Protein interaction interface region prediction by geometric deep learning
Abstract Motivation Protein–protein interactions drive wide-ranging molecular processes, and characterizing at the atomic level how proteins interact (beyond just the fact that they interact) can provide key insights into understanding and controlling this machinery. Unfortunately, experimental dete...
Saved in:
Published in | Bioinformatics (Oxford, England) Vol. 37; no. 17; pp. 2580 - 2588 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
09.09.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1367-4803 1367-4811 1367-4811 |
DOI | 10.1093/bioinformatics/btab154 |
Cover
Loading…
Abstract | Abstract
Motivation
Protein–protein interactions drive wide-ranging molecular processes, and characterizing at the atomic level how proteins interact (beyond just the fact that they interact) can provide key insights into understanding and controlling this machinery. Unfortunately, experimental determination of three-dimensional protein complex structures remains difficult and does not scale to the increasingly large sets of proteins whose interactions are of interest. Computational methods are thus required to meet the demands of large-scale, high-throughput prediction of how proteins interact, but unfortunately, both physical modeling and machine learning methods suffer from poor precision and/or recall.
Results
In order to improve performance in predicting protein interaction interfaces, we leverage the best properties of both data- and physics-driven methods to develop a unified Geometric Deep Neural Network, ‘PInet’ (Protein Interface Network). PInet consumes pairs of point clouds encoding the structures of two partner proteins, in order to predict their structural regions mediating interaction. To make such predictions, PInet learns and utilizes models capturing both geometrical and physicochemical molecular surface complementarity. In application to a set of benchmarks, PInet simultaneously predicts the interface regions on both interacting proteins, achieving performance equivalent to or even much better than the state-of-the-art predictor for each dataset. Furthermore, since PInet is based on joint segmentation of a representation of a protein surfaces, its predictions are meaningful in terms of the underlying physical complementarity driving molecular recognition.
Availability and implementation
PInet scripts and models are available at https://github.com/FTD007/PInet.
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
AbstractList | Protein-protein interactions drive wide-ranging molecular processes, and characterizing at the atomic level how proteins interact (beyond just the fact that they interact) can provide key insights into understanding and controlling this machinery. Unfortunately, experimental determination of three-dimensional protein complex structures remains difficult and does not scale to the increasingly large sets of proteins whose interactions are of interest. Computational methods are thus required to meet the demands of large-scale, high-throughput prediction of how proteins interact, but unfortunately, both physical modeling and machine learning methods suffer from poor precision and/or recall.
In order to improve performance in predicting protein interaction interfaces, we leverage the best properties of both data- and physics-driven methods to develop a unified Geometric Deep Neural Network, 'PInet' (Protein Interface Network). PInet consumes pairs of point clouds encoding the structures of two partner proteins, in order to predict their structural regions mediating interaction. To make such predictions, PInet learns and utilizes models capturing both geometrical and physicochemical molecular surface complementarity. In application to a set of benchmarks, PInet simultaneously predicts the interface regions on both interacting proteins, achieving performance equivalent to or even much better than the state-of-the-art predictor for each dataset. Furthermore, since PInet is based on joint segmentation of a representation of a protein surfaces, its predictions are meaningful in terms of the underlying physical complementarity driving molecular recognition.
PInet scripts and models are available at https://github.com/FTD007/PInet.
Supplementary data are available at Bioinformatics online. Protein-protein interactions drive wide-ranging molecular processes, and characterizing at the atomic level how proteins interact (beyond just the fact that they interact) can provide key insights into understanding and controlling this machinery. Unfortunately, experimental determination of three-dimensional protein complex structures remains difficult and does not scale to the increasingly large sets of proteins whose interactions are of interest. Computational methods are thus required to meet the demands of large-scale, high-throughput prediction of how proteins interact, but unfortunately, both physical modeling and machine learning methods suffer from poor precision and/or recall.MOTIVATIONProtein-protein interactions drive wide-ranging molecular processes, and characterizing at the atomic level how proteins interact (beyond just the fact that they interact) can provide key insights into understanding and controlling this machinery. Unfortunately, experimental determination of three-dimensional protein complex structures remains difficult and does not scale to the increasingly large sets of proteins whose interactions are of interest. Computational methods are thus required to meet the demands of large-scale, high-throughput prediction of how proteins interact, but unfortunately, both physical modeling and machine learning methods suffer from poor precision and/or recall.In order to improve performance in predicting protein interaction interfaces, we leverage the best properties of both data- and physics-driven methods to develop a unified Geometric Deep Neural Network, 'PInet' (Protein Interface Network). PInet consumes pairs of point clouds encoding the structures of two partner proteins, in order to predict their structural regions mediating interaction. To make such predictions, PInet learns and utilizes models capturing both geometrical and physicochemical molecular surface complementarity. In application to a set of benchmarks, PInet simultaneously predicts the interface regions on both interacting proteins, achieving performance equivalent to or even much better than the state-of-the-art predictor for each dataset. Furthermore, since PInet is based on joint segmentation of a representation of a protein surfaces, its predictions are meaningful in terms of the underlying physical complementarity driving molecular recognition.RESULTSIn order to improve performance in predicting protein interaction interfaces, we leverage the best properties of both data- and physics-driven methods to develop a unified Geometric Deep Neural Network, 'PInet' (Protein Interface Network). PInet consumes pairs of point clouds encoding the structures of two partner proteins, in order to predict their structural regions mediating interaction. To make such predictions, PInet learns and utilizes models capturing both geometrical and physicochemical molecular surface complementarity. In application to a set of benchmarks, PInet simultaneously predicts the interface regions on both interacting proteins, achieving performance equivalent to or even much better than the state-of-the-art predictor for each dataset. Furthermore, since PInet is based on joint segmentation of a representation of a protein surfaces, its predictions are meaningful in terms of the underlying physical complementarity driving molecular recognition.PInet scripts and models are available at https://github.com/FTD007/PInet.AVAILABILITY AND IMPLEMENTATIONPInet scripts and models are available at https://github.com/FTD007/PInet.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online. Abstract Motivation Protein–protein interactions drive wide-ranging molecular processes, and characterizing at the atomic level how proteins interact (beyond just the fact that they interact) can provide key insights into understanding and controlling this machinery. Unfortunately, experimental determination of three-dimensional protein complex structures remains difficult and does not scale to the increasingly large sets of proteins whose interactions are of interest. Computational methods are thus required to meet the demands of large-scale, high-throughput prediction of how proteins interact, but unfortunately, both physical modeling and machine learning methods suffer from poor precision and/or recall. Results In order to improve performance in predicting protein interaction interfaces, we leverage the best properties of both data- and physics-driven methods to develop a unified Geometric Deep Neural Network, ‘PInet’ (Protein Interface Network). PInet consumes pairs of point clouds encoding the structures of two partner proteins, in order to predict their structural regions mediating interaction. To make such predictions, PInet learns and utilizes models capturing both geometrical and physicochemical molecular surface complementarity. In application to a set of benchmarks, PInet simultaneously predicts the interface regions on both interacting proteins, achieving performance equivalent to or even much better than the state-of-the-art predictor for each dataset. Furthermore, since PInet is based on joint segmentation of a representation of a protein surfaces, its predictions are meaningful in terms of the underlying physical complementarity driving molecular recognition. Availability and implementation PInet scripts and models are available at https://github.com/FTD007/PInet. Supplementary information Supplementary data are available at Bioinformatics online. |
Author | Dai, Bowen Bailey-Kellogg, Chris |
AuthorAffiliation | Computer Science Department, Dartmouth , Hanover, NH 03755, USA |
AuthorAffiliation_xml | – name: Computer Science Department, Dartmouth , Hanover, NH 03755, USA |
Author_xml | – sequence: 1 givenname: Bowen surname: Dai fullname: Dai, Bowen – sequence: 2 givenname: Chris orcidid: 0000-0003-1860-0912 surname: Bailey-Kellogg fullname: Bailey-Kellogg, Chris email: cbk@cs.dartmouth.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33693581$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUctKAzEUDVJRq_5CmaWb2jw6kwyIIMUngi50HTKZmxqZScYkFfr3Tmkt1o2ucsk9L-4ZooHzDhAaEXxOcMkmlfXWGR9alayOkyqpiuTTPXREWMHHU0HIYDtjdoiGMb5jjHOcFwfokLGiZLkgR-jhOfgE1mXWJQhKJ-s3s1EasgDz1UcXoLbrXbXM5uBbSMHqrAbosgZUcNbNT9C-UU2E0817jF5vrl9md-PHp9v72dXjWOeUpvFUaUrrWhuhATNOSk4ULSnvs4mqwhhqijnTShhekhJ4VWCDa8VBcGOAAztGl2vdblG1UGtwKahGdsG2KiylV1bubpx9k3P_KcWUilzkvcDZRiD4jwXEJFsbNTSNcuAXUdIcr4L16B46-um1Nfk-YA8o1gAdfIwBzBZCsFw1JXebkpumeuLFL6K2Sa1O3Ge2zd90sqb7Rfdfyy_NdLaB |
CitedBy_id | crossref_primary_10_1016_j_csbj_2022_04_036 crossref_primary_10_34133_research_0240 crossref_primary_10_1093_bioinformatics_btab849 crossref_primary_10_1016_j_isci_2023_106911 crossref_primary_10_1093_bioinformatics_btab761 crossref_primary_10_1093_protein_gzad023 crossref_primary_10_3390_ijms23137033 crossref_primary_10_1093_bib_bbae162 crossref_primary_10_1038_s41467_023_37701_8 crossref_primary_10_1016_j_sbi_2022_102328 crossref_primary_10_3390_encyclopedia3030056 crossref_primary_10_1016_j_sbi_2022_102329 crossref_primary_10_1021_acs_jpcb_2c04525 crossref_primary_10_1093_bioinformatics_btae405 crossref_primary_10_1007_s10930_023_10121_9 crossref_primary_10_1016_j_jmb_2022_167556 crossref_primary_10_1016_j_cels_2023_10_006 crossref_primary_10_1039_D2CB00207H crossref_primary_10_3389_fcimb_2022_962945 crossref_primary_10_1093_bioinformatics_btac071 crossref_primary_10_21015_vtcs_v11i1_1396 crossref_primary_10_1016_j_csbj_2024_05_023 crossref_primary_10_1007_s00521_023_09366_3 crossref_primary_10_1093_bib_bbae307 crossref_primary_10_3389_fimmu_2023_1228873 crossref_primary_10_3389_fmolb_2021_658906 crossref_primary_10_1021_acs_jmedchem_3c00449 crossref_primary_10_1109_JBHI_2024_3356231 crossref_primary_10_1134_S0006297924080066 crossref_primary_10_1089_cmb_2024_0804 crossref_primary_10_3390_kinasesphosphatases2010004 crossref_primary_10_1038_s42256_022_00553_w crossref_primary_10_1002_adfm_202203635 crossref_primary_10_1016_j_sbi_2023_102548 crossref_primary_10_1134_S1990750823600498 crossref_primary_10_1038_s43588_023_00438_x crossref_primary_10_1021_acs_jpcb_2c04346 crossref_primary_10_3390_molecules28135169 crossref_primary_10_3389_fbinf_2022_1044975 crossref_primary_10_1021_acs_jctc_3c00513 crossref_primary_10_1038_s41540_024_00432_7 crossref_primary_10_1016_j_jmgm_2023_108670 crossref_primary_10_1093_bioinformatics_btae588 crossref_primary_10_1002_pro_4862 crossref_primary_10_1371_journal_pcbi_1011435 crossref_primary_10_1093_bioadv_vbad070 crossref_primary_10_1016_j_sbi_2022_102379 crossref_primary_10_1093_bib_bbab578 crossref_primary_10_1016_j_patter_2024_100994 crossref_primary_10_1016_j_sbi_2022_102336 crossref_primary_10_1093_bib_bbac269 crossref_primary_10_1016_j_inffus_2023_101909 crossref_primary_10_3390_cancers15102824 |
Cites_doi | 10.1093/nar/gki481 10.1002/prot.25219 10.1038/s41592-019-0666-6 10.1002/prot.21248 10.1093/nar/gkm276 10.1371/journal.pcbi.1002829 10.1093/nar/gkt1043 10.1038/nbt785 10.1093/bioinformatics/btu190 10.1038/s41596-020-0312-x 10.1073/pnas.181342398 10.1093/bioinformatics/btq302 10.1016/j.jmb.2015.07.016 10.1093/bioinformatics/btg371 10.1038/nprot.2016.180 10.1093/bioinformatics/bty647 10.1093/bioinformatics/btq003 10.1093/bioinformatics/btaa263 10.1093/nar/gki585 10.1016/j.str.2014.02.003 10.1021/jm048957q 10.1016/S0022-2836(05)80134-2 10.1371/journal.pcbi.0030042 10.1038/s41586-019-0879-y 10.1002/prot.22106 10.1107/S0907444902003451 10.1145/571647.571648 10.1016/j.coviro.2015.03.012 10.1038/nature11503 10.1002/prot.24479 10.1016/0022-2836(82)90515-0 10.1093/nar/gky420 10.7554/eLife.29023 10.1093/bioinformatics/btu097 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021 The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021 – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1093/bioinformatics/btab154 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1367-4811 |
EndPage | 2588 |
ExternalDocumentID | PMC8428585 33693581 10_1093_bioinformatics_btab154 10.1093/bioinformatics/btab154 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIH HHS grantid: 2R01GM098977 – fundername: NIGMS NIH HHS grantid: R01 GM098977 – fundername: ; grantid: 2R01GM098977 |
GroupedDBID | --- -E4 -~X .-4 .2P .DC .GJ .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN ABEFU ABEJV ABEUO ABGNP ABIXL ABNGD ABNKS ABPQP ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUKT ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AI. AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN AQDSO ARIXL ASPBG ATTQO AVWKF AXUDD AYOIW AZFZN AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD ELUNK EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y R44 RD5 RIG RNI RNS ROL RPM RUSNO RW1 RXO RZF RZO SV3 TEORI TJP TLC TOX TR2 VH1 W8F WOQ X7H YAYTL YKOAZ YXANX ZGI ZKX ~91 ~KM AAYXX CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c522t-4ac22ddcf8ce0371971a29270508bb00ed2073ca8f7919e7b60f0da7e87ffe7e3 |
IEDL.DBID | TOX |
ISSN | 1367-4803 1367-4811 |
IngestDate | Thu Aug 21 14:32:18 EDT 2025 Fri Jul 11 01:58:59 EDT 2025 Thu Apr 03 06:56:57 EDT 2025 Tue Jul 01 02:33:55 EDT 2025 Thu Apr 24 22:51:18 EDT 2025 Wed Apr 02 07:06:35 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c522t-4ac22ddcf8ce0371971a29270508bb00ed2073ca8f7919e7b60f0da7e87ffe7e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1860-0912 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8428585 |
PMID | 33693581 |
PQID | 2500371428 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8428585 proquest_miscellaneous_2500371428 pubmed_primary_33693581 crossref_primary_10_1093_bioinformatics_btab154 crossref_citationtrail_10_1093_bioinformatics_btab154 oup_primary_10_1093_bioinformatics_btab154 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-Sep-09 |
PublicationDateYYYYMMDD | 2021-09-09 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-Sep-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics (Oxford, England) |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Qi (2023051609205830500_btab154-B30) 2017 Huang (2023051609205830500_btab154-B14) 2010; 26 Pierce (2023051609205830500_btab154-B27) 2014; 30 Vinyals (2023051609205830500_btab154-B38) 2015 Feldhaus (2023051609205830500_btab154-B10) 2003; 21 Ogmen (2023051609205830500_btab154-B25) 2005; 33 Yan (2023051609205830500_btab154-B42) 2020; 15 Fout (2023051609205830500_btab154-B11) 2017 Townshend (2023051609205830500_btab154-B36) 2019 Sela-Culang (2023051609205830500_btab154-B33) 2014; 22 Kipf (2023051609205830500_btab154-B17) 2017 Shoemaker (2023051609205830500_btab154-B35) 2007; 3 Weitzner (2023051609205830500_btab154-B41) 2017; 12 Hwang (2023051609205830500_btab154-B15) 2008; 73 Kringelum (2023051609205830500_btab154-B19) 2012; 8 Lawrence (2023051609205830500_btab154-B21) 1993 Hua (2023051609205830500_btab154-B13) 2017; 6 Sela-Culang (2023051609205830500_btab154-B34) 2015; 11 Vajda (2023051609205830500_btab154-B37) 2017; 85 Briney (2023051609205830500_btab154-B5) 2019; 566 Kyte (2023051609205830500_btab154-B20) 1982; 157 Schneidman-Duhovny (2023051609205830500_btab154-B32) 2005; 33 Baker (2023051609205830500_btab154-B3) 2001; 98 Murzin (2023051609205830500_btab154-B24) 1995; 247 Gainza (2023051609205830500_btab154-B12) 2020; 17 Berman (2023051609205830500_btab154-B4) 2002; 58 Bahdanau (2023051609205830500_btab154-B2) 2014 Sanchez-Garcia (2023051609205830500_btab154-B31) 2019; 35 Jaderberg (2023051609205830500_btab154-B16) 2015 Pittala (2023051609205830500_btab154-B28) 2020; 36 Porollo (2023051609205830500_btab154-B29) 2007; 66 Krawczyk (2023051609205830500_btab154-B18) 2014; 30 Comeau (2023051609205830500_btab154-B6) 2004; 20 Vreven (2023051609205830500_btab154-B39) 2015; 427 Wang (2023051609205830500_btab154-B40) 2005; 48 Zhang (2023051609205830500_btab154-B44) 2012; 490 Maturana (2023051609205830500_btab154-B22) 2015 Zeng (2023051609205830500_btab154-B43) 2018; 46 Afsar Minhas (2023051609205830500_btab154-B1) 2014; 82 Osada (2023051609205830500_btab154-B26) 2002; 21 Dunbar (2023051609205830500_btab154-B9) 2014; 42 Murakami (2023051609205830500_btab154-B23) 2010; 26 DeLano (2023051609205830500_btab154-B7) 2002 Dolinsky (2023051609205830500_btab154-B8) 2007; 35 |
References_xml | – volume: 33 start-page: W363 year: 2005 ident: 2023051609205830500_btab154-B32 article-title: Patchdock and symmdock: servers for rigid and symmetric docking publication-title: Nucleic Acids Res doi: 10.1093/nar/gki481 – volume: 85 start-page: 435 year: 2017 ident: 2023051609205830500_btab154-B37 article-title: New additions to the clusPro server motivated by CAPRI publication-title: Proteins Struct. Funct. Bioinf doi: 10.1002/prot.25219 – volume: 17 start-page: 184 year: 2020 ident: 2023051609205830500_btab154-B12 article-title: Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning publication-title: Nat. Methods doi: 10.1038/s41592-019-0666-6 – volume: 66 start-page: 630 year: 2007 ident: 2023051609205830500_btab154-B29 article-title: Prediction-based fingerprints of protein–protein interactions publication-title: Proteins Struct. Funct. Bioinf doi: 10.1002/prot.21248 – volume: 35 start-page: W522 year: 2007 ident: 2023051609205830500_btab154-B8 article-title: Pdb2pqr: expanding and upgrading automated preparation of biomolecular structures for molecular simulations publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm276 – volume: 8 start-page: e1002829 year: 2012 ident: 2023051609205830500_btab154-B19 article-title: Reliable b cell epitope predictions: impacts of method development and improved benchmarking publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1002829 – volume: 42 start-page: D1140 year: 2014 ident: 2023051609205830500_btab154-B9 article-title: Sabdab: the structural antibody database publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1043 – volume: 21 start-page: 163 year: 2003 ident: 2023051609205830500_btab154-B10 article-title: Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library publication-title: Nat. Biotechnol doi: 10.1038/nbt785 – volume: 30 start-page: 2288 year: 2014 ident: 2023051609205830500_btab154-B18 article-title: Improving b-cell epitope prediction and its application to global antibody-antigen docking publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu190 – start-page: 652 year: 2017 ident: 2023051609205830500_btab154-B30 – volume: 15 start-page: 1829 year: 2020 ident: 2023051609205830500_btab154-B42 article-title: The hdock server for integrated protein–protein docking publication-title: Nat. Protoc doi: 10.1038/s41596-020-0312-x – volume: 98 start-page: 10037 year: 2001 ident: 2023051609205830500_btab154-B3 article-title: Electrostatics of nanosystems: application to microtubules and the ribosome publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.181342398 – volume: 26 start-page: 1841 year: 2010 ident: 2023051609205830500_btab154-B23 article-title: Applying the naïve Bayes classifier with kernel density estimation to the prediction of protein–protein interaction sites publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq302 – volume: 427 start-page: 3031 year: 2015 ident: 2023051609205830500_btab154-B39 article-title: Updates to the integrated protein–protein interaction benchmarks: docking benchmark version 5 and affinity benchmark version 2 publication-title: J. Mol. Biol doi: 10.1016/j.jmb.2015.07.016 – volume: 20 start-page: 45 year: 2004 ident: 2023051609205830500_btab154-B6 article-title: Cluspro: an automated docking and discrimination method for the prediction of protein complexes publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg371 – volume: 12 start-page: 401 year: 2017 ident: 2023051609205830500_btab154-B41 article-title: Modeling and docking of antibody structures with Rosetta publication-title: Nat. Protoc doi: 10.1038/nprot.2016.180 – start-page: 922 year: 2015 ident: 2023051609205830500_btab154-B22 – volume: 35 start-page: 470 year: 2019 ident: 2023051609205830500_btab154-B31 article-title: Bipspi: a method for the prediction of partner-specific protein–protein interfaces publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty647 – year: 2002 ident: 2023051609205830500_btab154-B7 – volume: 26 start-page: 680 year: 2010 ident: 2023051609205830500_btab154-B14 article-title: Cd-hit suite: a web server for clustering and comparing biological sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq003 – volume: 36 start-page: 3996 year: 2020 ident: 2023051609205830500_btab154-B28 article-title: Learning context-aware structural representations to predict antigen and antibody binding interfaces publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa263 – start-page: 15642 year: 2019 ident: 2023051609205830500_btab154-B36 – volume: 33 start-page: W331 year: 2005 ident: 2023051609205830500_btab154-B25 article-title: Prism: protein interactions by structural matching publication-title: Nucleic Acids Res doi: 10.1093/nar/gki585 – volume: 22 start-page: 646 year: 2014 ident: 2023051609205830500_btab154-B33 article-title: Using a combined computational-experimental approach to predict antibody-specific b cell epitopes publication-title: Structure doi: 10.1016/j.str.2014.02.003 – volume: 48 start-page: 4111 year: 2005 ident: 2023051609205830500_btab154-B40 article-title: The pdbbind database: methodologies and updates publication-title: J. Med. Chem doi: 10.1021/jm048957q – year: 2015 ident: 2023051609205830500_btab154-B38 – start-page: 2017 year: 2015 ident: 2023051609205830500_btab154-B16 – year: 2017 ident: 2023051609205830500_btab154-B17 – volume: 247 start-page: 536 year: 1995 ident: 2023051609205830500_btab154-B24 article-title: Scop: a structural classification of proteins database for the investigation of sequences and structures publication-title: J. Mol. Biol doi: 10.1016/S0022-2836(05)80134-2 – volume: 3 start-page: e42 year: 2007 ident: 2023051609205830500_btab154-B35 article-title: Deciphering protein–protein interactions. Part I. Experimental techniques and databases publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.0030042 – volume: 566 start-page: 393 year: 2019 ident: 2023051609205830500_btab154-B5 article-title: Commonality despite exceptional diversity in the baseline human antibody repertoire publication-title: Nature doi: 10.1038/s41586-019-0879-y – volume: 73 start-page: 705 year: 2008 ident: 2023051609205830500_btab154-B15 article-title: Protein–protein docking benchmark version 3.0 publication-title: Proteins Struct. Funct. Bioinf doi: 10.1002/prot.22106 – year: 2014 ident: 2023051609205830500_btab154-B2 – volume: 58 start-page: 899 year: 2002 ident: 2023051609205830500_btab154-B4 article-title: The protein data bank publication-title: Acta Crystallogr. D Biol. Crystallogr doi: 10.1107/S0907444902003451 – start-page: 946 year: 1993 ident: 2023051609205830500_btab154-B21 – volume: 21 start-page: 807 year: 2002 ident: 2023051609205830500_btab154-B26 article-title: Shape distributions publication-title: ACM Trans. Graph. (TOG) doi: 10.1145/571647.571648 – volume: 11 start-page: 98 year: 2015 ident: 2023051609205830500_btab154-B34 article-title: Antibody specific epitope prediction—emergence of a new paradigm publication-title: Curr. Opin. Virol doi: 10.1016/j.coviro.2015.03.012 – volume: 490 start-page: 556 year: 2012 ident: 2023051609205830500_btab154-B44 article-title: Structure-based prediction of protein–protein interactions on a genome-wide scale publication-title: Nature doi: 10.1038/nature11503 – volume: 82 start-page: 1142 year: 2014 ident: 2023051609205830500_btab154-B1 article-title: Pairpred: partner-specific prediction of interacting residues from sequence and structure publication-title: Proteins Struct. Funct. Bioinf doi: 10.1002/prot.24479 – start-page: 6530 year: 2017 ident: 2023051609205830500_btab154-B11 – volume: 157 start-page: 105 year: 1982 ident: 2023051609205830500_btab154-B20 article-title: A simple method for displaying the hydropathic character of a protein publication-title: J. Mol. Biol doi: 10.1016/0022-2836(82)90515-0 – volume: 46 start-page: W432 year: 2018 ident: 2023051609205830500_btab154-B43 article-title: Complexcontact: a web server for inter-protein contact prediction using deep learning publication-title: Nucleic Acids Res doi: 10.1093/nar/gky420 – volume: 6 start-page: e29023 year: 2017 ident: 2023051609205830500_btab154-B13 article-title: Computationally-driven identification of antibody epitopes publication-title: Elife doi: 10.7554/eLife.29023 – volume: 30 start-page: 1771 year: 2014 ident: 2023051609205830500_btab154-B27 article-title: Zdock server: interactive docking prediction of protein–protein complexes and symmetric multimers publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu097 |
SSID | ssj0005056 |
Score | 2.6055572 |
Snippet | Abstract
Motivation
Protein–protein interactions drive wide-ranging molecular processes, and characterizing at the atomic level how proteins interact (beyond... Protein-protein interactions drive wide-ranging molecular processes, and characterizing at the atomic level how proteins interact (beyond just the fact that... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2580 |
SubjectTerms | Original Papers |
Title | Protein interaction interface region prediction by geometric deep learning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33693581 https://www.proquest.com/docview/2500371428 https://pubmed.ncbi.nlm.nih.gov/PMC8428585 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KQfAivo0vIngSQpNNmt09ilhKwcehhd7CZne2FjQtNT303zubR20Kot5C9kGYyWS-MDvfR8itAC2VgMjTKlJeZCiGVAza09TILgguo6IX5uk57o-iwbg7bpGg7oXZLuGLsJNOZxWJqCUu7qS5TDHv41cXM7Flyx--jL8PdfiFXqvlIfMi7od1T_CP2zTSUaPFbQNpbh-Y3MhAvX2yV0FH97709QFpQXZIdkoxydURGbxayoVp5loGiEXZr1BeG6nAtQoMeGO-sJWZYixduROYfVhJLeVqgLlbSUhMjsmo9zh86HuVUoKnED_lXiQVpVorw638FwsECyQVlKE9eIqBBZpiKCvJDROBAJbGvvG1ZMCZMcAgPCHtbJbBGXFxvUYIFfg6NpEKYxn7AudrbaGLAeGQbm2wRFU04lbN4j0py9lh0jR0UhnaIZ31unlJpPHrijv0x58n39RuSzBAbNVDZjBbfiaI8QpaQsodclq6cb1nGMYFAZxDWMPB6wmWfLs5kk3fChJujhvir9b5fx7yguxSeyTG1qPEJWnniyVcIabJ0-viNf4CDxn-MA |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+interaction+interface+region+prediction+by+geometric+deep+learning&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Dai%2C+Bowen&rft.au=Bailey-Kellogg%2C+Chris&rft.date=2021-09-09&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=37&rft.issue=17&rft.spage=2580&rft.epage=2588&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtab154&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btab154 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |