Dual-responsive supramolecular photodynamic nanomedicine with activatable immunomodulation for enhanced antitumor therapy

A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8+ T cells is subject to the regulatory T lymphocytes (Tregs), leaving the tumor at risk of recurrence and metastasis after the initial ablation. To augment the antitumor response and reprog...

Full description

Saved in:
Bibliographic Details
Published inActa pharmaceutica Sinica. B Vol. 14; no. 2; pp. 765 - 780
Main Authors He, Siqin, Wang, Lulu, Wu, Dongxu, Tong, Fan, Zhao, Huan, Li, Hanmei, Gong, Tao, Gao, Huile, Zhou, Yang
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2024
Elsevier
Subjects
Online AccessGet full text
ISSN2211-3835
2211-3843
DOI10.1016/j.apsb.2023.10.006

Cover

Loading…
Abstract A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8+ T cells is subject to the regulatory T lymphocytes (Tregs), leaving the tumor at risk of recurrence and metastasis after the initial ablation. To augment the antitumor response and reprogram the immunosuppressive tumor microenvironment (TME), a supramolecular photodynamic nanoparticle (DACss) is constructed by the host-guest interaction between demethylcantharidin-conjugated β-cyclodextrin (DMC-CD) and amantadine-terminated disulfide-conjugated FFVLGGGC peptide with chlorin e6 decoration (Ad-ss-pep-Ce6) to achieve intelligent delivery of photosensitizer and immunomodulator for breast cancer treatment. The acid-labile β-carboxamide bond of DMC-CD is hydrolyzed in response to the acidic TME, resulting in the localized release of DMC and subsequent inhibition of Tregs. The guest molecule Ad-ss-pep-Ce6 can be cleaved by a high level of intracellular GSH, reducing photosensitizer toxicity and increasing photosensitizer retention in the tumor. With a significant increase in the CTL/Treg ratio, the combination of Ce6-based PDT and DMC-mediated immunomodulation adequately achieved spatiotemporal regulation and remodeling of the TME, as well as improved primary tumor and in situ lung metastasis suppression with the aid of PD-1 antibody. Dual-responsive cyclodextrin-based supramolecular self-assembly system co-delivers photosensitizer and immunomodulator to induce tumor cell apoptosis and reverse the immunosuppressive microenvironment with PD-1 antibody for effective treatment of metastatic breast cancer. [Display omitted]
AbstractList A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8+ T cells is subject to the regulatory T lymphocytes (Tregs), leaving the tumor at risk of recurrence and metastasis after the initial ablation. To augment the antitumor response and reprogram the immunosuppressive tumor microenvironment (TME), a supramolecular photodynamic nanoparticle (DACss) is constructed by the host-guest interaction between demethylcantharidin-conjugated β-cyclodextrin (DMC-CD) and amantadine-terminated disulfide-conjugated FFVLGGGC peptide with chlorin e6 decoration (Ad-ss-pep-Ce6) to achieve intelligent delivery of photosensitizer and immunomodulator for breast cancer treatment. The acid-labile β-carboxamide bond of DMC-CD is hydrolyzed in response to the acidic TME, resulting in the localized release of DMC and subsequent inhibition of Tregs. The guest molecule Ad-ss-pep-Ce6 can be cleaved by a high level of intracellular GSH, reducing photosensitizer toxicity and increasing photosensitizer retention in the tumor. With a significant increase in the CTL/Treg ratio, the combination of Ce6-based PDT and DMC-mediated immunomodulation adequately achieved spatiotemporal regulation and remodeling of the TME, as well as improved primary tumor and in situ lung metastasis suppression with the aid of PD-1 antibody.
A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8+ T cells is subject to the regulatory T lymphocytes (Tregs), leaving the tumor at risk of recurrence and metastasis after the initial ablation. To augment the antitumor response and reprogram the immunosuppressive tumor microenvironment (TME), a supramolecular photodynamic nanoparticle (DACss) is constructed by the host-guest interaction between demethylcantharidin-conjugated β-cyclodextrin (DMC-CD) and amantadine-terminated disulfide-conjugated FFVLGGGC peptide with chlorin e6 decoration (Ad-ss-pep-Ce6) to achieve intelligent delivery of photosensitizer and immunomodulator for breast cancer treatment. The acid-labile β-carboxamide bond of DMC-CD is hydrolyzed in response to the acidic TME, resulting in the localized release of DMC and subsequent inhibition of Tregs. The guest molecule Ad-ss-pep-Ce6 can be cleaved by a high level of intracellular GSH, reducing photosensitizer toxicity and increasing photosensitizer retention in the tumor. With a significant increase in the CTL/Treg ratio, the combination of Ce6-based PDT and DMC-mediated immunomodulation adequately achieved spatiotemporal regulation and remodeling of the TME, as well as improved primary tumor and in situ lung metastasis suppression with the aid of PD-1 antibody. Dual-responsive cyclodextrin-based supramolecular self-assembly system co-delivers photosensitizer and immunomodulator to induce tumor cell apoptosis and reverse the immunosuppressive microenvironment with PD-1 antibody for effective treatment of metastatic breast cancer. [Display omitted]
A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8+ T cells is subject to the regulatory T lymphocytes (Tregs), leaving the tumor at risk of recurrence and metastasis after the initial ablation. To augment the antitumor response and reprogram the immunosuppressive tumor microenvironment (TME), a supramolecular photodynamic nanoparticle (DACss) is constructed by the host-guest interaction between demethylcantharidin-conjugated β-cyclodextrin (DMC-CD) and amantadine-terminated disulfide-conjugated FFVLGGGC peptide with chlorin e6 decoration (Ad-ss-pep-Ce6) to achieve intelligent delivery of photosensitizer and immunomodulator for breast cancer treatment. The acid-labile β-carboxamide bond of DMC-CD is hydrolyzed in response to the acidic TME, resulting in the localized release of DMC and subsequent inhibition of Tregs. The guest molecule Ad-ss-pep-Ce6 can be cleaved by a high level of intracellular GSH, reducing photosensitizer toxicity and increasing photosensitizer retention in the tumor. With a significant increase in the CTL/Treg ratio, the combination of Ce6-based PDT and DMC-mediated immunomodulation adequately achieved spatiotemporal regulation and remodeling of the TME, as well as improved primary tumor and in situ lung metastasis suppression with the aid of PD-1 antibody.A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8+ T cells is subject to the regulatory T lymphocytes (Tregs), leaving the tumor at risk of recurrence and metastasis after the initial ablation. To augment the antitumor response and reprogram the immunosuppressive tumor microenvironment (TME), a supramolecular photodynamic nanoparticle (DACss) is constructed by the host-guest interaction between demethylcantharidin-conjugated β-cyclodextrin (DMC-CD) and amantadine-terminated disulfide-conjugated FFVLGGGC peptide with chlorin e6 decoration (Ad-ss-pep-Ce6) to achieve intelligent delivery of photosensitizer and immunomodulator for breast cancer treatment. The acid-labile β-carboxamide bond of DMC-CD is hydrolyzed in response to the acidic TME, resulting in the localized release of DMC and subsequent inhibition of Tregs. The guest molecule Ad-ss-pep-Ce6 can be cleaved by a high level of intracellular GSH, reducing photosensitizer toxicity and increasing photosensitizer retention in the tumor. With a significant increase in the CTL/Treg ratio, the combination of Ce6-based PDT and DMC-mediated immunomodulation adequately achieved spatiotemporal regulation and remodeling of the TME, as well as improved primary tumor and in situ lung metastasis suppression with the aid of PD-1 antibody.
A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8 T cells is subject to the regulatory T lymphocytes (Tregs), leaving the tumor at risk of recurrence and metastasis after the initial ablation. To augment the antitumor response and reprogram the immunosuppressive tumor microenvironment (TME), a supramolecular photodynamic nanoparticle (DACss) is constructed by the host-guest interaction between demethylcantharidin-conjugated -cyclodextrin (DMC-CD) and amantadine-terminated disulfide-conjugated FFVLGGGC peptide with chlorin e6 decoration (Ad-ss-pep-Ce6) to achieve intelligent delivery of photosensitizer and immunomodulator for breast cancer treatment. The acid-labile -carboxamide bond of DMC-CD is hydrolyzed in response to the acidic TME, resulting in the localized release of DMC and subsequent inhibition of Tregs. The guest molecule Ad-ss-pep-Ce6 can be cleaved by a high level of intracellular GSH, reducing photosensitizer toxicity and increasing photosensitizer retention in the tumor. With a significant increase in the CTL/Treg ratio, the combination of Ce6-based PDT and DMC-mediated immunomodulation adequately achieved spatiotemporal regulation and remodeling of the TME, as well as improved primary tumor and lung metastasis suppression with the aid of PD-1 antibody.
A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8 + T cells is subject to the regulatory T lymphocytes (Tregs), leaving the tumor at risk of recurrence and metastasis after the initial ablation. To augment the antitumor response and reprogram the immunosuppressive tumor microenvironment (TME), a supramolecular photodynamic nanoparticle (DACss) is constructed by the host-guest interaction between demethylcantharidin-conjugated β -cyclodextrin (DMC-CD) and amantadine-terminated disulfide-conjugated FFVLGGGC peptide with chlorin e6 decoration (Ad-ss-pep-Ce6) to achieve intelligent delivery of photosensitizer and immunomodulator for breast cancer treatment. The acid-labile β -carboxamide bond of DMC-CD is hydrolyzed in response to the acidic TME, resulting in the localized release of DMC and subsequent inhibition of Tregs. The guest molecule Ad-ss-pep-Ce6 can be cleaved by a high level of intracellular GSH, reducing photosensitizer toxicity and increasing photosensitizer retention in the tumor. With a significant increase in the CTL/Treg ratio, the combination of Ce6-based PDT and DMC-mediated immunomodulation adequately achieved spatiotemporal regulation and remodeling of the TME, as well as improved primary tumor and in situ lung metastasis suppression with the aid of PD-1 antibody. Dual-responsive cyclodextrin-based supramolecular self-assembly system co-delivers photosensitizer and immunomodulator to induce tumor cell apoptosis and reverse the immunosuppressive microenvironment with PD-1 antibody for effective treatment of metastatic breast cancer. Image 1
Author Wu, Dongxu
Gong, Tao
Zhao, Huan
Gao, Huile
Zhou, Yang
Tong, Fan
He, Siqin
Wang, Lulu
Li, Hanmei
Author_xml – sequence: 1
  givenname: Siqin
  surname: He
  fullname: He, Siqin
  organization: Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
– sequence: 2
  givenname: Lulu
  surname: Wang
  fullname: Wang, Lulu
  organization: Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
– sequence: 3
  givenname: Dongxu
  surname: Wu
  fullname: Wu, Dongxu
  organization: Key Laboratory of Drug-Targeting and Drug Delivery System, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
– sequence: 4
  givenname: Fan
  surname: Tong
  fullname: Tong, Fan
  organization: Key Laboratory of Drug-Targeting and Drug Delivery System, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
– sequence: 5
  givenname: Huan
  surname: Zhao
  fullname: Zhao, Huan
  organization: Revvity Inc., Waltham, MA, 02451, USA
– sequence: 6
  givenname: Hanmei
  surname: Li
  fullname: Li, Hanmei
  organization: School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
– sequence: 7
  givenname: Tao
  surname: Gong
  fullname: Gong, Tao
  organization: Key Laboratory of Drug-Targeting and Drug Delivery System, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
– sequence: 8
  givenname: Huile
  orcidid: 0000-0002-5355-7238
  surname: Gao
  fullname: Gao, Huile
  email: yangzhou@hainanu.edu.cn
  organization: Key Laboratory of Drug-Targeting and Drug Delivery System, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
– sequence: 9
  givenname: Yang
  surname: Zhou
  fullname: Zhou, Yang
  email: gaohuile@scu.edu.cn
  organization: Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38322349$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVARLaV_gAPKkUsWfyXrSEgIla9KlbjA2Zo4k8Yrxw62s9X-e5xuW1EO9cXWm3nvWW_mdXHivMOieEvJhhLafNhtYI7dhhHGM7AhpHlRnDFGacWl4CePb16fFhcx7kg-DWFsW78qTjPMGBftWXH4soCtAsbZu2j2WMZlDjB5i3qxEMp59Mn3BweT0aUD5yfsjTYOy1uTxhJ0MntI0FkszTQtue77TEzGu3LwoUQ3gtPYl-CSScuUoTRigPnwpng5gI14cX-fF7-_ff11-aO6_vn96vLzdaVrxlJVY9O2pGlwkINEFMAHLnome0HrBiXfSiKokIT2tK23mhOey1wMrBFdJlJ-XlwddXsPOzUHM0E4KA9G3QE-3CgIyWiLChrScilBY9uJfpBtTrJvOQ61yMkBz1qfjlrz0uUgNLoUwD4RfVpxZlQ3fq8okYIIJrPC-3uF4P8sGJOaTNRoLTj0S1SsZZyzLW3Xj7_71-zR5WF4uUEeG3TwMQYclDbpLvrsbWw2VeuqqJ1aV0Wtq7JieQ8ylf1HfVB_lvTxSMI8rr3BoKI2uE7XBNQp52meo_8FXgzaIA
CitedBy_id crossref_primary_10_1016_j_apsb_2024_05_032
crossref_primary_10_1016_j_jphotobiol_2024_113067
crossref_primary_10_2147_IJN_S471734
crossref_primary_10_3390_cells13181526
crossref_primary_10_1002_agt2_610
crossref_primary_10_1021_acsabm_4c01696
crossref_primary_10_1016_j_mtsust_2024_100958
crossref_primary_10_1080_17435889_2025_2456450
crossref_primary_10_1021_acsnano_4c01499
crossref_primary_10_1002_adfm_202408581
crossref_primary_10_1021_acsmaterialslett_4c00798
crossref_primary_10_1021_acs_nanolett_5c00090
crossref_primary_10_1016_j_apsb_2025_03_021
crossref_primary_10_1039_D4NA00086B
crossref_primary_10_1016_j_apsb_2024_07_002
crossref_primary_10_1002_adfm_202423291
crossref_primary_10_1021_acsnano_4c16329
crossref_primary_10_1016_j_jddst_2024_106007
Cites_doi 10.1073/pnas.0604571103
10.5114/ceji.2015.56974
10.1016/j.cclet.2021.10.074
10.1126/sciadv.abn1805
10.1002/adfm.202104645
10.1186/s40425-019-0785-8
10.1111/j.1365-2133.2012.11189.x
10.1038/s41565-022-01261-7
10.1016/j.cclet.2022.03.040
10.1016/j.apsb.2022.11.001
10.1038/nrd3683
10.1016/j.addr.2018.07.002
10.1016/j.biomaterials.2018.03.046
10.1021/acsnano.0c06765
10.1039/D1SC01139A
10.1016/j.intimp.2021.107395
10.1039/c4pp00455h
10.1016/j.apsb.2021.08.012
10.1016/j.actbio.2023.03.039
10.1021/jacs.9b03990
10.1002/anie.202106392
10.1016/j.cclet.2021.11.056
10.1016/j.apsb.2021.12.001
10.1002/advs.202103836
10.1016/j.smim.2016.10.009
10.1111/cas.13639
10.1038/s41577-020-00478-8
10.3389/fchem.2021.686303
10.1021/acsnano.3c00041
10.1016/j.cej.2022.140830
10.1038/s41388-019-0733-6
10.1016/j.apsb.2022.03.010
10.1021/acsnano.8b04371
10.1002/adhm.201200385
10.1016/j.ymthe.2021.05.017
10.1002/adma.201706220
10.1172/JCI91190
10.3322/caac.21601
10.1038/nri.2016.107
10.1038/s41577-019-0232-6
10.1038/s41467-021-21047-0
10.1038/bjc.2015.101
ContentType Journal Article
Copyright 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences
2024 The Authors.
2024 The Authors 2024
Copyright_xml – notice: 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences
– notice: 2024 The Authors.
– notice: 2024 The Authors 2024
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.apsb.2023.10.006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 2211-3843
EndPage 780
ExternalDocumentID oai_doaj_org_article_a609388ace9b4df89843d93ef54022a3
PMC10840428
38322349
10_1016_j_apsb_2023_10_006
S2211383523004008
Genre Journal Article
GroupedDBID ---
--K
-05
-0E
-SE
-S~
0R~
0SF
1~5
4.4
457
4G.
53G
5VR
5VS
6I.
7-5
92M
9D9
9DE
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABKZE
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
AEXQZ
AFUIB
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
CAJEE
CAJUS
CCEZO
CIEJG
DIK
EBS
EJD
FDB
GROUPED_DOAJ
GX1
HH5
HYE
HZ~
IPNFZ
IXB
JUIAU
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
Q--
Q-4
R-E
RIG
ROL
RPM
RT5
SES
SSZ
T8U
U1F
U1G
U5E
U5O
XH2
~NG
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c522t-5e699066ef8f8ee4a3f34d28d4156e83780414801d1957c30334d34f264b99013
IEDL.DBID M48
ISSN 2211-3835
IngestDate Wed Aug 27 01:25:59 EDT 2025
Thu Aug 21 18:35:27 EDT 2025
Thu Jul 10 16:57:03 EDT 2025
Thu Apr 03 07:06:50 EDT 2025
Tue Jul 01 01:53:12 EDT 2025
Thu Apr 24 22:56:00 EDT 2025
Sat Nov 04 15:31:32 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Immunomodulator
Photodynamic therapy
Supramolecular assembly
Checkpoint blockade
Dual-responsive
Immunosuppressive microenvironment
Language English
License This is an open access article under the CC BY-NC-ND license.
2024 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-5e699066ef8f8ee4a3f34d28d4156e83780414801d1957c30334d34f264b99013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5355-7238
OpenAccessLink https://doaj.org/article/a609388ace9b4df89843d93ef54022a3
PMID 38322349
PQID 2923327191
PQPubID 23479
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_a609388ace9b4df89843d93ef54022a3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10840428
proquest_miscellaneous_2923327191
pubmed_primary_38322349
crossref_citationtrail_10_1016_j_apsb_2023_10_006
crossref_primary_10_1016_j_apsb_2023_10_006
elsevier_sciencedirect_doi_10_1016_j_apsb_2023_10_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Acta pharmaceutica Sinica. B
PublicationTitleAlternate Acta Pharm Sin B
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Jia, Liu, Wang, Hu, Yu, Zhou (bib4) 2022; 12
Mo, Zhang, Shi, Wei, Zheng, Li (bib24) 2018; 109
Yuan, Fan, Wu, Liu, Zhan, Qiu (bib40) 2021; 29
Shi, Zhang, Yao, Zeng, Du, Nijiati (bib7) 2023; 18
Kim, Park, Son, Lee, Chung, Cho (bib19) 2019; 7
Almeida, Lochner, Berod, Sparwasser (bib20) 2016; 28
Chen, Liu, Liang, Luo, He, Wu (bib6) 2018; 12
von Boehmer, Daniel (bib18) 2013; 12
Roy, Bobbala, Young, Beldjoudi, Nguyen, Cetin (bib34) 2019; 141
Ding, Xu, Li, Wang, Luo, Mok (bib32) 2023; 164
Chen, Li, Wang, Pan, Wei, Lu (bib33) 2021; 12
Galluzzi, Buque, Kepp, Zitvogel, Kroemer (bib8) 2017; 17
Davoodi, Lee, Xu, Sunil, Sun, Soh (bib36) 2018; 132
Ayers, Lunceford, Nebozhyn, Murphy, Loboda, Kaufman (bib42) 2017; 127
Gelderman, Hultqvist, Holmberg, Olofsson, Holmdahl (bib16) 2006; 103
Gunaydin, Gedik, Ayan (bib3) 2021; 9
Fu, Li, Zang, Zhou, Shi, Zhai (bib25) 2022; 12
Wachowska, Muchowicz, Demkow (bib11) 2015; 40
Yang, Ji, Liao, Li, Wang, Zhang (bib28) 2022; 33
Abiko, Matsumura, Hamanishi, Horikawa, Murakami, Yamaguchi (bib41) 2015; 112
Zhao, Zheng, Huang, Chen, Deng, Liu (bib13) 2020; 14
Gao, Kwong, Wang, Kam, Xie, Lee (bib31) 2023; 17
Li, Yang, Wang, Du, Hou (bib1) 2023; 451
Lu, Aimetti, Langer, Gu (bib37) 2017; 2
Raffin, Vo, Bluestone (bib21) 2020; 20
Hu, Cun, Ruan, Liu, Xiao, Yang (bib35) 2018; 168
Qin, Tong, Zhang, Zhou, He, Xie (bib46) 2021; 31
Zhou, Zhang, Jiang, Chen, Tong, Yang (bib29) 2023; 19
Liu, Luo, Pang, Zhang, Ruan, Wu (bib30) 2023; 34
Cong, Xiao, Xiong, Wang, Ding, Li (bib23) 2018; 30
Permata, Hagiwara, Sato, Yasuhara, Oike, Gondhowiardjo (bib43) 2019; 38
Tian, Gui, Wei, Shang, Sun, Ma (bib44) 2021; 93
He, Li, Cheng, Zeng, Zhang, Duan (bib22) 2021; 60
Xu, Xiong, Sun, Gao (bib15) 2022; 12
Fu, Ma, Liu, Xu, Sun (bib26) 2022; 33
Zhou, Tong, Gu, He, Yang, Li (bib27) 2022; 12
Siegel, Miller, Sauer, Fedewa, Butterly, Anderson (bib2) 2020; 70
Yang, Zhang, Wang, Rong, Liu, Xia (bib5) 2022; 33
Peng, Xiao, Chen, Gao (bib14) 2022; 9
Gao, Wang, Li, Kwong, Wei, Xie (bib39) 2022; 8
Anzengruber, Avci, de Freitasa, Hamblin (bib12) 2015; 14
Muri, Kopf (bib17) 2021; 21
Jiang, Huang, Xu, Pu (bib38) 2021; 12
Zhou, Xiao, Meng, Li, Li, Jing (bib45) 2013; 2
Ibbotson (bib9) 2012; 167
Han, Huang, Zhu, Wang, Zhao, Liu (bib10) 2023; 455
Peng (10.1016/j.apsb.2023.10.006_bib14) 2022; 9
Gunaydin (10.1016/j.apsb.2023.10.006_bib3) 2021; 9
Zhou (10.1016/j.apsb.2023.10.006_bib27) 2022; 12
Han (10.1016/j.apsb.2023.10.006_bib10) 2023; 455
Muri (10.1016/j.apsb.2023.10.006_bib17) 2021; 21
Raffin (10.1016/j.apsb.2023.10.006_bib21) 2020; 20
Yuan (10.1016/j.apsb.2023.10.006_bib40) 2021; 29
Wachowska (10.1016/j.apsb.2023.10.006_bib11) 2015; 40
Almeida (10.1016/j.apsb.2023.10.006_bib20) 2016; 28
Cong (10.1016/j.apsb.2023.10.006_bib23) 2018; 30
Fu (10.1016/j.apsb.2023.10.006_bib25) 2022; 12
Kim (10.1016/j.apsb.2023.10.006_bib19) 2019; 7
Gao (10.1016/j.apsb.2023.10.006_bib31) 2023; 17
Permata (10.1016/j.apsb.2023.10.006_bib43) 2019; 38
Yang (10.1016/j.apsb.2023.10.006_bib5) 2022; 33
Shi (10.1016/j.apsb.2023.10.006_bib7) 2023; 18
Ding (10.1016/j.apsb.2023.10.006_bib32) 2023; 164
Liu (10.1016/j.apsb.2023.10.006_bib30) 2023; 34
Mo (10.1016/j.apsb.2023.10.006_bib24) 2018; 109
Tian (10.1016/j.apsb.2023.10.006_bib44) 2021; 93
Anzengruber (10.1016/j.apsb.2023.10.006_bib12) 2015; 14
Chen (10.1016/j.apsb.2023.10.006_bib33) 2021; 12
Jiang (10.1016/j.apsb.2023.10.006_bib38) 2021; 12
Yang (10.1016/j.apsb.2023.10.006_bib28) 2022; 33
Abiko (10.1016/j.apsb.2023.10.006_bib41) 2015; 112
Ibbotson (10.1016/j.apsb.2023.10.006_bib9) 2012; 167
Zhou (10.1016/j.apsb.2023.10.006_bib29) 2023; 19
Li (10.1016/j.apsb.2023.10.006_bib1) 2023; 451
Gao (10.1016/j.apsb.2023.10.006_bib39) 2022; 8
Hu (10.1016/j.apsb.2023.10.006_bib35) 2018; 168
Davoodi (10.1016/j.apsb.2023.10.006_bib36) 2018; 132
Lu (10.1016/j.apsb.2023.10.006_bib37) 2017; 2
Jia (10.1016/j.apsb.2023.10.006_bib4) 2022; 12
Xu (10.1016/j.apsb.2023.10.006_bib15) 2022; 12
Fu (10.1016/j.apsb.2023.10.006_bib26) 2022; 33
Chen (10.1016/j.apsb.2023.10.006_bib6) 2018; 12
Siegel (10.1016/j.apsb.2023.10.006_bib2) 2020; 70
He (10.1016/j.apsb.2023.10.006_bib22) 2021; 60
Zhao (10.1016/j.apsb.2023.10.006_bib13) 2020; 14
von Boehmer (10.1016/j.apsb.2023.10.006_bib18) 2013; 12
Gelderman (10.1016/j.apsb.2023.10.006_bib16) 2006; 103
Qin (10.1016/j.apsb.2023.10.006_bib46) 2021; 31
Roy (10.1016/j.apsb.2023.10.006_bib34) 2019; 141
Ayers (10.1016/j.apsb.2023.10.006_bib42) 2017; 127
Galluzzi (10.1016/j.apsb.2023.10.006_bib8) 2017; 17
Zhou (10.1016/j.apsb.2023.10.006_bib45) 2013; 2
References_xml – volume: 12
  start-page: 8633
  year: 2018
  end-page: 8645
  ident: bib6
  article-title: Bioinspired hybrid protein oxygen nanocarrier amplified photodynamic therapy for eliciting anti-tumor immunity and abscopal effect
  publication-title: ACS Nano
– volume: 21
  start-page: 363
  year: 2021
  end-page: 381
  ident: bib17
  article-title: Redox regulation of immunometabolism
  publication-title: Nat Rev Immunol
– volume: 33
  start-page: 1927
  year: 2022
  end-page: 1932
  ident: bib28
  article-title: Precisely engineering a dual-drug cooperative nanoassembly for proteasome inhibition-potentiated photodynamic therapy
  publication-title: Chin Chem Lett
– volume: 12
  start-page: 92
  year: 2022
  end-page: 106
  ident: bib25
  article-title: Pure drug nano-assemblies: a facile carrier-free nanoplatform for efficient cancer therapy
  publication-title: Acta Pharm Sin B
– volume: 18
  start-page: 86
  year: 2023
  ident: bib7
  article-title: Targeting the activity of T cells by membrane surface redox regulation for cancer theranostics
  publication-title: Nat Nanotechnol
– volume: 14
  start-page: 17100
  year: 2020
  end-page: 17113
  ident: bib13
  article-title: Self-delivery photo-immune stimulators for photodynamic sensitized tumor immunotherapy
  publication-title: ACS Nano
– volume: 20
  start-page: 158
  year: 2020
  end-page: 172
  ident: bib21
  article-title: T-reg cell-based therapies: challenges and perspectives
  publication-title: Nat Rev Immunol
– volume: 132
  start-page: 104
  year: 2018
  end-page: 138
  ident: bib36
  article-title: Drug delivery systems for programmed and on-demand release
  publication-title: Adv Drug Deliv Rev
– volume: 12
  start-page: 51
  year: 2013
  end-page: 63
  ident: bib18
  article-title: Therapeutic opportunities for manipulating T-Reg cells in autoimmunity and cancer
  publication-title: Nat Rev Drug Discov
– volume: 70
  start-page: 145
  year: 2020
  end-page: 164
  ident: bib2
  article-title: Colorectal cancer statistics, 2020
  publication-title: CA A Cancer J Clin
– volume: 455
  year: 2023
  ident: bib10
  article-title: Programmed cyclodextrin-based core-shell nanoparticles for cooperative TGF-
  publication-title: Chem Eng J
– volume: 19
  year: 2023
  ident: bib29
  article-title: Rosmarinic acid-crosslinked supramolecular nanoassembly with self-regulated photodynamic and anti-metastasis properties for synergistic photoimmunotherapy
  publication-title: Small
– volume: 12
  start-page: 742
  year: 2021
  ident: bib38
  article-title: Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer
  publication-title: Nat Commun
– volume: 28
  start-page: 514
  year: 2016
  end-page: 524
  ident: bib20
  article-title: Metabolic pathways in T cell activation and lineage differentiation
  publication-title: Semin Immunol
– volume: 141
  start-page: 12296
  year: 2019
  end-page: 12304
  ident: bib34
  article-title: A supramolecular approach for modulated photoprotection, lysosomal delivery, and photodynamic activity of a photosensitizer
  publication-title: J Am Chem Soc
– volume: 17
  start-page: 97
  year: 2017
  end-page: 111
  ident: bib8
  article-title: Immunogenic cell death in cancer and infectious disease
  publication-title: Nat Rev Immunol
– volume: 93
  year: 2021
  ident: bib44
  article-title: Z-guggulsterone induces PD-L1 upregulation partly mediated by FXR, Akt and Erk1/2 signaling pathways in non-small cell lung cancer
  publication-title: Int Immunopharm
– volume: 40
  start-page: 481
  year: 2015
  end-page: 485
  ident: bib11
  article-title: Immunological aspects of antitumor photodynamic therapy outcome
  publication-title: Cent Eur J Immunol
– volume: 12
  start-page: 4327
  year: 2022
  end-page: 4347
  ident: bib15
  article-title: Targeted nanomedicines remodeling immunosuppressive tumor microenvironment for enhanced cancer immunotherapy
  publication-title: Acta Pharm Sin B
– volume: 12
  start-page: 7727
  year: 2021
  end-page: 7734
  ident: bib33
  article-title: Synthesis of an AIEgen functionalized cucurbit[7]uril for subcellular bioimaging and synergistic photodynamic therapy and supramolecular chemotherapy
  publication-title: Chem Sci
– volume: 38
  start-page: 4452
  year: 2019
  end-page: 4466
  ident: bib43
  article-title: Base excision repair regulates PD-L1 expression in cancer cells
  publication-title: Oncogene
– volume: 17
  start-page: 4034
  year: 2023
  end-page: 4049
  ident: bib31
  article-title: Conjugation of macrophage-mimetic microalgae and liposome for antitumor sonodynamic immunotherapy
  publication-title: ACS Nano
– volume: 14
  start-page: 1492
  year: 2015
  end-page: 1509
  ident: bib12
  article-title: T-cell mediated anti-tumor immunity after photodynamic therapy: why does it not always work and how can we improve it?
  publication-title: Photochem Photobiol Sci
– volume: 103
  start-page: 12831
  year: 2006
  end-page: 12836
  ident: bib16
  article-title: T cell surface redox levels determine T cell reactivity and arthritis susceptibility
  publication-title: P Natl Acad Sci USA
– volume: 29
  start-page: 2931
  year: 2021
  end-page: 2948
  ident: bib40
  article-title: Photodynamic therapy synergizes with PD-L1 checkpoint blockade for immunotherapy of CRC by multifunctional nanoparticles
  publication-title: Mol Ther
– volume: 34
  year: 2023
  ident: bib30
  article-title: Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment
  publication-title: Chin Chem Lett
– volume: 31
  year: 2021
  ident: bib46
  article-title: Self-delivered supramolecular nanomedicine with transformable shape for ferrocene-amplified photodynamic therapy of breast cancer and bone metastases
  publication-title: Adv Funct Mater
– volume: 33
  start-page: 1718
  year: 2022
  end-page: 1728
  ident: bib26
  article-title: Applying nanotechnology to boost cancer immunotherapy by promoting immunogenic cell death
  publication-title: Chin Chem Lett
– volume: 451
  year: 2023
  ident: bib1
  article-title: Emerging nanotherapeutics for facilitating photodynamic therapy
  publication-title: Chem Eng J
– volume: 7
  start-page: 339
  year: 2019
  ident: bib19
  article-title: Tumor microenvironment dictates regulatory T cell phenotype: upregulated immune checkpoints reinforce suppressive function
  publication-title: J Immunother Cancer
– volume: 127
  start-page: 2930
  year: 2017
  end-page: 2940
  ident: bib42
  article-title: IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade
  publication-title: J Clin Invest
– volume: 8
  year: 2022
  ident: bib39
  article-title: hitchhiking of immune cells by intracellular self-assembly of bacteria-mimetic nanomedicine for targeted therapy of melanoma
  publication-title: Sci Adv
– volume: 9
  year: 2022
  ident: bib14
  article-title: Tumor-microenvironment-responsive nanomedicine for enhanced cancer immunotherapy
  publication-title: Adv Sci
– volume: 33
  start-page: 4583
  year: 2022
  end-page: 4586
  ident: bib5
  article-title: A glutathione activatable pro-drug-photosensitizer for combined chemotherapy and photodynamic therapy
  publication-title: Chin Chem Lett
– volume: 2
  start-page: 822
  year: 2013
  end-page: 827
  ident: bib45
  article-title: A polymer-(tandem drugs) conjugate for enhanced cancer treatment
  publication-title: Adv Healthcare Mater
– volume: 168
  start-page: 64
  year: 2018
  end-page: 75
  ident: bib35
  article-title: Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy
  publication-title: Biomaterials
– volume: 12
  start-page: 3354
  year: 2022
  end-page: 3366
  ident: bib4
  article-title: Dual-responsive nanoparticles with transformable shape and reversible charge for amplified chemo-photodynamic therapy of breast cancer
  publication-title: Acta Pharm Sin B
– volume: 60
  start-page: 19355
  year: 2021
  end-page: 19363
  ident: bib22
  article-title: Charge-reversal polymer nano-modulators for photodynamic immunotherapy of cancer
  publication-title: Angew Chem Int Ed Engl
– volume: 164
  start-page: 397
  year: 2023
  end-page: 406
  ident: bib32
  article-title: Hyaluronic acid-based supramolecular nanomedicine with optimized ratio of oxaliplatin/chlorin e6 for combined chemotherapy and O2-economized photodynamic therapy
  publication-title: Acta Biomater
– volume: 109
  start-page: 2109
  year: 2018
  end-page: 2118
  ident: bib24
  article-title: Norcantharidin enhances antitumor immunity of GM-CSF prostate cancer cells vaccine by inducing apoptosis of regulatory Tcells
  publication-title: Cancer Sci
– volume: 2
  year: 2017
  ident: bib37
  article-title: Bioresponsive materials
  publication-title: Nat Rev Mater
– volume: 167
  start-page: 465
  year: 2012
  end-page: 467
  ident: bib9
  article-title: Photodynamic therapy and immunosuppression
  publication-title: Br J Dermatol
– volume: 9
  year: 2021
  ident: bib3
  article-title: Photodynamic therapy for the treatment and diagnosis of cancer-A review of the current clinical status
  publication-title: Front Chem
– volume: 12
  start-page: 1416
  year: 2022
  end-page: 1431
  ident: bib27
  article-title: Co-delivery of photosensitizer and diclofenac through sequentially responsive bilirubin nanocarriers for combating hypoxic tumors
  publication-title: Acta Pharm Sin B
– volume: 112
  start-page: 1501
  year: 2015
  end-page: 1509
  ident: bib41
  article-title: IFN-gamma from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer
  publication-title: Br J Cancer
– volume: 30
  year: 2018
  ident: bib23
  article-title: Dual drug backboned shattering polymeric theranostic nanomedicine for synergistic eradication of patient-derived lung cancer
  publication-title: Adv Mater
– volume: 103
  start-page: 12831
  year: 2006
  ident: 10.1016/j.apsb.2023.10.006_bib16
  article-title: T cell surface redox levels determine T cell reactivity and arthritis susceptibility
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0604571103
– volume: 40
  start-page: 481
  year: 2015
  ident: 10.1016/j.apsb.2023.10.006_bib11
  article-title: Immunological aspects of antitumor photodynamic therapy outcome
  publication-title: Cent Eur J Immunol
  doi: 10.5114/ceji.2015.56974
– volume: 33
  start-page: 1718
  year: 2022
  ident: 10.1016/j.apsb.2023.10.006_bib26
  article-title: Applying nanotechnology to boost cancer immunotherapy by promoting immunogenic cell death
  publication-title: Chin Chem Lett
  doi: 10.1016/j.cclet.2021.10.074
– volume: 8
  year: 2022
  ident: 10.1016/j.apsb.2023.10.006_bib39
  article-title: In vivo hitchhiking of immune cells by intracellular self-assembly of bacteria-mimetic nanomedicine for targeted therapy of melanoma
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abn1805
– volume: 31
  year: 2021
  ident: 10.1016/j.apsb.2023.10.006_bib46
  article-title: Self-delivered supramolecular nanomedicine with transformable shape for ferrocene-amplified photodynamic therapy of breast cancer and bone metastases
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202104645
– volume: 7
  start-page: 339
  year: 2019
  ident: 10.1016/j.apsb.2023.10.006_bib19
  article-title: Tumor microenvironment dictates regulatory T cell phenotype: upregulated immune checkpoints reinforce suppressive function
  publication-title: J Immunother Cancer
  doi: 10.1186/s40425-019-0785-8
– volume: 167
  start-page: 465
  year: 2012
  ident: 10.1016/j.apsb.2023.10.006_bib9
  article-title: Photodynamic therapy and immunosuppression
  publication-title: Br J Dermatol
  doi: 10.1111/j.1365-2133.2012.11189.x
– volume: 18
  start-page: 86
  year: 2023
  ident: 10.1016/j.apsb.2023.10.006_bib7
  article-title: Targeting the activity of T cells by membrane surface redox regulation for cancer theranostics
  publication-title: Nat Nanotechnol
  doi: 10.1038/s41565-022-01261-7
– volume: 33
  start-page: 4583
  year: 2022
  ident: 10.1016/j.apsb.2023.10.006_bib5
  article-title: A glutathione activatable pro-drug-photosensitizer for combined chemotherapy and photodynamic therapy
  publication-title: Chin Chem Lett
  doi: 10.1016/j.cclet.2022.03.040
– volume: 12
  start-page: 4327
  year: 2022
  ident: 10.1016/j.apsb.2023.10.006_bib15
  article-title: Targeted nanomedicines remodeling immunosuppressive tumor microenvironment for enhanced cancer immunotherapy
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2022.11.001
– volume: 12
  start-page: 51
  year: 2013
  ident: 10.1016/j.apsb.2023.10.006_bib18
  article-title: Therapeutic opportunities for manipulating T-Reg cells in autoimmunity and cancer
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd3683
– volume: 132
  start-page: 104
  year: 2018
  ident: 10.1016/j.apsb.2023.10.006_bib36
  article-title: Drug delivery systems for programmed and on-demand release
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2018.07.002
– volume: 168
  start-page: 64
  year: 2018
  ident: 10.1016/j.apsb.2023.10.006_bib35
  article-title: Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.03.046
– volume: 14
  start-page: 17100
  year: 2020
  ident: 10.1016/j.apsb.2023.10.006_bib13
  article-title: Self-delivery photo-immune stimulators for photodynamic sensitized tumor immunotherapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c06765
– volume: 12
  start-page: 7727
  year: 2021
  ident: 10.1016/j.apsb.2023.10.006_bib33
  article-title: Synthesis of an AIEgen functionalized cucurbit[7]uril for subcellular bioimaging and synergistic photodynamic therapy and supramolecular chemotherapy
  publication-title: Chem Sci
  doi: 10.1039/D1SC01139A
– volume: 93
  year: 2021
  ident: 10.1016/j.apsb.2023.10.006_bib44
  article-title: Z-guggulsterone induces PD-L1 upregulation partly mediated by FXR, Akt and Erk1/2 signaling pathways in non-small cell lung cancer
  publication-title: Int Immunopharm
  doi: 10.1016/j.intimp.2021.107395
– volume: 14
  start-page: 1492
  year: 2015
  ident: 10.1016/j.apsb.2023.10.006_bib12
  article-title: T-cell mediated anti-tumor immunity after photodynamic therapy: why does it not always work and how can we improve it?.
  publication-title: Photochem Photobiol Sci
  doi: 10.1039/c4pp00455h
– volume: 12
  start-page: 92
  year: 2022
  ident: 10.1016/j.apsb.2023.10.006_bib25
  article-title: Pure drug nano-assemblies: a facile carrier-free nanoplatform for efficient cancer therapy
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2021.08.012
– volume: 164
  start-page: 397
  year: 2023
  ident: 10.1016/j.apsb.2023.10.006_bib32
  article-title: Hyaluronic acid-based supramolecular nanomedicine with optimized ratio of oxaliplatin/chlorin e6 for combined chemotherapy and O2-economized photodynamic therapy
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2023.03.039
– volume: 141
  start-page: 12296
  year: 2019
  ident: 10.1016/j.apsb.2023.10.006_bib34
  article-title: A supramolecular approach for modulated photoprotection, lysosomal delivery, and photodynamic activity of a photosensitizer
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.9b03990
– volume: 60
  start-page: 19355
  year: 2021
  ident: 10.1016/j.apsb.2023.10.006_bib22
  article-title: Charge-reversal polymer nano-modulators for photodynamic immunotherapy of cancer
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.202106392
– volume: 33
  start-page: 1927
  year: 2022
  ident: 10.1016/j.apsb.2023.10.006_bib28
  article-title: Precisely engineering a dual-drug cooperative nanoassembly for proteasome inhibition-potentiated photodynamic therapy
  publication-title: Chin Chem Lett
  doi: 10.1016/j.cclet.2021.11.056
– volume: 12
  start-page: 1416
  year: 2022
  ident: 10.1016/j.apsb.2023.10.006_bib27
  article-title: Co-delivery of photosensitizer and diclofenac through sequentially responsive bilirubin nanocarriers for combating hypoxic tumors
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2021.12.001
– volume: 9
  year: 2022
  ident: 10.1016/j.apsb.2023.10.006_bib14
  article-title: Tumor-microenvironment-responsive nanomedicine for enhanced cancer immunotherapy
  publication-title: Adv Sci
  doi: 10.1002/advs.202103836
– volume: 28
  start-page: 514
  year: 2016
  ident: 10.1016/j.apsb.2023.10.006_bib20
  article-title: Metabolic pathways in T cell activation and lineage differentiation
  publication-title: Semin Immunol
  doi: 10.1016/j.smim.2016.10.009
– volume: 2
  year: 2017
  ident: 10.1016/j.apsb.2023.10.006_bib37
  article-title: Bioresponsive materials
  publication-title: Nat Rev Mater
– volume: 451
  year: 2023
  ident: 10.1016/j.apsb.2023.10.006_bib1
  article-title: Emerging nanotherapeutics for facilitating photodynamic therapy
  publication-title: Chem Eng J
– volume: 109
  start-page: 2109
  year: 2018
  ident: 10.1016/j.apsb.2023.10.006_bib24
  article-title: Norcantharidin enhances antitumor immunity of GM-CSF prostate cancer cells vaccine by inducing apoptosis of regulatory Tcells
  publication-title: Cancer Sci
  doi: 10.1111/cas.13639
– volume: 21
  start-page: 363
  year: 2021
  ident: 10.1016/j.apsb.2023.10.006_bib17
  article-title: Redox regulation of immunometabolism
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-020-00478-8
– volume: 9
  year: 2021
  ident: 10.1016/j.apsb.2023.10.006_bib3
  article-title: Photodynamic therapy for the treatment and diagnosis of cancer-A review of the current clinical status
  publication-title: Front Chem
  doi: 10.3389/fchem.2021.686303
– volume: 17
  start-page: 4034
  year: 2023
  ident: 10.1016/j.apsb.2023.10.006_bib31
  article-title: Conjugation of macrophage-mimetic microalgae and liposome for antitumor sonodynamic immunotherapy via hypoxia alleviation and autophagy inhibition
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c00041
– volume: 455
  year: 2023
  ident: 10.1016/j.apsb.2023.10.006_bib10
  article-title: Programmed cyclodextrin-based core-shell nanoparticles for cooperative TGF-β blockade to reverse immunosuppression post photodynamic therapy
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.140830
– volume: 38
  start-page: 4452
  year: 2019
  ident: 10.1016/j.apsb.2023.10.006_bib43
  article-title: Base excision repair regulates PD-L1 expression in cancer cells
  publication-title: Oncogene
  doi: 10.1038/s41388-019-0733-6
– volume: 34
  year: 2023
  ident: 10.1016/j.apsb.2023.10.006_bib30
  article-title: Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment
  publication-title: Chin Chem Lett
– volume: 12
  start-page: 3354
  year: 2022
  ident: 10.1016/j.apsb.2023.10.006_bib4
  article-title: Dual-responsive nanoparticles with transformable shape and reversible charge for amplified chemo-photodynamic therapy of breast cancer
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2022.03.010
– volume: 19
  year: 2023
  ident: 10.1016/j.apsb.2023.10.006_bib29
  article-title: Rosmarinic acid-crosslinked supramolecular nanoassembly with self-regulated photodynamic and anti-metastasis properties for synergistic photoimmunotherapy
  publication-title: Small
– volume: 12
  start-page: 8633
  year: 2018
  ident: 10.1016/j.apsb.2023.10.006_bib6
  article-title: Bioinspired hybrid protein oxygen nanocarrier amplified photodynamic therapy for eliciting anti-tumor immunity and abscopal effect
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b04371
– volume: 2
  start-page: 822
  year: 2013
  ident: 10.1016/j.apsb.2023.10.006_bib45
  article-title: A polymer-(tandem drugs) conjugate for enhanced cancer treatment
  publication-title: Adv Healthcare Mater
  doi: 10.1002/adhm.201200385
– volume: 29
  start-page: 2931
  year: 2021
  ident: 10.1016/j.apsb.2023.10.006_bib40
  article-title: Photodynamic therapy synergizes with PD-L1 checkpoint blockade for immunotherapy of CRC by multifunctional nanoparticles
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2021.05.017
– volume: 30
  year: 2018
  ident: 10.1016/j.apsb.2023.10.006_bib23
  article-title: Dual drug backboned shattering polymeric theranostic nanomedicine for synergistic eradication of patient-derived lung cancer
  publication-title: Adv Mater
  doi: 10.1002/adma.201706220
– volume: 127
  start-page: 2930
  year: 2017
  ident: 10.1016/j.apsb.2023.10.006_bib42
  article-title: IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade
  publication-title: J Clin Invest
  doi: 10.1172/JCI91190
– volume: 70
  start-page: 145
  year: 2020
  ident: 10.1016/j.apsb.2023.10.006_bib2
  article-title: Colorectal cancer statistics, 2020
  publication-title: CA A Cancer J Clin
  doi: 10.3322/caac.21601
– volume: 17
  start-page: 97
  year: 2017
  ident: 10.1016/j.apsb.2023.10.006_bib8
  article-title: Immunogenic cell death in cancer and infectious disease
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2016.107
– volume: 20
  start-page: 158
  year: 2020
  ident: 10.1016/j.apsb.2023.10.006_bib21
  article-title: T-reg cell-based therapies: challenges and perspectives
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-019-0232-6
– volume: 12
  start-page: 742
  year: 2021
  ident: 10.1016/j.apsb.2023.10.006_bib38
  article-title: Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21047-0
– volume: 112
  start-page: 1501
  year: 2015
  ident: 10.1016/j.apsb.2023.10.006_bib41
  article-title: IFN-gamma from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2015.101
SSID ssj0000602275
Score 2.436447
Snippet A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8+ T cells is subject to the regulatory T...
A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8 T cells is subject to the regulatory T...
A major challenge facing photodynamic therapy (PDT) is that the activity of the immune-induced infiltrating CD8 + T cells is subject to the regulatory T...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 765
SubjectTerms Checkpoint blockade
Dual-responsive
Immunomodulator
Immunosuppressive microenvironment
Original
Photodynamic therapy
Supramolecular assembly
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JbtswECWKnHopmi6psxQsUOTSKJW5yOQxXYKgQIscEiA3gpRI2EEsGbYUwH_fGVFyrBRILr1SsiVyRpo34ps3hHwGyMBT7dJETGSeYIRInOAhEVLbieU6z9uq999_sotr8etG3my1-kJOWJQHjgv31WaQcytlc6-dKILSSvBCcx8AajBmW51PiHlbyVR8B6M0HvIXGUOdPsAZXcVMJHfZxcqdYufw00jtGkSlVrx_EJz-BZ-POZRbQen8NXnVoUl6FmexS1748g05voxy1OsTevVQXbU6ocf08kGoev2WrH809i5ZdizZe09XzWJp533DXLqYVnVVxJb1tLRl1W_EU_x6S7Ek4t7WWHtFZ1hmUs2rousGRgELU19OW34BtVgL3MxhKJZ7rd-R6_OfV98vkq4VQ5IDQKsT6TMIW1nmgwrKe2F54KJgqsD8z6MofSrGqERTjLWc5BAX4TAXAeCWw503_p7slFXpPxAqtONZyKRVmFwKZwOz0smQhlDAiB6RcW8Kk3c65dgu4870hLRbg-YzaD4cA_ONyJfNbxZRpePJs7-hhTdnosJ2OwB-Zzq_M8_53YjI3j9MB1YiCIG_mj158U-9Mxl4knF7xpa-alaGAdbmbAIJ9IjsRefa3CLHFy_HxVEDtxvMYXiknE1btfBxisvM1P7_mPUBeQlzEZG2fkh26mXjjwCV1e5j-wD-Ba2kNb4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLamnbggGL8KAxlp2oV5TWM7tY9sME2TQJPYpN4sJ7Fp0JpEbTKp_z1-ttMRkHbgWMdpXb8Xv8_x-76H0JGDDDSReULYnBcEIgTJGbWEcannmsqi8Kz3b9-zy1t2teCLPXQ-cGEgrTKu_WFN96t1bJnG2Zy2VTX9kbq9CwUAQb0nAuGXMuFJfIuz3XuWJAORPMhkhP4EbojcmZDmpdtNfgo1xE9DktcoPnkZ_1GY-heG_p1N-Ud4uniGnkZciT-HoT9He6Y-QMfXQZh6e4JvHnhWmxN8jK8fJKu3L9D2S6_vyDrmy94bvOnbtV4NpXNxu2y6pgzF63Gt62Y4ksfwHhcDOeJed8DCwhUQTppVU8a6YNihYmzqpc80wBpYwf3KNQXi1_Ylur34enN-SWJRBlI4qNYRbjIXwLLMWGGFMUxTS1mZihJ2ggbk6RM2A02acib5vHAR0l2mzDrglcMZHH2F9uumNm8QZjKnmc24FrDNZLm2qeY5t4m1pWuREzQbTKGKqFgOhTPu1JCa9kuB-RSYD9qc-Sbo0-6eNuh1PNr7DCy86wla276hWf9U0dmUzhJJhdCFkTkrrZCC0VJSYx3YTVNNJ4gP_qFGruu-qnr0xz8OzqTcMw0HNbo2Tb9RqUPdNJ27rfQEvQ7OtRsihSWYwuSIkduN_sP4Sl0tvW74LIFpTsXb_xzwO_TEfWIhZ_0Q7Xfr3rx3kKzLP_hn7jfPwTY0
  priority: 102
  providerName: Elsevier
Title Dual-responsive supramolecular photodynamic nanomedicine with activatable immunomodulation for enhanced antitumor therapy
URI https://dx.doi.org/10.1016/j.apsb.2023.10.006
https://www.ncbi.nlm.nih.gov/pubmed/38322349
https://www.proquest.com/docview/2923327191
https://pubmed.ncbi.nlm.nih.gov/PMC10840428
https://doaj.org/article/a609388ace9b4df89843d93ef54022a3
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKkVAviDcpUBkJ9UKzysZO4hwQokBVQEVF6kp7i5zEZhftJts8KvLvmYmd3S6UXnJwEucx48zneOb7CHkDkIF5ceq5PAoyFyOEm3KmXR7EMpIszrK-6v3se3g64V-nwXSHDHJH9gXWN07tUE9qUi1Gvy-79zDg321yteSqTkcoBD4ymVp3yF2ITBFKOZxZuG--zEiYh1mNvo_sfYA-bB3Nzd3skXsMPZ4h0-a1sNWz-29Fr3_R6d9Jltei1skDct_CTfrB-MdDsqOKR-Tw3PBVd0f0YlN-VR_RQ3q-YbLuHpPuUysXbmXTaK8UrdtVJZeDoi5dzcqmzI2mPS1kUQ4r9RR_71KsmbiSDRZn0TnWoZTLMrdyYRTAMlXFrE9AoBKLhdslNJl6sO4JmZx8vvh46lqtBjcDBNe4gQohroWh0kILpbhkmvHcFzlOEBWy1nt8jFQ1-TgOogwCJ-xmXAMeS3Fpjj0lu0VZqOeE8jhloQ4DKXD2yVOpfRmkgfa0zqEldsh4MEWSWSJz1NNYJEPG2q8ELZmgJbENLOmQt-tzVobG49ajj9HC6yORgrtvKKufiR3RiQy9mAkhMxWnPNciFpzlMVMaMLDvS-aQYPCPxKIZg1Kgq_mtF389OFMCQx3Xb2ShyrZOfADjzI9ghu2QZ8a51rc4-KlDxJbbbT3D9p5iPuvpxMcevmZf7P-30xdkD26Qm2T1l2S3qVr1CrBYkx70_zBg-2V6DNtvP8RBP-T-AFqRNA0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGeIAXxPfKp5HQXljWNHZS-5ENpg62aRKd1DfLSWwatCZRm07qf89d7HQEpD3weo4Tx3fx_Rzf_Y6QjwAZWCjTMODjOAvQQwQpZzbgsdRjzWSWtVnv5xfJ5Ip_m8WzHXLc5cJgWKVf-92a3q7WXjL0szmsi2L4I4K9C0MAwVpLFPfIfUADCZr26exo-6MlTJAlD0MZsUOAPXzyjIvz0vUqPcQi4ocuyqvnoFoe_56f-heH_h1O-Yd_OnlMHnlgST-7sT8hO6Z8SvYvHTP15oBObxOtVgd0n17eclZvnpHNl7W-DpY-YPbG0NW6XupFVzuX1vOqqXJXvZ6Wuqy6M3mKP3IpZkfc6AbTsGiBGSfVosp9YTAKsJiact6GGlCNacHrBYhc5tfmObk6-To9ngS-KkOQAVZrgtgk4MGSxFhhhTFcM8t4Hokct4IG-elDPkJSmnwk43EGLhKaGbeAvFI8hGMvyG5ZlWaPUC5Tltgk1gL3mTzVNtJxGtvQ2hwkckBGnSpU5inLsXLGtepi034pVJ9C9aEM1Dcgn7Z9akfYcefVR6jh7ZVItt0KquVP5a1N6SSUTAidGZny3AopOMslMxbQbhRpNiBxZx-qZ7twq-LOh3_ojEnBR40nNbo01XqlIoDdLBrDXnpAXjrj2g6R4RrMcHJEz-x679BvKYt5Sxw-CnGaI_HqPwf8njyYTM_P1NnpxffX5CG0cBfA_obsNsu1eQv4rEnftd_fb3WEOVs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-responsive+supramolecular+photodynamic+nanomedicine+with+activatable+immunomodulation+for+enhanced+antitumor+therapy&rft.jtitle=Acta+pharmaceutica+Sinica.+B&rft.au=He%2C+Siqin&rft.au=Wang%2C+Lulu&rft.au=Wu%2C+Dongxu&rft.au=Tong%2C+Fan&rft.date=2024-02-01&rft.issn=2211-3835&rft.volume=14&rft.issue=2&rft.spage=765&rft_id=info:doi/10.1016%2Fj.apsb.2023.10.006&rft_id=info%3Apmid%2F38322349&rft.externalDocID=38322349
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3835&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3835&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3835&client=summon