Using an image segmentation and support vector machine method for identifying two locust species and instars
Locusts are agricultural pests around the world. To cognize how locust distribution density and community structure are related to the hydrothermal and vegetation growth conditions of their habitats and thereby providing rapid and accurate warning of locust invasions, it is important to develop effi...
Saved in:
Published in | Journal of Integrative Agriculture Vol. 19; no. 5; pp. 1301 - 1313 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2020
Department of Computer and Information Science, College of Art and Science, Ohio State University, Columbus, OH 43210, USA%State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, P.R.China Center for Geodata and Analysis, Beijing Normal University, Beijing 100875, P.R.China Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Locusts are agricultural pests around the world. To cognize how locust distribution density and community structure are related to the hydrothermal and vegetation growth conditions of their habitats and thereby providing rapid and accurate warning of locust invasions, it is important to develop efficient and accurate techniques for acquiring locust information. In this paper, by analyzing the differences between the morphological features of Locusta migratoria manilensis and Oedaleus decorus asiaticus, we proposed a semi-automatic locust species and instar information detection model based on locust image segmentation, locust feature variable extraction and support vector machine (SVM) classification. And we subsequently examined its applicability and accuracy based on sample image data acquired in the field. Locust image segmentation experiment showed that the proposed GrabCut-based interactive segmentation method can be used to rapidly extract images of various locust body parts and exhibits excellent operability. In a locust feature variable extraction experiment, the textural, color and morphological features of various locust body parts were calculated. Based on the results, eight feature variables were selected to identify locust species and instars using outlier detection, variable function calculation and principal component analysis. An SVM-based locust classification experiment achieved a semi-automatic detection accuracy of 96.16% when a polynomial kernel function with a penalty factor parameter c of 2 040 and a gamma parameter g of 0.5 was used. The proposed detection model exhibits advantages such as high applicability and accuracy when it is used to identify locust instars of L. migratoria manilensis and O. decorus asiaticus, and it can also be used to identify other species of locusts. |
---|---|
AbstractList | Locusts are agricultural pests around the world. To cognize how locust distribution density and community structure are related to the hydrothermal and vegetation growth conditions of their habitats and thereby providing rapid and accurate warning of locust invasions, it is important to develop efficient and accurate techniques for acquiring locust information. In this paper, by analyzing the differences between the morphological features of Locusta migratoria manilensis and Oedaleus decorus asiaticus, we proposed a semi-automatic locust species and instar information detection model based on locust image segmentation, locust feature variable extraction and support vector machine (SVM) classification. And we subsequently examined its applicability and accuracy based on sample image data acquired in the field. Locust image segmentation experiment showed that the proposed GrabCut-based interactive segmentation method can be used to rapidly extract images of various locust body parts and exhibits excellent operability. In a locust feature variable extraction experiment, the textural, color and morphological features of various locust body parts were calculated. Based on the results, eight feature variables were selected to identify locust species and instars using outlier detection, variable function calculation and principal component analysis. An SVM-based locust classification experiment achieved a semi-automatic detection accuracy of 96.16% when a polynomial kernel function with a penalty factor parameter c of 2 040 and a gamma parameter g of 0.5 was used. The proposed detection model exhibits advantages such as high applicability and accuracy when it is used to identify locust instars of L. migratoria manilensis and O. decorus asiaticus, and it can also be used to identify other species of locusts. Locusts are agricultural pests around the world.To cognize how locust distribution density and community structure are related to the hydrothermal and vegetation growth conditions of their habitats and thereby providing rapid and accurate warning of locust invasions,it is important to develop efficient and accurate techniques for acquiring locust information.In this paper,by analyzing the differences between the morphological features of Locusta migratoria manilensis and Oedaleus decorus asiaticus,we proposed a semi-automatic locust species and instar information detection model based on locust image segmentation,locust feature variable extraction and support vector machine (SVM) classification.And we subsequently examined its applicability and accuracy based on sample image data acquired in the field.Locust image segmentation experiment showed that the proposed GrabCut-based interactive segmentation method can be used to rapidly extract images of various locust body parts and exhibits excellent operability.In a locust feature variable extraction experiment,the textural,color and morphological features of various locust body parts were calculated.Based on the results,eight feature variables were selected to identify locust species and instars using outlier detection,variable function calculation and principal component analysis.An SVM-based locust classification experiment achieved a semi-automatic detection accuracy of 96.16% when a polynomial kernel function with a penalty factor parameter c of 2040 and a gamma parameter g of 0.5 was used.The proposed detection model exhibits advantages such as high applicability and accuracy when it is used to identify locust instars of L.migratoria manilensis and O.decorus asiaticus,and it can also be used to identify other species of locusts. |
Author | LU, Shuhan YE, Si-jing |
AuthorAffiliation | Department of Computer and Information Science, College of Art and Science, Ohio State University, Columbus, OH 43210, USA%State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, P.R.China;Center for Geodata and Analysis, Beijing Normal University, Beijing 100875, P.R.China |
AuthorAffiliation_xml | – name: Department of Computer and Information Science, College of Art and Science, Ohio State University, Columbus, OH 43210, USA%State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, P.R.China;Center for Geodata and Analysis, Beijing Normal University, Beijing 100875, P.R.China |
Author_xml | – sequence: 1 givenname: Shuhan surname: LU fullname: LU, Shuhan organization: Department of Computer and Information Science, College of Art and Science, Ohio State University, Columbus, OH 43210, USA – sequence: 2 givenname: Si-jing surname: YE fullname: YE, Si-jing organization: State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, P.R.China |
BookMark | eNqFkU1rGzEQhkVJoGmSnxDQsTlsM_rc1amU0I9AoIcmZyFrZzdybclIclL311e2m14LAonhnWdezfuOnMQUkZArBh8YMH3zg4NRnWDMvGfmWvNBqw7ekDMuFO-E5OqkvV8lb8llKUsAYEoB6OGMrB5LiDN1kYa1m5EWnNcYq6shxVYdadluNilX-oy-pkzXzj-FiHSN9SmNdGqlMLaGMO32nPqS6Cr5bam0bNAHLAdIiKW6XC7I6eRWBS__3ufk8cvnh9tv3f33r3e3n-47rzivnVJSmsEhV9JrriYzoJgGr42R0C-YYc269hxAOs7RDGrs0YPTPTCuYQBxTu6O3DG5pd3k9rW8s8kFeyikPFuXa_ArtLBoejGKBllI1jujh1H0IKXvOXI2Ndb1kfXi4uTibJdpm2Nzb3_Pcffzl0UOzYoCJppWHbU-p1IyTv9mM7D7tOwhLbuPwrZzSMvu_X489mFbynPAbEtbXfQ4htzW3lyH_xD-AK8snMM |
CitedBy_id | crossref_primary_10_1109_MGRS_2021_3097280 crossref_primary_10_1007_s42690_021_00602_8 crossref_primary_10_1016_j_iot_2023_100716 crossref_primary_10_1016_j_compag_2022_107264 crossref_primary_10_3390_app12083810 crossref_primary_10_1002_ldr_4077 crossref_primary_10_1016_j_ecoinf_2024_102539 crossref_primary_10_1016_S2095_3119_20_63168_9 crossref_primary_10_3390_insects11080458 crossref_primary_10_1016_j_ecoinf_2020_101135 crossref_primary_10_3389_fpls_2023_1200901 crossref_primary_10_1016_j_compag_2022_106739 crossref_primary_10_1016_j_jclepro_2024_140827 crossref_primary_10_1016_j_jia_2022_09_004 crossref_primary_10_3390_app14125328 crossref_primary_10_1016_j_asoc_2021_107984 crossref_primary_10_3390_rs15061718 crossref_primary_10_1016_j_fuproc_2020_106677 |
Cites_doi | 10.3724/SP.J.1087.2010.01870 10.1016/j.compag.2019.104906 10.1016/j.compag.2018.07.014 10.1016/j.compag.2015.10.015 10.1109/JSTARS.2014.2320635 10.1117/1.JRS.8.084899 10.1111/j.1365-2664.2005.01073.x 10.1016/0167-8809(86)90096-4 10.1002/ps.4487 10.1016/j.jaridenv.2019.02.005 10.1109/TSMC.1973.4309314 10.3390/rs10091376 10.1016/j.compag.2010.10.001 10.1016/S2095-3119(16)61497-1 10.1109/TGRS.1986.289643 10.1016/j.biosystemseng.2018.02.008 10.1016/j.cageo.2016.01.007 |
ContentType | Journal Article |
Copyright | 2020 CAAS. Publishing services by Elsevier B.V Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2020 CAAS. Publishing services by Elsevier B.V – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 6I. AAFTH AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ DOA |
DOI | 10.1016/S2095-3119(19)62865-0 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2352-3425 |
EndPage | 1313 |
ExternalDocumentID | oai_doaj_org_article_0b8033d385db417a968d37044c72e21f zgnykx_e202005013 10_1016_S2095_3119_19_62865_0 S2095311919628650 |
GrantInformation_xml | – fundername: This research was funded by the National Natural Science Foundation of China; the Fundamental Research Funds for the Central Universities of China .We would like to thank the Center for Geodata and Analysis,Faculty of Geographical Science,Beijing Normal University,China for providing high-performance computing support funderid: (31471762); (2018NTST03).We would like to thank the Center for Geodata and Analysis,Faculty of Geographical Science,Beijing Normal University,China for providing high-performance computing support |
GroupedDBID | --M -04 -0D -SD -S~ .~1 0R~ 1B1 1~. 1~5 2B. 2B~ 4.4 457 4G. 5VR 6I. 7-5 8P~ 92G 92I 92M 93N 93Q 9D9 9DD AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AATLK AAXUO ABGRD ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFUIB AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CAJED CAJUS CBWCG CCEZO CHDYS EBS EFJIC EFLBG EJD FA0 FDB FIRID FNPLU FYGXN GBLVA GROUPED_DOAJ HZ~ JUIAU KOM M41 MO0 NCXOZ O-L O9- OAUVE OK1 P-8 P-9 PC. Q-- Q-3 Q38 R-D RIG ROL RT4 SDF SDG SES SSA SSZ T5K T8T TCJ TGD U1F U1G U5D U5N ~G- 0SF AAHBH AAXDM AAXKI AAYXX ADVLN AFJKZ AKRWK CITATION 4A8 PSX |
ID | FETCH-LOGICAL-c522t-554498ae254c625f98e3f8c699407b1910066c2004a22e985d7ec0a6701260803 |
IEDL.DBID | DOA |
ISSN | 2095-3119 |
IngestDate | Tue Oct 22 15:13:58 EDT 2024 Tue Feb 13 23:46:22 EST 2024 Thu Sep 26 17:38:38 EDT 2024 Fri Feb 23 02:49:22 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | L. migratoria manilensis support vector machine machine learning O. decorus asiaticus locust identification O.decorus asiaticus L.migratoria manilensis |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c522t-554498ae254c625f98e3f8c699407b1910066c2004a22e985d7ec0a6701260803 |
OpenAccessLink | https://doaj.org/article/0b8033d385db417a968d37044c72e21f |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0b8033d385db417a968d37044c72e21f wanfang_journals_zgnykx_e202005013 crossref_primary_10_1016_S2095_3119_19_62865_0 elsevier_sciencedirect_doi_10_1016_S2095_3119_19_62865_0 |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Integrative Agriculture |
PublicationTitle_FL | Journal of Integrative Agriculture |
PublicationYear | 2020 |
Publisher | Elsevier B.V Department of Computer and Information Science, College of Art and Science, Ohio State University, Columbus, OH 43210, USA%State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, P.R.China Center for Geodata and Analysis, Beijing Normal University, Beijing 100875, P.R.China Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Center for Geodata and Analysis, Beijing Normal University, Beijing 100875, P.R.China – name: Department of Computer and Information Science, College of Art and Science, Ohio State University, Columbus, OH 43210, USA%State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, P.R.China – name: Elsevier |
References | Xiong, Wang, Zhang (bib25) 2007 Ye, Zhu, Yao, Zhang, Fang, Li (bib30) 2014; 5 Van der Werf, Woldewahid, Van Huis, Butrous, Sykora (bib22) 2005; 42 Zhang, Wu, Wei, Wu (bib32) 2009; 14 Cai, He (bib2) 2010; 30 Thenmozhi, Srinivasulu (bib17) 2019; 164 Guo, Shi, Zhang (bib8) 2004; 15 Bryceson, Wright (bib1) 1986; 16 Solis-Sánchez, Castañeda-Miranda, Garcia-Escalante, Pacheco (bib15) 2011; 75 Din, Li, Chen (bib5) 1978; 21 Li, Cai, Wang (bib10) 2019; 41 Fu, Liu, Zhang, Zhang, Yang (bib6) 2014; 33 Ren, Yang, Zhu, Wei (bib14) 2017; 37 Zhen, Wu, Wang, Mao (bib33) 2010; 26 Lu, Yu, Zhang, Zhang, Long (bib12) 2006; 31 Gómez, Salvador, Sanz, Casanova, Taratiel, Casanova (bib7) 2019; 164 Li, Zhu, Ye, Yao, Zhang (bib11) 2014; 8 Deng, Wang, Han, Yu (bib4) 2018; 169 Xie, Zhang, Li, Li, Hong, Xia, Chen (bib24) 2015; 119 Wang, Chen, Hou, Zhou, Zhu, Ji (bib19) 2017; 73 Xie, Wang, Zhang, Chen, Dong, Li, Chen, Chen (bib23) 2018; 152 Haralick, Shanmugam, Dinstein (bib9) 1973; 3 Ye, Liu, Yao, Tang, Xiong, Zhuo, Huang, Zhu, Cheng, Song (bib27) 2018; 10 Zhang (bib31) 2013 Chen, Zeng, Xie, Wang, Liu, Zhang, Li, Chen, Hu, Dong (bib3) 2019; 39 Wen, Bai, Zhou (bib21) 2015; 52 Yao, Chen, Wang, Zhang, Yang, Tang (bib26) 2017; 16 Ye, Yan, Yue, Lin, Li, Yao, Mu, Li, Zhu (bib28) 2016; 89 Ulaby, Kouyate, Brisco, Williams (bib18) 1986; 24 Wang, Fang, Yang, Jiang, Jiang, Zhao, Li, Cui, Wei, Ma (bib20) 2014; 5 Ye, Zhang, Wang, Liu, Du, Zhu (bib29) 2017; 33 Luis, Rodrigo, Juan (bib13) 2011; 75 Stricker, Markus (bib16) 1995; 2420 Zhen (10.1016/S2095-3119(19)62865-0_bib33) 2010; 26 Solis-Sánchez (10.1016/S2095-3119(19)62865-0_bib15) 2011; 75 Din (10.1016/S2095-3119(19)62865-0_bib5) 1978; 21 Bryceson (10.1016/S2095-3119(19)62865-0_bib1) 1986; 16 Deng (10.1016/S2095-3119(19)62865-0_bib4) 2018; 169 Ye (10.1016/S2095-3119(19)62865-0_bib30) 2014; 5 Cai (10.1016/S2095-3119(19)62865-0_bib2) 2010; 30 Gómez (10.1016/S2095-3119(19)62865-0_bib7) 2019; 164 Ren (10.1016/S2095-3119(19)62865-0_bib14) 2017; 37 Wen (10.1016/S2095-3119(19)62865-0_bib21) 2015; 52 Ye (10.1016/S2095-3119(19)62865-0_bib29) 2017; 33 Li (10.1016/S2095-3119(19)62865-0_bib11) 2014; 8 Fu (10.1016/S2095-3119(19)62865-0_bib6) 2014; 33 Guo (10.1016/S2095-3119(19)62865-0_bib8) 2004; 15 Lu (10.1016/S2095-3119(19)62865-0_bib12) 2006; 31 Wang (10.1016/S2095-3119(19)62865-0_bib20) 2014; 5 Ulaby (10.1016/S2095-3119(19)62865-0_bib18) 1986; 24 Van der Werf (10.1016/S2095-3119(19)62865-0_bib22) 2005; 42 Wang (10.1016/S2095-3119(19)62865-0_bib19) 2017; 73 Ye (10.1016/S2095-3119(19)62865-0_bib27) 2018; 10 Zhang (10.1016/S2095-3119(19)62865-0_bib32) 2009; 14 Stricker (10.1016/S2095-3119(19)62865-0_bib16) 1995; 2420 Yao (10.1016/S2095-3119(19)62865-0_bib26) 2017; 16 Ye (10.1016/S2095-3119(19)62865-0_bib28) 2016; 89 Zhang (10.1016/S2095-3119(19)62865-0_bib31) 2013 Xie (10.1016/S2095-3119(19)62865-0_bib23) 2018; 152 Chen (10.1016/S2095-3119(19)62865-0_bib3) 2019; 39 Li (10.1016/S2095-3119(19)62865-0_bib10) 2019; 41 Xie (10.1016/S2095-3119(19)62865-0_bib24) 2015; 119 Thenmozhi (10.1016/S2095-3119(19)62865-0_bib17) 2019; 164 Xiong (10.1016/S2095-3119(19)62865-0_bib25) 2007 Haralick (10.1016/S2095-3119(19)62865-0_bib9) 1973; 3 Luis (10.1016/S2095-3119(19)62865-0_bib13) 2011; 75 |
References_xml | – volume: 75 start-page: 92 year: 2011 end-page: 99 ident: bib15 article-title: Scale invariant feature approach for insect monitoring publication-title: Computers and Electronics in Agriculture contributor: fullname: Pacheco – volume: 37 start-page: 55 year: 2017 end-page: 57 ident: bib14 article-title: The effect and prospect of locust disaster sustainable control in China publication-title: China Plant Protection contributor: fullname: Wei – volume: 152 start-page: 233 year: 2018 end-page: 241 ident: bib23 article-title: Multi-level learning features for automatic classification of field crop pests publication-title: Computers and Electronics in Agriculture contributor: fullname: Chen – volume: 30 start-page: 1870 year: 2010 end-page: 1872 ident: bib2 article-title: Identification of vegetable leaf-eating pests based on image analysis publication-title: Journal of Computer Applications contributor: fullname: He – volume: 52 start-page: 356 year: 2015 end-page: 362 ident: bib21 article-title: Geometric morphometric analysis of wing shape variation in five publication-title: Chinese Journal of Applied Entomology contributor: fullname: Zhou – volume: 21 start-page: 243 year: 1978 end-page: 259 ident: bib5 article-title: Studies on the patterns of distribution of the oriental migratory locust and its pratical sighificance publication-title: Acta Entomologica Sinica contributor: fullname: Chen – volume: 2420 start-page: 381 year: 1995 end-page: 392 ident: bib16 article-title: Similarity of color images publication-title: The International Society for Optical Engineering contributor: fullname: Markus – volume: 42 start-page: 989 year: 2005 end-page: 997 ident: bib22 article-title: Plant communities predict the distribution of solitarious desert locust publication-title: Journal of Applied Ecology contributor: fullname: Sykora – volume: 41 start-page: 595 year: 2019 end-page: 615 ident: bib10 article-title: Image semantic segmentation based convoluted network with global feature extraction publication-title: Infrared Technology contributor: fullname: Wang – volume: 5 year: 2014 ident: bib20 article-title: The locust genome provides insight into swarm formation and long-distance flight publication-title: Nature Communications contributor: fullname: Ma – volume: 26 start-page: 21 year: 2010 end-page: 25 ident: bib33 article-title: Locust images detection based on fuzzy pattern recognition publication-title: Transactions of the Chinese Society of Agricultural Engineering contributor: fullname: Mao – volume: 73 start-page: 1511 year: 2017 end-page: 1528 ident: bib19 article-title: Construction, implementation and testing of an image identification system using computer vision methods for fruit flies with economic importance (Diptera: Tephritidae) publication-title: Pest Management Science contributor: fullname: Ji – year: 2013 ident: bib31 article-title: Research and application of diagnosis technologies for crop pests based on image recognition contributor: fullname: Zhang – volume: 8 start-page: 89 year: 2014 end-page: 99 ident: bib11 article-title: Design and implementation of geographic information systems remote sensing and global positioning system-based information platform for locust control publication-title: Journal of Applied Remote Sensing contributor: fullname: Zhang – volume: 119 start-page: 123 year: 2015 end-page: 132 ident: bib24 article-title: Automatic classification for field crop insects via multiple-task sparse representation and multiple-kernel learning publication-title: Computers and Electronics in Agriculture contributor: fullname: Chen – volume: 10 year: 2018 ident: bib27 article-title: RDCRMG, a raster dataset clean & reconstitution multi-grid architecture for remote sensing monitoring of vegetation dryness publication-title: Remote Sensing contributor: fullname: Song – volume: 39 start-page: 26 year: 2019 end-page: 34 ident: bib3 article-title: Intelligent identification system of disease and insect pests based on deep learning publication-title: China Plant Protection contributor: fullname: Dong – volume: 3 start-page: 610 year: 1973 end-page: 621 ident: bib9 article-title: Textural features for image classification publication-title: IEEE Transactions on Systems, Man, and Cybernetics (Systems) contributor: fullname: Dinstein – volume: 33 start-page: 266 year: 2017 end-page: 273 ident: bib29 article-title: Design and implementation of automatic orthorectification system based on GF-1 big data publication-title: Transactions of the Chinese Society of Agricultural Engineering contributor: fullname: Zhu – volume: 24 start-page: 235 year: 1986 end-page: 241 ident: bib18 article-title: Textural information in SAR Images publication-title: IEEE Transactions on Geoscience and Remote Sensing contributor: fullname: Williams – volume: 5 start-page: 4432 year: 2014 end-page: 4441 ident: bib30 article-title: Development of a highly flexible mobile GIS-based system for collecting arable land quality data publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing contributor: fullname: Li – volume: 14 start-page: 34 year: 2009 end-page: 38 ident: bib32 article-title: Improved split-merge segmentation used for locust image publication-title: Computer Engineering and Applications contributor: fullname: Wu – volume: 16 start-page: 1547 year: 2017 end-page: 1557 ident: bib26 article-title: Automated detection and identification of white-backed planthoppers in paddy fields using image processing publication-title: Journal of Integrative Agriculture contributor: fullname: Tang – volume: 169 start-page: 139 year: 2018 end-page: 148 ident: bib4 article-title: Research on insect pest image detection and recognition based on bioinspired methods publication-title: Biosystems Engineering contributor: fullname: Yu – volume: 164 start-page: 29 year: 2019 end-page: 37 ident: bib7 article-title: Desert locust detection using Earth observation satellite data in Mauritania publication-title: Journal of Arid Environments contributor: fullname: Casanova – volume: 164 start-page: 104906 year: 2019 end-page: 1049016 ident: bib17 article-title: Crop pest classification based on deep convolutional neural network and transfer learning publication-title: Computers and Electronics in Agriculture contributor: fullname: Srinivasulu – volume: 89 start-page: 44 year: 2016 end-page: 56 ident: bib28 article-title: Developing a reversible rapid coordinate transformation model for the cylindrical projection publication-title: Computers & Geosciences contributor: fullname: Zhu – volume: 33 start-page: 1895 year: 2014 end-page: 1901 ident: bib6 article-title: Variation pattern of rice irrigation water requirement in Southwest of China publication-title: Chinese Journal of Ecology contributor: fullname: Yang – volume: 31 start-page: 55 year: 2006 end-page: 58 ident: bib12 article-title: Effects of foraging by different instar and density of publication-title: Plant Protection contributor: fullname: Long – volume: 15 start-page: 859 year: 2004 end-page: 862 ident: bib8 article-title: Behavioral and morphological indices for phase transformation of oriental migratory locust publication-title: Chinese Journal of Applied Ecology contributor: fullname: Zhang – volume: 16 start-page: 87 year: 1986 end-page: 102 ident: bib1 article-title: An analysis of the 1984 locust plague in Australia using multitemporal landsat multispectral data and a simulation-model of locust development publication-title: Agriculture Ecosystems & Environment contributor: fullname: Wright – volume: 75 start-page: 92 year: 2011 end-page: 99 ident: bib13 article-title: Scale invariant feature approach for insect monitoring publication-title: Computers and Electronics in Agriculture contributor: fullname: Juan – year: 2007 ident: bib25 article-title: Detection of locusts using near-infrared spectroscopy and cluster analysis publication-title: Actual Tasks on Agricultural Engineering International Symposium on Agricultural Engineering contributor: fullname: Zhang – volume: 30 start-page: 1870 year: 2010 ident: 10.1016/S2095-3119(19)62865-0_bib2 article-title: Identification of vegetable leaf-eating pests based on image analysis publication-title: Journal of Computer Applications doi: 10.3724/SP.J.1087.2010.01870 contributor: fullname: Cai – volume: 2420 start-page: 381 year: 1995 ident: 10.1016/S2095-3119(19)62865-0_bib16 article-title: Similarity of color images publication-title: The International Society for Optical Engineering contributor: fullname: Stricker – volume: 52 start-page: 356 year: 2015 ident: 10.1016/S2095-3119(19)62865-0_bib21 article-title: Geometric morphometric analysis of wing shape variation in five Oxya spp. grasshoppers publication-title: Chinese Journal of Applied Entomology contributor: fullname: Wen – volume: 164 start-page: 104906 year: 2019 ident: 10.1016/S2095-3119(19)62865-0_bib17 article-title: Crop pest classification based on deep convolutional neural network and transfer learning publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2019.104906 contributor: fullname: Thenmozhi – volume: 26 start-page: 21 year: 2010 ident: 10.1016/S2095-3119(19)62865-0_bib33 article-title: Locust images detection based on fuzzy pattern recognition publication-title: Transactions of the Chinese Society of Agricultural Engineering contributor: fullname: Zhen – volume: 152 start-page: 233 year: 2018 ident: 10.1016/S2095-3119(19)62865-0_bib23 article-title: Multi-level learning features for automatic classification of field crop pests publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.07.014 contributor: fullname: Xie – volume: 119 start-page: 123 year: 2015 ident: 10.1016/S2095-3119(19)62865-0_bib24 article-title: Automatic classification for field crop insects via multiple-task sparse representation and multiple-kernel learning publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2015.10.015 contributor: fullname: Xie – volume: 5 start-page: 4432 year: 2014 ident: 10.1016/S2095-3119(19)62865-0_bib30 article-title: Development of a highly flexible mobile GIS-based system for collecting arable land quality data publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2014.2320635 contributor: fullname: Ye – volume: 8 start-page: 89 year: 2014 ident: 10.1016/S2095-3119(19)62865-0_bib11 article-title: Design and implementation of geographic information systems remote sensing and global positioning system-based information platform for locust control publication-title: Journal of Applied Remote Sensing doi: 10.1117/1.JRS.8.084899 contributor: fullname: Li – volume: 42 start-page: 989 year: 2005 ident: 10.1016/S2095-3119(19)62865-0_bib22 article-title: Plant communities predict the distribution of solitarious desert locust Schistocerca gregaria publication-title: Journal of Applied Ecology doi: 10.1111/j.1365-2664.2005.01073.x contributor: fullname: Van der Werf – volume: 16 start-page: 87 year: 1986 ident: 10.1016/S2095-3119(19)62865-0_bib1 article-title: An analysis of the 1984 locust plague in Australia using multitemporal landsat multispectral data and a simulation-model of locust development publication-title: Agriculture Ecosystems & Environment doi: 10.1016/0167-8809(86)90096-4 contributor: fullname: Bryceson – volume: 21 start-page: 243 year: 1978 ident: 10.1016/S2095-3119(19)62865-0_bib5 article-title: Studies on the patterns of distribution of the oriental migratory locust and its pratical sighificance publication-title: Acta Entomologica Sinica contributor: fullname: Din – volume: 73 start-page: 1511 year: 2017 ident: 10.1016/S2095-3119(19)62865-0_bib19 article-title: Construction, implementation and testing of an image identification system using computer vision methods for fruit flies with economic importance (Diptera: Tephritidae) publication-title: Pest Management Science doi: 10.1002/ps.4487 contributor: fullname: Wang – volume: 164 start-page: 29 year: 2019 ident: 10.1016/S2095-3119(19)62865-0_bib7 article-title: Desert locust detection using Earth observation satellite data in Mauritania publication-title: Journal of Arid Environments doi: 10.1016/j.jaridenv.2019.02.005 contributor: fullname: Gómez – volume: 3 start-page: 610 year: 1973 ident: 10.1016/S2095-3119(19)62865-0_bib9 article-title: Textural features for image classification publication-title: IEEE Transactions on Systems, Man, and Cybernetics (Systems) doi: 10.1109/TSMC.1973.4309314 contributor: fullname: Haralick – volume: 10 year: 2018 ident: 10.1016/S2095-3119(19)62865-0_bib27 article-title: RDCRMG, a raster dataset clean & reconstitution multi-grid architecture for remote sensing monitoring of vegetation dryness publication-title: Remote Sensing doi: 10.3390/rs10091376 contributor: fullname: Ye – volume: 5 year: 2014 ident: 10.1016/S2095-3119(19)62865-0_bib20 article-title: The locust genome provides insight into swarm formation and long-distance flight publication-title: Nature Communications contributor: fullname: Wang – volume: 41 start-page: 595 year: 2019 ident: 10.1016/S2095-3119(19)62865-0_bib10 article-title: Image semantic segmentation based convoluted network with global feature extraction publication-title: Infrared Technology contributor: fullname: Li – year: 2013 ident: 10.1016/S2095-3119(19)62865-0_bib31 contributor: fullname: Zhang – volume: 33 start-page: 266 year: 2017 ident: 10.1016/S2095-3119(19)62865-0_bib29 article-title: Design and implementation of automatic orthorectification system based on GF-1 big data publication-title: Transactions of the Chinese Society of Agricultural Engineering contributor: fullname: Ye – volume: 75 start-page: 92 year: 2011 ident: 10.1016/S2095-3119(19)62865-0_bib13 article-title: Scale invariant feature approach for insect monitoring publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2010.10.001 contributor: fullname: Luis – volume: 16 start-page: 1547 year: 2017 ident: 10.1016/S2095-3119(19)62865-0_bib26 article-title: Automated detection and identification of white-backed planthoppers in paddy fields using image processing publication-title: Journal of Integrative Agriculture doi: 10.1016/S2095-3119(16)61497-1 contributor: fullname: Yao – volume: 39 start-page: 26 year: 2019 ident: 10.1016/S2095-3119(19)62865-0_bib3 article-title: Intelligent identification system of disease and insect pests based on deep learning publication-title: China Plant Protection contributor: fullname: Chen – volume: 24 start-page: 235 year: 1986 ident: 10.1016/S2095-3119(19)62865-0_bib18 article-title: Textural information in SAR Images publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.1986.289643 contributor: fullname: Ulaby – volume: 15 start-page: 859 year: 2004 ident: 10.1016/S2095-3119(19)62865-0_bib8 article-title: Behavioral and morphological indices for phase transformation of oriental migratory locust Locusta migratoria publication-title: Chinese Journal of Applied Ecology contributor: fullname: Guo – volume: 75 start-page: 92 year: 2011 ident: 10.1016/S2095-3119(19)62865-0_bib15 article-title: Scale invariant feature approach for insect monitoring publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2010.10.001 contributor: fullname: Solis-Sánchez – volume: 37 start-page: 55 year: 2017 ident: 10.1016/S2095-3119(19)62865-0_bib14 article-title: The effect and prospect of locust disaster sustainable control in China publication-title: China Plant Protection contributor: fullname: Ren – year: 2007 ident: 10.1016/S2095-3119(19)62865-0_bib25 article-title: Detection of locusts using near-infrared spectroscopy and cluster analysis contributor: fullname: Xiong – volume: 31 start-page: 55 year: 2006 ident: 10.1016/S2095-3119(19)62865-0_bib12 article-title: Effects of foraging by different instar and density of Oedaleus asiaticus B Bienko on forage yield publication-title: Plant Protection contributor: fullname: Lu – volume: 14 start-page: 34 year: 2009 ident: 10.1016/S2095-3119(19)62865-0_bib32 article-title: Improved split-merge segmentation used for locust image publication-title: Computer Engineering and Applications contributor: fullname: Zhang – volume: 169 start-page: 139 year: 2018 ident: 10.1016/S2095-3119(19)62865-0_bib4 article-title: Research on insect pest image detection and recognition based on bioinspired methods publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2018.02.008 contributor: fullname: Deng – volume: 33 start-page: 1895 year: 2014 ident: 10.1016/S2095-3119(19)62865-0_bib6 article-title: Variation pattern of rice irrigation water requirement in Southwest of China publication-title: Chinese Journal of Ecology contributor: fullname: Fu – volume: 89 start-page: 44 year: 2016 ident: 10.1016/S2095-3119(19)62865-0_bib28 article-title: Developing a reversible rapid coordinate transformation model for the cylindrical projection publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2016.01.007 contributor: fullname: Ye |
SSID | ssj0001550068 |
Score | 2.3761096 |
Snippet | Locusts are agricultural pests around the world. To cognize how locust distribution density and community structure are related to the hydrothermal and... Locusts are agricultural pests around the world.To cognize how locust distribution density and community structure are related to the hydrothermal and... |
SourceID | doaj wanfang crossref elsevier |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1301 |
SubjectTerms | L. migratoria manilensis locust identification machine learning O. decorus asiaticus support vector machine |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS-QwEA4iHOiD-JNbT49w-HD3EDdNu2nz6MmJCOeLCr6FtE1KObe7bLu36IN_uzNpVt0nQejT0E7DJJn5Jsx8IeQEYhaW2JTMyjhliS0lM6WImQMsgiGLO8_A9_daXt4lV_ej-zVyvuyFwbLK4Pt7n-69dZAMgzWH07oe3gikSkN-MuXbKzFvR7ItWNOnz9HbOQtAcO474vB9hh-8NfL0SrzwZ6R-eT2Mr4Qoz-S_Eqm-LEzjTFO9i0MX22QrAEh61o9xh6zZZpdsnlWzQKJh98iDrwOgpqH1GNwFbW01Di1GDUhL2s6nCLvpf39kT8e-oNLS_jZpCjCW1r5_1_dA0W4xoRDy5m1HsS8TUmuvpEZgOWv3yd3Fn9vzSxZuVWAFYK2OAX5IVGYsZIYFJD9OZTZ2WSGVgtwuj3CKpCxw8xghrMpGZWoLbmQKoUwCvowPyHozaexXQkXq8lE-ynhhII2Js9wkopQFV06miZN2QE6XhtTTnjxDv1aVoeU1Wl7D4y2v-YD8RnO_vozc114wmVU6TL7mOQwiLmMYWZ5EqVEyK-OUJ0mRCisiNyDZcrL0ylICVfVH__8RJleHrdzqp6p5_AdORHA8gAPEfPh5_d_IBqrpCyaPyHo3m9tjADVd_t2v2hdbHe4g priority: 102 providerName: Elsevier |
Title | Using an image segmentation and support vector machine method for identifying two locust species and instars |
URI | https://dx.doi.org/10.1016/S2095-3119(19)62865-0 https://d.wanfangdata.com.cn/periodical/zgnykx-e202005013 https://doaj.org/article/0b8033d385db417a968d37044c72e21f |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZ4CAkGxFOUR2UhBhgCTpw49lgQqIBgAaRulpPYVQVNqyalgoHfztkJpUxdkDJZkWOdz3ffOffdIXQCPsum2GSeZjT2Qp0xT2UB9QxgEeuyiHEV-B4eWfslvOtEnZlWXzYnrCoPXAnugiScUJpRHmVJ6MdKMJ7RmIRhGgc68I2zvkTMBFMVPziy5AfbWQ4wBBgaX_zSdy6epoOnvjhz5EyP_HFMrn7_H_-0MlG5UXl3xvvcbKD1GjbiVrXcTbSg8y201uqO6tIZehu9ub__WOW41wcjgQvd7dfEohxGM1yMhxZs43d3UY_7Lo1S46qHNAbwinuOteuYT7icDDA4unFRYsvGhIDaTdKzcHJU7KCXm-vnq7ZX91LwUkBYpQeoIRRcaYgHUwh5jOCaGp4yISCiS3y7MYyl9sioINACpB3rlCgWgwNjgCrpLlrKB7neQziITRIlESepguCF8kSFQcZSIgyLQ8N0A53_CFIOq5IZcppLZiUvreQlPE7ykjTQpRX39GVb8doNgB7IWg_kPD1oIP6zWbIGDxUogKl6875_XG-urA9wIT-7-ccrmI6A2Gs3wMn7_7HIA7RqJ6wSJg_RUjka6yMANWXSRIvnX34TLbdu79uPTafN3_Vk738 |
link.rule.ids | 315,783,787,867,2109,4511,24130,27938,27939,45599,45693 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhobQ9hD7pNn2I0kN7UFaWtbJ1TEPDtk1yaQK5CdmWjEnXu6y9Ccmhv70zsjbpngoFn4Q1FjPyzDdivhEhHyFmYYlNxZxKMyZdpZitRMo8YBEMWdyHDnwnp2p6Lr9fTC62yOGaC4NlldH3Dz49eOs4Mo7aHC-aZvxTYKs07E-mA70S8vYdif2zYFPv_07uD1oAg_NAicMJDGfcM3kGKWHwU6I_B0GMb8So0Mp_I1Q9uLatt239VyA6ekJ2I4KkB8Min5It1z4jjw_qZeyi4Z6TX6EQgNqWNjPwF7Rz9SxyjFoYrWi3WiDuplfhzJ7OQkWlo8N10hRwLG0CgTeQoGh_PacQ81ZdT5GYCbl1ENIgslx2L8j50dezwymL1yqwEsBWzwBASJ1bB6lhCdmP17lLfV4qrSG5KxK0kVIl_j1WCKfzSZW5kluVQSxTADDTl2S7nbfuFaEi88WkmOS8tJDHpHlhpahUybVXmfTKjcj-WpFmMXTPMHdlZah5g5o38ATNGz4iX1Dddy9j8-swMF_WJlrf8AIWkVYprKyQSWa1yqs041KWmXAi8SOSr41lNvYSiGr-9f0P0bgm_sudua3bm0vwIoLjCRxA5tf_L_89eTg9Ozk2x99Of-yRRyhyqJ58Q7b75cq9BYTTF-_CDv4DjV_xUA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+an+image+segmentation+and+support+vector+machine+method+for+identifying+two+locust+species+and+instars&rft.jtitle=Journal+of+Integrative+Agriculture&rft.au=Shuhan+LU&rft.au=Si-jing+YE&rft.date=2020-05-01&rft.pub=Elsevier&rft.issn=2095-3119&rft.volume=19&rft.issue=5&rft.spage=1301&rft.epage=1313&rft_id=info:doi/10.1016%2FS2095-3119%2819%2962865-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0b8033d385db417a968d37044c72e21f |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgnykx-e%2Fzgnykx-e.jpg |