Protein interaction interface region prediction by geometric deep learning

Abstract Motivation Protein–protein interactions drive wide-ranging molecular processes, and characterizing at the atomic level how proteins interact (beyond just the fact that they interact) can provide key insights into understanding and controlling this machinery. Unfortunately, experimental dete...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 37; no. 17; pp. 2580 - 2588
Main Authors Dai, Bowen, Bailey-Kellogg, Chris
Format Journal Article
LanguageEnglish
Published England Oxford University Press 09.09.2021
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1367-4811
DOI10.1093/bioinformatics/btab154

Cover

Loading…
Abstract Abstract Motivation Protein–protein interactions drive wide-ranging molecular processes, and characterizing at the atomic level how proteins interact (beyond just the fact that they interact) can provide key insights into understanding and controlling this machinery. Unfortunately, experimental determination of three-dimensional protein complex structures remains difficult and does not scale to the increasingly large sets of proteins whose interactions are of interest. Computational methods are thus required to meet the demands of large-scale, high-throughput prediction of how proteins interact, but unfortunately, both physical modeling and machine learning methods suffer from poor precision and/or recall. Results In order to improve performance in predicting protein interaction interfaces, we leverage the best properties of both data- and physics-driven methods to develop a unified Geometric Deep Neural Network, ‘PInet’ (Protein Interface Network). PInet consumes pairs of point clouds encoding the structures of two partner proteins, in order to predict their structural regions mediating interaction. To make such predictions, PInet learns and utilizes models capturing both geometrical and physicochemical molecular surface complementarity. In application to a set of benchmarks, PInet simultaneously predicts the interface regions on both interacting proteins, achieving performance equivalent to or even much better than the state-of-the-art predictor for each dataset. Furthermore, since PInet is based on joint segmentation of a representation of a protein surfaces, its predictions are meaningful in terms of the underlying physical complementarity driving molecular recognition. Availability and implementation PInet scripts and models are available at https://github.com/FTD007/PInet. Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList Protein-protein interactions drive wide-ranging molecular processes, and characterizing at the atomic level how proteins interact (beyond just the fact that they interact) can provide key insights into understanding and controlling this machinery. Unfortunately, experimental determination of three-dimensional protein complex structures remains difficult and does not scale to the increasingly large sets of proteins whose interactions are of interest. Computational methods are thus required to meet the demands of large-scale, high-throughput prediction of how proteins interact, but unfortunately, both physical modeling and machine learning methods suffer from poor precision and/or recall. In order to improve performance in predicting protein interaction interfaces, we leverage the best properties of both data- and physics-driven methods to develop a unified Geometric Deep Neural Network, 'PInet' (Protein Interface Network). PInet consumes pairs of point clouds encoding the structures of two partner proteins, in order to predict their structural regions mediating interaction. To make such predictions, PInet learns and utilizes models capturing both geometrical and physicochemical molecular surface complementarity. In application to a set of benchmarks, PInet simultaneously predicts the interface regions on both interacting proteins, achieving performance equivalent to or even much better than the state-of-the-art predictor for each dataset. Furthermore, since PInet is based on joint segmentation of a representation of a protein surfaces, its predictions are meaningful in terms of the underlying physical complementarity driving molecular recognition. PInet scripts and models are available at https://github.com/FTD007/PInet. Supplementary data are available at Bioinformatics online.
Protein-protein interactions drive wide-ranging molecular processes, and characterizing at the atomic level how proteins interact (beyond just the fact that they interact) can provide key insights into understanding and controlling this machinery. Unfortunately, experimental determination of three-dimensional protein complex structures remains difficult and does not scale to the increasingly large sets of proteins whose interactions are of interest. Computational methods are thus required to meet the demands of large-scale, high-throughput prediction of how proteins interact, but unfortunately, both physical modeling and machine learning methods suffer from poor precision and/or recall.MOTIVATIONProtein-protein interactions drive wide-ranging molecular processes, and characterizing at the atomic level how proteins interact (beyond just the fact that they interact) can provide key insights into understanding and controlling this machinery. Unfortunately, experimental determination of three-dimensional protein complex structures remains difficult and does not scale to the increasingly large sets of proteins whose interactions are of interest. Computational methods are thus required to meet the demands of large-scale, high-throughput prediction of how proteins interact, but unfortunately, both physical modeling and machine learning methods suffer from poor precision and/or recall.In order to improve performance in predicting protein interaction interfaces, we leverage the best properties of both data- and physics-driven methods to develop a unified Geometric Deep Neural Network, 'PInet' (Protein Interface Network). PInet consumes pairs of point clouds encoding the structures of two partner proteins, in order to predict their structural regions mediating interaction. To make such predictions, PInet learns and utilizes models capturing both geometrical and physicochemical molecular surface complementarity. In application to a set of benchmarks, PInet simultaneously predicts the interface regions on both interacting proteins, achieving performance equivalent to or even much better than the state-of-the-art predictor for each dataset. Furthermore, since PInet is based on joint segmentation of a representation of a protein surfaces, its predictions are meaningful in terms of the underlying physical complementarity driving molecular recognition.RESULTSIn order to improve performance in predicting protein interaction interfaces, we leverage the best properties of both data- and physics-driven methods to develop a unified Geometric Deep Neural Network, 'PInet' (Protein Interface Network). PInet consumes pairs of point clouds encoding the structures of two partner proteins, in order to predict their structural regions mediating interaction. To make such predictions, PInet learns and utilizes models capturing both geometrical and physicochemical molecular surface complementarity. In application to a set of benchmarks, PInet simultaneously predicts the interface regions on both interacting proteins, achieving performance equivalent to or even much better than the state-of-the-art predictor for each dataset. Furthermore, since PInet is based on joint segmentation of a representation of a protein surfaces, its predictions are meaningful in terms of the underlying physical complementarity driving molecular recognition.PInet scripts and models are available at https://github.com/FTD007/PInet.AVAILABILITY AND IMPLEMENTATIONPInet scripts and models are available at https://github.com/FTD007/PInet.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Abstract Motivation Protein–protein interactions drive wide-ranging molecular processes, and characterizing at the atomic level how proteins interact (beyond just the fact that they interact) can provide key insights into understanding and controlling this machinery. Unfortunately, experimental determination of three-dimensional protein complex structures remains difficult and does not scale to the increasingly large sets of proteins whose interactions are of interest. Computational methods are thus required to meet the demands of large-scale, high-throughput prediction of how proteins interact, but unfortunately, both physical modeling and machine learning methods suffer from poor precision and/or recall. Results In order to improve performance in predicting protein interaction interfaces, we leverage the best properties of both data- and physics-driven methods to develop a unified Geometric Deep Neural Network, ‘PInet’ (Protein Interface Network). PInet consumes pairs of point clouds encoding the structures of two partner proteins, in order to predict their structural regions mediating interaction. To make such predictions, PInet learns and utilizes models capturing both geometrical and physicochemical molecular surface complementarity. In application to a set of benchmarks, PInet simultaneously predicts the interface regions on both interacting proteins, achieving performance equivalent to or even much better than the state-of-the-art predictor for each dataset. Furthermore, since PInet is based on joint segmentation of a representation of a protein surfaces, its predictions are meaningful in terms of the underlying physical complementarity driving molecular recognition. Availability and implementation PInet scripts and models are available at https://github.com/FTD007/PInet. Supplementary information Supplementary data are available at Bioinformatics online.
Author Dai, Bowen
Bailey-Kellogg, Chris
AuthorAffiliation Computer Science Department, Dartmouth , Hanover, NH 03755, USA
AuthorAffiliation_xml – name: Computer Science Department, Dartmouth , Hanover, NH 03755, USA
Author_xml – sequence: 1
  givenname: Bowen
  surname: Dai
  fullname: Dai, Bowen
– sequence: 2
  givenname: Chris
  orcidid: 0000-0003-1860-0912
  surname: Bailey-Kellogg
  fullname: Bailey-Kellogg, Chris
  email: cbk@cs.dartmouth.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33693581$$D View this record in MEDLINE/PubMed
BookMark eNqNUctKAzEUDVJRq_5CmaWb2jw6kwyIIMUngi50HTKZmxqZScYkFfr3Tmkt1o2ucsk9L-4ZooHzDhAaEXxOcMkmlfXWGR9alayOkyqpiuTTPXREWMHHU0HIYDtjdoiGMb5jjHOcFwfokLGiZLkgR-jhOfgE1mXWJQhKJ-s3s1EasgDz1UcXoLbrXbXM5uBbSMHqrAbosgZUcNbNT9C-UU2E0817jF5vrl9md-PHp9v72dXjWOeUpvFUaUrrWhuhATNOSk4ULSnvs4mqwhhqijnTShhekhJ4VWCDa8VBcGOAAztGl2vdblG1UGtwKahGdsG2KiylV1bubpx9k3P_KcWUilzkvcDZRiD4jwXEJFsbNTSNcuAXUdIcr4L16B46-um1Nfk-YA8o1gAdfIwBzBZCsFw1JXebkpumeuLFL6K2Sa1O3Ge2zd90sqb7Rfdfyy_NdLaB
CitedBy_id crossref_primary_10_1016_j_csbj_2022_04_036
crossref_primary_10_34133_research_0240
crossref_primary_10_1093_bioinformatics_btab849
crossref_primary_10_1016_j_isci_2023_106911
crossref_primary_10_1093_bioinformatics_btab761
crossref_primary_10_1093_protein_gzad023
crossref_primary_10_3390_ijms23137033
crossref_primary_10_1093_bib_bbae162
crossref_primary_10_1038_s41467_023_37701_8
crossref_primary_10_1016_j_sbi_2022_102328
crossref_primary_10_3390_encyclopedia3030056
crossref_primary_10_1016_j_sbi_2022_102329
crossref_primary_10_1021_acs_jpcb_2c04525
crossref_primary_10_1093_bioinformatics_btae405
crossref_primary_10_1007_s10930_023_10121_9
crossref_primary_10_1016_j_jmb_2022_167556
crossref_primary_10_1016_j_cels_2023_10_006
crossref_primary_10_1039_D2CB00207H
crossref_primary_10_3389_fcimb_2022_962945
crossref_primary_10_1093_bioinformatics_btac071
crossref_primary_10_21015_vtcs_v11i1_1396
crossref_primary_10_1016_j_csbj_2024_05_023
crossref_primary_10_1007_s00521_023_09366_3
crossref_primary_10_1093_bib_bbae307
crossref_primary_10_3389_fimmu_2023_1228873
crossref_primary_10_3389_fmolb_2021_658906
crossref_primary_10_1021_acs_jmedchem_3c00449
crossref_primary_10_1109_JBHI_2024_3356231
crossref_primary_10_1134_S0006297924080066
crossref_primary_10_1089_cmb_2024_0804
crossref_primary_10_3390_kinasesphosphatases2010004
crossref_primary_10_1038_s42256_022_00553_w
crossref_primary_10_1002_adfm_202203635
crossref_primary_10_1016_j_sbi_2023_102548
crossref_primary_10_1134_S1990750823600498
crossref_primary_10_1038_s43588_023_00438_x
crossref_primary_10_1021_acs_jpcb_2c04346
crossref_primary_10_3390_molecules28135169
crossref_primary_10_3389_fbinf_2022_1044975
crossref_primary_10_1021_acs_jctc_3c00513
crossref_primary_10_1038_s41540_024_00432_7
crossref_primary_10_1016_j_jmgm_2023_108670
crossref_primary_10_1093_bioinformatics_btae588
crossref_primary_10_1002_pro_4862
crossref_primary_10_1371_journal_pcbi_1011435
crossref_primary_10_1093_bioadv_vbad070
crossref_primary_10_1016_j_sbi_2022_102379
crossref_primary_10_1093_bib_bbab578
crossref_primary_10_1016_j_patter_2024_100994
crossref_primary_10_1016_j_sbi_2022_102336
crossref_primary_10_1093_bib_bbac269
crossref_primary_10_1016_j_inffus_2023_101909
crossref_primary_10_3390_cancers15102824
Cites_doi 10.1093/nar/gki481
10.1002/prot.25219
10.1038/s41592-019-0666-6
10.1002/prot.21248
10.1093/nar/gkm276
10.1371/journal.pcbi.1002829
10.1093/nar/gkt1043
10.1038/nbt785
10.1093/bioinformatics/btu190
10.1038/s41596-020-0312-x
10.1073/pnas.181342398
10.1093/bioinformatics/btq302
10.1016/j.jmb.2015.07.016
10.1093/bioinformatics/btg371
10.1038/nprot.2016.180
10.1093/bioinformatics/bty647
10.1093/bioinformatics/btq003
10.1093/bioinformatics/btaa263
10.1093/nar/gki585
10.1016/j.str.2014.02.003
10.1021/jm048957q
10.1016/S0022-2836(05)80134-2
10.1371/journal.pcbi.0030042
10.1038/s41586-019-0879-y
10.1002/prot.22106
10.1107/S0907444902003451
10.1145/571647.571648
10.1016/j.coviro.2015.03.012
10.1038/nature11503
10.1002/prot.24479
10.1016/0022-2836(82)90515-0
10.1093/nar/gky420
10.7554/eLife.29023
10.1093/bioinformatics/btu097
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021
– notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1093/bioinformatics/btab154
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
EndPage 2588
ExternalDocumentID PMC8428585
33693581
10_1093_bioinformatics_btab154
10.1093/bioinformatics/btab154
Genre Journal Article
GrantInformation_xml – fundername: NIH HHS
  grantid: 2R01GM098977
– fundername: NIGMS NIH HHS
  grantid: R01 GM098977
– fundername: ;
  grantid: 2R01GM098977
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNI
RNS
ROL
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c522t-4ac22ddcf8ce0371971a29270508bb00ed2073ca8f7919e7b60f0da7e87ffe7e3
IEDL.DBID TOX
ISSN 1367-4803
1367-4811
IngestDate Thu Aug 21 14:32:18 EDT 2025
Fri Jul 11 01:58:59 EDT 2025
Thu Apr 03 06:56:57 EDT 2025
Tue Jul 01 02:33:55 EDT 2025
Thu Apr 24 22:51:18 EDT 2025
Wed Apr 02 07:06:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-4ac22ddcf8ce0371971a29270508bb00ed2073ca8f7919e7b60f0da7e87ffe7e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1860-0912
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8428585
PMID 33693581
PQID 2500371428
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8428585
proquest_miscellaneous_2500371428
pubmed_primary_33693581
crossref_primary_10_1093_bioinformatics_btab154
crossref_citationtrail_10_1093_bioinformatics_btab154
oup_primary_10_1093_bioinformatics_btab154
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Sep-09
PublicationDateYYYYMMDD 2021-09-09
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-Sep-09
  day: 09
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Qi (2023051609205830500_btab154-B30) 2017
Huang (2023051609205830500_btab154-B14) 2010; 26
Pierce (2023051609205830500_btab154-B27) 2014; 30
Vinyals (2023051609205830500_btab154-B38) 2015
Feldhaus (2023051609205830500_btab154-B10) 2003; 21
Ogmen (2023051609205830500_btab154-B25) 2005; 33
Yan (2023051609205830500_btab154-B42) 2020; 15
Fout (2023051609205830500_btab154-B11) 2017
Townshend (2023051609205830500_btab154-B36) 2019
Sela-Culang (2023051609205830500_btab154-B33) 2014; 22
Kipf (2023051609205830500_btab154-B17) 2017
Shoemaker (2023051609205830500_btab154-B35) 2007; 3
Weitzner (2023051609205830500_btab154-B41) 2017; 12
Hwang (2023051609205830500_btab154-B15) 2008; 73
Kringelum (2023051609205830500_btab154-B19) 2012; 8
Lawrence (2023051609205830500_btab154-B21) 1993
Hua (2023051609205830500_btab154-B13) 2017; 6
Sela-Culang (2023051609205830500_btab154-B34) 2015; 11
Vajda (2023051609205830500_btab154-B37) 2017; 85
Briney (2023051609205830500_btab154-B5) 2019; 566
Kyte (2023051609205830500_btab154-B20) 1982; 157
Schneidman-Duhovny (2023051609205830500_btab154-B32) 2005; 33
Baker (2023051609205830500_btab154-B3) 2001; 98
Murzin (2023051609205830500_btab154-B24) 1995; 247
Gainza (2023051609205830500_btab154-B12) 2020; 17
Berman (2023051609205830500_btab154-B4) 2002; 58
Bahdanau (2023051609205830500_btab154-B2) 2014
Sanchez-Garcia (2023051609205830500_btab154-B31) 2019; 35
Jaderberg (2023051609205830500_btab154-B16) 2015
Pittala (2023051609205830500_btab154-B28) 2020; 36
Porollo (2023051609205830500_btab154-B29) 2007; 66
Krawczyk (2023051609205830500_btab154-B18) 2014; 30
Comeau (2023051609205830500_btab154-B6) 2004; 20
Vreven (2023051609205830500_btab154-B39) 2015; 427
Wang (2023051609205830500_btab154-B40) 2005; 48
Zhang (2023051609205830500_btab154-B44) 2012; 490
Maturana (2023051609205830500_btab154-B22) 2015
Zeng (2023051609205830500_btab154-B43) 2018; 46
Afsar Minhas (2023051609205830500_btab154-B1) 2014; 82
Osada (2023051609205830500_btab154-B26) 2002; 21
Dunbar (2023051609205830500_btab154-B9) 2014; 42
Murakami (2023051609205830500_btab154-B23) 2010; 26
DeLano (2023051609205830500_btab154-B7) 2002
Dolinsky (2023051609205830500_btab154-B8) 2007; 35
References_xml – volume: 33
  start-page: W363
  year: 2005
  ident: 2023051609205830500_btab154-B32
  article-title: Patchdock and symmdock: servers for rigid and symmetric docking
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki481
– volume: 85
  start-page: 435
  year: 2017
  ident: 2023051609205830500_btab154-B37
  article-title: New additions to the clusPro server motivated by CAPRI
  publication-title: Proteins Struct. Funct. Bioinf
  doi: 10.1002/prot.25219
– volume: 17
  start-page: 184
  year: 2020
  ident: 2023051609205830500_btab154-B12
  article-title: Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0666-6
– volume: 66
  start-page: 630
  year: 2007
  ident: 2023051609205830500_btab154-B29
  article-title: Prediction-based fingerprints of protein–protein interactions
  publication-title: Proteins Struct. Funct. Bioinf
  doi: 10.1002/prot.21248
– volume: 35
  start-page: W522
  year: 2007
  ident: 2023051609205830500_btab154-B8
  article-title: Pdb2pqr: expanding and upgrading automated preparation of biomolecular structures for molecular simulations
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm276
– volume: 8
  start-page: e1002829
  year: 2012
  ident: 2023051609205830500_btab154-B19
  article-title: Reliable b cell epitope predictions: impacts of method development and improved benchmarking
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1002829
– volume: 42
  start-page: D1140
  year: 2014
  ident: 2023051609205830500_btab154-B9
  article-title: Sabdab: the structural antibody database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1043
– volume: 21
  start-page: 163
  year: 2003
  ident: 2023051609205830500_btab154-B10
  article-title: Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt785
– volume: 30
  start-page: 2288
  year: 2014
  ident: 2023051609205830500_btab154-B18
  article-title: Improving b-cell epitope prediction and its application to global antibody-antigen docking
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu190
– start-page: 652
  year: 2017
  ident: 2023051609205830500_btab154-B30
– volume: 15
  start-page: 1829
  year: 2020
  ident: 2023051609205830500_btab154-B42
  article-title: The hdock server for integrated protein–protein docking
  publication-title: Nat. Protoc
  doi: 10.1038/s41596-020-0312-x
– volume: 98
  start-page: 10037
  year: 2001
  ident: 2023051609205830500_btab154-B3
  article-title: Electrostatics of nanosystems: application to microtubules and the ribosome
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.181342398
– volume: 26
  start-page: 1841
  year: 2010
  ident: 2023051609205830500_btab154-B23
  article-title: Applying the naïve Bayes classifier with kernel density estimation to the prediction of protein–protein interaction sites
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq302
– volume: 427
  start-page: 3031
  year: 2015
  ident: 2023051609205830500_btab154-B39
  article-title: Updates to the integrated protein–protein interaction benchmarks: docking benchmark version 5 and affinity benchmark version 2
  publication-title: J. Mol. Biol
  doi: 10.1016/j.jmb.2015.07.016
– volume: 20
  start-page: 45
  year: 2004
  ident: 2023051609205830500_btab154-B6
  article-title: Cluspro: an automated docking and discrimination method for the prediction of protein complexes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg371
– volume: 12
  start-page: 401
  year: 2017
  ident: 2023051609205830500_btab154-B41
  article-title: Modeling and docking of antibody structures with Rosetta
  publication-title: Nat. Protoc
  doi: 10.1038/nprot.2016.180
– start-page: 922
  year: 2015
  ident: 2023051609205830500_btab154-B22
– volume: 35
  start-page: 470
  year: 2019
  ident: 2023051609205830500_btab154-B31
  article-title: Bipspi: a method for the prediction of partner-specific protein–protein interfaces
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty647
– year: 2002
  ident: 2023051609205830500_btab154-B7
– volume: 26
  start-page: 680
  year: 2010
  ident: 2023051609205830500_btab154-B14
  article-title: Cd-hit suite: a web server for clustering and comparing biological sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq003
– volume: 36
  start-page: 3996
  year: 2020
  ident: 2023051609205830500_btab154-B28
  article-title: Learning context-aware structural representations to predict antigen and antibody binding interfaces
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa263
– start-page: 15642
  year: 2019
  ident: 2023051609205830500_btab154-B36
– volume: 33
  start-page: W331
  year: 2005
  ident: 2023051609205830500_btab154-B25
  article-title: Prism: protein interactions by structural matching
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki585
– volume: 22
  start-page: 646
  year: 2014
  ident: 2023051609205830500_btab154-B33
  article-title: Using a combined computational-experimental approach to predict antibody-specific b cell epitopes
  publication-title: Structure
  doi: 10.1016/j.str.2014.02.003
– volume: 48
  start-page: 4111
  year: 2005
  ident: 2023051609205830500_btab154-B40
  article-title: The pdbbind database: methodologies and updates
  publication-title: J. Med. Chem
  doi: 10.1021/jm048957q
– year: 2015
  ident: 2023051609205830500_btab154-B38
– start-page: 2017
  year: 2015
  ident: 2023051609205830500_btab154-B16
– year: 2017
  ident: 2023051609205830500_btab154-B17
– volume: 247
  start-page: 536
  year: 1995
  ident: 2023051609205830500_btab154-B24
  article-title: Scop: a structural classification of proteins database for the investigation of sequences and structures
  publication-title: J. Mol. Biol
  doi: 10.1016/S0022-2836(05)80134-2
– volume: 3
  start-page: e42
  year: 2007
  ident: 2023051609205830500_btab154-B35
  article-title: Deciphering protein–protein interactions. Part I. Experimental techniques and databases
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.0030042
– volume: 566
  start-page: 393
  year: 2019
  ident: 2023051609205830500_btab154-B5
  article-title: Commonality despite exceptional diversity in the baseline human antibody repertoire
  publication-title: Nature
  doi: 10.1038/s41586-019-0879-y
– volume: 73
  start-page: 705
  year: 2008
  ident: 2023051609205830500_btab154-B15
  article-title: Protein–protein docking benchmark version 3.0
  publication-title: Proteins Struct. Funct. Bioinf
  doi: 10.1002/prot.22106
– year: 2014
  ident: 2023051609205830500_btab154-B2
– volume: 58
  start-page: 899
  year: 2002
  ident: 2023051609205830500_btab154-B4
  article-title: The protein data bank
  publication-title: Acta Crystallogr. D Biol. Crystallogr
  doi: 10.1107/S0907444902003451
– start-page: 946
  year: 1993
  ident: 2023051609205830500_btab154-B21
– volume: 21
  start-page: 807
  year: 2002
  ident: 2023051609205830500_btab154-B26
  article-title: Shape distributions
  publication-title: ACM Trans. Graph. (TOG)
  doi: 10.1145/571647.571648
– volume: 11
  start-page: 98
  year: 2015
  ident: 2023051609205830500_btab154-B34
  article-title: Antibody specific epitope prediction—emergence of a new paradigm
  publication-title: Curr. Opin. Virol
  doi: 10.1016/j.coviro.2015.03.012
– volume: 490
  start-page: 556
  year: 2012
  ident: 2023051609205830500_btab154-B44
  article-title: Structure-based prediction of protein–protein interactions on a genome-wide scale
  publication-title: Nature
  doi: 10.1038/nature11503
– volume: 82
  start-page: 1142
  year: 2014
  ident: 2023051609205830500_btab154-B1
  article-title: Pairpred: partner-specific prediction of interacting residues from sequence and structure
  publication-title: Proteins Struct. Funct. Bioinf
  doi: 10.1002/prot.24479
– start-page: 6530
  year: 2017
  ident: 2023051609205830500_btab154-B11
– volume: 157
  start-page: 105
  year: 1982
  ident: 2023051609205830500_btab154-B20
  article-title: A simple method for displaying the hydropathic character of a protein
  publication-title: J. Mol. Biol
  doi: 10.1016/0022-2836(82)90515-0
– volume: 46
  start-page: W432
  year: 2018
  ident: 2023051609205830500_btab154-B43
  article-title: Complexcontact: a web server for inter-protein contact prediction using deep learning
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky420
– volume: 6
  start-page: e29023
  year: 2017
  ident: 2023051609205830500_btab154-B13
  article-title: Computationally-driven identification of antibody epitopes
  publication-title: Elife
  doi: 10.7554/eLife.29023
– volume: 30
  start-page: 1771
  year: 2014
  ident: 2023051609205830500_btab154-B27
  article-title: Zdock server: interactive docking prediction of protein–protein complexes and symmetric multimers
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu097
SSID ssj0005056
Score 2.6055572
Snippet Abstract Motivation Protein–protein interactions drive wide-ranging molecular processes, and characterizing at the atomic level how proteins interact (beyond...
Protein-protein interactions drive wide-ranging molecular processes, and characterizing at the atomic level how proteins interact (beyond just the fact that...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2580
SubjectTerms Original Papers
Title Protein interaction interface region prediction by geometric deep learning
URI https://www.ncbi.nlm.nih.gov/pubmed/33693581
https://www.proquest.com/docview/2500371428
https://pubmed.ncbi.nlm.nih.gov/PMC8428585
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KQfAivo0vIngSQpNNmt09ilhKwcehhd7CZne2FjQtNT303zubR20Kot5C9kGYyWS-MDvfR8itAC2VgMjTKlJeZCiGVAza09TILgguo6IX5uk57o-iwbg7bpGg7oXZLuGLsJNOZxWJqCUu7qS5TDHv41cXM7Flyx--jL8PdfiFXqvlIfMi7od1T_CP2zTSUaPFbQNpbh-Y3MhAvX2yV0FH97709QFpQXZIdkoxydURGbxayoVp5loGiEXZr1BeG6nAtQoMeGO-sJWZYixduROYfVhJLeVqgLlbSUhMjsmo9zh86HuVUoKnED_lXiQVpVorw638FwsECyQVlKE9eIqBBZpiKCvJDROBAJbGvvG1ZMCZMcAgPCHtbJbBGXFxvUYIFfg6NpEKYxn7AudrbaGLAeGQbm2wRFU04lbN4j0py9lh0jR0UhnaIZ31unlJpPHrijv0x58n39RuSzBAbNVDZjBbfiaI8QpaQsodclq6cb1nGMYFAZxDWMPB6wmWfLs5kk3fChJujhvir9b5fx7yguxSeyTG1qPEJWnniyVcIabJ0-viNf4CDxn-MA
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+interaction+interface+region+prediction+by+geometric+deep+learning&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Dai%2C+Bowen&rft.au=Bailey-Kellogg%2C+Chris&rft.date=2021-09-09&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=37&rft.issue=17&rft.spage=2580&rft.epage=2588&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtab154&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btab154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon