Using an image segmentation and support vector machine method for identifying two locust species and instars

Locusts are agricultural pests around the world. To cognize how locust distribution density and community structure are related to the hydrothermal and vegetation growth conditions of their habitats and thereby providing rapid and accurate warning of locust invasions, it is important to develop effi...

Full description

Saved in:
Bibliographic Details
Published inJournal of Integrative Agriculture Vol. 19; no. 5; pp. 1301 - 1313
Main Authors LU, Shuhan, YE, Si-jing
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2020
Department of Computer and Information Science, College of Art and Science, Ohio State University, Columbus, OH 43210, USA%State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, P.R.China
Center for Geodata and Analysis, Beijing Normal University, Beijing 100875, P.R.China
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Locusts are agricultural pests around the world. To cognize how locust distribution density and community structure are related to the hydrothermal and vegetation growth conditions of their habitats and thereby providing rapid and accurate warning of locust invasions, it is important to develop efficient and accurate techniques for acquiring locust information. In this paper, by analyzing the differences between the morphological features of Locusta migratoria manilensis and Oedaleus decorus asiaticus, we proposed a semi-automatic locust species and instar information detection model based on locust image segmentation, locust feature variable extraction and support vector machine (SVM) classification. And we subsequently examined its applicability and accuracy based on sample image data acquired in the field. Locust image segmentation experiment showed that the proposed GrabCut-based interactive segmentation method can be used to rapidly extract images of various locust body parts and exhibits excellent operability. In a locust feature variable extraction experiment, the textural, color and morphological features of various locust body parts were calculated. Based on the results, eight feature variables were selected to identify locust species and instars using outlier detection, variable function calculation and principal component analysis. An SVM-based locust classification experiment achieved a semi-automatic detection accuracy of 96.16% when a polynomial kernel function with a penalty factor parameter c of 2 040 and a gamma parameter g of 0.5 was used. The proposed detection model exhibits advantages such as high applicability and accuracy when it is used to identify locust instars of L. migratoria manilensis and O. decorus asiaticus, and it can also be used to identify other species of locusts.
AbstractList Locusts are agricultural pests around the world. To cognize how locust distribution density and community structure are related to the hydrothermal and vegetation growth conditions of their habitats and thereby providing rapid and accurate warning of locust invasions, it is important to develop efficient and accurate techniques for acquiring locust information. In this paper, by analyzing the differences between the morphological features of Locusta migratoria manilensis and Oedaleus decorus asiaticus, we proposed a semi-automatic locust species and instar information detection model based on locust image segmentation, locust feature variable extraction and support vector machine (SVM) classification. And we subsequently examined its applicability and accuracy based on sample image data acquired in the field. Locust image segmentation experiment showed that the proposed GrabCut-based interactive segmentation method can be used to rapidly extract images of various locust body parts and exhibits excellent operability. In a locust feature variable extraction experiment, the textural, color and morphological features of various locust body parts were calculated. Based on the results, eight feature variables were selected to identify locust species and instars using outlier detection, variable function calculation and principal component analysis. An SVM-based locust classification experiment achieved a semi-automatic detection accuracy of 96.16% when a polynomial kernel function with a penalty factor parameter c of 2 040 and a gamma parameter g of 0.5 was used. The proposed detection model exhibits advantages such as high applicability and accuracy when it is used to identify locust instars of L. migratoria manilensis and O. decorus asiaticus, and it can also be used to identify other species of locusts.
Locusts are agricultural pests around the world.To cognize how locust distribution density and community structure are related to the hydrothermal and vegetation growth conditions of their habitats and thereby providing rapid and accurate warning of locust invasions,it is important to develop efficient and accurate techniques for acquiring locust information.In this paper,by analyzing the differences between the morphological features of Locusta migratoria manilensis and Oedaleus decorus asiaticus,we proposed a semi-automatic locust species and instar information detection model based on locust image segmentation,locust feature variable extraction and support vector machine (SVM) classification.And we subsequently examined its applicability and accuracy based on sample image data acquired in the field.Locust image segmentation experiment showed that the proposed GrabCut-based interactive segmentation method can be used to rapidly extract images of various locust body parts and exhibits excellent operability.In a locust feature variable extraction experiment,the textural,color and morphological features of various locust body parts were calculated.Based on the results,eight feature variables were selected to identify locust species and instars using outlier detection,variable function calculation and principal component analysis.An SVM-based locust classification experiment achieved a semi-automatic detection accuracy of 96.16% when a polynomial kernel function with a penalty factor parameter c of 2040 and a gamma parameter g of 0.5 was used.The proposed detection model exhibits advantages such as high applicability and accuracy when it is used to identify locust instars of L.migratoria manilensis and O.decorus asiaticus,and it can also be used to identify other species of locusts.
Author LU, Shuhan
YE, Si-jing
AuthorAffiliation Department of Computer and Information Science, College of Art and Science, Ohio State University, Columbus, OH 43210, USA%State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, P.R.China;Center for Geodata and Analysis, Beijing Normal University, Beijing 100875, P.R.China
AuthorAffiliation_xml – name: Department of Computer and Information Science, College of Art and Science, Ohio State University, Columbus, OH 43210, USA%State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, P.R.China;Center for Geodata and Analysis, Beijing Normal University, Beijing 100875, P.R.China
Author_xml – sequence: 1
  givenname: Shuhan
  surname: LU
  fullname: LU, Shuhan
  organization: Department of Computer and Information Science, College of Art and Science, Ohio State University, Columbus, OH 43210, USA
– sequence: 2
  givenname: Si-jing
  surname: YE
  fullname: YE, Si-jing
  organization: State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, P.R.China
BookMark eNqFkU1rGzEQhkVJoGmSnxDQsTlsM_rc1amU0I9AoIcmZyFrZzdybclIclL311e2m14LAonhnWdezfuOnMQUkZArBh8YMH3zg4NRnWDMvGfmWvNBqw7ekDMuFO-E5OqkvV8lb8llKUsAYEoB6OGMrB5LiDN1kYa1m5EWnNcYq6shxVYdadluNilX-oy-pkzXzj-FiHSN9SmNdGqlMLaGMO32nPqS6Cr5bam0bNAHLAdIiKW6XC7I6eRWBS__3ufk8cvnh9tv3f33r3e3n-47rzivnVJSmsEhV9JrriYzoJgGr42R0C-YYc269hxAOs7RDGrs0YPTPTCuYQBxTu6O3DG5pd3k9rW8s8kFeyikPFuXa_ArtLBoejGKBllI1jujh1H0IKXvOXI2Ndb1kfXi4uTibJdpm2Nzb3_Pcffzl0UOzYoCJppWHbU-p1IyTv9mM7D7tOwhLbuPwrZzSMvu_X489mFbynPAbEtbXfQ4htzW3lyH_xD-AK8snMM
CitedBy_id crossref_primary_10_1109_MGRS_2021_3097280
crossref_primary_10_1007_s42690_021_00602_8
crossref_primary_10_1016_j_iot_2023_100716
crossref_primary_10_1016_j_compag_2022_107264
crossref_primary_10_3390_app12083810
crossref_primary_10_1002_ldr_4077
crossref_primary_10_1016_j_ecoinf_2024_102539
crossref_primary_10_1016_S2095_3119_20_63168_9
crossref_primary_10_3390_insects11080458
crossref_primary_10_1016_j_ecoinf_2020_101135
crossref_primary_10_3389_fpls_2023_1200901
crossref_primary_10_1016_j_compag_2022_106739
crossref_primary_10_1016_j_jclepro_2024_140827
crossref_primary_10_1016_j_jia_2022_09_004
crossref_primary_10_3390_app14125328
crossref_primary_10_1016_j_asoc_2021_107984
crossref_primary_10_3390_rs15061718
crossref_primary_10_1016_j_fuproc_2020_106677
Cites_doi 10.3724/SP.J.1087.2010.01870
10.1016/j.compag.2019.104906
10.1016/j.compag.2018.07.014
10.1016/j.compag.2015.10.015
10.1109/JSTARS.2014.2320635
10.1117/1.JRS.8.084899
10.1111/j.1365-2664.2005.01073.x
10.1016/0167-8809(86)90096-4
10.1002/ps.4487
10.1016/j.jaridenv.2019.02.005
10.1109/TSMC.1973.4309314
10.3390/rs10091376
10.1016/j.compag.2010.10.001
10.1016/S2095-3119(16)61497-1
10.1109/TGRS.1986.289643
10.1016/j.biosystemseng.2018.02.008
10.1016/j.cageo.2016.01.007
ContentType Journal Article
Copyright 2020 CAAS. Publishing services by Elsevier B.V
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2020 CAAS. Publishing services by Elsevier B.V
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOA
DOI 10.1016/S2095-3119(19)62865-0
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2352-3425
EndPage 1313
ExternalDocumentID oai_doaj_org_article_0b8033d385db417a968d37044c72e21f
zgnykx_e202005013
10_1016_S2095_3119_19_62865_0
S2095311919628650
GrantInformation_xml – fundername: This research was funded by the National Natural Science Foundation of China; the Fundamental Research Funds for the Central Universities of China .We would like to thank the Center for Geodata and Analysis,Faculty of Geographical Science,Beijing Normal University,China for providing high-performance computing support
  funderid: (31471762); (2018NTST03).We would like to thank the Center for Geodata and Analysis,Faculty of Geographical Science,Beijing Normal University,China for providing high-performance computing support
GroupedDBID --M
-04
-0D
-SD
-S~
.~1
0R~
1B1
1~.
1~5
2B.
2B~
4.4
457
4G.
5VR
6I.
7-5
8P~
92G
92I
92M
93N
93Q
9D9
9DD
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATLK
AAXUO
ABGRD
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFUIB
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CAJED
CAJUS
CBWCG
CCEZO
CHDYS
EBS
EFJIC
EFLBG
EJD
FA0
FDB
FIRID
FNPLU
FYGXN
GBLVA
GROUPED_DOAJ
HZ~
JUIAU
KOM
M41
MO0
NCXOZ
O-L
O9-
OAUVE
OK1
P-8
P-9
PC.
Q--
Q-3
Q38
R-D
RIG
ROL
RT4
SDF
SDG
SES
SSA
SSZ
T5K
T8T
TCJ
TGD
U1F
U1G
U5D
U5N
~G-
0SF
AAHBH
AAXDM
AAXKI
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
4A8
PSX
ID FETCH-LOGICAL-c522t-554498ae254c625f98e3f8c699407b1910066c2004a22e985d7ec0a6701260803
IEDL.DBID DOA
ISSN 2095-3119
IngestDate Tue Oct 22 15:13:58 EDT 2024
Tue Feb 13 23:46:22 EST 2024
Thu Sep 26 17:38:38 EDT 2024
Fri Feb 23 02:49:22 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords L. migratoria manilensis
support vector machine
machine learning
O. decorus asiaticus
locust identification
O.decorus asiaticus
L.migratoria manilensis
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-554498ae254c625f98e3f8c699407b1910066c2004a22e985d7ec0a6701260803
OpenAccessLink https://doaj.org/article/0b8033d385db417a968d37044c72e21f
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_0b8033d385db417a968d37044c72e21f
wanfang_journals_zgnykx_e202005013
crossref_primary_10_1016_S2095_3119_19_62865_0
elsevier_sciencedirect_doi_10_1016_S2095_3119_19_62865_0
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of Integrative Agriculture
PublicationTitle_FL Journal of Integrative Agriculture
PublicationYear 2020
Publisher Elsevier B.V
Department of Computer and Information Science, College of Art and Science, Ohio State University, Columbus, OH 43210, USA%State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, P.R.China
Center for Geodata and Analysis, Beijing Normal University, Beijing 100875, P.R.China
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Center for Geodata and Analysis, Beijing Normal University, Beijing 100875, P.R.China
– name: Department of Computer and Information Science, College of Art and Science, Ohio State University, Columbus, OH 43210, USA%State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, P.R.China
– name: Elsevier
References Xiong, Wang, Zhang (bib25) 2007
Ye, Zhu, Yao, Zhang, Fang, Li (bib30) 2014; 5
Van der Werf, Woldewahid, Van Huis, Butrous, Sykora (bib22) 2005; 42
Zhang, Wu, Wei, Wu (bib32) 2009; 14
Cai, He (bib2) 2010; 30
Thenmozhi, Srinivasulu (bib17) 2019; 164
Guo, Shi, Zhang (bib8) 2004; 15
Bryceson, Wright (bib1) 1986; 16
Solis-Sánchez, Castañeda-Miranda, Garcia-Escalante, Pacheco (bib15) 2011; 75
Din, Li, Chen (bib5) 1978; 21
Li, Cai, Wang (bib10) 2019; 41
Fu, Liu, Zhang, Zhang, Yang (bib6) 2014; 33
Ren, Yang, Zhu, Wei (bib14) 2017; 37
Zhen, Wu, Wang, Mao (bib33) 2010; 26
Lu, Yu, Zhang, Zhang, Long (bib12) 2006; 31
Gómez, Salvador, Sanz, Casanova, Taratiel, Casanova (bib7) 2019; 164
Li, Zhu, Ye, Yao, Zhang (bib11) 2014; 8
Deng, Wang, Han, Yu (bib4) 2018; 169
Xie, Zhang, Li, Li, Hong, Xia, Chen (bib24) 2015; 119
Wang, Chen, Hou, Zhou, Zhu, Ji (bib19) 2017; 73
Xie, Wang, Zhang, Chen, Dong, Li, Chen, Chen (bib23) 2018; 152
Haralick, Shanmugam, Dinstein (bib9) 1973; 3
Ye, Liu, Yao, Tang, Xiong, Zhuo, Huang, Zhu, Cheng, Song (bib27) 2018; 10
Zhang (bib31) 2013
Chen, Zeng, Xie, Wang, Liu, Zhang, Li, Chen, Hu, Dong (bib3) 2019; 39
Wen, Bai, Zhou (bib21) 2015; 52
Yao, Chen, Wang, Zhang, Yang, Tang (bib26) 2017; 16
Ye, Yan, Yue, Lin, Li, Yao, Mu, Li, Zhu (bib28) 2016; 89
Ulaby, Kouyate, Brisco, Williams (bib18) 1986; 24
Wang, Fang, Yang, Jiang, Jiang, Zhao, Li, Cui, Wei, Ma (bib20) 2014; 5
Ye, Zhang, Wang, Liu, Du, Zhu (bib29) 2017; 33
Luis, Rodrigo, Juan (bib13) 2011; 75
Stricker, Markus (bib16) 1995; 2420
Zhen (10.1016/S2095-3119(19)62865-0_bib33) 2010; 26
Solis-Sánchez (10.1016/S2095-3119(19)62865-0_bib15) 2011; 75
Din (10.1016/S2095-3119(19)62865-0_bib5) 1978; 21
Bryceson (10.1016/S2095-3119(19)62865-0_bib1) 1986; 16
Deng (10.1016/S2095-3119(19)62865-0_bib4) 2018; 169
Ye (10.1016/S2095-3119(19)62865-0_bib30) 2014; 5
Cai (10.1016/S2095-3119(19)62865-0_bib2) 2010; 30
Gómez (10.1016/S2095-3119(19)62865-0_bib7) 2019; 164
Ren (10.1016/S2095-3119(19)62865-0_bib14) 2017; 37
Wen (10.1016/S2095-3119(19)62865-0_bib21) 2015; 52
Ye (10.1016/S2095-3119(19)62865-0_bib29) 2017; 33
Li (10.1016/S2095-3119(19)62865-0_bib11) 2014; 8
Fu (10.1016/S2095-3119(19)62865-0_bib6) 2014; 33
Guo (10.1016/S2095-3119(19)62865-0_bib8) 2004; 15
Lu (10.1016/S2095-3119(19)62865-0_bib12) 2006; 31
Wang (10.1016/S2095-3119(19)62865-0_bib20) 2014; 5
Ulaby (10.1016/S2095-3119(19)62865-0_bib18) 1986; 24
Van der Werf (10.1016/S2095-3119(19)62865-0_bib22) 2005; 42
Wang (10.1016/S2095-3119(19)62865-0_bib19) 2017; 73
Ye (10.1016/S2095-3119(19)62865-0_bib27) 2018; 10
Zhang (10.1016/S2095-3119(19)62865-0_bib32) 2009; 14
Stricker (10.1016/S2095-3119(19)62865-0_bib16) 1995; 2420
Yao (10.1016/S2095-3119(19)62865-0_bib26) 2017; 16
Ye (10.1016/S2095-3119(19)62865-0_bib28) 2016; 89
Zhang (10.1016/S2095-3119(19)62865-0_bib31) 2013
Xie (10.1016/S2095-3119(19)62865-0_bib23) 2018; 152
Chen (10.1016/S2095-3119(19)62865-0_bib3) 2019; 39
Li (10.1016/S2095-3119(19)62865-0_bib10) 2019; 41
Xie (10.1016/S2095-3119(19)62865-0_bib24) 2015; 119
Thenmozhi (10.1016/S2095-3119(19)62865-0_bib17) 2019; 164
Xiong (10.1016/S2095-3119(19)62865-0_bib25) 2007
Haralick (10.1016/S2095-3119(19)62865-0_bib9) 1973; 3
Luis (10.1016/S2095-3119(19)62865-0_bib13) 2011; 75
References_xml – volume: 75
  start-page: 92
  year: 2011
  end-page: 99
  ident: bib15
  article-title: Scale invariant feature approach for insect monitoring
  publication-title: Computers and Electronics in Agriculture
  contributor:
    fullname: Pacheco
– volume: 37
  start-page: 55
  year: 2017
  end-page: 57
  ident: bib14
  article-title: The effect and prospect of locust disaster sustainable control in China
  publication-title: China Plant Protection
  contributor:
    fullname: Wei
– volume: 152
  start-page: 233
  year: 2018
  end-page: 241
  ident: bib23
  article-title: Multi-level learning features for automatic classification of field crop pests
  publication-title: Computers and Electronics in Agriculture
  contributor:
    fullname: Chen
– volume: 30
  start-page: 1870
  year: 2010
  end-page: 1872
  ident: bib2
  article-title: Identification of vegetable leaf-eating pests based on image analysis
  publication-title: Journal of Computer Applications
  contributor:
    fullname: He
– volume: 52
  start-page: 356
  year: 2015
  end-page: 362
  ident: bib21
  article-title: Geometric morphometric analysis of wing shape variation in five
  publication-title: Chinese Journal of Applied Entomology
  contributor:
    fullname: Zhou
– volume: 21
  start-page: 243
  year: 1978
  end-page: 259
  ident: bib5
  article-title: Studies on the patterns of distribution of the oriental migratory locust and its pratical sighificance
  publication-title: Acta Entomologica Sinica
  contributor:
    fullname: Chen
– volume: 2420
  start-page: 381
  year: 1995
  end-page: 392
  ident: bib16
  article-title: Similarity of color images
  publication-title: The International Society for Optical Engineering
  contributor:
    fullname: Markus
– volume: 42
  start-page: 989
  year: 2005
  end-page: 997
  ident: bib22
  article-title: Plant communities predict the distribution of solitarious desert locust
  publication-title: Journal of Applied Ecology
  contributor:
    fullname: Sykora
– volume: 41
  start-page: 595
  year: 2019
  end-page: 615
  ident: bib10
  article-title: Image semantic segmentation based convoluted network with global feature extraction
  publication-title: Infrared Technology
  contributor:
    fullname: Wang
– volume: 5
  year: 2014
  ident: bib20
  article-title: The locust genome provides insight into swarm formation and long-distance flight
  publication-title: Nature Communications
  contributor:
    fullname: Ma
– volume: 26
  start-page: 21
  year: 2010
  end-page: 25
  ident: bib33
  article-title: Locust images detection based on fuzzy pattern recognition
  publication-title: Transactions of the Chinese Society of Agricultural Engineering
  contributor:
    fullname: Mao
– volume: 73
  start-page: 1511
  year: 2017
  end-page: 1528
  ident: bib19
  article-title: Construction, implementation and testing of an image identification system using computer vision methods for fruit flies with economic importance (Diptera: Tephritidae)
  publication-title: Pest Management Science
  contributor:
    fullname: Ji
– year: 2013
  ident: bib31
  article-title: Research and application of diagnosis technologies for crop pests based on image recognition
  contributor:
    fullname: Zhang
– volume: 8
  start-page: 89
  year: 2014
  end-page: 99
  ident: bib11
  article-title: Design and implementation of geographic information systems remote sensing and global positioning system-based information platform for locust control
  publication-title: Journal of Applied Remote Sensing
  contributor:
    fullname: Zhang
– volume: 119
  start-page: 123
  year: 2015
  end-page: 132
  ident: bib24
  article-title: Automatic classification for field crop insects via multiple-task sparse representation and multiple-kernel learning
  publication-title: Computers and Electronics in Agriculture
  contributor:
    fullname: Chen
– volume: 10
  year: 2018
  ident: bib27
  article-title: RDCRMG, a raster dataset clean & reconstitution multi-grid architecture for remote sensing monitoring of vegetation dryness
  publication-title: Remote Sensing
  contributor:
    fullname: Song
– volume: 39
  start-page: 26
  year: 2019
  end-page: 34
  ident: bib3
  article-title: Intelligent identification system of disease and insect pests based on deep learning
  publication-title: China Plant Protection
  contributor:
    fullname: Dong
– volume: 3
  start-page: 610
  year: 1973
  end-page: 621
  ident: bib9
  article-title: Textural features for image classification
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics (Systems)
  contributor:
    fullname: Dinstein
– volume: 33
  start-page: 266
  year: 2017
  end-page: 273
  ident: bib29
  article-title: Design and implementation of automatic orthorectification system based on GF-1 big data
  publication-title: Transactions of the Chinese Society of Agricultural Engineering
  contributor:
    fullname: Zhu
– volume: 24
  start-page: 235
  year: 1986
  end-page: 241
  ident: bib18
  article-title: Textural information in SAR Images
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  contributor:
    fullname: Williams
– volume: 5
  start-page: 4432
  year: 2014
  end-page: 4441
  ident: bib30
  article-title: Development of a highly flexible mobile GIS-based system for collecting arable land quality data
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  contributor:
    fullname: Li
– volume: 14
  start-page: 34
  year: 2009
  end-page: 38
  ident: bib32
  article-title: Improved split-merge segmentation used for locust image
  publication-title: Computer Engineering and Applications
  contributor:
    fullname: Wu
– volume: 16
  start-page: 1547
  year: 2017
  end-page: 1557
  ident: bib26
  article-title: Automated detection and identification of white-backed planthoppers in paddy fields using image processing
  publication-title: Journal of Integrative Agriculture
  contributor:
    fullname: Tang
– volume: 169
  start-page: 139
  year: 2018
  end-page: 148
  ident: bib4
  article-title: Research on insect pest image detection and recognition based on bioinspired methods
  publication-title: Biosystems Engineering
  contributor:
    fullname: Yu
– volume: 164
  start-page: 29
  year: 2019
  end-page: 37
  ident: bib7
  article-title: Desert locust detection using Earth observation satellite data in Mauritania
  publication-title: Journal of Arid Environments
  contributor:
    fullname: Casanova
– volume: 164
  start-page: 104906
  year: 2019
  end-page: 1049016
  ident: bib17
  article-title: Crop pest classification based on deep convolutional neural network and transfer learning
  publication-title: Computers and Electronics in Agriculture
  contributor:
    fullname: Srinivasulu
– volume: 89
  start-page: 44
  year: 2016
  end-page: 56
  ident: bib28
  article-title: Developing a reversible rapid coordinate transformation model for the cylindrical projection
  publication-title: Computers & Geosciences
  contributor:
    fullname: Zhu
– volume: 33
  start-page: 1895
  year: 2014
  end-page: 1901
  ident: bib6
  article-title: Variation pattern of rice irrigation water requirement in Southwest of China
  publication-title: Chinese Journal of Ecology
  contributor:
    fullname: Yang
– volume: 31
  start-page: 55
  year: 2006
  end-page: 58
  ident: bib12
  article-title: Effects of foraging by different instar and density of
  publication-title: Plant Protection
  contributor:
    fullname: Long
– volume: 15
  start-page: 859
  year: 2004
  end-page: 862
  ident: bib8
  article-title: Behavioral and morphological indices for phase transformation of oriental migratory locust
  publication-title: Chinese Journal of Applied Ecology
  contributor:
    fullname: Zhang
– volume: 16
  start-page: 87
  year: 1986
  end-page: 102
  ident: bib1
  article-title: An analysis of the 1984 locust plague in Australia using multitemporal landsat multispectral data and a simulation-model of locust development
  publication-title: Agriculture Ecosystems & Environment
  contributor:
    fullname: Wright
– volume: 75
  start-page: 92
  year: 2011
  end-page: 99
  ident: bib13
  article-title: Scale invariant feature approach for insect monitoring
  publication-title: Computers and Electronics in Agriculture
  contributor:
    fullname: Juan
– year: 2007
  ident: bib25
  article-title: Detection of locusts using near-infrared spectroscopy and cluster analysis
  publication-title: Actual Tasks on Agricultural Engineering International Symposium on Agricultural Engineering
  contributor:
    fullname: Zhang
– volume: 30
  start-page: 1870
  year: 2010
  ident: 10.1016/S2095-3119(19)62865-0_bib2
  article-title: Identification of vegetable leaf-eating pests based on image analysis
  publication-title: Journal of Computer Applications
  doi: 10.3724/SP.J.1087.2010.01870
  contributor:
    fullname: Cai
– volume: 2420
  start-page: 381
  year: 1995
  ident: 10.1016/S2095-3119(19)62865-0_bib16
  article-title: Similarity of color images
  publication-title: The International Society for Optical Engineering
  contributor:
    fullname: Stricker
– volume: 52
  start-page: 356
  year: 2015
  ident: 10.1016/S2095-3119(19)62865-0_bib21
  article-title: Geometric morphometric analysis of wing shape variation in five Oxya spp. grasshoppers
  publication-title: Chinese Journal of Applied Entomology
  contributor:
    fullname: Wen
– volume: 164
  start-page: 104906
  year: 2019
  ident: 10.1016/S2095-3119(19)62865-0_bib17
  article-title: Crop pest classification based on deep convolutional neural network and transfer learning
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.104906
  contributor:
    fullname: Thenmozhi
– volume: 26
  start-page: 21
  year: 2010
  ident: 10.1016/S2095-3119(19)62865-0_bib33
  article-title: Locust images detection based on fuzzy pattern recognition
  publication-title: Transactions of the Chinese Society of Agricultural Engineering
  contributor:
    fullname: Zhen
– volume: 152
  start-page: 233
  year: 2018
  ident: 10.1016/S2095-3119(19)62865-0_bib23
  article-title: Multi-level learning features for automatic classification of field crop pests
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.07.014
  contributor:
    fullname: Xie
– volume: 119
  start-page: 123
  year: 2015
  ident: 10.1016/S2095-3119(19)62865-0_bib24
  article-title: Automatic classification for field crop insects via multiple-task sparse representation and multiple-kernel learning
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2015.10.015
  contributor:
    fullname: Xie
– volume: 5
  start-page: 4432
  year: 2014
  ident: 10.1016/S2095-3119(19)62865-0_bib30
  article-title: Development of a highly flexible mobile GIS-based system for collecting arable land quality data
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2014.2320635
  contributor:
    fullname: Ye
– volume: 8
  start-page: 89
  year: 2014
  ident: 10.1016/S2095-3119(19)62865-0_bib11
  article-title: Design and implementation of geographic information systems remote sensing and global positioning system-based information platform for locust control
  publication-title: Journal of Applied Remote Sensing
  doi: 10.1117/1.JRS.8.084899
  contributor:
    fullname: Li
– volume: 42
  start-page: 989
  year: 2005
  ident: 10.1016/S2095-3119(19)62865-0_bib22
  article-title: Plant communities predict the distribution of solitarious desert locust Schistocerca gregaria
  publication-title: Journal of Applied Ecology
  doi: 10.1111/j.1365-2664.2005.01073.x
  contributor:
    fullname: Van der Werf
– volume: 16
  start-page: 87
  year: 1986
  ident: 10.1016/S2095-3119(19)62865-0_bib1
  article-title: An analysis of the 1984 locust plague in Australia using multitemporal landsat multispectral data and a simulation-model of locust development
  publication-title: Agriculture Ecosystems & Environment
  doi: 10.1016/0167-8809(86)90096-4
  contributor:
    fullname: Bryceson
– volume: 21
  start-page: 243
  year: 1978
  ident: 10.1016/S2095-3119(19)62865-0_bib5
  article-title: Studies on the patterns of distribution of the oriental migratory locust and its pratical sighificance
  publication-title: Acta Entomologica Sinica
  contributor:
    fullname: Din
– volume: 73
  start-page: 1511
  year: 2017
  ident: 10.1016/S2095-3119(19)62865-0_bib19
  article-title: Construction, implementation and testing of an image identification system using computer vision methods for fruit flies with economic importance (Diptera: Tephritidae)
  publication-title: Pest Management Science
  doi: 10.1002/ps.4487
  contributor:
    fullname: Wang
– volume: 164
  start-page: 29
  year: 2019
  ident: 10.1016/S2095-3119(19)62865-0_bib7
  article-title: Desert locust detection using Earth observation satellite data in Mauritania
  publication-title: Journal of Arid Environments
  doi: 10.1016/j.jaridenv.2019.02.005
  contributor:
    fullname: Gómez
– volume: 3
  start-page: 610
  year: 1973
  ident: 10.1016/S2095-3119(19)62865-0_bib9
  article-title: Textural features for image classification
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics (Systems)
  doi: 10.1109/TSMC.1973.4309314
  contributor:
    fullname: Haralick
– volume: 10
  year: 2018
  ident: 10.1016/S2095-3119(19)62865-0_bib27
  article-title: RDCRMG, a raster dataset clean & reconstitution multi-grid architecture for remote sensing monitoring of vegetation dryness
  publication-title: Remote Sensing
  doi: 10.3390/rs10091376
  contributor:
    fullname: Ye
– volume: 5
  year: 2014
  ident: 10.1016/S2095-3119(19)62865-0_bib20
  article-title: The locust genome provides insight into swarm formation and long-distance flight
  publication-title: Nature Communications
  contributor:
    fullname: Wang
– volume: 41
  start-page: 595
  year: 2019
  ident: 10.1016/S2095-3119(19)62865-0_bib10
  article-title: Image semantic segmentation based convoluted network with global feature extraction
  publication-title: Infrared Technology
  contributor:
    fullname: Li
– year: 2013
  ident: 10.1016/S2095-3119(19)62865-0_bib31
  contributor:
    fullname: Zhang
– volume: 33
  start-page: 266
  year: 2017
  ident: 10.1016/S2095-3119(19)62865-0_bib29
  article-title: Design and implementation of automatic orthorectification system based on GF-1 big data
  publication-title: Transactions of the Chinese Society of Agricultural Engineering
  contributor:
    fullname: Ye
– volume: 75
  start-page: 92
  year: 2011
  ident: 10.1016/S2095-3119(19)62865-0_bib13
  article-title: Scale invariant feature approach for insect monitoring
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2010.10.001
  contributor:
    fullname: Luis
– volume: 16
  start-page: 1547
  year: 2017
  ident: 10.1016/S2095-3119(19)62865-0_bib26
  article-title: Automated detection and identification of white-backed planthoppers in paddy fields using image processing
  publication-title: Journal of Integrative Agriculture
  doi: 10.1016/S2095-3119(16)61497-1
  contributor:
    fullname: Yao
– volume: 39
  start-page: 26
  year: 2019
  ident: 10.1016/S2095-3119(19)62865-0_bib3
  article-title: Intelligent identification system of disease and insect pests based on deep learning
  publication-title: China Plant Protection
  contributor:
    fullname: Chen
– volume: 24
  start-page: 235
  year: 1986
  ident: 10.1016/S2095-3119(19)62865-0_bib18
  article-title: Textural information in SAR Images
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.1986.289643
  contributor:
    fullname: Ulaby
– volume: 15
  start-page: 859
  year: 2004
  ident: 10.1016/S2095-3119(19)62865-0_bib8
  article-title: Behavioral and morphological indices for phase transformation of oriental migratory locust Locusta migratoria
  publication-title: Chinese Journal of Applied Ecology
  contributor:
    fullname: Guo
– volume: 75
  start-page: 92
  year: 2011
  ident: 10.1016/S2095-3119(19)62865-0_bib15
  article-title: Scale invariant feature approach for insect monitoring
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2010.10.001
  contributor:
    fullname: Solis-Sánchez
– volume: 37
  start-page: 55
  year: 2017
  ident: 10.1016/S2095-3119(19)62865-0_bib14
  article-title: The effect and prospect of locust disaster sustainable control in China
  publication-title: China Plant Protection
  contributor:
    fullname: Ren
– year: 2007
  ident: 10.1016/S2095-3119(19)62865-0_bib25
  article-title: Detection of locusts using near-infrared spectroscopy and cluster analysis
  contributor:
    fullname: Xiong
– volume: 31
  start-page: 55
  year: 2006
  ident: 10.1016/S2095-3119(19)62865-0_bib12
  article-title: Effects of foraging by different instar and density of Oedaleus asiaticus B Bienko on forage yield
  publication-title: Plant Protection
  contributor:
    fullname: Lu
– volume: 14
  start-page: 34
  year: 2009
  ident: 10.1016/S2095-3119(19)62865-0_bib32
  article-title: Improved split-merge segmentation used for locust image
  publication-title: Computer Engineering and Applications
  contributor:
    fullname: Zhang
– volume: 169
  start-page: 139
  year: 2018
  ident: 10.1016/S2095-3119(19)62865-0_bib4
  article-title: Research on insect pest image detection and recognition based on bioinspired methods
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2018.02.008
  contributor:
    fullname: Deng
– volume: 33
  start-page: 1895
  year: 2014
  ident: 10.1016/S2095-3119(19)62865-0_bib6
  article-title: Variation pattern of rice irrigation water requirement in Southwest of China
  publication-title: Chinese Journal of Ecology
  contributor:
    fullname: Fu
– volume: 89
  start-page: 44
  year: 2016
  ident: 10.1016/S2095-3119(19)62865-0_bib28
  article-title: Developing a reversible rapid coordinate transformation model for the cylindrical projection
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2016.01.007
  contributor:
    fullname: Ye
SSID ssj0001550068
Score 2.3761096
Snippet Locusts are agricultural pests around the world. To cognize how locust distribution density and community structure are related to the hydrothermal and...
Locusts are agricultural pests around the world.To cognize how locust distribution density and community structure are related to the hydrothermal and...
SourceID doaj
wanfang
crossref
elsevier
SourceType Open Website
Aggregation Database
Publisher
StartPage 1301
SubjectTerms L. migratoria manilensis
locust identification
machine learning
O. decorus asiaticus
support vector machine
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS-QwEA4iHOiD-JNbT49w-HD3EDdNu2nz6MmJCOeLCr6FtE1KObe7bLu36IN_uzNpVt0nQejT0E7DJJn5Jsx8IeQEYhaW2JTMyjhliS0lM6WImQMsgiGLO8_A9_daXt4lV_ej-zVyvuyFwbLK4Pt7n-69dZAMgzWH07oe3gikSkN-MuXbKzFvR7ItWNOnz9HbOQtAcO474vB9hh-8NfL0SrzwZ6R-eT2Mr4Qoz-S_Eqm-LEzjTFO9i0MX22QrAEh61o9xh6zZZpdsnlWzQKJh98iDrwOgpqH1GNwFbW01Di1GDUhL2s6nCLvpf39kT8e-oNLS_jZpCjCW1r5_1_dA0W4xoRDy5m1HsS8TUmuvpEZgOWv3yd3Fn9vzSxZuVWAFYK2OAX5IVGYsZIYFJD9OZTZ2WSGVgtwuj3CKpCxw8xghrMpGZWoLbmQKoUwCvowPyHozaexXQkXq8lE-ynhhII2Js9wkopQFV06miZN2QE6XhtTTnjxDv1aVoeU1Wl7D4y2v-YD8RnO_vozc114wmVU6TL7mOQwiLmMYWZ5EqVEyK-OUJ0mRCisiNyDZcrL0ylICVfVH__8RJleHrdzqp6p5_AdORHA8gAPEfPh5_d_IBqrpCyaPyHo3m9tjADVd_t2v2hdbHe4g
  priority: 102
  providerName: Elsevier
Title Using an image segmentation and support vector machine method for identifying two locust species and instars
URI https://dx.doi.org/10.1016/S2095-3119(19)62865-0
https://d.wanfangdata.com.cn/periodical/zgnykx-e202005013
https://doaj.org/article/0b8033d385db417a968d37044c72e21f
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZ4CAkGxFOUR2UhBhgCTpw49lgQqIBgAaRulpPYVQVNqyalgoHfztkJpUxdkDJZkWOdz3ffOffdIXQCPsum2GSeZjT2Qp0xT2UB9QxgEeuyiHEV-B4eWfslvOtEnZlWXzYnrCoPXAnugiScUJpRHmVJ6MdKMJ7RmIRhGgc68I2zvkTMBFMVPziy5AfbWQ4wBBgaX_zSdy6epoOnvjhz5EyP_HFMrn7_H_-0MlG5UXl3xvvcbKD1GjbiVrXcTbSg8y201uqO6tIZehu9ub__WOW41wcjgQvd7dfEohxGM1yMhxZs43d3UY_7Lo1S46qHNAbwinuOteuYT7icDDA4unFRYsvGhIDaTdKzcHJU7KCXm-vnq7ZX91LwUkBYpQeoIRRcaYgHUwh5jOCaGp4yISCiS3y7MYyl9sioINACpB3rlCgWgwNjgCrpLlrKB7neQziITRIlESepguCF8kSFQcZSIgyLQ8N0A53_CFIOq5IZcppLZiUvreQlPE7ykjTQpRX39GVb8doNgB7IWg_kPD1oIP6zWbIGDxUogKl6875_XG-urA9wIT-7-ccrmI6A2Gs3wMn7_7HIA7RqJ6wSJg_RUjka6yMANWXSRIvnX34TLbdu79uPTafN3_Vk738
link.rule.ids 315,783,787,867,2109,4511,24130,27938,27939,45599,45693
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhobQ9hD7pNn2I0kN7UFaWtbJ1TEPDtk1yaQK5CdmWjEnXu6y9Ccmhv70zsjbpngoFn4Q1FjPyzDdivhEhHyFmYYlNxZxKMyZdpZitRMo8YBEMWdyHDnwnp2p6Lr9fTC62yOGaC4NlldH3Dz49eOs4Mo7aHC-aZvxTYKs07E-mA70S8vYdif2zYFPv_07uD1oAg_NAicMJDGfcM3kGKWHwU6I_B0GMb8So0Mp_I1Q9uLatt239VyA6ekJ2I4KkB8Min5It1z4jjw_qZeyi4Z6TX6EQgNqWNjPwF7Rz9SxyjFoYrWi3WiDuplfhzJ7OQkWlo8N10hRwLG0CgTeQoGh_PacQ81ZdT5GYCbl1ENIgslx2L8j50dezwymL1yqwEsBWzwBASJ1bB6lhCdmP17lLfV4qrSG5KxK0kVIl_j1WCKfzSZW5kluVQSxTADDTl2S7nbfuFaEi88WkmOS8tJDHpHlhpahUybVXmfTKjcj-WpFmMXTPMHdlZah5g5o38ATNGz4iX1Dddy9j8-swMF_WJlrf8AIWkVYprKyQSWa1yqs041KWmXAi8SOSr41lNvYSiGr-9f0P0bgm_sudua3bm0vwIoLjCRxA5tf_L_89eTg9Ozk2x99Of-yRRyhyqJ58Q7b75cq9BYTTF-_CDv4DjV_xUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+an+image+segmentation+and+support+vector+machine+method+for+identifying+two+locust+species+and+instars&rft.jtitle=Journal+of+Integrative+Agriculture&rft.au=Shuhan+LU&rft.au=Si-jing+YE&rft.date=2020-05-01&rft.pub=Elsevier&rft.issn=2095-3119&rft.volume=19&rft.issue=5&rft.spage=1301&rft.epage=1313&rft_id=info:doi/10.1016%2FS2095-3119%2819%2962865-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0b8033d385db417a968d37044c72e21f
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgnykx-e%2Fzgnykx-e.jpg