblebee vacuum expectation value (VEV) and the fluctuations over the VEV, we obtained new charged solutions in (3+1) dimensions. For a vanishing dilaton, the black hole turned out to be a charged de Sitter-Reissner–Nordstrom solution, where the transverse mode is the Maxwell field and the longitudinal mode is the cosmological constant. The stability of these new solutions is investigated by means of the analysis of the black hole thermodynamics. The temperature, entropy, and heat capacity show that these modified black holes are thermodynamic stable.
Abstract We obtain new black hole solutions in a Einstein–Bumblebee-scalar theory. By starting with a Einstein–Bumblebee theory in ( $$D+d$$ D + d ) dimensions, the scalar dilaton field and its interaction with the gravitational and Bumblebee fields are obtained by Kaluza–Klein (KK) reduction over the extra dimensions. Considering the effects of both the Bumblebee vacuum expectation value (VEV) and the fluctuations over the VEV, we obtained new charged solutions in $$(3+1)$$ ( 3 + 1 ) dimensions. For a vanishing dilaton, the black hole turned out to be a charged de Sitter-Reissner–Nordstrom solution, where the transverse mode is the Maxwell field and the longitudinal mode is the cosmological constant. The stability of these new solutions is investigated by means of the analysis of the black hole thermodynamics. The temperature, entropy, and heat capacity show that these modified black holes are thermodynamic stable.
We obtain new black hole solutions in a Einstein–Bumblebee-scalar theory. By starting with a Einstein–Bumblebee theory in ( D + d ) dimensions, the scalar dilaton field and its interaction with the gravitational and Bumblebee fields are obtained by Kaluza–Klein (KK) reduction over the extra dimensions. Considering the effects of both the Bumblebee vacuum expectation value (VEV) and the fluctuations over the VEV, we obtained new charged solutions in ( 3 + 1 ) dimensions. For a vanishing dilaton, the black hole turned out to be a charged de Sitter-Reissner–Nordstrom solution, where the transverse mode is the Maxwell field and the longitudinal mode is the cosmological constant. The stability of these new solutions is investigated by means of the analysis of the black hole thermodynamics. The temperature, entropy, and heat capacity show that these modified black holes are thermodynamic stable.
Abstract We obtain new black hole solutions in a Einstein–Bumblebee-scalar theory. By starting with a Einstein–Bumblebee theory in ( $$D+d$$ D + d ) dimensions, the scalar dilaton field and its interaction with the gravitational and Bumblebee fields are obtained by Kaluza–Klein (KK) reduction over the extra dimensions. Considering the effects of both the Bumblebee vacuum expectation value (VEV) and the fluctuations over the VEV, we obtained new charged solutions in $$(3+1)$$ ( 3 + 1 ) dimensions. For a vanishing dilaton, the black hole turned out to be a charged de Sitter-Reissner–Nordstrom solution, where the transverse mode is the Maxwell field and the longitudinal mode is the cosmological constant. The stability of these new solutions is investigated by means of the analysis of the black hole thermodynamics. The temperature, entropy, and heat capacity show that these modified black holes are thermodynamic stable.
We obtain new black hole solutions in a Einstein-Bumblebee-scalar theory. By starting with a Einstein-Bumblebee theory in ( [Formula omitted]) dimensions, the scalar dilaton field and its interaction with the gravitational and Bumblebee fields are obtained by Kaluza-Klein (KK) reduction over the extra dimensions. Considering the effects of both the Bumblebee vacuum expectation value (VEV) and the fluctuations over the VEV, we obtained new charged solutions in [Formula omitted] dimensions. For a vanishing dilaton, the black hole turned out to be a charged de Sitter-Reissner-Nordstrom solution, where the transverse mode is the Maxwell field and the longitudinal mode is the cosmological constant. The stability of these new solutions is investigated by means of the analysis of the black hole thermodynamics. The temperature, entropy, and heat capacity show that these modified black holes are thermodynamic stable.
ArticleNumber 1035
Audience Academic
Author Silva, J. E. G.
Lessa, L. A.
Author_xml – sequence: 1
  givenname: L. A.
  orcidid: 0009-0009-1961-9819
  surname: Lessa
  fullname: Lessa, L. A.
  email: leandrolessa@fisica.ufc.br
  organization: Departamento de Física-Campus do Pici, Universidade Federal do Ceará (UFC)
– sequence: 2
  givenname: J. E. G.
  surname: Silva
  fullname: Silva, J. E. G.
  organization: Departamento de Física-Campus do Pici, Universidade Federal do Ceará (UFC)
BookMark eNqFkUtuFDEURS0UJJLAGmiJEYNK_KuyPQxRCC1FisRnbPnzqnGn2m5slxRm7IEdZiU4KRSSEfLA1tM9V_f5HqGDmCIg9JbgE0I4PoX91p0WgnFPO0xZRyjFpBMv0CHhjHdDmx88eb9CR6VsMcaUY3mI8EWIpUKId79-f5h3dgIL0PkwmZriyk7G3ay-pwlWJU1zDSm-Ri9HMxV48_c-Rt8-Xnw9_9RdXV-uz8-uOtdTWjvBBsaHwSiJPe8F6cFYKiwdjcTGDiNzitmeKtr3CqztGRmEJ8Y74T0Gw9kxWi--Ppmt3uewM_mnTiboh0HKG21yDW4CrQiVzDMwDCjnGCyB5g1qlFZJgsfm9W7x2uf0Y4ZS9TbNObb4mkqphBKEqqY6WVQb00xDHFPNxrXjYRdc-_QxtPmZEC01VoQ04P0zoGkq3NaNmUvR6y-fn2vFonU5lZJhfFyJYH3fo77vUS896tajfuhRi0bKhSyNiBvI_8L_D_0D1lSjwg
CitedBy_id crossref_primary_10_1140_epjc_s10052_024_12576_1
crossref_primary_10_1088_1402_4896_ad0083
Cites_doi 10.1103/PhysRevLett.66.1811
10.1103/PhysRevD.81.065028
10.1209/0295-5075/acac50
10.1103/PhysRevD.60.064018
10.1103/PhysRevD.99.024042
10.1103/PhysRevD.70.084042
10.1140/epjc/s10052-020-7902-1
10.1103/PhysRevD.90.124036
10.1103/PhysRevD.103.044002
10.1016/j.physletb.2014.09.059
10.1103/PhysRevD.77.065020
10.1103/PhysRevD.91.044035
10.1103/PhysRevD.79.029902
10.1103/PhysRevD.81.065010
10.1103/PhysRevD.47.1407
10.1103/PhysRevD.91.104007
10.1103/PhysRevD.69.105009
10.1088/0264-9381/13/6/017
10.1103/PhysRevD.95.095006
10.1103/PhysRevLett.84.2318
10.1103/PhysRevD.74.084020
10.1103/PhysRevLett.87.141601
10.1103/PhysRevD.71.065008
10.1103/PhysRevD.78.044047
10.1016/0550-3213(79)90592-3
10.1103/PhysRevD.39.683
10.1103/PhysRevD.58.116002
10.1016/j.physletb.2015.08.004
10.1007/JHEP11(2010)156
10.1016/0550-3213(95)00205-7
10.1103/PhysRevD.97.104001
10.1103/PhysRevD.57.6547
10.1103/PhysRevLett.97.021601
10.1103/PhysRevD.65.103509
10.1103/PhysRevD.79.124012
10.1103/PhysRevLett.63.224
10.1103/PhysRevD.105.024073
10.1103/PhysRevD.60.104026
10.1103/PhysRevD.72.044001
ContentType Journal Article
Copyright The Author(s) 2023
COPYRIGHT 2023 Springer
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: COPYRIGHT 2023 Springer
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
DOA
DOI 10.1140/epjc/s10052-023-12201-7
DatabaseName SpringerOpen
CrossRef
Gale In Context: Science
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
Solid State and Superconductivity Abstracts
ProQuest One Academic
Advanced Technologies Database with Aerospace
DatabaseTitleList Publicly Available Content Database
CrossRef



Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1434-6052
EndPage 9
ExternalDocumentID oai_doaj_org_article_91283d3ea3e2440eb1e3b5e9f8b9810f
A772920911
10_1140_epjc_s10052_023_12201_7
GrantInformation_xml – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: http://dx.doi.org/10.13039/501100003593
GroupedDBID -5F
-5G
-A0
-BR
-~X
.86
0R~
199
29G
2JY
30V
4.4
408
409
40D
5GY
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95.
95~
AAFWJ
AAKKN
AAYZJ
ABDBF
ABEEZ
ABMNI
ABTEG
ACACY
ACGFS
ACNCT
ACULB
ADBBV
ADINQ
AENEX
AFBBN
AFGXO
AFKRA
AFPKN
AFWTZ
AGWIL
AHBXF
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
AZFZN
B0M
BA0
BCNDV
BENPR
BGLVJ
BGNMA
C24
C6C
CCPQU
CS3
CSCUP
DL5
DU5
EAD
EAP
EAS
EBS
EMK
EPL
ER.
ESX
FEDTE
GQ6
GQ8
GROUPED_DOAJ
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HVGLF
HZ~
I-F
I09
IAO
IGS
IHE
ISR
IXC
IZIGR
IZQ
I~X
KDC
KOV
LAS
M4Y
MA-
NB0
O9-
O93
OK1
P62
P9T
PIMPY
QOS
R89
R9I
RED
RID
RNS
RPX
RSV
S27
S3B
SDH
SOJ
SPH
SZN
T13
TN5
TSK
TSV
TUC
TUS
U2A
VC2
WK8
Z45
Z7Y
~8M
AAYXX
CITATION
7U5
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c522t-7363466a980d45715eab27b2fa80ab6f3c93b5292559ebb53167d1adc7dd0ea43
IEDL.DBID C6C
ISSN 1434-6052
1434-6044
IngestDate Tue Oct 22 15:13:15 EDT 2024
Sun Oct 27 06:56:29 EDT 2024
Tue Nov 05 04:31:47 EST 2024
Fri Nov 01 03:30:56 EDT 2024
Tue Nov 05 04:36:14 EST 2024
Tue Mar 26 01:23:48 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-7363466a980d45715eab27b2fa80ab6f3c93b5292559ebb53167d1adc7dd0ea43
ORCID 0009-0009-1961-9819
OpenAccessLink https://doi.org/10.1140/epjc/s10052-023-12201-7
PQID 2889797129
PQPubID 2034659
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_91283d3ea3e2440eb1e3b5e9f8b9810f
proquest_journals_2889797129
gale_infotracacademiconefile_A772920911
gale_incontextgauss_ISR_A772920911
crossref_primary_10_1140_epjc_s10052_023_12201_7
springer_journals_10_1140_epjc_s10052_023_12201_7
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Particles and Fields
PublicationTitle The European physical journal. C, Particles and fields
PublicationTitleAbbrev Eur. Phys. J. C
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References BluhmRFungS-HKosteleckyVAPhys. Rev. D2008770650202008PhRvD..77f5020B243003110.1103/PhysRevD.77.065020
BrownJDYorkJWPhys. Rev. D199960104026175762710.1103/PhysRevD.60.104026
CohenAGGlashowSLPhys. Rev. Lett.2006970216012006PhRvL..97b1601C224257510.1103/PhysRevLett.97.021601
LessaLASilvaJEGAlmeidaCASEPL2023141290012023EL....14129001L10.1209/0295-5075/acac50
LessaLASilvaJEGMalufRVAlmeidaCASEur. Phys. J. C20208043352020EPJC...80..335L10.1140/epjc/s10052-020-7902-1
MalufRVSilvaJEGAlmeidaCASPhys. Lett. B20157493043082015PhLB..749..304M10.1016/j.physletb.2015.08.004
RizzoTGJHEP2010111562010JHEP...11..156R10.1007/JHEP11(2010)156
BertolamiOCarvalhoCPhys. Rev. D2006740840202006PhRvD..74h4020B227852810.1103/PhysRevD.74.084020
R. Bluhm, N.L. Gagne, R. Potting, A. Vrublevskis, Phys. Rev. D 77, 125007 (2008). (Erratum: Phys. Rev. D 79, 029902 (2009))
Planck Collab. 2018 Results VI, Astron. Astrophys. 641, A6 (2020). arXiv:1807.06209
ScherkJSchwarzJHNucl. Phys. B197915361881979NuPhB.153...61S10.1016/0550-3213(79)90592-3
BluhmRKosteleckýVAPhys. Rev. D2005710650082005PhRvD..71f5008B10.1103/PhysRevD.71.065008
KosteleckyVAPhys. Rev. D2004691050092004PhRvD..69j5009K10.1103/PhysRevD.69.105009
CaiR-GJiJ-YSohK-SPhys. Rev. D19985765471998PhRvD..57.6547C168403310.1103/PhysRevD.57.6547
AlfaroJMorales-TecotlHAUrrutiaLFPhys. Rev. D2002651035092002PhRvD..65j3509A191899310.1103/PhysRevD.65.103509
AltschulBBaileyQGKosteleckyVAPhys. Rev. D2010810650282010PhRvD..81f5028A10.1103/PhysRevD.81.065028
HawkingSWHorowitzGTClass. Quantum Gravity19961314871996CQGra..13.1487H10.1088/0264-9381/13/6/017
CarrollSMHarveyJAKosteleckýVALaneCDOkamotoTPhys. Rev. Lett.2001871416012001PhRvL..87n1601C185529710.1103/PhysRevLett.87.141601
R.V. Maluf, J.E.G. Silva, W.T. Cruz, C.A.S. Almeida, Phys. Lett. B 738, 341 (2014)
MalufRVNevesJCSPhys. Rev. D202110340440022021PhRvD.103d4002M10.1103/PhysRevD.103.044002
CarrollSMTamHPhys. Rev. D2008780440472008PhRvD..78d4047C244739110.1103/PhysRevD.78.044047
ColladayDKosteleckyVAPhys. Rev. D1998581160021998PhRvD..58k6002C10.1103/PhysRevD.58.116002
CasanaRCavalcanteAPoulisFPSantosEBPhys. Rev. D201897101040012018PhRvD..97j4001C387916510.1103/PhysRevD.97.104001
ZangenehMKSheykhiADehghaniMHPhys. Rev. D2015910440352015PhRvD..91d4035Z341329510.1103/PhysRevD.91.044035
BertolamiOParamosJPhys. Rev. D2005720440012005PhRvD..72d4001B217530810.1103/PhysRevD.72.044001
KosteleckýVASamuelSPhys. Rev. Lett.1989632241989PhRvL..63..224K10.1103/PhysRevLett.63.224
EscobarCAMartín-RuizAPhys. Rev. D20179590950062017PhRvD..95i5006E10.1103/PhysRevD.95.095006
CaiR-GWangAPhys. Rev. D2004702004PhRvD..70h4042C211713710.1103/PhysRevD.70.084042
A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers
ChanKCKHorneJHMannRBNucl. Phys. B19954474411995NuPhB.447..441C10.1016/0550-3213(95)00205-7
ÖvgünAJusufiKSakallıİPhys. Rev. D20199920240422019PhRvD..99b4042O398150910.1103/PhysRevD.99.024042
HernaskiCPhys. Rev. D201490121240362014PhRvD..90l4036H10.1103/PhysRevD.90.124036
SeifertMDPhys. Rev. D2010810650102010PhRvD..81f5010S10.1103/PhysRevD.81.065010
CapeloDPáramosJPhys. Rev. D201591101040072015PhRvD..91j4007C342134310.1103/PhysRevD.91.104007
BrownJDYorkJWPhys. Rev. D19934714071993PhRvD..47.1407B121110910.1103/PhysRevD.47.1407
BluhmRFungS-HKosteleckýVAPhys. Rev. D2008770650202008PhRvD..77f5020B243003110.1103/PhysRevD.77.065020
AlfaroJMorales-TecotlHAUrrutiaLFPhys. Rev. Lett.20008423182000PhRvL..84.2318A10.1103/PhysRevLett.84.2318
SeifertMDPhys. Rev. D2009791240122009PhRvD..79l4012S10.1103/PhysRevD.79.124012
KosteleckýVASamuelSPhys. Rev. D1989396831989PhRvD..39..683K10.1103/PhysRevD.39.683
ChamblinAEmparanRJohnsonCVMyersRCPhys. Rev. D1999600640181999PhRvD..60f4018C172970110.1103/PhysRevD.60.064018
ZhangCYLiuPLiuYNiuCWangBPhys. Rev. D20221050240732022PhRvD.105b4073Z10.1103/PhysRevD.105.024073
KosteleckýVASamuelSPhys. Rev. Lett.19916618111991PhRvL..66.1811K10.1103/PhysRevLett.66.1811
R Casana (12201_CR22) 2018; 97
LA Lessa (12201_CR12) 2020; 80
C Hernaski (12201_CR17) 2014; 90
JD Brown (12201_CR35) 1993; 47
D Capelo (12201_CR25) 2015; 91
J Scherk (12201_CR39) 1979; 153
J Alfaro (12201_CR8) 2002; 65
12201_CR15
12201_CR5
R-G Cai (12201_CR32) 1998; 57
VA Kostelecký (12201_CR1) 1989; 39
A Övgün (12201_CR24) 2019; 99
KCK Chan (12201_CR34) 1995; 447
12201_CR40
MK Zangeneh (12201_CR41) 2015; 91
LA Lessa (12201_CR29) 2023; 141
O Bertolami (12201_CR21) 2005; 72
JD Brown (12201_CR36) 1999; 60
MD Seifert (12201_CR19) 2010; 81
J Alfaro (12201_CR7) 2000; 84
A Chamblin (12201_CR42) 1999; 60
D Colladay (12201_CR9) 1998; 58
RV Maluf (12201_CR18) 2015; 749
R Bluhm (12201_CR38) 2008; 77
R Bluhm (12201_CR13) 2005; 71
B Altschul (12201_CR11) 2010; 81
RV Maluf (12201_CR23) 2021; 103
VA Kostelecký (12201_CR3) 1991; 66
O Bertolami (12201_CR26) 2006; 74
CY Zhang (12201_CR30) 2022; 105
SM Carroll (12201_CR27) 2008; 78
SW Hawking (12201_CR37) 1996; 13
VA Kostelecký (12201_CR2) 1989; 63
R-G Cai (12201_CR31) 2004; 70
AG Cohen (12201_CR4) 2006; 97
SM Carroll (12201_CR6) 2001; 87
R Bluhm (12201_CR14) 2008; 77
12201_CR33
MD Seifert (12201_CR20) 2009; 79
VA Kostelecky (12201_CR10) 2004; 69
CA Escobar (12201_CR16) 2017; 95
TG Rizzo (12201_CR28) 2010; 11
References_xml – volume: 66
  start-page: 1811
  year: 1991
  ident: 12201_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.66.1811
  contributor:
    fullname: VA Kostelecký
– volume: 81
  start-page: 065028
  year: 2010
  ident: 12201_CR11
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.81.065028
  contributor:
    fullname: B Altschul
– volume: 141
  start-page: 29001
  year: 2023
  ident: 12201_CR29
  publication-title: EPL
  doi: 10.1209/0295-5075/acac50
  contributor:
    fullname: LA Lessa
– volume: 60
  start-page: 064018
  year: 1999
  ident: 12201_CR42
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.60.064018
  contributor:
    fullname: A Chamblin
– volume: 99
  start-page: 024042
  issue: 2
  year: 2019
  ident: 12201_CR24
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.024042
  contributor:
    fullname: A Övgün
– volume: 70
  year: 2004
  ident: 12201_CR31
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.70.084042
  contributor:
    fullname: R-G Cai
– ident: 12201_CR40
– volume: 80
  start-page: 335
  issue: 4
  year: 2020
  ident: 12201_CR12
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-7902-1
  contributor:
    fullname: LA Lessa
– volume: 90
  start-page: 124036
  issue: 12
  year: 2014
  ident: 12201_CR17
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.124036
  contributor:
    fullname: C Hernaski
– volume: 103
  start-page: 044002
  issue: 4
  year: 2021
  ident: 12201_CR23
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.044002
  contributor:
    fullname: RV Maluf
– ident: 12201_CR5
  doi: 10.1016/j.physletb.2014.09.059
– volume: 77
  start-page: 065020
  year: 2008
  ident: 12201_CR38
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.77.065020
  contributor:
    fullname: R Bluhm
– volume: 91
  start-page: 044035
  year: 2015
  ident: 12201_CR41
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.044035
  contributor:
    fullname: MK Zangeneh
– ident: 12201_CR15
  doi: 10.1103/PhysRevD.79.029902
– volume: 81
  start-page: 065010
  year: 2010
  ident: 12201_CR19
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.81.065010
  contributor:
    fullname: MD Seifert
– volume: 47
  start-page: 1407
  year: 1993
  ident: 12201_CR35
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.47.1407
  contributor:
    fullname: JD Brown
– volume: 91
  start-page: 104007
  issue: 10
  year: 2015
  ident: 12201_CR25
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.104007
  contributor:
    fullname: D Capelo
– volume: 69
  start-page: 105009
  year: 2004
  ident: 12201_CR10
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.69.105009
  contributor:
    fullname: VA Kostelecky
– volume: 13
  start-page: 1487
  year: 1996
  ident: 12201_CR37
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/13/6/017
  contributor:
    fullname: SW Hawking
– volume: 95
  start-page: 095006
  issue: 9
  year: 2017
  ident: 12201_CR16
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.095006
  contributor:
    fullname: CA Escobar
– volume: 84
  start-page: 2318
  year: 2000
  ident: 12201_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.2318
  contributor:
    fullname: J Alfaro
– volume: 74
  start-page: 084020
  year: 2006
  ident: 12201_CR26
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.74.084020
  contributor:
    fullname: O Bertolami
– ident: 12201_CR33
– volume: 87
  start-page: 141601
  year: 2001
  ident: 12201_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.141601
  contributor:
    fullname: SM Carroll
– volume: 71
  start-page: 065008
  year: 2005
  ident: 12201_CR13
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.71.065008
  contributor:
    fullname: R Bluhm
– volume: 78
  start-page: 044047
  year: 2008
  ident: 12201_CR27
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.044047
  contributor:
    fullname: SM Carroll
– volume: 153
  start-page: 61
  year: 1979
  ident: 12201_CR39
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(79)90592-3
  contributor:
    fullname: J Scherk
– volume: 39
  start-page: 683
  year: 1989
  ident: 12201_CR1
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.39.683
  contributor:
    fullname: VA Kostelecký
– volume: 58
  start-page: 116002
  year: 1998
  ident: 12201_CR9
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.58.116002
  contributor:
    fullname: D Colladay
– volume: 749
  start-page: 304
  year: 2015
  ident: 12201_CR18
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2015.08.004
  contributor:
    fullname: RV Maluf
– volume: 11
  start-page: 156
  year: 2010
  ident: 12201_CR28
  publication-title: JHEP
  doi: 10.1007/JHEP11(2010)156
  contributor:
    fullname: TG Rizzo
– volume: 447
  start-page: 441
  year: 1995
  ident: 12201_CR34
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(95)00205-7
  contributor:
    fullname: KCK Chan
– volume: 97
  start-page: 104001
  issue: 10
  year: 2018
  ident: 12201_CR22
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.104001
  contributor:
    fullname: R Casana
– volume: 57
  start-page: 6547
  year: 1998
  ident: 12201_CR32
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.57.6547
  contributor:
    fullname: R-G Cai
– volume: 97
  start-page: 021601
  year: 2006
  ident: 12201_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.021601
  contributor:
    fullname: AG Cohen
– volume: 65
  start-page: 103509
  year: 2002
  ident: 12201_CR8
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.65.103509
  contributor:
    fullname: J Alfaro
– volume: 79
  start-page: 124012
  year: 2009
  ident: 12201_CR20
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.79.124012
  contributor:
    fullname: MD Seifert
– volume: 63
  start-page: 224
  year: 1989
  ident: 12201_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.63.224
  contributor:
    fullname: VA Kostelecký
– volume: 105
  start-page: 024073
  year: 2022
  ident: 12201_CR30
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.024073
  contributor:
    fullname: CY Zhang
– volume: 60
  start-page: 104026
  year: 1999
  ident: 12201_CR36
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.60.104026
  contributor:
    fullname: JD Brown
– volume: 77
  start-page: 065020
  year: 2008
  ident: 12201_CR14
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.77.065020
  contributor:
    fullname: R Bluhm
– volume: 72
  start-page: 044001
  year: 2005
  ident: 12201_CR21
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.72.044001
  contributor:
    fullname: O Bertolami
SSID ssj0002408
Score 2.4754379
Snippet We obtain new black hole solutions in a Einstein–Bumblebee-scalar theory. By starting with a Einstein–Bumblebee theory in ( D + d ) dimensions, the scalar...
Abstract We obtain new black hole solutions in a Einstein–Bumblebee-scalar theory. By starting with a Einstein–Bumblebee theory in ( $$D+d$$ D + d )...
We obtain new black hole solutions in a Einstein-Bumblebee-scalar theory. By starting with a Einstein-Bumblebee theory in ( [Formula omitted]) dimensions, the...
We obtain new black hole solutions in a Einstein–Bumblebee-scalar theory. By starting with a Einstein–Bumblebee theory in (D+d) dimensions, the scalar dilaton...
Abstract We obtain new black hole solutions in a Einstein–Bumblebee-scalar theory. By starting with a Einstein–Bumblebee theory in ( $$D+d$$ D + d )...
SourceID doaj
proquest
gale
crossref
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 1035
SubjectTerms Astronomy
Astrophysics and Cosmology
Black holes
Bumblebees
Cosmological constant
Dilatons
Elementary Particles
Hadrons
Heavy Ions
Measurement Science and Instrumentation
Nuclear Energy
Nuclear Physics
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Regular Article - Theoretical Physics
Spacetime
Stability analysis
String Theory
Symmetry
Thermodynamics
Violations
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgRn1hdpYjgKZgmbZMcd2UXFfTgA7yFpE1lZa3LPu7-B_-hv8SZPtTFgxevbSjJN-nMN-3MF0JOlHKphjANaWrCaexlQiEopFRkUuoitdYW2Jx8fZNePMRXj8njj6O-sCaslgeugTvT4EBFLrwVHiIRA9fihUu8LpTTKmJF5X2ZbpOpxgejcFdTzQUZxJmfPGfYLcdgPhCkaMQh7lG5FIsqyf7fjvnXH9Iq8Aw3yHrDGMNePdNNsuLLLbJaVW5ms23CBiNgeH5Ufry99xcvbgx4eZqPxpBNl6HD73MhnoEbtptshzwMB_fnF7Q5BoFmQI7mVIpUxGlqtWJ5nMgo8dZx6XhhFbMuLUSmARGuMTnwziXY255HNs9knjNvY7FLOuVr6fdIaFWOz9TYfYtMxHEwiUBIbQKJVxEQ1gJiJrXahak7l5lBDE2NoQEMTYWhkQHpI3Bfw1GuuroARjSNEc1fRgzIMcJuUJCixIqXJ7uYzczl3a3pIf3nwGqigJw2g4rX-dRmtmkggKWhhtXSyG5rPtO8kjPDldJSS-A3AYlak37f_mOZ-_-xzAOyxqvth19wuqQzny78IXCauTuqtu8nAUnvdQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagCIkLKi-xtKAIIXGy6tjx64TaqkuLBAegUm-WHTvVViW7bHbv_Q_8Q34JM16nVVWJXhPLTr4Zz8szY0I-GBOUBTUNbqrktElaUlAKiopWa9sp732Hxclfv6nj0-bLmTwrAbehpFWOMjEL6jhvMUa-x42x2mpQT58WvyneGoWnq-UKjYfkUc21RufLTD9fS2Js35Wri0RDFWuakt8FPsVeWly0WD_H4AtBbdGagyak-pZ2yk3874rqO2emWRVNt8nTYkNW-xuiPyMPUv-cPM65nO3wgrCjGdh8adb_vfpzsP4VLgHBROPsEvzrvgoYsavwVtxqZLuX5HR69PPwmJaLEWgL5tKKaqFEo5S3hsVG6lomH7gOvPOG-aA60VoRJLfoLqQQJFa7x9rHVsfIkm_EK7LVz_v0mlTeRJzTYj0u2iaBA5FEqJPwElyxbkLYCIhbbPpfuE0tM3OIodtg6ABDlzF0ekIOELjr4djAOj-YL89d2Q_Ogl4UUSQvEhgYLOGKQSbbmWBNzWDd9wi7wxYVPebAnPv1MLiTH9_dPjoEHOycekI-lkHdfLX0rS8lBfBr2NXq1sjdkXyubNLB3bDUhNQjSW9e3_Obb_4_5Q55wjNjYbRml2ytluv0FuyXVXiXmfQfNIro2g
  priority: 102
  providerName: ProQuest
Title Einstein–Bumblebee-dilaton black hole solution
URI https://link.springer.com/article/10.1140/epjc/s10052-023-12201-7
https://www.proquest.com/docview/2889797129
https://doaj.org/article/91283d3ea3e2440eb1e3b5e9f8b9810f
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7yoNBL6ZNuky6mFHoSkSXrddxddpsEGkrahdyEZMtlQ-qE7O69_yH_sL-kM147bQikkIvBtmShGVnfN9LMCOCjtVE7hGk0U5VgRTKKIShoJktjXK1DCDUFJ3850Yfz4vhMnW3BQR8L8-_-PXL_g3R1XlKcG8cvIbywXCBiMbMNuwjElny4JnpyO_VSvq7OieuByncgqM3Uf38-vrcx2uLN7Dk864hiNtpo9gVspeYlPGkdNsvlK-DTBRK7tGh-_7oZr3_GCxRTYtXiAo3oJou0LJfR0bdZP7Zew3w2_T45ZN3pB6xETrRiRmpZaB2c5VWhTK5SiMJEUQfLQ9S1LJ2MSjiyCVKMikLaqzxUpakqnkIh38BOc9mkt5AFW9E3HQXdEgGJAjUhY55kUGhv1QPgvUD81SbJhd8ELHNPMvQbGXqUoW9l6M0AxiS42-KUpbp9gMrz3aD3DsFPVjIFmZBF8EQtRpVcbaOzOcd2P5DYPeWhaMjR5UdYL5f-6NupHxHrF0hm8gF86grVl6vrUIYubgC7Rqmr7pTc79Xnuz9x6YW1zjiDtGYAea_Sv6__0813j6izB09FO9ponWYfdlbX6_QemcsqDmHbzj4PYXc8Pfl6incTUQzbETxs1wLwOhejP1pt6Ic
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,41131,41132,41535,42200,42201,42604,43612,43817,51588,52245,52246,74363,74630
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELagCNELKn9ioYUIIXGy6tiOf06oRV220PYArdSbZSdOtajNLpvdO-_AG_IkzHidVlUluCaWncyM55sZz4wJeW9MUBZgGtzUilMZdUUBFBQVtda2Vd77FouTj0_U5Ex-Oa_Oc8Ctz2mVg05MirqZ1Rgj3-XGWG01wNPH-U-Kt0bh6Wq-QuM-eSAFYDVWio8_X2tibN-VqouEpIpJmfO7wKfYjfMfNdbPMfhCgC1ackBCqm-hU2rif1dV3zkzTVA03iKPsw1Z7K2Z_oTci91T8jDlctb9M8IOpmDzxWn359fv_dVVuAQKRtpML8G_7oqAEbsCb8UtBrF7Ts7GB6efJjRfjEBrMJeWVAslpFLeGtbISpdV9IHrwFtvmA-qFbUVoeIW3YUYQoXV7k3pm1o3DYteihdko5t18SUpvGlwTov1uGibBA5MEqGMwlfgirUjwgaCuPm6_4Vb1zIzhzR0axo6oKFLNHR6RPaRcNfDsYF1ejBbXLi8H5wFXBSNiF5EMDBYxBVDFW1rgjUlg3XfIdkdtqjoMAfmwq_63h1-_-b20CHgYOeUI_IhD2pny4WvfS4pgF_Drla3Rm4P7HN5k_buRqRGpBxYevP6P7_56t9TviWPJqfHR-7o8OTra7LJk5Bh5GabbCwXq7gDtswyvEkC-xcr3Ou8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagCMQFlZe60EKEkDhZ69jx64T6WloeFQIq9WbZiVMtKtlls3vnP_AP-SXMeJ1WVSW4JpYTz4znm7HnQchrY4KyANPgpkpOq6glBVBQVNRa21Z571tMTv50oo5Oq_dn8izHP_U5rHLQiUlRN7Maz8jH3BirrQZ4Grc5LOLzweTt_CfFDlJ405rbadwmdwAVFcq8mby71MpYyitlGomKKlZVOdYL_ItxnH-vMZeOwd8ChNGSAypSfQ2pUkH_m2r7xv1pgqXJJnmQ7clidy0AD8mt2D0id1NcZ90_JuxwCvZfnHZ_fv3eW_0IF0DNSJvpBfjaXRHw9K7ADrnFIIJPyOnk8Nv-Ec1NEmgNptOSalhqpZS3hjWV1KWMPnAdeOsN80G1orYiSG7RdYghSMx8b0rf1LppWPSVeEo2ulkXt0jhTYNzWszNRTslcGCYCGUUXoJb1o4IGwji5utaGG6d18wc0tCtaeiAhi7R0OkR2UPCXQ7HYtbpwWxx7vLecBYwUjQiehHB2GARvxhktK0J1pQMvvsKye6wXEWHjD_3q753x1-_uF10DjjYPOWIvMmD2tly4Wuf0wtgaVjh6trI7YF9Lm_Y3l2J14iUA0uvXv9nmc_-PeVLcg9k1X08PvnwnNznScbwEGebbCwXq7gDZs0yvEjy-heDM-_0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Einstein-Bumblebee-dilaton+black+hole+solution&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Lessa%2C+L.+A&rft.au=Silva%2C+J.+E.+G&rft.date=2023-11-01&rft.pub=Springer&rft.issn=1434-6044&rft.volume=83&rft.issue=11&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-023-12201-7&rft.externalDocID=A772920911
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6052&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6052&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6052&client=summon