Unraveling salt stress signaling in plants

Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions. Salt stress can lead to ionic stress, osmotic s...

Full description

Saved in:
Bibliographic Details
Published inJournal of integrative plant biology Vol. 60; no. 9; pp. 796 - 804
Main Authors Yang, Yongqing, Guo, Yan
Format Journal Article
LanguageEnglish
Published China (Republic : 1949- ) Wiley Subscription Services, Inc 01.09.2018
State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions. Salt stress can lead to ionic stress, osmotic stress and secondary stresses, particularly oxidative stress, in plants. Therefore, to adapt to salt stress, plants rely on signals and pathways that re‐establish cellular ionic, osmotic, and reactive oxygen species (ROS) homeostasis. Over the past two decades, genetic and biochemical analyses have revealed several core stress signaling pathways that participate in salt resistance. The Salt Overly Sensitive signaling pathway plays a key role in maintaining ionic homeostasis, via extruding sodium ions into the apoplast. Mitogen‐activated protein kinase cascades mediate ionic, osmotic, and ROS homeostasis. SnRK2 (sucrose nonfermenting 1‐related protein kinase 2) proteins are involved in maintaining osmotic homeostasis. In this review, we discuss recent progress in identifying the components and pathways involved in the plant's response to salt stress and their regulatory mechanisms. We also review progress in identifying sensors involved in salt‐induced stress signaling in plants. Salt stress is the main environmental factor limiting crop productivity. A better understanding of the mechanisms that regulate salt tolerance will help researchers design ways to improve crop performance. In this review, we discuss recent advances in determining the components of plants that respond to salt stress and their regulatory mechanisms.
AbstractList Salt stress is a major environmental factor limiting plant growth and productivity.A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions.Salt stress can lead to ionic stress,osmotic stress and secondary stresses,particularly oxidative stress,in plants.Therefore,to adapt to salt stress,plants rely on signals and pathways that re-establish cellular ionic,osmotic,and reactive oxygen species (ROS) homeostasis.Over the past two decades,genetic and biochemical analyses have revealed several core stress signaling pathways that participate in salt resistance.The Salt Overly Sensitive signaling pathway plays a key role in maintaining ionic homeostasis,via extruding sodium ions into the apoplast.Mitogenactivated protein kinase cascades mediate ionic,osmotic,and ROS homeostasis.SnRK2 (sucrose nonfermenting 1-related protein kinase 2) proteins are involved in maintaining osmotic homeostasis.In this review,we discuss recent progress in identifying the components and pathways involved in the plant's response to salt stress and their regulatory mechanisms.We also review progress in identifying sensors involved in salt-induced stress signaling in plants.
Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions. Salt stress can lead to ionic stress, osmotic stress and secondary stresses, particularly oxidative stress, in plants. Therefore, to adapt to salt stress, plants rely on signals and pathways that re-establish cellular ionic, osmotic, and reactive oxygen species (ROS) homeostasis. Over the past two decades, genetic and biochemical analyses have revealed several core stress signaling pathways that participate in salt resistance. The Salt Overly Sensitive signaling pathway plays a key role in maintaining ionic homeostasis, via extruding sodium ions into the apoplast. Mitogen-activated protein kinase cascades mediate ionic, osmotic, and ROS homeostasis. SnRK2 (sucrose nonfermenting 1-related protein kinase 2) proteins are involved in maintaining osmotic homeostasis. In this review, we discuss recent progress in identifying the components and pathways involved in the plant's response to salt stress and their regulatory mechanisms. We also review progress in identifying sensors involved in salt-induced stress signaling in plants.Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions. Salt stress can lead to ionic stress, osmotic stress and secondary stresses, particularly oxidative stress, in plants. Therefore, to adapt to salt stress, plants rely on signals and pathways that re-establish cellular ionic, osmotic, and reactive oxygen species (ROS) homeostasis. Over the past two decades, genetic and biochemical analyses have revealed several core stress signaling pathways that participate in salt resistance. The Salt Overly Sensitive signaling pathway plays a key role in maintaining ionic homeostasis, via extruding sodium ions into the apoplast. Mitogen-activated protein kinase cascades mediate ionic, osmotic, and ROS homeostasis. SnRK2 (sucrose nonfermenting 1-related protein kinase 2) proteins are involved in maintaining osmotic homeostasis. In this review, we discuss recent progress in identifying the components and pathways involved in the plant's response to salt stress and their regulatory mechanisms. We also review progress in identifying sensors involved in salt-induced stress signaling in plants.
Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions. Salt stress can lead to ionic stress, osmotic stress, and secondary stresses, particularly oxidative stress, in plants. Therefore, to adapt to salt stress, plants rely on signals and pathways that re-establish cellular ionic, osmotic, and reactive oxygen species (ROS) homeostasis. Over the past two decades, genetic and biochemical analyses have revealed several core stress signaling pathways that participate in salt resistance. The Salt Overly Sensitive (SOS) signaling pathway plays a key role in maintaining ionic homeostasis, via extruding sodium ions into the apoplast. Mitogen-activated protein kinase (MAPK) cascades mediate ionic, osmotic, and ROS homeostasis. SnRK2 (sucrose nonfermenting 1-related protein kinase 2) proteins are involved in maintaining osmotic homeostasis. In this review, we discuss recent progress in identifying the components and pathways involved in the plant's response to salt stress and their regulatory mechanisms. We also review progress in identifying sensors involved in salt-induced stress signaling in plants.
Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions. Salt stress can lead to ionic stress, osmotic stress and secondary stresses, particularly oxidative stress, in plants. Therefore, to adapt to salt stress, plants rely on signals and pathways that re‐establish cellular ionic, osmotic, and reactive oxygen species (ROS) homeostasis. Over the past two decades, genetic and biochemical analyses have revealed several core stress signaling pathways that participate in salt resistance. The Salt Overly Sensitive signaling pathway plays a key role in maintaining ionic homeostasis, via extruding sodium ions into the apoplast. Mitogen‐activated protein kinase cascades mediate ionic, osmotic, and ROS homeostasis. SnRK2 (sucrose nonfermenting 1‐related protein kinase 2) proteins are involved in maintaining osmotic homeostasis. In this review, we discuss recent progress in identifying the components and pathways involved in the plant's response to salt stress and their regulatory mechanisms. We also review progress in identifying sensors involved in salt‐induced stress signaling in plants.
Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions. Salt stress can lead to ionic stress, osmotic stress and secondary stresses, particularly oxidative stress, in plants. Therefore, to adapt to salt stress, plants rely on signals and pathways that re‐establish cellular ionic, osmotic, and reactive oxygen species (ROS) homeostasis. Over the past two decades, genetic and biochemical analyses have revealed several core stress signaling pathways that participate in salt resistance. The Salt Overly Sensitive signaling pathway plays a key role in maintaining ionic homeostasis, via extruding sodium ions into the apoplast. Mitogen‐activated protein kinase cascades mediate ionic, osmotic, and ROS homeostasis. SnRK2 (sucrose nonfermenting 1‐related protein kinase 2) proteins are involved in maintaining osmotic homeostasis. In this review, we discuss recent progress in identifying the components and pathways involved in the plant's response to salt stress and their regulatory mechanisms. We also review progress in identifying sensors involved in salt‐induced stress signaling in plants. Salt stress is the main environmental factor limiting crop productivity. A better understanding of the mechanisms that regulate salt tolerance will help researchers design ways to improve crop performance. In this review, we discuss recent advances in determining the components of plants that respond to salt stress and their regulatory mechanisms.
Author Yang, Yongqing
Guo, Yan
AuthorAffiliation State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
AuthorAffiliation_xml – name: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
Author_xml – sequence: 1
  givenname: Yongqing
  surname: Yang
  fullname: Yang, Yongqing
  organization: China Agricultural University
– sequence: 2
  givenname: Yan
  surname: Guo
  fullname: Guo, Yan
  email: guoyan@cau.edu.cn
  organization: China Agricultural University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29905393$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLBDEMx4sovi9-AFkQQRZG0850Ojmq-ETQg55Lp9suXWY7azvr69PbfehBRHNJCL9_EvLfIqu-9YaQPQrHNMXJyE3qY8rKClfIJhVFkQkEXE11KViGINgG2YpxBJBXULJ1ssEQgeeYb5L-kw_qxTTOD3tRNV0vdsHE2Itu6NW863xv0ijfxR2yZlUTze4yb5Ony4vH8-vs7v7q5vz0LtOcMcwKQ42tGK-NzlldpNKCFcgLO8BBrXkJlc4NpZWpLdXVAEprFRZC6Zobznm-TQ4Xc1-Vt8oP5aidhnRMlB-vbzUDWgECzLijBTcJ7fPUxE6OXdSmSceadholozwvaSGQ_Y8CL3NEgSKhBz_Q7_UMENPuFInaX1LTemwGchLcWIV3-fXYBMAC0KGNMRgrtetU51rfBeUaSUHOvJMz7-TcuyTp_5B8Tf0Vpssnuca8_0HK25uHs4XmE9K-pyQ
CitedBy_id crossref_primary_10_1111_pbi_13668
crossref_primary_10_1007_s11103_024_01522_0
crossref_primary_10_32615_bp_2020_117
crossref_primary_10_1016_j_chemosphere_2024_141387
crossref_primary_10_1016_j_envexpbot_2021_104744
crossref_primary_10_3390_plants12163007
crossref_primary_10_1016_j_jhazmat_2025_137531
crossref_primary_10_1093_plcell_koac292
crossref_primary_10_3390_ijms21031065
crossref_primary_10_1007_s00344_025_11640_8
crossref_primary_10_1016_j_xplc_2025_101241
crossref_primary_10_1093_hr_uhae055
crossref_primary_10_3390_horticulturae10121239
crossref_primary_10_1038_s41396_021_00974_2
crossref_primary_10_3390_ijms222212534
crossref_primary_10_1007_s10725_025_01305_7
crossref_primary_10_1038_s41438_020_0311_7
crossref_primary_10_1093_lambio_ovac067
crossref_primary_10_1155_2022_5547231
crossref_primary_10_1016_j_envexpbot_2024_105689
crossref_primary_10_1186_s12870_024_05506_6
crossref_primary_10_1016_j_biortech_2024_131466
crossref_primary_10_3390_plants11070876
crossref_primary_10_1016_j_envexpbot_2020_104230
crossref_primary_10_1111_nph_17211
crossref_primary_10_1007_s00122_021_03784_4
crossref_primary_10_1007_s13580_021_00418_y
crossref_primary_10_1186_s12870_020_02726_4
crossref_primary_10_1186_s12284_021_00535_3
crossref_primary_10_3389_fpls_2019_00275
crossref_primary_10_3389_fpls_2021_702875
crossref_primary_10_1038_s41437_022_00516_2
crossref_primary_10_1093_hr_uhae040
crossref_primary_10_7554_eLife_99352_3
crossref_primary_10_1007_s00344_022_10875_z
crossref_primary_10_1186_s12870_021_03170_8
crossref_primary_10_3389_fgene_2024_1397502
crossref_primary_10_1016_j_envexpbot_2023_105291
crossref_primary_10_1016_j_micres_2022_127225
crossref_primary_10_1038_s41477_023_01550_6
crossref_primary_10_3390_ijms241311080
crossref_primary_10_1111_ppl_13606
crossref_primary_10_3389_fpls_2022_999866
crossref_primary_10_3389_fpls_2022_834027
crossref_primary_10_1111_jac_12779
crossref_primary_10_3390_plants13020305
crossref_primary_10_3390_plants8060147
crossref_primary_10_1016_j_pbi_2022_102269
crossref_primary_10_1016_j_plaphy_2023_01_003
crossref_primary_10_1016_j_micres_2024_127906
crossref_primary_10_1016_j_xplc_2022_100458
crossref_primary_10_1016_j_desal_2024_117395
crossref_primary_10_3390_plants11111497
crossref_primary_10_1093_plphys_kiad370
crossref_primary_10_1080_15548627_2020_1847797
crossref_primary_10_1007_s00344_023_11146_1
crossref_primary_10_3390_agronomy13010174
crossref_primary_10_3390_genes14061151
crossref_primary_10_1186_s12870_025_06311_5
crossref_primary_10_1016_j_algal_2021_102542
crossref_primary_10_3390_agronomy12081849
crossref_primary_10_1016_j_stress_2025_100736
crossref_primary_10_3390_plants13030397
crossref_primary_10_1016_j_cropd_2024_100052
crossref_primary_10_1186_s12870_024_05528_0
crossref_primary_10_1093_hr_uhae157
crossref_primary_10_1186_s43897_021_00006_9
crossref_primary_10_15252_embj_2020105086
crossref_primary_10_1093_plcell_koad119
crossref_primary_10_1007_s10725_024_01132_2
crossref_primary_10_1093_plphys_kiad135
crossref_primary_10_1007_s00425_024_04348_8
crossref_primary_10_1080_17429145_2022_2102259
crossref_primary_10_3390_ijms242216123
crossref_primary_10_3390_ijpb15040076
crossref_primary_10_7717_peerj_15324
crossref_primary_10_1007_s12892_020_00072_3
crossref_primary_10_3389_fpls_2021_751965
crossref_primary_10_3390_ijms22020949
crossref_primary_10_3390_ijms21010138
crossref_primary_10_3390_life12060921
crossref_primary_10_1016_j_agrcom_2024_100050
crossref_primary_10_1038_s41467_022_29809_0
crossref_primary_10_1093_plcell_koac283
crossref_primary_10_1093_plcell_koad250
crossref_primary_10_3389_fpls_2022_857396
crossref_primary_10_3390_plants9030363
crossref_primary_10_3390_ijms252212349
crossref_primary_10_1038_s41477_023_01551_5
crossref_primary_10_1093_hr_uhae262
crossref_primary_10_1186_s42397_024_00188_9
crossref_primary_10_1016_j_plaphy_2019_08_013
crossref_primary_10_3390_cells11132039
crossref_primary_10_1007_s11738_024_03741_w
crossref_primary_10_1007_s11240_022_02427_w
crossref_primary_10_3389_fpls_2023_1283590
crossref_primary_10_3390_ijms22116125
crossref_primary_10_1371_journal_pone_0250926
crossref_primary_10_3389_fpls_2021_771746
crossref_primary_10_1590_1983_40632023v5375695
crossref_primary_10_3390_metabo11120820
crossref_primary_10_1007_s00425_023_04141_z
crossref_primary_10_1073_pnas_2207275119
crossref_primary_10_3389_fpls_2023_1092616
crossref_primary_10_1007_s00299_023_03052_3
crossref_primary_10_3389_fpls_2024_1442286
crossref_primary_10_3389_fpls_2022_859224
crossref_primary_10_1007_s42535_023_00696_0
crossref_primary_10_1016_j_cj_2020_02_001
crossref_primary_10_1002_ece3_70940
crossref_primary_10_3390_plants12173130
crossref_primary_10_1111_gcbb_12910
crossref_primary_10_1038_s41477_019_0565_y
crossref_primary_10_3390_ijms252010940
crossref_primary_10_1016_j_molp_2021_03_003
crossref_primary_10_3390_ijms23147645
crossref_primary_10_1111_jipb_13058
crossref_primary_10_1016_j_bcab_2023_102892
crossref_primary_10_1016_j_jenvman_2023_119488
crossref_primary_10_1002_fes3_384
crossref_primary_10_1016_j_plaphy_2020_11_033
crossref_primary_10_1073_pnas_2212950119
crossref_primary_10_3390_plants13020233
crossref_primary_10_3389_fpls_2023_1122347
crossref_primary_10_1016_j_bcab_2019_101027
crossref_primary_10_3390_soilsystems6030069
crossref_primary_10_1016_j_molp_2023_07_005
crossref_primary_10_1007_s00344_024_11429_1
crossref_primary_10_3389_fpls_2022_823547
crossref_primary_10_3390_ijms26010331
crossref_primary_10_3390_plants13192790
crossref_primary_10_1007_s00299_023_03087_6
crossref_primary_10_1111_nph_18340
crossref_primary_10_1111_tpj_15769
crossref_primary_10_3389_fpls_2021_760863
crossref_primary_10_1080_15592324_2021_2000808
crossref_primary_10_1007_s11104_023_06444_2
crossref_primary_10_1016_j_stress_2024_100482
crossref_primary_10_1007_s10142_023_01219_5
crossref_primary_10_1016_j_plaphy_2020_10_001
crossref_primary_10_3389_fpls_2022_974625
crossref_primary_10_1016_j_envexpbot_2022_105191
crossref_primary_10_3390_agriculture14050661
crossref_primary_10_1016_j_micres_2023_127568
crossref_primary_10_3390_f15081344
crossref_primary_10_47115_bsagriculture_1110338
crossref_primary_10_1016_j_cpb_2024_100380
crossref_primary_10_1016_j_micres_2024_127707
crossref_primary_10_3390_oxygen2030025
crossref_primary_10_1186_s12284_023_00637_0
crossref_primary_10_3390_antiox11091782
crossref_primary_10_1007_s11356_022_18745_7
crossref_primary_10_3390_ijms242216157
crossref_primary_10_3390_ijms23042085
crossref_primary_10_1016_j_scib_2023_04_034
crossref_primary_10_1007_s00203_020_02082_9
crossref_primary_10_1111_ppl_13805
crossref_primary_10_22207_JPAM_17_3_59
crossref_primary_10_1111_pbr_12937
crossref_primary_10_3390_ijms241612761
crossref_primary_10_1007_s13205_021_03050_w
crossref_primary_10_3390_biom11060788
crossref_primary_10_3390_ijms22041543
crossref_primary_10_1016_j_devcel_2020_08_005
crossref_primary_10_1016_j_plantsci_2021_111052
crossref_primary_10_1016_j_plantsci_2021_111174
crossref_primary_10_1016_j_envexpbot_2024_105783
crossref_primary_10_1186_s12864_024_10000_2
crossref_primary_10_1016_j_envexpbot_2021_104698
crossref_primary_10_1038_s41596_024_01068_x
crossref_primary_10_1016_j_stress_2023_100280
crossref_primary_10_3390_agronomy14051048
crossref_primary_10_32615_ps_2023_012
crossref_primary_10_1016_j_jece_2024_113758
crossref_primary_10_1016_j_stress_2025_100761
crossref_primary_10_3389_fpls_2022_949541
crossref_primary_10_1016_j_scienta_2023_112496
crossref_primary_10_3390_ijms241311141
crossref_primary_10_1186_s12864_022_08876_z
crossref_primary_10_3390_plants11081009
crossref_primary_10_3390_ijms25147707
crossref_primary_10_1186_s12284_025_00764_w
crossref_primary_10_1016_j_sajb_2020_12_003
crossref_primary_10_3389_fpls_2023_1258498
crossref_primary_10_1016_j_envexpbot_2022_105172
crossref_primary_10_32604_phyton_2025_060096
crossref_primary_10_3390_plants11091167
crossref_primary_10_1016_j_cj_2021_05_010
crossref_primary_10_1093_bib_bbz039
crossref_primary_10_1016_j_niox_2022_08_005
crossref_primary_10_1007_s12298_023_01333_5
crossref_primary_10_3390_horticulturae8040302
crossref_primary_10_1186_s12870_023_04335_3
crossref_primary_10_3389_fpls_2023_1095929
crossref_primary_10_24326_asphc_2023_4603
crossref_primary_10_3389_fpls_2022_953450
crossref_primary_10_3390_horticulturae10050466
crossref_primary_10_3389_fgene_2024_1394091
crossref_primary_10_3389_fpls_2023_1165687
crossref_primary_10_3390_genes15060695
crossref_primary_10_3389_fpls_2022_894710
crossref_primary_10_1007_s13258_021_01163_3
crossref_primary_10_3390_genes13101904
crossref_primary_10_3390_ijms23094781
crossref_primary_10_1111_tpj_16921
crossref_primary_10_3390_plants11060795
crossref_primary_10_1002_sae2_12083
crossref_primary_10_3390_agronomy13123034
crossref_primary_10_1111_pce_14703
crossref_primary_10_1111_jipb_13372
crossref_primary_10_3390_horticulturae7040088
crossref_primary_10_1021_acs_jafc_3c01383
crossref_primary_10_3390_horticulturae10030297
crossref_primary_10_1038_s44318_024_00357_1
crossref_primary_10_3390_plants14020262
crossref_primary_10_3390_horticulturae10020139
crossref_primary_10_1111_jipb_13256
crossref_primary_10_3389_fpls_2022_946922
crossref_primary_10_3390_ijms23094659
crossref_primary_10_3389_fpls_2022_955880
crossref_primary_10_1111_nph_20225
crossref_primary_10_1016_j_devcel_2019_02_010
crossref_primary_10_1016_j_envexpbot_2022_104856
crossref_primary_10_1016_j_jgg_2024_10_016
crossref_primary_10_3390_antiox11030598
crossref_primary_10_3390_ijms251810077
crossref_primary_10_1016_j_psep_2022_10_040
crossref_primary_10_1016_j_plaphy_2020_09_023
crossref_primary_10_1038_s41598_020_66604_7
crossref_primary_10_3389_fpls_2019_00549
crossref_primary_10_3389_fpls_2022_1083409
crossref_primary_10_3389_fpls_2023_1152485
crossref_primary_10_1016_j_plantsci_2024_112379
crossref_primary_10_1016_j_stress_2025_100789
crossref_primary_10_1021_acs_jafc_1c01096
crossref_primary_10_1007_s11104_022_05482_6
crossref_primary_10_1007_s10725_024_01127_z
crossref_primary_10_3390_antiox11122362
crossref_primary_10_1007_s11427_020_1910_1
crossref_primary_10_1111_jac_70007
crossref_primary_10_3390_ijms23073960
crossref_primary_10_3390_ijms231810515
crossref_primary_10_1016_j_plantsci_2024_112130
crossref_primary_10_1016_j_jafr_2023_100947
crossref_primary_10_3390_molecules27248746
crossref_primary_10_1016_j_envexpbot_2022_104842
crossref_primary_10_1016_j_micres_2020_126439
crossref_primary_10_1186_s12870_020_02548_4
crossref_primary_10_3390_plants12112197
crossref_primary_10_1134_S1021443721020163
crossref_primary_10_1038_s41467_023_39167_0
crossref_primary_10_1134_S1062359024607171
crossref_primary_10_7554_eLife_99352
crossref_primary_10_1007_s44154_022_00040_7
crossref_primary_10_3389_fpls_2019_00319
crossref_primary_10_3390_ijms242417252
crossref_primary_10_1186_s12864_021_08286_7
crossref_primary_10_3389_fpls_2020_571864
crossref_primary_10_1016_j_plantsci_2024_112023
crossref_primary_10_1111_ppl_13330
crossref_primary_10_3389_fpls_2022_847863
crossref_primary_10_1016_j_plantsci_2024_112261
crossref_primary_10_3390_plants9111558
crossref_primary_10_1016_j_molp_2021_07_020
crossref_primary_10_1016_j_molp_2020_05_010
crossref_primary_10_3390_ijms252211891
crossref_primary_10_1093_jxb_eraf057
crossref_primary_10_1093_plcell_koaf034
crossref_primary_10_3390_horticulturae7100342
crossref_primary_10_1111_jipb_13382
crossref_primary_10_3390_ijms23158818
crossref_primary_10_1016_j_ncrops_2025_100067
crossref_primary_10_1186_s12870_024_04921_z
crossref_primary_10_31857_S0015330324010088
crossref_primary_10_3389_fpls_2020_01185
crossref_primary_10_1007_s10725_024_01125_1
crossref_primary_10_3390_agronomy13020386
crossref_primary_10_1111_jipb_13022
crossref_primary_10_1093_pcp_pcae025
crossref_primary_10_1007_s11104_021_04918_9
crossref_primary_10_1016_j_cj_2024_02_007
crossref_primary_10_1111_pce_14908
crossref_primary_10_3389_fpls_2019_01431
crossref_primary_10_3389_fpls_2022_891361
crossref_primary_10_3390_plants12081666
crossref_primary_10_1111_pce_13810
crossref_primary_10_1134_S1021443724604166
crossref_primary_10_3390_f15010138
crossref_primary_10_3390_plants13010046
crossref_primary_10_1016_j_ijbiomac_2024_138943
crossref_primary_10_3390_plants13141990
crossref_primary_10_1111_jam_15095
crossref_primary_10_1016_j_ijbiomac_2022_05_004
crossref_primary_10_1186_s42397_021_00085_5
crossref_primary_10_3389_fpls_2024_1384246
crossref_primary_10_1111_jipb_13332
crossref_primary_10_1016_j_scienta_2024_112919
crossref_primary_10_3389_fpls_2024_1482739
crossref_primary_10_1007_s11627_020_10058_z
crossref_primary_10_1007_s44279_024_00105_3
crossref_primary_10_1016_j_plantsci_2024_112181
crossref_primary_10_1016_j_sajb_2022_04_045
crossref_primary_10_1186_s12870_021_03274_1
crossref_primary_10_61186_jcb_15_45_205
crossref_primary_10_1186_s40538_023_00510_8
crossref_primary_10_3390_plants12223849
crossref_primary_10_1016_j_envexpbot_2022_104937
crossref_primary_10_1016_j_scienta_2022_111283
crossref_primary_10_1186_s12864_025_11368_5
crossref_primary_10_1186_s12864_020_07260_z
crossref_primary_10_3389_fpls_2021_807739
crossref_primary_10_1007_s00344_020_10259_1
crossref_primary_10_1038_s41477_023_01552_4
crossref_primary_10_1186_s12870_022_03646_1
crossref_primary_10_1016_j_eti_2025_104101
crossref_primary_10_56093_aaz_v63i4_155494
crossref_primary_10_1002_pld3_564
crossref_primary_10_1021_acssynbio_3c00024
crossref_primary_10_15835_nbha49312063
crossref_primary_10_1111_jipb_13326
crossref_primary_10_1016_j_scienta_2023_112509
crossref_primary_10_3389_fpls_2022_881456
crossref_primary_10_1111_ppl_13642
crossref_primary_10_1111_jipb_13562
crossref_primary_10_1016_j_plaphy_2019_01_027
crossref_primary_10_1016_j_molp_2023_09_001
crossref_primary_10_1016_j_jgg_2023_04_010
crossref_primary_10_1071_CP19219
crossref_primary_10_3390_molecules26092576
crossref_primary_10_3389_fpls_2019_01453
crossref_primary_10_3390_ijms222111897
crossref_primary_10_1007_s00344_021_10441_z
crossref_primary_10_1111_pbi_13927
crossref_primary_10_3390_f14020191
crossref_primary_10_1016_j_jia_2024_08_029
crossref_primary_10_3389_fpls_2023_1034393
crossref_primary_10_1007_s11295_019_1400_3
crossref_primary_10_1111_nph_19382
crossref_primary_10_46653_jhst23062025
crossref_primary_10_1093_pcp_pcae040
crossref_primary_10_3389_fpls_2023_1104070
crossref_primary_10_3390_biology11071022
crossref_primary_10_1021_acsfoodscitech_4c00832
crossref_primary_10_1007_s12275_021_0317_3
crossref_primary_10_1016_j_envpol_2022_120863
crossref_primary_10_7717_peerj_9742
crossref_primary_10_3390_f12050611
crossref_primary_10_3390_genes13081476
crossref_primary_10_1016_j_scienta_2024_113907
crossref_primary_10_1111_jipb_13599
crossref_primary_10_3390_antiox12020228
crossref_primary_10_7717_peerj_9749
crossref_primary_10_1007_s00344_024_11367_y
crossref_primary_10_1016_j_envexpbot_2021_104513
crossref_primary_10_1016_j_rsci_2022_05_002
crossref_primary_10_1016_j_envexpbot_2020_104210
crossref_primary_10_3390_ijms20040894
crossref_primary_10_1016_j_plaphy_2021_03_019
crossref_primary_10_3390_plants14020145
crossref_primary_10_1016_j_plaphy_2024_109033
crossref_primary_10_1038_s41598_022_05700_2
crossref_primary_10_14302_issn_2576_6694_jbbs_20_3525
crossref_primary_10_1016_j_envexpbot_2022_104917
crossref_primary_10_1007_s11103_024_01470_9
crossref_primary_10_1007_s10811_021_02559_0
crossref_primary_10_1016_j_aac_2023_08_006
crossref_primary_10_3389_fpls_2023_1110622
crossref_primary_10_1186_s12870_023_04660_7
crossref_primary_10_1111_ppl_13425
crossref_primary_10_1080_15592324_2019_1573097
crossref_primary_10_1016_j_ijbiomac_2023_123255
crossref_primary_10_3389_fpls_2022_938262
crossref_primary_10_3389_fpls_2022_973471
crossref_primary_10_1007_s10681_022_03037_5
crossref_primary_10_1093_jxb_erz458
crossref_primary_10_1007_s11105_020_01226_x
crossref_primary_10_3390_ijms23095231
crossref_primary_10_3390_plants8030064
crossref_primary_10_3389_fpls_2025_1527952
crossref_primary_10_1016_j_sajb_2023_06_029
crossref_primary_10_1007_s11816_022_00787_5
crossref_primary_10_1186_s13059_022_02718_7
crossref_primary_10_3390_genes14081586
crossref_primary_10_1016_j_jplph_2023_153916
crossref_primary_10_3389_fpls_2024_1497362
crossref_primary_10_32604_phyton_2024_053914
crossref_primary_10_17221_449_2024_PSE
crossref_primary_10_2116_analsci_20P281
crossref_primary_10_3389_fpls_2021_797141
crossref_primary_10_1016_j_chemosphere_2022_136911
crossref_primary_10_1016_j_plantsci_2020_110465
crossref_primary_10_3390_antiox14030353
crossref_primary_10_3390_ijms22094609
crossref_primary_10_1186_s12870_021_03351_5
crossref_primary_10_1016_j_envexpbot_2023_105604
crossref_primary_10_1016_j_pld_2020_06_010
crossref_primary_10_1080_15226514_2021_1889963
crossref_primary_10_1007_s11033_022_07548_1
crossref_primary_10_3389_fpls_2022_1010654
crossref_primary_10_1007_s00709_020_01533_w
crossref_primary_10_1111_plb_13360
crossref_primary_10_3390_ijpb14020030
crossref_primary_10_3390_plants12091897
crossref_primary_10_1007_s42729_024_02104_1
crossref_primary_10_3389_fpls_2022_992799
crossref_primary_10_3389_fpls_2023_1240164
crossref_primary_10_1186_s12870_023_04399_1
crossref_primary_10_3389_fpls_2019_00940
crossref_primary_10_1016_j_sjbs_2021_06_062
crossref_primary_10_1111_nph_16921
crossref_primary_10_1186_s42397_023_00162_x
crossref_primary_10_3390_antiox9070603
crossref_primary_10_1016_j_ijbiomac_2023_125691
crossref_primary_10_1111_jipb_13640
crossref_primary_10_1186_s12864_024_10051_5
crossref_primary_10_1111_tpj_17032
crossref_primary_10_3390_plants13131840
crossref_primary_10_1016_j_fmre_2024_06_010
crossref_primary_10_1038_s41587_023_01950_1
crossref_primary_10_1016_j_plaphy_2023_108099
crossref_primary_10_1016_j_ijbiomac_2022_10_240
crossref_primary_10_1016_j_sajb_2021_09_011
crossref_primary_10_1007_s11104_023_05881_3
crossref_primary_10_1002_ldr_3717
crossref_primary_10_52547_jcb_13_39_108
crossref_primary_10_1016_j_plaphy_2021_10_014
crossref_primary_10_1007_s11032_020_1100_6
crossref_primary_10_1021_acs_jafc_3c08528
crossref_primary_10_1016_j_indcrop_2023_116900
crossref_primary_10_3390_ijms23137290
crossref_primary_10_1016_j_sajb_2023_07_051
crossref_primary_10_1016_j_niox_2024_01_002
crossref_primary_10_1016_j_jplph_2022_153616
crossref_primary_10_1016_j_jplph_2022_153737
crossref_primary_10_3390_hydrobiology2010011
crossref_primary_10_1038_s41467_022_33420_8
crossref_primary_10_1016_j_scitotenv_2024_170326
crossref_primary_10_3390_cimb45070374
crossref_primary_10_3389_fpls_2024_1361422
crossref_primary_10_1016_j_plaphy_2019_12_001
crossref_primary_10_1111_jipb_13793
crossref_primary_10_3390_agronomy14102368
crossref_primary_10_1016_j_flora_2021_151963
crossref_primary_10_1186_s13068_023_02286_3
crossref_primary_10_3390_horticulturae8070651
crossref_primary_10_1007_s10668_023_03199_9
crossref_primary_10_3389_fpls_2023_1277762
crossref_primary_10_1007_s00468_024_02577_8
crossref_primary_10_1038_s41598_024_82151_x
crossref_primary_10_15252_embr_202152457
crossref_primary_10_1007_s00299_024_03272_1
crossref_primary_10_3390_agriculture14122321
crossref_primary_10_1016_j_scienta_2022_111581
crossref_primary_10_3389_fpls_2023_1185440
crossref_primary_10_3390_f12040454
crossref_primary_10_1016_j_cj_2022_03_006
crossref_primary_10_1016_j_jia_2023_09_018
crossref_primary_10_1080_07388551_2022_2129579
crossref_primary_10_3390_ijms26062588
crossref_primary_10_1016_j_jgg_2023_09_006
crossref_primary_10_1016_j_cj_2022_03_004
crossref_primary_10_3390_plants10102204
crossref_primary_10_3390_ijms19113298
crossref_primary_10_1111_tpj_17136
crossref_primary_10_1007_s00425_023_04224_x
crossref_primary_10_3390_ijms22115957
crossref_primary_10_1007_s00425_022_03847_w
crossref_primary_10_1038_s41598_020_62057_0
crossref_primary_10_1016_j_jclepro_2021_126453
crossref_primary_10_1186_s40529_022_00337_w
crossref_primary_10_1007_s12633_024_02937_6
crossref_primary_10_1016_j_foodchem_2023_138151
crossref_primary_10_1007_s11738_019_2935_5
crossref_primary_10_3390_plants12203559
crossref_primary_10_1016_j_jenvman_2024_123122
crossref_primary_10_3390_plants11121565
crossref_primary_10_3390_plants12203558
crossref_primary_10_1038_s41477_025_01942_w
crossref_primary_10_1111_jipb_13605
crossref_primary_10_1016_j_ijbiomac_2024_133885
crossref_primary_10_1016_j_jplph_2021_153544
crossref_primary_10_3390_plants12162927
crossref_primary_10_3390_ijms242316958
crossref_primary_10_1186_s12864_024_11101_8
crossref_primary_10_1007_s12374_021_09327_0
crossref_primary_10_1016_j_plaphy_2025_109518
crossref_primary_10_1111_jipb_12996
crossref_primary_10_3389_fpls_2023_1268750
crossref_primary_10_2174_1570164618666210413105907
crossref_primary_10_1080_09205063_2024_2399395
crossref_primary_10_1111_nph_17937
crossref_primary_10_1007_s44154_022_00036_3
crossref_primary_10_1080_01140671_2024_2347534
crossref_primary_10_1186_s12870_024_05708_y
crossref_primary_10_1038_s41598_024_77161_8
crossref_primary_10_1016_j_algal_2025_104016
crossref_primary_10_3389_fpls_2023_1217193
crossref_primary_10_3389_fpls_2022_934877
crossref_primary_10_7717_peerj_10486
crossref_primary_10_1007_s11033_022_07179_6
crossref_primary_10_1007_s12042_020_09265_0
crossref_primary_10_1016_j_jhazmat_2024_135975
crossref_primary_10_3390_plants13121637
crossref_primary_10_1016_j_ijbiomac_2025_141772
crossref_primary_10_1111_ppl_13492
crossref_primary_10_1111_jipb_13632
crossref_primary_10_1186_s12284_023_00663_y
crossref_primary_10_1111_ppl_13010
crossref_primary_10_1016_j_plaphy_2024_108337
crossref_primary_10_1038_s41576_021_00413_0
crossref_primary_10_1093_jxb_erz481
crossref_primary_10_1111_tpj_16395
crossref_primary_10_3390_molecules26040782
crossref_primary_10_1007_s00709_022_01789_4
crossref_primary_10_1016_j_plaphy_2021_01_029
crossref_primary_10_3390_su152115569
crossref_primary_10_1111_jipb_13745
crossref_primary_10_1111_ppl_13380
crossref_primary_10_1007_s11274_020_2804_9
crossref_primary_10_1016_j_asoc_2023_110153
crossref_primary_10_3390_ijms25126354
crossref_primary_10_1038_s41438_019_0172_0
crossref_primary_10_3390_plants12091834
crossref_primary_10_3390_plants10020367
crossref_primary_10_3390_cells11182806
crossref_primary_10_1016_j_desal_2020_114527
crossref_primary_10_1007_s00122_023_04461_4
crossref_primary_10_1007_s00468_023_02468_4
crossref_primary_10_3389_fpls_2022_976341
crossref_primary_10_1016_j_tplants_2023_04_003
crossref_primary_10_1111_nph_17860
crossref_primary_10_1186_s12870_023_04060_x
crossref_primary_10_3390_agronomy14112478
crossref_primary_10_1007_s11356_023_29993_6
crossref_primary_10_1186_s12864_024_10114_7
crossref_primary_10_1111_tpj_16489
crossref_primary_10_3390_ijms21218385
crossref_primary_10_3389_fpls_2021_794020
crossref_primary_10_3390_genes14081621
crossref_primary_10_1016_j_hpj_2024_07_006
crossref_primary_10_3390_biology9090297
crossref_primary_10_3390_cells12162082
crossref_primary_10_3389_fpls_2021_705883
crossref_primary_10_1016_j_plantsci_2023_111794
crossref_primary_10_1111_pce_15246
crossref_primary_10_3390_ijpb13030031
crossref_primary_10_1016_j_apsoil_2021_104142
crossref_primary_10_1016_j_ijbiomac_2023_125162
crossref_primary_10_1016_j_ecoenv_2022_114451
crossref_primary_10_1016_j_scienta_2023_111905
crossref_primary_10_1016_j_ijbiomac_2023_127466
crossref_primary_10_1007_s12041_023_01456_4
crossref_primary_10_1016_j_jplph_2020_153361
crossref_primary_10_1007_s11103_024_01431_2
crossref_primary_10_1038_s41467_019_14027_y
crossref_primary_10_1088_1755_1315_1226_1_012022
crossref_primary_10_1016_j_marenvres_2025_107000
crossref_primary_10_3389_fpls_2022_842726
crossref_primary_10_1016_j_plaphy_2020_06_041
crossref_primary_10_1007_s10265_022_01424_6
crossref_primary_10_1016_j_sajb_2023_08_043
crossref_primary_10_1093_plphys_kiae633
crossref_primary_10_3389_fpls_2020_584167
crossref_primary_10_1002_gch2_202200025
crossref_primary_10_1016_j_envexpbot_2023_105417
crossref_primary_10_3390_plants13152142
crossref_primary_10_1016_j_plaphy_2021_07_040
crossref_primary_10_3390_plants11081036
crossref_primary_10_3390_plants12061283
crossref_primary_10_1093_treephys_tpac053
crossref_primary_10_3390_agronomy13051249
crossref_primary_10_1016_j_algal_2022_102794
crossref_primary_10_1016_j_ijbiomac_2025_139542
crossref_primary_10_1371_journal_pone_0236129
crossref_primary_10_3390_plants12061285
crossref_primary_10_3389_fpls_2022_1053699
crossref_primary_10_1007_s11756_022_01068_w
crossref_primary_10_3390_horticulturae10080780
crossref_primary_10_1016_j_stress_2022_100059
crossref_primary_10_1080_15592324_2023_2231202
crossref_primary_10_1093_plphys_kiad539
crossref_primary_10_1016_j_plantsci_2021_111099
crossref_primary_10_1016_j_scienta_2022_110998
crossref_primary_10_1111_jipb_12864
crossref_primary_10_1016_j_plaphy_2023_108137
crossref_primary_10_1016_j_envexpbot_2022_105144
crossref_primary_10_3389_fpls_2022_1040142
crossref_primary_10_1016_j_plantsci_2021_111096
crossref_primary_10_1016_j_plaphy_2024_108414
crossref_primary_10_1186_s12951_022_01370_4
crossref_primary_10_3390_ijms232113542
crossref_primary_10_3390_plants12132450
crossref_primary_10_1007_s10811_024_03236_8
crossref_primary_10_1016_j_celrep_2021_109384
crossref_primary_10_1016_j_plantsci_2020_110654
crossref_primary_10_1186_s12870_023_04659_0
crossref_primary_10_15252_embj_2022112401
crossref_primary_10_1016_j_eti_2024_103571
crossref_primary_10_1007_s42729_020_00275_1
crossref_primary_10_1093_hr_uhac244
crossref_primary_10_1016_j_plaphy_2024_108548
crossref_primary_10_1186_s12864_024_11069_5
crossref_primary_10_1007_s00344_024_11546_x
crossref_primary_10_1111_pbi_70042
crossref_primary_10_1016_j_jgg_2022_05_007
crossref_primary_10_1080_00103624_2024_2383263
crossref_primary_10_3389_fpls_2023_1167145
crossref_primary_10_1007_s00344_024_11601_7
crossref_primary_10_1093_plcell_koad105
crossref_primary_10_1111_jipb_12800
crossref_primary_10_3390_ijms252413559
crossref_primary_10_1007_s00425_024_04373_7
crossref_primary_10_1111_pbi_14553
crossref_primary_10_1016_j_jgg_2023_08_007
crossref_primary_10_3390_ijms242216415
crossref_primary_10_1016_j_jplph_2022_153793
crossref_primary_10_3390_ijms23063279
crossref_primary_10_3390_agriengineering6040227
crossref_primary_10_1111_pce_15438
crossref_primary_10_1371_journal_pone_0286957
crossref_primary_10_3390_biology14030281
crossref_primary_10_3390_ijms24043638
crossref_primary_10_1016_j_micpath_2021_104909
crossref_primary_10_3390_ijms22158327
crossref_primary_10_5897_IJPPB2022_0317
crossref_primary_10_1007_s11033_022_07495_x
crossref_primary_10_3390_ijms22147313
crossref_primary_10_1016_j_tplants_2020_06_008
crossref_primary_10_1111_nph_18635
crossref_primary_10_3389_fpls_2023_1226041
crossref_primary_10_3389_fpls_2021_646425
crossref_primary_10_3390_agriculture12050658
crossref_primary_10_7717_peerj_15668
crossref_primary_10_1016_j_cj_2021_02_010
crossref_primary_10_1111_nph_18501
crossref_primary_10_1111_tpj_16696
crossref_primary_10_1111_nph_16324
crossref_primary_10_1111_nph_16445
crossref_primary_10_1111_ppl_14170
crossref_primary_10_1093_plcell_koad117
crossref_primary_10_1016_j_ijbiomac_2024_137294
crossref_primary_10_3390_genes11070803
crossref_primary_10_1093_plcell_koab292
crossref_primary_10_3389_fpls_2021_741641
crossref_primary_10_48130_grares_0025_0010
crossref_primary_10_1093_hr_uhac067
crossref_primary_10_1111_pce_14002
crossref_primary_10_1016_j_stress_2024_100403
crossref_primary_10_3390_horticulturae9010089
crossref_primary_10_1007_s11103_022_01282_9
crossref_primary_10_1093_hr_uhae243
crossref_primary_10_3390_ijms25074111
crossref_primary_10_3390_agronomy10101559
crossref_primary_10_1111_pbi_14450
crossref_primary_10_1016_j_plaphy_2023_108306
crossref_primary_10_1016_j_plaphy_2024_108601
crossref_primary_10_1093_plphys_kiae559
crossref_primary_10_1093_jxb_erad368
crossref_primary_10_1111_jipb_12707
crossref_primary_10_1080_15592324_2025_2479513
crossref_primary_10_1016_j_indcrop_2024_118280
crossref_primary_10_3390_ijms25179355
crossref_primary_10_1007_s12355_024_01451_8
crossref_primary_10_1016_j_cj_2023_06_001
crossref_primary_10_1007_s00248_023_02190_1
crossref_primary_10_3390_jof8101092
crossref_primary_10_1007_s11103_022_01272_x
crossref_primary_10_1016_j_plaphy_2019_05_013
crossref_primary_10_1021_acs_jafc_2c07493
crossref_primary_10_1093_nsr_nwaa149
crossref_primary_10_3389_fgene_2024_1464537
crossref_primary_10_1007_s00425_023_04232_x
crossref_primary_10_1007_s10265_021_01284_6
crossref_primary_10_1186_s12302_023_00788_3
crossref_primary_10_1007_s10725_024_01176_4
crossref_primary_10_1007_s12298_024_01455_4
crossref_primary_10_1016_j_scienta_2024_113368
crossref_primary_10_3390_ijms22169009
crossref_primary_10_3390_metabo13091030
crossref_primary_10_3389_fchem_2022_967404
crossref_primary_10_3390_ijms24054426
crossref_primary_10_1007_s00344_022_10774_3
crossref_primary_10_3389_fpls_2022_982622
crossref_primary_10_3390_agronomy13051213
crossref_primary_10_3389_fpls_2024_1451469
crossref_primary_10_3390_plants13050586
crossref_primary_10_1186_s12870_021_03082_7
crossref_primary_10_3390_agronomy11020400
crossref_primary_10_1111_tpj_15109
crossref_primary_10_1016_j_plaphy_2019_11_011
crossref_primary_10_3390_ijms23169340
crossref_primary_10_1007_s42729_024_02125_w
crossref_primary_10_29130_dubited_1171221
crossref_primary_10_3389_fpls_2023_1154088
crossref_primary_10_3390_f13101685
crossref_primary_10_1186_s12870_025_06359_3
crossref_primary_10_1016_j_jclepro_2021_130205
crossref_primary_10_3390_plants10122594
crossref_primary_10_3390_plants12122332
crossref_primary_10_1016_j_plaphy_2024_108504
crossref_primary_10_1007_s42535_022_00541_w
crossref_primary_10_1016_j_plaphy_2020_12_015
crossref_primary_10_3389_fpls_2022_843994
crossref_primary_10_3389_fpls_2024_1408642
crossref_primary_10_1002_jsfa_12284
crossref_primary_10_1016_j_envexpbot_2024_105931
crossref_primary_10_3390_plants13040557
crossref_primary_10_3389_fpls_2023_1284480
crossref_primary_10_1007_s00344_022_10787_y
crossref_primary_10_3389_fpls_2022_1063436
Cites_doi 10.1007/s00299-011-1157-0
10.1111/tpj.12123
10.1111/j.1469-8137.2008.02531.x
10.1126/science.aac6014
10.1093/jxb/eru159
10.1146/annurev.arplant.53.091401.143329
10.1016/S1360-1385(01)01923-9
10.1016/j.plaphy.2015.06.014
10.1105/tpc.17.01000
10.1105/tpc.12.9.1667
10.1104/pp.124.3.941
10.1016/S0958-1669(02)00298-7
10.1093/mp/ssn079
10.1105/tpc.109.066217
10.1016/j.bbrc.2011.07.064
10.1016/j.molcel.2004.06.023
10.1105/tpc.111.095273
10.1093/molbev/msu152
10.1128/MCB.00430-07
10.1038/nature02353
10.1126/science.280.5371.1943
10.1111/nph.14920
10.1105/tpc.105.035626
10.1093/pcp/pcw111
10.1073/pnas.122224699
10.1105/TPC.010021
10.1007/s00299-010-0872-2
10.1105/tpc.114.135095
10.1104/pp.114.237891
10.1016/j.jmb.2012.09.015
10.1093/aob/mcl107
10.1146/annurev.arplant.59.032607.092911
10.1016/j.febslet.2007.04.032
10.1038/nplants.2016.204
10.3389/fphys.2017.00509
10.1105/tpc.112.097139
10.1105/tpc.106.044230
10.1007/s00299-013-1507-1
10.1074/jbc.M801392200
10.1104/pp.15.00729
10.1093/aob/mcu239
10.1038/ncomms2357
10.1073/pnas.2034853100
10.5402/2012/927436
10.1016/j.jgg.2017.03.009
10.1105/tpc.114.125187
10.1111/pce.12222
10.1104/pp.104.049213
10.1016/j.plantsci.2014.08.007
10.1073/pnas.97.7.3735
10.1016/j.cell.2016.08.029
10.1016/j.plaphy.2014.07.019
10.1105/tpc.16.00143
10.1105/tpc.111.089581
10.1073/pnas.97.6.2940
10.1016/j.cell.2006.06.011
10.1105/tpc.113.117069
10.1074/jbc.M307982200
10.1105/tpc.106.042291
10.1007/s11103-016-0520-5
10.1016/j.tplants.2005.05.009
10.1016/j.abb.2006.05.001
10.1038/nature13593
10.1046/j.0016-8025.2001.00808.x
10.1007/s00709-013-0496-9
10.1073/pnas.1519555113
10.1073/pnas.1018921108
10.1111/j.1469-8137.2010.03422.x
10.1073/pnas.1511238112
10.1105/tpc.109.071985
10.1074/jbc.M405259200
10.1111/tpj.13465
10.1105/tpc.109.069609
10.1104/pp.106.089151
10.1126/science.7112124
ContentType Journal Article
Copyright 2018 Institute of Botany, Chinese Academy of Sciences
This article is protected by copyright. All rights reserved.
2018 Institute of Botany, Chinese Academy of Sciences.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2018 Institute of Botany, Chinese Academy of Sciences
– notice: This article is protected by copyright. All rights reserved.
– notice: 2018 Institute of Botany, Chinese Academy of Sciences.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
NPM
7QO
7T7
8FD
C1K
FR3
P64
RC3
7X8
7S9
L.6
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1111/jipb.12689
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Genetics Abstracts
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1744-7909
EndPage 804
ExternalDocumentID zwxb201809005
29905393
10_1111_jipb_12689
JIPB12689
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Genetically Modified Organisms Breeding Major Projects
  funderid: 2016ZX08009002
– fundername: National Natural Science Foundation of China
  funderid: 31430012; 31670260; U1706201
– fundername: National Basic Research Program of China
  funderid: 2015CB910202
– fundername: the National Genetically Modified Organisms Breeding Major Projects; National Natural Science Foundation of China; National Basic Research Program of China
  funderid: (2016ZX08009002); (31430012,31670260,U1706201); (2015CB910202)
GroupedDBID ---
-SA
-S~
.3N
.GA
.Y3
05W
0R~
10A
1OC
29K
2B.
2C.
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VR
5VS
5XA
5XB
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
92E
92I
92Q
930
93N
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXDM
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFUIB
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CAJEA
CCEZO
CCVFK
CHBEP
CHDYS
COF
CS3
CW9
D-E
D-F
D-I
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
ESX
F00
F01
F04
F5P
FA0
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q--
Q.N
Q11
QB0
R.K
ROL
RX1
SJN
SUPJJ
SV3
TCJ
TGP
TUS
U1G
U5K
UB1
W8V
W99
WBKPD
WFFXF
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QO
7T7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
7X8
7S9
L.6
4A8
PSX
ID FETCH-LOGICAL-c5229-4e1ef825bec32b4f82f0f7954fd9dbc5608c3e118ebf1c8d06ffa947acb5e5553
IEDL.DBID DR2
ISSN 1672-9072
1744-7909
IngestDate Thu May 29 04:01:05 EDT 2025
Fri Jul 11 18:24:25 EDT 2025
Fri Jul 11 08:00:06 EDT 2025
Fri Jul 25 21:09:20 EDT 2025
Thu Apr 03 07:06:42 EDT 2025
Tue Jul 01 03:06:08 EDT 2025
Thu Apr 24 23:10:59 EDT 2025
Wed Jan 22 16:59:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This article is protected by copyright. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5229-4e1ef825bec32b4f82f0f7954fd9dbc5608c3e118ebf1c8d06ffa947acb5e5553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jipb.12689
PMID 29905393
PQID 2099809999
PQPubID 2045135
PageCount 9
ParticipantIDs wanfang_journals_zwxb201809005
proquest_miscellaneous_2153614792
proquest_miscellaneous_2056399797
proquest_journals_2099809999
pubmed_primary_29905393
crossref_citationtrail_10_1111_jipb_12689
crossref_primary_10_1111_jipb_12689
wiley_primary_10_1111_jipb_12689_JIPB12689
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2018
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationPlace China (Republic : 1949- )
PublicationPlace_xml – name: China (Republic : 1949- )
– name: Hoboken
PublicationTitle Journal of integrative plant biology
PublicationTitleAlternate J Integr Plant Biol
PublicationTitle_FL Journal of Integrative Plant Biology
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
Publisher_xml – name: Wiley Subscription Services, Inc
– name: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
References 1998; 280
2013; 4
2017; 3
2002; 53
2017; 44
2002; 13
2007; 144
2002; 99
2014; 26
2010; 188
2006; 452
2014; 65
2010; 22
2004; 136
2000; 124
2010; 29
2000; 12
1982; 217
2018; 217
2000; 97
2016; 113
2018; 30
2011; 23
2014; 165
2012; 24
2001; 13
2006; 125
2007; 27
2014; 514
2011; 412
2007; 19
2009; 21
2006; 98
2015; 169
2015; 96
2008; 59
2016; 167
2006; 18
2016; 92
2004; 427
2012; 424
2014; 83
2016; 57
2012; 31
2008; 283
2015; 350
2002; 25
2014; 227
2012; 3
2015; 27
2017; 90
2011; 108
2004; 279
2015; 115
2001; 6
2015; 112
2004; 15
2013; 74
2014; 37
2005; 10
2017; 18
2013; 250
2008; 179
2009; 2
2016; 28
2003; 100
2014; 33
2014; 31
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
Zhu JK (e_1_2_8_76_1) 2000; 124
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
Qi Z (e_1_2_8_49_1) 2004; 136
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
Kiegerl S (e_1_2_8_25_1) 2000; 12
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Del Río LA (e_1_2_8_13_1) 2016; 57
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 100
  start-page: 11771
  year: 2003
  end-page: 11776
  article-title: A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2
  publication-title: Proc Natl Acad Sci USA
– volume: 23
  start-page: 3482
  year: 2011
  end-page: 3497
  article-title: The Na /H antiporters NHX1 and NHX2 control vacuolar pH and K homeostasis to regulate growth, flower development, and reproduction
  publication-title: Plant Cell
– volume: 24
  start-page: 1894
  year: 2012
  end-page: 1906
  article-title: A chloroplast light‐regulated oxidative sensor for moderate light intensity in
  publication-title: Plant Cell
– volume: 18
  start-page: 2749
  year: 2006
  end-page: 2766
  article-title: An glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses
  publication-title: Plant Cell
– volume: 19
  start-page: 1415
  year: 2007
  end-page: 1431
  article-title: SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect shoots from salt stress
  publication-title: Plant Cell
– volume: 57
  start-page: 1908
  year: 2016
  end-page: 1920
  article-title: The role of phospholipase D and MAPK signaling cascades in the adaption of to desiccation: Changes in membrane lipids and phosphoproteome
  publication-title: Plant Cell Physiol
– volume: 217
  start-page: 523
  year: 2018
  end-page: 539
  article-title: Elucidating the molecular mechanisms mediating plant salt‐stress responses
  publication-title: New Phytol
– volume: 112
  start-page: E6388
  year: 2015
  end-page: E6396
  article-title: Plant Raf‐like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1‐related protein kinase2
  publication-title: Proc Natl Acad Sci USA
– volume: 30
  start-page: 1100
  year: 2018
  end-page: 1118
  article-title: The receptor‐like cytoplasmic kinase STRK1 phosphorylates and activates CatC, thereby regulating H O homeostasis and improving salt tolerance in Rice
  publication-title: Plant Cell
– volume: 13
  start-page: 1383
  year: 2001
  end-page: 1400
  article-title: Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance
  publication-title: Plant Cell
– volume: 514
  start-page: 367
  year: 2014
  end-page: 371
  article-title: OSCA1 mediates osmotic‐stress‐evoked Ca increases vital for osmosensing in
  publication-title: Nature
– volume: 144
  start-page: 1029
  year: 2007
  end-page: 1038
  article-title: Differential regulation of sorbitol and sucrose loading into the phloem of Plantago major in response to salt stress
  publication-title: Plant Physiol
– volume: 22
  start-page: 403
  year: 2010
  end-page: 416
  article-title: S‐sulfocysteine synthase activity is essential for chloroplast function and long‐day light‐dependent redox control
  publication-title: Plant Cell
– volume: 12
  start-page: 1667
  year: 2000
  end-page: 1677
  article-title: SOS3 function in plant salt tolerance requires myristoylation and calcium‐binding
  publication-title: Plant Cell
– volume: 92
  start-page: 391
  year: 2016
  end-page: 400
  article-title: Stability and localization of 14‐3‐3 proteins are involved in salt tolerance in
  publication-title: Plant Mol Biol
– volume: 217
  start-page: 1214
  year: 1982
  end-page: 1222
  article-title: Living with water stress: Evolution of osmolyte systems
  publication-title: Science
– volume: 57
  start-page: 1364
  year: 2016
  end-page: 1376
  article-title: ROS generation in peroxisomes and its role in cell signaling
  publication-title: Plant Cell Physiol
– volume: 26
  start-page: 2538
  year: 2014
  end-page: 2553
  article-title: The receptor‐like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice
  publication-title: Plant Cell
– volume: 37
  start-page: 1130
  year: 2014
  end-page: 1143
  article-title: Phosphorylation of a p38‐like MAPK is involved in sensing cellular redox state and drives atypical tubulin polymer assembly in angiosperms
  publication-title: Plant Cell Environ
– volume: 31
  start-page: 2094
  year: 2014
  end-page: 2107
  article-title: Distinct roles for SOS1 in the convergent evolution of salt tolerance in and
  publication-title: Mol Biol Evol
– volume: 279
  start-page: 207
  year: 2004
  end-page: 215
  article-title: Regulation of vacuolar Na /H exchange in by the salt‐overly‐sensitive (SOS) pathway
  publication-title: J Biol Chem
– volume: 125
  start-page: 1347
  year: 2006
  end-page: 1360
  article-title: A protein kinase, interacting with two calcineurin B‐like proteins, regulates K transporter AKT1 in
  publication-title: Cell
– volume: 26
  start-page: 1166
  year: 2014
  end-page: 1182
  article-title: Inhibition of the salt overly sensitive pathway by 14‐3‐3 proteins
  publication-title: Plant Cell
– volume: 31
  start-page: 217
  year: 2012
  end-page: 224
  article-title: MKKK20 is involved in osmotic stress response via regulation of MPK6 activity
  publication-title: Plant Cell Rep
– volume: 21
  start-page: 1607
  year: 2009
  end-page: 1619
  article-title: Phosphorylation of SOS3 LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in
  publication-title: Plant Cell
– volume: 124
  start-page: 941
  year: 2000
  end-page: 948
  article-title: Genetic analysis of plant salt tolerance using
  publication-title: Plant Physiol
– volume: 25
  start-page: 239
  year: 2002
  end-page: 250
  article-title: Comparative physiology of salt and water stress
  publication-title: Plant Cell Environ
– volume: 113
  start-page: E5242
  year: 2016
  end-page: E5249
  article-title: Rapid hyperosmotic‐induced Ca responses in exhibit sensory potentiation and involvement of plastidial KEA transporters
  publication-title: Proc Natl Acad Sci USA
– volume: 96
  start-page: 217
  year: 2015
  end-page: 221
  article-title: Suppressed expression of choline monooxygenase in sugar beet on the accumulation of glycine betaine
  publication-title: Plant Physiol Biochem
– volume: 90
  start-page: 48
  year: 2017
  end-page: 60
  article-title: ZxAKT1 is essential for K uptake and K /Na homeostasis in the succulent xerophyte
  publication-title: Plant J
– volume: 44
  start-page: 395
  year: 2017
  end-page: 404
  article-title: Activation of catalase activity by a peroxisome‐localized small heat shock protein Hsp17.6CII
  publication-title: J Genet Genomics
– volume: 27
  start-page: 908
  year: 2015
  end-page: 925
  article-title: A chaperone function of NO CATALASE ACTIVITY1 is required to maintain catalase activity and for multiple stress responses in
  publication-title: Plant Cell
– volume: 188
  start-page: 762
  year: 2010
  end-page: 773
  article-title: Phosphatidic acid mediates salt stress response by regulation of MPK6 in
  publication-title: New Phytol
– volume: 18
  start-page: 509
  year: 2017
  article-title: The role of Na and K transporters in salt stress adaptation in glycophytes
  publication-title: Front Physiol
– volume: 227
  start-page: 181
  year: 2014
  end-page: 189
  article-title: The mitogen‐activated protein kinase cascade MKK1‐MPK4 mediates salt signaling in rice
  publication-title: Plant Sci
– volume: 27
  start-page: 7781
  year: 2007
  end-page: 7790
  article-title: SOS2 promotes salt tolerance in part by interacting with the vaculoar H ‐ATPase and upregulating its transport activity
  publication-title: Mol Cell Biol
– volume: 4
  start-page: 1352
  year: 2013
  article-title: Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in
  publication-title: Nat Commun
– volume: 98
  start-page: 279
  year: 2006
  end-page: 288
  article-title: Could heat shock transcription factors function as hydrogen peroxide sensors in plants
  publication-title: Ann Bot
– volume: 279
  start-page: 41758
  year: 2004
  end-page: 41766
  article-title: Identification of nine sucrose nonfermenting 1‐related protein kinases 2 activated by hyperosmotic and saline stresses in
  publication-title: J Biol Chem
– volume: 22
  start-page: 1313
  year: 2010
  end-page: 1332
  article-title: The chaperone J3 regulates the plasma membrane H ‐ATPase through interaction with the PKS5 kinase
  publication-title: Plant Cell
– volume: 179
  start-page: 945
  year: 2008
  end-page: 963
  article-title: Salinity tolerance in halophytes
  publication-title: New Phytol
– volume: 99
  start-page: 8436
  year: 2002
  end-page: 8441
  article-title: Regulation of SOS1, a plasma membrane Na /H exchanger in , by SOS2 and SOS3
  publication-title: Proc Natl Acad Sci USA
– volume: 97
  start-page: 3735
  year: 2000
  end-page: 3740
  article-title: The SOS2 protein kinase physically interacts with and is activated by the calcium‐binding protein SOS3
  publication-title: Proc Natl Acad Sci USA
– volume: 13
  start-page: 146
  year: 2002
  end-page: 150
  article-title: Engineering salt tolerance in plants
  publication-title: Curr Opin Biotechnol
– volume: 65
  start-page: 2963
  year: 2014
  end-page: 2979
  article-title: Life and death under salt stress: Same players, different timing
  publication-title: J Exp Bot
– volume: 427
  start-page: 858
  year: 2004
  end-page: 861
  article-title: OXI1 kinase is necessary for oxidative burst‐mediated signalling in
  publication-title: Nature
– volume: 12
  start-page: 2247
  year: 2000
  end-page: 2258
  article-title: SIMKK, a mitogen‐activated protein kinase (MAPK) kinase, is a specific activator of the salt stress‐induced MAPK, SIMK
  publication-title: Plant Cell
– volume: 108
  start-page: 2611
  year: 2011
  end-page: 2616
  article-title: Activation of the plasma membrane Na /H antiporter Salt‐Overly‐Sensitive 1 (SOS1) by phosphorylation of an auto‐inhibitory C‐terminal domain
  publication-title: Proc Natl Acad Sci USA
– volume: 169
  start-page: 1072
  year: 2015
  end-page: 1089
  article-title: Differential role for trehalose metabolism in salt‐stressed maize
  publication-title: Plant Physiol
– volume: 424
  start-page: 283
  year: 2012
  end-page: 294
  article-title: Structural insights on the plant salt‐overly‐sensitive 1 (SOS1) Na /H antiporter
  publication-title: J Mol Biol
– volume: 6
  start-page: 206
  year: 2001
  end-page: 211
  article-title: Vacuolar H pyrophosphatases: From the evolutionary backwaters into the mainstream
  publication-title: Trends Plant Sci
– volume: 412
  start-page: 150
  year: 2011
  end-page: 154
  article-title: MKK4 mediates osmotic‐stress response via its regulation of MPK3 activity
  publication-title: Biochem Biophys Res Commun
– volume: 10
  start-page: 339
  year: 2005
  end-page: 346
  article-title: Emerging MAP kinase pathways in plant stress signaling
  publication-title: Trends Plant Sci
– volume: 136
  start-page: 2548
  year: 2004
  end-page: 2555
  article-title: Protection of plasma membrane K transport by the salt overly sensitive Na ‐H antiporter during salinity stress
  publication-title: Plant Physiol
– volume: 3
  start-page: 16204
  year: 2017
  article-title: ABA‐unresponsive SnRK2 protein kinases regulate mRNA decay under osmotic stress in plants
  publication-title: Nat Plants
– volume: 29
  start-page: 865
  year: 2010
  end-page: 874
  article-title: Expression of the AKT1‐type K channel gene from , PutAKT1, enhances salt tolerance in
  publication-title: Plant Cell Rep
– volume: 2
  start-page: 120
  year: 2009
  end-page: 137
  article-title: A major role of the MEKK1‐MKK1/2‐MPK4 pathway in ROS signalling
  publication-title: Mol Plant
– volume: 33
  start-page: 203
  year: 2014
  end-page: 214
  article-title: The CBL‐CIPK network mediates different signaling pathways in plants
  publication-title: Plant Cell Rep
– volume: 167
  start-page: 313
  year: 2016
  end-page: 324
  article-title: Abiotic stress signaling and responses in plants
  publication-title: Cell
– volume: 19
  start-page: 1617
  year: 2007
  end-page: 1634
  article-title: protein kinase PKS5 inhibits the plasma membrane H ‐ATPase by preventing interaction with 14‐3‐3 protein
  publication-title: Plant Cell
– volume: 97
  start-page: 6896
  year: 2000
  end-page: 6901
  article-title: The thaliana salt tolerance gene encodes a putative Na /H antiporter
  publication-title: Proc Natl Acad Sci USA
– volume: 97
  start-page: 2940
  year: 2000
  end-page: 2945
  article-title: Functional analysis of oxidative stress‐activated mitogen‐activated protein kinase cascade in plants
  publication-title: Proc Natl Acad Sci USA
– volume: 280
  start-page: 1943
  year: 1998
  end-page: 1945
  article-title: A calcium sensor homolog required for plant salt tolerance
  publication-title: Science
– volume: 15
  start-page: 141
  year: 2004
  end-page: 152
  article-title: The MKK2 pathway mediates cold and salt stress signaling in
  publication-title: Mol Cell
– volume: 3
  start-page: 1
  year: 2012
  end-page: 13
  article-title: Ion transporters and abiotic stress tolerance in plants
  publication-title: ISRN Mol Biol
– volume: 59
  start-page: 651
  year: 2008
  end-page: 681
  article-title: Mechanisms of salinity tolerance
  publication-title: Annu Rev Plant Biol
– volume: 283
  start-page: 26996
  year: 2008
  end-page: 27006
  article-title: Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in
  publication-title: J Biol Chem
– volume: 250
  start-page: 1157
  year: 2013
  end-page: 1167
  article-title: Regulation of some carbohydrate metabolism‐related genes, starch and soluble sugar contents, photosynthetic activities and yield attributes of two contrasting rice genotypes subjected to salt stress
  publication-title: Protoplasma
– volume: 24
  start-page: 1127
  year: 2012
  end-page: 1142
  article-title: Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in
  publication-title: Plant Cell
– volume: 115
  start-page: 433
  year: 2015
  end-page: 447
  article-title: Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress
  publication-title: Ann Bot
– volume: 53
  start-page: 247
  year: 2002
  end-page: 273
  article-title: Salt and drought stress signal transduction in plants
  publication-title: Annu Rev Plant Biol
– volume: 350
  start-page: 438
  year: 2015
  end-page: 441
  article-title: Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination
  publication-title: Science
– volume: 452
  start-page: 55
  year: 2006
  end-page: 68
  article-title: Signaling through MAP kinase networks in plants
  publication-title: Arch Biochem Biophys
– volume: 165
  start-page: 319
  year: 2014
  end-page: 334
  article-title: The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen‐activated protein kinases MPK3 and MPK6
  publication-title: Plant Physiol
– volume: 74
  start-page: 258
  year: 2013
  end-page: 266
  article-title: Calcineurin B‐like protein CBL10 directly interacts with AKT1 and modulates K homeostasis in
  publication-title: Plant J
– volume: 28
  start-page: 1860
  year: 2016
  end-page: 1878
  article-title: Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants
  publication-title: Plant Cell
– volume: 83
  start-page: 126
  year: 2014
  end-page: 133
  article-title: Salt stress mitigation by seed priming with UV‐C in lettuce plants: Growth, antioxidant activity and phenolic compounds
  publication-title: Plant Physiol Biochem
– ident: e_1_2_8_26_1
  doi: 10.1007/s00299-011-1157-0
– ident: e_1_2_8_55_1
  doi: 10.1111/tpj.12123
– ident: e_1_2_8_15_1
  doi: 10.1111/j.1469-8137.2008.02531.x
– ident: e_1_2_8_20_1
  doi: 10.1126/science.aac6014
– ident: e_1_2_8_23_1
  doi: 10.1093/jxb/eru159
– ident: e_1_2_8_77_1
  doi: 10.1146/annurev.arplant.53.091401.143329
– ident: e_1_2_8_14_1
  doi: 10.1016/S1360-1385(01)01923-9
– ident: e_1_2_8_67_1
  doi: 10.1016/j.plaphy.2015.06.014
– ident: e_1_2_8_75_1
  doi: 10.1105/tpc.17.01000
– ident: e_1_2_8_22_1
  doi: 10.1105/tpc.12.9.1667
– volume: 124
  start-page: 941
  year: 2000
  ident: e_1_2_8_76_1
  article-title: Genetic analysis of plant salt tolerance using Arabidopsis thaliana
  publication-title: Plant Physiol
  doi: 10.1104/pp.124.3.941
– ident: e_1_2_8_2_1
  doi: 10.1016/S0958-1669(02)00298-7
– ident: e_1_2_8_47_1
  doi: 10.1093/mp/ssn079
– ident: e_1_2_8_33_1
  doi: 10.1105/tpc.109.066217
– ident: e_1_2_8_27_1
  doi: 10.1016/j.bbrc.2011.07.064
– ident: e_1_2_8_62_1
  doi: 10.1016/j.molcel.2004.06.023
– ident: e_1_2_8_5_1
  doi: 10.1105/tpc.111.095273
– ident: e_1_2_8_24_1
  doi: 10.1093/molbev/msu152
– ident: e_1_2_8_7_1
  doi: 10.1128/MCB.00430-07
– ident: e_1_2_8_54_1
  doi: 10.1038/nature02353
– ident: e_1_2_8_34_1
  doi: 10.1126/science.280.5371.1943
– ident: e_1_2_8_70_1
  doi: 10.1111/nph.14920
– ident: e_1_2_8_16_1
  doi: 10.1105/tpc.105.035626
– ident: e_1_2_8_17_1
  doi: 10.1093/pcp/pcw111
– ident: e_1_2_8_50_1
  doi: 10.1073/pnas.122224699
– ident: e_1_2_8_18_1
  doi: 10.1105/TPC.010021
– ident: e_1_2_8_3_1
  doi: 10.1007/s00299-010-0872-2
– ident: e_1_2_8_32_1
  doi: 10.1105/tpc.114.135095
– ident: e_1_2_8_46_1
  doi: 10.1104/pp.114.237891
– volume: 12
  start-page: 2247
  year: 2000
  ident: e_1_2_8_25_1
  article-title: SIMKK, a mitogen‐activated protein kinase (MAPK) kinase, is a specific activator of the salt stress‐induced MAPK, SIMK
  publication-title: Plant Cell
– ident: e_1_2_8_43_1
  doi: 10.1016/j.jmb.2012.09.015
– ident: e_1_2_8_38_1
  doi: 10.1093/aob/mcl107
– ident: e_1_2_8_41_1
  doi: 10.1146/annurev.arplant.59.032607.092911
– ident: e_1_2_8_57_1
  doi: 10.1016/j.febslet.2007.04.032
– ident: e_1_2_8_59_1
  doi: 10.1038/nplants.2016.204
– ident: e_1_2_8_4_1
  doi: 10.3389/fphys.2017.00509
– ident: e_1_2_8_12_1
  doi: 10.1105/tpc.112.097139
– ident: e_1_2_8_37_1
  doi: 10.1105/tpc.106.044230
– ident: e_1_2_8_72_1
  doi: 10.1007/s00299-013-1507-1
– ident: e_1_2_8_66_1
  doi: 10.1074/jbc.M801392200
– ident: e_1_2_8_21_1
  doi: 10.1104/pp.15.00729
– ident: e_1_2_8_58_1
  doi: 10.1093/aob/mcu239
– ident: e_1_2_8_28_1
  doi: 10.1038/ncomms2357
– ident: e_1_2_8_44_1
  doi: 10.1073/pnas.2034853100
– ident: e_1_2_8_11_1
  doi: 10.5402/2012/927436
– ident: e_1_2_8_31_1
  doi: 10.1016/j.jgg.2017.03.009
– ident: e_1_2_8_30_1
  doi: 10.1105/tpc.114.125187
– ident: e_1_2_8_35_1
  doi: 10.1111/pce.12222
– volume: 136
  start-page: 2548
  year: 2004
  ident: e_1_2_8_49_1
  article-title: Protection of plasma membrane K+ transport by the salt overly sensitive Na+‐H+ antiporter during salinity stress
  publication-title: Plant Physiol
  doi: 10.1104/pp.104.049213
– ident: e_1_2_8_64_1
  doi: 10.1016/j.plantsci.2014.08.007
– ident: e_1_2_8_19_1
  doi: 10.1073/pnas.97.7.3735
– ident: e_1_2_8_78_1
  doi: 10.1016/j.cell.2016.08.029
– ident: e_1_2_8_45_1
  doi: 10.1016/j.plaphy.2014.07.019
– ident: e_1_2_8_63_1
  doi: 10.1105/tpc.16.00143
– volume: 57
  start-page: 1364
  year: 2016
  ident: e_1_2_8_13_1
  article-title: ROS generation in peroxisomes and its role in cell signaling
  publication-title: Plant Cell Physiol
– ident: e_1_2_8_6_1
  doi: 10.1105/tpc.111.089581
– ident: e_1_2_8_29_1
  doi: 10.1073/pnas.97.6.2940
– ident: e_1_2_8_65_1
  doi: 10.1016/j.cell.2006.06.011
– ident: e_1_2_8_74_1
  doi: 10.1105/tpc.113.117069
– ident: e_1_2_8_51_1
  doi: 10.1074/jbc.M307982200
– ident: e_1_2_8_52_1
  doi: 10.1105/tpc.106.042291
– ident: e_1_2_8_61_1
  doi: 10.1007/s11103-016-0520-5
– ident: e_1_2_8_42_1
  doi: 10.1016/j.tplants.2005.05.009
– ident: e_1_2_8_39_1
  doi: 10.1016/j.abb.2006.05.001
– ident: e_1_2_8_73_1
  doi: 10.1038/nature13593
– ident: e_1_2_8_40_1
  doi: 10.1046/j.0016-8025.2001.00808.x
– ident: e_1_2_8_9_1
  doi: 10.1007/s00709-013-0496-9
– ident: e_1_2_8_60_1
  doi: 10.1073/pnas.1519555113
– ident: e_1_2_8_53_1
  doi: 10.1073/pnas.1018921108
– ident: e_1_2_8_71_1
  doi: 10.1111/j.1469-8137.2010.03422.x
– ident: e_1_2_8_56_1
  doi: 10.1073/pnas.1511238112
– ident: e_1_2_8_8_1
  doi: 10.1105/tpc.109.071985
– ident: e_1_2_8_10_1
  doi: 10.1074/jbc.M405259200
– ident: e_1_2_8_36_1
  doi: 10.1111/tpj.13465
– ident: e_1_2_8_69_1
  doi: 10.1105/tpc.109.069609
– ident: e_1_2_8_48_1
  doi: 10.1104/pp.106.089151
– ident: e_1_2_8_68_1
  doi: 10.1126/science.7112124
SSID ssj0038062
Score 2.6585
SecondaryResourceType review_article
Snippet Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will...
Salt stress is a major environmental factor limiting plant growth and productivity.A better understanding of the mechanisms mediating salt resistance will help...
SourceID wanfang
proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 796
SubjectTerms Abiotic stress
Apoplast
Cascades
Environmental conditions
Environmental factors
Extrusion
Genetic analysis
Homeostasis
ions
Kinases
Osmosis
Osmotic stress
Oxidative stress
Plant growth
Protein kinase
Protein kinase C
protein kinases
Proteins
Reactive oxygen species
Regulatory mechanisms (biology)
researchers
Salt
salt stress
Salts
Signal transduction
Signaling
Sodium
Sucrose
Sugar
Title Unraveling salt stress signaling in plants
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjipb.12689
https://www.ncbi.nlm.nih.gov/pubmed/29905393
https://www.proquest.com/docview/2099809999
https://www.proquest.com/docview/2056399797
https://www.proquest.com/docview/2153614792
https://d.wanfangdata.com.cn/periodical/zwxb201809005
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9Ku4e9dF9d564NHutLAw6xLNkW9CXZFrLCxhgL9GUYSZZKWHDCktCtf33vZMdbuxHY3oR1RjrrTveTfB8Ap7Z0Ns9NHAnLbMTTuIxUIpOIc5c6YZUuDd13fPiYjif84lJc7sD5Jhamzg_RXriRZvj9mhRc6eXvSj5d6F7M0pyi98hZixDR5zZ3VJL3fTXROM1YhCdA1uQm9W487at3rdEfENNH8lROVVd3sas3PqNH8HUz7drn5FtvvdI9c3Mvo-P_8vUY9htUGg5qMXoCO7Z6Cg-Gc0SOP59Bd1JRkSIKXA-XarYK6wCTkHw_lH86rcLFjDxqDmAyevflzThqaixEBpGXjLiNrcNTIi5lwjTHpuu7TAruSllqg3goN4nFU4jVLjZ52U-dU5JnymhhhRDJc9it5pV9ASHl2Umtwi0jQViWpFobnkmpGNNCx64M4GzzrQvTJCCnOhizoj2IIOuFZz2A1y3tok678Veq482SFY3qLQuKBc4J92L3q7YblYb-hKjKztdEIwiZZTLbQoO2ALFLJlkAh7U4tFMhGy5QpAPoNPLxa_yb6x-a-bRouMEF0PVrvYWJ4uL9p6FvHf0L8Ut4SKPU7m7HsLv6vrYniI9WugN7g-Hb4ajj9eEWFCoL5w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6xgjReBoMNMsaWCV42KVXj2En8uA2mbqwTQqu0t8h2bDRRpRVtNeiv352ThRXQJHiL4oscx3e-z87ddwDvbelsnps4EpbZiKdxGalEJhHnLnXCKl0aOu8YXKT9IT-7EldNbA7lwtT8EO2BG1mGX6_JwOlA-r6VX090N2ZpLlfgMZX0Jur8D19a9qgk7_l6onGasQj3gKxhJ_WBPO2zy_7oD5Dpc3kqp6qvy-jVu5-TZ3WN1alnLaSok2_d-Ux3zeI3Tsf_HtlzWGuAaXhYa9I6PLLVC3hyNEbw-PMlHAwrqlNEuevhVI1mYZ1jElL4h_J3r6twMqKgmg0Ynny8PO5HTZmFyCD4khG3sXW4UcTZTJjmeOl6LpOCu1KW2iAkyk1icSNitYtNXvZS55TkmTJaWCFEsgmdalzZ1xAS1U5qFa4aCSKzJNXa8ExKxZgWOnZlAPt3H7swDQc5lcIYFe1eBIde-KEH8K6VndTMG3-V2r6bs6KxvmlB6cA5QV9s3mub0W7oZ4iq7HhOMoLAWSazB2TQHSB8ySQL4FWtD-2rkBsXqNUB7DQK8qv_xc0PzTwzGq5xARz4yX5gEMXZ6ecjf7X1L8K7sNq_HJwX56cXn97AU-qxjn7bhs7s-9y-Rbg00zveKG4BWMUOkQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NgRAvfA8CY2SCFyalahzbiSVe2Ea1L6ZpotJeUGQ7Nqqo0oq1gu2v352TZhtDk-DNii-yL76zf-fcB8B7V3lXFDZNhGMu4TKtEp2pLOHcSy-cNpWl-44vh3JnyPdOxMkSfFzEwjT5IboLN9KMsF-Tgk8rf1XJR1PTS5ks1B24y2VfUeGG7eMueVRW9EM50VTmLEETkLXJSYMfT_fu9ePoBsYMoTy11_X36-A1nD6DR_BtMe_G6eRHbz4zPXv-R0rH_2XsMTxsYWn8qZGjJ7Dk6qdwb3OC0PHsGWwMa6pSRJHr8akez-ImwiQm5w8dno7qeDoml5rnMBx8_rq1k7RFFhKL0Esl3KXOo5mIa5kxw7Hp-z5XgvtKVcYiICps5tAMccantqj60nuteK6tEU4Ika3Acj2p3UuIKdGOdBr3jAxxWSaNsTxXSjNmhEl9FcGHxbcubZuBnAphjMvOEkHWy8B6BO862mmTd-OvVKuLJStb3TstKRi4IOCL3etdN2oN_QrRtZvMiUYQNMtVfgsNHgYIXnLFInjRiEM3FTrEBcp0BGutfFyOf_7rt2EhLxrucBFshLW-hYlyb_doM7Re_QvxW7h_tD0oD3YP91_DAxqwcX1bheXZz7l7g1hpZtaCSlwAI4kNQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+salt+stress+signaling+in+plants&rft.jtitle=Journal+of+integrative+plant+biology&rft.au=Yang%2C+Yongqing&rft.au=Guo%2C+Yan&rft.date=2018-09-01&rft.issn=1672-9072&rft.volume=60&rft.issue=9+p.796-804&rft.spage=796&rft.epage=804&rft_id=info:doi/10.1111%2Fjipb.12689&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzwxb%2Fzwxb.jpg