Dual-responsive supramolecular photodynamic nanomedicine with activatable immunomodulation for enhanced antitumor therapy
A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8+ T cells is subject to the regulatory T lymphocytes (Tregs), leaving the tumor at risk of recurrence and metastasis after the initial ablation. To augment the antitumor response and reprog...
Saved in:
Published in | Acta pharmaceutica Sinica. B Vol. 14; no. 2; pp. 765 - 780 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2024
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2211-3835 2211-3843 |
DOI | 10.1016/j.apsb.2023.10.006 |
Cover
Loading…
Abstract | A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8+ T cells is subject to the regulatory T lymphocytes (Tregs), leaving the tumor at risk of recurrence and metastasis after the initial ablation. To augment the antitumor response and reprogram the immunosuppressive tumor microenvironment (TME), a supramolecular photodynamic nanoparticle (DACss) is constructed by the host-guest interaction between demethylcantharidin-conjugated β-cyclodextrin (DMC-CD) and amantadine-terminated disulfide-conjugated FFVLGGGC peptide with chlorin e6 decoration (Ad-ss-pep-Ce6) to achieve intelligent delivery of photosensitizer and immunomodulator for breast cancer treatment. The acid-labile β-carboxamide bond of DMC-CD is hydrolyzed in response to the acidic TME, resulting in the localized release of DMC and subsequent inhibition of Tregs. The guest molecule Ad-ss-pep-Ce6 can be cleaved by a high level of intracellular GSH, reducing photosensitizer toxicity and increasing photosensitizer retention in the tumor. With a significant increase in the CTL/Treg ratio, the combination of Ce6-based PDT and DMC-mediated immunomodulation adequately achieved spatiotemporal regulation and remodeling of the TME, as well as improved primary tumor and in situ lung metastasis suppression with the aid of PD-1 antibody.
Dual-responsive cyclodextrin-based supramolecular self-assembly system co-delivers photosensitizer and immunomodulator to induce tumor cell apoptosis and reverse the immunosuppressive microenvironment with PD-1 antibody for effective treatment of metastatic breast cancer. [Display omitted] |
---|---|
AbstractList | A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8+ T cells is subject to the regulatory T lymphocytes (Tregs), leaving the tumor at risk of recurrence and metastasis after the initial ablation. To augment the antitumor response and reprogram the immunosuppressive tumor microenvironment (TME), a supramolecular photodynamic nanoparticle (DACss) is constructed by the host-guest interaction between demethylcantharidin-conjugated β-cyclodextrin (DMC-CD) and amantadine-terminated disulfide-conjugated FFVLGGGC peptide with chlorin e6 decoration (Ad-ss-pep-Ce6) to achieve intelligent delivery of photosensitizer and immunomodulator for breast cancer treatment. The acid-labile β-carboxamide bond of DMC-CD is hydrolyzed in response to the acidic TME, resulting in the localized release of DMC and subsequent inhibition of Tregs. The guest molecule Ad-ss-pep-Ce6 can be cleaved by a high level of intracellular GSH, reducing photosensitizer toxicity and increasing photosensitizer retention in the tumor. With a significant increase in the CTL/Treg ratio, the combination of Ce6-based PDT and DMC-mediated immunomodulation adequately achieved spatiotemporal regulation and remodeling of the TME, as well as improved primary tumor and in situ lung metastasis suppression with the aid of PD-1 antibody. A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8+ T cells is subject to the regulatory T lymphocytes (Tregs), leaving the tumor at risk of recurrence and metastasis after the initial ablation. To augment the antitumor response and reprogram the immunosuppressive tumor microenvironment (TME), a supramolecular photodynamic nanoparticle (DACss) is constructed by the host-guest interaction between demethylcantharidin-conjugated β-cyclodextrin (DMC-CD) and amantadine-terminated disulfide-conjugated FFVLGGGC peptide with chlorin e6 decoration (Ad-ss-pep-Ce6) to achieve intelligent delivery of photosensitizer and immunomodulator for breast cancer treatment. The acid-labile β-carboxamide bond of DMC-CD is hydrolyzed in response to the acidic TME, resulting in the localized release of DMC and subsequent inhibition of Tregs. The guest molecule Ad-ss-pep-Ce6 can be cleaved by a high level of intracellular GSH, reducing photosensitizer toxicity and increasing photosensitizer retention in the tumor. With a significant increase in the CTL/Treg ratio, the combination of Ce6-based PDT and DMC-mediated immunomodulation adequately achieved spatiotemporal regulation and remodeling of the TME, as well as improved primary tumor and in situ lung metastasis suppression with the aid of PD-1 antibody. Dual-responsive cyclodextrin-based supramolecular self-assembly system co-delivers photosensitizer and immunomodulator to induce tumor cell apoptosis and reverse the immunosuppressive microenvironment with PD-1 antibody for effective treatment of metastatic breast cancer. [Display omitted] A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8+ T cells is subject to the regulatory T lymphocytes (Tregs), leaving the tumor at risk of recurrence and metastasis after the initial ablation. To augment the antitumor response and reprogram the immunosuppressive tumor microenvironment (TME), a supramolecular photodynamic nanoparticle (DACss) is constructed by the host-guest interaction between demethylcantharidin-conjugated β-cyclodextrin (DMC-CD) and amantadine-terminated disulfide-conjugated FFVLGGGC peptide with chlorin e6 decoration (Ad-ss-pep-Ce6) to achieve intelligent delivery of photosensitizer and immunomodulator for breast cancer treatment. The acid-labile β-carboxamide bond of DMC-CD is hydrolyzed in response to the acidic TME, resulting in the localized release of DMC and subsequent inhibition of Tregs. The guest molecule Ad-ss-pep-Ce6 can be cleaved by a high level of intracellular GSH, reducing photosensitizer toxicity and increasing photosensitizer retention in the tumor. With a significant increase in the CTL/Treg ratio, the combination of Ce6-based PDT and DMC-mediated immunomodulation adequately achieved spatiotemporal regulation and remodeling of the TME, as well as improved primary tumor and in situ lung metastasis suppression with the aid of PD-1 antibody.A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8+ T cells is subject to the regulatory T lymphocytes (Tregs), leaving the tumor at risk of recurrence and metastasis after the initial ablation. To augment the antitumor response and reprogram the immunosuppressive tumor microenvironment (TME), a supramolecular photodynamic nanoparticle (DACss) is constructed by the host-guest interaction between demethylcantharidin-conjugated β-cyclodextrin (DMC-CD) and amantadine-terminated disulfide-conjugated FFVLGGGC peptide with chlorin e6 decoration (Ad-ss-pep-Ce6) to achieve intelligent delivery of photosensitizer and immunomodulator for breast cancer treatment. The acid-labile β-carboxamide bond of DMC-CD is hydrolyzed in response to the acidic TME, resulting in the localized release of DMC and subsequent inhibition of Tregs. The guest molecule Ad-ss-pep-Ce6 can be cleaved by a high level of intracellular GSH, reducing photosensitizer toxicity and increasing photosensitizer retention in the tumor. With a significant increase in the CTL/Treg ratio, the combination of Ce6-based PDT and DMC-mediated immunomodulation adequately achieved spatiotemporal regulation and remodeling of the TME, as well as improved primary tumor and in situ lung metastasis suppression with the aid of PD-1 antibody. A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8 T cells is subject to the regulatory T lymphocytes (Tregs), leaving the tumor at risk of recurrence and metastasis after the initial ablation. To augment the antitumor response and reprogram the immunosuppressive tumor microenvironment (TME), a supramolecular photodynamic nanoparticle (DACss) is constructed by the host-guest interaction between demethylcantharidin-conjugated -cyclodextrin (DMC-CD) and amantadine-terminated disulfide-conjugated FFVLGGGC peptide with chlorin e6 decoration (Ad-ss-pep-Ce6) to achieve intelligent delivery of photosensitizer and immunomodulator for breast cancer treatment. The acid-labile -carboxamide bond of DMC-CD is hydrolyzed in response to the acidic TME, resulting in the localized release of DMC and subsequent inhibition of Tregs. The guest molecule Ad-ss-pep-Ce6 can be cleaved by a high level of intracellular GSH, reducing photosensitizer toxicity and increasing photosensitizer retention in the tumor. With a significant increase in the CTL/Treg ratio, the combination of Ce6-based PDT and DMC-mediated immunomodulation adequately achieved spatiotemporal regulation and remodeling of the TME, as well as improved primary tumor and lung metastasis suppression with the aid of PD-1 antibody. A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8 + T cells is subject to the regulatory T lymphocytes (Tregs), leaving the tumor at risk of recurrence and metastasis after the initial ablation. To augment the antitumor response and reprogram the immunosuppressive tumor microenvironment (TME), a supramolecular photodynamic nanoparticle (DACss) is constructed by the host-guest interaction between demethylcantharidin-conjugated β -cyclodextrin (DMC-CD) and amantadine-terminated disulfide-conjugated FFVLGGGC peptide with chlorin e6 decoration (Ad-ss-pep-Ce6) to achieve intelligent delivery of photosensitizer and immunomodulator for breast cancer treatment. The acid-labile β -carboxamide bond of DMC-CD is hydrolyzed in response to the acidic TME, resulting in the localized release of DMC and subsequent inhibition of Tregs. The guest molecule Ad-ss-pep-Ce6 can be cleaved by a high level of intracellular GSH, reducing photosensitizer toxicity and increasing photosensitizer retention in the tumor. With a significant increase in the CTL/Treg ratio, the combination of Ce6-based PDT and DMC-mediated immunomodulation adequately achieved spatiotemporal regulation and remodeling of the TME, as well as improved primary tumor and in situ lung metastasis suppression with the aid of PD-1 antibody. Dual-responsive cyclodextrin-based supramolecular self-assembly system co-delivers photosensitizer and immunomodulator to induce tumor cell apoptosis and reverse the immunosuppressive microenvironment with PD-1 antibody for effective treatment of metastatic breast cancer. Image 1 |
Author | Wu, Dongxu Gong, Tao Zhao, Huan Gao, Huile Zhou, Yang Tong, Fan He, Siqin Wang, Lulu Li, Hanmei |
Author_xml | – sequence: 1 givenname: Siqin surname: He fullname: He, Siqin organization: Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China – sequence: 2 givenname: Lulu surname: Wang fullname: Wang, Lulu organization: Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China – sequence: 3 givenname: Dongxu surname: Wu fullname: Wu, Dongxu organization: Key Laboratory of Drug-Targeting and Drug Delivery System, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China – sequence: 4 givenname: Fan surname: Tong fullname: Tong, Fan organization: Key Laboratory of Drug-Targeting and Drug Delivery System, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China – sequence: 5 givenname: Huan surname: Zhao fullname: Zhao, Huan organization: Revvity Inc., Waltham, MA, 02451, USA – sequence: 6 givenname: Hanmei surname: Li fullname: Li, Hanmei organization: School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China – sequence: 7 givenname: Tao surname: Gong fullname: Gong, Tao organization: Key Laboratory of Drug-Targeting and Drug Delivery System, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China – sequence: 8 givenname: Huile orcidid: 0000-0002-5355-7238 surname: Gao fullname: Gao, Huile email: yangzhou@hainanu.edu.cn organization: Key Laboratory of Drug-Targeting and Drug Delivery System, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China – sequence: 9 givenname: Yang surname: Zhou fullname: Zhou, Yang email: gaohuile@scu.edu.cn organization: Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38322349$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVARLaV_gAPKkUsWfyXrSEgIla9KlbjA2Zo4k8Yrxw62s9X-e5xuW1EO9cXWm3nvWW_mdXHivMOieEvJhhLafNhtYI7dhhHGM7AhpHlRnDFGacWl4CePb16fFhcx7kg-DWFsW78qTjPMGBftWXH4soCtAsbZu2j2WMZlDjB5i3qxEMp59Mn3BweT0aUD5yfsjTYOy1uTxhJ0MntI0FkszTQtue77TEzGu3LwoUQ3gtPYl-CSScuUoTRigPnwpng5gI14cX-fF7-_ff11-aO6_vn96vLzdaVrxlJVY9O2pGlwkINEFMAHLnome0HrBiXfSiKokIT2tK23mhOey1wMrBFdJlJ-XlwddXsPOzUHM0E4KA9G3QE-3CgIyWiLChrScilBY9uJfpBtTrJvOQ61yMkBz1qfjlrz0uUgNLoUwD4RfVpxZlQ3fq8okYIIJrPC-3uF4P8sGJOaTNRoLTj0S1SsZZyzLW3Xj7_71-zR5WF4uUEeG3TwMQYclDbpLvrsbWw2VeuqqJ1aV0Wtq7JieQ8ylf1HfVB_lvTxSMI8rr3BoKI2uE7XBNQp52meo_8FXgzaIA |
CitedBy_id | crossref_primary_10_1016_j_apsb_2024_05_032 crossref_primary_10_1016_j_jphotobiol_2024_113067 crossref_primary_10_2147_IJN_S471734 crossref_primary_10_3390_cells13181526 crossref_primary_10_1002_agt2_610 crossref_primary_10_1021_acsabm_4c01696 crossref_primary_10_1016_j_mtsust_2024_100958 crossref_primary_10_1080_17435889_2025_2456450 crossref_primary_10_1021_acsnano_4c01499 crossref_primary_10_1002_adfm_202408581 crossref_primary_10_1021_acsmaterialslett_4c00798 crossref_primary_10_1021_acs_nanolett_5c00090 crossref_primary_10_1016_j_apsb_2025_03_021 crossref_primary_10_1039_D4NA00086B crossref_primary_10_1016_j_apsb_2024_07_002 crossref_primary_10_1002_adfm_202423291 crossref_primary_10_1021_acsnano_4c16329 crossref_primary_10_1016_j_jddst_2024_106007 |
Cites_doi | 10.1073/pnas.0604571103 10.5114/ceji.2015.56974 10.1016/j.cclet.2021.10.074 10.1126/sciadv.abn1805 10.1002/adfm.202104645 10.1186/s40425-019-0785-8 10.1111/j.1365-2133.2012.11189.x 10.1038/s41565-022-01261-7 10.1016/j.cclet.2022.03.040 10.1016/j.apsb.2022.11.001 10.1038/nrd3683 10.1016/j.addr.2018.07.002 10.1016/j.biomaterials.2018.03.046 10.1021/acsnano.0c06765 10.1039/D1SC01139A 10.1016/j.intimp.2021.107395 10.1039/c4pp00455h 10.1016/j.apsb.2021.08.012 10.1016/j.actbio.2023.03.039 10.1021/jacs.9b03990 10.1002/anie.202106392 10.1016/j.cclet.2021.11.056 10.1016/j.apsb.2021.12.001 10.1002/advs.202103836 10.1016/j.smim.2016.10.009 10.1111/cas.13639 10.1038/s41577-020-00478-8 10.3389/fchem.2021.686303 10.1021/acsnano.3c00041 10.1016/j.cej.2022.140830 10.1038/s41388-019-0733-6 10.1016/j.apsb.2022.03.010 10.1021/acsnano.8b04371 10.1002/adhm.201200385 10.1016/j.ymthe.2021.05.017 10.1002/adma.201706220 10.1172/JCI91190 10.3322/caac.21601 10.1038/nri.2016.107 10.1038/s41577-019-0232-6 10.1038/s41467-021-21047-0 10.1038/bjc.2015.101 |
ContentType | Journal Article |
Copyright | 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences 2024 The Authors. 2024 The Authors 2024 |
Copyright_xml | – notice: 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences – notice: 2024 The Authors. – notice: 2024 The Authors 2024 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.apsb.2023.10.006 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 2211-3843 |
EndPage | 780 |
ExternalDocumentID | oai_doaj_org_article_a609388ace9b4df89843d93ef54022a3 PMC10840428 38322349 10_1016_j_apsb_2023_10_006 S2211383523004008 |
Genre | Journal Article |
GroupedDBID | --- --K -05 -0E -SE -S~ 0R~ 0SF 1~5 4.4 457 4G. 53G 5VR 5VS 6I. 7-5 92M 9D9 9DE AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABKZE ABMAC ACGFS ADBBV ADEZE ADRAZ AEXQZ AFUIB AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV CAJEE CAJUS CCEZO CIEJG DIK EBS EJD FDB GROUPED_DOAJ GX1 HH5 HYE HZ~ IPNFZ IXB JUIAU KQ8 M41 M48 NCXOZ O-L O9- OK1 Q-- Q-4 R-E RIG ROL RPM RT5 SES SSZ T8U U1F U1G U5E U5O XH2 ~NG AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c522t-5e699066ef8f8ee4a3f34d28d4156e83780414801d1957c30334d34f264b99013 |
IEDL.DBID | M48 |
ISSN | 2211-3835 |
IngestDate | Wed Aug 27 01:25:59 EDT 2025 Thu Aug 21 18:35:27 EDT 2025 Thu Jul 10 16:57:03 EDT 2025 Thu Apr 03 07:06:50 EDT 2025 Tue Jul 01 01:53:12 EDT 2025 Thu Apr 24 22:56:00 EDT 2025 Sat Nov 04 15:31:32 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Immunomodulator Photodynamic therapy Supramolecular assembly Checkpoint blockade Dual-responsive Immunosuppressive microenvironment |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c522t-5e699066ef8f8ee4a3f34d28d4156e83780414801d1957c30334d34f264b99013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5355-7238 |
OpenAccessLink | https://doaj.org/article/a609388ace9b4df89843d93ef54022a3 |
PMID | 38322349 |
PQID | 2923327191 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a609388ace9b4df89843d93ef54022a3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10840428 proquest_miscellaneous_2923327191 pubmed_primary_38322349 crossref_citationtrail_10_1016_j_apsb_2023_10_006 crossref_primary_10_1016_j_apsb_2023_10_006 elsevier_sciencedirect_doi_10_1016_j_apsb_2023_10_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Acta pharmaceutica Sinica. B |
PublicationTitleAlternate | Acta Pharm Sin B |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Jia, Liu, Wang, Hu, Yu, Zhou (bib4) 2022; 12 Mo, Zhang, Shi, Wei, Zheng, Li (bib24) 2018; 109 Yuan, Fan, Wu, Liu, Zhan, Qiu (bib40) 2021; 29 Shi, Zhang, Yao, Zeng, Du, Nijiati (bib7) 2023; 18 Kim, Park, Son, Lee, Chung, Cho (bib19) 2019; 7 Almeida, Lochner, Berod, Sparwasser (bib20) 2016; 28 Chen, Liu, Liang, Luo, He, Wu (bib6) 2018; 12 von Boehmer, Daniel (bib18) 2013; 12 Roy, Bobbala, Young, Beldjoudi, Nguyen, Cetin (bib34) 2019; 141 Ding, Xu, Li, Wang, Luo, Mok (bib32) 2023; 164 Chen, Li, Wang, Pan, Wei, Lu (bib33) 2021; 12 Galluzzi, Buque, Kepp, Zitvogel, Kroemer (bib8) 2017; 17 Davoodi, Lee, Xu, Sunil, Sun, Soh (bib36) 2018; 132 Ayers, Lunceford, Nebozhyn, Murphy, Loboda, Kaufman (bib42) 2017; 127 Gelderman, Hultqvist, Holmberg, Olofsson, Holmdahl (bib16) 2006; 103 Gunaydin, Gedik, Ayan (bib3) 2021; 9 Fu, Li, Zang, Zhou, Shi, Zhai (bib25) 2022; 12 Wachowska, Muchowicz, Demkow (bib11) 2015; 40 Yang, Ji, Liao, Li, Wang, Zhang (bib28) 2022; 33 Abiko, Matsumura, Hamanishi, Horikawa, Murakami, Yamaguchi (bib41) 2015; 112 Zhao, Zheng, Huang, Chen, Deng, Liu (bib13) 2020; 14 Gao, Kwong, Wang, Kam, Xie, Lee (bib31) 2023; 17 Li, Yang, Wang, Du, Hou (bib1) 2023; 451 Lu, Aimetti, Langer, Gu (bib37) 2017; 2 Raffin, Vo, Bluestone (bib21) 2020; 20 Hu, Cun, Ruan, Liu, Xiao, Yang (bib35) 2018; 168 Qin, Tong, Zhang, Zhou, He, Xie (bib46) 2021; 31 Zhou, Zhang, Jiang, Chen, Tong, Yang (bib29) 2023; 19 Liu, Luo, Pang, Zhang, Ruan, Wu (bib30) 2023; 34 Cong, Xiao, Xiong, Wang, Ding, Li (bib23) 2018; 30 Permata, Hagiwara, Sato, Yasuhara, Oike, Gondhowiardjo (bib43) 2019; 38 Tian, Gui, Wei, Shang, Sun, Ma (bib44) 2021; 93 He, Li, Cheng, Zeng, Zhang, Duan (bib22) 2021; 60 Xu, Xiong, Sun, Gao (bib15) 2022; 12 Fu, Ma, Liu, Xu, Sun (bib26) 2022; 33 Zhou, Tong, Gu, He, Yang, Li (bib27) 2022; 12 Siegel, Miller, Sauer, Fedewa, Butterly, Anderson (bib2) 2020; 70 Yang, Zhang, Wang, Rong, Liu, Xia (bib5) 2022; 33 Peng, Xiao, Chen, Gao (bib14) 2022; 9 Gao, Wang, Li, Kwong, Wei, Xie (bib39) 2022; 8 Anzengruber, Avci, de Freitasa, Hamblin (bib12) 2015; 14 Muri, Kopf (bib17) 2021; 21 Jiang, Huang, Xu, Pu (bib38) 2021; 12 Zhou, Xiao, Meng, Li, Li, Jing (bib45) 2013; 2 Ibbotson (bib9) 2012; 167 Han, Huang, Zhu, Wang, Zhao, Liu (bib10) 2023; 455 Peng (10.1016/j.apsb.2023.10.006_bib14) 2022; 9 Gunaydin (10.1016/j.apsb.2023.10.006_bib3) 2021; 9 Zhou (10.1016/j.apsb.2023.10.006_bib27) 2022; 12 Han (10.1016/j.apsb.2023.10.006_bib10) 2023; 455 Muri (10.1016/j.apsb.2023.10.006_bib17) 2021; 21 Raffin (10.1016/j.apsb.2023.10.006_bib21) 2020; 20 Yuan (10.1016/j.apsb.2023.10.006_bib40) 2021; 29 Wachowska (10.1016/j.apsb.2023.10.006_bib11) 2015; 40 Almeida (10.1016/j.apsb.2023.10.006_bib20) 2016; 28 Cong (10.1016/j.apsb.2023.10.006_bib23) 2018; 30 Fu (10.1016/j.apsb.2023.10.006_bib25) 2022; 12 Kim (10.1016/j.apsb.2023.10.006_bib19) 2019; 7 Gao (10.1016/j.apsb.2023.10.006_bib31) 2023; 17 Permata (10.1016/j.apsb.2023.10.006_bib43) 2019; 38 Yang (10.1016/j.apsb.2023.10.006_bib5) 2022; 33 Shi (10.1016/j.apsb.2023.10.006_bib7) 2023; 18 Ding (10.1016/j.apsb.2023.10.006_bib32) 2023; 164 Liu (10.1016/j.apsb.2023.10.006_bib30) 2023; 34 Mo (10.1016/j.apsb.2023.10.006_bib24) 2018; 109 Tian (10.1016/j.apsb.2023.10.006_bib44) 2021; 93 Anzengruber (10.1016/j.apsb.2023.10.006_bib12) 2015; 14 Chen (10.1016/j.apsb.2023.10.006_bib33) 2021; 12 Jiang (10.1016/j.apsb.2023.10.006_bib38) 2021; 12 Yang (10.1016/j.apsb.2023.10.006_bib28) 2022; 33 Abiko (10.1016/j.apsb.2023.10.006_bib41) 2015; 112 Ibbotson (10.1016/j.apsb.2023.10.006_bib9) 2012; 167 Zhou (10.1016/j.apsb.2023.10.006_bib29) 2023; 19 Li (10.1016/j.apsb.2023.10.006_bib1) 2023; 451 Gao (10.1016/j.apsb.2023.10.006_bib39) 2022; 8 Hu (10.1016/j.apsb.2023.10.006_bib35) 2018; 168 Davoodi (10.1016/j.apsb.2023.10.006_bib36) 2018; 132 Lu (10.1016/j.apsb.2023.10.006_bib37) 2017; 2 Jia (10.1016/j.apsb.2023.10.006_bib4) 2022; 12 Xu (10.1016/j.apsb.2023.10.006_bib15) 2022; 12 Fu (10.1016/j.apsb.2023.10.006_bib26) 2022; 33 Chen (10.1016/j.apsb.2023.10.006_bib6) 2018; 12 Siegel (10.1016/j.apsb.2023.10.006_bib2) 2020; 70 He (10.1016/j.apsb.2023.10.006_bib22) 2021; 60 Zhao (10.1016/j.apsb.2023.10.006_bib13) 2020; 14 von Boehmer (10.1016/j.apsb.2023.10.006_bib18) 2013; 12 Gelderman (10.1016/j.apsb.2023.10.006_bib16) 2006; 103 Qin (10.1016/j.apsb.2023.10.006_bib46) 2021; 31 Roy (10.1016/j.apsb.2023.10.006_bib34) 2019; 141 Ayers (10.1016/j.apsb.2023.10.006_bib42) 2017; 127 Galluzzi (10.1016/j.apsb.2023.10.006_bib8) 2017; 17 Zhou (10.1016/j.apsb.2023.10.006_bib45) 2013; 2 |
References_xml | – volume: 12 start-page: 8633 year: 2018 end-page: 8645 ident: bib6 article-title: Bioinspired hybrid protein oxygen nanocarrier amplified photodynamic therapy for eliciting anti-tumor immunity and abscopal effect publication-title: ACS Nano – volume: 21 start-page: 363 year: 2021 end-page: 381 ident: bib17 article-title: Redox regulation of immunometabolism publication-title: Nat Rev Immunol – volume: 33 start-page: 1927 year: 2022 end-page: 1932 ident: bib28 article-title: Precisely engineering a dual-drug cooperative nanoassembly for proteasome inhibition-potentiated photodynamic therapy publication-title: Chin Chem Lett – volume: 12 start-page: 92 year: 2022 end-page: 106 ident: bib25 article-title: Pure drug nano-assemblies: a facile carrier-free nanoplatform for efficient cancer therapy publication-title: Acta Pharm Sin B – volume: 18 start-page: 86 year: 2023 ident: bib7 article-title: Targeting the activity of T cells by membrane surface redox regulation for cancer theranostics publication-title: Nat Nanotechnol – volume: 14 start-page: 17100 year: 2020 end-page: 17113 ident: bib13 article-title: Self-delivery photo-immune stimulators for photodynamic sensitized tumor immunotherapy publication-title: ACS Nano – volume: 20 start-page: 158 year: 2020 end-page: 172 ident: bib21 article-title: T-reg cell-based therapies: challenges and perspectives publication-title: Nat Rev Immunol – volume: 132 start-page: 104 year: 2018 end-page: 138 ident: bib36 article-title: Drug delivery systems for programmed and on-demand release publication-title: Adv Drug Deliv Rev – volume: 12 start-page: 51 year: 2013 end-page: 63 ident: bib18 article-title: Therapeutic opportunities for manipulating T-Reg cells in autoimmunity and cancer publication-title: Nat Rev Drug Discov – volume: 70 start-page: 145 year: 2020 end-page: 164 ident: bib2 article-title: Colorectal cancer statistics, 2020 publication-title: CA A Cancer J Clin – volume: 455 year: 2023 ident: bib10 article-title: Programmed cyclodextrin-based core-shell nanoparticles for cooperative TGF- publication-title: Chem Eng J – volume: 19 year: 2023 ident: bib29 article-title: Rosmarinic acid-crosslinked supramolecular nanoassembly with self-regulated photodynamic and anti-metastasis properties for synergistic photoimmunotherapy publication-title: Small – volume: 12 start-page: 742 year: 2021 ident: bib38 article-title: Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer publication-title: Nat Commun – volume: 28 start-page: 514 year: 2016 end-page: 524 ident: bib20 article-title: Metabolic pathways in T cell activation and lineage differentiation publication-title: Semin Immunol – volume: 141 start-page: 12296 year: 2019 end-page: 12304 ident: bib34 article-title: A supramolecular approach for modulated photoprotection, lysosomal delivery, and photodynamic activity of a photosensitizer publication-title: J Am Chem Soc – volume: 17 start-page: 97 year: 2017 end-page: 111 ident: bib8 article-title: Immunogenic cell death in cancer and infectious disease publication-title: Nat Rev Immunol – volume: 93 year: 2021 ident: bib44 article-title: Z-guggulsterone induces PD-L1 upregulation partly mediated by FXR, Akt and Erk1/2 signaling pathways in non-small cell lung cancer publication-title: Int Immunopharm – volume: 40 start-page: 481 year: 2015 end-page: 485 ident: bib11 article-title: Immunological aspects of antitumor photodynamic therapy outcome publication-title: Cent Eur J Immunol – volume: 12 start-page: 4327 year: 2022 end-page: 4347 ident: bib15 article-title: Targeted nanomedicines remodeling immunosuppressive tumor microenvironment for enhanced cancer immunotherapy publication-title: Acta Pharm Sin B – volume: 12 start-page: 7727 year: 2021 end-page: 7734 ident: bib33 article-title: Synthesis of an AIEgen functionalized cucurbit[7]uril for subcellular bioimaging and synergistic photodynamic therapy and supramolecular chemotherapy publication-title: Chem Sci – volume: 38 start-page: 4452 year: 2019 end-page: 4466 ident: bib43 article-title: Base excision repair regulates PD-L1 expression in cancer cells publication-title: Oncogene – volume: 17 start-page: 4034 year: 2023 end-page: 4049 ident: bib31 article-title: Conjugation of macrophage-mimetic microalgae and liposome for antitumor sonodynamic immunotherapy publication-title: ACS Nano – volume: 14 start-page: 1492 year: 2015 end-page: 1509 ident: bib12 article-title: T-cell mediated anti-tumor immunity after photodynamic therapy: why does it not always work and how can we improve it? publication-title: Photochem Photobiol Sci – volume: 103 start-page: 12831 year: 2006 end-page: 12836 ident: bib16 article-title: T cell surface redox levels determine T cell reactivity and arthritis susceptibility publication-title: P Natl Acad Sci USA – volume: 29 start-page: 2931 year: 2021 end-page: 2948 ident: bib40 article-title: Photodynamic therapy synergizes with PD-L1 checkpoint blockade for immunotherapy of CRC by multifunctional nanoparticles publication-title: Mol Ther – volume: 34 year: 2023 ident: bib30 article-title: Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment publication-title: Chin Chem Lett – volume: 31 year: 2021 ident: bib46 article-title: Self-delivered supramolecular nanomedicine with transformable shape for ferrocene-amplified photodynamic therapy of breast cancer and bone metastases publication-title: Adv Funct Mater – volume: 33 start-page: 1718 year: 2022 end-page: 1728 ident: bib26 article-title: Applying nanotechnology to boost cancer immunotherapy by promoting immunogenic cell death publication-title: Chin Chem Lett – volume: 451 year: 2023 ident: bib1 article-title: Emerging nanotherapeutics for facilitating photodynamic therapy publication-title: Chem Eng J – volume: 7 start-page: 339 year: 2019 ident: bib19 article-title: Tumor microenvironment dictates regulatory T cell phenotype: upregulated immune checkpoints reinforce suppressive function publication-title: J Immunother Cancer – volume: 127 start-page: 2930 year: 2017 end-page: 2940 ident: bib42 article-title: IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade publication-title: J Clin Invest – volume: 8 year: 2022 ident: bib39 article-title: hitchhiking of immune cells by intracellular self-assembly of bacteria-mimetic nanomedicine for targeted therapy of melanoma publication-title: Sci Adv – volume: 9 year: 2022 ident: bib14 article-title: Tumor-microenvironment-responsive nanomedicine for enhanced cancer immunotherapy publication-title: Adv Sci – volume: 33 start-page: 4583 year: 2022 end-page: 4586 ident: bib5 article-title: A glutathione activatable pro-drug-photosensitizer for combined chemotherapy and photodynamic therapy publication-title: Chin Chem Lett – volume: 2 start-page: 822 year: 2013 end-page: 827 ident: bib45 article-title: A polymer-(tandem drugs) conjugate for enhanced cancer treatment publication-title: Adv Healthcare Mater – volume: 168 start-page: 64 year: 2018 end-page: 75 ident: bib35 article-title: Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy publication-title: Biomaterials – volume: 12 start-page: 3354 year: 2022 end-page: 3366 ident: bib4 article-title: Dual-responsive nanoparticles with transformable shape and reversible charge for amplified chemo-photodynamic therapy of breast cancer publication-title: Acta Pharm Sin B – volume: 60 start-page: 19355 year: 2021 end-page: 19363 ident: bib22 article-title: Charge-reversal polymer nano-modulators for photodynamic immunotherapy of cancer publication-title: Angew Chem Int Ed Engl – volume: 164 start-page: 397 year: 2023 end-page: 406 ident: bib32 article-title: Hyaluronic acid-based supramolecular nanomedicine with optimized ratio of oxaliplatin/chlorin e6 for combined chemotherapy and O2-economized photodynamic therapy publication-title: Acta Biomater – volume: 109 start-page: 2109 year: 2018 end-page: 2118 ident: bib24 article-title: Norcantharidin enhances antitumor immunity of GM-CSF prostate cancer cells vaccine by inducing apoptosis of regulatory Tcells publication-title: Cancer Sci – volume: 2 year: 2017 ident: bib37 article-title: Bioresponsive materials publication-title: Nat Rev Mater – volume: 167 start-page: 465 year: 2012 end-page: 467 ident: bib9 article-title: Photodynamic therapy and immunosuppression publication-title: Br J Dermatol – volume: 9 year: 2021 ident: bib3 article-title: Photodynamic therapy for the treatment and diagnosis of cancer-A review of the current clinical status publication-title: Front Chem – volume: 12 start-page: 1416 year: 2022 end-page: 1431 ident: bib27 article-title: Co-delivery of photosensitizer and diclofenac through sequentially responsive bilirubin nanocarriers for combating hypoxic tumors publication-title: Acta Pharm Sin B – volume: 112 start-page: 1501 year: 2015 end-page: 1509 ident: bib41 article-title: IFN-gamma from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer publication-title: Br J Cancer – volume: 30 year: 2018 ident: bib23 article-title: Dual drug backboned shattering polymeric theranostic nanomedicine for synergistic eradication of patient-derived lung cancer publication-title: Adv Mater – volume: 103 start-page: 12831 year: 2006 ident: 10.1016/j.apsb.2023.10.006_bib16 article-title: T cell surface redox levels determine T cell reactivity and arthritis susceptibility publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0604571103 – volume: 40 start-page: 481 year: 2015 ident: 10.1016/j.apsb.2023.10.006_bib11 article-title: Immunological aspects of antitumor photodynamic therapy outcome publication-title: Cent Eur J Immunol doi: 10.5114/ceji.2015.56974 – volume: 33 start-page: 1718 year: 2022 ident: 10.1016/j.apsb.2023.10.006_bib26 article-title: Applying nanotechnology to boost cancer immunotherapy by promoting immunogenic cell death publication-title: Chin Chem Lett doi: 10.1016/j.cclet.2021.10.074 – volume: 8 year: 2022 ident: 10.1016/j.apsb.2023.10.006_bib39 article-title: In vivo hitchhiking of immune cells by intracellular self-assembly of bacteria-mimetic nanomedicine for targeted therapy of melanoma publication-title: Sci Adv doi: 10.1126/sciadv.abn1805 – volume: 31 year: 2021 ident: 10.1016/j.apsb.2023.10.006_bib46 article-title: Self-delivered supramolecular nanomedicine with transformable shape for ferrocene-amplified photodynamic therapy of breast cancer and bone metastases publication-title: Adv Funct Mater doi: 10.1002/adfm.202104645 – volume: 7 start-page: 339 year: 2019 ident: 10.1016/j.apsb.2023.10.006_bib19 article-title: Tumor microenvironment dictates regulatory T cell phenotype: upregulated immune checkpoints reinforce suppressive function publication-title: J Immunother Cancer doi: 10.1186/s40425-019-0785-8 – volume: 167 start-page: 465 year: 2012 ident: 10.1016/j.apsb.2023.10.006_bib9 article-title: Photodynamic therapy and immunosuppression publication-title: Br J Dermatol doi: 10.1111/j.1365-2133.2012.11189.x – volume: 18 start-page: 86 year: 2023 ident: 10.1016/j.apsb.2023.10.006_bib7 article-title: Targeting the activity of T cells by membrane surface redox regulation for cancer theranostics publication-title: Nat Nanotechnol doi: 10.1038/s41565-022-01261-7 – volume: 33 start-page: 4583 year: 2022 ident: 10.1016/j.apsb.2023.10.006_bib5 article-title: A glutathione activatable pro-drug-photosensitizer for combined chemotherapy and photodynamic therapy publication-title: Chin Chem Lett doi: 10.1016/j.cclet.2022.03.040 – volume: 12 start-page: 4327 year: 2022 ident: 10.1016/j.apsb.2023.10.006_bib15 article-title: Targeted nanomedicines remodeling immunosuppressive tumor microenvironment for enhanced cancer immunotherapy publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2022.11.001 – volume: 12 start-page: 51 year: 2013 ident: 10.1016/j.apsb.2023.10.006_bib18 article-title: Therapeutic opportunities for manipulating T-Reg cells in autoimmunity and cancer publication-title: Nat Rev Drug Discov doi: 10.1038/nrd3683 – volume: 132 start-page: 104 year: 2018 ident: 10.1016/j.apsb.2023.10.006_bib36 article-title: Drug delivery systems for programmed and on-demand release publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2018.07.002 – volume: 168 start-page: 64 year: 2018 ident: 10.1016/j.apsb.2023.10.006_bib35 article-title: Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.03.046 – volume: 14 start-page: 17100 year: 2020 ident: 10.1016/j.apsb.2023.10.006_bib13 article-title: Self-delivery photo-immune stimulators for photodynamic sensitized tumor immunotherapy publication-title: ACS Nano doi: 10.1021/acsnano.0c06765 – volume: 12 start-page: 7727 year: 2021 ident: 10.1016/j.apsb.2023.10.006_bib33 article-title: Synthesis of an AIEgen functionalized cucurbit[7]uril for subcellular bioimaging and synergistic photodynamic therapy and supramolecular chemotherapy publication-title: Chem Sci doi: 10.1039/D1SC01139A – volume: 93 year: 2021 ident: 10.1016/j.apsb.2023.10.006_bib44 article-title: Z-guggulsterone induces PD-L1 upregulation partly mediated by FXR, Akt and Erk1/2 signaling pathways in non-small cell lung cancer publication-title: Int Immunopharm doi: 10.1016/j.intimp.2021.107395 – volume: 14 start-page: 1492 year: 2015 ident: 10.1016/j.apsb.2023.10.006_bib12 article-title: T-cell mediated anti-tumor immunity after photodynamic therapy: why does it not always work and how can we improve it?. publication-title: Photochem Photobiol Sci doi: 10.1039/c4pp00455h – volume: 12 start-page: 92 year: 2022 ident: 10.1016/j.apsb.2023.10.006_bib25 article-title: Pure drug nano-assemblies: a facile carrier-free nanoplatform for efficient cancer therapy publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2021.08.012 – volume: 164 start-page: 397 year: 2023 ident: 10.1016/j.apsb.2023.10.006_bib32 article-title: Hyaluronic acid-based supramolecular nanomedicine with optimized ratio of oxaliplatin/chlorin e6 for combined chemotherapy and O2-economized photodynamic therapy publication-title: Acta Biomater doi: 10.1016/j.actbio.2023.03.039 – volume: 141 start-page: 12296 year: 2019 ident: 10.1016/j.apsb.2023.10.006_bib34 article-title: A supramolecular approach for modulated photoprotection, lysosomal delivery, and photodynamic activity of a photosensitizer publication-title: J Am Chem Soc doi: 10.1021/jacs.9b03990 – volume: 60 start-page: 19355 year: 2021 ident: 10.1016/j.apsb.2023.10.006_bib22 article-title: Charge-reversal polymer nano-modulators for photodynamic immunotherapy of cancer publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.202106392 – volume: 33 start-page: 1927 year: 2022 ident: 10.1016/j.apsb.2023.10.006_bib28 article-title: Precisely engineering a dual-drug cooperative nanoassembly for proteasome inhibition-potentiated photodynamic therapy publication-title: Chin Chem Lett doi: 10.1016/j.cclet.2021.11.056 – volume: 12 start-page: 1416 year: 2022 ident: 10.1016/j.apsb.2023.10.006_bib27 article-title: Co-delivery of photosensitizer and diclofenac through sequentially responsive bilirubin nanocarriers for combating hypoxic tumors publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2021.12.001 – volume: 9 year: 2022 ident: 10.1016/j.apsb.2023.10.006_bib14 article-title: Tumor-microenvironment-responsive nanomedicine for enhanced cancer immunotherapy publication-title: Adv Sci doi: 10.1002/advs.202103836 – volume: 28 start-page: 514 year: 2016 ident: 10.1016/j.apsb.2023.10.006_bib20 article-title: Metabolic pathways in T cell activation and lineage differentiation publication-title: Semin Immunol doi: 10.1016/j.smim.2016.10.009 – volume: 2 year: 2017 ident: 10.1016/j.apsb.2023.10.006_bib37 article-title: Bioresponsive materials publication-title: Nat Rev Mater – volume: 451 year: 2023 ident: 10.1016/j.apsb.2023.10.006_bib1 article-title: Emerging nanotherapeutics for facilitating photodynamic therapy publication-title: Chem Eng J – volume: 109 start-page: 2109 year: 2018 ident: 10.1016/j.apsb.2023.10.006_bib24 article-title: Norcantharidin enhances antitumor immunity of GM-CSF prostate cancer cells vaccine by inducing apoptosis of regulatory Tcells publication-title: Cancer Sci doi: 10.1111/cas.13639 – volume: 21 start-page: 363 year: 2021 ident: 10.1016/j.apsb.2023.10.006_bib17 article-title: Redox regulation of immunometabolism publication-title: Nat Rev Immunol doi: 10.1038/s41577-020-00478-8 – volume: 9 year: 2021 ident: 10.1016/j.apsb.2023.10.006_bib3 article-title: Photodynamic therapy for the treatment and diagnosis of cancer-A review of the current clinical status publication-title: Front Chem doi: 10.3389/fchem.2021.686303 – volume: 17 start-page: 4034 year: 2023 ident: 10.1016/j.apsb.2023.10.006_bib31 article-title: Conjugation of macrophage-mimetic microalgae and liposome for antitumor sonodynamic immunotherapy via hypoxia alleviation and autophagy inhibition publication-title: ACS Nano doi: 10.1021/acsnano.3c00041 – volume: 455 year: 2023 ident: 10.1016/j.apsb.2023.10.006_bib10 article-title: Programmed cyclodextrin-based core-shell nanoparticles for cooperative TGF-β blockade to reverse immunosuppression post photodynamic therapy publication-title: Chem Eng J doi: 10.1016/j.cej.2022.140830 – volume: 38 start-page: 4452 year: 2019 ident: 10.1016/j.apsb.2023.10.006_bib43 article-title: Base excision repair regulates PD-L1 expression in cancer cells publication-title: Oncogene doi: 10.1038/s41388-019-0733-6 – volume: 34 year: 2023 ident: 10.1016/j.apsb.2023.10.006_bib30 article-title: Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment publication-title: Chin Chem Lett – volume: 12 start-page: 3354 year: 2022 ident: 10.1016/j.apsb.2023.10.006_bib4 article-title: Dual-responsive nanoparticles with transformable shape and reversible charge for amplified chemo-photodynamic therapy of breast cancer publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2022.03.010 – volume: 19 year: 2023 ident: 10.1016/j.apsb.2023.10.006_bib29 article-title: Rosmarinic acid-crosslinked supramolecular nanoassembly with self-regulated photodynamic and anti-metastasis properties for synergistic photoimmunotherapy publication-title: Small – volume: 12 start-page: 8633 year: 2018 ident: 10.1016/j.apsb.2023.10.006_bib6 article-title: Bioinspired hybrid protein oxygen nanocarrier amplified photodynamic therapy for eliciting anti-tumor immunity and abscopal effect publication-title: ACS Nano doi: 10.1021/acsnano.8b04371 – volume: 2 start-page: 822 year: 2013 ident: 10.1016/j.apsb.2023.10.006_bib45 article-title: A polymer-(tandem drugs) conjugate for enhanced cancer treatment publication-title: Adv Healthcare Mater doi: 10.1002/adhm.201200385 – volume: 29 start-page: 2931 year: 2021 ident: 10.1016/j.apsb.2023.10.006_bib40 article-title: Photodynamic therapy synergizes with PD-L1 checkpoint blockade for immunotherapy of CRC by multifunctional nanoparticles publication-title: Mol Ther doi: 10.1016/j.ymthe.2021.05.017 – volume: 30 year: 2018 ident: 10.1016/j.apsb.2023.10.006_bib23 article-title: Dual drug backboned shattering polymeric theranostic nanomedicine for synergistic eradication of patient-derived lung cancer publication-title: Adv Mater doi: 10.1002/adma.201706220 – volume: 127 start-page: 2930 year: 2017 ident: 10.1016/j.apsb.2023.10.006_bib42 article-title: IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade publication-title: J Clin Invest doi: 10.1172/JCI91190 – volume: 70 start-page: 145 year: 2020 ident: 10.1016/j.apsb.2023.10.006_bib2 article-title: Colorectal cancer statistics, 2020 publication-title: CA A Cancer J Clin doi: 10.3322/caac.21601 – volume: 17 start-page: 97 year: 2017 ident: 10.1016/j.apsb.2023.10.006_bib8 article-title: Immunogenic cell death in cancer and infectious disease publication-title: Nat Rev Immunol doi: 10.1038/nri.2016.107 – volume: 20 start-page: 158 year: 2020 ident: 10.1016/j.apsb.2023.10.006_bib21 article-title: T-reg cell-based therapies: challenges and perspectives publication-title: Nat Rev Immunol doi: 10.1038/s41577-019-0232-6 – volume: 12 start-page: 742 year: 2021 ident: 10.1016/j.apsb.2023.10.006_bib38 article-title: Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer publication-title: Nat Commun doi: 10.1038/s41467-021-21047-0 – volume: 112 start-page: 1501 year: 2015 ident: 10.1016/j.apsb.2023.10.006_bib41 article-title: IFN-gamma from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer publication-title: Br J Cancer doi: 10.1038/bjc.2015.101 |
SSID | ssj0000602275 |
Score | 2.436447 |
Snippet | A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8+ T cells is subject to the regulatory T... A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8 T cells is subject to the regulatory T... A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8 + T cells is subject to the regulatory T... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 765 |
SubjectTerms | Checkpoint blockade Dual-responsive Immunomodulator Immunosuppressive microenvironment Original Photodynamic therapy Supramolecular assembly |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JbtswECWKnHopmi6psxQsUOTSKJW5yOQxXYKgQIscEiA3gpRI2EEsGbYUwH_fGVFyrBRILr1SsiVyRpo34ps3hHwGyMBT7dJETGSeYIRInOAhEVLbieU6z9uq999_sotr8etG3my1-kJOWJQHjgv31WaQcytlc6-dKILSSvBCcx8AajBmW51PiHlbyVR8B6M0HvIXGUOdPsAZXcVMJHfZxcqdYufw00jtGkSlVrx_EJz-BZ-POZRbQen8NXnVoUl6FmexS1748g05voxy1OsTevVQXbU6ocf08kGoev2WrH809i5ZdizZe09XzWJp533DXLqYVnVVxJb1tLRl1W_EU_x6S7Ek4t7WWHtFZ1hmUs2rousGRgELU19OW34BtVgL3MxhKJZ7rd-R6_OfV98vkq4VQ5IDQKsT6TMIW1nmgwrKe2F54KJgqsD8z6MofSrGqERTjLWc5BAX4TAXAeCWw503_p7slFXpPxAqtONZyKRVmFwKZwOz0smQhlDAiB6RcW8Kk3c65dgu4870hLRbg-YzaD4cA_ONyJfNbxZRpePJs7-hhTdnosJ2OwB-Zzq_M8_53YjI3j9MB1YiCIG_mj158U-9Mxl4knF7xpa-alaGAdbmbAIJ9IjsRefa3CLHFy_HxVEDtxvMYXiknE1btfBxisvM1P7_mPUBeQlzEZG2fkh26mXjjwCV1e5j-wD-Ba2kNb4 priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLamnbggGL8KAxlp2oV5TWM7tY9sME2TQJPYpN4sJ7Fp0JpEbTKp_z1-ttMRkHbgWMdpXb8Xv8_x-76H0JGDDDSReULYnBcEIgTJGbWEcannmsqi8Kz3b9-zy1t2teCLPXQ-cGEgrTKu_WFN96t1bJnG2Zy2VTX9kbq9CwUAQb0nAuGXMuFJfIuz3XuWJAORPMhkhP4EbojcmZDmpdtNfgo1xE9DktcoPnkZ_1GY-heG_p1N-Ud4uniGnkZciT-HoT9He6Y-QMfXQZh6e4JvHnhWmxN8jK8fJKu3L9D2S6_vyDrmy94bvOnbtV4NpXNxu2y6pgzF63Gt62Y4ksfwHhcDOeJed8DCwhUQTppVU8a6YNihYmzqpc80wBpYwf3KNQXi1_Ylur34enN-SWJRBlI4qNYRbjIXwLLMWGGFMUxTS1mZihJ2ggbk6RM2A02acib5vHAR0l2mzDrglcMZHH2F9uumNm8QZjKnmc24FrDNZLm2qeY5t4m1pWuREzQbTKGKqFgOhTPu1JCa9kuB-RSYD9qc-Sbo0-6eNuh1PNr7DCy86wla276hWf9U0dmUzhJJhdCFkTkrrZCC0VJSYx3YTVNNJ4gP_qFGruu-qnr0xz8OzqTcMw0HNbo2Tb9RqUPdNJ27rfQEvQ7OtRsihSWYwuSIkduN_sP4Sl0tvW74LIFpTsXb_xzwO_TEfWIhZ_0Q7Xfr3rx3kKzLP_hn7jfPwTY0 priority: 102 providerName: Elsevier |
Title | Dual-responsive supramolecular photodynamic nanomedicine with activatable immunomodulation for enhanced antitumor therapy |
URI | https://dx.doi.org/10.1016/j.apsb.2023.10.006 https://www.ncbi.nlm.nih.gov/pubmed/38322349 https://www.proquest.com/docview/2923327191 https://pubmed.ncbi.nlm.nih.gov/PMC10840428 https://doaj.org/article/a609388ace9b4df89843d93ef54022a3 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKkVAviDcpUBkJ9UKzysZO4hwQokBVQEVF6kp7i5zEZhftJts8KvLvmYmd3S6UXnJwEucx48zneOb7CHkDkIF5ceq5PAoyFyOEm3KmXR7EMpIszrK-6v3se3g64V-nwXSHDHJH9gXWN07tUE9qUi1Gvy-79zDg321yteSqTkcoBD4ymVp3yF2ITBFKOZxZuG--zEiYh1mNvo_sfYA-bB3Nzd3skXsMPZ4h0-a1sNWz-29Fr3_R6d9Jltei1skDct_CTfrB-MdDsqOKR-Tw3PBVd0f0YlN-VR_RQ3q-YbLuHpPuUysXbmXTaK8UrdtVJZeDoi5dzcqmzI2mPS1kUQ4r9RR_71KsmbiSDRZn0TnWoZTLMrdyYRTAMlXFrE9AoBKLhdslNJl6sO4JmZx8vvh46lqtBjcDBNe4gQohroWh0kILpbhkmvHcFzlOEBWy1nt8jFQ1-TgOogwCJ-xmXAMeS3Fpjj0lu0VZqOeE8jhloQ4DKXD2yVOpfRmkgfa0zqEldsh4MEWSWSJz1NNYJEPG2q8ELZmgJbENLOmQt-tzVobG49ajj9HC6yORgrtvKKufiR3RiQy9mAkhMxWnPNciFpzlMVMaMLDvS-aQYPCPxKIZg1Kgq_mtF389OFMCQx3Xb2ShyrZOfADjzI9ghu2QZ8a51rc4-KlDxJbbbT3D9p5iPuvpxMcevmZf7P-30xdkD26Qm2T1l2S3qVr1CrBYkx70_zBg-2V6DNtvP8RBP-T-AFqRNA0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGeIAXxPfKp5HQXljWNHZS-5ENpg62aRKd1DfLSWwatCZRm07qf89d7HQEpD3weo4Tx3fx_Rzf_Y6QjwAZWCjTMODjOAvQQwQpZzbgsdRjzWSWtVnv5xfJ5Ip_m8WzHXLc5cJgWKVf-92a3q7WXjL0szmsi2L4I4K9C0MAwVpLFPfIfUADCZr26exo-6MlTJAlD0MZsUOAPXzyjIvz0vUqPcQi4ocuyqvnoFoe_56f-heH_h1O-Yd_OnlMHnlgST-7sT8hO6Z8SvYvHTP15oBObxOtVgd0n17eclZvnpHNl7W-DpY-YPbG0NW6XupFVzuX1vOqqXJXvZ6Wuqy6M3mKP3IpZkfc6AbTsGiBGSfVosp9YTAKsJiact6GGlCNacHrBYhc5tfmObk6-To9ngS-KkOQAVZrgtgk4MGSxFhhhTFcM8t4Hokct4IG-elDPkJSmnwk43EGLhKaGbeAvFI8hGMvyG5ZlWaPUC5Tltgk1gL3mTzVNtJxGtvQ2hwkckBGnSpU5inLsXLGtepi034pVJ9C9aEM1Dcgn7Z9akfYcefVR6jh7ZVItt0KquVP5a1N6SSUTAidGZny3AopOMslMxbQbhRpNiBxZx-qZ7twq-LOh3_ojEnBR40nNbo01XqlIoDdLBrDXnpAXjrj2g6R4RrMcHJEz-x679BvKYt5Sxw-CnGaI_HqPwf8njyYTM_P1NnpxffX5CG0cBfA_obsNsu1eQv4rEnftd_fb3WEOVs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-responsive+supramolecular+photodynamic+nanomedicine+with+activatable+immunomodulation+for+enhanced+antitumor+therapy&rft.jtitle=Acta+pharmaceutica+Sinica.+B&rft.au=He%2C+Siqin&rft.au=Wang%2C+Lulu&rft.au=Wu%2C+Dongxu&rft.au=Tong%2C+Fan&rft.date=2024-02-01&rft.issn=2211-3835&rft.volume=14&rft.issue=2&rft.spage=765&rft_id=info:doi/10.1016%2Fj.apsb.2023.10.006&rft_id=info%3Apmid%2F38322349&rft.externalDocID=38322349 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3835&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3835&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3835&client=summon |