Gravitational lensing by charged black hole in regularized 4D Einstein–Gauss–Bonnet gravity

Among the higher curvature gravities, the most extensively studied theory is the so-called Einstein–Gauss–Bonnet (EGB) gravity, whose Lagrangian contains Einstein term with the GB combination of quadratic curvature terms, and the GB term yields nontrivial gravitational dynamics in D ≥ 5 . Recently t...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. C, Particles and fields Vol. 80; no. 12; pp. 1 - 13
Main Authors Kumar, Rahul, Islam, Shafqat Ul, Ghosh, Sushant G.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2020
Springer
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Among the higher curvature gravities, the most extensively studied theory is the so-called Einstein–Gauss–Bonnet (EGB) gravity, whose Lagrangian contains Einstein term with the GB combination of quadratic curvature terms, and the GB term yields nontrivial gravitational dynamics in D ≥ 5 . Recently there has been a surge of interest in regularizing, a D → 4 limit of, the EGB gravity, and the resulting regularized 4 D EGB gravity valid in 4 D . We consider gravitational lensing by Charged black holes in the 4 D EGB gravity theory to calculate the light deflection coefficients in strong-field limits a ¯ and b ¯ , while former increases with increasing GB parameter α and charge q , later decrease. We also find a decrease in the deflection angle α D , angular position θ ∞ decreases more slowly and impact parameter for photon orbits u m more quickly, but angular separation s increases more rapidly with α and charge q . We compare our results with those for analogous black holes in General Relativity (GR) and also the formalism is applied to discuss the astrophysical consequences in the case of the supermassive black holes Sgr A* and M87*.
AbstractList Among the higher curvature gravities, the most extensively studied theory is the so-called Einstein–Gauss–Bonnet (EGB) gravity, whose Lagrangian contains Einstein term with the GB combination of quadratic curvature terms, and the GB term yields nontrivial gravitational dynamics in D ≥ 5 . Recently there has been a surge of interest in regularizing, a D → 4 limit of, the EGB gravity, and the resulting regularized 4 D EGB gravity valid in 4 D . We consider gravitational lensing by Charged black holes in the 4 D EGB gravity theory to calculate the light deflection coefficients in strong-field limits a ¯ and b ¯ , while former increases with increasing GB parameter α and charge q , later decrease. We also find a decrease in the deflection angle α D , angular position θ ∞ decreases more slowly and impact parameter for photon orbits u m more quickly, but angular separation s increases more rapidly with α and charge q . We compare our results with those for analogous black holes in General Relativity (GR) and also the formalism is applied to discuss the astrophysical consequences in the case of the supermassive black holes Sgr A* and M87*.
Among the higher curvature gravities, the most extensively studied theory is the so-called Einstein–Gauss–Bonnet (EGB) gravity, whose Lagrangian contains Einstein term with the GB combination of quadratic curvature terms, and the GB term yields nontrivial gravitational dynamics in D≥5. Recently there has been a surge of interest in regularizing, a D→4 limit of, the EGB gravity, and the resulting regularized 4D EGB gravity valid in 4D. We consider gravitational lensing by Charged black holes in the 4D EGB gravity theory to calculate the light deflection coefficients in strong-field limits a¯ and b¯, while former increases with increasing GB parameter α and charge q, later decrease. We also find a decrease in the deflection angle αD, angular position θ∞ decreases more slowly and impact parameter for photon orbits um more quickly, but angular separation s increases more rapidly with α and charge q. We compare our results with those for analogous black holes in General Relativity (GR) and also the formalism is applied to discuss the astrophysical consequences in the case of the supermassive black holes Sgr A* and M87*.
Among the higher curvature gravities, the most extensively studied theory is the so-called Einstein–Gauss–Bonnet (EGB) gravity, whose Lagrangian contains Einstein term with the GB combination of quadratic curvature terms, and the GB term yields nontrivial gravitational dynamics in $$ D\ge 5$$ D ≥ 5 . Recently there has been a surge of interest in regularizing, a $$ D \rightarrow 4 $$ D → 4 limit of, the EGB gravity, and the resulting regularized 4 D EGB gravity valid in 4 D . We consider gravitational lensing by Charged black holes in the 4 D EGB gravity theory to calculate the light deflection coefficients in strong-field limits $$\bar{a}$$ a ¯ and $$\bar{b}$$ b ¯ , while former increases with increasing GB parameter $$\alpha $$ α and charge q , later decrease. We also find a decrease in the deflection angle $$\alpha _D$$ α D , angular position $$\theta _{\infty }$$ θ ∞ decreases more slowly and impact parameter for photon orbits $$u_{m}$$ u m more quickly, but angular separation s increases more rapidly with $$\alpha $$ α and charge q . We compare our results with those for analogous black holes in General Relativity (GR) and also the formalism is applied to discuss the astrophysical consequences in the case of the supermassive black holes Sgr A* and M87*.
Abstract Among the higher curvature gravities, the most extensively studied theory is the so-called Einstein–Gauss–Bonnet (EGB) gravity, whose Lagrangian contains Einstein term with the GB combination of quadratic curvature terms, and the GB term yields nontrivial gravitational dynamics in $$ D\ge 5$$ D ≥ 5 . Recently there has been a surge of interest in regularizing, a $$ D \rightarrow 4 $$ D → 4 limit of, the EGB gravity, and the resulting regularized 4D EGB gravity valid in 4D. We consider gravitational lensing by Charged black holes in the 4D EGB gravity theory to calculate the light deflection coefficients in strong-field limits $$\bar{a}$$ a ¯ and $$\bar{b}$$ b ¯ , while former increases with increasing GB parameter $$\alpha $$ α and charge q, later decrease. We also find a decrease in the deflection angle $$\alpha _D$$ α D , angular position $$\theta _{\infty }$$ θ ∞ decreases more slowly and impact parameter for photon orbits $$u_{m}$$ u m more quickly, but angular separation s increases more rapidly with $$\alpha $$ α and charge q. We compare our results with those for analogous black holes in General Relativity (GR) and also the formalism is applied to discuss the astrophysical consequences in the case of the supermassive black holes Sgr A* and M87*.
Among the higher curvature gravities, the most extensively studied theory is the so-called Einstein-Gauss-Bonnet (EGB) gravity, whose Lagrangian contains Einstein term with the GB combination of quadratic curvature terms, and the GB term yields nontrivial gravitational dynamics in [Formula omitted]. Recently there has been a surge of interest in regularizing, a [Formula omitted] limit of, the EGB gravity, and the resulting regularized 4D EGB gravity valid in 4D. We consider gravitational lensing by Charged black holes in the 4D EGB gravity theory to calculate the light deflection coefficients in strong-field limits [Formula omitted] and [Formula omitted], while former increases with increasing GB parameter [Formula omitted] and charge q, later decrease. We also find a decrease in the deflection angle [Formula omitted], angular position [Formula omitted] decreases more slowly and impact parameter for photon orbits [Formula omitted] more quickly, but angular separation s increases more rapidly with [Formula omitted] and charge q. We compare our results with those for analogous black holes in General Relativity (GR) and also the formalism is applied to discuss the astrophysical consequences in the case of the supermassive black holes Sgr A* and M87*.
ArticleNumber 1128
Audience Academic
Author Kumar, Rahul
Islam, Shafqat Ul
Ghosh, Sushant G.
Author_xml – sequence: 1
  givenname: Rahul
  surname: Kumar
  fullname: Kumar, Rahul
  email: rahul.phy3@gmail.com
  organization: Centre for Theoretical Physics, Jamia Millia Islamia
– sequence: 2
  givenname: Shafqat Ul
  surname: Islam
  fullname: Islam, Shafqat Ul
  organization: Centre for Theoretical Physics, Jamia Millia Islamia
– sequence: 3
  givenname: Sushant G.
  surname: Ghosh
  fullname: Ghosh, Sushant G.
  organization: Centre for Theoretical Physics, Jamia Millia Islamia, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal
BookMark eNqFkc1u1DAUhSNUJNrCMxCJFYu0tmM7zoJFacswUiUkftbWjXOTekjtwfYghlXfoW_Ik-CZFFDZVF5c6_p8x_Y9R8WB8w6L4iUlJ5RycorrlTmNlBDBKsJIRZQksqqfFIeU17ySuX_wd8_5s-IoxhUhhHGiDgu9CPDdJkjWO5jKCV20biy7bWmuIYzYl90E5mt57ScsrSsDjpsJgv2ZT_hFeWldTGjdr9u7BWxizPWtdw5TOe59t8-LpwNMEV_c1-Piy7vLz-fvq6sPi-X52VVlBGOpolLVvKUtIlWSNYY1nep7QrATjRkaNJQgN1xIyUFSofoOFat73iHItie0Pi6Ws2_vYaXXwd5A2GoPVu8bPowaQrJmQg2Ibdc1AzRIeA-iawV0ihIQg1DYquz1avZaB_9tgzHpld-EPJ6oGW9qJrjkdVadzKoRsql1g08BTF493liTMxps7p9JQdpWCMYz8PoBkDUJf6RxNze9_PTxofbNrDXBxxhw0OY-pHyJnTQlehe-3oWv5_B1Dl_vw9e7xzX_8X9G8jipZjJmwo0Y_n3-MfQ3b9bKjg
CitedBy_id crossref_primary_10_1016_j_dark_2021_100877
crossref_primary_10_1016_j_physletb_2024_139211
crossref_primary_10_1016_j_dark_2021_100792
crossref_primary_10_1016_j_dark_2024_101768
crossref_primary_10_1016_j_dark_2024_101642
crossref_primary_10_1093_mnras_stab1260
crossref_primary_10_1140_epjc_s10052_025_13970_z
crossref_primary_10_3390_universe8010052
crossref_primary_10_1088_1572_9494_ad7c36
crossref_primary_10_1103_PhysRevD_103_084057
crossref_primary_10_1016_j_jheap_2025_100350
crossref_primary_10_1088_1475_7516_2024_05_121
crossref_primary_10_1140_epjc_s10052_022_10075_9
crossref_primary_10_1103_PhysRevD_107_024022
crossref_primary_10_1140_epjc_s10052_024_13057_1
crossref_primary_10_1103_PhysRevD_106_024023
crossref_primary_10_1007_s10773_023_05440_7
crossref_primary_10_3389_fphy_2023_1170683
crossref_primary_10_1103_PhysRevD_105_024062
crossref_primary_10_1140_epjc_s10052_022_10170_x
crossref_primary_10_1142_S0217751X24500647
crossref_primary_10_1016_j_rinp_2025_108168
crossref_primary_10_1103_PhysRevD_106_044024
crossref_primary_10_1088_1674_1137_ac9fbb
crossref_primary_10_1103_PhysRevD_104_044029
crossref_primary_10_1088_1475_7516_2023_03_029
crossref_primary_10_1088_1361_6382_ac500a
crossref_primary_10_1088_1572_9494_ad5d90
crossref_primary_10_1016_j_dark_2024_101495
crossref_primary_10_1016_j_nuclphysb_2024_116583
crossref_primary_10_1140_epjc_s10052_023_12208_0
crossref_primary_10_1016_j_aop_2025_170002
crossref_primary_10_1088_1361_6382_ac38d0
crossref_primary_10_1088_1361_6382_ac3e76
crossref_primary_10_1016_j_dark_2024_101493
crossref_primary_10_1140_epjc_s10052_021_09585_9
crossref_primary_10_1209_0295_5075_133_50006
crossref_primary_10_3390_universe8040232
crossref_primary_10_1140_epjc_s10052_022_10123_4
crossref_primary_10_1088_1674_1137_ac917f
crossref_primary_10_1103_PhysRevD_103_124052
crossref_primary_10_1140_epjp_s13360_025_06037_1
crossref_primary_10_3847_1538_4357_acb6f2
crossref_primary_10_1088_1475_7516_2021_10_013
crossref_primary_10_3847_1538_4357_ac912c
crossref_primary_10_1016_j_dark_2022_101100
crossref_primary_10_1016_j_dark_2024_101625
crossref_primary_10_1103_PhysRevD_111_064049
crossref_primary_10_1088_1475_7516_2021_03_056
crossref_primary_10_1140_epjp_s13360_022_02872_8
crossref_primary_10_1140_epjc_s10052_023_12233_z
crossref_primary_10_3390_universe8040244
crossref_primary_10_1088_1475_7516_2021_08_045
crossref_primary_10_1088_1361_6382_ad28f8
crossref_primary_10_1016_j_aop_2025_169957
crossref_primary_10_1016_j_nuclphysb_2024_116612
crossref_primary_10_1140_epjc_s10052_024_13720_7
crossref_primary_10_1140_epjc_s10052_021_09266_7
crossref_primary_10_1016_j_jheap_2024_11_012
crossref_primary_10_1016_j_dark_2024_101716
crossref_primary_10_1142_S0218271822500663
crossref_primary_10_1016_j_dark_2025_101815
crossref_primary_10_1016_j_dark_2025_101859
crossref_primary_10_1140_epjp_s13360_022_02846_w
crossref_primary_10_1103_PhysRevD_106_064038
crossref_primary_10_1142_S0219887824500117
crossref_primary_10_1016_j_cjph_2024_09_003
crossref_primary_10_3847_1538_4357_ac6dda
crossref_primary_10_1103_PhysRevD_110_064008
crossref_primary_10_1007_s10509_025_04412_z
crossref_primary_10_3847_1538_4357_abd094
crossref_primary_10_1140_epjc_s10052_023_12205_3
crossref_primary_10_1140_epjc_s10052_024_12917_0
crossref_primary_10_1088_1361_6382_acd97b
crossref_primary_10_1140_epjc_s10052_022_10619_z
crossref_primary_10_3390_universe8020102
crossref_primary_10_1103_PhysRevD_109_124004
crossref_primary_10_1140_epjc_s10052_022_10357_2
crossref_primary_10_1016_j_aop_2022_169147
Cites_doi 10.1103/PhysRevD.69.064024
10.1103/PhysRevD.66.103001
10.1140/epjc/s10052-017-5099-8
10.1142/S0218271817410139
10.1016/j.physletb.2020.135658
10.1140/epjc/s10052-020-8164-7
10.1126/science.84.2188.506
10.1103/PhysRevLett.55.2656
10.1088/1475-7516/2012/10/053
10.1103/PhysRevD.101.084038
10.1140/epjc/s10052-019-6773-9
10.1088/1572-9494/aba242
10.3847/2041-8213/ab0f43
10.1093/mnras/128.4.295
10.1103/PhysRevD.73.044024
10.1103/PhysRevD.99.084012
10.1088/1475-7516/2014/11/025
10.1103/PhysRevD.97.104050
10.1140/epjc/s10052-019-7248-8
10.1126/science.aav8137
10.1088/0264-9381/28/8/085008
10.1103/PhysRevD.83.024030
10.1103/PhysRevD.80.024036
10.1103/PhysRevD.99.104040
10.1103/PhysRevD.65.084014
10.1088/0264-9381/23/22/002
10.1103/PhysRevD.101.044031
10.1038/nature08857
10.1063/1.1665613
10.1103/PhysRevD.62.084003
10.1103/PhysRev.133.B835
10.1142/S0218271820500650
10.1088/1361-6382/aaaead
10.1093/mnras/131.3.463
10.1016/j.aop.2019.168025
10.1140/epjc/s10052-020-8287-x
10.1016/j.physletb.2018.12.030
10.1038/nature07245
10.1103/PhysRev.174.1559
10.1007/JHEP07(2020)027
10.1103/PhysRevLett.124.081301
10.3847/2041-8213/ab0e85
10.1103/PhysRevD.101.064051
10.1016/0370-2693(86)90681-7
10.1103/PhysRevD.71.083010
10.1088/1475-7516/2019/04/022
10.1103/PhysRevD.78.103005
10.1103/PhysRevD.100.044031
10.1088/1475-7516/2014/06/028
10.1088/1475-7516/2020/07/053
10.1088/1475-7516/2020/09/030
10.1016/j.physletb.2014.04.044
10.1016/j.physletb.2006.11.048
10.1103/PhysRevD.99.104075
10.1140/epjc/s10052-020-8298-7
10.1016/j.dark.2020.100687
10.1016/0370-2693(85)91616-8
10.1103/PhysRevD.72.104006
10.1007/s10714-007-0481-8
10.1140/epjc/s10052-020-8200-7
10.1016/j.physletb.2020.135607
10.1103/PhysRevD.76.083008
10.1086/422309
10.1016/0550-3213(86)90268-3
10.1103/PhysRevD.71.064004
10.1016/j.physletb.2020.135468
10.1016/j.aop.2020.168214
10.1017/9781316338612
10.1088/1475-7516/2020/07/013
10.1016/j.dark.2020.100697
10.1086/153300
10.1134/S020228931901002X
10.1103/PhysRevD.88.024006
10.1103/PhysRevD.61.064021
10.3390/universe6080103
10.1103/PhysRevD.99.044050
10.1103/PhysRevD.77.124014
10.1088/1475-7516/2007/10/004
10.2307/1968467
10.1007/s10773-015-2545-y
10.1103/PhysRevLett.99.141302
10.3847/2041-8213/ab0ec7
10.1103/PhysRevD.67.103009
10.1103/PhysRevD.102.024025
10.1023/A:1012292927358
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2020 Springer
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2020 Springer
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1140/epjc/s10052-020-08606-3
DatabaseName SpringerOpen
CrossRef
Gale in Context: Science
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1434-6052
EndPage 13
ExternalDocumentID oai_doaj_org_article_aee9bb7fa7e04da5b95ab810a5f58e98
A650995524
10_1140_epjc_s10052_020_08606_3
GroupedDBID -5F
-5G
-A0
-BR
-Y2
-~X
.86
0R~
199
1SB
29G
29Q
2JY
2P1
30V
4.4
408
409
40D
5GY
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95.
95~
AAFWJ
AAKKN
ABDBF
ABEEZ
ABMNI
ABQSL
ABTEG
ACACY
ACGFS
ACNCT
ACUHS
ACULB
ADBBV
ADINQ
ADKPE
ADMLS
AENEX
AFBBN
AFFNX
AFGXO
AFKRA
AFPKN
AFWTZ
AGJBK
AGWIL
AHSBF
AHYZX
AI.
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
AZFZN
B0M
BA0
BCNDV
BENPR
BGLVJ
BGNMA
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DL5
DU5
EAD
EAP
EAS
EBS
EJD
EMK
EPL
ER.
ESX
FEDTE
GQ6
GQ8
GROUPED_DOAJ
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HVGLF
HZ~
H~9
I-F
I09
IAO
IGS
IHE
ISR
IXC
IZIGR
IZQ
I~X
KDC
KOV
LAS
M4Y
MA-
N2Q
NB0
NU0
O9-
O93
OK1
P62
P9T
PIMPY
PROAC
PT5
QOS
R89
R9I
RED
RID
RNS
ROL
RPX
RSV
RZK
S1Z
S27
S3B
SDH
SOJ
SPH
SZN
T13
TN5
TSK
TSV
TUC
TUS
U2A
VC2
VH1
WK8
Z45
Z7Y
~8M
AAYXX
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHWEU
AIXLP
CITATION
PHGZM
PHGZT
PMFND
7U5
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c522t-16834919ee18627c27b8dd00eb57cf7ec10e4c45664a6158dbe823d4bea69d013
IEDL.DBID BENPR
ISSN 1434-6044
IngestDate Wed Aug 27 01:05:39 EDT 2025
Mon Jul 14 10:28:45 EDT 2025
Tue Jun 10 20:43:10 EDT 2025
Fri Jun 27 04:03:49 EDT 2025
Tue Jul 01 01:40:16 EDT 2025
Thu Apr 24 23:08:22 EDT 2025
Fri Feb 21 02:48:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-16834919ee18627c27b8dd00eb57cf7ec10e4c45664a6158dbe823d4bea69d013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2473254643?pq-origsite=%requestingapplication%
PQID 2473254643
PQPubID 2034659
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_aee9bb7fa7e04da5b95ab810a5f58e98
proquest_journals_2473254643
gale_infotracacademiconefile_A650995524
gale_incontextgauss_ISR_A650995524
crossref_citationtrail_10_1140_epjc_s10052_020_08606_3
crossref_primary_10_1140_epjc_s10052_020_08606_3
springer_journals_10_1140_epjc_s10052_020_08606_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201200
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Particles and Fields
PublicationTitle The European physical journal. C, Particles and fields
PublicationTitleAbbrev Eur. Phys. J. C
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References BozzaVPhys. Rev. D2008781030052008PhRvD..78j3005B2470276
AkiyamaKAstrophys. J.2019875L52019ApJ...875L...5E
VirbhadraKSEllisGFRPhys. Rev. D2000620840032000PhRvD..62h4003V1804056
BoulwareDGDeserSPhys. Rev. Lett.19855526561985PhRvL..55.2656B
DehghaniMHPhys. Rev. D2004690640242004PhRvD..69f4024D2093138
SyngeJLMon. Not. R. Astron. Soc.19661314631966MNRAS.131..463S
S.A. Hosseini Mansoori, arXiv:2003.13382 [gr-qc]
A. Kumar, R. Kumar, arXiv:2003.13104 [gr-qc]
CaiRGPhys. Rev. D2002650840142002PhRvD..65h4014C1899200
A. Casalino, L. Sebastiani, arXiv:2004.10229 [gr-qc]
BozzaVInt. J. Mod. Phys. D20172617410132017IJMPD..2641013B
WillCTheory and Experiment in Gravitational Physics2018CambridgeCambridge University Press1400.53076
RefsdalSMon. Not. R. Astron. Soc.19641282951964MNRAS.128..295R175607
M. Heydari-Fard, H.R. Sepangi, arXiv:2004.02140 [gr-qc]
EiroaEFPhys. Rev. D2005710830102005PhRvD..71h3010E
BozzaVManciniLAstrophys. J.2004611104510532004ApJ...611.1045B
PanpanichSPonglertsakulSTannukijLPhys. Rev. D20191000440312019PhRvD.100d4031P4022986
CaiRGPhys. Lett. B20147331832014PhLB..733..183C
WeinbergSGravitation and Cosmology: Principles and Applications of the General Theory of Relativity1972New YorkWiley
JusufiKBanerjeeAGhoshSGEur. Phys. J. C2020806982020EPJC...80..698J
AmendolaLCharmousisCDavisSJCAP200707100042007JCAP...10..004A
KumarASinghDVGhoshSGEur. Phys. J. C2019792752019EPJC...79..275K
SchneiderPEhlersJFalcoEEGravitational Lenses1992BerlinSpringer-Verlag
LovelockDJ. Math. Phys.1971124981971JMP....12..498L
HennigarRAKubiznakDMannRBPollackCJHEP2020070272020JHEP...07..027H
NojiriSOdintsovSDOikonomouVKPhys. Rev. D2019990440502019PhRvD..99d4050N3987735
NziokiAMDunsbyPKGoswamiRCarloniSPhys. Rev. D2011830240302011PhRvD..83b4030N
KonoplyaRAZhidenkoAPhys. Lett. B20208071356074122106
S.G. Ghosh, R. Kumar, arXiv:2003.12291 [gr-qc]
S. Mahapatra, arXiv:2004.09214 [gr-qc]
DarwinCProc. R. Soc. A19592491801959RSPSA.249..180D99230
KonoplyaRZhidenkoAPhys. Rev. D20201010840382020PhRvD.101h4038K4103132
L. Ma, H. Lu, arXiv:2004.14738 [gr-qc]
EiroaEFSendraCMClass. Quantum Gravity2011280850082011CQGra..28h5008E
K. Hegde, A.N. Kumara, C.L.A. Rizwan, A.K.M. and M.S. Ali, arXiv:2003.08778 [gr-qc]
AiWCommun. Theor. Phys.2020720954022020CoTPh..72i5402A
GuoMLiPCEur. Phys. J. C2020805882020EPJC...80..588G
AkiyamaKAstrophys. J.2019875L42019ApJ...875L...4E
LiGCaoBFengZZuXInt. J. Theor. Phys.2015543103
ManJChengHJCAP2014110252014JCAP...11..025M
A. Casalino, A. Colleaux, M. Rinaldi, S. Vicentini, arXiv:2003.07068 [gr-qc]
FernandesPGSPhys. Lett. B20208051354684097303
D.V. Singh, R. Kumar, S.G. Ghosh, S.D. Maharaj, arXiv:2006.00594 [gr-qc]
DoTScience20193656642019Sci...365..664D
LanczosCAnn. Math.1938398421503440
BronnikovKBaleevskikhKGravit. Cosmol.201925442019GrCo...25...44B3936281
SadeghiJVaezHJCAP2014060282014JCAP...06..028S
BrazJ. Phys.2005351113
ReyesRMandelbaumRSeljakUBaldaufTGunnJELombriserLSmithRENature20104642562010Natur.464..256R
ZwiebachBPhys. Lett.1985156B3151985PhLB..156..315Z
GlavanDLinCPhys. Rev. Lett.20201240813012020PhRvL.124h1301G4071777
IyerSVPettersAOGen. Relativ. Gravit.20073915632007GReGr..39.1563I
BozzaVCapozzielloSIovaneGScarpettaGGen. Relativ. Gravit.20013315352001GReGr..33.1535B
A. Kumar, S.G. Ghosh, arXiv:2004.01131 [gr-qc]
J.P., Luminet, Astron. Astrophys, 75, 228 (1979)
C.Y. Zhang, P.C. Li, M. Guo, arXiv:2003.13068 [hep-th]
WheelerJTNucl. Phys. B19862687371986NuPhB.268..737W
K. Aoki, M.A. Gorji, S. Mukohyama, arXiv:2005.03859 [gr-qc]
SinghDVSiwachSPhys. Lett. B20208081356584131898
ShaikhRBanerjeePPaulSSarkarTPhys. Rev. D2019991040402019PhRvD..99j4040S4007964
HyunSNamCHEur. Phys. J. C2019797372019EPJC...79..737H
M. Cuyubamba, arXiv:2004.09025 [gr-qc]
KeetonCRPettersAPhys. Rev. D2006730440242006PhRvD..73d4024K
GhoshSGMaharajSDPhys. Dark Univ.202030100687
AragónABécarRGonzálezPVásquezYEur. Phys. J. C2020807732020EPJC...80..773A
AkiyamaKAstrophys. J.2019875L12019ApJ...875L...1E
GrallaSELupsascaAPhys. Rev. D20201010440312020PhRvD.101d4031G4073836
J. Arrechea, A. Delhom, A. Jiménez-Cano, arXiv:2004.12998 [gr-qc]
C. Liu, T. Zhu, Q. Wu, arXiv:2004.01662 [gr-qc]
CaiRGCaoLMOhtaNJHEP201010040822010JHEP...04..082C
GhoshSGSinghDVMaharajSDPhys. Rev. D2018971040502018PhRvD..97j4050G3882674
Y. Tomozawa, arXiv:1107.1424 [gr-qc]
S.W. Wei, Y.X. Liu, arXiv:2003.07769 [gr-qc]
WangCYShenYFXieYJCAP201919040222019JCAP...04..022W
CognolaGMyrzakulovRSebastianiLZerbiniSPhys. Rev. D2013880240062013PhRvD..88b4006C
GhoshSGClass. Quantum Gravity2018350850082018CQGra..35h5008G
ShaikhRBanerjeePPaulSSarkarTPhys. Lett. B20197892702019PhLB..789..270S
ChandrasekharSThe Mathematical Theory of Black Holes1992New YorkOxford University Press0912.53053
LiebesSPhys. Rev.1964133B8351964PhRv..133..835L
WeiSWLiuYXFuCEYangKJCAP201212100532012JCAP...10..053W
KoivistoTMotaDFPhys. Lett. B20076441042007PhLB..644..104K2287966
SarkarKBhadraAClass. Quantum Gravity20062361012006CQGra..23.6101S
M.L. Ruggiero [n], Gen. Relativ. Gravit. 41, 1497-1509 (2009)
BhadraAPhys. Rev. D2003671030092003PhRvD..67j3009B2005011
RejiHMPatilMPhys. Rev. D20201010640512020PhRvD.101f4051R4086209
JinXHGaoYXLiuDJInt. J. Mod. Phys. D20202920500652020IJMPD..2950065J
M.S. Churilova, arXiv:2004.00513 [gr-qc]
EinsteinAScience1936845061936Sci....84..506E
ZhangPLiguoriMBeanRDodelsonSPhys. Rev. Lett.2007991413022007PhRvL..99n1302Z
SinghDVGhoshSGMaharajSDAnn. Phys.2020412168025
CarterBPhys. Rev. D196817415591968PhRv..174.1559C
F. Shu, arXiv:2004.09339 [gr-qc]
GursesMSismanTCTekinBEur. Phys. J. C2020806472020EPJC...80..647G
BozzaVPhys. Rev. D2002661030012002PhRvD..66j3001B
BozzaVScarpettaGPhys. Rev. D2007760830082007PhRvD..76h3008B
ZhangYPWeiSWLiuYXUniverse202061032020Univ....6..103Z
D.V. Singh, S.G. Ghosh, S.D. Maharaj, arXiv:2003.14136 [gr-qc]
KonoplyaRAZinhailoAFPhys. Dark Univ.202030100697
KumarRGhoshSGJCAP202020053
BourassaRRKantowskiRAstrophys. J.1975195131975ApJ...195...13B
KeetonCRPettersAOPhys. Rev. D2005721040062005PhRvD..72j4006K2188185
KumarASinghDVGhoshSGAnn. Phys.2020419168214
DoelemanSNature2008455782008Natur.455...78D
FrittelliSKlingTPNewmanETPhys. Rev. D2000610640212000PhRvD..61f4021F1790461
WhiskerRPhys. Rev. D2005710640042005PhRvD..71f4004W
R.A. Konoplya, A.F. Zinhailo, arXiv:2003.01188 [gr-qc]
H. Lu, Y. Pang, arXiv:2003.11552 [gr-qc]
GhoshSGAmirMMaharajSDEur. Phys. J. C2017775302017EPJC...77..530G
X. Zeng, H. Zhang, H. Zhang, arXiv:2004.12074 [gr-qc]
FernandesPGCarrilhoPCliftonTMulryneDJPhys. Rev. D20201020240252020PhRvD.102b4025F4133934
KobayashiTJCAP2020070132020JCAP...07..013K
JavedWBabarRÖvgünAPhys. Rev. D2019990840122019PhRvD..99h4012J3997547
ÖvgünAPhys. Rev. D2019991040752019PhRvD..99j4075O4008180
WiltshireDLPhys. Lett. B1986169361986PhLB..169...36W834337
S.b. Chen and J.l. Jing, Phys. Rev. D. 80, 024036 (2009)
VirbhadraKSKeetonCRPhys. Rev. D2008771240142008PhRvD..77l4014V
IslamSUKumarRGhoshSGJCAP2020090302020JCAP...09..030I
J Man (8606_CR48) 2014; 11
D Lovelock (8606_CR51) 1971; 12
P Zhang (8606_CR27) 2007; 99
PG Fernandes (8606_CR100) 2020; 102
Braz (8606_CR22) 2005; 35
C Will (8606_CR18) 2018
A Bhadra (8606_CR19) 2003; 67
JL Synge (8606_CR8) 1966; 131
S Liebes (8606_CR10) 1964; 133
RR Bourassa (8606_CR12) 1975; 195
D Glavan (8606_CR67) 2020; 124
B Zwiebach (8606_CR52) 1985; 156B
AM Nzioki (8606_CR46) 2011; 83
SG Ghosh (8606_CR63) 2018; 97
G Cognola (8606_CR69) 2013; 88
SU Islam (8606_CR95) 2020; 09
K Jusufi (8606_CR101) 2020; 80
RA Konoplya (8606_CR113) 2020; 807
S Panpanich (8606_CR34) 2019; 100
YP Zhang (8606_CR76) 2020; 6
J Sadeghi (8606_CR49) 2014; 06
A Övgün (8606_CR44) 2019; 99
M Gurses (8606_CR107) 2020; 80
DV Singh (8606_CR88) 2020; 808
8606_CR47
S Doeleman (8606_CR1) 2008; 455
DV Singh (8606_CR66) 2020; 412
K Akiyama (8606_CR4) 2019; 875
K Sarkar (8606_CR24) 2006; 23
8606_CR74
8606_CR72
A Einstein (8606_CR7) 1936; 84
8606_CR77
T Kobayashi (8606_CR111) 2020; 07
8606_CR78
S Panpanich (8606_CR45) 2019; 100
8606_CR79
PGS Fernandes (8606_CR84) 2020; 805
V Bozza (8606_CR117) 2004; 611
S Frittelli (8606_CR15) 2000; 61
V Bozza (8606_CR40) 2008; 78
W Ai (8606_CR104) 2020; 72
DL Wiltshire (8606_CR57) 1986; 169
EF Eiroa (8606_CR21) 2005; 71
R Shaikh (8606_CR33) 2019; 99
8606_CR68
SG Ghosh (8606_CR62) 2018; 35
C Lanczos (8606_CR50) 1938; 39
SV Iyer (8606_CR26) 2007; 39
C Darwin (8606_CR9) 1959; 249
V Bozza (8606_CR17) 2002; 66
EF Eiroa (8606_CR43) 2011; 28
M Guo (8606_CR98) 2020; 80
8606_CR91
SG Ghosh (8606_CR61) 2017; 77
8606_CR92
8606_CR93
HM Reji (8606_CR38) 2020; 101
8606_CR99
SE Gralla (8606_CR6) 2020; 101
8606_CR97
S Nojiri (8606_CR53) 2019; 99
8606_CR109
A Kumar (8606_CR65) 2019; 79
V Bozza (8606_CR41) 2017; 26
CR Keeton (8606_CR23) 2005; 72
S Refsdal (8606_CR11) 1964; 128
RG Cai (8606_CR70) 2010; 1004
8606_CR103
K Akiyama (8606_CR3) 2019; 875
8606_CR102
S Chandrasekhar (8606_CR115) 1992
8606_CR108
8606_CR106
T Do (8606_CR118) 2019; 365
KS Virbhadra (8606_CR14) 2000; 62
R Reyes (8606_CR29) 2010; 464
8606_CR80
JT Wheeler (8606_CR58) 1986; 268
8606_CR81
RA Hennigar (8606_CR105) 2020; 07
8606_CR85
8606_CR83
8606_CR89
8606_CR87
SW Wei (8606_CR30) 2012; 1210
T Koivisto (8606_CR54) 2007; 644
V Bozza (8606_CR39) 2007; 76
W Javed (8606_CR32) 2019; 99
XH Jin (8606_CR96) 2020; 29
RG Cai (8606_CR59) 2002; 65
R Konoplya (8606_CR73) 2020; 101
L Amendola (8606_CR55) 2007; 0710
A Kumar (8606_CR90) 2020; 419
R Kumar (8606_CR94) 2020; 20
A Aragón (8606_CR82) 2020; 80
K Bronnikov (8606_CR35) 2019; 25
RG Cai (8606_CR71) 2014; 733
RA Konoplya (8606_CR75) 2020; 30
R Whisker (8606_CR20) 2005; 71
CY Wang (8606_CR37) 2019; 1904
V Bozza (8606_CR16) 2001; 33
G Li (8606_CR31) 2015; 54
S Weinberg (8606_CR114) 1972
DG Boulware (8606_CR56) 1985; 55
KS Virbhadra (8606_CR42) 2008; 77
K Akiyama (8606_CR2) 2019; 875
S Hyun (8606_CR64) 2019; 79
P Schneider (8606_CR13) 1992
B Carter (8606_CR5) 1968; 174
CR Keeton (8606_CR25) 2006; 73
SG Ghosh (8606_CR86) 2020; 30
MH Dehghani (8606_CR60) 2004; 69
8606_CR28
8606_CR112
R Shaikh (8606_CR36) 2019; 789
8606_CR116
8606_CR110
References_xml – reference: M.S. Churilova, arXiv:2004.00513 [gr-qc]
– reference: WeiSWLiuYXFuCEYangKJCAP201212100532012JCAP...10..053W
– reference: AkiyamaKAstrophys. J.2019875L42019ApJ...875L...4E
– reference: J. Arrechea, A. Delhom, A. Jiménez-Cano, arXiv:2004.12998 [gr-qc]
– reference: A. Kumar, S.G. Ghosh, arXiv:2004.01131 [gr-qc]
– reference: CaiRGPhys. Rev. D2002650840142002PhRvD..65h4014C1899200
– reference: ZhangYPWeiSWLiuYXUniverse202061032020Univ....6..103Z
– reference: HyunSNamCHEur. Phys. J. C2019797372019EPJC...79..737H
– reference: LiGCaoBFengZZuXInt. J. Theor. Phys.2015543103
– reference: BozzaVScarpettaGPhys. Rev. D2007760830082007PhRvD..76h3008B
– reference: LiebesSPhys. Rev.1964133B8351964PhRv..133..835L
– reference: M. Cuyubamba, arXiv:2004.09025 [gr-qc]
– reference: FernandesPGCarrilhoPCliftonTMulryneDJPhys. Rev. D20201020240252020PhRvD.102b4025F4133934
– reference: KumarASinghDVGhoshSGAnn. Phys.2020419168214
– reference: BozzaVPhys. Rev. D2008781030052008PhRvD..78j3005B2470276
– reference: BozzaVInt. J. Mod. Phys. D20172617410132017IJMPD..2641013B
– reference: H. Lu, Y. Pang, arXiv:2003.11552 [gr-qc]
– reference: K. Aoki, M.A. Gorji, S. Mukohyama, arXiv:2005.03859 [gr-qc]
– reference: ShaikhRBanerjeePPaulSSarkarTPhys. Lett. B20197892702019PhLB..789..270S
– reference: SadeghiJVaezHJCAP2014060282014JCAP...06..028S
– reference: KeetonCRPettersAPhys. Rev. D2006730440242006PhRvD..73d4024K
– reference: WiltshireDLPhys. Lett. B1986169361986PhLB..169...36W834337
– reference: DoTScience20193656642019Sci...365..664D
– reference: DarwinCProc. R. Soc. A19592491801959RSPSA.249..180D99230
– reference: DoelemanSNature2008455782008Natur.455...78D
– reference: GrallaSELupsascaAPhys. Rev. D20201010440312020PhRvD.101d4031G4073836
– reference: EiroaEFSendraCMClass. Quantum Gravity2011280850082011CQGra..28h5008E
– reference: WillCTheory and Experiment in Gravitational Physics2018CambridgeCambridge University Press1400.53076
– reference: S. Mahapatra, arXiv:2004.09214 [gr-qc]
– reference: AkiyamaKAstrophys. J.2019875L52019ApJ...875L...5E
– reference: Y. Tomozawa, arXiv:1107.1424 [gr-qc]
– reference: EinsteinAScience1936845061936Sci....84..506E
– reference: ShaikhRBanerjeePPaulSSarkarTPhys. Rev. D2019991040402019PhRvD..99j4040S4007964
– reference: KoivistoTMotaDFPhys. Lett. B20076441042007PhLB..644..104K2287966
– reference: DehghaniMHPhys. Rev. D2004690640242004PhRvD..69f4024D2093138
– reference: KonoplyaRZhidenkoAPhys. Rev. D20201010840382020PhRvD.101h4038K4103132
– reference: SinghDVGhoshSGMaharajSDAnn. Phys.2020412168025
– reference: LovelockDJ. Math. Phys.1971124981971JMP....12..498L
– reference: M.L. Ruggiero [n], Gen. Relativ. Gravit. 41, 1497-1509 (2009)
– reference: J.P., Luminet, Astron. Astrophys, 75, 228 (1979)
– reference: A. Casalino, L. Sebastiani, arXiv:2004.10229 [gr-qc]
– reference: KumarRGhoshSGJCAP202020053
– reference: CognolaGMyrzakulovRSebastianiLZerbiniSPhys. Rev. D2013880240062013PhRvD..88b4006C
– reference: GhoshSGClass. Quantum Gravity2018350850082018CQGra..35h5008G
– reference: BourassaRRKantowskiRAstrophys. J.1975195131975ApJ...195...13B
– reference: GursesMSismanTCTekinBEur. Phys. J. C2020806472020EPJC...80..647G
– reference: KonoplyaRAZhidenkoAPhys. Lett. B20208071356074122106
– reference: CaiRGCaoLMOhtaNJHEP201010040822010JHEP...04..082C
– reference: GhoshSGMaharajSDPhys. Dark Univ.202030100687
– reference: CarterBPhys. Rev. D196817415591968PhRv..174.1559C
– reference: VirbhadraKSEllisGFRPhys. Rev. D2000620840032000PhRvD..62h4003V1804056
– reference: ChandrasekharSThe Mathematical Theory of Black Holes1992New YorkOxford University Press0912.53053
– reference: GhoshSGSinghDVMaharajSDPhys. Rev. D2018971040502018PhRvD..97j4050G3882674
– reference: GuoMLiPCEur. Phys. J. C2020805882020EPJC...80..588G
– reference: SchneiderPEhlersJFalcoEEGravitational Lenses1992BerlinSpringer-Verlag
– reference: ZhangPLiguoriMBeanRDodelsonSPhys. Rev. Lett.2007991413022007PhRvL..99n1302Z
– reference: WhiskerRPhys. Rev. D2005710640042005PhRvD..71f4004W
– reference: RefsdalSMon. Not. R. Astron. Soc.19641282951964MNRAS.128..295R175607
– reference: X. Zeng, H. Zhang, H. Zhang, arXiv:2004.12074 [gr-qc]
– reference: R.A. Konoplya, A.F. Zinhailo, arXiv:2003.01188 [gr-qc]
– reference: JavedWBabarRÖvgünAPhys. Rev. D2019990840122019PhRvD..99h4012J3997547
– reference: ManJChengHJCAP2014110252014JCAP...11..025M
– reference: BhadraAPhys. Rev. D2003671030092003PhRvD..67j3009B2005011
– reference: FernandesPGSPhys. Lett. B20208051354684097303
– reference: C.Y. Zhang, P.C. Li, M. Guo, arXiv:2003.13068 [hep-th]
– reference: GhoshSGAmirMMaharajSDEur. Phys. J. C2017775302017EPJC...77..530G
– reference: C. Liu, T. Zhu, Q. Wu, arXiv:2004.01662 [gr-qc]
– reference: ZwiebachBPhys. Lett.1985156B3151985PhLB..156..315Z
– reference: EiroaEFPhys. Rev. D2005710830102005PhRvD..71h3010E
– reference: AkiyamaKAstrophys. J.2019875L12019ApJ...875L...1E
– reference: SarkarKBhadraAClass. Quantum Gravity20062361012006CQGra..23.6101S
– reference: M. Heydari-Fard, H.R. Sepangi, arXiv:2004.02140 [gr-qc]
– reference: AiWCommun. Theor. Phys.2020720954022020CoTPh..72i5402A
– reference: GlavanDLinCPhys. Rev. Lett.20201240813012020PhRvL.124h1301G4071777
– reference: BozzaVManciniLAstrophys. J.2004611104510532004ApJ...611.1045B
– reference: BrazJ. Phys.2005351113
– reference: K. Hegde, A.N. Kumara, C.L.A. Rizwan, A.K.M. and M.S. Ali, arXiv:2003.08778 [gr-qc]
– reference: AragónABécarRGonzálezPVásquezYEur. Phys. J. C2020807732020EPJC...80..773A
– reference: ÖvgünAPhys. Rev. D2019991040752019PhRvD..99j4075O4008180
– reference: IyerSVPettersAOGen. Relativ. Gravit.20073915632007GReGr..39.1563I
– reference: F. Shu, arXiv:2004.09339 [gr-qc]
– reference: LanczosCAnn. Math.1938398421503440
– reference: JusufiKBanerjeeAGhoshSGEur. Phys. J. C2020806982020EPJC...80..698J
– reference: HennigarRAKubiznakDMannRBPollackCJHEP2020070272020JHEP...07..027H
– reference: IslamSUKumarRGhoshSGJCAP2020090302020JCAP...09..030I
– reference: BozzaVPhys. Rev. D2002661030012002PhRvD..66j3001B
– reference: S.A. Hosseini Mansoori, arXiv:2003.13382 [gr-qc]
– reference: ReyesRMandelbaumRSeljakUBaldaufTGunnJELombriserLSmithRENature20104642562010Natur.464..256R
– reference: D.V. Singh, S.G. Ghosh, S.D. Maharaj, arXiv:2003.14136 [gr-qc]
– reference: L. Ma, H. Lu, arXiv:2004.14738 [gr-qc]
– reference: NziokiAMDunsbyPKGoswamiRCarloniSPhys. Rev. D2011830240302011PhRvD..83b4030N
– reference: AmendolaLCharmousisCDavisSJCAP200707100042007JCAP...10..004A
– reference: S.W. Wei, Y.X. Liu, arXiv:2003.07769 [gr-qc]
– reference: KumarASinghDVGhoshSGEur. Phys. J. C2019792752019EPJC...79..275K
– reference: BozzaVCapozzielloSIovaneGScarpettaGGen. Relativ. Gravit.20013315352001GReGr..33.1535B
– reference: WangCYShenYFXieYJCAP201919040222019JCAP...04..022W
– reference: PanpanichSPonglertsakulSTannukijLPhys. Rev. D20191000440312019PhRvD.100d4031P4022986
– reference: WeinbergSGravitation and Cosmology: Principles and Applications of the General Theory of Relativity1972New YorkWiley
– reference: SinghDVSiwachSPhys. Lett. B20208081356584131898
– reference: KobayashiTJCAP2020070132020JCAP...07..013K
– reference: KonoplyaRAZinhailoAFPhys. Dark Univ.202030100697
– reference: NojiriSOdintsovSDOikonomouVKPhys. Rev. D2019990440502019PhRvD..99d4050N3987735
– reference: S.b. Chen and J.l. Jing, Phys. Rev. D. 80, 024036 (2009)
– reference: BronnikovKBaleevskikhKGravit. Cosmol.201925442019GrCo...25...44B3936281
– reference: A. Kumar, R. Kumar, arXiv:2003.13104 [gr-qc]
– reference: VirbhadraKSKeetonCRPhys. Rev. D2008771240142008PhRvD..77l4014V
– reference: KeetonCRPettersAOPhys. Rev. D2005721040062005PhRvD..72j4006K2188185
– reference: D.V. Singh, R. Kumar, S.G. Ghosh, S.D. Maharaj, arXiv:2006.00594 [gr-qc]
– reference: SyngeJLMon. Not. R. Astron. Soc.19661314631966MNRAS.131..463S
– reference: S.G. Ghosh, R. Kumar, arXiv:2003.12291 [gr-qc]
– reference: FrittelliSKlingTPNewmanETPhys. Rev. D2000610640212000PhRvD..61f4021F1790461
– reference: A. Casalino, A. Colleaux, M. Rinaldi, S. Vicentini, arXiv:2003.07068 [gr-qc]
– reference: RejiHMPatilMPhys. Rev. D20201010640512020PhRvD.101f4051R4086209
– reference: CaiRGPhys. Lett. B20147331832014PhLB..733..183C
– reference: WheelerJTNucl. Phys. B19862687371986NuPhB.268..737W
– reference: JinXHGaoYXLiuDJInt. J. Mod. Phys. D20202920500652020IJMPD..2950065J
– reference: BoulwareDGDeserSPhys. Rev. Lett.19855526561985PhRvL..55.2656B
– volume: 69
  start-page: 064024
  year: 2004
  ident: 8606_CR60
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.69.064024
– ident: 8606_CR97
– volume: 66
  start-page: 103001
  year: 2002
  ident: 8606_CR17
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.66.103001
– volume: 77
  start-page: 530
  year: 2017
  ident: 8606_CR61
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-017-5099-8
– volume: 26
  start-page: 1741013
  year: 2017
  ident: 8606_CR41
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/S0218271817410139
– ident: 8606_CR68
– ident: 8606_CR80
– volume: 808
  start-page: 135658
  year: 2020
  ident: 8606_CR88
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2020.135658
– volume: 80
  start-page: 588
  year: 2020
  ident: 8606_CR98
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-8164-7
– ident: 8606_CR108
– volume: 84
  start-page: 506
  year: 1936
  ident: 8606_CR7
  publication-title: Science
  doi: 10.1126/science.84.2188.506
– volume: 55
  start-page: 2656
  year: 1985
  ident: 8606_CR56
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.55.2656
– volume: 1210
  start-page: 053
  year: 2012
  ident: 8606_CR30
  publication-title: JCAP
  doi: 10.1088/1475-7516/2012/10/053
– volume: 101
  start-page: 084038
  year: 2020
  ident: 8606_CR73
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.084038
– ident: 8606_CR74
– volume-title: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity
  year: 1972
  ident: 8606_CR114
– volume: 79
  start-page: 275
  year: 2019
  ident: 8606_CR65
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-019-6773-9
– ident: 8606_CR85
– volume: 72
  start-page: 095402
  year: 2020
  ident: 8606_CR104
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/1572-9494/aba242
– volume: 875
  start-page: L5
  year: 2019
  ident: 8606_CR4
  publication-title: Astrophys. J.
  doi: 10.3847/2041-8213/ab0f43
– volume: 128
  start-page: 295
  year: 1964
  ident: 8606_CR11
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/128.4.295
– volume: 73
  start-page: 044024
  year: 2006
  ident: 8606_CR25
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.73.044024
– ident: 8606_CR79
– volume: 99
  start-page: 084012
  year: 2019
  ident: 8606_CR32
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.084012
– volume: 11
  start-page: 025
  year: 2014
  ident: 8606_CR48
  publication-title: JCAP
  doi: 10.1088/1475-7516/2014/11/025
– volume: 97
  start-page: 104050
  year: 2018
  ident: 8606_CR63
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.104050
– volume: 79
  start-page: 737
  year: 2019
  ident: 8606_CR64
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-019-7248-8
– ident: 8606_CR92
– volume: 365
  start-page: 664
  year: 2019
  ident: 8606_CR118
  publication-title: Science
  doi: 10.1126/science.aav8137
– ident: 8606_CR72
– volume: 28
  start-page: 085008
  year: 2011
  ident: 8606_CR43
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/28/8/085008
– ident: 8606_CR99
– volume: 83
  start-page: 024030
  year: 2011
  ident: 8606_CR46
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.83.024030
– ident: 8606_CR103
– ident: 8606_CR28
  doi: 10.1103/PhysRevD.80.024036
– volume: 99
  start-page: 104040
  year: 2019
  ident: 8606_CR33
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.104040
– volume: 65
  start-page: 084014
  year: 2002
  ident: 8606_CR59
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.65.084014
– volume: 23
  start-page: 6101
  year: 2006
  ident: 8606_CR24
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/23/22/002
– volume: 101
  start-page: 044031
  year: 2020
  ident: 8606_CR6
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.044031
– volume: 464
  start-page: 256
  year: 2010
  ident: 8606_CR29
  publication-title: Nature
  doi: 10.1038/nature08857
– volume: 12
  start-page: 498
  year: 1971
  ident: 8606_CR51
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1665613
– volume: 62
  start-page: 084003
  year: 2000
  ident: 8606_CR14
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.62.084003
– volume: 133
  start-page: B835
  year: 1964
  ident: 8606_CR10
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.133.B835
– volume: 29
  start-page: 2050065
  year: 2020
  ident: 8606_CR96
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/S0218271820500650
– volume: 35
  start-page: 085008
  year: 2018
  ident: 8606_CR62
  publication-title: Class. Quantum Gravity
  doi: 10.1088/1361-6382/aaaead
– ident: 8606_CR91
– volume: 131
  start-page: 463
  year: 1966
  ident: 8606_CR8
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/131.3.463
– volume: 412
  start-page: 168025
  year: 2020
  ident: 8606_CR66
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2019.168025
– volume: 80
  start-page: 698
  year: 2020
  ident: 8606_CR101
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-8287-x
– volume-title: The Mathematical Theory of Black Holes
  year: 1992
  ident: 8606_CR115
– ident: 8606_CR106
– volume: 789
  start-page: 270
  year: 2019
  ident: 8606_CR36
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2018.12.030
– ident: 8606_CR83
– volume: 455
  start-page: 78
  year: 2008
  ident: 8606_CR1
  publication-title: Nature
  doi: 10.1038/nature07245
– volume: 174
  start-page: 1559
  year: 1968
  ident: 8606_CR5
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRev.174.1559
– ident: 8606_CR109
– volume: 07
  start-page: 027
  year: 2020
  ident: 8606_CR105
  publication-title: JHEP
  doi: 10.1007/JHEP07(2020)027
– ident: 8606_CR77
– ident: 8606_CR112
– volume: 124
  start-page: 081301
  year: 2020
  ident: 8606_CR67
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.081301
– volume: 875
  start-page: L4
  year: 2019
  ident: 8606_CR3
  publication-title: Astrophys. J.
  doi: 10.3847/2041-8213/ab0e85
– volume: 101
  start-page: 064051
  year: 2020
  ident: 8606_CR38
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.064051
– volume: 169
  start-page: 36
  year: 1986
  ident: 8606_CR57
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(86)90681-7
– volume: 71
  start-page: 083010
  year: 2005
  ident: 8606_CR21
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.71.083010
– ident: 8606_CR87
– volume: 1904
  start-page: 022
  year: 2019
  ident: 8606_CR37
  publication-title: JCAP
  doi: 10.1088/1475-7516/2019/04/022
– volume-title: Gravitational Lenses
  year: 1992
  ident: 8606_CR13
– volume: 78
  start-page: 103005
  year: 2008
  ident: 8606_CR40
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.103005
– volume: 1004
  start-page: 082
  year: 2010
  ident: 8606_CR70
  publication-title: JHEP
– volume: 100
  start-page: 044031
  year: 2019
  ident: 8606_CR45
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.044031
– volume: 06
  start-page: 028
  year: 2014
  ident: 8606_CR49
  publication-title: JCAP
  doi: 10.1088/1475-7516/2014/06/028
– ident: 8606_CR78
– ident: 8606_CR93
– volume: 20
  start-page: 053
  year: 2020
  ident: 8606_CR94
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/07/053
– volume: 09
  start-page: 030
  year: 2020
  ident: 8606_CR95
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/09/030
– volume: 733
  start-page: 183
  year: 2014
  ident: 8606_CR71
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2014.04.044
– volume: 644
  start-page: 104
  year: 2007
  ident: 8606_CR54
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2006.11.048
– volume: 99
  start-page: 104075
  year: 2019
  ident: 8606_CR44
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.104075
– ident: 8606_CR81
– volume: 80
  start-page: 773
  year: 2020
  ident: 8606_CR82
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-8298-7
– volume: 30
  start-page: 100687
  year: 2020
  ident: 8606_CR86
  publication-title: Phys. Dark Univ.
  doi: 10.1016/j.dark.2020.100687
– volume: 156B
  start-page: 315
  year: 1985
  ident: 8606_CR52
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(85)91616-8
– volume: 72
  start-page: 104006
  year: 2005
  ident: 8606_CR23
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.72.104006
– volume: 39
  start-page: 1563
  year: 2007
  ident: 8606_CR26
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1007/s10714-007-0481-8
– volume: 80
  start-page: 647
  year: 2020
  ident: 8606_CR107
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-8200-7
– volume: 807
  start-page: 135607
  year: 2020
  ident: 8606_CR113
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2020.135607
– volume: 76
  start-page: 083008
  year: 2007
  ident: 8606_CR39
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.76.083008
– volume: 611
  start-page: 1045
  year: 2004
  ident: 8606_CR117
  publication-title: Astrophys. J.
  doi: 10.1086/422309
– volume: 268
  start-page: 737
  year: 1986
  ident: 8606_CR58
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(86)90268-3
– volume: 71
  start-page: 064004
  year: 2005
  ident: 8606_CR20
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.71.064004
– volume: 805
  start-page: 135468
  year: 2020
  ident: 8606_CR84
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2020.135468
– ident: 8606_CR110
– ident: 8606_CR47
– volume: 419
  start-page: 168214
  year: 2020
  ident: 8606_CR90
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2020.168214
– volume-title: Theory and Experiment in Gravitational Physics
  year: 2018
  ident: 8606_CR18
  doi: 10.1017/9781316338612
– ident: 8606_CR89
– volume: 07
  start-page: 013
  year: 2020
  ident: 8606_CR111
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/07/013
– volume: 100
  start-page: 044031
  year: 2019
  ident: 8606_CR34
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.044031
– volume: 30
  start-page: 100697
  year: 2020
  ident: 8606_CR75
  publication-title: Phys. Dark Univ.
  doi: 10.1016/j.dark.2020.100697
– volume: 195
  start-page: 13
  year: 1975
  ident: 8606_CR12
  publication-title: Astrophys. J.
  doi: 10.1086/153300
– volume: 35
  start-page: 1113
  year: 2005
  ident: 8606_CR22
  publication-title: J. Phys.
– volume: 25
  start-page: 44
  year: 2019
  ident: 8606_CR35
  publication-title: Gravit. Cosmol.
  doi: 10.1134/S020228931901002X
– volume: 88
  start-page: 024006
  year: 2013
  ident: 8606_CR69
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.024006
– volume: 61
  start-page: 064021
  year: 2000
  ident: 8606_CR15
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.61.064021
– volume: 6
  start-page: 103
  year: 2020
  ident: 8606_CR76
  publication-title: Universe
  doi: 10.3390/universe6080103
– volume: 99
  start-page: 044050
  year: 2019
  ident: 8606_CR53
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.044050
– volume: 77
  start-page: 124014
  year: 2008
  ident: 8606_CR42
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.77.124014
– ident: 8606_CR102
– volume: 0710
  start-page: 004
  year: 2007
  ident: 8606_CR55
  publication-title: JCAP
  doi: 10.1088/1475-7516/2007/10/004
– volume: 39
  start-page: 842
  year: 1938
  ident: 8606_CR50
  publication-title: Ann. Math.
  doi: 10.2307/1968467
– volume: 54
  start-page: 3103
  year: 2015
  ident: 8606_CR31
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/s10773-015-2545-y
– ident: 8606_CR116
– volume: 249
  start-page: 180
  year: 1959
  ident: 8606_CR9
  publication-title: Proc. R. Soc. A
– volume: 99
  start-page: 141302
  year: 2007
  ident: 8606_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.141302
– volume: 875
  start-page: L1
  year: 2019
  ident: 8606_CR2
  publication-title: Astrophys. J.
  doi: 10.3847/2041-8213/ab0ec7
– volume: 67
  start-page: 103009
  year: 2003
  ident: 8606_CR19
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.67.103009
– volume: 102
  start-page: 024025
  year: 2020
  ident: 8606_CR100
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.024025
– volume: 33
  start-page: 1535
  year: 2001
  ident: 8606_CR16
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1023/A:1012292927358
SSID ssj0002408
Score 2.621979
Snippet Among the higher curvature gravities, the most extensively studied theory is the so-called Einstein–Gauss–Bonnet (EGB) gravity, whose Lagrangian contains...
Among the higher curvature gravities, the most extensively studied theory is the so-called Einstein-Gauss-Bonnet (EGB) gravity, whose Lagrangian contains...
Abstract Among the higher curvature gravities, the most extensively studied theory is the so-called Einstein–Gauss–Bonnet (EGB) gravity, whose Lagrangian...
SourceID doaj
proquest
gale
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Angular position
Astronomy
Astrophysics and Cosmology
Curvature
Deflection
Elementary Particles
Gravitational lenses
Hadrons
Heavy Ions
Mathematical analysis
Measurement Science and Instrumentation
Nuclear Energy
Nuclear Physics
Parameters
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Regular Article - Theoretical Physics
Relativity
String Theory
Supermassive black holes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOil9Em3SYsohZ5EZEuyrWPS5tFCe2gbyE3oMV62BCfsbgrpqf-h_zC_JDOyNmnIYS89GSzJaEYjzYw88w1j73rrUwighJVdELpNUaASVAIa1bc9amQNdN_x5WtzdKw_n5iTf0p9UUzYCA88Mm7HA9gQ2t63IHXyJljjQ1dJb3rTgc1pvqjzVs5UOYMJuCvnFSktGql1iexCb2IHzn9GypyTphbkO6FNT-Ffd_RShu-_f0jf-1ualdDBY_aoWI98d5z1E_YAhqdsM0dxxsUz5g7n_lcB3cZupxScPkx5uOQZEAkSD3Rfx6kmLp8NfJ4L0c9nv7FFf-T7M7QVYTZc_fl76C8WC3zuURzMkk_zdy-fs-OD_R8fjkSpoCAi2lVLUTWd0rayABV6Lm2s29ClJCUEQ3BEECsJOqIN1WiPpk2XAnS1SjqAb2xC6_AF2xjOBnjJeFJGYnPfR_RhWllbnRqwSoXKBtzXacKaFf9cLJRSlYtTN6Y-S0eMdyPjHTLeZcY7NWHyZuD5iLCxfsgeLdBNd4LIzi9QcFwRHLdOcCbsLS2vIxCMgaJspsRZ9-n7N7dLsILWmFpP2PvSqT9DaqIvSQvIE8LNutNzeyUmrhwDC1frVlHBAY1Trlaic9u8hsxX_4PMLfawJjHPETjbbGM5v4DXaEctw5u8Za4BhJIZOg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-1IvgifuLZKkEEn5ZmN8lm89ie_VDQB7XQt5CP2eOkbMvdVWif_B_8D_1LnMnlTkvBgk8Lm2TZTDKZX5KZ3zD2prc-hQCysqILlTIpVmgEZQWt7E2PFlkBnXd8_NQeHasPJ_pkg-2sYmH-vr9H7L8D598ixbkJ3VS000EETs5ad9hdXUtDuRrG7Xi99BJfVw4nkqpqhVLFoesfH7pmjjJr_821-cYlabY9Bw_ZgwIa-e5ylB-xDRges3vZeTPOnzB3OPPfC9c2Vjsln_RhwsMlzzxIkHigYzpOqXD5dOCznH9-Nr3CEvWO708RIsJ0-PXj56G_mM_xuUfuLws-yd-9fMqOD_a_jo-qkjihiginFlXddlLZ2gLUuGExsTGhS0kICJpYiCDWAlRE6NQqj4imSwG6RiYVwLc2ISh8xjaHswGeM56kFljc9xG3LkY0VqUWrJShtgHVOY1Yu5Kfi6WnlNzi1C0jnoUjwbul4B0K3mXBOzliYt3wfEmscXuTPRqgdXVixs4vcMK4omjOA9gQTO8NCJW8Dlb70NXC6153YLsRe03D64j7YiDnmglJ1r3_8tntEpug1bpRI_a2VOrPsDfRl1gFlAnRZV2rub2aJq5o_9w1ykjKM6Dwl-vV1PlTfEs3X_xHmy12v6FZnf1sttnmYnYBLxEtLcKrrCG_AT1MC5c
  priority: 102
  providerName: Springer Nature
Title Gravitational lensing by charged black hole in regularized 4D Einstein–Gauss–Bonnet gravity
URI https://link.springer.com/article/10.1140/epjc/s10052-020-08606-3
https://www.proquest.com/docview/2473254643
https://doaj.org/article/aee9bb7fa7e04da5b95ab810a5f58e98
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1fa9swEBdrymAvY39Zti6YMdiTqWzJtvQ0kixJN1gZ3QJ9E_rnkFGczE4H3dO-w77hPsnuFCWlFNYXG1sngU6n0-l0-h0hb2upnTGepZIKk_LK2RQWQZb6ktVVDSsy9-jv-Hxansz5p_PiPDrcuhhWudOJQVG7lUUf-XHOK4bY7Zy9X_9IMWsUnq7GFBoH5BBUsBA9cjianH452-tiBPAK94sYT0vKeYzwgl3FsV9_t3iDjhZ5insosO0xDOzG-hRg_G8r61unpmExmj4iD6MVmQy3w_6Y3PPNE3I_RHPa7ilRs1b_jODbQHaBQerNIjFXSQBG8i4x6LdLMDdusmySNiSkb5e_oIR_SCZLsBn9svn7-89MX3YdvEcYD7NJFqHdq2dkPp18G5-kMZNCasG-2qRZKRiXmfQ-gx1MZfPKCOco9aZAWCJvM-q5BVuq5BpMHOGMFzlz3HhdSgdW4nPSa1aNf0ESxwoKxXVtYS9T0VxyV3rJmMmkgfnt-qTc8U_Z2FPMdnGhtlegqULGqy3jFTBeBcYr1id0X3G9Rdq4u8oIB2hPjlDZ4ceqXag485T2XhpT1brylDtdGFloIzKqi7oQXoo-eYPDqxAMo8FomwVyVn38eqaGCC8oiyLnffIuEtUr6I3V8fIC8ATxs25QHu3EREV10Klr4e2TbCc618V3dPPl_5t8RR7kKMAhxuaI9DbtpX8NltLGDMiBmM4GcVLA1zjn-CzHg-B7gOc8H_4D4wsU3Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxELVCEIILYhUDAVoIxKkVd9u9-IBQQjILWQ6QSLkZL9WjQVHPMDMBDSf-gf_go_gSqjzdE0WRyCmnltqL5HK5FrvqFWOvK2W8tSBixUsby8K7GJWgiCEXVVGhRpZA9x0Hh3n_WH48yU7W2J82F4bCKluZGAS1Hzu6I99MZSEIu12K95NvMVWNotfVtoTGki32YPEDXbbZu8EO7u-bNO3uHn3ox01VgdihrTGPk7wUUiUKIEFrvnBpYUvvOQebEUQPuISDdGhX5NKgui-9hTIVXlowufJoMeG8N9hNKVCTU2Z6t7eS_AQXFrKZhIxzLmUTT4Y-zCZMvjrK1-NZGpPHhp4EBZ1d0IahaMBl1XDpjTaovu49drexWaOtJZPdZ2tQP2C3Quyomz1kujc13xuob-x2SiHx9TCyiyjAMIGPLN0SRlSJNxrV0RSGFPs6-oktcifaHaGFCqP676_fPXM2m-F3m6Jv5tEwzLt4xI6vhcKP2Xo9ruEJi7zIODZXlUPPqeCpkj4HJYRNlEVp4jssb-mnXbNSqq1xqpcJ11wT4fWS8BoJrwPhtegwvho4WeJ6XD1kmzZo1Z2AucOP8XSom3OuDYCytqhMAVx6k1mVGVsm3GRVVoIqO-wVba8m6I2aYnuGRFk9-PxJbxGYocqyVHbY26ZTNcbVONOkSiBNCK3rQs-Nlk10I3xm-vyodFjSss558xXLfPr_KV-y2_2jg329Pzjce8bupMTMIbpng63Pp2fwHG20uX0RDkbEvlz3SfwHO31LXg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKKhAXxK8IFLAQiNMq3rX3xweEGpK0pRBVhUq9uWt7NgqqNiFJQeHEO_A2PA5PwsxmN1VViZ56Wmn9I3k845mxZ75h7FWhc28tyECLzAYq9S5AJSgDSGSRFqiRFdB9x6dhsnukPhzHxxvsT5MLQ2GVzZlYHdR-4uiOvBOpVBJ2u5Kdog6LOOgN3k2_BVRBil5am3IaKxbZh-UPdN_mb_d6uNevo2jQ__J-N6grDAQO7Y5FECaZVDrUACFa9qmLUpt5LwTYmOB6wIUClEMbI1E5qv7MW8gi6ZWFPNEerSec9wbbTMkrarHNbn94cLjWAwQeVuU2SRUkQqk6ugw9mg5MvzrK3hNxFJD_hn4FhaBd0I1VCYHLiuLSi22lCAd32Z3aguXbK5a7xzagvM9uVpGkbv6AmZ1Z_r0G_sZupxQgX464XfIKlAk8t3RnyKkuLx-XfAYjioQd_8QW1eP9MdqrMC7__vq9k5_N5_jtUizOgo-qeZcP2dG10PgRa5WTEh4z7mUssLkoHPpRqYi08gloKW2oLZ4tvs2Shn7G1SulShunZpV-LQwR3qwIb5DwpiK8kW0m1gOnK5SPq4d0aYPW3Qmmu_oxmY1MLfUmB9DWpkWeglA-j62Oc5uFIo-LOAOdtdlL2l5DQBwlsfSIKGv2Ph-abYI21HEcqTZ7U3cqJrgal9eJE0gTwu660HOrYRNTH0Vzcy44bRY2rHPefMUyn_x_yhfsFkqh-bg33H_KbkfEy1WozxZrLWZn8AwNtoV9XksGZyfXLYz_AGArUPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gravitational+lensing+by+charged+black+hole+in+regularized+4D+Einstein%E2%80%93Gauss%E2%80%93Bonnet+gravity&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Kumar%2C+Rahul&rft.au=Islam%2C+Shafqat+Ul&rft.au=Ghosh%2C+Sushant+G&rft.date=2020-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1434-6044&rft.eissn=1434-6052&rft.volume=80&rft.issue=12&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-020-08606-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6044&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6044&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6044&client=summon