Non-Markovian speedup evolution of a center massive particle in two-dimensional environmental model
A two-dimensional ray model is introduced to realize the non-Markovian speedup evolution of a center massive particle gravitationally coupled to a controllable environment (multilayer arrangement of the massive particles). By controlling the environment, for instance by choosing a judicious mass of...
Saved in:
Published in | The European physical journal. C, Particles and fields Vol. 83; no. 2; pp. 146 - 11 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2023
Springer Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A two-dimensional ray model is introduced to realize the non-Markovian speedup evolution of a center massive particle gravitationally coupled to a controllable environment (multilayer arrangement of the massive particles). By controlling the environment, for instance by choosing a judicious mass of the environmental particles or by changing the separation distance of each massive particle, two dynamical crossover behaviors from Markovian to non-Markovian and from no-speedup to speedup are achieved due to the gravitational interactions between the system particle and environmental particles. It is obvious that the critical mass of the environmental particles or the critical separation distance for these two dynamical crossover behaviors restrict each other directly. The larger the value of the mass of the environmental particles is, the smaller the value of the critical separation distance should be requested. In addition, it should be emphasized that the non-Markovian dynamics is the principal physical reason for the speedup evolution of the system massive particle. Particularly, the non-Markovianity of the dynamics process of the system massive particle in the even ray case has better correspondence with the quantum speed limit time than that in the singular ray case. |
---|---|
AbstractList | A two-dimensional ray model is introduced to realize the non-Markovian speedup evolution of a center massive particle gravitationally coupled to a controllable environment (multilayer arrangement of the massive particles). By controlling the environment, for instance by choosing a judicious mass of the environmental particles or by changing the separation distance of each massive particle, two dynamical crossover behaviors from Markovian to non-Markovian and from no-speedup to speedup are achieved due to the gravitational interactions between the system particle and environmental particles. It is obvious that the critical mass of the environmental particles or the critical separation distance for these two dynamical crossover behaviors restrict each other directly. The larger the value of the mass of the environmental particles is, the smaller the value of the critical separation distance should be requested. In addition, it should be emphasized that the non-Markovian dynamics is the principal physical reason for the speedup evolution of the system massive particle. Particularly, the non-Markovianity of the dynamics process of the system massive particle in the even ray case has better correspondence with the quantum speed limit time than that in the singular ray case. Abstract A two-dimensional ray model is introduced to realize the non-Markovian speedup evolution of a center massive particle gravitationally coupled to a controllable environment (multilayer arrangement of the massive particles). By controlling the environment, for instance by choosing a judicious mass of the environmental particles or by changing the separation distance of each massive particle, two dynamical crossover behaviors from Markovian to non-Markovian and from no-speedup to speedup are achieved due to the gravitational interactions between the system particle and environmental particles. It is obvious that the critical mass of the environmental particles or the critical separation distance for these two dynamical crossover behaviors restrict each other directly. The larger the value of the mass of the environmental particles is, the smaller the value of the critical separation distance should be requested. In addition, it should be emphasized that the non-Markovian dynamics is the principal physical reason for the speedup evolution of the system massive particle. Particularly, the non-Markovianity of the dynamics process of the system massive particle in the even ray case has better correspondence with the quantum speed limit time than that in the singular ray case. |
ArticleNumber | 146 |
Audience | Academic |
Author | Wang, Qi Man, Zhong-Xiao Zhang, Ying-Jie Yan, Wei-Bin Xia, Yun-Jie |
Author_xml | – sequence: 1 givenname: Ying-Jie surname: Zhang fullname: Zhang, Ying-Jie email: yingjiezhang@qfnu.edu.cn organization: Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University – sequence: 2 givenname: Qi surname: Wang fullname: Wang, Qi organization: Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University – sequence: 3 givenname: Wei-Bin surname: Yan fullname: Yan, Wei-Bin organization: Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University – sequence: 4 givenname: Zhong-Xiao surname: Man fullname: Man, Zhong-Xiao organization: Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University – sequence: 5 givenname: Yun-Jie surname: Xia fullname: Xia, Yun-Jie organization: Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University |
BookMark | eNqFUstu1DAUtVCRaAe-gUisWKT1K3GyYFFVPEYqIPFYWzfOzchDYgfbGejf19MUQdlUXvj66JxjX99zRk6cd0jIS0bPGZP0Aue9uYiM0oqXlIuSMUHrUjwhp0wKWdYZP_mnfkbOYtxTSrmkzSkxn7wrP0L44Q8WXBFnxH6ZCzz4cUnWu8IPBRQGXcJQTBCjPWAxQ0jWjFhYV6RfvuzthC5mNowFuoMN3mUg5dPkexyfk6cDjBFf3O8b8v3d229XH8rrz--3V5fXpak4T6XsUHHV1A3tjZCGQSONNJWgfJCVGkwrqajbDgGpEhVUylTQtEPX1UPbNaYVG7JdfXsPez0HO0G40R6svgN82On7h2ulul4Z2UDHhGwNtGDanvd9p2rBcpG9Xq1ec_A_F4xJ7_0ScoNRc6VqruqWq8w6X1k7yKbWDT4FMHn1OFmT5zTYjF8qKYTkMntvyOsHgsxJ-DvtYIlRb79-ech9s3JN8DEGHLSxCY5DyZfYUTOqjwHQxwDoNQA6B0DfBUCLrFf_6f98yePKZlXGrHA7DH-bf0x6CwyCyu8 |
CitedBy_id | crossref_primary_10_1103_PhysRevD_111_026007 crossref_primary_10_1103_PhysRevD_108_126011 |
Cites_doi | 10.1103/PhysRevA.63.022101 10.1038/nphys2275 10.1103/PhysRevA.101.052110 10.1016/j.scib.2018.02.017 10.1103/PhysRevA.102.062807 10.1103/PhysRevLett.119.240402 10.1103/PhysRevLett.103.210401 10.1103/PhysRevA.93.020105 10.1103/PhysRevA.88.012105 10.1103/PhysRevD.98.126009 10.1103/PhysRevLett.110.050402 10.1119/1.16940 10.1103/PhysRevA.90.052103 10.1103/PhysRevLett.103.160502 10.1103/PhysRevA.102.040202 10.1103/PhysRevLett.114.233602 10.1126/science.aac6498 10.1038/srep13359 10.1103/PhysRevA.82.022107 10.1103/PhysRevA.89.024101 10.1007/978-3-319-53192-2 10.1038/srep04890 10.1103/RevModPhys.86.153 10.1103/PhysRevD.103.026017 10.1103/PhysRevLett.111.010402 10.1016/S0167-2789(98)00054-2 10.1103/RevModPhys.81.865 10.22331/q-2019-08-05-168 10.1103/PhysRevLett.119.240401 10.1038/s41534-020-0243-y 10.1038/nphys3366 10.1038/s41534-017-0028-0 10.1016/j.physletb.2019.03.015 10.1007/BF00715241 10.1140/epjc/s10052-021-09740-2 10.1103/PhysRevLett.110.050403 10.1140/epjd/e2020-10077-8 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 COPYRIGHT 2023 Springer The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: COPYRIGHT 2023 Springer – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION ISR 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1140/epjc/s10052-023-11306-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef Gale in Context: Science Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1434-6052 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_77bd7c48ab1349ca9ac9d2ddb7631d2d A743342476 10_1140_epjc_s10052_023_11306_3 |
GroupedDBID | -5F -5G -A0 -BR -~X .86 0R~ 199 29G 2JY 30V 4.4 408 409 40D 5GY 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95. 95~ AAFWJ AAKKN ABDBF ABEEZ ABMNI ACACY ACGFS ACNCT ACUHS ACULB ADBBV ADINQ ADMLS AENEX AFBBN AFGXO AFKRA AFPKN AFWTZ AGWIL AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF AZFZN B0M BA0 BCNDV BENPR BGLVJ BGNMA C24 C6C CCPQU CS3 CSCUP DL5 DU5 EAD EAP EAS EBS EMK EPL ER. ESX FEDTE GQ6 GQ8 GROUPED_DOAJ GXS HCIFZ HF~ HG5 HG6 HMJXF HVGLF HZ~ I-F I09 IAO IGS IHE ISR IXC IZIGR IZQ I~X KDC KOV LAS M4Y MA- NB0 O9- O93 OK1 P62 P9T PIMPY QOS R89 R9I RED RID RNS RPX RSV S27 S3B SDH SOJ SPH SZN T13 TN5 TSK TSV TUC TUS U2A VC2 WK8 Z45 Z7Y ~8M AAYXX CITATION PHGZM PHGZT ROL PMFND 7U5 8FD ABUWG AZQEC DWQXO H8D L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c522t-4be7278680dc34c1a84c4c5302f457fc940369beae0735a57c5a89fbb6f9b8c93 |
IEDL.DBID | DOA |
ISSN | 1434-6052 1434-6044 |
IngestDate | Wed Aug 27 01:30:42 EDT 2025 Sun Jul 13 03:29:55 EDT 2025 Tue Jun 10 21:22:07 EDT 2025 Fri Jun 27 05:30:52 EDT 2025 Tue Jul 01 01:41:27 EDT 2025 Thu Apr 24 22:56:31 EDT 2025 Fri Feb 21 02:43:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c522t-4be7278680dc34c1a84c4c5302f457fc940369beae0735a57c5a89fbb6f9b8c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/77bd7c48ab1349ca9ac9d2ddb7631d2d |
PQID | 2776276927 |
PQPubID | 2034659 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_77bd7c48ab1349ca9ac9d2ddb7631d2d proquest_journals_2776276927 gale_infotracacademiconefile_A743342476 gale_incontextgauss_ISR_A743342476 crossref_citationtrail_10_1140_epjc_s10052_023_11306_3 crossref_primary_10_1140_epjc_s10052_023_11306_3 springer_journals_10_1140_epjc_s10052_023_11306_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Particles and Fields |
PublicationTitle | The European physical journal. C, Particles and fields |
PublicationTitleAbbrev | Eur. Phys. J. C |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
References | BuoninfanteLLambiaseGPetruzzielloLQuantum interference in external gravitational fields beyond general relativityEur. Phys. J. C2021819282021EPJC...81..928B CampaioliFPollockFAModiKTight, robust, and feasible quantum speed limits for open dynamicsQuantum20193168 MikiDMatsumuraAYamamotoKEntanglement and decoherence of massive particles due to gravityPhys. Rev. D20211032021PhRvD.103b6017M4213212 BoseSSpin entanglement witness for quantum gravityPhys. Rev. Lett.20171192017PhRvL.119x0401B3746326 MandelstamLTammIThe uncertainty relation between energy and time in non-relativistic quantum mechanicsJ. Phys. (USSR)19459249153340060.45003 FeynmannRPMorinigoFMWagnerWGFeynmann Lectures on Gravitation1995BoulderWestview Press S. Bose, G.V. Morley, arXiv:1810.07045v1 (2018) MargolusNLevitinLBThe maximum speed of dynamical evolutionPhys. D1998120188 HuYHuJYuHQuantum gravitational interaction between two objects induced by external gravitational radiation fieldsPhys. Rev. D20201012020PhRvD.101f6015H4086266 LuXMWangXGSunCPQuantum Fisher information flow and non-Markovian processes of open systemsPhys. Rev. A2010822010PhRvA..82d2103L C. Anastopoulos, B.L. Hu, Comment on “A spin entanglement witness for quantum gravity” and on “Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity”. arXiv:1804.11315 PikovskiIZychMCostaFBruknerCUniversal decoherence due to gravitational time dilationNat. Phys.201511668 ChenSLLambertNLiCMMiranowiczAChenYNNoriFQuantifying non-Markovianity with temporal steeringPhys. Rev. Lett.20161162016PhRvL.116b0503C C.M. DeWitt, Conference on the Role of Gravitation in Physics at the University of North Carolina, Chapel Hill, 1957 (Wright Air Development Center, Air Research and Development Command, United States Air Force, Wright Patterson Air Force Base, Ohio, 1957) (WADC Technical Report No. 57-216, 1957) TaddeiMMEscherBMDavidovichLde Matos FilhoRLQuantum speed limit for physical processesPhys. Rev. Lett.20131102013PhRvL.110e0402T PeresATernoDHybrid classical-quantum dynamicsPhys. Rev. A2001632001PhRvA..63b2101P CiracJIZollerPGoals and opportunities in quantum simulationNat. Phys.20128264 AddisCBrebnerGHaikkaPManiscalcoSCoherence trapping and information backflow in dephasing qubitsPhys. Rev. A2014892014PhRvA..89b4101A JonesPJKokPGeometric derivation of the quantum speed limitPhys. Rev. A2010822010PhRvA..82b2107J2772011 MarshmanRJMazumdarABoseSLocality and entanglement in table-top testing of the quantum nature of linearized gravityPhys. Rev. A20201012020PhRvA.101e2110M4111219 CimmarustiADYanZPattersonBDCorcosLPOrozcoLADeffnerSEnvironment-assisted speed-up of the field evolution in cavity quantum electrodynamicsPhys. Rev. Lett.20151142015PhRvL.114w3602C ZhangYJHanWXiaYJCaoJPFanHQuantum speed limit for arbitrary initial statesSci. Rep.201444890 GiovannettiVLloydSMacconeLQuantum limits to dynamical evolutionPhys. Rev. A2003672003PhRvA..67e2109G VaidmanLMinimum time for the evolution to an orthogonal quantum stateAm. J. Phys.1992601821992AmJPh..60..182V11507811219.81145 van de KampTWMarshmanRJBoseSMazumdarAQuantum gravity witness via entanglement of masses: casimir screening acceleration noise constraints on gravity induced entanglementPhys. Rev. A20201022020PhRvA.102f2807V DeffnerSLutzEQuantum speed limit for non-Markovian dynamicsPhys. Rev. Lett.20131112013PhRvL.111a0402D ZychMQuantum Systems Under Gravitational Time Dilation, Thesis2017BerilnSpringer1390.83004 Chau NguyenHBernardsFEntanglement dynamics of two mesoscopic objects with gravitational interactionEur. Phys. J. D202074692020EPJD...74...69N PengSJObservation of non-Markovianity at room temperature by prolonging entanglement in solidsSci. Bull.201863336 XuZYLuoSYangWLLiuCZhuSQQuantum speedup in a memory environmentPhys. Rev. A2014892014PhRvA..89a2307X ChristodoulouMRovelliCOn the possibility of laboratory evidence for quantum superposition of geometries. Locality and entanglement in table-top testing of the quantum nature of linearized gravityPhys. Lett. B2019792642019PhLB..792...64C3927926 LevitinLBToffoliTFundamental limit on the rate of quantum dynamics: the unified bound is tightPhys. Rev. Lett.20091032009PhRvL.103p0502L GeorgescuIMAshhabSNoriFQuantum simulationRev. Mod. Phys.2014861532014RvMP...86..153G MarlettoCVedralVGravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravityPhys. Rev. Lett.20171192017PhRvL.119x0402M A. Groβ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta }$$\end{document}ardt, Acceleration noise constraints on gravity-induced entanglement. Phys. Rev. A 102, 040202(R) (2020) BelenchiaAWaldRMGiacominiFCastro-RuizEBruknerCAspelmeyerMQuantum superposition of massive objects and the quantization of gravityPhys. Rev. D2018982018PhRvD..98l6009B3974317 MarlettoCVedralVWhy we need to quantise everything, including gravitynpj Quantum Inf.20173292017npjQI...3...29M AnastopoulosCHuBLQuantum superposition of two gravitational cat statesClass. Quantum Gravity2020372020CQGra..37w5012A41926351479.83067 KrisnandaTThamGYPaternostroMPaterekTObservable quantum entanglement due to gravitynpj Quantum Inf.20206122020npjQI...6...12K del CampoAEgusquizaILPlenioMBHuelgaSFQuantum speed limits in open system dynamicsPhys. Rev. Lett.2013110 AddisCBylickaBChruscinskiDManiscalcoSComparative study of non-Markovianity measures in exactly solvable one- and two-qubit modelsPhys. Rev. A2014902014PhRvA..90e2103A NetoACKarpatGFanchiniFFInequivalence of correlation-based measures of non-MarkovianityPhys. Rev. A2016942016PhRvA..94c2105N RivasAHuelgaSFPlenioMBEntanglement and non-Markovianity of quantum evolutionsPhys. Rev. Lett.20101052010PhRvL.105e0403R2673036 FanchiniFFKarpatGCastelanoLKRossattoDZProbing the degree of non-Markovianity for independent and common environmentsPhys. Rev. A2013882013PhRvA..88a2105F ZhangYJHanWXiaYJCaoJPFanHClassical-driving-assisted quantum speed-upPhys. Rev. A2015912015PhRvA..91c2112Z HorodeckiRHorodeckiPHorodeckiMHorodeckiKQuantum entanglementRev. Mod. Phys.2009818652009RvMP...81..865H25156191205.81012 LiuHBYangWLAnJHXuZYMechanism for quantum speedup in open quantum systemsPhys. Rev. A201693020105(R)2016PhRvA..93b0105L ZhangYJZouXBXiaYJGuoGCDifferent entanglement dynamical behaviors due to initial system-environment correlationsPhys. Rev. A2010822010PhRvA..82b2108Z De WittBA Global Approach to Quantum Field Theory, International Series of Monographs on Physics2014OxfordClarendonPress MargalitYZhouZMachlufSRohrlichDJaphaYFolmanRA self-interfering clock as a which path witnessScience201534912052015Sci...349.1205M EppleyKHannahEThe necessity of quantizing the gravitational fieldFound. Phys.19777511977FoPh....7...51E LuYNZhangYRLiuGQNoriFFanHPanXYObserving information backflow from controllable non-Markovian multichannels in diamondPhys. Rev. Lett.20201242020PhRvL.124u0502L ZhangYJHanWXiaYJYuYMFanHRole of initial system-bath correlation on coherence trappingSci. Rep.20155133592015NatSR...513359Z BreuerHPLaineEMPiiloJMeasure for the degree of non-Markovian behavior of quantum processes in open systemsPhys. Rev. Lett.20091032009PhRvL.103u0401B2570018 LiJGZouJShaoBNon-Markovianity of the damped Jaynes–Cummings model with detuningPhys. Rev. A2010812010PhRvA..81f2124L AltamiranoNCorona-UgaldePMannRBZychMGravity is not a pairwise local classical channelClass. Quantum Gravity2016352018CQGra..35n5005A38262231409.83053 LB Levitin (11306_CR42) 2009; 103 IM Georgescu (11306_CR38) 2014; 86 AC Neto (11306_CR51) 2016; 94 T Krisnanda (11306_CR18) 2020; 6 ZY Xu (11306_CR33) 2014; 89 L Buoninfante (11306_CR53) 2021; 81 S Bose (11306_CR7) 2017; 119 H Chau Nguyen (11306_CR19) 2020; 74 HP Breuer (11306_CR22) 2009; 103 C Marletto (11306_CR8) 2017; 119 C Addis (11306_CR50) 2014; 90 JI Cirac (11306_CR37) 2012; 8 M Christodoulou (11306_CR14) 2019; 792 YJ Zhang (11306_CR36) 2015; 91 S Deffner (11306_CR31) 2013; 111 11306_CR3 M Zych (11306_CR55) 2017 V Giovannetti (11306_CR43) 2003; 67 Y Margalit (11306_CR56) 2015; 349 RJ Marshman (11306_CR11) 2020; 101 MM Taddei (11306_CR45) 2013; 110 F Campaioli (11306_CR48) 2019; 3 YJ Zhang (11306_CR30) 2015; 5 B De Witt (11306_CR2) 2014 C Addis (11306_CR29) 2014; 89 D Miki (11306_CR20) 2021; 103 L Vaidman (11306_CR40) 1992; 60 N Altamirano (11306_CR21) 2016; 35 N Margolus (11306_CR41) 1998; 120 TW van de Kamp (11306_CR17) 2020; 102 I Pikovski (11306_CR54) 2015; 11 YJ Zhang (11306_CR28) 2010; 82 A Peres (11306_CR4) 2001; 63 C Anastopoulos (11306_CR16) 2020; 37 Y Hu (11306_CR52) 2020; 101 HB Liu (11306_CR35) 2016; 93 FF Fanchini (11306_CR49) 2013; 88 11306_CR15 YJ Zhang (11306_CR32) 2014; 4 SJ Peng (11306_CR24) 2018; 63 11306_CR12 11306_CR10 A Rivas (11306_CR23) 2010; 105 A del Campo (11306_CR46) 2013; 110 JG Li (11306_CR47) 2010; 81 K Eppley (11306_CR5) 1977; 7 SL Chen (11306_CR27) 2016; 116 PJ Jones (11306_CR44) 2010; 82 AD Cimmarusti (11306_CR34) 2015; 114 XM Lu (11306_CR26) 2010; 82 RP Feynmann (11306_CR1) 1995 L Mandelstam (11306_CR39) 1945; 9 C Marletto (11306_CR6) 2017; 3 R Horodecki (11306_CR9) 2009; 81 A Belenchia (11306_CR13) 2018; 98 YN Lu (11306_CR25) 2020; 124 |
References_xml | – reference: EppleyKHannahEThe necessity of quantizing the gravitational fieldFound. Phys.19777511977FoPh....7...51E – reference: LuXMWangXGSunCPQuantum Fisher information flow and non-Markovian processes of open systemsPhys. Rev. A2010822010PhRvA..82d2103L – reference: AddisCBylickaBChruscinskiDManiscalcoSComparative study of non-Markovianity measures in exactly solvable one- and two-qubit modelsPhys. Rev. A2014902014PhRvA..90e2103A – reference: BoseSSpin entanglement witness for quantum gravityPhys. Rev. Lett.20171192017PhRvL.119x0401B3746326 – reference: ChristodoulouMRovelliCOn the possibility of laboratory evidence for quantum superposition of geometries. Locality and entanglement in table-top testing of the quantum nature of linearized gravityPhys. Lett. B2019792642019PhLB..792...64C3927926 – reference: ZhangYJZouXBXiaYJGuoGCDifferent entanglement dynamical behaviors due to initial system-environment correlationsPhys. Rev. A2010822010PhRvA..82b2108Z – reference: GeorgescuIMAshhabSNoriFQuantum simulationRev. Mod. Phys.2014861532014RvMP...86..153G – reference: van de KampTWMarshmanRJBoseSMazumdarAQuantum gravity witness via entanglement of masses: casimir screening acceleration noise constraints on gravity induced entanglementPhys. Rev. A20201022020PhRvA.102f2807V – reference: del CampoAEgusquizaILPlenioMBHuelgaSFQuantum speed limits in open system dynamicsPhys. Rev. Lett.2013110 – reference: AddisCBrebnerGHaikkaPManiscalcoSCoherence trapping and information backflow in dephasing qubitsPhys. Rev. A2014892014PhRvA..89b4101A – reference: FeynmannRPMorinigoFMWagnerWGFeynmann Lectures on Gravitation1995BoulderWestview Press – reference: De WittBA Global Approach to Quantum Field Theory, International Series of Monographs on Physics2014OxfordClarendonPress – reference: MarlettoCVedralVWhy we need to quantise everything, including gravitynpj Quantum Inf.20173292017npjQI...3...29M – reference: CampaioliFPollockFAModiKTight, robust, and feasible quantum speed limits for open dynamicsQuantum20193168 – reference: NetoACKarpatGFanchiniFFInequivalence of correlation-based measures of non-MarkovianityPhys. Rev. A2016942016PhRvA..94c2105N – reference: GiovannettiVLloydSMacconeLQuantum limits to dynamical evolutionPhys. Rev. A2003672003PhRvA..67e2109G – reference: A. Groβ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta }$$\end{document}ardt, Acceleration noise constraints on gravity-induced entanglement. Phys. Rev. A 102, 040202(R) (2020) – reference: C.M. DeWitt, Conference on the Role of Gravitation in Physics at the University of North Carolina, Chapel Hill, 1957 (Wright Air Development Center, Air Research and Development Command, United States Air Force, Wright Patterson Air Force Base, Ohio, 1957) (WADC Technical Report No. 57-216, 1957) – reference: TaddeiMMEscherBMDavidovichLde Matos FilhoRLQuantum speed limit for physical processesPhys. Rev. Lett.20131102013PhRvL.110e0402T – reference: JonesPJKokPGeometric derivation of the quantum speed limitPhys. Rev. A2010822010PhRvA..82b2107J2772011 – reference: ChenSLLambertNLiCMMiranowiczAChenYNNoriFQuantifying non-Markovianity with temporal steeringPhys. Rev. Lett.20161162016PhRvL.116b0503C – reference: LevitinLBToffoliTFundamental limit on the rate of quantum dynamics: the unified bound is tightPhys. Rev. Lett.20091032009PhRvL.103p0502L – reference: HuYHuJYuHQuantum gravitational interaction between two objects induced by external gravitational radiation fieldsPhys. Rev. D20201012020PhRvD.101f6015H4086266 – reference: BuoninfanteLLambiaseGPetruzzielloLQuantum interference in external gravitational fields beyond general relativityEur. Phys. J. C2021819282021EPJC...81..928B – reference: MarshmanRJMazumdarABoseSLocality and entanglement in table-top testing of the quantum nature of linearized gravityPhys. Rev. A20201012020PhRvA.101e2110M4111219 – reference: CiracJIZollerPGoals and opportunities in quantum simulationNat. Phys.20128264 – reference: ZhangYJHanWXiaYJCaoJPFanHQuantum speed limit for arbitrary initial statesSci. Rep.201444890 – reference: VaidmanLMinimum time for the evolution to an orthogonal quantum stateAm. J. Phys.1992601821992AmJPh..60..182V11507811219.81145 – reference: ZhangYJHanWXiaYJCaoJPFanHClassical-driving-assisted quantum speed-upPhys. Rev. A2015912015PhRvA..91c2112Z – reference: MargolusNLevitinLBThe maximum speed of dynamical evolutionPhys. D1998120188 – reference: LuYNZhangYRLiuGQNoriFFanHPanXYObserving information backflow from controllable non-Markovian multichannels in diamondPhys. Rev. Lett.20201242020PhRvL.124u0502L – reference: MikiDMatsumuraAYamamotoKEntanglement and decoherence of massive particles due to gravityPhys. Rev. D20211032021PhRvD.103b6017M4213212 – reference: DeffnerSLutzEQuantum speed limit for non-Markovian dynamicsPhys. Rev. Lett.20131112013PhRvL.111a0402D – reference: FanchiniFFKarpatGCastelanoLKRossattoDZProbing the degree of non-Markovianity for independent and common environmentsPhys. Rev. A2013882013PhRvA..88a2105F – reference: C. Anastopoulos, B.L. Hu, Comment on “A spin entanglement witness for quantum gravity” and on “Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity”. arXiv:1804.11315 – reference: AnastopoulosCHuBLQuantum superposition of two gravitational cat statesClass. Quantum Gravity2020372020CQGra..37w5012A41926351479.83067 – reference: MargalitYZhouZMachlufSRohrlichDJaphaYFolmanRA self-interfering clock as a which path witnessScience201534912052015Sci...349.1205M – reference: MarlettoCVedralVGravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravityPhys. Rev. Lett.20171192017PhRvL.119x0402M – reference: LiuHBYangWLAnJHXuZYMechanism for quantum speedup in open quantum systemsPhys. Rev. A201693020105(R)2016PhRvA..93b0105L – reference: Chau NguyenHBernardsFEntanglement dynamics of two mesoscopic objects with gravitational interactionEur. Phys. J. D202074692020EPJD...74...69N – reference: BreuerHPLaineEMPiiloJMeasure for the degree of non-Markovian behavior of quantum processes in open systemsPhys. Rev. Lett.20091032009PhRvL.103u0401B2570018 – reference: XuZYLuoSYangWLLiuCZhuSQQuantum speedup in a memory environmentPhys. Rev. A2014892014PhRvA..89a2307X – reference: S. Bose, G.V. Morley, arXiv:1810.07045v1 (2018) – reference: KrisnandaTThamGYPaternostroMPaterekTObservable quantum entanglement due to gravitynpj Quantum Inf.20206122020npjQI...6...12K – reference: PikovskiIZychMCostaFBruknerCUniversal decoherence due to gravitational time dilationNat. Phys.201511668 – reference: HorodeckiRHorodeckiPHorodeckiMHorodeckiKQuantum entanglementRev. Mod. Phys.2009818652009RvMP...81..865H25156191205.81012 – reference: AltamiranoNCorona-UgaldePMannRBZychMGravity is not a pairwise local classical channelClass. Quantum Gravity2016352018CQGra..35n5005A38262231409.83053 – reference: ZychMQuantum Systems Under Gravitational Time Dilation, Thesis2017BerilnSpringer1390.83004 – reference: LiJGZouJShaoBNon-Markovianity of the damped Jaynes–Cummings model with detuningPhys. Rev. A2010812010PhRvA..81f2124L – reference: ZhangYJHanWXiaYJYuYMFanHRole of initial system-bath correlation on coherence trappingSci. Rep.20155133592015NatSR...513359Z – reference: PeresATernoDHybrid classical-quantum dynamicsPhys. Rev. A2001632001PhRvA..63b2101P – reference: BelenchiaAWaldRMGiacominiFCastro-RuizEBruknerCAspelmeyerMQuantum superposition of massive objects and the quantization of gravityPhys. Rev. D2018982018PhRvD..98l6009B3974317 – reference: MandelstamLTammIThe uncertainty relation between energy and time in non-relativistic quantum mechanicsJ. Phys. (USSR)19459249153340060.45003 – reference: RivasAHuelgaSFPlenioMBEntanglement and non-Markovianity of quantum evolutionsPhys. Rev. Lett.20101052010PhRvL.105e0403R2673036 – reference: CimmarustiADYanZPattersonBDCorcosLPOrozcoLADeffnerSEnvironment-assisted speed-up of the field evolution in cavity quantum electrodynamicsPhys. Rev. Lett.20151142015PhRvL.114w3602C – reference: PengSJObservation of non-Markovianity at room temperature by prolonging entanglement in solidsSci. Bull.201863336 – volume: 63 year: 2001 ident: 11306_CR4 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.63.022101 – volume-title: Feynmann Lectures on Gravitation year: 1995 ident: 11306_CR1 – volume: 8 start-page: 264 year: 2012 ident: 11306_CR37 publication-title: Nat. Phys. doi: 10.1038/nphys2275 – volume: 101 year: 2020 ident: 11306_CR11 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.101.052110 – volume: 63 start-page: 336 year: 2018 ident: 11306_CR24 publication-title: Sci. Bull. doi: 10.1016/j.scib.2018.02.017 – volume: 102 year: 2020 ident: 11306_CR17 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.102.062807 – ident: 11306_CR15 – volume: 119 year: 2017 ident: 11306_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.240402 – volume: 103 year: 2009 ident: 11306_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.210401 – volume: 37 year: 2020 ident: 11306_CR16 publication-title: Class. Quantum Gravity – volume: 93 start-page: 020105(R) year: 2016 ident: 11306_CR35 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.93.020105 – volume: 88 year: 2013 ident: 11306_CR49 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.012105 – volume: 105 year: 2010 ident: 11306_CR23 publication-title: Phys. Rev. Lett. – volume: 98 year: 2018 ident: 11306_CR13 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.126009 – volume: 110 year: 2013 ident: 11306_CR45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.050402 – volume: 60 start-page: 182 year: 1992 ident: 11306_CR40 publication-title: Am. J. Phys. doi: 10.1119/1.16940 – volume: 124 year: 2020 ident: 11306_CR25 publication-title: Phys. Rev. Lett. – volume: 90 year: 2014 ident: 11306_CR50 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.90.052103 – volume: 103 year: 2009 ident: 11306_CR42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.160502 – ident: 11306_CR12 doi: 10.1103/PhysRevA.102.040202 – volume: 114 year: 2015 ident: 11306_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.233602 – volume: 349 start-page: 1205 year: 2015 ident: 11306_CR56 publication-title: Science doi: 10.1126/science.aac6498 – volume: 5 start-page: 13359 year: 2015 ident: 11306_CR30 publication-title: Sci. Rep. doi: 10.1038/srep13359 – volume: 82 year: 2010 ident: 11306_CR44 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.022107 – volume: 67 year: 2003 ident: 11306_CR43 publication-title: Phys. Rev. A – volume: 89 year: 2014 ident: 11306_CR29 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.89.024101 – volume: 91 year: 2015 ident: 11306_CR36 publication-title: Phys. Rev. A – volume-title: Quantum Systems Under Gravitational Time Dilation, Thesis year: 2017 ident: 11306_CR55 doi: 10.1007/978-3-319-53192-2 – volume: 4 start-page: 4890 year: 2014 ident: 11306_CR32 publication-title: Sci. Rep. doi: 10.1038/srep04890 – volume: 86 start-page: 153 year: 2014 ident: 11306_CR38 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.86.153 – volume: 35 year: 2016 ident: 11306_CR21 publication-title: Class. Quantum Gravity – volume: 103 year: 2021 ident: 11306_CR20 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.026017 – volume: 89 year: 2014 ident: 11306_CR33 publication-title: Phys. Rev. A – volume: 111 year: 2013 ident: 11306_CR31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.010402 – volume: 82 year: 2010 ident: 11306_CR26 publication-title: Phys. Rev. A – volume: 120 start-page: 188 year: 1998 ident: 11306_CR41 publication-title: Phys. D doi: 10.1016/S0167-2789(98)00054-2 – volume: 81 start-page: 865 year: 2009 ident: 11306_CR9 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.865 – volume: 3 start-page: 168 year: 2019 ident: 11306_CR48 publication-title: Quantum doi: 10.22331/q-2019-08-05-168 – ident: 11306_CR10 – volume: 119 year: 2017 ident: 11306_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.240401 – volume: 6 start-page: 12 year: 2020 ident: 11306_CR18 publication-title: npj Quantum Inf. doi: 10.1038/s41534-020-0243-y – volume: 82 year: 2010 ident: 11306_CR28 publication-title: Phys. Rev. A – volume: 11 start-page: 668 year: 2015 ident: 11306_CR54 publication-title: Nat. Phys. doi: 10.1038/nphys3366 – volume: 3 start-page: 29 year: 2017 ident: 11306_CR6 publication-title: npj Quantum Inf. doi: 10.1038/s41534-017-0028-0 – ident: 11306_CR3 – volume: 792 start-page: 64 year: 2019 ident: 11306_CR14 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2019.03.015 – volume: 9 start-page: 249 year: 1945 ident: 11306_CR39 publication-title: J. Phys. (USSR) – volume-title: A Global Approach to Quantum Field Theory, International Series of Monographs on Physics year: 2014 ident: 11306_CR2 – volume: 81 year: 2010 ident: 11306_CR47 publication-title: Phys. Rev. A – volume: 7 start-page: 51 year: 1977 ident: 11306_CR5 publication-title: Found. Phys. doi: 10.1007/BF00715241 – volume: 116 year: 2016 ident: 11306_CR27 publication-title: Phys. Rev. Lett. – volume: 101 year: 2020 ident: 11306_CR52 publication-title: Phys. Rev. D – volume: 94 year: 2016 ident: 11306_CR51 publication-title: Phys. Rev. A – volume: 81 start-page: 928 year: 2021 ident: 11306_CR53 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-021-09740-2 – volume: 110 year: 2013 ident: 11306_CR46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.050403 – volume: 74 start-page: 69 year: 2020 ident: 11306_CR19 publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2020-10077-8 |
SSID | ssj0002408 |
Score | 2.4123864 |
Snippet | A two-dimensional ray model is introduced to realize the non-Markovian speedup evolution of a center massive particle gravitationally coupled to a controllable... Abstract A two-dimensional ray model is introduced to realize the non-Markovian speedup evolution of a center massive particle gravitationally coupled to a... |
SourceID | doaj proquest gale crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 146 |
SubjectTerms | Astronomy Astrophysics and Cosmology Controllability Critical mass Crossovers Elementary Particles Evolution Hadrons Heavy Ions Measurement Science and Instrumentation Multilayers Neutrons Nuclear Energy Nuclear Physics Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Regular Article - Theoretical Physics Separation Speed limits String Theory Two dimensional models |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZgKyQuiKcILchCSJysZhM7tk-oRa0KEitUqNSbZY_tCgRJ2Oy2f59x4t1SVaK3PJwomRl_M3FmviHknQJdOZfywoLAD5SoLHNRSwZBeh2kVt6nBf0vi-bkjH8-F-d5wW3IaZUbTByB2neQ1sj3K4nTVja6kh_6Pyx1jUp_V3MLjftkByFYqRnZOTxafD3dYnEi8Brri2rOmpLznOGFXxX7of8JqYKuFBVDx8XmiOYNq2_4p5HG_zZY3_prOjqj48fkUY4i6cGk9ifkXmifkgdjNicMzwgsupalKpzuErVPhx5d1Lqn4TLbGe0itTTlZYYl_Y3hM0Ie7bMR0R8tXV11zCfe_4mzg_5TDod7Y_ec5-Ts-Oj7xxOWuykwwBhrxbgLGKuoRpUeag5zqzhwSE2DIhcygubozLQLNuCsF1ZIEFbp6FwTtUOV1i_IrO3a8JLQuWswjiuj8ErxCLWyDrQorQQrROSqIM1GhgYy1XjqePHLTGXQpUnCN5PwDQrfjMI3dUHK7YX9xLZx9yWHSUnb4YkuezzQLS9MFpyR0nkJHJ8zsTGC1Ra0r7x3iK5z3CjI26Rikwgx2pRxc2HXw2A-fTs1Bxhi1bzisinI-zwodvg2YHMBA8okcWjdGLm3MRWTIWEw1wZckPnGfK5P3_Gar_5_y13ysEpGPKaT75HZarkOrzFaWrk3eUr8BTGmESw priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpSqGX0id1kxRRCj2J-CFZ0jFZGpJAc2gbyE1II6m0NLaJd9O_35Gt3SYEEujNDwmsmdHMZ3vmG0I-KtC1cykvLAh8QYnKMhe1ZBCk10Fq5X36oP_lrD0-56cX4mKL7K9rYW7-v0fsvx-GX5Dq3EpRMwwvrEKf27LmEXksqkamXg2LdrFxvYmvKydx3TP5VgiamPrv-uM7P0aneHP0nDzLQJEezJp9QbZC95I8mRI2YXxF4KzvWCq06a9RwXQcMAqtBhqusynRPlJLU-pluKKXiJDRq9Eh2wn92dHln575RO0_03LQGxVveDY1yHlNzo8-f18cs9wwgQHCqCXjLiAcUa0qPTQcKqs4cEh9gSIXMoLmGK-0CzbgxhZWSBBW6ehcG7VDrTVvyHbXd-EtoZVrEaqVUXileIRGWQdalFaCFSJyVZB2LUMDmU08NbX4beZK59Ik4ZtZ-AaFbybhm6Yg5WbiMBNqPDzlMClpMzwxYk8X0FBMFpyR0nkJHJ8zES6C1Ra0r7136EArPCjIh6RikzgvupRU88OuxtGcfPtqDhBFNbzmsi3Ipzwo9rgasLlGAWWSaLJujdxdm4rJu340tcTQIltdy4JUa_P5d_uBZb77jzk75GmdLHtKI98l28urVdhDlLR076ed8Rc-AgpR priority: 102 providerName: Springer Nature |
Title | Non-Markovian speedup evolution of a center massive particle in two-dimensional environmental model |
URI | https://link.springer.com/article/10.1140/epjc/s10052-023-11306-3 https://www.proquest.com/docview/2776276927 https://doaj.org/article/77bd7c48ab1349ca9ac9d2ddb7631d2d |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96IvgifmL1XIIIPoXrR9Ikj3vLrafgIqcL9xaSNBEPbct19_z3nWmz5x33sC--hKZNoJmZzEzamd8Q8l55XTqHcWFBwAElKstc1JL5IBsdpFZNgx_0v6zq0zX_fC7Ob5T6wpiwCR54ItyRlK6RnivrEEjPW229bsqmcbAxCrhA7Qs2b3eYSjoYgbtSNBecII5Cf-ExWy4XJQMjxQrQ3DWrbtmiEbL_rmK-84d0NDzLJ-Rx8hjpfHrTp-ReaJ-Rh2Pkph-eE7_qWoYZN90VcJoOPZijbU_DVZIp2kVqKcZghkv6G1xlUG-0T-umP1u6-dOxBjH-J3wOeiP1DXpjpZwXZL08-b44ZalyAvPgT20YdwH8ElWrvPEV94VV3HOPBYIiFzJ6zcFwaRdsgB0urJBeWKWjc3XUDthXvSQHbdeGV4QWrgafLY-iUYpHXwEjvBa5ld4KEbnKSL2jofEJVhyrW_wyU8pzbpD4ZiK-AeKbkfimykh-PbGfkDX2TzlGJl0PR2js8QYIjEmEM_sEJiPvkMUGwS9ajK75YbfDYD59OzNzcKcqXnJZZ-RDGhQ7WI23KVkBaIJ4WbdGHu5ExaTtP5hSgo2RtS5lRoqd-Px7vGeZr__HMt-QRyWK-hhgfkgONpfb8Bb8p42bkftq-XFGHhyfrL6eQW9RcmzrxWzcRNCuy_lfxDUcoA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYILYlUHClgIxMlqJnFi-4BQWYYObecArdSb8VqBIAmTmVb8KX4j72WZUlWip96y2FH8_L3F9lsIeSGdSq1Fv7CQwwIlSsNsVIK5ILwKQknvcUN_f1bsHPJPR_nRGvkzxMKgW-UgE1tB7SuHe-RbqQC2FYVKxZv6F8OqUXi6OpTQ6GCxG36fwpKteT19D_P7Mk0nHw7e7bC-qgBzYGssGLcBdLYsZOJdxt3YSO64w-I5keciOsVBqCsbTAD05yYXLjdSRWuLqCwMLYPvXiPXeQaaHCPTJx9Xkh_ThbXRTBlnRcJ5708Ga5itUH93GK-X5CkDNcnGoDsKlp3Thm3RgIuq4cIZbav6JnfI7d5mpdsdyO6StVDeIzda31HX3CduVpUMY36qE8AabWpQiMuahpMe1bSK1FD0Ag1z-hOMdRCwtO4hS7-VdHFaMY9VBroMIfSf4Du4a2v1PCCHV0Llh2S9rMqwQejYFmA1JjH3UvLoMmmsU3lihDN5HrkckWKgoXZ9YnOsr_FDd0HXiUbi6474GoivW-LrbESSVce6y-1xeZe3OEmr5picu31QzY91TzgthPXCcfhPzP3ojDJO-dR7C7J8DBcj8hynWGP6jRL9e47Nsmn09MtnvQ0GXcZTLooRedU3ihWMxpk-XAJoghm7zrXcHKCiewHU6DN2GZHxAJ-z15cM89H_P_mM3Nw52N_Te9PZ7mNyK0VAt47sm2R9MV-GJ2CnLezTljko-XrV3PgXiZJMlg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLbKVCAuiFUMFLAQiJPVLE4cHxBqaUcdCqOqUKk3Yzt2BYIkTGZa8df4dbyXOFOqSvTUWxYnip-_tzlvIeRVYWViDMaFuQwcFF9oZrwUzDpRSidkUZa4of9plu8d8Q_H2fEa-TPkwmBY5SATO0Fd1hb3yDcTAWwrcgmuug9hEQc7k3fNL4YdpPBP69BOo4fIvvt9Bu5b-3a6A2v9Okkmu1_e77HQYYBZsDsWjBsH-rvIi6i0KbexLrjlFhvpeJ4JbyUHAS-N0w44IdOZsJkupDcm99LANFN47w2yLtArGpH17d3ZweFKD2DxsC63KeUsjzgP0WXg0Wy65rvF7L0oSxgoTRaDJslZekE3di0ELiuKS39sO0U4uUvuBAuWbvWQu0fWXHWf3OwiSW37gNhZXTHMAKpPAXm0bUA9LhvqTgPGae2pphgT6ub0J5juIG5pEwBMv1V0cVazEnsO9PVC6D-peHDWde55SI6uhc6PyKiqK_eY0NjkYENGPiuLgnubFtpYmUVaWJ1lnhdjkg80VDaUOcduGz9Un4IdKSS-6omvgPiqI75KxyRaPdj0lT6ufmQbF2k1HEt1dxfq-YkKhFNCmFJYDt-JlSCtltrKMilLA5I9hoMxeYlLrLAYR4WwPtHLtlXTz4dqC8y7lCdc5GPyJgzyNczG6pA8ATTB-l0XRm4MUFFBHLXqnHnGJB7gc377imk--f8rX5BbwInq43S2_5TcThDPXVT7Bhkt5kv3DIy2hXkeuIOSr9fNkH8ByAVSKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Markovian+speedup+evolution+of+a+center+massive+particle+in+two-dimensional+environmental+model&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Ying-Jie+Zhang&rft.au=Qi+Wang&rft.au=Wei-Bin+Yan&rft.au=Zhong-Xiao+Man&rft.date=2023-02-01&rft.pub=SpringerOpen&rft.eissn=1434-6052&rft.volume=83&rft.issue=2&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-023-11306-3&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_77bd7c48ab1349ca9ac9d2ddb7631d2d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6052&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6052&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6052&client=summon |