Non-Markovian speedup evolution of a center massive particle in two-dimensional environmental model

A two-dimensional ray model is introduced to realize the non-Markovian speedup evolution of a center massive particle gravitationally coupled to a controllable environment (multilayer arrangement of the massive particles). By controlling the environment, for instance by choosing a judicious mass of...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. C, Particles and fields Vol. 83; no. 2; pp. 146 - 11
Main Authors Zhang, Ying-Jie, Wang, Qi, Yan, Wei-Bin, Man, Zhong-Xiao, Xia, Yun-Jie
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2023
Springer
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A two-dimensional ray model is introduced to realize the non-Markovian speedup evolution of a center massive particle gravitationally coupled to a controllable environment (multilayer arrangement of the massive particles). By controlling the environment, for instance by choosing a judicious mass of the environmental particles or by changing the separation distance of each massive particle, two dynamical crossover behaviors from Markovian to non-Markovian and from no-speedup to speedup are achieved due to the gravitational interactions between the system particle and environmental particles. It is obvious that the critical mass of the environmental particles or the critical separation distance for these two dynamical crossover behaviors restrict each other directly. The larger the value of the mass of the environmental particles is, the smaller the value of the critical separation distance should be requested. In addition, it should be emphasized that the non-Markovian dynamics is the principal physical reason for the speedup evolution of the system massive particle. Particularly, the non-Markovianity of the dynamics process of the system massive particle in the even ray case has better correspondence with the quantum speed limit time than that in the singular ray case.
AbstractList A two-dimensional ray model is introduced to realize the non-Markovian speedup evolution of a center massive particle gravitationally coupled to a controllable environment (multilayer arrangement of the massive particles). By controlling the environment, for instance by choosing a judicious mass of the environmental particles or by changing the separation distance of each massive particle, two dynamical crossover behaviors from Markovian to non-Markovian and from no-speedup to speedup are achieved due to the gravitational interactions between the system particle and environmental particles. It is obvious that the critical mass of the environmental particles or the critical separation distance for these two dynamical crossover behaviors restrict each other directly. The larger the value of the mass of the environmental particles is, the smaller the value of the critical separation distance should be requested. In addition, it should be emphasized that the non-Markovian dynamics is the principal physical reason for the speedup evolution of the system massive particle. Particularly, the non-Markovianity of the dynamics process of the system massive particle in the even ray case has better correspondence with the quantum speed limit time than that in the singular ray case.
Abstract A two-dimensional ray model is introduced to realize the non-Markovian speedup evolution of a center massive particle gravitationally coupled to a controllable environment (multilayer arrangement of the massive particles). By controlling the environment, for instance by choosing a judicious mass of the environmental particles or by changing the separation distance of each massive particle, two dynamical crossover behaviors from Markovian to non-Markovian and from no-speedup to speedup are achieved due to the gravitational interactions between the system particle and environmental particles. It is obvious that the critical mass of the environmental particles or the critical separation distance for these two dynamical crossover behaviors restrict each other directly. The larger the value of the mass of the environmental particles is, the smaller the value of the critical separation distance should be requested. In addition, it should be emphasized that the non-Markovian dynamics is the principal physical reason for the speedup evolution of the system massive particle. Particularly, the non-Markovianity of the dynamics process of the system massive particle in the even ray case has better correspondence with the quantum speed limit time than that in the singular ray case.
ArticleNumber 146
Audience Academic
Author Wang, Qi
Man, Zhong-Xiao
Zhang, Ying-Jie
Yan, Wei-Bin
Xia, Yun-Jie
Author_xml – sequence: 1
  givenname: Ying-Jie
  surname: Zhang
  fullname: Zhang, Ying-Jie
  email: yingjiezhang@qfnu.edu.cn
  organization: Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University
– sequence: 2
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
  organization: Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University
– sequence: 3
  givenname: Wei-Bin
  surname: Yan
  fullname: Yan, Wei-Bin
  organization: Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University
– sequence: 4
  givenname: Zhong-Xiao
  surname: Man
  fullname: Man, Zhong-Xiao
  organization: Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University
– sequence: 5
  givenname: Yun-Jie
  surname: Xia
  fullname: Xia, Yun-Jie
  organization: Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University
BookMark eNqFUstu1DAUtVCRaAe-gUisWKT1K3GyYFFVPEYqIPFYWzfOzchDYgfbGejf19MUQdlUXvj66JxjX99zRk6cd0jIS0bPGZP0Aue9uYiM0oqXlIuSMUHrUjwhp0wKWdYZP_mnfkbOYtxTSrmkzSkxn7wrP0L44Q8WXBFnxH6ZCzz4cUnWu8IPBRQGXcJQTBCjPWAxQ0jWjFhYV6RfvuzthC5mNowFuoMN3mUg5dPkexyfk6cDjBFf3O8b8v3d229XH8rrz--3V5fXpak4T6XsUHHV1A3tjZCGQSONNJWgfJCVGkwrqajbDgGpEhVUylTQtEPX1UPbNaYVG7JdfXsPez0HO0G40R6svgN82On7h2ulul4Z2UDHhGwNtGDanvd9p2rBcpG9Xq1ec_A_F4xJ7_0ScoNRc6VqruqWq8w6X1k7yKbWDT4FMHn1OFmT5zTYjF8qKYTkMntvyOsHgsxJ-DvtYIlRb79-ech9s3JN8DEGHLSxCY5DyZfYUTOqjwHQxwDoNQA6B0DfBUCLrFf_6f98yePKZlXGrHA7DH-bf0x6CwyCyu8
CitedBy_id crossref_primary_10_1103_PhysRevD_111_026007
crossref_primary_10_1103_PhysRevD_108_126011
Cites_doi 10.1103/PhysRevA.63.022101
10.1038/nphys2275
10.1103/PhysRevA.101.052110
10.1016/j.scib.2018.02.017
10.1103/PhysRevA.102.062807
10.1103/PhysRevLett.119.240402
10.1103/PhysRevLett.103.210401
10.1103/PhysRevA.93.020105
10.1103/PhysRevA.88.012105
10.1103/PhysRevD.98.126009
10.1103/PhysRevLett.110.050402
10.1119/1.16940
10.1103/PhysRevA.90.052103
10.1103/PhysRevLett.103.160502
10.1103/PhysRevA.102.040202
10.1103/PhysRevLett.114.233602
10.1126/science.aac6498
10.1038/srep13359
10.1103/PhysRevA.82.022107
10.1103/PhysRevA.89.024101
10.1007/978-3-319-53192-2
10.1038/srep04890
10.1103/RevModPhys.86.153
10.1103/PhysRevD.103.026017
10.1103/PhysRevLett.111.010402
10.1016/S0167-2789(98)00054-2
10.1103/RevModPhys.81.865
10.22331/q-2019-08-05-168
10.1103/PhysRevLett.119.240401
10.1038/s41534-020-0243-y
10.1038/nphys3366
10.1038/s41534-017-0028-0
10.1016/j.physletb.2019.03.015
10.1007/BF00715241
10.1140/epjc/s10052-021-09740-2
10.1103/PhysRevLett.110.050403
10.1140/epjd/e2020-10077-8
ContentType Journal Article
Copyright The Author(s) 2023
COPYRIGHT 2023 Springer
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: COPYRIGHT 2023 Springer
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1140/epjc/s10052-023-11306-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale in Context: Science
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1434-6052
EndPage 11
ExternalDocumentID oai_doaj_org_article_77bd7c48ab1349ca9ac9d2ddb7631d2d
A743342476
10_1140_epjc_s10052_023_11306_3
GroupedDBID -5F
-5G
-A0
-BR
-~X
.86
0R~
199
29G
2JY
30V
4.4
408
409
40D
5GY
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95.
95~
AAFWJ
AAKKN
ABDBF
ABEEZ
ABMNI
ACACY
ACGFS
ACNCT
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AENEX
AFBBN
AFGXO
AFKRA
AFPKN
AFWTZ
AGWIL
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
AZFZN
B0M
BA0
BCNDV
BENPR
BGLVJ
BGNMA
C24
C6C
CCPQU
CS3
CSCUP
DL5
DU5
EAD
EAP
EAS
EBS
EMK
EPL
ER.
ESX
FEDTE
GQ6
GQ8
GROUPED_DOAJ
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HVGLF
HZ~
I-F
I09
IAO
IGS
IHE
ISR
IXC
IZIGR
IZQ
I~X
KDC
KOV
LAS
M4Y
MA-
NB0
O9-
O93
OK1
P62
P9T
PIMPY
QOS
R89
R9I
RED
RID
RNS
RPX
RSV
S27
S3B
SDH
SOJ
SPH
SZN
T13
TN5
TSK
TSV
TUC
TUS
U2A
VC2
WK8
Z45
Z7Y
~8M
AAYXX
CITATION
PHGZM
PHGZT
ROL
PMFND
7U5
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c522t-4be7278680dc34c1a84c4c5302f457fc940369beae0735a57c5a89fbb6f9b8c93
IEDL.DBID DOA
ISSN 1434-6052
1434-6044
IngestDate Wed Aug 27 01:30:42 EDT 2025
Sun Jul 13 03:29:55 EDT 2025
Tue Jun 10 21:22:07 EDT 2025
Fri Jun 27 05:30:52 EDT 2025
Tue Jul 01 01:41:27 EDT 2025
Thu Apr 24 22:56:31 EDT 2025
Fri Feb 21 02:43:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-4be7278680dc34c1a84c4c5302f457fc940369beae0735a57c5a89fbb6f9b8c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/77bd7c48ab1349ca9ac9d2ddb7631d2d
PQID 2776276927
PQPubID 2034659
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_77bd7c48ab1349ca9ac9d2ddb7631d2d
proquest_journals_2776276927
gale_infotracacademiconefile_A743342476
gale_incontextgauss_ISR_A743342476
crossref_citationtrail_10_1140_epjc_s10052_023_11306_3
crossref_primary_10_1140_epjc_s10052_023_11306_3
springer_journals_10_1140_epjc_s10052_023_11306_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Particles and Fields
PublicationTitle The European physical journal. C, Particles and fields
PublicationTitleAbbrev Eur. Phys. J. C
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References BuoninfanteLLambiaseGPetruzzielloLQuantum interference in external gravitational fields beyond general relativityEur. Phys. J. C2021819282021EPJC...81..928B
CampaioliFPollockFAModiKTight, robust, and feasible quantum speed limits for open dynamicsQuantum20193168
MikiDMatsumuraAYamamotoKEntanglement and decoherence of massive particles due to gravityPhys. Rev. D20211032021PhRvD.103b6017M4213212
BoseSSpin entanglement witness for quantum gravityPhys. Rev. Lett.20171192017PhRvL.119x0401B3746326
MandelstamLTammIThe uncertainty relation between energy and time in non-relativistic quantum mechanicsJ. Phys. (USSR)19459249153340060.45003
FeynmannRPMorinigoFMWagnerWGFeynmann Lectures on Gravitation1995BoulderWestview Press
S. Bose, G.V. Morley, arXiv:1810.07045v1 (2018)
MargolusNLevitinLBThe maximum speed of dynamical evolutionPhys. D1998120188
HuYHuJYuHQuantum gravitational interaction between two objects induced by external gravitational radiation fieldsPhys. Rev. D20201012020PhRvD.101f6015H4086266
LuXMWangXGSunCPQuantum Fisher information flow and non-Markovian processes of open systemsPhys. Rev. A2010822010PhRvA..82d2103L
C. Anastopoulos, B.L. Hu, Comment on “A spin entanglement witness for quantum gravity” and on “Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity”. arXiv:1804.11315
PikovskiIZychMCostaFBruknerCUniversal decoherence due to gravitational time dilationNat. Phys.201511668
ChenSLLambertNLiCMMiranowiczAChenYNNoriFQuantifying non-Markovianity with temporal steeringPhys. Rev. Lett.20161162016PhRvL.116b0503C
C.M. DeWitt, Conference on the Role of Gravitation in Physics at the University of North Carolina, Chapel Hill, 1957 (Wright Air Development Center, Air Research and Development Command, United States Air Force, Wright Patterson Air Force Base, Ohio, 1957) (WADC Technical Report No. 57-216, 1957)
TaddeiMMEscherBMDavidovichLde Matos FilhoRLQuantum speed limit for physical processesPhys. Rev. Lett.20131102013PhRvL.110e0402T
PeresATernoDHybrid classical-quantum dynamicsPhys. Rev. A2001632001PhRvA..63b2101P
CiracJIZollerPGoals and opportunities in quantum simulationNat. Phys.20128264
AddisCBrebnerGHaikkaPManiscalcoSCoherence trapping and information backflow in dephasing qubitsPhys. Rev. A2014892014PhRvA..89b4101A
JonesPJKokPGeometric derivation of the quantum speed limitPhys. Rev. A2010822010PhRvA..82b2107J2772011
MarshmanRJMazumdarABoseSLocality and entanglement in table-top testing of the quantum nature of linearized gravityPhys. Rev. A20201012020PhRvA.101e2110M4111219
CimmarustiADYanZPattersonBDCorcosLPOrozcoLADeffnerSEnvironment-assisted speed-up of the field evolution in cavity quantum electrodynamicsPhys. Rev. Lett.20151142015PhRvL.114w3602C
ZhangYJHanWXiaYJCaoJPFanHQuantum speed limit for arbitrary initial statesSci. Rep.201444890
GiovannettiVLloydSMacconeLQuantum limits to dynamical evolutionPhys. Rev. A2003672003PhRvA..67e2109G
VaidmanLMinimum time for the evolution to an orthogonal quantum stateAm. J. Phys.1992601821992AmJPh..60..182V11507811219.81145
van de KampTWMarshmanRJBoseSMazumdarAQuantum gravity witness via entanglement of masses: casimir screening acceleration noise constraints on gravity induced entanglementPhys. Rev. A20201022020PhRvA.102f2807V
DeffnerSLutzEQuantum speed limit for non-Markovian dynamicsPhys. Rev. Lett.20131112013PhRvL.111a0402D
ZychMQuantum Systems Under Gravitational Time Dilation, Thesis2017BerilnSpringer1390.83004
Chau NguyenHBernardsFEntanglement dynamics of two mesoscopic objects with gravitational interactionEur. Phys. J. D202074692020EPJD...74...69N
PengSJObservation of non-Markovianity at room temperature by prolonging entanglement in solidsSci. Bull.201863336
XuZYLuoSYangWLLiuCZhuSQQuantum speedup in a memory environmentPhys. Rev. A2014892014PhRvA..89a2307X
ChristodoulouMRovelliCOn the possibility of laboratory evidence for quantum superposition of geometries. Locality and entanglement in table-top testing of the quantum nature of linearized gravityPhys. Lett. B2019792642019PhLB..792...64C3927926
LevitinLBToffoliTFundamental limit on the rate of quantum dynamics: the unified bound is tightPhys. Rev. Lett.20091032009PhRvL.103p0502L
GeorgescuIMAshhabSNoriFQuantum simulationRev. Mod. Phys.2014861532014RvMP...86..153G
MarlettoCVedralVGravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravityPhys. Rev. Lett.20171192017PhRvL.119x0402M
A. Groβ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta }$$\end{document}ardt, Acceleration noise constraints on gravity-induced entanglement. Phys. Rev. A 102, 040202(R) (2020)
BelenchiaAWaldRMGiacominiFCastro-RuizEBruknerCAspelmeyerMQuantum superposition of massive objects and the quantization of gravityPhys. Rev. D2018982018PhRvD..98l6009B3974317
MarlettoCVedralVWhy we need to quantise everything, including gravitynpj Quantum Inf.20173292017npjQI...3...29M
AnastopoulosCHuBLQuantum superposition of two gravitational cat statesClass. Quantum Gravity2020372020CQGra..37w5012A41926351479.83067
KrisnandaTThamGYPaternostroMPaterekTObservable quantum entanglement due to gravitynpj Quantum Inf.20206122020npjQI...6...12K
del CampoAEgusquizaILPlenioMBHuelgaSFQuantum speed limits in open system dynamicsPhys. Rev. Lett.2013110
AddisCBylickaBChruscinskiDManiscalcoSComparative study of non-Markovianity measures in exactly solvable one- and two-qubit modelsPhys. Rev. A2014902014PhRvA..90e2103A
NetoACKarpatGFanchiniFFInequivalence of correlation-based measures of non-MarkovianityPhys. Rev. A2016942016PhRvA..94c2105N
RivasAHuelgaSFPlenioMBEntanglement and non-Markovianity of quantum evolutionsPhys. Rev. Lett.20101052010PhRvL.105e0403R2673036
FanchiniFFKarpatGCastelanoLKRossattoDZProbing the degree of non-Markovianity for independent and common environmentsPhys. Rev. A2013882013PhRvA..88a2105F
ZhangYJHanWXiaYJCaoJPFanHClassical-driving-assisted quantum speed-upPhys. Rev. A2015912015PhRvA..91c2112Z
HorodeckiRHorodeckiPHorodeckiMHorodeckiKQuantum entanglementRev. Mod. Phys.2009818652009RvMP...81..865H25156191205.81012
LiuHBYangWLAnJHXuZYMechanism for quantum speedup in open quantum systemsPhys. Rev. A201693020105(R)2016PhRvA..93b0105L
ZhangYJZouXBXiaYJGuoGCDifferent entanglement dynamical behaviors due to initial system-environment correlationsPhys. Rev. A2010822010PhRvA..82b2108Z
De WittBA Global Approach to Quantum Field Theory, International Series of Monographs on Physics2014OxfordClarendonPress
MargalitYZhouZMachlufSRohrlichDJaphaYFolmanRA self-interfering clock as a which path witnessScience201534912052015Sci...349.1205M
EppleyKHannahEThe necessity of quantizing the gravitational fieldFound. Phys.19777511977FoPh....7...51E
LuYNZhangYRLiuGQNoriFFanHPanXYObserving information backflow from controllable non-Markovian multichannels in diamondPhys. Rev. Lett.20201242020PhRvL.124u0502L
ZhangYJHanWXiaYJYuYMFanHRole of initial system-bath correlation on coherence trappingSci. Rep.20155133592015NatSR...513359Z
BreuerHPLaineEMPiiloJMeasure for the degree of non-Markovian behavior of quantum processes in open systemsPhys. Rev. Lett.20091032009PhRvL.103u0401B2570018
LiJGZouJShaoBNon-Markovianity of the damped Jaynes–Cummings model with detuningPhys. Rev. A2010812010PhRvA..81f2124L
AltamiranoNCorona-UgaldePMannRBZychMGravity is not a pairwise local classical channelClass. Quantum Gravity2016352018CQGra..35n5005A38262231409.83053
LB Levitin (11306_CR42) 2009; 103
IM Georgescu (11306_CR38) 2014; 86
AC Neto (11306_CR51) 2016; 94
T Krisnanda (11306_CR18) 2020; 6
ZY Xu (11306_CR33) 2014; 89
L Buoninfante (11306_CR53) 2021; 81
S Bose (11306_CR7) 2017; 119
H Chau Nguyen (11306_CR19) 2020; 74
HP Breuer (11306_CR22) 2009; 103
C Marletto (11306_CR8) 2017; 119
C Addis (11306_CR50) 2014; 90
JI Cirac (11306_CR37) 2012; 8
M Christodoulou (11306_CR14) 2019; 792
YJ Zhang (11306_CR36) 2015; 91
S Deffner (11306_CR31) 2013; 111
11306_CR3
M Zych (11306_CR55) 2017
V Giovannetti (11306_CR43) 2003; 67
Y Margalit (11306_CR56) 2015; 349
RJ Marshman (11306_CR11) 2020; 101
MM Taddei (11306_CR45) 2013; 110
F Campaioli (11306_CR48) 2019; 3
YJ Zhang (11306_CR30) 2015; 5
B De Witt (11306_CR2) 2014
C Addis (11306_CR29) 2014; 89
D Miki (11306_CR20) 2021; 103
L Vaidman (11306_CR40) 1992; 60
N Altamirano (11306_CR21) 2016; 35
N Margolus (11306_CR41) 1998; 120
TW van de Kamp (11306_CR17) 2020; 102
I Pikovski (11306_CR54) 2015; 11
YJ Zhang (11306_CR28) 2010; 82
A Peres (11306_CR4) 2001; 63
C Anastopoulos (11306_CR16) 2020; 37
Y Hu (11306_CR52) 2020; 101
HB Liu (11306_CR35) 2016; 93
FF Fanchini (11306_CR49) 2013; 88
11306_CR15
YJ Zhang (11306_CR32) 2014; 4
SJ Peng (11306_CR24) 2018; 63
11306_CR12
11306_CR10
A Rivas (11306_CR23) 2010; 105
A del Campo (11306_CR46) 2013; 110
JG Li (11306_CR47) 2010; 81
K Eppley (11306_CR5) 1977; 7
SL Chen (11306_CR27) 2016; 116
PJ Jones (11306_CR44) 2010; 82
AD Cimmarusti (11306_CR34) 2015; 114
XM Lu (11306_CR26) 2010; 82
RP Feynmann (11306_CR1) 1995
L Mandelstam (11306_CR39) 1945; 9
C Marletto (11306_CR6) 2017; 3
R Horodecki (11306_CR9) 2009; 81
A Belenchia (11306_CR13) 2018; 98
YN Lu (11306_CR25) 2020; 124
References_xml – reference: EppleyKHannahEThe necessity of quantizing the gravitational fieldFound. Phys.19777511977FoPh....7...51E
– reference: LuXMWangXGSunCPQuantum Fisher information flow and non-Markovian processes of open systemsPhys. Rev. A2010822010PhRvA..82d2103L
– reference: AddisCBylickaBChruscinskiDManiscalcoSComparative study of non-Markovianity measures in exactly solvable one- and two-qubit modelsPhys. Rev. A2014902014PhRvA..90e2103A
– reference: BoseSSpin entanglement witness for quantum gravityPhys. Rev. Lett.20171192017PhRvL.119x0401B3746326
– reference: ChristodoulouMRovelliCOn the possibility of laboratory evidence for quantum superposition of geometries. Locality and entanglement in table-top testing of the quantum nature of linearized gravityPhys. Lett. B2019792642019PhLB..792...64C3927926
– reference: ZhangYJZouXBXiaYJGuoGCDifferent entanglement dynamical behaviors due to initial system-environment correlationsPhys. Rev. A2010822010PhRvA..82b2108Z
– reference: GeorgescuIMAshhabSNoriFQuantum simulationRev. Mod. Phys.2014861532014RvMP...86..153G
– reference: van de KampTWMarshmanRJBoseSMazumdarAQuantum gravity witness via entanglement of masses: casimir screening acceleration noise constraints on gravity induced entanglementPhys. Rev. A20201022020PhRvA.102f2807V
– reference: del CampoAEgusquizaILPlenioMBHuelgaSFQuantum speed limits in open system dynamicsPhys. Rev. Lett.2013110
– reference: AddisCBrebnerGHaikkaPManiscalcoSCoherence trapping and information backflow in dephasing qubitsPhys. Rev. A2014892014PhRvA..89b4101A
– reference: FeynmannRPMorinigoFMWagnerWGFeynmann Lectures on Gravitation1995BoulderWestview Press
– reference: De WittBA Global Approach to Quantum Field Theory, International Series of Monographs on Physics2014OxfordClarendonPress
– reference: MarlettoCVedralVWhy we need to quantise everything, including gravitynpj Quantum Inf.20173292017npjQI...3...29M
– reference: CampaioliFPollockFAModiKTight, robust, and feasible quantum speed limits for open dynamicsQuantum20193168
– reference: NetoACKarpatGFanchiniFFInequivalence of correlation-based measures of non-MarkovianityPhys. Rev. A2016942016PhRvA..94c2105N
– reference: GiovannettiVLloydSMacconeLQuantum limits to dynamical evolutionPhys. Rev. A2003672003PhRvA..67e2109G
– reference: A. Groβ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta }$$\end{document}ardt, Acceleration noise constraints on gravity-induced entanglement. Phys. Rev. A 102, 040202(R) (2020)
– reference: C.M. DeWitt, Conference on the Role of Gravitation in Physics at the University of North Carolina, Chapel Hill, 1957 (Wright Air Development Center, Air Research and Development Command, United States Air Force, Wright Patterson Air Force Base, Ohio, 1957) (WADC Technical Report No. 57-216, 1957)
– reference: TaddeiMMEscherBMDavidovichLde Matos FilhoRLQuantum speed limit for physical processesPhys. Rev. Lett.20131102013PhRvL.110e0402T
– reference: JonesPJKokPGeometric derivation of the quantum speed limitPhys. Rev. A2010822010PhRvA..82b2107J2772011
– reference: ChenSLLambertNLiCMMiranowiczAChenYNNoriFQuantifying non-Markovianity with temporal steeringPhys. Rev. Lett.20161162016PhRvL.116b0503C
– reference: LevitinLBToffoliTFundamental limit on the rate of quantum dynamics: the unified bound is tightPhys. Rev. Lett.20091032009PhRvL.103p0502L
– reference: HuYHuJYuHQuantum gravitational interaction between two objects induced by external gravitational radiation fieldsPhys. Rev. D20201012020PhRvD.101f6015H4086266
– reference: BuoninfanteLLambiaseGPetruzzielloLQuantum interference in external gravitational fields beyond general relativityEur. Phys. J. C2021819282021EPJC...81..928B
– reference: MarshmanRJMazumdarABoseSLocality and entanglement in table-top testing of the quantum nature of linearized gravityPhys. Rev. A20201012020PhRvA.101e2110M4111219
– reference: CiracJIZollerPGoals and opportunities in quantum simulationNat. Phys.20128264
– reference: ZhangYJHanWXiaYJCaoJPFanHQuantum speed limit for arbitrary initial statesSci. Rep.201444890
– reference: VaidmanLMinimum time for the evolution to an orthogonal quantum stateAm. J. Phys.1992601821992AmJPh..60..182V11507811219.81145
– reference: ZhangYJHanWXiaYJCaoJPFanHClassical-driving-assisted quantum speed-upPhys. Rev. A2015912015PhRvA..91c2112Z
– reference: MargolusNLevitinLBThe maximum speed of dynamical evolutionPhys. D1998120188
– reference: LuYNZhangYRLiuGQNoriFFanHPanXYObserving information backflow from controllable non-Markovian multichannels in diamondPhys. Rev. Lett.20201242020PhRvL.124u0502L
– reference: MikiDMatsumuraAYamamotoKEntanglement and decoherence of massive particles due to gravityPhys. Rev. D20211032021PhRvD.103b6017M4213212
– reference: DeffnerSLutzEQuantum speed limit for non-Markovian dynamicsPhys. Rev. Lett.20131112013PhRvL.111a0402D
– reference: FanchiniFFKarpatGCastelanoLKRossattoDZProbing the degree of non-Markovianity for independent and common environmentsPhys. Rev. A2013882013PhRvA..88a2105F
– reference: C. Anastopoulos, B.L. Hu, Comment on “A spin entanglement witness for quantum gravity” and on “Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity”. arXiv:1804.11315
– reference: AnastopoulosCHuBLQuantum superposition of two gravitational cat statesClass. Quantum Gravity2020372020CQGra..37w5012A41926351479.83067
– reference: MargalitYZhouZMachlufSRohrlichDJaphaYFolmanRA self-interfering clock as a which path witnessScience201534912052015Sci...349.1205M
– reference: MarlettoCVedralVGravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravityPhys. Rev. Lett.20171192017PhRvL.119x0402M
– reference: LiuHBYangWLAnJHXuZYMechanism for quantum speedup in open quantum systemsPhys. Rev. A201693020105(R)2016PhRvA..93b0105L
– reference: Chau NguyenHBernardsFEntanglement dynamics of two mesoscopic objects with gravitational interactionEur. Phys. J. D202074692020EPJD...74...69N
– reference: BreuerHPLaineEMPiiloJMeasure for the degree of non-Markovian behavior of quantum processes in open systemsPhys. Rev. Lett.20091032009PhRvL.103u0401B2570018
– reference: XuZYLuoSYangWLLiuCZhuSQQuantum speedup in a memory environmentPhys. Rev. A2014892014PhRvA..89a2307X
– reference: S. Bose, G.V. Morley, arXiv:1810.07045v1 (2018)
– reference: KrisnandaTThamGYPaternostroMPaterekTObservable quantum entanglement due to gravitynpj Quantum Inf.20206122020npjQI...6...12K
– reference: PikovskiIZychMCostaFBruknerCUniversal decoherence due to gravitational time dilationNat. Phys.201511668
– reference: HorodeckiRHorodeckiPHorodeckiMHorodeckiKQuantum entanglementRev. Mod. Phys.2009818652009RvMP...81..865H25156191205.81012
– reference: AltamiranoNCorona-UgaldePMannRBZychMGravity is not a pairwise local classical channelClass. Quantum Gravity2016352018CQGra..35n5005A38262231409.83053
– reference: ZychMQuantum Systems Under Gravitational Time Dilation, Thesis2017BerilnSpringer1390.83004
– reference: LiJGZouJShaoBNon-Markovianity of the damped Jaynes–Cummings model with detuningPhys. Rev. A2010812010PhRvA..81f2124L
– reference: ZhangYJHanWXiaYJYuYMFanHRole of initial system-bath correlation on coherence trappingSci. Rep.20155133592015NatSR...513359Z
– reference: PeresATernoDHybrid classical-quantum dynamicsPhys. Rev. A2001632001PhRvA..63b2101P
– reference: BelenchiaAWaldRMGiacominiFCastro-RuizEBruknerCAspelmeyerMQuantum superposition of massive objects and the quantization of gravityPhys. Rev. D2018982018PhRvD..98l6009B3974317
– reference: MandelstamLTammIThe uncertainty relation between energy and time in non-relativistic quantum mechanicsJ. Phys. (USSR)19459249153340060.45003
– reference: RivasAHuelgaSFPlenioMBEntanglement and non-Markovianity of quantum evolutionsPhys. Rev. Lett.20101052010PhRvL.105e0403R2673036
– reference: CimmarustiADYanZPattersonBDCorcosLPOrozcoLADeffnerSEnvironment-assisted speed-up of the field evolution in cavity quantum electrodynamicsPhys. Rev. Lett.20151142015PhRvL.114w3602C
– reference: PengSJObservation of non-Markovianity at room temperature by prolonging entanglement in solidsSci. Bull.201863336
– volume: 63
  year: 2001
  ident: 11306_CR4
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.63.022101
– volume-title: Feynmann Lectures on Gravitation
  year: 1995
  ident: 11306_CR1
– volume: 8
  start-page: 264
  year: 2012
  ident: 11306_CR37
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2275
– volume: 101
  year: 2020
  ident: 11306_CR11
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.101.052110
– volume: 63
  start-page: 336
  year: 2018
  ident: 11306_CR24
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2018.02.017
– volume: 102
  year: 2020
  ident: 11306_CR17
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.062807
– ident: 11306_CR15
– volume: 119
  year: 2017
  ident: 11306_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.240402
– volume: 103
  year: 2009
  ident: 11306_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.210401
– volume: 37
  year: 2020
  ident: 11306_CR16
  publication-title: Class. Quantum Gravity
– volume: 93
  start-page: 020105(R)
  year: 2016
  ident: 11306_CR35
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.93.020105
– volume: 88
  year: 2013
  ident: 11306_CR49
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.012105
– volume: 105
  year: 2010
  ident: 11306_CR23
  publication-title: Phys. Rev. Lett.
– volume: 98
  year: 2018
  ident: 11306_CR13
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.126009
– volume: 110
  year: 2013
  ident: 11306_CR45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.050402
– volume: 60
  start-page: 182
  year: 1992
  ident: 11306_CR40
  publication-title: Am. J. Phys.
  doi: 10.1119/1.16940
– volume: 124
  year: 2020
  ident: 11306_CR25
  publication-title: Phys. Rev. Lett.
– volume: 90
  year: 2014
  ident: 11306_CR50
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.90.052103
– volume: 103
  year: 2009
  ident: 11306_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.160502
– ident: 11306_CR12
  doi: 10.1103/PhysRevA.102.040202
– volume: 114
  year: 2015
  ident: 11306_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.233602
– volume: 349
  start-page: 1205
  year: 2015
  ident: 11306_CR56
  publication-title: Science
  doi: 10.1126/science.aac6498
– volume: 5
  start-page: 13359
  year: 2015
  ident: 11306_CR30
  publication-title: Sci. Rep.
  doi: 10.1038/srep13359
– volume: 82
  year: 2010
  ident: 11306_CR44
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.022107
– volume: 67
  year: 2003
  ident: 11306_CR43
  publication-title: Phys. Rev. A
– volume: 89
  year: 2014
  ident: 11306_CR29
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.89.024101
– volume: 91
  year: 2015
  ident: 11306_CR36
  publication-title: Phys. Rev. A
– volume-title: Quantum Systems Under Gravitational Time Dilation, Thesis
  year: 2017
  ident: 11306_CR55
  doi: 10.1007/978-3-319-53192-2
– volume: 4
  start-page: 4890
  year: 2014
  ident: 11306_CR32
  publication-title: Sci. Rep.
  doi: 10.1038/srep04890
– volume: 86
  start-page: 153
  year: 2014
  ident: 11306_CR38
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.86.153
– volume: 35
  year: 2016
  ident: 11306_CR21
  publication-title: Class. Quantum Gravity
– volume: 103
  year: 2021
  ident: 11306_CR20
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.026017
– volume: 89
  year: 2014
  ident: 11306_CR33
  publication-title: Phys. Rev. A
– volume: 111
  year: 2013
  ident: 11306_CR31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.010402
– volume: 82
  year: 2010
  ident: 11306_CR26
  publication-title: Phys. Rev. A
– volume: 120
  start-page: 188
  year: 1998
  ident: 11306_CR41
  publication-title: Phys. D
  doi: 10.1016/S0167-2789(98)00054-2
– volume: 81
  start-page: 865
  year: 2009
  ident: 11306_CR9
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.865
– volume: 3
  start-page: 168
  year: 2019
  ident: 11306_CR48
  publication-title: Quantum
  doi: 10.22331/q-2019-08-05-168
– ident: 11306_CR10
– volume: 119
  year: 2017
  ident: 11306_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.240401
– volume: 6
  start-page: 12
  year: 2020
  ident: 11306_CR18
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-020-0243-y
– volume: 82
  year: 2010
  ident: 11306_CR28
  publication-title: Phys. Rev. A
– volume: 11
  start-page: 668
  year: 2015
  ident: 11306_CR54
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3366
– volume: 3
  start-page: 29
  year: 2017
  ident: 11306_CR6
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-017-0028-0
– ident: 11306_CR3
– volume: 792
  start-page: 64
  year: 2019
  ident: 11306_CR14
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2019.03.015
– volume: 9
  start-page: 249
  year: 1945
  ident: 11306_CR39
  publication-title: J. Phys. (USSR)
– volume-title: A Global Approach to Quantum Field Theory, International Series of Monographs on Physics
  year: 2014
  ident: 11306_CR2
– volume: 81
  year: 2010
  ident: 11306_CR47
  publication-title: Phys. Rev. A
– volume: 7
  start-page: 51
  year: 1977
  ident: 11306_CR5
  publication-title: Found. Phys.
  doi: 10.1007/BF00715241
– volume: 116
  year: 2016
  ident: 11306_CR27
  publication-title: Phys. Rev. Lett.
– volume: 101
  year: 2020
  ident: 11306_CR52
  publication-title: Phys. Rev. D
– volume: 94
  year: 2016
  ident: 11306_CR51
  publication-title: Phys. Rev. A
– volume: 81
  start-page: 928
  year: 2021
  ident: 11306_CR53
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-021-09740-2
– volume: 110
  year: 2013
  ident: 11306_CR46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.050403
– volume: 74
  start-page: 69
  year: 2020
  ident: 11306_CR19
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2020-10077-8
SSID ssj0002408
Score 2.4123864
Snippet A two-dimensional ray model is introduced to realize the non-Markovian speedup evolution of a center massive particle gravitationally coupled to a controllable...
Abstract A two-dimensional ray model is introduced to realize the non-Markovian speedup evolution of a center massive particle gravitationally coupled to a...
SourceID doaj
proquest
gale
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 146
SubjectTerms Astronomy
Astrophysics and Cosmology
Controllability
Critical mass
Crossovers
Elementary Particles
Evolution
Hadrons
Heavy Ions
Measurement Science and Instrumentation
Multilayers
Neutrons
Nuclear Energy
Nuclear Physics
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Regular Article - Theoretical Physics
Separation
Speed limits
String Theory
Two dimensional models
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZgKyQuiKcILchCSJysZhM7tk-oRa0KEitUqNSbZY_tCgRJ2Oy2f59x4t1SVaK3PJwomRl_M3FmviHknQJdOZfywoLAD5SoLHNRSwZBeh2kVt6nBf0vi-bkjH8-F-d5wW3IaZUbTByB2neQ1sj3K4nTVja6kh_6Pyx1jUp_V3MLjftkByFYqRnZOTxafD3dYnEi8Brri2rOmpLznOGFXxX7of8JqYKuFBVDx8XmiOYNq2_4p5HG_zZY3_prOjqj48fkUY4i6cGk9ifkXmifkgdjNicMzwgsupalKpzuErVPhx5d1Lqn4TLbGe0itTTlZYYl_Y3hM0Ie7bMR0R8tXV11zCfe_4mzg_5TDod7Y_ec5-Ts-Oj7xxOWuykwwBhrxbgLGKuoRpUeag5zqzhwSE2DIhcygubozLQLNuCsF1ZIEFbp6FwTtUOV1i_IrO3a8JLQuWswjiuj8ErxCLWyDrQorQQrROSqIM1GhgYy1XjqePHLTGXQpUnCN5PwDQrfjMI3dUHK7YX9xLZx9yWHSUnb4YkuezzQLS9MFpyR0nkJHJ8zsTGC1Ra0r7x3iK5z3CjI26Rikwgx2pRxc2HXw2A-fTs1Bxhi1bzisinI-zwodvg2YHMBA8okcWjdGLm3MRWTIWEw1wZckPnGfK5P3_Gar_5_y13ysEpGPKaT75HZarkOrzFaWrk3eUr8BTGmESw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpSqGX0id1kxRRCj2J-CFZ0jFZGpJAc2gbyE1II6m0NLaJd9O_35Gt3SYEEujNDwmsmdHMZ3vmG0I-KtC1cykvLAh8QYnKMhe1ZBCk10Fq5X36oP_lrD0-56cX4mKL7K9rYW7-v0fsvx-GX5Dq3EpRMwwvrEKf27LmEXksqkamXg2LdrFxvYmvKydx3TP5VgiamPrv-uM7P0aneHP0nDzLQJEezJp9QbZC95I8mRI2YXxF4KzvWCq06a9RwXQcMAqtBhqusynRPlJLU-pluKKXiJDRq9Eh2wn92dHln575RO0_03LQGxVveDY1yHlNzo8-f18cs9wwgQHCqCXjLiAcUa0qPTQcKqs4cEh9gSIXMoLmGK-0CzbgxhZWSBBW6ehcG7VDrTVvyHbXd-EtoZVrEaqVUXileIRGWQdalFaCFSJyVZB2LUMDmU08NbX4beZK59Ik4ZtZ-AaFbybhm6Yg5WbiMBNqPDzlMClpMzwxYk8X0FBMFpyR0nkJHJ8zES6C1Ra0r7136EArPCjIh6RikzgvupRU88OuxtGcfPtqDhBFNbzmsi3Ipzwo9rgasLlGAWWSaLJujdxdm4rJu340tcTQIltdy4JUa_P5d_uBZb77jzk75GmdLHtKI98l28urVdhDlLR076ed8Rc-AgpR
  priority: 102
  providerName: Springer Nature
Title Non-Markovian speedup evolution of a center massive particle in two-dimensional environmental model
URI https://link.springer.com/article/10.1140/epjc/s10052-023-11306-3
https://www.proquest.com/docview/2776276927
https://doaj.org/article/77bd7c48ab1349ca9ac9d2ddb7631d2d
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96IvgifmL1XIIIPoXrR9Ikj3vLrafgIqcL9xaSNBEPbct19_z3nWmz5x33sC--hKZNoJmZzEzamd8Q8l55XTqHcWFBwAElKstc1JL5IBsdpFZNgx_0v6zq0zX_fC7Ob5T6wpiwCR54ItyRlK6RnivrEEjPW229bsqmcbAxCrhA7Qs2b3eYSjoYgbtSNBecII5Cf-ExWy4XJQMjxQrQ3DWrbtmiEbL_rmK-84d0NDzLJ-Rx8hjpfHrTp-ReaJ-Rh2Pkph-eE7_qWoYZN90VcJoOPZijbU_DVZIp2kVqKcZghkv6G1xlUG-0T-umP1u6-dOxBjH-J3wOeiP1DXpjpZwXZL08-b44ZalyAvPgT20YdwH8ElWrvPEV94VV3HOPBYIiFzJ6zcFwaRdsgB0urJBeWKWjc3XUDthXvSQHbdeGV4QWrgafLY-iUYpHXwEjvBa5ld4KEbnKSL2jofEJVhyrW_wyU8pzbpD4ZiK-AeKbkfimykh-PbGfkDX2TzlGJl0PR2js8QYIjEmEM_sEJiPvkMUGwS9ajK75YbfDYD59OzNzcKcqXnJZZ-RDGhQ7WI23KVkBaIJ4WbdGHu5ExaTtP5hSgo2RtS5lRoqd-Px7vGeZr__HMt-QRyWK-hhgfkgONpfb8Bb8p42bkftq-XFGHhyfrL6eQW9RcmzrxWzcRNCuy_lfxDUcoA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYILYlUHClgIxMlqJnFi-4BQWYYObecArdSb8VqBIAmTmVb8KX4j72WZUlWip96y2FH8_L3F9lsIeSGdSq1Fv7CQwwIlSsNsVIK5ILwKQknvcUN_f1bsHPJPR_nRGvkzxMKgW-UgE1tB7SuHe-RbqQC2FYVKxZv6F8OqUXi6OpTQ6GCxG36fwpKteT19D_P7Mk0nHw7e7bC-qgBzYGssGLcBdLYsZOJdxt3YSO64w-I5keciOsVBqCsbTAD05yYXLjdSRWuLqCwMLYPvXiPXeQaaHCPTJx9Xkh_ThbXRTBlnRcJ5708Ga5itUH93GK-X5CkDNcnGoDsKlp3Thm3RgIuq4cIZbav6JnfI7d5mpdsdyO6StVDeIzda31HX3CduVpUMY36qE8AabWpQiMuahpMe1bSK1FD0Ag1z-hOMdRCwtO4hS7-VdHFaMY9VBroMIfSf4Du4a2v1PCCHV0Llh2S9rMqwQejYFmA1JjH3UvLoMmmsU3lihDN5HrkckWKgoXZ9YnOsr_FDd0HXiUbi6474GoivW-LrbESSVce6y-1xeZe3OEmr5picu31QzY91TzgthPXCcfhPzP3ojDJO-dR7C7J8DBcj8hynWGP6jRL9e47Nsmn09MtnvQ0GXcZTLooRedU3ihWMxpk-XAJoghm7zrXcHKCiewHU6DN2GZHxAJ-z15cM89H_P_mM3Nw52N_Te9PZ7mNyK0VAt47sm2R9MV-GJ2CnLezTljko-XrV3PgXiZJMlg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLbKVCAuiFUMFLAQiJPVLE4cHxBqaUcdCqOqUKk3Yzt2BYIkTGZa8df4dbyXOFOqSvTUWxYnip-_tzlvIeRVYWViDMaFuQwcFF9oZrwUzDpRSidkUZa4of9plu8d8Q_H2fEa-TPkwmBY5SATO0Fd1hb3yDcTAWwrcgmuug9hEQc7k3fNL4YdpPBP69BOo4fIvvt9Bu5b-3a6A2v9Okkmu1_e77HQYYBZsDsWjBsH-rvIi6i0KbexLrjlFhvpeJ4JbyUHAS-N0w44IdOZsJkupDcm99LANFN47w2yLtArGpH17d3ZweFKD2DxsC63KeUsjzgP0WXg0Wy65rvF7L0oSxgoTRaDJslZekE3di0ELiuKS39sO0U4uUvuBAuWbvWQu0fWXHWf3OwiSW37gNhZXTHMAKpPAXm0bUA9LhvqTgPGae2pphgT6ub0J5juIG5pEwBMv1V0cVazEnsO9PVC6D-peHDWde55SI6uhc6PyKiqK_eY0NjkYENGPiuLgnubFtpYmUVaWJ1lnhdjkg80VDaUOcduGz9Un4IdKSS-6omvgPiqI75KxyRaPdj0lT6ufmQbF2k1HEt1dxfq-YkKhFNCmFJYDt-JlSCtltrKMilLA5I9hoMxeYlLrLAYR4WwPtHLtlXTz4dqC8y7lCdc5GPyJgzyNczG6pA8ATTB-l0XRm4MUFFBHLXqnHnGJB7gc377imk--f8rX5BbwInq43S2_5TcThDPXVT7Bhkt5kv3DIy2hXkeuIOSr9fNkH8ByAVSKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Markovian+speedup+evolution+of+a+center+massive+particle+in+two-dimensional+environmental+model&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Ying-Jie+Zhang&rft.au=Qi+Wang&rft.au=Wei-Bin+Yan&rft.au=Zhong-Xiao+Man&rft.date=2023-02-01&rft.pub=SpringerOpen&rft.eissn=1434-6052&rft.volume=83&rft.issue=2&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-023-11306-3&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_77bd7c48ab1349ca9ac9d2ddb7631d2d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6052&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6052&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6052&client=summon