Gravitational lensing by charged black hole in regularized 4D Einstein–Gauss–Bonnet gravity
Among the higher curvature gravities, the most extensively studied theory is the so-called Einstein–Gauss–Bonnet (EGB) gravity, whose Lagrangian contains Einstein term with the GB combination of quadratic curvature terms, and the GB term yields nontrivial gravitational dynamics in D ≥ 5 . Recently t...
Saved in:
Published in | The European physical journal. C, Particles and fields Vol. 80; no. 12; pp. 1 - 13 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2020
Springer Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Among the higher curvature gravities, the most extensively studied theory is the so-called Einstein–Gauss–Bonnet (EGB) gravity, whose Lagrangian contains Einstein term with the GB combination of quadratic curvature terms, and the GB term yields nontrivial gravitational dynamics in
D
≥
5
. Recently there has been a surge of interest in regularizing, a
D
→
4
limit of, the EGB gravity, and the resulting regularized 4
D
EGB gravity valid in 4
D
. We consider gravitational lensing by Charged black holes in the 4
D
EGB gravity theory to calculate the light deflection coefficients in strong-field limits
a
¯
and
b
¯
, while former increases with increasing GB parameter
α
and charge
q
, later decrease. We also find a decrease in the deflection angle
α
D
, angular position
θ
∞
decreases more slowly and impact parameter for photon orbits
u
m
more quickly, but angular separation
s
increases more rapidly with
α
and charge
q
. We compare our results with those for analogous black holes in General Relativity (GR) and also the formalism is applied to discuss the astrophysical consequences in the case of the supermassive black holes Sgr A* and M87*. |
---|---|
AbstractList | Among the higher curvature gravities, the most extensively studied theory is the so-called Einstein–Gauss–Bonnet (EGB) gravity, whose Lagrangian contains Einstein term with the GB combination of quadratic curvature terms, and the GB term yields nontrivial gravitational dynamics in
D
≥
5
. Recently there has been a surge of interest in regularizing, a
D
→
4
limit of, the EGB gravity, and the resulting regularized 4
D
EGB gravity valid in 4
D
. We consider gravitational lensing by Charged black holes in the 4
D
EGB gravity theory to calculate the light deflection coefficients in strong-field limits
a
¯
and
b
¯
, while former increases with increasing GB parameter
α
and charge
q
, later decrease. We also find a decrease in the deflection angle
α
D
, angular position
θ
∞
decreases more slowly and impact parameter for photon orbits
u
m
more quickly, but angular separation
s
increases more rapidly with
α
and charge
q
. We compare our results with those for analogous black holes in General Relativity (GR) and also the formalism is applied to discuss the astrophysical consequences in the case of the supermassive black holes Sgr A* and M87*. Among the higher curvature gravities, the most extensively studied theory is the so-called Einstein–Gauss–Bonnet (EGB) gravity, whose Lagrangian contains Einstein term with the GB combination of quadratic curvature terms, and the GB term yields nontrivial gravitational dynamics in D≥5. Recently there has been a surge of interest in regularizing, a D→4 limit of, the EGB gravity, and the resulting regularized 4D EGB gravity valid in 4D. We consider gravitational lensing by Charged black holes in the 4D EGB gravity theory to calculate the light deflection coefficients in strong-field limits a¯ and b¯, while former increases with increasing GB parameter α and charge q, later decrease. We also find a decrease in the deflection angle αD, angular position θ∞ decreases more slowly and impact parameter for photon orbits um more quickly, but angular separation s increases more rapidly with α and charge q. We compare our results with those for analogous black holes in General Relativity (GR) and also the formalism is applied to discuss the astrophysical consequences in the case of the supermassive black holes Sgr A* and M87*. Among the higher curvature gravities, the most extensively studied theory is the so-called Einstein–Gauss–Bonnet (EGB) gravity, whose Lagrangian contains Einstein term with the GB combination of quadratic curvature terms, and the GB term yields nontrivial gravitational dynamics in $$ D\ge 5$$ D ≥ 5 . Recently there has been a surge of interest in regularizing, a $$ D \rightarrow 4 $$ D → 4 limit of, the EGB gravity, and the resulting regularized 4 D EGB gravity valid in 4 D . We consider gravitational lensing by Charged black holes in the 4 D EGB gravity theory to calculate the light deflection coefficients in strong-field limits $$\bar{a}$$ a ¯ and $$\bar{b}$$ b ¯ , while former increases with increasing GB parameter $$\alpha $$ α and charge q , later decrease. We also find a decrease in the deflection angle $$\alpha _D$$ α D , angular position $$\theta _{\infty }$$ θ ∞ decreases more slowly and impact parameter for photon orbits $$u_{m}$$ u m more quickly, but angular separation s increases more rapidly with $$\alpha $$ α and charge q . We compare our results with those for analogous black holes in General Relativity (GR) and also the formalism is applied to discuss the astrophysical consequences in the case of the supermassive black holes Sgr A* and M87*. Abstract Among the higher curvature gravities, the most extensively studied theory is the so-called Einstein–Gauss–Bonnet (EGB) gravity, whose Lagrangian contains Einstein term with the GB combination of quadratic curvature terms, and the GB term yields nontrivial gravitational dynamics in $$ D\ge 5$$ D ≥ 5 . Recently there has been a surge of interest in regularizing, a $$ D \rightarrow 4 $$ D → 4 limit of, the EGB gravity, and the resulting regularized 4D EGB gravity valid in 4D. We consider gravitational lensing by Charged black holes in the 4D EGB gravity theory to calculate the light deflection coefficients in strong-field limits $$\bar{a}$$ a ¯ and $$\bar{b}$$ b ¯ , while former increases with increasing GB parameter $$\alpha $$ α and charge q, later decrease. We also find a decrease in the deflection angle $$\alpha _D$$ α D , angular position $$\theta _{\infty }$$ θ ∞ decreases more slowly and impact parameter for photon orbits $$u_{m}$$ u m more quickly, but angular separation s increases more rapidly with $$\alpha $$ α and charge q. We compare our results with those for analogous black holes in General Relativity (GR) and also the formalism is applied to discuss the astrophysical consequences in the case of the supermassive black holes Sgr A* and M87*. Among the higher curvature gravities, the most extensively studied theory is the so-called Einstein-Gauss-Bonnet (EGB) gravity, whose Lagrangian contains Einstein term with the GB combination of quadratic curvature terms, and the GB term yields nontrivial gravitational dynamics in [Formula omitted]. Recently there has been a surge of interest in regularizing, a [Formula omitted] limit of, the EGB gravity, and the resulting regularized 4D EGB gravity valid in 4D. We consider gravitational lensing by Charged black holes in the 4D EGB gravity theory to calculate the light deflection coefficients in strong-field limits [Formula omitted] and [Formula omitted], while former increases with increasing GB parameter [Formula omitted] and charge q, later decrease. We also find a decrease in the deflection angle [Formula omitted], angular position [Formula omitted] decreases more slowly and impact parameter for photon orbits [Formula omitted] more quickly, but angular separation s increases more rapidly with [Formula omitted] and charge q. We compare our results with those for analogous black holes in General Relativity (GR) and also the formalism is applied to discuss the astrophysical consequences in the case of the supermassive black holes Sgr A* and M87*. |
ArticleNumber | 1128 |
Audience | Academic |
Author | Kumar, Rahul Islam, Shafqat Ul Ghosh, Sushant G. |
Author_xml | – sequence: 1 givenname: Rahul surname: Kumar fullname: Kumar, Rahul email: rahul.phy3@gmail.com organization: Centre for Theoretical Physics, Jamia Millia Islamia – sequence: 2 givenname: Shafqat Ul surname: Islam fullname: Islam, Shafqat Ul organization: Centre for Theoretical Physics, Jamia Millia Islamia – sequence: 3 givenname: Sushant G. surname: Ghosh fullname: Ghosh, Sushant G. organization: Centre for Theoretical Physics, Jamia Millia Islamia, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal |
BookMark | eNqFkc1u1DAUhSNUJNrCMxCJFYu0tmM7zoJFacswUiUkftbWjXOTekjtwfYghlXfoW_Ik-CZFFDZVF5c6_p8x_Y9R8WB8w6L4iUlJ5RycorrlTmNlBDBKsJIRZQksqqfFIeU17ySuX_wd8_5s-IoxhUhhHGiDgu9CPDdJkjWO5jKCV20biy7bWmuIYzYl90E5mt57ScsrSsDjpsJgv2ZT_hFeWldTGjdr9u7BWxizPWtdw5TOe59t8-LpwNMEV_c1-Piy7vLz-fvq6sPi-X52VVlBGOpolLVvKUtIlWSNYY1nep7QrATjRkaNJQgN1xIyUFSofoOFat73iHItie0Pi6Ws2_vYaXXwd5A2GoPVu8bPowaQrJmQg2Ibdc1AzRIeA-iawV0ihIQg1DYquz1avZaB_9tgzHpld-EPJ6oGW9qJrjkdVadzKoRsql1g08BTF493liTMxps7p9JQdpWCMYz8PoBkDUJf6RxNze9_PTxofbNrDXBxxhw0OY-pHyJnTQlehe-3oWv5_B1Dl_vw9e7xzX_8X9G8jipZjJmwo0Y_n3-MfQ3b9bKjg |
CitedBy_id | crossref_primary_10_1016_j_dark_2021_100877 crossref_primary_10_1016_j_physletb_2024_139211 crossref_primary_10_1016_j_dark_2021_100792 crossref_primary_10_1016_j_dark_2024_101768 crossref_primary_10_1016_j_dark_2024_101642 crossref_primary_10_1093_mnras_stab1260 crossref_primary_10_1140_epjc_s10052_025_13970_z crossref_primary_10_3390_universe8010052 crossref_primary_10_1088_1572_9494_ad7c36 crossref_primary_10_1103_PhysRevD_103_084057 crossref_primary_10_1016_j_jheap_2025_100350 crossref_primary_10_1088_1475_7516_2024_05_121 crossref_primary_10_1140_epjc_s10052_022_10075_9 crossref_primary_10_1103_PhysRevD_107_024022 crossref_primary_10_1140_epjc_s10052_024_13057_1 crossref_primary_10_1103_PhysRevD_106_024023 crossref_primary_10_1007_s10773_023_05440_7 crossref_primary_10_3389_fphy_2023_1170683 crossref_primary_10_1103_PhysRevD_105_024062 crossref_primary_10_1140_epjc_s10052_022_10170_x crossref_primary_10_1142_S0217751X24500647 crossref_primary_10_1016_j_rinp_2025_108168 crossref_primary_10_1103_PhysRevD_106_044024 crossref_primary_10_1088_1674_1137_ac9fbb crossref_primary_10_1103_PhysRevD_104_044029 crossref_primary_10_1088_1475_7516_2023_03_029 crossref_primary_10_1088_1361_6382_ac500a crossref_primary_10_1088_1572_9494_ad5d90 crossref_primary_10_1016_j_dark_2024_101495 crossref_primary_10_1016_j_nuclphysb_2024_116583 crossref_primary_10_1140_epjc_s10052_023_12208_0 crossref_primary_10_1016_j_aop_2025_170002 crossref_primary_10_1088_1361_6382_ac38d0 crossref_primary_10_1088_1361_6382_ac3e76 crossref_primary_10_1016_j_dark_2024_101493 crossref_primary_10_1140_epjc_s10052_021_09585_9 crossref_primary_10_1209_0295_5075_133_50006 crossref_primary_10_3390_universe8040232 crossref_primary_10_1140_epjc_s10052_022_10123_4 crossref_primary_10_1088_1674_1137_ac917f crossref_primary_10_1103_PhysRevD_103_124052 crossref_primary_10_1140_epjp_s13360_025_06037_1 crossref_primary_10_3847_1538_4357_acb6f2 crossref_primary_10_1088_1475_7516_2021_10_013 crossref_primary_10_3847_1538_4357_ac912c crossref_primary_10_1016_j_dark_2022_101100 crossref_primary_10_1016_j_dark_2024_101625 crossref_primary_10_1103_PhysRevD_111_064049 crossref_primary_10_1088_1475_7516_2021_03_056 crossref_primary_10_1140_epjp_s13360_022_02872_8 crossref_primary_10_1140_epjc_s10052_023_12233_z crossref_primary_10_3390_universe8040244 crossref_primary_10_1088_1475_7516_2021_08_045 crossref_primary_10_1088_1361_6382_ad28f8 crossref_primary_10_1016_j_aop_2025_169957 crossref_primary_10_1016_j_nuclphysb_2024_116612 crossref_primary_10_1140_epjc_s10052_024_13720_7 crossref_primary_10_1140_epjc_s10052_021_09266_7 crossref_primary_10_1016_j_jheap_2024_11_012 crossref_primary_10_1016_j_dark_2024_101716 crossref_primary_10_1142_S0218271822500663 crossref_primary_10_1016_j_dark_2025_101815 crossref_primary_10_1016_j_dark_2025_101859 crossref_primary_10_1140_epjp_s13360_022_02846_w crossref_primary_10_1103_PhysRevD_106_064038 crossref_primary_10_1142_S0219887824500117 crossref_primary_10_1016_j_cjph_2024_09_003 crossref_primary_10_3847_1538_4357_ac6dda crossref_primary_10_1103_PhysRevD_110_064008 crossref_primary_10_1007_s10509_025_04412_z crossref_primary_10_3847_1538_4357_abd094 crossref_primary_10_1140_epjc_s10052_023_12205_3 crossref_primary_10_1140_epjc_s10052_024_12917_0 crossref_primary_10_1088_1361_6382_acd97b crossref_primary_10_1140_epjc_s10052_022_10619_z crossref_primary_10_3390_universe8020102 crossref_primary_10_1103_PhysRevD_109_124004 crossref_primary_10_1140_epjc_s10052_022_10357_2 crossref_primary_10_1016_j_aop_2022_169147 |
Cites_doi | 10.1103/PhysRevD.69.064024 10.1103/PhysRevD.66.103001 10.1140/epjc/s10052-017-5099-8 10.1142/S0218271817410139 10.1016/j.physletb.2020.135658 10.1140/epjc/s10052-020-8164-7 10.1126/science.84.2188.506 10.1103/PhysRevLett.55.2656 10.1088/1475-7516/2012/10/053 10.1103/PhysRevD.101.084038 10.1140/epjc/s10052-019-6773-9 10.1088/1572-9494/aba242 10.3847/2041-8213/ab0f43 10.1093/mnras/128.4.295 10.1103/PhysRevD.73.044024 10.1103/PhysRevD.99.084012 10.1088/1475-7516/2014/11/025 10.1103/PhysRevD.97.104050 10.1140/epjc/s10052-019-7248-8 10.1126/science.aav8137 10.1088/0264-9381/28/8/085008 10.1103/PhysRevD.83.024030 10.1103/PhysRevD.80.024036 10.1103/PhysRevD.99.104040 10.1103/PhysRevD.65.084014 10.1088/0264-9381/23/22/002 10.1103/PhysRevD.101.044031 10.1038/nature08857 10.1063/1.1665613 10.1103/PhysRevD.62.084003 10.1103/PhysRev.133.B835 10.1142/S0218271820500650 10.1088/1361-6382/aaaead 10.1093/mnras/131.3.463 10.1016/j.aop.2019.168025 10.1140/epjc/s10052-020-8287-x 10.1016/j.physletb.2018.12.030 10.1038/nature07245 10.1103/PhysRev.174.1559 10.1007/JHEP07(2020)027 10.1103/PhysRevLett.124.081301 10.3847/2041-8213/ab0e85 10.1103/PhysRevD.101.064051 10.1016/0370-2693(86)90681-7 10.1103/PhysRevD.71.083010 10.1088/1475-7516/2019/04/022 10.1103/PhysRevD.78.103005 10.1103/PhysRevD.100.044031 10.1088/1475-7516/2014/06/028 10.1088/1475-7516/2020/07/053 10.1088/1475-7516/2020/09/030 10.1016/j.physletb.2014.04.044 10.1016/j.physletb.2006.11.048 10.1103/PhysRevD.99.104075 10.1140/epjc/s10052-020-8298-7 10.1016/j.dark.2020.100687 10.1016/0370-2693(85)91616-8 10.1103/PhysRevD.72.104006 10.1007/s10714-007-0481-8 10.1140/epjc/s10052-020-8200-7 10.1016/j.physletb.2020.135607 10.1103/PhysRevD.76.083008 10.1086/422309 10.1016/0550-3213(86)90268-3 10.1103/PhysRevD.71.064004 10.1016/j.physletb.2020.135468 10.1016/j.aop.2020.168214 10.1017/9781316338612 10.1088/1475-7516/2020/07/013 10.1016/j.dark.2020.100697 10.1086/153300 10.1134/S020228931901002X 10.1103/PhysRevD.88.024006 10.1103/PhysRevD.61.064021 10.3390/universe6080103 10.1103/PhysRevD.99.044050 10.1103/PhysRevD.77.124014 10.1088/1475-7516/2007/10/004 10.2307/1968467 10.1007/s10773-015-2545-y 10.1103/PhysRevLett.99.141302 10.3847/2041-8213/ab0ec7 10.1103/PhysRevD.67.103009 10.1103/PhysRevD.102.024025 10.1023/A:1012292927358 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 COPYRIGHT 2020 Springer The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2020 Springer – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION ISR 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1140/epjc/s10052-020-08606-3 |
DatabaseName | SpringerOpen CrossRef Gale in Context: Science Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1434-6052 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_aee9bb7fa7e04da5b95ab810a5f58e98 A650995524 10_1140_epjc_s10052_020_08606_3 |
GroupedDBID | -5F -5G -A0 -BR -Y2 -~X .86 0R~ 199 1SB 29G 29Q 2JY 2P1 30V 4.4 408 409 40D 5GY 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95. 95~ AAFWJ AAKKN ABDBF ABEEZ ABMNI ABQSL ABTEG ACACY ACGFS ACNCT ACUHS ACULB ADBBV ADINQ ADKPE ADMLS AENEX AFBBN AFFNX AFGXO AFKRA AFPKN AFWTZ AGJBK AGWIL AHSBF AHYZX AI. AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF AZFZN B0M BA0 BCNDV BENPR BGLVJ BGNMA C24 C6C CAG CCPQU COF CS3 CSCUP DL5 DU5 EAD EAP EAS EBS EJD EMK EPL ER. ESX FEDTE GQ6 GQ8 GROUPED_DOAJ GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HVGLF HZ~ H~9 I-F I09 IAO IGS IHE ISR IXC IZIGR IZQ I~X KDC KOV LAS M4Y MA- N2Q NB0 NU0 O9- O93 OK1 P62 P9T PIMPY PROAC PT5 QOS R89 R9I RED RID RNS ROL RPX RSV RZK S1Z S27 S3B SDH SOJ SPH SZN T13 TN5 TSK TSV TUC TUS U2A VC2 VH1 WK8 Z45 Z7Y ~8M AAYXX ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHWEU AIXLP CITATION PHGZM PHGZT PMFND 7U5 8FD ABUWG AZQEC DWQXO H8D L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c522t-16834919ee18627c27b8dd00eb57cf7ec10e4c45664a6158dbe823d4bea69d013 |
IEDL.DBID | BENPR |
ISSN | 1434-6044 |
IngestDate | Wed Aug 27 01:05:39 EDT 2025 Mon Jul 14 10:28:45 EDT 2025 Tue Jun 10 20:43:10 EDT 2025 Fri Jun 27 04:03:49 EDT 2025 Tue Jul 01 01:40:16 EDT 2025 Thu Apr 24 23:08:22 EDT 2025 Fri Feb 21 02:48:52 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c522t-16834919ee18627c27b8dd00eb57cf7ec10e4c45664a6158dbe823d4bea69d013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2473254643?pq-origsite=%requestingapplication% |
PQID | 2473254643 |
PQPubID | 2034659 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_aee9bb7fa7e04da5b95ab810a5f58e98 proquest_journals_2473254643 gale_infotracacademiconefile_A650995524 gale_incontextgauss_ISR_A650995524 crossref_citationtrail_10_1140_epjc_s10052_020_08606_3 crossref_primary_10_1140_epjc_s10052_020_08606_3 springer_journals_10_1140_epjc_s10052_020_08606_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201200 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201200 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Particles and Fields |
PublicationTitle | The European physical journal. C, Particles and fields |
PublicationTitleAbbrev | Eur. Phys. J. C |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
References | BozzaVPhys. Rev. D2008781030052008PhRvD..78j3005B2470276 AkiyamaKAstrophys. J.2019875L52019ApJ...875L...5E VirbhadraKSEllisGFRPhys. Rev. D2000620840032000PhRvD..62h4003V1804056 BoulwareDGDeserSPhys. Rev. Lett.19855526561985PhRvL..55.2656B DehghaniMHPhys. Rev. D2004690640242004PhRvD..69f4024D2093138 SyngeJLMon. Not. R. Astron. Soc.19661314631966MNRAS.131..463S S.A. Hosseini Mansoori, arXiv:2003.13382 [gr-qc] A. Kumar, R. Kumar, arXiv:2003.13104 [gr-qc] CaiRGPhys. Rev. D2002650840142002PhRvD..65h4014C1899200 A. Casalino, L. Sebastiani, arXiv:2004.10229 [gr-qc] BozzaVInt. J. Mod. Phys. D20172617410132017IJMPD..2641013B WillCTheory and Experiment in Gravitational Physics2018CambridgeCambridge University Press1400.53076 RefsdalSMon. Not. R. Astron. Soc.19641282951964MNRAS.128..295R175607 M. Heydari-Fard, H.R. Sepangi, arXiv:2004.02140 [gr-qc] EiroaEFPhys. Rev. D2005710830102005PhRvD..71h3010E BozzaVManciniLAstrophys. J.2004611104510532004ApJ...611.1045B PanpanichSPonglertsakulSTannukijLPhys. Rev. D20191000440312019PhRvD.100d4031P4022986 CaiRGPhys. Lett. B20147331832014PhLB..733..183C WeinbergSGravitation and Cosmology: Principles and Applications of the General Theory of Relativity1972New YorkWiley JusufiKBanerjeeAGhoshSGEur. Phys. J. C2020806982020EPJC...80..698J AmendolaLCharmousisCDavisSJCAP200707100042007JCAP...10..004A KumarASinghDVGhoshSGEur. Phys. J. C2019792752019EPJC...79..275K SchneiderPEhlersJFalcoEEGravitational Lenses1992BerlinSpringer-Verlag LovelockDJ. Math. Phys.1971124981971JMP....12..498L HennigarRAKubiznakDMannRBPollackCJHEP2020070272020JHEP...07..027H NojiriSOdintsovSDOikonomouVKPhys. Rev. D2019990440502019PhRvD..99d4050N3987735 NziokiAMDunsbyPKGoswamiRCarloniSPhys. Rev. D2011830240302011PhRvD..83b4030N KonoplyaRAZhidenkoAPhys. Lett. B20208071356074122106 S.G. Ghosh, R. Kumar, arXiv:2003.12291 [gr-qc] S. Mahapatra, arXiv:2004.09214 [gr-qc] DarwinCProc. R. Soc. A19592491801959RSPSA.249..180D99230 KonoplyaRZhidenkoAPhys. Rev. D20201010840382020PhRvD.101h4038K4103132 L. Ma, H. Lu, arXiv:2004.14738 [gr-qc] EiroaEFSendraCMClass. Quantum Gravity2011280850082011CQGra..28h5008E K. Hegde, A.N. Kumara, C.L.A. Rizwan, A.K.M. and M.S. Ali, arXiv:2003.08778 [gr-qc] AiWCommun. Theor. Phys.2020720954022020CoTPh..72i5402A GuoMLiPCEur. Phys. J. C2020805882020EPJC...80..588G AkiyamaKAstrophys. J.2019875L42019ApJ...875L...4E LiGCaoBFengZZuXInt. J. Theor. Phys.2015543103 ManJChengHJCAP2014110252014JCAP...11..025M A. Casalino, A. Colleaux, M. Rinaldi, S. Vicentini, arXiv:2003.07068 [gr-qc] FernandesPGSPhys. Lett. B20208051354684097303 D.V. Singh, R. Kumar, S.G. Ghosh, S.D. Maharaj, arXiv:2006.00594 [gr-qc] DoTScience20193656642019Sci...365..664D LanczosCAnn. Math.1938398421503440 BronnikovKBaleevskikhKGravit. Cosmol.201925442019GrCo...25...44B3936281 SadeghiJVaezHJCAP2014060282014JCAP...06..028S BrazJ. Phys.2005351113 ReyesRMandelbaumRSeljakUBaldaufTGunnJELombriserLSmithRENature20104642562010Natur.464..256R ZwiebachBPhys. Lett.1985156B3151985PhLB..156..315Z GlavanDLinCPhys. Rev. Lett.20201240813012020PhRvL.124h1301G4071777 IyerSVPettersAOGen. Relativ. Gravit.20073915632007GReGr..39.1563I BozzaVCapozzielloSIovaneGScarpettaGGen. Relativ. Gravit.20013315352001GReGr..33.1535B A. Kumar, S.G. Ghosh, arXiv:2004.01131 [gr-qc] J.P., Luminet, Astron. Astrophys, 75, 228 (1979) C.Y. Zhang, P.C. Li, M. Guo, arXiv:2003.13068 [hep-th] WheelerJTNucl. Phys. B19862687371986NuPhB.268..737W K. Aoki, M.A. Gorji, S. Mukohyama, arXiv:2005.03859 [gr-qc] SinghDVSiwachSPhys. Lett. B20208081356584131898 ShaikhRBanerjeePPaulSSarkarTPhys. Rev. D2019991040402019PhRvD..99j4040S4007964 HyunSNamCHEur. Phys. J. C2019797372019EPJC...79..737H M. Cuyubamba, arXiv:2004.09025 [gr-qc] KeetonCRPettersAPhys. Rev. D2006730440242006PhRvD..73d4024K GhoshSGMaharajSDPhys. Dark Univ.202030100687 AragónABécarRGonzálezPVásquezYEur. Phys. J. C2020807732020EPJC...80..773A AkiyamaKAstrophys. J.2019875L12019ApJ...875L...1E GrallaSELupsascaAPhys. Rev. D20201010440312020PhRvD.101d4031G4073836 J. Arrechea, A. Delhom, A. Jiménez-Cano, arXiv:2004.12998 [gr-qc] C. Liu, T. Zhu, Q. Wu, arXiv:2004.01662 [gr-qc] CaiRGCaoLMOhtaNJHEP201010040822010JHEP...04..082C GhoshSGSinghDVMaharajSDPhys. Rev. D2018971040502018PhRvD..97j4050G3882674 Y. Tomozawa, arXiv:1107.1424 [gr-qc] S.W. Wei, Y.X. Liu, arXiv:2003.07769 [gr-qc] WangCYShenYFXieYJCAP201919040222019JCAP...04..022W CognolaGMyrzakulovRSebastianiLZerbiniSPhys. Rev. D2013880240062013PhRvD..88b4006C GhoshSGClass. Quantum Gravity2018350850082018CQGra..35h5008G ShaikhRBanerjeePPaulSSarkarTPhys. Lett. B20197892702019PhLB..789..270S ChandrasekharSThe Mathematical Theory of Black Holes1992New YorkOxford University Press0912.53053 LiebesSPhys. Rev.1964133B8351964PhRv..133..835L WeiSWLiuYXFuCEYangKJCAP201212100532012JCAP...10..053W KoivistoTMotaDFPhys. Lett. B20076441042007PhLB..644..104K2287966 SarkarKBhadraAClass. Quantum Gravity20062361012006CQGra..23.6101S M.L. Ruggiero [n], Gen. Relativ. Gravit. 41, 1497-1509 (2009) BhadraAPhys. Rev. D2003671030092003PhRvD..67j3009B2005011 RejiHMPatilMPhys. Rev. D20201010640512020PhRvD.101f4051R4086209 JinXHGaoYXLiuDJInt. J. Mod. Phys. D20202920500652020IJMPD..2950065J M.S. Churilova, arXiv:2004.00513 [gr-qc] EinsteinAScience1936845061936Sci....84..506E ZhangPLiguoriMBeanRDodelsonSPhys. Rev. Lett.2007991413022007PhRvL..99n1302Z SinghDVGhoshSGMaharajSDAnn. Phys.2020412168025 CarterBPhys. Rev. D196817415591968PhRv..174.1559C F. Shu, arXiv:2004.09339 [gr-qc] GursesMSismanTCTekinBEur. Phys. J. C2020806472020EPJC...80..647G BozzaVPhys. Rev. D2002661030012002PhRvD..66j3001B BozzaVScarpettaGPhys. Rev. D2007760830082007PhRvD..76h3008B ZhangYPWeiSWLiuYXUniverse202061032020Univ....6..103Z D.V. Singh, S.G. Ghosh, S.D. Maharaj, arXiv:2003.14136 [gr-qc] KonoplyaRAZinhailoAFPhys. Dark Univ.202030100697 KumarRGhoshSGJCAP202020053 BourassaRRKantowskiRAstrophys. J.1975195131975ApJ...195...13B KeetonCRPettersAOPhys. Rev. D2005721040062005PhRvD..72j4006K2188185 KumarASinghDVGhoshSGAnn. Phys.2020419168214 DoelemanSNature2008455782008Natur.455...78D FrittelliSKlingTPNewmanETPhys. Rev. D2000610640212000PhRvD..61f4021F1790461 WhiskerRPhys. Rev. D2005710640042005PhRvD..71f4004W R.A. Konoplya, A.F. Zinhailo, arXiv:2003.01188 [gr-qc] H. Lu, Y. Pang, arXiv:2003.11552 [gr-qc] GhoshSGAmirMMaharajSDEur. Phys. J. C2017775302017EPJC...77..530G X. Zeng, H. Zhang, H. Zhang, arXiv:2004.12074 [gr-qc] FernandesPGCarrilhoPCliftonTMulryneDJPhys. Rev. D20201020240252020PhRvD.102b4025F4133934 KobayashiTJCAP2020070132020JCAP...07..013K JavedWBabarRÖvgünAPhys. Rev. D2019990840122019PhRvD..99h4012J3997547 ÖvgünAPhys. Rev. D2019991040752019PhRvD..99j4075O4008180 WiltshireDLPhys. Lett. B1986169361986PhLB..169...36W834337 S.b. Chen and J.l. Jing, Phys. Rev. D. 80, 024036 (2009) VirbhadraKSKeetonCRPhys. Rev. D2008771240142008PhRvD..77l4014V IslamSUKumarRGhoshSGJCAP2020090302020JCAP...09..030I J Man (8606_CR48) 2014; 11 D Lovelock (8606_CR51) 1971; 12 P Zhang (8606_CR27) 2007; 99 PG Fernandes (8606_CR100) 2020; 102 Braz (8606_CR22) 2005; 35 C Will (8606_CR18) 2018 A Bhadra (8606_CR19) 2003; 67 JL Synge (8606_CR8) 1966; 131 S Liebes (8606_CR10) 1964; 133 RR Bourassa (8606_CR12) 1975; 195 D Glavan (8606_CR67) 2020; 124 B Zwiebach (8606_CR52) 1985; 156B AM Nzioki (8606_CR46) 2011; 83 SG Ghosh (8606_CR63) 2018; 97 G Cognola (8606_CR69) 2013; 88 SU Islam (8606_CR95) 2020; 09 K Jusufi (8606_CR101) 2020; 80 RA Konoplya (8606_CR113) 2020; 807 S Panpanich (8606_CR34) 2019; 100 YP Zhang (8606_CR76) 2020; 6 J Sadeghi (8606_CR49) 2014; 06 A Övgün (8606_CR44) 2019; 99 M Gurses (8606_CR107) 2020; 80 DV Singh (8606_CR88) 2020; 808 8606_CR47 S Doeleman (8606_CR1) 2008; 455 DV Singh (8606_CR66) 2020; 412 K Akiyama (8606_CR4) 2019; 875 K Sarkar (8606_CR24) 2006; 23 8606_CR74 8606_CR72 A Einstein (8606_CR7) 1936; 84 8606_CR77 T Kobayashi (8606_CR111) 2020; 07 8606_CR78 S Panpanich (8606_CR45) 2019; 100 8606_CR79 PGS Fernandes (8606_CR84) 2020; 805 V Bozza (8606_CR117) 2004; 611 S Frittelli (8606_CR15) 2000; 61 V Bozza (8606_CR40) 2008; 78 W Ai (8606_CR104) 2020; 72 DL Wiltshire (8606_CR57) 1986; 169 EF Eiroa (8606_CR21) 2005; 71 R Shaikh (8606_CR33) 2019; 99 8606_CR68 SG Ghosh (8606_CR62) 2018; 35 C Lanczos (8606_CR50) 1938; 39 SV Iyer (8606_CR26) 2007; 39 C Darwin (8606_CR9) 1959; 249 V Bozza (8606_CR17) 2002; 66 EF Eiroa (8606_CR43) 2011; 28 M Guo (8606_CR98) 2020; 80 8606_CR91 SG Ghosh (8606_CR61) 2017; 77 8606_CR92 8606_CR93 HM Reji (8606_CR38) 2020; 101 8606_CR99 SE Gralla (8606_CR6) 2020; 101 8606_CR97 S Nojiri (8606_CR53) 2019; 99 8606_CR109 A Kumar (8606_CR65) 2019; 79 V Bozza (8606_CR41) 2017; 26 CR Keeton (8606_CR23) 2005; 72 S Refsdal (8606_CR11) 1964; 128 RG Cai (8606_CR70) 2010; 1004 8606_CR103 K Akiyama (8606_CR3) 2019; 875 8606_CR102 S Chandrasekhar (8606_CR115) 1992 8606_CR108 8606_CR106 T Do (8606_CR118) 2019; 365 KS Virbhadra (8606_CR14) 2000; 62 R Reyes (8606_CR29) 2010; 464 8606_CR80 JT Wheeler (8606_CR58) 1986; 268 8606_CR81 RA Hennigar (8606_CR105) 2020; 07 8606_CR85 8606_CR83 8606_CR89 8606_CR87 SW Wei (8606_CR30) 2012; 1210 T Koivisto (8606_CR54) 2007; 644 V Bozza (8606_CR39) 2007; 76 W Javed (8606_CR32) 2019; 99 XH Jin (8606_CR96) 2020; 29 RG Cai (8606_CR59) 2002; 65 R Konoplya (8606_CR73) 2020; 101 L Amendola (8606_CR55) 2007; 0710 A Kumar (8606_CR90) 2020; 419 R Kumar (8606_CR94) 2020; 20 A Aragón (8606_CR82) 2020; 80 K Bronnikov (8606_CR35) 2019; 25 RG Cai (8606_CR71) 2014; 733 RA Konoplya (8606_CR75) 2020; 30 R Whisker (8606_CR20) 2005; 71 CY Wang (8606_CR37) 2019; 1904 V Bozza (8606_CR16) 2001; 33 G Li (8606_CR31) 2015; 54 S Weinberg (8606_CR114) 1972 DG Boulware (8606_CR56) 1985; 55 KS Virbhadra (8606_CR42) 2008; 77 K Akiyama (8606_CR2) 2019; 875 S Hyun (8606_CR64) 2019; 79 P Schneider (8606_CR13) 1992 B Carter (8606_CR5) 1968; 174 CR Keeton (8606_CR25) 2006; 73 SG Ghosh (8606_CR86) 2020; 30 MH Dehghani (8606_CR60) 2004; 69 8606_CR28 8606_CR112 R Shaikh (8606_CR36) 2019; 789 8606_CR116 8606_CR110 |
References_xml | – reference: M.S. Churilova, arXiv:2004.00513 [gr-qc] – reference: WeiSWLiuYXFuCEYangKJCAP201212100532012JCAP...10..053W – reference: AkiyamaKAstrophys. J.2019875L42019ApJ...875L...4E – reference: J. Arrechea, A. Delhom, A. Jiménez-Cano, arXiv:2004.12998 [gr-qc] – reference: A. Kumar, S.G. Ghosh, arXiv:2004.01131 [gr-qc] – reference: CaiRGPhys. Rev. D2002650840142002PhRvD..65h4014C1899200 – reference: ZhangYPWeiSWLiuYXUniverse202061032020Univ....6..103Z – reference: HyunSNamCHEur. Phys. J. C2019797372019EPJC...79..737H – reference: LiGCaoBFengZZuXInt. J. Theor. Phys.2015543103 – reference: BozzaVScarpettaGPhys. Rev. D2007760830082007PhRvD..76h3008B – reference: LiebesSPhys. Rev.1964133B8351964PhRv..133..835L – reference: M. Cuyubamba, arXiv:2004.09025 [gr-qc] – reference: FernandesPGCarrilhoPCliftonTMulryneDJPhys. Rev. D20201020240252020PhRvD.102b4025F4133934 – reference: KumarASinghDVGhoshSGAnn. Phys.2020419168214 – reference: BozzaVPhys. Rev. D2008781030052008PhRvD..78j3005B2470276 – reference: BozzaVInt. J. Mod. Phys. D20172617410132017IJMPD..2641013B – reference: H. Lu, Y. Pang, arXiv:2003.11552 [gr-qc] – reference: K. Aoki, M.A. Gorji, S. Mukohyama, arXiv:2005.03859 [gr-qc] – reference: ShaikhRBanerjeePPaulSSarkarTPhys. Lett. B20197892702019PhLB..789..270S – reference: SadeghiJVaezHJCAP2014060282014JCAP...06..028S – reference: KeetonCRPettersAPhys. Rev. D2006730440242006PhRvD..73d4024K – reference: WiltshireDLPhys. Lett. B1986169361986PhLB..169...36W834337 – reference: DoTScience20193656642019Sci...365..664D – reference: DarwinCProc. R. Soc. A19592491801959RSPSA.249..180D99230 – reference: DoelemanSNature2008455782008Natur.455...78D – reference: GrallaSELupsascaAPhys. Rev. D20201010440312020PhRvD.101d4031G4073836 – reference: EiroaEFSendraCMClass. Quantum Gravity2011280850082011CQGra..28h5008E – reference: WillCTheory and Experiment in Gravitational Physics2018CambridgeCambridge University Press1400.53076 – reference: S. Mahapatra, arXiv:2004.09214 [gr-qc] – reference: AkiyamaKAstrophys. J.2019875L52019ApJ...875L...5E – reference: Y. Tomozawa, arXiv:1107.1424 [gr-qc] – reference: EinsteinAScience1936845061936Sci....84..506E – reference: ShaikhRBanerjeePPaulSSarkarTPhys. Rev. D2019991040402019PhRvD..99j4040S4007964 – reference: KoivistoTMotaDFPhys. Lett. B20076441042007PhLB..644..104K2287966 – reference: DehghaniMHPhys. Rev. D2004690640242004PhRvD..69f4024D2093138 – reference: KonoplyaRZhidenkoAPhys. Rev. D20201010840382020PhRvD.101h4038K4103132 – reference: SinghDVGhoshSGMaharajSDAnn. Phys.2020412168025 – reference: LovelockDJ. Math. Phys.1971124981971JMP....12..498L – reference: M.L. Ruggiero [n], Gen. Relativ. Gravit. 41, 1497-1509 (2009) – reference: J.P., Luminet, Astron. Astrophys, 75, 228 (1979) – reference: A. Casalino, L. Sebastiani, arXiv:2004.10229 [gr-qc] – reference: KumarRGhoshSGJCAP202020053 – reference: CognolaGMyrzakulovRSebastianiLZerbiniSPhys. Rev. D2013880240062013PhRvD..88b4006C – reference: GhoshSGClass. Quantum Gravity2018350850082018CQGra..35h5008G – reference: BourassaRRKantowskiRAstrophys. J.1975195131975ApJ...195...13B – reference: GursesMSismanTCTekinBEur. Phys. J. C2020806472020EPJC...80..647G – reference: KonoplyaRAZhidenkoAPhys. Lett. B20208071356074122106 – reference: CaiRGCaoLMOhtaNJHEP201010040822010JHEP...04..082C – reference: GhoshSGMaharajSDPhys. Dark Univ.202030100687 – reference: CarterBPhys. Rev. D196817415591968PhRv..174.1559C – reference: VirbhadraKSEllisGFRPhys. Rev. D2000620840032000PhRvD..62h4003V1804056 – reference: ChandrasekharSThe Mathematical Theory of Black Holes1992New YorkOxford University Press0912.53053 – reference: GhoshSGSinghDVMaharajSDPhys. Rev. D2018971040502018PhRvD..97j4050G3882674 – reference: GuoMLiPCEur. Phys. J. C2020805882020EPJC...80..588G – reference: SchneiderPEhlersJFalcoEEGravitational Lenses1992BerlinSpringer-Verlag – reference: ZhangPLiguoriMBeanRDodelsonSPhys. Rev. Lett.2007991413022007PhRvL..99n1302Z – reference: WhiskerRPhys. Rev. D2005710640042005PhRvD..71f4004W – reference: RefsdalSMon. Not. R. Astron. Soc.19641282951964MNRAS.128..295R175607 – reference: X. Zeng, H. Zhang, H. Zhang, arXiv:2004.12074 [gr-qc] – reference: R.A. Konoplya, A.F. Zinhailo, arXiv:2003.01188 [gr-qc] – reference: JavedWBabarRÖvgünAPhys. Rev. D2019990840122019PhRvD..99h4012J3997547 – reference: ManJChengHJCAP2014110252014JCAP...11..025M – reference: BhadraAPhys. Rev. D2003671030092003PhRvD..67j3009B2005011 – reference: FernandesPGSPhys. Lett. B20208051354684097303 – reference: C.Y. Zhang, P.C. Li, M. Guo, arXiv:2003.13068 [hep-th] – reference: GhoshSGAmirMMaharajSDEur. Phys. J. C2017775302017EPJC...77..530G – reference: C. Liu, T. Zhu, Q. Wu, arXiv:2004.01662 [gr-qc] – reference: ZwiebachBPhys. Lett.1985156B3151985PhLB..156..315Z – reference: EiroaEFPhys. Rev. D2005710830102005PhRvD..71h3010E – reference: AkiyamaKAstrophys. J.2019875L12019ApJ...875L...1E – reference: SarkarKBhadraAClass. Quantum Gravity20062361012006CQGra..23.6101S – reference: M. Heydari-Fard, H.R. Sepangi, arXiv:2004.02140 [gr-qc] – reference: AiWCommun. Theor. Phys.2020720954022020CoTPh..72i5402A – reference: GlavanDLinCPhys. Rev. Lett.20201240813012020PhRvL.124h1301G4071777 – reference: BozzaVManciniLAstrophys. J.2004611104510532004ApJ...611.1045B – reference: BrazJ. Phys.2005351113 – reference: K. Hegde, A.N. Kumara, C.L.A. Rizwan, A.K.M. and M.S. Ali, arXiv:2003.08778 [gr-qc] – reference: AragónABécarRGonzálezPVásquezYEur. Phys. J. C2020807732020EPJC...80..773A – reference: ÖvgünAPhys. Rev. D2019991040752019PhRvD..99j4075O4008180 – reference: IyerSVPettersAOGen. Relativ. Gravit.20073915632007GReGr..39.1563I – reference: F. Shu, arXiv:2004.09339 [gr-qc] – reference: LanczosCAnn. Math.1938398421503440 – reference: JusufiKBanerjeeAGhoshSGEur. Phys. J. C2020806982020EPJC...80..698J – reference: HennigarRAKubiznakDMannRBPollackCJHEP2020070272020JHEP...07..027H – reference: IslamSUKumarRGhoshSGJCAP2020090302020JCAP...09..030I – reference: BozzaVPhys. Rev. D2002661030012002PhRvD..66j3001B – reference: S.A. Hosseini Mansoori, arXiv:2003.13382 [gr-qc] – reference: ReyesRMandelbaumRSeljakUBaldaufTGunnJELombriserLSmithRENature20104642562010Natur.464..256R – reference: D.V. Singh, S.G. Ghosh, S.D. Maharaj, arXiv:2003.14136 [gr-qc] – reference: L. Ma, H. Lu, arXiv:2004.14738 [gr-qc] – reference: NziokiAMDunsbyPKGoswamiRCarloniSPhys. Rev. D2011830240302011PhRvD..83b4030N – reference: AmendolaLCharmousisCDavisSJCAP200707100042007JCAP...10..004A – reference: S.W. Wei, Y.X. Liu, arXiv:2003.07769 [gr-qc] – reference: KumarASinghDVGhoshSGEur. Phys. J. C2019792752019EPJC...79..275K – reference: BozzaVCapozzielloSIovaneGScarpettaGGen. Relativ. Gravit.20013315352001GReGr..33.1535B – reference: WangCYShenYFXieYJCAP201919040222019JCAP...04..022W – reference: PanpanichSPonglertsakulSTannukijLPhys. Rev. D20191000440312019PhRvD.100d4031P4022986 – reference: WeinbergSGravitation and Cosmology: Principles and Applications of the General Theory of Relativity1972New YorkWiley – reference: SinghDVSiwachSPhys. Lett. B20208081356584131898 – reference: KobayashiTJCAP2020070132020JCAP...07..013K – reference: KonoplyaRAZinhailoAFPhys. Dark Univ.202030100697 – reference: NojiriSOdintsovSDOikonomouVKPhys. Rev. D2019990440502019PhRvD..99d4050N3987735 – reference: S.b. Chen and J.l. Jing, Phys. Rev. D. 80, 024036 (2009) – reference: BronnikovKBaleevskikhKGravit. Cosmol.201925442019GrCo...25...44B3936281 – reference: A. Kumar, R. Kumar, arXiv:2003.13104 [gr-qc] – reference: VirbhadraKSKeetonCRPhys. Rev. D2008771240142008PhRvD..77l4014V – reference: KeetonCRPettersAOPhys. Rev. D2005721040062005PhRvD..72j4006K2188185 – reference: D.V. Singh, R. Kumar, S.G. Ghosh, S.D. Maharaj, arXiv:2006.00594 [gr-qc] – reference: SyngeJLMon. Not. R. Astron. Soc.19661314631966MNRAS.131..463S – reference: S.G. Ghosh, R. Kumar, arXiv:2003.12291 [gr-qc] – reference: FrittelliSKlingTPNewmanETPhys. Rev. D2000610640212000PhRvD..61f4021F1790461 – reference: A. Casalino, A. Colleaux, M. Rinaldi, S. Vicentini, arXiv:2003.07068 [gr-qc] – reference: RejiHMPatilMPhys. Rev. D20201010640512020PhRvD.101f4051R4086209 – reference: CaiRGPhys. Lett. B20147331832014PhLB..733..183C – reference: WheelerJTNucl. Phys. B19862687371986NuPhB.268..737W – reference: JinXHGaoYXLiuDJInt. J. Mod. Phys. D20202920500652020IJMPD..2950065J – reference: BoulwareDGDeserSPhys. Rev. Lett.19855526561985PhRvL..55.2656B – volume: 69 start-page: 064024 year: 2004 ident: 8606_CR60 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.69.064024 – ident: 8606_CR97 – volume: 66 start-page: 103001 year: 2002 ident: 8606_CR17 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.66.103001 – volume: 77 start-page: 530 year: 2017 ident: 8606_CR61 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-5099-8 – volume: 26 start-page: 1741013 year: 2017 ident: 8606_CR41 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S0218271817410139 – ident: 8606_CR68 – ident: 8606_CR80 – volume: 808 start-page: 135658 year: 2020 ident: 8606_CR88 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2020.135658 – volume: 80 start-page: 588 year: 2020 ident: 8606_CR98 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-8164-7 – ident: 8606_CR108 – volume: 84 start-page: 506 year: 1936 ident: 8606_CR7 publication-title: Science doi: 10.1126/science.84.2188.506 – volume: 55 start-page: 2656 year: 1985 ident: 8606_CR56 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.55.2656 – volume: 1210 start-page: 053 year: 2012 ident: 8606_CR30 publication-title: JCAP doi: 10.1088/1475-7516/2012/10/053 – volume: 101 start-page: 084038 year: 2020 ident: 8606_CR73 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.084038 – ident: 8606_CR74 – volume-title: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity year: 1972 ident: 8606_CR114 – volume: 79 start-page: 275 year: 2019 ident: 8606_CR65 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-019-6773-9 – ident: 8606_CR85 – volume: 72 start-page: 095402 year: 2020 ident: 8606_CR104 publication-title: Commun. Theor. Phys. doi: 10.1088/1572-9494/aba242 – volume: 875 start-page: L5 year: 2019 ident: 8606_CR4 publication-title: Astrophys. J. doi: 10.3847/2041-8213/ab0f43 – volume: 128 start-page: 295 year: 1964 ident: 8606_CR11 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/128.4.295 – volume: 73 start-page: 044024 year: 2006 ident: 8606_CR25 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.73.044024 – ident: 8606_CR79 – volume: 99 start-page: 084012 year: 2019 ident: 8606_CR32 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.084012 – volume: 11 start-page: 025 year: 2014 ident: 8606_CR48 publication-title: JCAP doi: 10.1088/1475-7516/2014/11/025 – volume: 97 start-page: 104050 year: 2018 ident: 8606_CR63 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.104050 – volume: 79 start-page: 737 year: 2019 ident: 8606_CR64 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-019-7248-8 – ident: 8606_CR92 – volume: 365 start-page: 664 year: 2019 ident: 8606_CR118 publication-title: Science doi: 10.1126/science.aav8137 – ident: 8606_CR72 – volume: 28 start-page: 085008 year: 2011 ident: 8606_CR43 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/28/8/085008 – ident: 8606_CR99 – volume: 83 start-page: 024030 year: 2011 ident: 8606_CR46 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.83.024030 – ident: 8606_CR103 – ident: 8606_CR28 doi: 10.1103/PhysRevD.80.024036 – volume: 99 start-page: 104040 year: 2019 ident: 8606_CR33 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.104040 – volume: 65 start-page: 084014 year: 2002 ident: 8606_CR59 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.65.084014 – volume: 23 start-page: 6101 year: 2006 ident: 8606_CR24 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/23/22/002 – volume: 101 start-page: 044031 year: 2020 ident: 8606_CR6 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.044031 – volume: 464 start-page: 256 year: 2010 ident: 8606_CR29 publication-title: Nature doi: 10.1038/nature08857 – volume: 12 start-page: 498 year: 1971 ident: 8606_CR51 publication-title: J. Math. Phys. doi: 10.1063/1.1665613 – volume: 62 start-page: 084003 year: 2000 ident: 8606_CR14 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.62.084003 – volume: 133 start-page: B835 year: 1964 ident: 8606_CR10 publication-title: Phys. Rev. doi: 10.1103/PhysRev.133.B835 – volume: 29 start-page: 2050065 year: 2020 ident: 8606_CR96 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S0218271820500650 – volume: 35 start-page: 085008 year: 2018 ident: 8606_CR62 publication-title: Class. Quantum Gravity doi: 10.1088/1361-6382/aaaead – ident: 8606_CR91 – volume: 131 start-page: 463 year: 1966 ident: 8606_CR8 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/131.3.463 – volume: 412 start-page: 168025 year: 2020 ident: 8606_CR66 publication-title: Ann. Phys. doi: 10.1016/j.aop.2019.168025 – volume: 80 start-page: 698 year: 2020 ident: 8606_CR101 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-8287-x – volume-title: The Mathematical Theory of Black Holes year: 1992 ident: 8606_CR115 – ident: 8606_CR106 – volume: 789 start-page: 270 year: 2019 ident: 8606_CR36 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2018.12.030 – ident: 8606_CR83 – volume: 455 start-page: 78 year: 2008 ident: 8606_CR1 publication-title: Nature doi: 10.1038/nature07245 – volume: 174 start-page: 1559 year: 1968 ident: 8606_CR5 publication-title: Phys. Rev. D doi: 10.1103/PhysRev.174.1559 – ident: 8606_CR109 – volume: 07 start-page: 027 year: 2020 ident: 8606_CR105 publication-title: JHEP doi: 10.1007/JHEP07(2020)027 – ident: 8606_CR77 – ident: 8606_CR112 – volume: 124 start-page: 081301 year: 2020 ident: 8606_CR67 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.081301 – volume: 875 start-page: L4 year: 2019 ident: 8606_CR3 publication-title: Astrophys. J. doi: 10.3847/2041-8213/ab0e85 – volume: 101 start-page: 064051 year: 2020 ident: 8606_CR38 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.064051 – volume: 169 start-page: 36 year: 1986 ident: 8606_CR57 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(86)90681-7 – volume: 71 start-page: 083010 year: 2005 ident: 8606_CR21 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.71.083010 – ident: 8606_CR87 – volume: 1904 start-page: 022 year: 2019 ident: 8606_CR37 publication-title: JCAP doi: 10.1088/1475-7516/2019/04/022 – volume-title: Gravitational Lenses year: 1992 ident: 8606_CR13 – volume: 78 start-page: 103005 year: 2008 ident: 8606_CR40 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.103005 – volume: 1004 start-page: 082 year: 2010 ident: 8606_CR70 publication-title: JHEP – volume: 100 start-page: 044031 year: 2019 ident: 8606_CR45 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.044031 – volume: 06 start-page: 028 year: 2014 ident: 8606_CR49 publication-title: JCAP doi: 10.1088/1475-7516/2014/06/028 – ident: 8606_CR78 – ident: 8606_CR93 – volume: 20 start-page: 053 year: 2020 ident: 8606_CR94 publication-title: JCAP doi: 10.1088/1475-7516/2020/07/053 – volume: 09 start-page: 030 year: 2020 ident: 8606_CR95 publication-title: JCAP doi: 10.1088/1475-7516/2020/09/030 – volume: 733 start-page: 183 year: 2014 ident: 8606_CR71 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2014.04.044 – volume: 644 start-page: 104 year: 2007 ident: 8606_CR54 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2006.11.048 – volume: 99 start-page: 104075 year: 2019 ident: 8606_CR44 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.104075 – ident: 8606_CR81 – volume: 80 start-page: 773 year: 2020 ident: 8606_CR82 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-8298-7 – volume: 30 start-page: 100687 year: 2020 ident: 8606_CR86 publication-title: Phys. Dark Univ. doi: 10.1016/j.dark.2020.100687 – volume: 156B start-page: 315 year: 1985 ident: 8606_CR52 publication-title: Phys. Lett. doi: 10.1016/0370-2693(85)91616-8 – volume: 72 start-page: 104006 year: 2005 ident: 8606_CR23 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.72.104006 – volume: 39 start-page: 1563 year: 2007 ident: 8606_CR26 publication-title: Gen. Relativ. Gravit. doi: 10.1007/s10714-007-0481-8 – volume: 80 start-page: 647 year: 2020 ident: 8606_CR107 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-8200-7 – volume: 807 start-page: 135607 year: 2020 ident: 8606_CR113 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2020.135607 – volume: 76 start-page: 083008 year: 2007 ident: 8606_CR39 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.76.083008 – volume: 611 start-page: 1045 year: 2004 ident: 8606_CR117 publication-title: Astrophys. J. doi: 10.1086/422309 – volume: 268 start-page: 737 year: 1986 ident: 8606_CR58 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(86)90268-3 – volume: 71 start-page: 064004 year: 2005 ident: 8606_CR20 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.71.064004 – volume: 805 start-page: 135468 year: 2020 ident: 8606_CR84 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2020.135468 – ident: 8606_CR110 – ident: 8606_CR47 – volume: 419 start-page: 168214 year: 2020 ident: 8606_CR90 publication-title: Ann. Phys. doi: 10.1016/j.aop.2020.168214 – volume-title: Theory and Experiment in Gravitational Physics year: 2018 ident: 8606_CR18 doi: 10.1017/9781316338612 – ident: 8606_CR89 – volume: 07 start-page: 013 year: 2020 ident: 8606_CR111 publication-title: JCAP doi: 10.1088/1475-7516/2020/07/013 – volume: 100 start-page: 044031 year: 2019 ident: 8606_CR34 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.044031 – volume: 30 start-page: 100697 year: 2020 ident: 8606_CR75 publication-title: Phys. Dark Univ. doi: 10.1016/j.dark.2020.100697 – volume: 195 start-page: 13 year: 1975 ident: 8606_CR12 publication-title: Astrophys. J. doi: 10.1086/153300 – volume: 35 start-page: 1113 year: 2005 ident: 8606_CR22 publication-title: J. Phys. – volume: 25 start-page: 44 year: 2019 ident: 8606_CR35 publication-title: Gravit. Cosmol. doi: 10.1134/S020228931901002X – volume: 88 start-page: 024006 year: 2013 ident: 8606_CR69 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.024006 – volume: 61 start-page: 064021 year: 2000 ident: 8606_CR15 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.61.064021 – volume: 6 start-page: 103 year: 2020 ident: 8606_CR76 publication-title: Universe doi: 10.3390/universe6080103 – volume: 99 start-page: 044050 year: 2019 ident: 8606_CR53 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.044050 – volume: 77 start-page: 124014 year: 2008 ident: 8606_CR42 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.77.124014 – ident: 8606_CR102 – volume: 0710 start-page: 004 year: 2007 ident: 8606_CR55 publication-title: JCAP doi: 10.1088/1475-7516/2007/10/004 – volume: 39 start-page: 842 year: 1938 ident: 8606_CR50 publication-title: Ann. Math. doi: 10.2307/1968467 – volume: 54 start-page: 3103 year: 2015 ident: 8606_CR31 publication-title: Int. J. Theor. Phys. doi: 10.1007/s10773-015-2545-y – ident: 8606_CR116 – volume: 249 start-page: 180 year: 1959 ident: 8606_CR9 publication-title: Proc. R. Soc. A – volume: 99 start-page: 141302 year: 2007 ident: 8606_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.141302 – volume: 875 start-page: L1 year: 2019 ident: 8606_CR2 publication-title: Astrophys. J. doi: 10.3847/2041-8213/ab0ec7 – volume: 67 start-page: 103009 year: 2003 ident: 8606_CR19 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.67.103009 – volume: 102 start-page: 024025 year: 2020 ident: 8606_CR100 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.024025 – volume: 33 start-page: 1535 year: 2001 ident: 8606_CR16 publication-title: Gen. Relativ. Gravit. doi: 10.1023/A:1012292927358 |
SSID | ssj0002408 |
Score | 2.621979 |
Snippet | Among the higher curvature gravities, the most extensively studied theory is the so-called Einstein–Gauss–Bonnet (EGB) gravity, whose Lagrangian contains... Among the higher curvature gravities, the most extensively studied theory is the so-called Einstein-Gauss-Bonnet (EGB) gravity, whose Lagrangian contains... Abstract Among the higher curvature gravities, the most extensively studied theory is the so-called Einstein–Gauss–Bonnet (EGB) gravity, whose Lagrangian... |
SourceID | doaj proquest gale crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Angular position Astronomy Astrophysics and Cosmology Curvature Deflection Elementary Particles Gravitational lenses Hadrons Heavy Ions Mathematical analysis Measurement Science and Instrumentation Nuclear Energy Nuclear Physics Parameters Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Regular Article - Theoretical Physics Relativity String Theory Supermassive black holes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOil9Em3SYsohZ5EZEuyrWPS5tFCe2gbyE3oMV62BCfsbgrpqf-h_zC_JDOyNmnIYS89GSzJaEYjzYw88w1j73rrUwighJVdELpNUaASVAIa1bc9amQNdN_x5WtzdKw_n5iTf0p9UUzYCA88Mm7HA9gQ2t63IHXyJljjQ1dJb3rTgc1pvqjzVs5UOYMJuCvnFSktGql1iexCb2IHzn9GypyTphbkO6FNT-Ffd_RShu-_f0jf-1ualdDBY_aoWI98d5z1E_YAhqdsM0dxxsUz5g7n_lcB3cZupxScPkx5uOQZEAkSD3Rfx6kmLp8NfJ4L0c9nv7FFf-T7M7QVYTZc_fl76C8WC3zuURzMkk_zdy-fs-OD_R8fjkSpoCAi2lVLUTWd0rayABV6Lm2s29ClJCUEQ3BEECsJOqIN1WiPpk2XAnS1SjqAb2xC6_AF2xjOBnjJeFJGYnPfR_RhWllbnRqwSoXKBtzXacKaFf9cLJRSlYtTN6Y-S0eMdyPjHTLeZcY7NWHyZuD5iLCxfsgeLdBNd4LIzi9QcFwRHLdOcCbsLS2vIxCMgaJspsRZ9-n7N7dLsILWmFpP2PvSqT9DaqIvSQvIE8LNutNzeyUmrhwDC1frVlHBAY1Trlaic9u8hsxX_4PMLfawJjHPETjbbGM5v4DXaEctw5u8Za4BhJIZOg priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-1IvgifuLZKkEEn5ZmN8lm89ie_VDQB7XQt5CP2eOkbMvdVWif_B_8D_1LnMnlTkvBgk8Lm2TZTDKZX5KZ3zD2prc-hQCysqILlTIpVmgEZQWt7E2PFlkBnXd8_NQeHasPJ_pkg-2sYmH-vr9H7L8D598ixbkJ3VS000EETs5ad9hdXUtDuRrG7Xi99BJfVw4nkqpqhVLFoesfH7pmjjJr_821-cYlabY9Bw_ZgwIa-e5ylB-xDRges3vZeTPOnzB3OPPfC9c2Vjsln_RhwsMlzzxIkHigYzpOqXD5dOCznH9-Nr3CEvWO708RIsJ0-PXj56G_mM_xuUfuLws-yd-9fMqOD_a_jo-qkjihiginFlXddlLZ2gLUuGExsTGhS0kICJpYiCDWAlRE6NQqj4imSwG6RiYVwLc2ISh8xjaHswGeM56kFljc9xG3LkY0VqUWrJShtgHVOY1Yu5Kfi6WnlNzi1C0jnoUjwbul4B0K3mXBOzliYt3wfEmscXuTPRqgdXVixs4vcMK4omjOA9gQTO8NCJW8Dlb70NXC6153YLsRe03D64j7YiDnmglJ1r3_8tntEpug1bpRI_a2VOrPsDfRl1gFlAnRZV2rub2aJq5o_9w1ykjKM6Dwl-vV1PlTfEs3X_xHmy12v6FZnf1sttnmYnYBLxEtLcKrrCG_AT1MC5c priority: 102 providerName: Springer Nature |
Title | Gravitational lensing by charged black hole in regularized 4D Einstein–Gauss–Bonnet gravity |
URI | https://link.springer.com/article/10.1140/epjc/s10052-020-08606-3 https://www.proquest.com/docview/2473254643 https://doaj.org/article/aee9bb7fa7e04da5b95ab810a5f58e98 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1fa9swEBdrymAvY39Zti6YMdiTqWzJtvQ0kixJN1gZ3QJ9E_rnkFGczE4H3dO-w77hPsnuFCWlFNYXG1sngU6n0-l0-h0hb2upnTGepZIKk_LK2RQWQZb6ktVVDSsy9-jv-Hxansz5p_PiPDrcuhhWudOJQVG7lUUf-XHOK4bY7Zy9X_9IMWsUnq7GFBoH5BBUsBA9cjianH452-tiBPAK94sYT0vKeYzwgl3FsV9_t3iDjhZ5insosO0xDOzG-hRg_G8r61unpmExmj4iD6MVmQy3w_6Y3PPNE3I_RHPa7ilRs1b_jODbQHaBQerNIjFXSQBG8i4x6LdLMDdusmySNiSkb5e_oIR_SCZLsBn9svn7-89MX3YdvEcYD7NJFqHdq2dkPp18G5-kMZNCasG-2qRZKRiXmfQ-gx1MZfPKCOco9aZAWCJvM-q5BVuq5BpMHOGMFzlz3HhdSgdW4nPSa1aNf0ESxwoKxXVtYS9T0VxyV3rJmMmkgfnt-qTc8U_Z2FPMdnGhtlegqULGqy3jFTBeBcYr1id0X3G9Rdq4u8oIB2hPjlDZ4ceqXag485T2XhpT1brylDtdGFloIzKqi7oQXoo-eYPDqxAMo8FomwVyVn38eqaGCC8oiyLnffIuEtUr6I3V8fIC8ATxs25QHu3EREV10Klr4e2TbCc618V3dPPl_5t8RR7kKMAhxuaI9DbtpX8NltLGDMiBmM4GcVLA1zjn-CzHg-B7gOc8H_4D4wsU3Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxELVCEIILYhUDAVoIxKkVd9u9-IBQQjILWQ6QSLkZL9WjQVHPMDMBDSf-gf_go_gSqjzdE0WRyCmnltqL5HK5FrvqFWOvK2W8tSBixUsby8K7GJWgiCEXVVGhRpZA9x0Hh3n_WH48yU7W2J82F4bCKluZGAS1Hzu6I99MZSEIu12K95NvMVWNotfVtoTGki32YPEDXbbZu8EO7u-bNO3uHn3ox01VgdihrTGPk7wUUiUKIEFrvnBpYUvvOQebEUQPuISDdGhX5NKgui-9hTIVXlowufJoMeG8N9hNKVCTU2Z6t7eS_AQXFrKZhIxzLmUTT4Y-zCZMvjrK1-NZGpPHhp4EBZ1d0IahaMBl1XDpjTaovu49drexWaOtJZPdZ2tQP2C3Quyomz1kujc13xuob-x2SiHx9TCyiyjAMIGPLN0SRlSJNxrV0RSGFPs6-oktcifaHaGFCqP676_fPXM2m-F3m6Jv5tEwzLt4xI6vhcKP2Xo9ruEJi7zIODZXlUPPqeCpkj4HJYRNlEVp4jssb-mnXbNSqq1xqpcJ11wT4fWS8BoJrwPhtegwvho4WeJ6XD1kmzZo1Z2AucOP8XSom3OuDYCytqhMAVx6k1mVGVsm3GRVVoIqO-wVba8m6I2aYnuGRFk9-PxJbxGYocqyVHbY26ZTNcbVONOkSiBNCK3rQs-Nlk10I3xm-vyodFjSss558xXLfPr_KV-y2_2jg329Pzjce8bupMTMIbpng63Pp2fwHG20uX0RDkbEvlz3SfwHO31LXg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKKhAXxK8IFLAQiNMq3rX3xweEGpK0pRBVhUq9uWt7NgqqNiFJQeHEO_A2PA5PwsxmN1VViZ56Wmn9I3k845mxZ75h7FWhc28tyECLzAYq9S5AJSgDSGSRFqiRFdB9x6dhsnukPhzHxxvsT5MLQ2GVzZlYHdR-4uiOvBOpVBJ2u5Kdog6LOOgN3k2_BVRBil5am3IaKxbZh-UPdN_mb_d6uNevo2jQ__J-N6grDAQO7Y5FECaZVDrUACFa9qmLUpt5LwTYmOB6wIUClEMbI1E5qv7MW8gi6ZWFPNEerSec9wbbTMkrarHNbn94cLjWAwQeVuU2SRUkQqk6ugw9mg5MvzrK3hNxFJD_hn4FhaBd0I1VCYHLiuLSi22lCAd32Z3aguXbK5a7xzagvM9uVpGkbv6AmZ1Z_r0G_sZupxQgX464XfIKlAk8t3RnyKkuLx-XfAYjioQd_8QW1eP9MdqrMC7__vq9k5_N5_jtUizOgo-qeZcP2dG10PgRa5WTEh4z7mUssLkoHPpRqYi08gloKW2oLZ4tvs2Shn7G1SulShunZpV-LQwR3qwIb5DwpiK8kW0m1gOnK5SPq4d0aYPW3Qmmu_oxmY1MLfUmB9DWpkWeglA-j62Oc5uFIo-LOAOdtdlL2l5DQBwlsfSIKGv2Ph-abYI21HEcqTZ7U3cqJrgal9eJE0gTwu660HOrYRNTH0Vzcy44bRY2rHPefMUyn_x_yhfsFkqh-bg33H_KbkfEy1WozxZrLWZn8AwNtoV9XksGZyfXLYz_AGArUPA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gravitational+lensing+by+charged+black+hole+in+regularized+4D+Einstein%E2%80%93Gauss%E2%80%93Bonnet+gravity&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Kumar%2C+Rahul&rft.au=Islam%2C+Shafqat+Ul&rft.au=Ghosh%2C+Sushant+G&rft.date=2020-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1434-6044&rft.eissn=1434-6052&rft.volume=80&rft.issue=12&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-020-08606-3&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6044&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6044&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6044&client=summon |