Einstein–Bumblebee-dilaton black hole solution
We obtain new black hole solutions in a Einstein–Bumblebee-scalar theory. By starting with a Einstein–Bumblebee theory in ( D + d ) dimensions, the scalar dilaton field and its interaction with the gravitational and Bumblebee fields are obtained by Kaluza–Klein (KK) reduction over the extra dimensio...
Saved in:
Published in | The European physical journal. C, Particles and fields Vol. 83; no. 11; pp. 1035 - 9 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2023
Springer Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We obtain new black hole solutions in a Einstein–Bumblebee-scalar theory. By starting with a Einstein–Bumblebee theory in (
D
+
d
) dimensions, the scalar dilaton field and its interaction with the gravitational and Bumblebee fields are obtained by Kaluza–Klein (KK) reduction over the extra dimensions. Considering the effects of both the Bumblebee vacuum expectation value (VEV) and the fluctuations over the VEV, we obtained new charged solutions in
(
3
+
1
)
dimensions. For a vanishing dilaton, the black hole turned out to be a charged de Sitter-Reissner–Nordstrom solution, where the transverse mode is the Maxwell field and the longitudinal mode is the cosmological constant. The stability of these new solutions is investigated by means of the analysis of the black hole thermodynamics. The temperature, entropy, and heat capacity show that these modified black holes are thermodynamic stable. |
---|---|
AbstractList | We obtain new black hole solutions in a Einstein–Bumblebee-scalar theory. By starting with a Einstein–Bumblebee theory in (D+d) dimensions, the scalar dilaton field and its interaction with the gravitational and Bumblebee fields are obtained by Kaluza–Klein (KK) reduction over the extra dimensions. Considering the effects of both the Bumblebee vacuum expectation value (VEV) and the fluctuations over the VEV, we obtained new charged solutions in (3+1) dimensions. For a vanishing dilaton, the black hole turned out to be a charged de Sitter-Reissner–Nordstrom solution, where the transverse mode is the Maxwell field and the longitudinal mode is the cosmological constant. The stability of these new solutions is investigated by means of the analysis of the black hole thermodynamics. The temperature, entropy, and heat capacity show that these modified black holes are thermodynamic stable. Abstract We obtain new black hole solutions in a Einstein–Bumblebee-scalar theory. By starting with a Einstein–Bumblebee theory in ( $$D+d$$ D + d ) dimensions, the scalar dilaton field and its interaction with the gravitational and Bumblebee fields are obtained by Kaluza–Klein (KK) reduction over the extra dimensions. Considering the effects of both the Bumblebee vacuum expectation value (VEV) and the fluctuations over the VEV, we obtained new charged solutions in $$(3+1)$$ ( 3 + 1 ) dimensions. For a vanishing dilaton, the black hole turned out to be a charged de Sitter-Reissner–Nordstrom solution, where the transverse mode is the Maxwell field and the longitudinal mode is the cosmological constant. The stability of these new solutions is investigated by means of the analysis of the black hole thermodynamics. The temperature, entropy, and heat capacity show that these modified black holes are thermodynamic stable. We obtain new black hole solutions in a Einstein–Bumblebee-scalar theory. By starting with a Einstein–Bumblebee theory in ( D + d ) dimensions, the scalar dilaton field and its interaction with the gravitational and Bumblebee fields are obtained by Kaluza–Klein (KK) reduction over the extra dimensions. Considering the effects of both the Bumblebee vacuum expectation value (VEV) and the fluctuations over the VEV, we obtained new charged solutions in ( 3 + 1 ) dimensions. For a vanishing dilaton, the black hole turned out to be a charged de Sitter-Reissner–Nordstrom solution, where the transverse mode is the Maxwell field and the longitudinal mode is the cosmological constant. The stability of these new solutions is investigated by means of the analysis of the black hole thermodynamics. The temperature, entropy, and heat capacity show that these modified black holes are thermodynamic stable. Abstract We obtain new black hole solutions in a Einstein–Bumblebee-scalar theory. By starting with a Einstein–Bumblebee theory in ( $$D+d$$ D + d ) dimensions, the scalar dilaton field and its interaction with the gravitational and Bumblebee fields are obtained by Kaluza–Klein (KK) reduction over the extra dimensions. Considering the effects of both the Bumblebee vacuum expectation value (VEV) and the fluctuations over the VEV, we obtained new charged solutions in $$(3+1)$$ ( 3 + 1 ) dimensions. For a vanishing dilaton, the black hole turned out to be a charged de Sitter-Reissner–Nordstrom solution, where the transverse mode is the Maxwell field and the longitudinal mode is the cosmological constant. The stability of these new solutions is investigated by means of the analysis of the black hole thermodynamics. The temperature, entropy, and heat capacity show that these modified black holes are thermodynamic stable. We obtain new black hole solutions in a Einstein-Bumblebee-scalar theory. By starting with a Einstein-Bumblebee theory in ( [Formula omitted]) dimensions, the scalar dilaton field and its interaction with the gravitational and Bumblebee fields are obtained by Kaluza-Klein (KK) reduction over the extra dimensions. Considering the effects of both the Bumblebee vacuum expectation value (VEV) and the fluctuations over the VEV, we obtained new charged solutions in [Formula omitted] dimensions. For a vanishing dilaton, the black hole turned out to be a charged de Sitter-Reissner-Nordstrom solution, where the transverse mode is the Maxwell field and the longitudinal mode is the cosmological constant. The stability of these new solutions is investigated by means of the analysis of the black hole thermodynamics. The temperature, entropy, and heat capacity show that these modified black holes are thermodynamic stable. |
ArticleNumber | 1035 |
Audience | Academic |
Author | Silva, J. E. G. Lessa, L. A. |
Author_xml | – sequence: 1 givenname: L. A. orcidid: 0009-0009-1961-9819 surname: Lessa fullname: Lessa, L. A. email: leandrolessa@fisica.ufc.br organization: Departamento de Física-Campus do Pici, Universidade Federal do Ceará (UFC) – sequence: 2 givenname: J. E. G. surname: Silva fullname: Silva, J. E. G. organization: Departamento de Física-Campus do Pici, Universidade Federal do Ceará (UFC) |
BookMark | eNqFkUtuFDEURS0UJJLAGmiJEYNK_KuyPQxRCC1FisRnbPnzqnGn2m5slxRm7IEdZiU4KRSSEfLA1tM9V_f5HqGDmCIg9JbgE0I4PoX91p0WgnFPO0xZRyjFpBMv0CHhjHdDmx88eb9CR6VsMcaUY3mI8EWIpUKId79-f5h3dgIL0PkwmZriyk7G3ay-pwlWJU1zDSm-Ri9HMxV48_c-Rt8-Xnw9_9RdXV-uz8-uOtdTWjvBBsaHwSiJPe8F6cFYKiwdjcTGDiNzitmeKtr3CqztGRmEJ8Y74T0Gw9kxWi--Ppmt3uewM_mnTiboh0HKG21yDW4CrQiVzDMwDCjnGCyB5g1qlFZJgsfm9W7x2uf0Y4ZS9TbNObb4mkqphBKEqqY6WVQb00xDHFPNxrXjYRdc-_QxtPmZEC01VoQ04P0zoGkq3NaNmUvR6y-fn2vFonU5lZJhfFyJYH3fo77vUS896tajfuhRi0bKhSyNiBvI_8L_D_0D1lSjwg |
CitedBy_id | crossref_primary_10_1140_epjc_s10052_024_12576_1 crossref_primary_10_1088_1402_4896_ad0083 |
Cites_doi | 10.1103/PhysRevLett.66.1811 10.1103/PhysRevD.81.065028 10.1209/0295-5075/acac50 10.1103/PhysRevD.60.064018 10.1103/PhysRevD.99.024042 10.1103/PhysRevD.70.084042 10.1140/epjc/s10052-020-7902-1 10.1103/PhysRevD.90.124036 10.1103/PhysRevD.103.044002 10.1016/j.physletb.2014.09.059 10.1103/PhysRevD.77.065020 10.1103/PhysRevD.91.044035 10.1103/PhysRevD.79.029902 10.1103/PhysRevD.81.065010 10.1103/PhysRevD.47.1407 10.1103/PhysRevD.91.104007 10.1103/PhysRevD.69.105009 10.1088/0264-9381/13/6/017 10.1103/PhysRevD.95.095006 10.1103/PhysRevLett.84.2318 10.1103/PhysRevD.74.084020 10.1103/PhysRevLett.87.141601 10.1103/PhysRevD.71.065008 10.1103/PhysRevD.78.044047 10.1016/0550-3213(79)90592-3 10.1103/PhysRevD.39.683 10.1103/PhysRevD.58.116002 10.1016/j.physletb.2015.08.004 10.1007/JHEP11(2010)156 10.1016/0550-3213(95)00205-7 10.1103/PhysRevD.97.104001 10.1103/PhysRevD.57.6547 10.1103/PhysRevLett.97.021601 10.1103/PhysRevD.65.103509 10.1103/PhysRevD.79.124012 10.1103/PhysRevLett.63.224 10.1103/PhysRevD.105.024073 10.1103/PhysRevD.60.104026 10.1103/PhysRevD.72.044001 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 COPYRIGHT 2023 Springer The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: COPYRIGHT 2023 Springer – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION ISR 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PIMPY PQEST PQQKQ PQUKI DOA |
DOI | 10.1140/epjc/s10052-023-12201-7 |
DatabaseName | SpringerOpen CrossRef Gale In Context: Science Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection (Proquest) (PQ_SDU_P3) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea Solid State and Superconductivity Abstracts ProQuest One Academic Advanced Technologies Database with Aerospace |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1434-6052 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_91283d3ea3e2440eb1e3b5e9f8b9810f A772920911 10_1140_epjc_s10052_023_12201_7 |
GrantInformation_xml | – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: http://dx.doi.org/10.13039/501100003593 |
GroupedDBID | -5F -5G -A0 -BR -~X .86 0R~ 199 29G 2JY 30V 4.4 408 409 40D 5GY 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95. 95~ AAFWJ AAKKN AAYZJ ABDBF ABEEZ ABMNI ABTEG ACACY ACGFS ACNCT ACULB ADBBV ADINQ AENEX AFBBN AFGXO AFKRA AFPKN AFWTZ AGWIL AHBXF AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF AZFZN B0M BA0 BCNDV BENPR BGLVJ BGNMA C24 C6C CCPQU CS3 CSCUP DL5 DU5 EAD EAP EAS EBS EMK EPL ER. ESX FEDTE GQ6 GQ8 GROUPED_DOAJ GXS HCIFZ HF~ HG5 HG6 HMJXF HVGLF HZ~ I-F I09 IAO IGS IHE ISR IXC IZIGR IZQ I~X KDC KOV LAS M4Y MA- NB0 O9- O93 OK1 P62 P9T PIMPY QOS R89 R9I RED RID RNS RPX RSV S27 S3B SDH SOJ SPH SZN T13 TN5 TSK TSV TUC TUS U2A VC2 WK8 Z45 Z7Y ~8M AAYXX CITATION 7U5 8FD ABUWG AZQEC DWQXO H8D L7M PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c522t-7363466a980d45715eab27b2fa80ab6f3c93b5292559ebb53167d1adc7dd0ea43 |
IEDL.DBID | C6C |
ISSN | 1434-6052 1434-6044 |
IngestDate | Tue Oct 22 15:13:15 EDT 2024 Sun Oct 27 06:56:29 EDT 2024 Tue Nov 05 04:31:47 EST 2024 Fri Nov 01 03:30:56 EDT 2024 Tue Nov 05 04:36:14 EST 2024 Tue Mar 26 01:23:48 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c522t-7363466a980d45715eab27b2fa80ab6f3c93b5292559ebb53167d1adc7dd0ea43 |
ORCID | 0009-0009-1961-9819 |
OpenAccessLink | https://doi.org/10.1140/epjc/s10052-023-12201-7 |
PQID | 2889797129 |
PQPubID | 2034659 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_91283d3ea3e2440eb1e3b5e9f8b9810f proquest_journals_2889797129 gale_infotracacademiconefile_A772920911 gale_incontextgauss_ISR_A772920911 crossref_primary_10_1140_epjc_s10052_023_12201_7 springer_journals_10_1140_epjc_s10052_023_12201_7 |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Particles and Fields |
PublicationTitle | The European physical journal. C, Particles and fields |
PublicationTitleAbbrev | Eur. Phys. J. C |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
References | BluhmRFungS-HKosteleckyVAPhys. Rev. D2008770650202008PhRvD..77f5020B243003110.1103/PhysRevD.77.065020 BrownJDYorkJWPhys. Rev. D199960104026175762710.1103/PhysRevD.60.104026 CohenAGGlashowSLPhys. Rev. Lett.2006970216012006PhRvL..97b1601C224257510.1103/PhysRevLett.97.021601 LessaLASilvaJEGAlmeidaCASEPL2023141290012023EL....14129001L10.1209/0295-5075/acac50 LessaLASilvaJEGMalufRVAlmeidaCASEur. Phys. J. C20208043352020EPJC...80..335L10.1140/epjc/s10052-020-7902-1 MalufRVSilvaJEGAlmeidaCASPhys. Lett. B20157493043082015PhLB..749..304M10.1016/j.physletb.2015.08.004 RizzoTGJHEP2010111562010JHEP...11..156R10.1007/JHEP11(2010)156 BertolamiOCarvalhoCPhys. Rev. D2006740840202006PhRvD..74h4020B227852810.1103/PhysRevD.74.084020 R. Bluhm, N.L. Gagne, R. Potting, A. Vrublevskis, Phys. Rev. D 77, 125007 (2008). (Erratum: Phys. Rev. D 79, 029902 (2009)) Planck Collab. 2018 Results VI, Astron. Astrophys. 641, A6 (2020). arXiv:1807.06209 ScherkJSchwarzJHNucl. Phys. B197915361881979NuPhB.153...61S10.1016/0550-3213(79)90592-3 BluhmRKosteleckýVAPhys. Rev. D2005710650082005PhRvD..71f5008B10.1103/PhysRevD.71.065008 KosteleckyVAPhys. Rev. D2004691050092004PhRvD..69j5009K10.1103/PhysRevD.69.105009 CaiR-GJiJ-YSohK-SPhys. Rev. D19985765471998PhRvD..57.6547C168403310.1103/PhysRevD.57.6547 AlfaroJMorales-TecotlHAUrrutiaLFPhys. Rev. D2002651035092002PhRvD..65j3509A191899310.1103/PhysRevD.65.103509 AltschulBBaileyQGKosteleckyVAPhys. Rev. D2010810650282010PhRvD..81f5028A10.1103/PhysRevD.81.065028 HawkingSWHorowitzGTClass. Quantum Gravity19961314871996CQGra..13.1487H10.1088/0264-9381/13/6/017 CarrollSMHarveyJAKosteleckýVALaneCDOkamotoTPhys. Rev. Lett.2001871416012001PhRvL..87n1601C185529710.1103/PhysRevLett.87.141601 R.V. Maluf, J.E.G. Silva, W.T. Cruz, C.A.S. Almeida, Phys. Lett. B 738, 341 (2014) MalufRVNevesJCSPhys. Rev. D202110340440022021PhRvD.103d4002M10.1103/PhysRevD.103.044002 CarrollSMTamHPhys. Rev. D2008780440472008PhRvD..78d4047C244739110.1103/PhysRevD.78.044047 ColladayDKosteleckyVAPhys. Rev. D1998581160021998PhRvD..58k6002C10.1103/PhysRevD.58.116002 CasanaRCavalcanteAPoulisFPSantosEBPhys. Rev. D201897101040012018PhRvD..97j4001C387916510.1103/PhysRevD.97.104001 ZangenehMKSheykhiADehghaniMHPhys. Rev. D2015910440352015PhRvD..91d4035Z341329510.1103/PhysRevD.91.044035 BertolamiOParamosJPhys. Rev. D2005720440012005PhRvD..72d4001B217530810.1103/PhysRevD.72.044001 KosteleckýVASamuelSPhys. Rev. Lett.1989632241989PhRvL..63..224K10.1103/PhysRevLett.63.224 EscobarCAMartín-RuizAPhys. Rev. D20179590950062017PhRvD..95i5006E10.1103/PhysRevD.95.095006 CaiR-GWangAPhys. Rev. D2004702004PhRvD..70h4042C211713710.1103/PhysRevD.70.084042 A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers ChanKCKHorneJHMannRBNucl. Phys. B19954474411995NuPhB.447..441C10.1016/0550-3213(95)00205-7 ÖvgünAJusufiKSakallıİPhys. Rev. D20199920240422019PhRvD..99b4042O398150910.1103/PhysRevD.99.024042 HernaskiCPhys. Rev. D201490121240362014PhRvD..90l4036H10.1103/PhysRevD.90.124036 SeifertMDPhys. Rev. D2010810650102010PhRvD..81f5010S10.1103/PhysRevD.81.065010 CapeloDPáramosJPhys. Rev. D201591101040072015PhRvD..91j4007C342134310.1103/PhysRevD.91.104007 BrownJDYorkJWPhys. Rev. D19934714071993PhRvD..47.1407B121110910.1103/PhysRevD.47.1407 BluhmRFungS-HKosteleckýVAPhys. Rev. D2008770650202008PhRvD..77f5020B243003110.1103/PhysRevD.77.065020 AlfaroJMorales-TecotlHAUrrutiaLFPhys. Rev. Lett.20008423182000PhRvL..84.2318A10.1103/PhysRevLett.84.2318 SeifertMDPhys. Rev. D2009791240122009PhRvD..79l4012S10.1103/PhysRevD.79.124012 KosteleckýVASamuelSPhys. Rev. D1989396831989PhRvD..39..683K10.1103/PhysRevD.39.683 ChamblinAEmparanRJohnsonCVMyersRCPhys. Rev. D1999600640181999PhRvD..60f4018C172970110.1103/PhysRevD.60.064018 ZhangCYLiuPLiuYNiuCWangBPhys. Rev. D20221050240732022PhRvD.105b4073Z10.1103/PhysRevD.105.024073 KosteleckýVASamuelSPhys. Rev. Lett.19916618111991PhRvL..66.1811K10.1103/PhysRevLett.66.1811 R Casana (12201_CR22) 2018; 97 LA Lessa (12201_CR12) 2020; 80 C Hernaski (12201_CR17) 2014; 90 JD Brown (12201_CR35) 1993; 47 D Capelo (12201_CR25) 2015; 91 J Scherk (12201_CR39) 1979; 153 J Alfaro (12201_CR8) 2002; 65 12201_CR15 12201_CR5 R-G Cai (12201_CR32) 1998; 57 VA Kostelecký (12201_CR1) 1989; 39 A Övgün (12201_CR24) 2019; 99 KCK Chan (12201_CR34) 1995; 447 12201_CR40 MK Zangeneh (12201_CR41) 2015; 91 LA Lessa (12201_CR29) 2023; 141 O Bertolami (12201_CR21) 2005; 72 JD Brown (12201_CR36) 1999; 60 MD Seifert (12201_CR19) 2010; 81 J Alfaro (12201_CR7) 2000; 84 A Chamblin (12201_CR42) 1999; 60 D Colladay (12201_CR9) 1998; 58 RV Maluf (12201_CR18) 2015; 749 R Bluhm (12201_CR38) 2008; 77 R Bluhm (12201_CR13) 2005; 71 B Altschul (12201_CR11) 2010; 81 RV Maluf (12201_CR23) 2021; 103 VA Kostelecký (12201_CR3) 1991; 66 O Bertolami (12201_CR26) 2006; 74 CY Zhang (12201_CR30) 2022; 105 SM Carroll (12201_CR27) 2008; 78 SW Hawking (12201_CR37) 1996; 13 VA Kostelecký (12201_CR2) 1989; 63 R-G Cai (12201_CR31) 2004; 70 AG Cohen (12201_CR4) 2006; 97 SM Carroll (12201_CR6) 2001; 87 R Bluhm (12201_CR14) 2008; 77 12201_CR33 MD Seifert (12201_CR20) 2009; 79 VA Kostelecky (12201_CR10) 2004; 69 CA Escobar (12201_CR16) 2017; 95 TG Rizzo (12201_CR28) 2010; 11 |
References_xml | – volume: 66 start-page: 1811 year: 1991 ident: 12201_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.66.1811 contributor: fullname: VA Kostelecký – volume: 81 start-page: 065028 year: 2010 ident: 12201_CR11 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.81.065028 contributor: fullname: B Altschul – volume: 141 start-page: 29001 year: 2023 ident: 12201_CR29 publication-title: EPL doi: 10.1209/0295-5075/acac50 contributor: fullname: LA Lessa – volume: 60 start-page: 064018 year: 1999 ident: 12201_CR42 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.60.064018 contributor: fullname: A Chamblin – volume: 99 start-page: 024042 issue: 2 year: 2019 ident: 12201_CR24 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.024042 contributor: fullname: A Övgün – volume: 70 year: 2004 ident: 12201_CR31 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.70.084042 contributor: fullname: R-G Cai – ident: 12201_CR40 – volume: 80 start-page: 335 issue: 4 year: 2020 ident: 12201_CR12 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-7902-1 contributor: fullname: LA Lessa – volume: 90 start-page: 124036 issue: 12 year: 2014 ident: 12201_CR17 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.124036 contributor: fullname: C Hernaski – volume: 103 start-page: 044002 issue: 4 year: 2021 ident: 12201_CR23 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.044002 contributor: fullname: RV Maluf – ident: 12201_CR5 doi: 10.1016/j.physletb.2014.09.059 – volume: 77 start-page: 065020 year: 2008 ident: 12201_CR38 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.77.065020 contributor: fullname: R Bluhm – volume: 91 start-page: 044035 year: 2015 ident: 12201_CR41 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.044035 contributor: fullname: MK Zangeneh – ident: 12201_CR15 doi: 10.1103/PhysRevD.79.029902 – volume: 81 start-page: 065010 year: 2010 ident: 12201_CR19 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.81.065010 contributor: fullname: MD Seifert – volume: 47 start-page: 1407 year: 1993 ident: 12201_CR35 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.47.1407 contributor: fullname: JD Brown – volume: 91 start-page: 104007 issue: 10 year: 2015 ident: 12201_CR25 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.104007 contributor: fullname: D Capelo – volume: 69 start-page: 105009 year: 2004 ident: 12201_CR10 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.69.105009 contributor: fullname: VA Kostelecky – volume: 13 start-page: 1487 year: 1996 ident: 12201_CR37 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/13/6/017 contributor: fullname: SW Hawking – volume: 95 start-page: 095006 issue: 9 year: 2017 ident: 12201_CR16 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.095006 contributor: fullname: CA Escobar – volume: 84 start-page: 2318 year: 2000 ident: 12201_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.2318 contributor: fullname: J Alfaro – volume: 74 start-page: 084020 year: 2006 ident: 12201_CR26 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.74.084020 contributor: fullname: O Bertolami – ident: 12201_CR33 – volume: 87 start-page: 141601 year: 2001 ident: 12201_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.141601 contributor: fullname: SM Carroll – volume: 71 start-page: 065008 year: 2005 ident: 12201_CR13 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.71.065008 contributor: fullname: R Bluhm – volume: 78 start-page: 044047 year: 2008 ident: 12201_CR27 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.044047 contributor: fullname: SM Carroll – volume: 153 start-page: 61 year: 1979 ident: 12201_CR39 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(79)90592-3 contributor: fullname: J Scherk – volume: 39 start-page: 683 year: 1989 ident: 12201_CR1 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.39.683 contributor: fullname: VA Kostelecký – volume: 58 start-page: 116002 year: 1998 ident: 12201_CR9 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.58.116002 contributor: fullname: D Colladay – volume: 749 start-page: 304 year: 2015 ident: 12201_CR18 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2015.08.004 contributor: fullname: RV Maluf – volume: 11 start-page: 156 year: 2010 ident: 12201_CR28 publication-title: JHEP doi: 10.1007/JHEP11(2010)156 contributor: fullname: TG Rizzo – volume: 447 start-page: 441 year: 1995 ident: 12201_CR34 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(95)00205-7 contributor: fullname: KCK Chan – volume: 97 start-page: 104001 issue: 10 year: 2018 ident: 12201_CR22 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.104001 contributor: fullname: R Casana – volume: 57 start-page: 6547 year: 1998 ident: 12201_CR32 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.57.6547 contributor: fullname: R-G Cai – volume: 97 start-page: 021601 year: 2006 ident: 12201_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.021601 contributor: fullname: AG Cohen – volume: 65 start-page: 103509 year: 2002 ident: 12201_CR8 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.65.103509 contributor: fullname: J Alfaro – volume: 79 start-page: 124012 year: 2009 ident: 12201_CR20 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.79.124012 contributor: fullname: MD Seifert – volume: 63 start-page: 224 year: 1989 ident: 12201_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.63.224 contributor: fullname: VA Kostelecký – volume: 105 start-page: 024073 year: 2022 ident: 12201_CR30 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.105.024073 contributor: fullname: CY Zhang – volume: 60 start-page: 104026 year: 1999 ident: 12201_CR36 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.60.104026 contributor: fullname: JD Brown – volume: 77 start-page: 065020 year: 2008 ident: 12201_CR14 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.77.065020 contributor: fullname: R Bluhm – volume: 72 start-page: 044001 year: 2005 ident: 12201_CR21 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.72.044001 contributor: fullname: O Bertolami |
SSID | ssj0002408 |
Score | 2.4754379 |
Snippet | We obtain new black hole solutions in a Einstein–Bumblebee-scalar theory. By starting with a Einstein–Bumblebee theory in (
D
+
d
) dimensions, the scalar... Abstract We obtain new black hole solutions in a Einstein–Bumblebee-scalar theory. By starting with a Einstein–Bumblebee theory in ( $$D+d$$ D + d )... We obtain new black hole solutions in a Einstein-Bumblebee-scalar theory. By starting with a Einstein-Bumblebee theory in ( [Formula omitted]) dimensions, the... We obtain new black hole solutions in a Einstein–Bumblebee-scalar theory. By starting with a Einstein–Bumblebee theory in (D+d) dimensions, the scalar dilaton... Abstract We obtain new black hole solutions in a Einstein–Bumblebee-scalar theory. By starting with a Einstein–Bumblebee theory in ( $$D+d$$ D + d )... |
SourceID | doaj proquest gale crossref springer |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1035 |
SubjectTerms | Astronomy Astrophysics and Cosmology Black holes Bumblebees Cosmological constant Dilatons Elementary Particles Hadrons Heavy Ions Measurement Science and Instrumentation Nuclear Energy Nuclear Physics Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Regular Article - Theoretical Physics Spacetime Stability analysis String Theory Symmetry Thermodynamics Violations |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgRn1hdpYjgKZgmbZMcd2UXFfTgA7yFpE1lZa3LPu7-B_-hv8SZPtTFgxevbSjJN-nMN-3MF0JOlHKphjANaWrCaexlQiEopFRkUuoitdYW2Jx8fZNePMRXj8njj6O-sCaslgeugTvT4EBFLrwVHiIRA9fihUu8LpTTKmJF5X2ZbpOpxgejcFdTzQUZxJmfPGfYLcdgPhCkaMQh7lG5FIsqyf7fjvnXH9Iq8Aw3yHrDGMNePdNNsuLLLbJaVW5ms23CBiNgeH5Ufry99xcvbgx4eZqPxpBNl6HD73MhnoEbtptshzwMB_fnF7Q5BoFmQI7mVIpUxGlqtWJ5nMgo8dZx6XhhFbMuLUSmARGuMTnwziXY255HNs9knjNvY7FLOuVr6fdIaFWOz9TYfYtMxHEwiUBIbQKJVxEQ1gJiJrXahak7l5lBDE2NoQEMTYWhkQHpI3Bfw1GuuroARjSNEc1fRgzIMcJuUJCixIqXJ7uYzczl3a3pIf3nwGqigJw2g4rX-dRmtmkggKWhhtXSyG5rPtO8kjPDldJSS-A3AYlak37f_mOZ-_-xzAOyxqvth19wuqQzny78IXCauTuqtu8nAUnvdQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagCIkLKi-xtKAIIXGy6tjx64TaqkuLBAegUm-WHTvVViW7bHbv_Q_8Q34JM16nVVWJXhPLTr4Zz8szY0I-GBOUBTUNbqrktElaUlAKiopWa9sp732Hxclfv6nj0-bLmTwrAbehpFWOMjEL6jhvMUa-x42x2mpQT58WvyneGoWnq-UKjYfkUc21RufLTD9fS2Js35Wri0RDFWuakt8FPsVeWly0WD_H4AtBbdGagyak-pZ2yk3874rqO2emWRVNt8nTYkNW-xuiPyMPUv-cPM65nO3wgrCjGdh8adb_vfpzsP4VLgHBROPsEvzrvgoYsavwVtxqZLuX5HR69PPwmJaLEWgL5tKKaqFEo5S3hsVG6lomH7gOvPOG-aA60VoRJLfoLqQQJFa7x9rHVsfIkm_EK7LVz_v0mlTeRJzTYj0u2iaBA5FEqJPwElyxbkLYCIhbbPpfuE0tM3OIodtg6ABDlzF0ekIOELjr4djAOj-YL89d2Q_Ogl4UUSQvEhgYLOGKQSbbmWBNzWDd9wi7wxYVPebAnPv1MLiTH9_dPjoEHOycekI-lkHdfLX0rS8lBfBr2NXq1sjdkXyubNLB3bDUhNQjSW9e3_Obb_4_5Q55wjNjYbRml2ytluv0FuyXVXiXmfQfNIro2g priority: 102 providerName: ProQuest |
Title | Einstein–Bumblebee-dilaton black hole solution |
URI | https://link.springer.com/article/10.1140/epjc/s10052-023-12201-7 https://www.proquest.com/docview/2889797129 https://doaj.org/article/91283d3ea3e2440eb1e3b5e9f8b9810f |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7yoNBL6ZNuky6mFHoSkSXrddxddpsEGkrahdyEZMtlQ-qE7O69_yH_sL-kM147bQikkIvBtmShGVnfN9LMCOCjtVE7hGk0U5VgRTKKIShoJktjXK1DCDUFJ3850Yfz4vhMnW3BQR8L8-_-PXL_g3R1XlKcG8cvIbywXCBiMbMNuwjElny4JnpyO_VSvq7OieuByncgqM3Uf38-vrcx2uLN7Dk864hiNtpo9gVspeYlPGkdNsvlK-DTBRK7tGh-_7oZr3_GCxRTYtXiAo3oJou0LJfR0bdZP7Zew3w2_T45ZN3pB6xETrRiRmpZaB2c5VWhTK5SiMJEUQfLQ9S1LJ2MSjiyCVKMikLaqzxUpakqnkIh38BOc9mkt5AFW9E3HQXdEgGJAjUhY55kUGhv1QPgvUD81SbJhd8ELHNPMvQbGXqUoW9l6M0AxiS42-KUpbp9gMrz3aD3DsFPVjIFmZBF8EQtRpVcbaOzOcd2P5DYPeWhaMjR5UdYL5f-6NupHxHrF0hm8gF86grVl6vrUIYubgC7Rqmr7pTc79Xnuz9x6YW1zjiDtGYAea_Sv6__0813j6izB09FO9ponWYfdlbX6_QemcsqDmHbzj4PYXc8Pfl6incTUQzbETxs1wLwOhejP1pt6Ic |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,41131,41132,41535,42200,42201,42604,43612,43817,51588,52245,52246,74363,74630 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELagCNELKn9ioYUIIXGy6tiOf06oRV220PYArdSbZSdOtajNLpvdO-_AG_IkzHidVlUluCaWncyM55sZz4wJeW9MUBZgGtzUilMZdUUBFBQVtda2Vd77FouTj0_U5Ex-Oa_Oc8Ctz2mVg05MirqZ1Rgj3-XGWG01wNPH-U-Kt0bh6Wq-QuM-eSAFYDVWio8_X2tibN-VqouEpIpJmfO7wKfYjfMfNdbPMfhCgC1ackBCqm-hU2rif1dV3zkzTVA03iKPsw1Z7K2Z_oTci91T8jDlctb9M8IOpmDzxWn359fv_dVVuAQKRtpML8G_7oqAEbsCb8UtBrF7Ts7GB6efJjRfjEBrMJeWVAslpFLeGtbISpdV9IHrwFtvmA-qFbUVoeIW3YUYQoXV7k3pm1o3DYteihdko5t18SUpvGlwTov1uGibBA5MEqGMwlfgirUjwgaCuPm6_4Vb1zIzhzR0axo6oKFLNHR6RPaRcNfDsYF1ejBbXLi8H5wFXBSNiF5EMDBYxBVDFW1rgjUlg3XfIdkdtqjoMAfmwq_63h1-_-b20CHgYOeUI_IhD2pny4WvfS4pgF_Drla3Rm4P7HN5k_buRqRGpBxYevP6P7_56t9TviWPJqfHR-7o8OTra7LJk5Bh5GabbCwXq7gDtswyvEkC-xcr3Ou8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagCMQFlZe60EKEkDhZ69jx64T6WloeFQIq9WbZiVMtKtlls3vnP_AP-SXMeJ1WVSW4JpYTz4znm7HnQchrY4KyANPgpkpOq6glBVBQVNRa21Z571tMTv50oo5Oq_dn8izHP_U5rHLQiUlRN7Maz8jH3BirrQZ4Grc5LOLzweTt_CfFDlJ405rbadwmdwAVFcq8mby71MpYyitlGomKKlZVOdYL_ItxnH-vMZeOwd8ChNGSAypSfQ2pUkH_m2r7xv1pgqXJJnmQ7clidy0AD8mt2D0id1NcZ90_JuxwCvZfnHZ_fv3eW_0IF0DNSJvpBfjaXRHw9K7ADrnFIIJPyOnk8Nv-Ec1NEmgNptOSalhqpZS3hjWV1KWMPnAdeOsN80G1orYiSG7RdYghSMx8b0rf1LppWPSVeEo2ulkXt0jhTYNzWszNRTslcGCYCGUUXoJb1o4IGwji5utaGG6d18wc0tCtaeiAhi7R0OkR2UPCXQ7HYtbpwWxx7vLecBYwUjQiehHB2GARvxhktK0J1pQMvvsKye6wXEWHjD_3q753x1-_uF10DjjYPOWIvMmD2tly4Wuf0wtgaVjh6trI7YF9Lm_Y3l2J14iUA0uvXv9nmc_-PeVLcg9k1X08PvnwnNznScbwEGebbCwXq7gDZs0yvEjy-heDM-_0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Einstein-Bumblebee-dilaton+black+hole+solution&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Lessa%2C+L.+A&rft.au=Silva%2C+J.+E.+G&rft.date=2023-11-01&rft.pub=Springer&rft.issn=1434-6044&rft.volume=83&rft.issue=11&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-023-12201-7&rft.externalDocID=A772920911 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6052&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6052&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6052&client=summon |