Fundamental energy scale of the thick brane in mimetic gravity
In this paper, thick branes generated by the mimetic scalar field with Lagrange multiplier formulation are investigated. We give three typical thick brane background solutions with different asymptotic behaviors and show that all the solutions are stable under tensor perturbations. The effective pot...
Saved in:
Published in | The European physical journal. C, Particles and fields Vol. 81; no. 11; pp. 1 - 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2021
Springer Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, thick branes generated by the mimetic scalar field with Lagrange multiplier formulation are investigated. We give three typical thick brane background solutions with different asymptotic behaviors and show that all the solutions are stable under tensor perturbations. The effective potentials of the tensor perturbations exhibit as volcano potential, Poöschl–Teller potential, and harmonic oscillator potential for the three background solutions, respectively. All the tensor zero modes (massless gravitons) of the three cases can be localized on the brane. We also calculate the corrections to the four-dimensional Newtonian potential. On a large scale, the corrections to the four-dimensional Newtonian potential can be ignored. While on a small scale, the correction from the volcano-like potential is more pronounced than the other two cases. Combining the specific corrections to the four-dimensional Newtonian potential of these three cases and the latest results of short-range gravity experiments, we get the constraint on the scale parameter as
k
≳
10
-
4
eV, and constraint on the corresponding five-dimensional fundamental scale as
M
∗
≳
10
5
TeV. |
---|---|
AbstractList | In this paper, thick branes generated by the mimetic scalar field with Lagrange multiplier formulation are investigated. We give three typical thick brane background solutions with different asymptotic behaviors and show that all the solutions are stable under tensor perturbations. The effective potentials of the tensor perturbations exhibit as volcano potential, Poöschl–Teller potential, and harmonic oscillator potential for the three background solutions, respectively. All the tensor zero modes (massless gravitons) of the three cases can be localized on the brane. We also calculate the corrections to the four-dimensional Newtonian potential. On a large scale, the corrections to the four-dimensional Newtonian potential can be ignored. While on a small scale, the correction from the volcano-like potential is more pronounced than the other two cases. Combining the specific corrections to the four-dimensional Newtonian potential of these three cases and the latest results of short-range gravity experiments, we get the constraint on the scale parameter as k≳10-4eV, and constraint on the corresponding five-dimensional fundamental scale as M∗≳105TeV. In this paper, thick branes generated by the mimetic scalar field with Lagrange multiplier formulation are investigated. We give three typical thick brane background solutions with different asymptotic behaviors and show that all the solutions are stable under tensor perturbations. The effective potentials of the tensor perturbations exhibit as volcano potential, Poöschl–Teller potential, and harmonic oscillator potential for the three background solutions, respectively. All the tensor zero modes (massless gravitons) of the three cases can be localized on the brane. We also calculate the corrections to the four-dimensional Newtonian potential. On a large scale, the corrections to the four-dimensional Newtonian potential can be ignored. While on a small scale, the correction from the volcano-like potential is more pronounced than the other two cases. Combining the specific corrections to the four-dimensional Newtonian potential of these three cases and the latest results of short-range gravity experiments, we get the constraint on the scale parameter as k ≳ 10 - 4 eV, and constraint on the corresponding five-dimensional fundamental scale as M ∗ ≳ 10 5 TeV. In this paper, thick branes generated by the mimetic scalar field with Lagrange multiplier formulation are investigated. We give three typical thick brane background solutions with different asymptotic behaviors and show that all the solutions are stable under tensor perturbations. The effective potentials of the tensor perturbations exhibit as volcano potential, Poöschl–Teller potential, and harmonic oscillator potential for the three background solutions, respectively. All the tensor zero modes (massless gravitons) of the three cases can be localized on the brane. We also calculate the corrections to the four-dimensional Newtonian potential. On a large scale, the corrections to the four-dimensional Newtonian potential can be ignored. While on a small scale, the correction from the volcano-like potential is more pronounced than the other two cases. Combining the specific corrections to the four-dimensional Newtonian potential of these three cases and the latest results of short-range gravity experiments, we get the constraint on the scale parameter as $$k > rsim 10^{-4}$$ k ≳ 10 - 4 eV, and constraint on the corresponding five-dimensional fundamental scale as $$M_* > rsim 10^5$$ M ∗ ≳ 10 5 TeV. Abstract In this paper, thick branes generated by the mimetic scalar field with Lagrange multiplier formulation are investigated. We give three typical thick brane background solutions with different asymptotic behaviors and show that all the solutions are stable under tensor perturbations. The effective potentials of the tensor perturbations exhibit as volcano potential, Poöschl–Teller potential, and harmonic oscillator potential for the three background solutions, respectively. All the tensor zero modes (massless gravitons) of the three cases can be localized on the brane. We also calculate the corrections to the four-dimensional Newtonian potential. On a large scale, the corrections to the four-dimensional Newtonian potential can be ignored. While on a small scale, the correction from the volcano-like potential is more pronounced than the other two cases. Combining the specific corrections to the four-dimensional Newtonian potential of these three cases and the latest results of short-range gravity experiments, we get the constraint on the scale parameter as $$k > rsim 10^{-4}$$ k ≳ 10 - 4 eV, and constraint on the corresponding five-dimensional fundamental scale as $$M_* > rsim 10^5$$ M ∗ ≳ 10 5 TeV. In this paper, thick branes generated by the mimetic scalar field with Lagrange multiplier formulation are investigated. We give three typical thick brane background solutions with different asymptotic behaviors and show that all the solutions are stable under tensor perturbations. The effective potentials of the tensor perturbations exhibit as volcano potential, Poöschl-Teller potential, and harmonic oscillator potential for the three background solutions, respectively. All the tensor zero modes (massless gravitons) of the three cases can be localized on the brane. We also calculate the corrections to the four-dimensional Newtonian potential. On a large scale, the corrections to the four-dimensional Newtonian potential can be ignored. While on a small scale, the correction from the volcano-like potential is more pronounced than the other two cases. Combining the specific corrections to the four-dimensional Newtonian potential of these three cases and the latest results of short-range gravity experiments, we get the constraint on the scale parameter as [Formula omitted]eV, and constraint on the corresponding five-dimensional fundamental scale as [Formula omitted]TeV. |
ArticleNumber | 980 |
Audience | Academic |
Author | Zhang, Yu-Peng Gu, Bao-Min Sui, Tao-Tao Liu, Yu-Xiao |
Author_xml | – sequence: 1 givenname: Tao-Tao surname: Sui fullname: Sui, Tao-Tao organization: Institute of Theoretical Physics and Research Center of Gravitation, Lanzhou University, Joint Research Center for Physics, Lanzhou University, Joint Research Center for Physics, Qinghai Normal University, Lanzhou Center for Theoretical Physics, Lanzhou University – sequence: 2 givenname: Yu-Peng surname: Zhang fullname: Zhang, Yu-Peng organization: Institute of Theoretical Physics and Research Center of Gravitation, Lanzhou University, Joint Research Center for Physics, Lanzhou University, Joint Research Center for Physics, Qinghai Normal University, Lanzhou Center for Theoretical Physics, Lanzhou University – sequence: 3 givenname: Bao-Min surname: Gu fullname: Gu, Bao-Min organization: Department of Physics, Nanchang University – sequence: 4 givenname: Yu-Xiao surname: Liu fullname: Liu, Yu-Xiao email: liuyx@lzu.edu.cn organization: Institute of Theoretical Physics and Research Center of Gravitation, Lanzhou University, Joint Research Center for Physics, Lanzhou University, Joint Research Center for Physics, Qinghai Normal University, Lanzhou Center for Theoretical Physics, Lanzhou University |
BookMark | eNqNkV1rFTEQhoNUsK3-Bhe88mLbJJvsJhcKpVh7oCD4cR1mk9k1x93sMckpnn9v2i2VeqOEkGF4n_nIe0KOwhKQkNeMnjEm6DnutvY8MUolrylnNdWdbGv1jBwz0Yi6Lfmjx1iIF-QkpS2llAuqjsn7q31wMGPIMFUYMI6HKlmYsFqGKn_Hcr39UfURAlY-VLOfMXtbjRFufT68JM8HmBK-enhPyberD18vr-ubTx83lxc3tZWc51pY6bhjXWsbTq0cuFO8Bc01SCaHRrGWIzANjeBcN7pvHKiBY-P0wITTXXNKNmtdt8DW7KKfIR7MAt7cJ5Y4GohlrglN64TqeE8VCCocKpDaCug5OugotX2p9WattYvLzz2mbLbLPoYyvuFSC6U7rkVRna2qsXyG8WFYcgRbjsPZ22LB4Ev-olWsE23bsQK8fQIUTcZfeYR9Smbz5fNTbbdqbVxSijg8rsSouXPV3LlqVldNcdXcu2pUId_9RVqfIfvSLIKf_oNXK59KxzBi_LP8v9DfnfS7nQ |
CitedBy_id | crossref_primary_10_1140_epjc_s10052_022_10196_1 crossref_primary_10_1103_PhysRevD_109_L041501 crossref_primary_10_1140_epjc_s10052_022_10159_6 crossref_primary_10_1103_PhysRevD_110_064077 crossref_primary_10_1140_epjc_s10052_023_11270_y crossref_primary_10_1016_j_nuclphysb_2024_116747 crossref_primary_10_1140_epjp_s13360_022_03347_6 crossref_primary_10_1140_epjp_s13360_024_05374_x |
Cites_doi | 10.1007/s10509-016-2826-9 10.1142/S0219887807001928 10.1086/376963 10.1103/PhysRevD.67.103521 10.1016/j.physrep.2011.09.003 10.1016/S0370-2693(00)00303-8 10.1007/JHEP11(2013)135 10.1103/PhysRevD.92.024011 10.1088/1475-7516/2014/09/002 10.3390/sym13081345 10.1103/PhysRevLett.92.101301 10.1088/0264-9381/32/18/185007 10.1103/PhysRevD.68.063504 10.1140/epjc/s10052-018-5527-4 10.1016/S0370-2693(01)00741-9 10.1088/1475-7516/2015/04/031 10.1016/j.physletb.2015.02.037 10.1103/PhysRevD.74.087501 10.1007/s10714-015-1930-4 10.1007/JHEP06(2018)062 10.1103/PhysRevLett.116.131101 10.1103/PhysRevD.77.126013 10.1103/PhysRevLett.82.4180 10.1103/PhysRevD.62.024012 10.1103/PhysRevD.100.124057 10.1142/S0219887814500911 10.1016/0370-2693(94)90639-4 10.1103/PhysRevLett.124.101101 10.1103/PhysRevLett.84.586 10.1007/JHEP12(2014)102 10.1103/PhysRevD.61.106004 10.1086/379636 10.1103/PhysRevD.75.067302 10.1016/j.physletb.2019.05.045 10.1140/epjc/s10052-016-3926-y 10.1016/j.physletb.2007.08.037 10.1016/S0370-2693(99)01218-6 10.1016/S0550-3213(00)00271-6 10.1016/j.physletb.2007.10.038 10.1016/S0550-3213(02)00691-0 10.1103/PhysRevD.91.064062 10.1142/S0218271811018925 10.1088/1475-7516/2008/05/019 10.1088/0034-4885/63/5/2r3 10.1088/1126-6708/2001/05/033 10.1155/2017/3156915 10.1016/j.physletb.2013.11.026 10.1103/PhysRevD.89.026004 10.1142/S0217751X09043067 10.1016/S0370-1573(99)00045-9 10.1088/1475-7516/2014/06/017 10.1103/PhysRevD.76.064004 10.1142/S0219887815501017 10.1142/S0217751X14501206 10.1142/S0218271802002025 10.1103/PhysRevLett.83.3370 10.1103/PhysRevLett.86.4223 10.1142/S0219887814600068 10.1142/S0217751X08042857 10.1209/0295-5075/90/51001 10.1016/0370-2693(84)90334-4 10.1007/JHEP06(2018)060 10.1070/PU2001v044n09ABEH001000 10.1103/PhysRevLett.124.051301 10.1103/PhysRevD.62.046008 10.1140/epjc/s10052-016-4163-0 10.1103/PhysRevD.86.127502 10.1016/S0370-2693(99)01430-6 10.1140/epjc/s10052-015-3273-4 10.3390/universe2020010 10.1088/0264-9381/33/22/225014 10.1016/j.physletb.2019.135099 10.1007/JHEP02(2012)083 10.1088/1475-7516/2016/05/026 10.1088/1475-7516/2014/01/014 10.1016/j.physletb.2006.02.017 10.1103/PhysRevD.22.1882 10.1103/PhysRevD.73.084022 10.1007/JHEP06(2015)196 10.1007/JHEP04(2010)130 10.1103/PhysRevLett.83.4690 10.1063/1.3473866 10.1016/S0550-3213(00)00392-8 10.1103/PhysRevD.64.064023 10.1016/j.physletb.2003.09.017 10.1088/0034-4885/73/6/066901 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 COPYRIGHT 2021 Springer The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: COPYRIGHT 2021 Springer – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION ISR 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1140/epjc/s10052-021-09756-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Aerospace Database SciTech Premium Collection (ProQuest) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1434-6052 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_6d4872b08a404de8a59c4ab2eda700cb A681746671 10_1140_epjc_s10052_021_09756_8 |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: Grants No. lzujbky-2019-ct06; lzujbky-2021-pd08 – fundername: National Natural Science Foundation of China grantid: 11875151; 11947025 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -5F -5G -A0 -BR -Y2 -~X .86 0R~ 199 1SB 29G 29Q 2JY 2P1 30V 4.4 408 409 40D 5GY 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95. 95~ AAFWJ AAKKN ABDBF ABEEZ ABMNI ABQSL ABTEG ACACY ACGFS ACNCT ACUHS ACULB ADBBV ADINQ ADKPE ADMLS AENEX AFBBN AFFNX AFGXO AFKRA AFPKN AFWTZ AGJBK AGWIL AHSBF AHYZX AI. AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF AZFZN B0M BA0 BCNDV BENPR BGLVJ BGNMA C24 C6C CAG CCPQU COF CS3 CSCUP DL5 DU5 EAD EAP EAS EBS EJD EMK EPL ER. ESX FEDTE GQ6 GQ8 GROUPED_DOAJ GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HVGLF HZ~ H~9 I-F I09 IAO IGS IHE ISR IXC IZIGR IZQ I~X KDC KOV LAS M4Y MA- N2Q NB0 NU0 O9- O93 OK1 P62 P9T PIMPY PROAC PT5 QOS R89 R9I RED RID RNS ROL RPX RSV RZK S1Z S27 S3B SDH SOJ SPH SZN T13 TN5 TSK TSV TUC TUS U2A VC2 VH1 WK8 Z45 Z7Y ~8M AAYXX ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHWEU AIXLP CITATION PHGZM PHGZT PMFND 7U5 8FD ABUWG AZQEC DWQXO H8D L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c522t-4c5d2d176c320c5f2d826a929a515f38162ea19a3422939b3da8f2e3d9f14d973 |
IEDL.DBID | C6C |
ISSN | 1434-6044 |
IngestDate | Wed Aug 27 01:21:47 EDT 2025 Fri Jul 25 05:06:09 EDT 2025 Tue Jun 10 20:45:55 EDT 2025 Fri Jun 27 05:10:31 EDT 2025 Thu Apr 24 23:12:18 EDT 2025 Tue Jul 01 01:40:48 EDT 2025 Fri Feb 21 02:47:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c522t-4c5d2d176c320c5f2d826a929a515f38162ea19a3422939b3da8f2e3d9f14d973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1140/epjc/s10052-021-09756-8 |
PQID | 2594897294 |
PQPubID | 2034659 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6d4872b08a404de8a59c4ab2eda700cb proquest_journals_2594897294 gale_infotracacademiconefile_A681746671 gale_incontextgauss_ISR_A681746671 crossref_primary_10_1140_epjc_s10052_021_09756_8 crossref_citationtrail_10_1140_epjc_s10052_021_09756_8 springer_journals_10_1140_epjc_s10052_021_09756_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211100 2021-11-00 20211101 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 20211100 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Particles and Fields |
PublicationTitle | The European physical journal. C, Particles and fields |
PublicationTitleAbbrev | Eur. Phys. J. C |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
References | Y.-X. Liu, Introduction to Extra Dimensions and Thick Braneworlds. arXiv:1707.08541 HuWSawickiIPhys. Rev. D2007760640042007PhRvD..76f4004HarXiv:0705.1158 OdintsovSDOikonomouVKAstrophys. Space Sci.20163612362016Ap&SS.361..236OarXiv:1602.05645 ChamseddineAHMukhanovVJHEP201313111352013JHEP...11..135CarXiv:1308.5410 ChamseddineAHMukhanovVVikmanAJCAP201414060172014JCAP...06..017CarXiv:1403.3961 ChamseddineAHMukhanovVJHEP201818060622018JHEP...06..062CarXiv:1805.06598 CsakiCErlichJHollowoodTJShirmanYNucl. Phys. B20005813092000NuPhB.581..309CarXiv:hep-th/0001033 OlmoGJInt. J. Mod. Phys. D2011204132011IJMPD..20..413O2830065arXiv:1101.3864 RabochayaYZerbiniSEur. Phys. J. C201676852016EPJC...76...85RarXiv:1509.03720 LeeJGAdelbergerEGCookTSFleischerSMHeckelBRPhys. Rev. Lett.20201241011012020PhRvL.124j1101LarXiv:2002.11761 BazeiaDLobaoASMenezesRPhys. Lett. B2015743982015PhLB..743...98B3327212arXiv:1502.04757 ShiromizuTMaedaKSasakiMPhys. Rev. D2000620240122000PhRvD..62b4012S1790750arXiv:gr-qc/9910076 RosenbergLJvan BibberKAPhys. Rep.200032512000PhR...325....1R L. Covi, L. Roszkowski, R.R. de Austri, M. Small, arXiv:hep-ph/0402240 ApplebySABattyeRAJCAP200808050192008JCAP...05..019AarXiv:0803.1081 EllisJRKimJENanopoulosDVPhys. Lett. B19841451811984PhLB..145..181E YangKLiuY-XZhongYDuX-LWeiS-WPhys. Rev. D2012861275022012PhRvD..86l7502YarXiv:1212.2735 BOSS collaboration, S. Alam et al., Mon. Not. R. Astron. Soc. 470, 2617 (2017). arXiv:1607.03155 AstashenokAVOdintsovSDOikonomouVKClass. Quantum Gravity2015321850072015CQGra..32r5007AarXiv:1504.04861 LiuY-XZhongYYangKEPL201090510012010EL.....9051001LarXiv:0907.1952 BazeiaDGomesARLosanoLInt. J. Mod. Phys. A20092411352009IJMPA..24.1135BarXiv:0708.3530 RandallLSundrumRPhys. Rev. Lett.19998346901999PhRvL..83.4690R1725958arXiv:hep-th/9906064 de la Cruz-DombrizADobadoAPhys. Rev. D2006740875012006PhRvD..74h7501DarXiv:gr-qc/0607118 AfonsoVIBazeiaDLosanoLPhys. Lett. B20066345262006PhLB..634..526A2210860arXiv:hep-th/0601069 K.A. Bronnikov, A.A. Popov, S.G. Rubin, Inhomogeneous compact extra dimensions and de Sitter cosmology. arXiv:2004.03277 XieQ-YFuQ-MSuiT-TZhaoLZhongYFirst-order formalism and thick branes in mimetic gravitySymmetry2021131345arXiv:2102.10251 CoviLKimHBKimJERoszkowskiLJHEP200101050332001JHEP...05..033CarXiv:hep-ph/0101009 GolovnevAPhys. Lett. B2014728392014PhLB..728...39GarXiv:1310.2790 MatsumotoJOdintsovSDSushkovSVPhys. Rev. D2015910640622015PhRvD..91f4062M3415327arXiv:1501.02149 BoehmCHooperDSilkJCasseMPhys. Rev. Lett.2004921013012004PhRvL..92j1301BarXiv:astro-ph/0309686 AfonsoVBazeiaDMenezesRPetrovAYPhys. Lett. B2007658712007PhLB..658...71A2414272arXiv:0710.3790 FengJLRajaramanATakayamaFPhys. Rev. D2003680635042003PhRvD..68f3504FarXiv:hep-ph/0306024 FalkTOliveKASrednickiMPhys. Lett. B19943392481994PhLB..339..248FarXiv:hep-ph/9409270 Arkani-HamedNDimopoulosSDvaliGKaloperNPhys. Rev. Lett.2000845862000PhRvL..84..586AarXiv:hep-th/9907209 CyburtRHEllisJRFieldsBDOliveKAPhys. Rev. D2003671035212003PhRvD..67j3521CarXiv:astro-ph/0211258 CoviLKimJERoszkowskiLPhys. Rev. Lett.19998241801999PhRvL..82.4180CarXiv:hep-ph/9905212 MomeniDAltaibayevaAMyrzakulovRInt. J. Geom. Methods Mod. Phys.20141114500913275817arXiv:1407.5662 Arkani-HamedNCohenAGGeorgiHPhys. Lett. B20015132322001PhLB..513..232AarXiv:hep-ph/0105239 ZhongYZhongYZhangY-PLiuY-XEur. Phys. J. C201878452018EPJC...78...45ZarXiv:1711.09413 KimJEKyaeBLeeHMPhys. Rev. Lett.20018642232001PhRvL..86.4223K1831641arXiv:hep-th/0011118 G. German, A. Herrera-Aguilar, D. Malagon-Morejon, I. Quiros, R. Rocha, Phys. Rev. D 89, 026004 (2014). arXiv:1301.6444 C. Csa´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{a}$$\end{document}ki, TASI Lectures on Extra Dimensions and Branes. arXiv:hep-ph/0404096 ApplebySABattyeRAPhys. Lett. B200765472007PhLB..654....7A2400600arXiv:0705.3199 CapolupoACapozzielloSVitielloGInt. J. Mod. Phys. A20082349792008IJMPA..23.4979CarXiv:0705.0319 GuoBLiuY-XYangKEur. Phys. J. C201575632015EPJC...75...63GarXiv:1405.0074 MyrzakulovRSebastianiLGen. Relativ. Gravit.201547892015GReGr..47...89MarXiv:1503.04293 DzhunushalievVFolomeevVMinamitsujiMRep. Prog. Phys.2010730669012010RPPh...73f6901DarXiv:0904.1775 GiovanniniMPhys. Rev. D2001640640232001PhRvD..64f4023G1857423arXiv:hep-th/0106041 CapozzielloSDe LaurentisMPhys. Rep.20115091672011PhR...509..167C2869690arXiv:1108.6266 KantiPKoganIIOliveKAPospelovMPhys. Lett. B1999468311999PhLB..468...31K1731390arXiv:hep-ph/9909481 AgasheKAzatovACuiYRandallLSonMJHEP201515061962015JHEP...06..196AarXiv:1412.6468 TanW-HDuA-BDongW-CYangS-QShaoC-GGuanS-GWangQ-LZhanB-FLuoP-STuL-CLuoJPhys. Rev. Lett.20201240513012020PhRvL.124e1301T ChaichianMKlusonJOksanenMTureanuAJHEP201414121022014JHEP...12..102CarXiv:1404.4008 ChamseddineAHMukhanovVJHEP201818060602018JHEP...06..060CarXiv:1805.06283 GremmMPhys. Lett. B20004784342000PhLB..478..434GarXiv:hep-th/9912060 RubakovVAPhys. Usp.2001448712001PhyU...44..871RarXiv:hep-ph/0104152 CapozzielloSInt. J. Mod. Phys. D2002114832002IJMPD..11..483C ZhongYLiuY-XEur. Phys. J. C2016763212016EPJC...76..321ZarXiv:1507.00630 OikonomouVKUniverse20162102016Univ....2...10OarXiv:1511.09117 NojiriSOdintsovSDInt. J. Geom. Methods Mod. Phys.200741152303815arXiv:hep-th/0601213 NojiriSOdintsovSDInt. J. Geom. Methods Mod. Phys.20141114600063189735arXiv:1306.4426 SebastianiLVagnozziSMyrzakulovRAdv. High Energy Phys.201720173156915arXiv:1612.08661 DeWolfeOFreedmanDZGubserSSKarchAPhys. Rev. D2000620460082000PhRvD..62d6008D1803785arXiv:hep-th/9909134 N. Barbosa-Cendejas, A. Herrera-Aguilar, M.A. Reyes, C. Schubert, Phys. Rev. D 77, 126013 (2008). arXiv:0709.3552 RandallLSundrumRPhys. Rev. Lett.19998333701999PhRvL..83.3370R1744714arXiv:hep-ph/9905221 LeonGSaridakisENJCAP201515040312015JCAP...04..031LarXiv:1501.00488 YoshidaNSokasianAHernquistLSpringelVAstrophys. J. Lett.2003591L12003ApJ...591L...1YarXiv:astro-ph/0303622 RizzoTGAIP Conf. Proc.20101256272010AIPC.1256...27RarXiv:1003.1698 BuchmullerWHamaguchiKRatzMPhys. Lett. B20035741562003PhLB..574..156BarXiv:hep-ph/0307181 BardeenJMPhys. Rev. D19802218821980PhRvD..22.1882B590395 BarvinskyAOJCAP201414010142014JCAP...01..014BarXiv:1311.3111 HansenSHHaimanZAstrophys. J.2004600262004ApJ...600...26HarXiv:astro-ph/0305126 A.G. Riess et al., Supernova Search Team Collaboration. Astron. J. 116, 1009 (1998). arXiv:astro-ph/9805201 FaraoniVPhys. Rev. D2007750673022007PhRvD..75f7302F2312202arXiv:gr-qc/070304 DeruelleNRuaJJCAP201414090022014JCAP...09..002DarXiv:1407.0825 SolomonARVardanyanVAkramiYPhys. Lett. B20197941352019PhLB..794..135S3957488arXiv:1902.08533 BergstromLRep. Prog. Phys.2000637932000RPPh...63..793BarXiv:hep-ph/0002126 FuQ-MYuHZhaoLLiuY-XPhys. Rev. D20191001240572019PhRvD.100l4057F4050373arXiv:1907.12049 D. Hooper, F. Ferrer, C. Boehm, J. Silk, J. Paul, N.W. Evans, M. Casse, arXiv:astro-ph/0311150 DavoudiaslHHewettJLRizzoTGPhys. Lett. B2000473432000PhLB..473...43D1743118arXiv:hep-ph/9911262 LiuHLuHWangZ-LJHEP201212020832012JHEP...02..083LarXiv:1111.6602 MomeniDMyrzakulovRGüdekliEInt. J. Geom. Methods Mod. Phys.20151215501013415911arXiv:1502.00977 Barbosa-CendejasNHerrera-AguilarAPhys. Rev. D2006730840222006PhRvD..73h4022B2221386arXiv:hep-th/0603184 GuoW-DZhongYYangKSuiT-TLiuY-XPhys. Lett. B20208001350994033663arXiv:1805.05650 Arkani-HamedNCohenAGGregoireTWackerJGJHEP200202080202002JHEP...08..020AarXiv:hep-ph/0202089 Cartas-FuentevillaREscalanteAGermanGHerrera-AguilarAMora-LunaRRJCAP201616050262016JCAP...05..026CarXiv:1412.8710 Planck collaboration, P. A. R. Ade et al., Astron. Astrophys. 594, A13 (2016). arXiv:1502.01589 DzhunushalievVFolomeevVKleihausBKunzJJHEP201010041302010JHEP...04..130DarXiv:0912.2812 TanW-HYangS-QShaoC-GLiJDuA-BZhanB-FWangQ-LLuoP-STuL-CLuoJPhys. Rev. Lett.20161161311012016PhRvL.116m1101T GherghettaTPomarolANucl. Phys. B20005861412000NuPhB.586..141GarXiv:hep-ph/0003129 KantiPKoganIIOliveKAPospelovMPhys. Rev. D2000611060042000PhRvD..61j6004K1790779arXiv:hep-ph/9912266 GuB-MGuoBYuHLiuY-XPhys. Rev. D2015920240112015PhRvD..92b4011G3441866arXiv:1411.3241 YangKZhongYLiuY-XWeiS-WInt. J. Mod. Phys. A20142914501202014IJMPA..2950120YarXiv:1108.5436 AriasOCardenasRQuirosINucl. Phys. B20026431872002NuPhB.643..187AarXiv:hep-th/0202130 CognolaGMyrzakulovRSebastianiLVagnozziSZerbiniSClass. Quantum Gravity2016332250142016CQGra..33v5014CarXiv:1601.00102 H Liu (9756_CR75) 2012; 1202 9756_CR91 VA Rubakov (9756_CR90) 2001; 44 G Cognola (9756_CR43) 2016; 33 R Cartas-Fuentevilla (9756_CR95) 2016; 1605 L Bergstrom (9756_CR3) 2000; 63 B-M Gu (9756_CR79) 2015; 92 S Nojiri (9756_CR21) 2007; 4 JE Kim (9756_CR53) 2001; 86 L Covi (9756_CR13) 2001; 0105 AH Chamseddine (9756_CR47) 2018; 1806 M Gremm (9756_CR65) 2000; 478 9756_CR2 W-H Tan (9756_CR83) 2020; 124 9756_CR1 D Momeni (9756_CR38) 2014; 11 P Kanti (9756_CR60) 2000; 61 9756_CR94 9756_CR19 L Sebastiani (9756_CR46) 2017; 2017 M Chaichian (9756_CR35) 2014; 1412 9756_CR16 9756_CR14 V Dzhunushaliev (9756_CR76) 2010; 1004 Y Zhong (9756_CR77) 2016; 76 H Davoudiasl (9756_CR54) 2000; 473 Y Rabochaya (9756_CR44) 2016; 76 C Csaki (9756_CR63) 2000; 581 L Randall (9756_CR51) 1999; 83 R Myrzakulov (9756_CR40) 2015; 47 J Matsumoto (9756_CR41) 2015; 91 D Bazeia (9756_CR93) 2009; 24 LJ Rosenberg (9756_CR6) 2000; 325 O DeWolfe (9756_CR64) 2000; 62 9756_CR66 GJ Olmo (9756_CR27) 2011; 20 G Leon (9756_CR39) 2015; 1504 JG Lee (9756_CR84) 2020; 124 S Capozziello (9756_CR20) 2002; 11 V Dzhunushaliev (9756_CR72) 2010; 73 AH Chamseddine (9756_CR48) 2018; 1806 K Yang (9756_CR62) 2014; 29 JR Ellis (9756_CR8) 1984; 145 RH Cyburt (9756_CR9) 2003; 67 W Buchmuller (9756_CR11) 2003; 574 N Deruelle (9756_CR37) 2014; 1409 N Arkani-Hamed (9756_CR18) 2002; 0208 T Gherghetta (9756_CR56) 2000; 586 S Nojiri (9756_CR22) 2014; 11 SA Appleby (9756_CR29) 2008; 0805 A de la Cruz-Dombriz (9756_CR25) 2006; 74 AO Barvinsky (9756_CR34) 2014; 1401 SD Odintsov (9756_CR45) 2016; 361 C Boehm (9756_CR15) 2004; 92 N Arkani-Hamed (9756_CR92) 2000; 84 N Arkani-Hamed (9756_CR17) 2001; 513 M Giovannini (9756_CR87) 2001; 64 9756_CR70 AH Chamseddine (9756_CR31) 2013; 1311 K Yang (9756_CR58) 2012; 86 B Guo (9756_CR69) 2015; 75 9756_CR78 SA Appleby (9756_CR28) 2007; 654 N Barbosa-Cendejas (9756_CR74) 2006; 73 W-D Guo (9756_CR81) 2020; 800 L Covi (9756_CR12) 1999; 82 A Golovnev (9756_CR36) 2014; 728 TG Rizzo (9756_CR57) 2010; 1256 N Yoshida (9756_CR4) 2003; 591 A Capolupo (9756_CR26) 2008; 23 Q-Y Xie (9756_CR89) 2021; 13 SH Hansen (9756_CR5) 2004; 600 D Bazeia (9756_CR85) 2015; 743 AR Solomon (9756_CR49) 2019; 794 VK Oikonomou (9756_CR42) 2016; 2 JM Bardeen (9756_CR88) 1980; 22 W-H Tan (9756_CR82) 2016; 116 S Capozziello (9756_CR23) 2011; 509 VI Afonso (9756_CR67) 2006; 634 T Falk (9756_CR7) 1994; 339 L Randall (9756_CR52) 1999; 83 AH Chamseddine (9756_CR32) 2014; 1406 T Shiromizu (9756_CR55) 2000; 62 V Faraoni (9756_CR30) 2007; 75 V Afonso (9756_CR68) 2007; 658 P Kanti (9756_CR59) 1999; 468 K Agashe (9756_CR61) 2015; 1506 W Hu (9756_CR24) 2007; 76 AV Astashenok (9756_CR50) 2015; 32 Q-M Fu (9756_CR86) 2019; 100 JL Feng (9756_CR10) 2003; 68 D Momeni (9756_CR33) 2015; 12 O Arias (9756_CR73) 2002; 643 Y-X Liu (9756_CR71) 2010; 90 Y Zhong (9756_CR80) 2018; 78 |
References_xml | – reference: ZhongYLiuY-XEur. Phys. J. C2016763212016EPJC...76..321ZarXiv:1507.00630 – reference: ChaichianMKlusonJOksanenMTureanuAJHEP201414121022014JHEP...12..102CarXiv:1404.4008 – reference: LiuY-XZhongYYangKEPL201090510012010EL.....9051001LarXiv:0907.1952 – reference: DzhunushalievVFolomeevVMinamitsujiMRep. Prog. Phys.2010730669012010RPPh...73f6901DarXiv:0904.1775 – reference: A.G. Riess et al., Supernova Search Team Collaboration. Astron. J. 116, 1009 (1998). arXiv:astro-ph/9805201 – reference: AstashenokAVOdintsovSDOikonomouVKClass. Quantum Gravity2015321850072015CQGra..32r5007AarXiv:1504.04861 – reference: GuB-MGuoBYuHLiuY-XPhys. Rev. D2015920240112015PhRvD..92b4011G3441866arXiv:1411.3241 – reference: ShiromizuTMaedaKSasakiMPhys. Rev. D2000620240122000PhRvD..62b4012S1790750arXiv:gr-qc/9910076 – reference: BazeiaDGomesARLosanoLInt. J. Mod. Phys. A20092411352009IJMPA..24.1135BarXiv:0708.3530 – reference: GuoBLiuY-XYangKEur. Phys. J. C201575632015EPJC...75...63GarXiv:1405.0074 – reference: de la Cruz-DombrizADobadoAPhys. Rev. D2006740875012006PhRvD..74h7501DarXiv:gr-qc/0607118 – reference: SolomonARVardanyanVAkramiYPhys. Lett. B20197941352019PhLB..794..135S3957488arXiv:1902.08533 – reference: AfonsoVIBazeiaDLosanoLPhys. Lett. B20066345262006PhLB..634..526A2210860arXiv:hep-th/0601069 – reference: CoviLKimJERoszkowskiLPhys. Rev. Lett.19998241801999PhRvL..82.4180CarXiv:hep-ph/9905212 – reference: FuQ-MYuHZhaoLLiuY-XPhys. Rev. D20191001240572019PhRvD.100l4057F4050373arXiv:1907.12049 – reference: AfonsoVBazeiaDMenezesRPetrovAYPhys. Lett. B2007658712007PhLB..658...71A2414272arXiv:0710.3790 – reference: EllisJRKimJENanopoulosDVPhys. Lett. B19841451811984PhLB..145..181E – reference: Arkani-HamedNCohenAGGeorgiHPhys. Lett. B20015132322001PhLB..513..232AarXiv:hep-ph/0105239 – reference: RandallLSundrumRPhys. Rev. Lett.19998346901999PhRvL..83.4690R1725958arXiv:hep-th/9906064 – reference: FengJLRajaramanATakayamaFPhys. Rev. D2003680635042003PhRvD..68f3504FarXiv:hep-ph/0306024 – reference: HansenSHHaimanZAstrophys. J.2004600262004ApJ...600...26HarXiv:astro-ph/0305126 – reference: MomeniDMyrzakulovRGüdekliEInt. J. Geom. Methods Mod. Phys.20151215501013415911arXiv:1502.00977 – reference: Arkani-HamedNDimopoulosSDvaliGKaloperNPhys. Rev. Lett.2000845862000PhRvL..84..586AarXiv:hep-th/9907209 – reference: L. Covi, L. Roszkowski, R.R. de Austri, M. Small, arXiv:hep-ph/0402240 – reference: GuoW-DZhongYYangKSuiT-TLiuY-XPhys. Lett. B20208001350994033663arXiv:1805.05650 – reference: BarvinskyAOJCAP201414010142014JCAP...01..014BarXiv:1311.3111 – reference: KantiPKoganIIOliveKAPospelovMPhys. Rev. D2000611060042000PhRvD..61j6004K1790779arXiv:hep-ph/9912266 – reference: NojiriSOdintsovSDInt. J. Geom. Methods Mod. Phys.200741152303815arXiv:hep-th/0601213 – reference: XieQ-YFuQ-MSuiT-TZhaoLZhongYFirst-order formalism and thick branes in mimetic gravitySymmetry2021131345arXiv:2102.10251 – reference: OikonomouVKUniverse20162102016Univ....2...10OarXiv:1511.09117 – reference: CognolaGMyrzakulovRSebastianiLVagnozziSZerbiniSClass. Quantum Gravity2016332250142016CQGra..33v5014CarXiv:1601.00102 – reference: CapozzielloSInt. J. Mod. Phys. D2002114832002IJMPD..11..483C – reference: RandallLSundrumRPhys. Rev. Lett.19998333701999PhRvL..83.3370R1744714arXiv:hep-ph/9905221 – reference: BoehmCHooperDSilkJCasseMPhys. Rev. Lett.2004921013012004PhRvL..92j1301BarXiv:astro-ph/0309686 – reference: AgasheKAzatovACuiYRandallLSonMJHEP201515061962015JHEP...06..196AarXiv:1412.6468 – reference: OlmoGJInt. J. Mod. Phys. D2011204132011IJMPD..20..413O2830065arXiv:1101.3864 – reference: Barbosa-CendejasNHerrera-AguilarAPhys. Rev. D2006730840222006PhRvD..73h4022B2221386arXiv:hep-th/0603184 – reference: GremmMPhys. Lett. B20004784342000PhLB..478..434GarXiv:hep-th/9912060 – reference: FalkTOliveKASrednickiMPhys. Lett. B19943392481994PhLB..339..248FarXiv:hep-ph/9409270 – reference: Y.-X. Liu, Introduction to Extra Dimensions and Thick Braneworlds. arXiv:1707.08541 – reference: Arkani-HamedNCohenAGGregoireTWackerJGJHEP200202080202002JHEP...08..020AarXiv:hep-ph/0202089 – reference: Planck collaboration, P. A. R. Ade et al., Astron. Astrophys. 594, A13 (2016). arXiv:1502.01589 – reference: CapozzielloSDe LaurentisMPhys. Rep.20115091672011PhR...509..167C2869690arXiv:1108.6266 – reference: LeonGSaridakisENJCAP201515040312015JCAP...04..031LarXiv:1501.00488 – reference: CoviLKimHBKimJERoszkowskiLJHEP200101050332001JHEP...05..033CarXiv:hep-ph/0101009 – reference: ChamseddineAHMukhanovVVikmanAJCAP201414060172014JCAP...06..017CarXiv:1403.3961 – reference: G. German, A. Herrera-Aguilar, D. Malagon-Morejon, I. Quiros, R. Rocha, Phys. Rev. D 89, 026004 (2014). arXiv:1301.6444 – reference: Cartas-FuentevillaREscalanteAGermanGHerrera-AguilarAMora-LunaRRJCAP201616050262016JCAP...05..026CarXiv:1412.8710 – reference: CapolupoACapozzielloSVitielloGInt. J. Mod. Phys. A20082349792008IJMPA..23.4979CarXiv:0705.0319 – reference: NojiriSOdintsovSDInt. J. Geom. Methods Mod. Phys.20141114600063189735arXiv:1306.4426 – reference: AriasOCardenasRQuirosINucl. Phys. B20026431872002NuPhB.643..187AarXiv:hep-th/0202130 – reference: RubakovVAPhys. Usp.2001448712001PhyU...44..871RarXiv:hep-ph/0104152 – reference: FaraoniVPhys. Rev. D2007750673022007PhRvD..75f7302F2312202arXiv:gr-qc/070304 – reference: BOSS collaboration, S. Alam et al., Mon. Not. R. Astron. Soc. 470, 2617 (2017). arXiv:1607.03155 – reference: ChamseddineAHMukhanovVJHEP201313111352013JHEP...11..135CarXiv:1308.5410 – reference: ChamseddineAHMukhanovVJHEP201818060602018JHEP...06..060CarXiv:1805.06283 – reference: MatsumotoJOdintsovSDSushkovSVPhys. Rev. D2015910640622015PhRvD..91f4062M3415327arXiv:1501.02149 – reference: YangKLiuY-XZhongYDuX-LWeiS-WPhys. Rev. D2012861275022012PhRvD..86l7502YarXiv:1212.2735 – reference: MomeniDAltaibayevaAMyrzakulovRInt. J. Geom. Methods Mod. Phys.20141114500913275817arXiv:1407.5662 – reference: N. Barbosa-Cendejas, A. Herrera-Aguilar, M.A. Reyes, C. Schubert, Phys. Rev. D 77, 126013 (2008). arXiv:0709.3552 – reference: TanW-HDuA-BDongW-CYangS-QShaoC-GGuanS-GWangQ-LZhanB-FLuoP-STuL-CLuoJPhys. Rev. Lett.20201240513012020PhRvL.124e1301T – reference: DeruelleNRuaJJCAP201414090022014JCAP...09..002DarXiv:1407.0825 – reference: GiovanniniMPhys. Rev. D2001640640232001PhRvD..64f4023G1857423arXiv:hep-th/0106041 – reference: CsakiCErlichJHollowoodTJShirmanYNucl. Phys. B20005813092000NuPhB.581..309CarXiv:hep-th/0001033 – reference: BergstromLRep. Prog. Phys.2000637932000RPPh...63..793BarXiv:hep-ph/0002126 – reference: KimJEKyaeBLeeHMPhys. Rev. Lett.20018642232001PhRvL..86.4223K1831641arXiv:hep-th/0011118 – reference: CyburtRHEllisJRFieldsBDOliveKAPhys. Rev. D2003671035212003PhRvD..67j3521CarXiv:astro-ph/0211258 – reference: BuchmullerWHamaguchiKRatzMPhys. Lett. B20035741562003PhLB..574..156BarXiv:hep-ph/0307181 – reference: TanW-HYangS-QShaoC-GLiJDuA-BZhanB-FWangQ-LLuoP-STuL-CLuoJPhys. Rev. Lett.20161161311012016PhRvL.116m1101T – reference: D. Hooper, F. Ferrer, C. Boehm, J. Silk, J. Paul, N.W. Evans, M. Casse, arXiv:astro-ph/0311150 – reference: RabochayaYZerbiniSEur. Phys. J. C201676852016EPJC...76...85RarXiv:1509.03720 – reference: LiuHLuHWangZ-LJHEP201212020832012JHEP...02..083LarXiv:1111.6602 – reference: DavoudiaslHHewettJLRizzoTGPhys. Lett. B2000473432000PhLB..473...43D1743118arXiv:hep-ph/9911262 – reference: GolovnevAPhys. Lett. B2014728392014PhLB..728...39GarXiv:1310.2790 – reference: DeWolfeOFreedmanDZGubserSSKarchAPhys. Rev. D2000620460082000PhRvD..62d6008D1803785arXiv:hep-th/9909134 – reference: ZhongYZhongYZhangY-PLiuY-XEur. Phys. J. C201878452018EPJC...78...45ZarXiv:1711.09413 – reference: OdintsovSDOikonomouVKAstrophys. Space Sci.20163612362016Ap&SS.361..236OarXiv:1602.05645 – reference: DzhunushalievVFolomeevVKleihausBKunzJJHEP201010041302010JHEP...04..130DarXiv:0912.2812 – reference: C. Csa´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{a}$$\end{document}ki, TASI Lectures on Extra Dimensions and Branes. arXiv:hep-ph/0404096 – reference: SebastianiLVagnozziSMyrzakulovRAdv. High Energy Phys.201720173156915arXiv:1612.08661 – reference: BazeiaDLobaoASMenezesRPhys. Lett. B2015743982015PhLB..743...98B3327212arXiv:1502.04757 – reference: ApplebySABattyeRAPhys. Lett. B200765472007PhLB..654....7A2400600arXiv:0705.3199 – reference: YoshidaNSokasianAHernquistLSpringelVAstrophys. J. Lett.2003591L12003ApJ...591L...1YarXiv:astro-ph/0303622 – reference: GherghettaTPomarolANucl. Phys. B20005861412000NuPhB.586..141GarXiv:hep-ph/0003129 – reference: YangKZhongYLiuY-XWeiS-WInt. J. Mod. Phys. A20142914501202014IJMPA..2950120YarXiv:1108.5436 – reference: HuWSawickiIPhys. Rev. D2007760640042007PhRvD..76f4004HarXiv:0705.1158 – reference: LeeJGAdelbergerEGCookTSFleischerSMHeckelBRPhys. Rev. Lett.20201241011012020PhRvL.124j1101LarXiv:2002.11761 – reference: KantiPKoganIIOliveKAPospelovMPhys. Lett. B1999468311999PhLB..468...31K1731390arXiv:hep-ph/9909481 – reference: ChamseddineAHMukhanovVJHEP201818060622018JHEP...06..062CarXiv:1805.06598 – reference: K.A. Bronnikov, A.A. Popov, S.G. Rubin, Inhomogeneous compact extra dimensions and de Sitter cosmology. arXiv:2004.03277 – reference: RosenbergLJvan BibberKAPhys. Rep.200032512000PhR...325....1R – reference: ApplebySABattyeRAJCAP200808050192008JCAP...05..019AarXiv:0803.1081 – reference: RizzoTGAIP Conf. Proc.20101256272010AIPC.1256...27RarXiv:1003.1698 – reference: MyrzakulovRSebastianiLGen. Relativ. Gravit.201547892015GReGr..47...89MarXiv:1503.04293 – reference: BardeenJMPhys. Rev. D19802218821980PhRvD..22.1882B590395 – ident: 9756_CR14 – volume: 361 start-page: 236 year: 2016 ident: 9756_CR45 publication-title: Astrophys. Space Sci. doi: 10.1007/s10509-016-2826-9 – volume: 4 start-page: 115 year: 2007 ident: 9756_CR21 publication-title: Int. J. Geom. Methods Mod. Phys. doi: 10.1142/S0219887807001928 – volume: 591 start-page: L1 year: 2003 ident: 9756_CR4 publication-title: Astrophys. J. Lett. doi: 10.1086/376963 – volume: 67 start-page: 103521 year: 2003 ident: 9756_CR9 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.67.103521 – volume: 509 start-page: 167 year: 2011 ident: 9756_CR23 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2011.09.003 – ident: 9756_CR66 – volume: 478 start-page: 434 year: 2000 ident: 9756_CR65 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(00)00303-8 – volume: 1311 start-page: 135 year: 2013 ident: 9756_CR31 publication-title: JHEP doi: 10.1007/JHEP11(2013)135 – volume: 92 start-page: 024011 year: 2015 ident: 9756_CR79 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.024011 – volume: 1409 start-page: 002 year: 2014 ident: 9756_CR37 publication-title: JCAP doi: 10.1088/1475-7516/2014/09/002 – volume: 13 start-page: 1345 year: 2021 ident: 9756_CR89 publication-title: Symmetry doi: 10.3390/sym13081345 – volume: 92 start-page: 101301 year: 2004 ident: 9756_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.101301 – volume: 32 start-page: 185007 year: 2015 ident: 9756_CR50 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/32/18/185007 – volume: 68 start-page: 063504 year: 2003 ident: 9756_CR10 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.68.063504 – volume: 78 start-page: 45 year: 2018 ident: 9756_CR80 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-018-5527-4 – ident: 9756_CR91 – volume: 513 start-page: 232 year: 2001 ident: 9756_CR17 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(01)00741-9 – volume: 1504 start-page: 031 year: 2015 ident: 9756_CR39 publication-title: JCAP doi: 10.1088/1475-7516/2015/04/031 – volume: 743 start-page: 98 year: 2015 ident: 9756_CR85 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2015.02.037 – volume: 74 start-page: 087501 year: 2006 ident: 9756_CR25 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.74.087501 – volume: 47 start-page: 89 year: 2015 ident: 9756_CR40 publication-title: Gen. Relativ. Gravit. doi: 10.1007/s10714-015-1930-4 – volume: 1806 start-page: 062 year: 2018 ident: 9756_CR48 publication-title: JHEP doi: 10.1007/JHEP06(2018)062 – volume: 116 start-page: 131101 year: 2016 ident: 9756_CR82 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.131101 – ident: 9756_CR94 doi: 10.1103/PhysRevD.77.126013 – volume: 82 start-page: 4180 year: 1999 ident: 9756_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.4180 – volume: 62 start-page: 024012 year: 2000 ident: 9756_CR55 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.62.024012 – volume: 100 start-page: 124057 year: 2019 ident: 9756_CR86 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.124057 – ident: 9756_CR2 – volume: 11 start-page: 1450091 year: 2014 ident: 9756_CR38 publication-title: Int. J. Geom. Methods Mod. Phys. doi: 10.1142/S0219887814500911 – volume: 339 start-page: 248 year: 1994 ident: 9756_CR7 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(94)90639-4 – volume: 124 start-page: 101101 year: 2020 ident: 9756_CR84 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.101101 – volume: 84 start-page: 586 year: 2000 ident: 9756_CR92 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.586 – volume: 1412 start-page: 102 year: 2014 ident: 9756_CR35 publication-title: JHEP doi: 10.1007/JHEP12(2014)102 – volume: 61 start-page: 106004 year: 2000 ident: 9756_CR60 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.61.106004 – volume: 600 start-page: 26 year: 2004 ident: 9756_CR5 publication-title: Astrophys. J. doi: 10.1086/379636 – volume: 75 start-page: 067302 year: 2007 ident: 9756_CR30 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.75.067302 – volume: 794 start-page: 135 year: 2019 ident: 9756_CR49 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2019.05.045 – volume: 76 start-page: 85 year: 2016 ident: 9756_CR44 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-016-3926-y – volume: 654 start-page: 7 year: 2007 ident: 9756_CR28 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2007.08.037 – volume: 468 start-page: 31 year: 1999 ident: 9756_CR59 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(99)01218-6 – ident: 9756_CR16 – volume: 581 start-page: 309 year: 2000 ident: 9756_CR63 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(00)00271-6 – volume: 658 start-page: 71 year: 2007 ident: 9756_CR68 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2007.10.038 – volume: 643 start-page: 187 year: 2002 ident: 9756_CR73 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(02)00691-0 – volume: 91 start-page: 064062 year: 2015 ident: 9756_CR41 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.064062 – volume: 20 start-page: 413 year: 2011 ident: 9756_CR27 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S0218271811018925 – volume: 0805 start-page: 019 year: 2008 ident: 9756_CR29 publication-title: JCAP doi: 10.1088/1475-7516/2008/05/019 – ident: 9756_CR1 – volume: 63 start-page: 793 year: 2000 ident: 9756_CR3 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/63/5/2r3 – volume: 0105 start-page: 033 year: 2001 ident: 9756_CR13 publication-title: JHEP doi: 10.1088/1126-6708/2001/05/033 – volume: 2017 start-page: 3156915 year: 2017 ident: 9756_CR46 publication-title: Adv. High Energy Phys. doi: 10.1155/2017/3156915 – volume: 728 start-page: 39 year: 2014 ident: 9756_CR36 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2013.11.026 – ident: 9756_CR70 doi: 10.1103/PhysRevD.89.026004 – volume: 24 start-page: 1135 year: 2009 ident: 9756_CR93 publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X09043067 – volume: 325 start-page: 1 year: 2000 ident: 9756_CR6 publication-title: Phys. Rep. doi: 10.1016/S0370-1573(99)00045-9 – volume: 1406 start-page: 017 year: 2014 ident: 9756_CR32 publication-title: JCAP doi: 10.1088/1475-7516/2014/06/017 – volume: 76 start-page: 064004 year: 2007 ident: 9756_CR24 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.76.064004 – volume: 12 start-page: 1550101 year: 2015 ident: 9756_CR33 publication-title: Int. J. Geom. Methods Mod. Phys. doi: 10.1142/S0219887815501017 – volume: 29 start-page: 1450120 year: 2014 ident: 9756_CR62 publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X14501206 – volume: 11 start-page: 483 year: 2002 ident: 9756_CR20 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S0218271802002025 – volume: 83 start-page: 3370 year: 1999 ident: 9756_CR51 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.3370 – volume: 86 start-page: 4223 year: 2001 ident: 9756_CR53 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.4223 – ident: 9756_CR19 – volume: 11 start-page: 1460006 year: 2014 ident: 9756_CR22 publication-title: Int. J. Geom. Methods Mod. Phys. doi: 10.1142/S0219887814600068 – volume: 23 start-page: 4979 year: 2008 ident: 9756_CR26 publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X08042857 – volume: 90 start-page: 51001 year: 2010 ident: 9756_CR71 publication-title: EPL doi: 10.1209/0295-5075/90/51001 – ident: 9756_CR78 – volume: 145 start-page: 181 year: 1984 ident: 9756_CR8 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(84)90334-4 – volume: 1806 start-page: 060 year: 2018 ident: 9756_CR47 publication-title: JHEP doi: 10.1007/JHEP06(2018)060 – volume: 44 start-page: 871 year: 2001 ident: 9756_CR90 publication-title: Phys. Usp. doi: 10.1070/PU2001v044n09ABEH001000 – volume: 0208 start-page: 020 year: 2002 ident: 9756_CR18 publication-title: JHEP – volume: 124 start-page: 051301 year: 2020 ident: 9756_CR83 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.051301 – volume: 62 start-page: 046008 year: 2000 ident: 9756_CR64 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.62.046008 – volume: 76 start-page: 321 year: 2016 ident: 9756_CR77 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-016-4163-0 – volume: 86 start-page: 127502 year: 2012 ident: 9756_CR58 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.86.127502 – volume: 473 start-page: 43 year: 2000 ident: 9756_CR54 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(99)01430-6 – volume: 75 start-page: 63 year: 2015 ident: 9756_CR69 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-015-3273-4 – volume: 2 start-page: 10 year: 2016 ident: 9756_CR42 publication-title: Universe doi: 10.3390/universe2020010 – volume: 33 start-page: 225014 year: 2016 ident: 9756_CR43 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/33/22/225014 – volume: 800 start-page: 135099 year: 2020 ident: 9756_CR81 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2019.135099 – volume: 1202 start-page: 083 year: 2012 ident: 9756_CR75 publication-title: JHEP doi: 10.1007/JHEP02(2012)083 – volume: 1605 start-page: 026 year: 2016 ident: 9756_CR95 publication-title: JCAP doi: 10.1088/1475-7516/2016/05/026 – volume: 1401 start-page: 014 year: 2014 ident: 9756_CR34 publication-title: JCAP doi: 10.1088/1475-7516/2014/01/014 – volume: 634 start-page: 526 year: 2006 ident: 9756_CR67 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2006.02.017 – volume: 22 start-page: 1882 year: 1980 ident: 9756_CR88 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.22.1882 – volume: 73 start-page: 084022 year: 2006 ident: 9756_CR74 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.73.084022 – volume: 1506 start-page: 196 year: 2015 ident: 9756_CR61 publication-title: JHEP doi: 10.1007/JHEP06(2015)196 – volume: 1004 start-page: 130 year: 2010 ident: 9756_CR76 publication-title: JHEP doi: 10.1007/JHEP04(2010)130 – volume: 83 start-page: 4690 year: 1999 ident: 9756_CR52 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.4690 – volume: 1256 start-page: 27 year: 2010 ident: 9756_CR57 publication-title: AIP Conf. Proc. doi: 10.1063/1.3473866 – volume: 586 start-page: 141 year: 2000 ident: 9756_CR56 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(00)00392-8 – volume: 64 start-page: 064023 year: 2001 ident: 9756_CR87 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.64.064023 – volume: 574 start-page: 156 year: 2003 ident: 9756_CR11 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2003.09.017 – volume: 73 start-page: 066901 year: 2010 ident: 9756_CR72 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/73/6/066901 |
SSID | ssj0002408 |
Score | 2.4338596 |
Snippet | In this paper, thick branes generated by the mimetic scalar field with Lagrange multiplier formulation are investigated. We give three typical thick brane... Abstract In this paper, thick branes generated by the mimetic scalar field with Lagrange multiplier formulation are investigated. We give three typical thick... |
SourceID | doaj proquest gale crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Astronomy Astrophysics and Cosmology Asymptotic properties Branes Elementary Particles Gravitons Hadrons Harmonic oscillators Heavy Ions Lagrange multiplier Mathematical analysis Measurement Science and Instrumentation Nuclear Energy Nuclear Physics Perturbation Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Regular Article - Theoretical Physics Scalars String Theory Tensors Volcanoes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxUxEA5SKHgRrYqrbQml4GlpNslmk4vQFh-tUA9qobeQn1K1-4r7-v87k82rlh7exWs2C5svs5kZMt83hBxqIyOLyrVBCYGi2kNrcka5O5l8Tkmn0rTv4rM6u5Sfrvqrf1p9YU3YLA88A3ekIoTU3DPtJJMxadebIJ3nKbqBseDx9AWft06m6hmMwl2FVyRkq5iUtbILsomjdPsjIHOO9bzF-gRmhl61-oFfKvL9jw_pR7elxQktnpNnNXqkx_NXvyBP0rhDtksVZ5hekg8L5HXMcv00FVYfnWATEl1mCpEexeL2nxQS5DHR65HeXN8gh5FiDyKIxl-Ry8XHb6dnbW2Q0AYIm1atDH3ksRtUEJyFPvMIyYKDgMdBlJLxSpAn1xknJAevbryITmeeRDS5k9EM4jXZGpdjekMoDGnvfIA9VbKPxqfcGwWuKjHBcx4aotbw2FDVw7GJxS87M5uZRVztjKsFXG3B1eqGsPsXb2cBjc2vnCD-99NRAbsMgF3Yahd2k1005AB3z6LGxYhFNN_d3TTZ869f7LHSkIcpNXQNeV8n5SWsJrjKSQBMUBbrwczdtRXY-pdPlqPWjYH0RDakW1vG38cblvn2fyzzHXnK0YoLO3KXbK1-36U9CJNWfr_8EX8AhbIJ_A priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dSxwxEA_tSaEv0k-61pZQCn1azGaz2eSlRYuHCpViK_gWsvkQW9093fP_70w2dyJCfc0mC5mZzEcy8xtCPistPPPSlk7WNYJqt6WOEeHuROhiCCqkpn0_juXBqTg6a87yhduY0ypXOjEpaj84vCPf4YgrosEVFN8W1yV2jcLX1dxC4ynZABWs1Ixs7O0f_zxZ62IE8Er1RbUoJRMiZ3hBVLETFn8cVtCxhpeYp8B028hS3bNPCcb_obJ-8GqajNH8BdnMXiTdndj-kjwJ_SvyLGVzuvE1-TrH-o4Jtp-GVN1HR2BGoEOk4PFRTHL_SyFQ7gO96OnVxRXWMlLsRQRe-RtyOt___f2gzI0SSgfu07IUrvHcV610NWeuidxD0GDB8bHgrUR8GuTBVtrWgoN1113trYo81F7HSnjd1m_JrB_68I5QGFKd7RzwVorG6y7ERkswWYHVPMa2IHJFHuMyijg2s7g0U4UzM0hXM9HVAF1NoqtRBWHrhYsJSOPxJXtI__V0RMJOA8PNuckHy0gPIRfvmLKCCR-UbbQTtuPB25Yx1xXkE3LPINZFj8k05_Z2HM3hrxOzKxXEY1K2VUG-5ElxgN04m2sTgCYIj3Vv5vZKCkw-7aO5k82CVCvJuPv8yDa3_v_L9-Q5R_lM9Y_bZLa8uQ0fwBFadh-ztP8DF6gCSA priority: 102 providerName: ProQuest |
Title | Fundamental energy scale of the thick brane in mimetic gravity |
URI | https://link.springer.com/article/10.1140/epjc/s10052-021-09756-8 https://www.proquest.com/docview/2594897294 https://doaj.org/article/6d4872b08a404de8a59c4ab2eda700cb |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_uA8EX8ROr5xJE8KlcmqZp8iLsLbeegoecLtxbSPMhp173sHv_vzPZ7upx4IEvhbZJIZNJZqaZ328A3mgjAw_KlV7VNZFqt6VJiejuZOxSjDrmon2fTtXJQn48b8534HCDhfn7_B59_8N49d0Tzo03oqRsAm7aRpV6F_abqm6pVsNMzbZbL_F1ZThRLUvFpRwTuv7xoRvmKLP2396bbx2SZtszfwgPRqeRTdez_Ah2Yv8Y7uXkTT88gXdzgnOsWfpZzGA-NqDsI1smhg4eo5z2Hwzj4j6yi55dXlwSdJFR6SF0wp_CYn78dXZSjnURSo_e0qqUvgkiVK3yteC-SSJgjODQz3HonCQ6CRTRVcbVUqAxN10dnE4i1sGkSgbT1s9gr1_28TkwfKQ713mcSiWbYLqYGqPQQkVei5TaAtRGPNaPpOFUu-KnXQOauSW52rVcLcrVZrlaXQDfdrxa82bc3eWI5L9tTsTX-QHqgx3XkVUBIyzRce0klyFq1xgvXSdicC3nvivgNc2eJWqLnnJnvrnrYbAfvpzZqdIYfinVVgW8HRulJY7GuxGKgDIhNqwbLQ82WmDHxT1YQRQ3BqMSWUC10Yw_r-8Y5ov_6PMS7gtS2oyBPIC91a_r-AqdoVU3gV09fz-B_aPj089neDcTcpIXxST_XsDrQkx_A9A9Aok |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ikCBSwE4hTVcRwnPgAqj2WXPg7QSr25jh9VgSZLsxXiT_EbmXGSrapK9NSrY1vyeOyZief7hpCXlRKOOWlSK_McSbXLVIWAdHfC18H7yseifds7cronvuwX-yvk74iFwbTK8U6MF7VrLf4jX-fIK6LAFRTv5r9SrBqFr6tjCY1eLTb9n98QsnVvZh9hf19xPvm0-2GaDlUFUgu-xiIVtnDcZaW0OWe2CNyBh23ASzBg2gO-o3FvMmVywcEUqjp3pgrc506FTDhV5jDvNXJd5GDJEZk--by8-ZEuLKKZcpFKJsSQTwYxzLqff7eI12MFTzErgqmykGl1zhrGogEXTcOFN9po-iZ3yO3BZ6UbvZLdJSu-uUduxNxR290nbyeIJumLBFAfsYS0g633tA0U_EuKKfU_KITljadHDT0-OkbkJMXKRxADPCB7VyLAh2S1aRv_iFBoqmpTW9AkKQqnah8KJcFAepbzEMqEyFE82g6c5Vg646fu8dRMo1x1L1cNctVRrrpKCFsOnPe0HZcPeY_yX3ZH3u3Y0J4c6uEYa-kgwOM1q4xgwvnKFMoKU3PvTMmYrRPyAndPI7NGg6k7h-a06_Ts21e9ISuI_qQss4S8HjqFFlZjzYCEAJkgGde5nmujFujhbun02UlISDZqxtnnS5b5-P9TPic3p7vbW3prtrP5hNziqKsReblGVhcnp_4puGCL-lnUe0oOrvqg_QMruDxy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE-xUMBCIE5RvY7jxAdALe2qS2FVFSr1Zhw_qgLNLs1WiL_Gr2Mmj62qSvTUa-JEyvizZyae7xuAV4WWnntlE6fSlES180THSHJ3MpQxhCI0Tfs-T9XOgfx4mB2uwN-eC0Nllf2e2GzUfuboH_m6IF0RjaGgXI9dWcTe1vj9_FdCHaTopLVvp9FCZDf8-Y3pW_12soVz_VqI8fbXDztJ12EgcRh3LBLpMi_8KFcuFdxlUXiMti1GDBbdfKQzNRHsSNtUCnSLuky9LaIIqddxJL3OU3zvDVjNKSsawOrm9nRvf-kHSDys4TalMlFcyq66DDOa9TD_7oi9xzORUI0E13mmkuKCb2xaCFx2FJdObBtHOL4Ld7oIlm20kLsHK6G6DzebSlJXP4B3Y-KWtC0DWGiYhaxGIAQ2iwyjTUYF9j8YJulVYMcVOzk-IR4loz5ImBE8hINrMeEjGFSzKjwGhpeK0pYOcaVk5nUZYqYVusvAUxFjPgTVm8e4TsGcGmn8NC27mhuyq2ntatCuprGrKYbAlw_OWxGPqx_ZJPsvh5MKd3NhdnpkukVtlMd0T5S8sJJLHwqbaSdtKYK3OeeuHMJLmj1DOhsVIfbIntW1mXzZNxuqwFxQqXw0hDfdoDjDr3G240WgTUia68LItR4FpttpanO-LoYw6pFxfvuKz3zy_1e-gFu4yMynyXT3KdwWBNWGhrkGg8XpWXiG8diifN4Bn8G3615r_wCSUkIE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fundamental+energy+scale+of+the+thick+brane+in+mimetic+gravity&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Sui%2C+Tao-Tao&rft.au=Zhang%2C+Yu-Peng&rft.au=Gu%2C+Bao-Min&rft.au=Liu%2C+Yu-Xiao&rft.date=2021-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1434-6044&rft.eissn=1434-6052&rft.volume=81&rft.issue=11&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-021-09756-8&rft.externalDocID=10_1140_epjc_s10052_021_09756_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6044&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6044&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6044&client=summon |