Unraveling salt stress signaling in plants
Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions. Salt stress can lead to ionic stress, osmotic s...
Saved in:
Published in | Journal of integrative plant biology Vol. 60; no. 9; pp. 796 - 804 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
China (Republic : 1949- )
Wiley Subscription Services, Inc
01.09.2018
State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions. Salt stress can lead to ionic stress, osmotic stress and secondary stresses, particularly oxidative stress, in plants. Therefore, to adapt to salt stress, plants rely on signals and pathways that re‐establish cellular ionic, osmotic, and reactive oxygen species (ROS) homeostasis. Over the past two decades, genetic and biochemical analyses have revealed several core stress signaling pathways that participate in salt resistance. The Salt Overly Sensitive signaling pathway plays a key role in maintaining ionic homeostasis, via extruding sodium ions into the apoplast. Mitogen‐activated protein kinase cascades mediate ionic, osmotic, and ROS homeostasis. SnRK2 (sucrose nonfermenting 1‐related protein kinase 2) proteins are involved in maintaining osmotic homeostasis. In this review, we discuss recent progress in identifying the components and pathways involved in the plant's response to salt stress and their regulatory mechanisms. We also review progress in identifying sensors involved in salt‐induced stress signaling in plants.
Salt stress is the main environmental factor limiting crop productivity. A better understanding of the mechanisms that regulate salt tolerance will help researchers design ways to improve crop performance. In this review, we discuss recent advances in determining the components of plants that respond to salt stress and their regulatory mechanisms. |
---|---|
AbstractList | Salt stress is a major environmental factor limiting plant growth and productivity.A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions.Salt stress can lead to ionic stress,osmotic stress and secondary stresses,particularly oxidative stress,in plants.Therefore,to adapt to salt stress,plants rely on signals and pathways that re-establish cellular ionic,osmotic,and reactive oxygen species (ROS) homeostasis.Over the past two decades,genetic and biochemical analyses have revealed several core stress signaling pathways that participate in salt resistance.The Salt Overly Sensitive signaling pathway plays a key role in maintaining ionic homeostasis,via extruding sodium ions into the apoplast.Mitogenactivated protein kinase cascades mediate ionic,osmotic,and ROS homeostasis.SnRK2 (sucrose nonfermenting 1-related protein kinase 2) proteins are involved in maintaining osmotic homeostasis.In this review,we discuss recent progress in identifying the components and pathways involved in the plant's response to salt stress and their regulatory mechanisms.We also review progress in identifying sensors involved in salt-induced stress signaling in plants. Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions. Salt stress can lead to ionic stress, osmotic stress and secondary stresses, particularly oxidative stress, in plants. Therefore, to adapt to salt stress, plants rely on signals and pathways that re-establish cellular ionic, osmotic, and reactive oxygen species (ROS) homeostasis. Over the past two decades, genetic and biochemical analyses have revealed several core stress signaling pathways that participate in salt resistance. The Salt Overly Sensitive signaling pathway plays a key role in maintaining ionic homeostasis, via extruding sodium ions into the apoplast. Mitogen-activated protein kinase cascades mediate ionic, osmotic, and ROS homeostasis. SnRK2 (sucrose nonfermenting 1-related protein kinase 2) proteins are involved in maintaining osmotic homeostasis. In this review, we discuss recent progress in identifying the components and pathways involved in the plant's response to salt stress and their regulatory mechanisms. We also review progress in identifying sensors involved in salt-induced stress signaling in plants.Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions. Salt stress can lead to ionic stress, osmotic stress and secondary stresses, particularly oxidative stress, in plants. Therefore, to adapt to salt stress, plants rely on signals and pathways that re-establish cellular ionic, osmotic, and reactive oxygen species (ROS) homeostasis. Over the past two decades, genetic and biochemical analyses have revealed several core stress signaling pathways that participate in salt resistance. The Salt Overly Sensitive signaling pathway plays a key role in maintaining ionic homeostasis, via extruding sodium ions into the apoplast. Mitogen-activated protein kinase cascades mediate ionic, osmotic, and ROS homeostasis. SnRK2 (sucrose nonfermenting 1-related protein kinase 2) proteins are involved in maintaining osmotic homeostasis. In this review, we discuss recent progress in identifying the components and pathways involved in the plant's response to salt stress and their regulatory mechanisms. We also review progress in identifying sensors involved in salt-induced stress signaling in plants. Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions. Salt stress can lead to ionic stress, osmotic stress, and secondary stresses, particularly oxidative stress, in plants. Therefore, to adapt to salt stress, plants rely on signals and pathways that re-establish cellular ionic, osmotic, and reactive oxygen species (ROS) homeostasis. Over the past two decades, genetic and biochemical analyses have revealed several core stress signaling pathways that participate in salt resistance. The Salt Overly Sensitive (SOS) signaling pathway plays a key role in maintaining ionic homeostasis, via extruding sodium ions into the apoplast. Mitogen-activated protein kinase (MAPK) cascades mediate ionic, osmotic, and ROS homeostasis. SnRK2 (sucrose nonfermenting 1-related protein kinase 2) proteins are involved in maintaining osmotic homeostasis. In this review, we discuss recent progress in identifying the components and pathways involved in the plant's response to salt stress and their regulatory mechanisms. We also review progress in identifying sensors involved in salt-induced stress signaling in plants. Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions. Salt stress can lead to ionic stress, osmotic stress and secondary stresses, particularly oxidative stress, in plants. Therefore, to adapt to salt stress, plants rely on signals and pathways that re‐establish cellular ionic, osmotic, and reactive oxygen species (ROS) homeostasis. Over the past two decades, genetic and biochemical analyses have revealed several core stress signaling pathways that participate in salt resistance. The Salt Overly Sensitive signaling pathway plays a key role in maintaining ionic homeostasis, via extruding sodium ions into the apoplast. Mitogen‐activated protein kinase cascades mediate ionic, osmotic, and ROS homeostasis. SnRK2 (sucrose nonfermenting 1‐related protein kinase 2) proteins are involved in maintaining osmotic homeostasis. In this review, we discuss recent progress in identifying the components and pathways involved in the plant's response to salt stress and their regulatory mechanisms. We also review progress in identifying sensors involved in salt‐induced stress signaling in plants. Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions. Salt stress can lead to ionic stress, osmotic stress and secondary stresses, particularly oxidative stress, in plants. Therefore, to adapt to salt stress, plants rely on signals and pathways that re‐establish cellular ionic, osmotic, and reactive oxygen species (ROS) homeostasis. Over the past two decades, genetic and biochemical analyses have revealed several core stress signaling pathways that participate in salt resistance. The Salt Overly Sensitive signaling pathway plays a key role in maintaining ionic homeostasis, via extruding sodium ions into the apoplast. Mitogen‐activated protein kinase cascades mediate ionic, osmotic, and ROS homeostasis. SnRK2 (sucrose nonfermenting 1‐related protein kinase 2) proteins are involved in maintaining osmotic homeostasis. In this review, we discuss recent progress in identifying the components and pathways involved in the plant's response to salt stress and their regulatory mechanisms. We also review progress in identifying sensors involved in salt‐induced stress signaling in plants. Salt stress is the main environmental factor limiting crop productivity. A better understanding of the mechanisms that regulate salt tolerance will help researchers design ways to improve crop performance. In this review, we discuss recent advances in determining the components of plants that respond to salt stress and their regulatory mechanisms. |
Author | Yang, Yongqing Guo, Yan |
AuthorAffiliation | State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China |
AuthorAffiliation_xml | – name: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China |
Author_xml | – sequence: 1 givenname: Yongqing surname: Yang fullname: Yang, Yongqing organization: China Agricultural University – sequence: 2 givenname: Yan surname: Guo fullname: Guo, Yan email: guoyan@cau.edu.cn organization: China Agricultural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29905393$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLBDEMx4sovi9-AFkQQRZG0850Ojmq-ETQg55Lp9suXWY7azvr69PbfehBRHNJCL9_EvLfIqu-9YaQPQrHNMXJyE3qY8rKClfIJhVFkQkEXE11KViGINgG2YpxBJBXULJ1ssEQgeeYb5L-kw_qxTTOD3tRNV0vdsHE2Itu6NW863xv0ijfxR2yZlUTze4yb5Ony4vH8-vs7v7q5vz0LtOcMcwKQ42tGK-NzlldpNKCFcgLO8BBrXkJlc4NpZWpLdXVAEprFRZC6Zobznm-TQ4Xc1-Vt8oP5aidhnRMlB-vbzUDWgECzLijBTcJ7fPUxE6OXdSmSceadholozwvaSGQ_Y8CL3NEgSKhBz_Q7_UMENPuFInaX1LTemwGchLcWIV3-fXYBMAC0KGNMRgrtetU51rfBeUaSUHOvJMz7-TcuyTp_5B8Tf0Vpssnuca8_0HK25uHs4XmE9K-pyQ |
CitedBy_id | crossref_primary_10_1111_pbi_13668 crossref_primary_10_1007_s11103_024_01522_0 crossref_primary_10_32615_bp_2020_117 crossref_primary_10_1016_j_chemosphere_2024_141387 crossref_primary_10_1016_j_envexpbot_2021_104744 crossref_primary_10_3390_plants12163007 crossref_primary_10_1016_j_jhazmat_2025_137531 crossref_primary_10_1093_plcell_koac292 crossref_primary_10_3390_ijms21031065 crossref_primary_10_1007_s00344_025_11640_8 crossref_primary_10_1016_j_xplc_2025_101241 crossref_primary_10_1093_hr_uhae055 crossref_primary_10_3390_horticulturae10121239 crossref_primary_10_1038_s41396_021_00974_2 crossref_primary_10_3390_ijms222212534 crossref_primary_10_1007_s10725_025_01305_7 crossref_primary_10_1038_s41438_020_0311_7 crossref_primary_10_1093_lambio_ovac067 crossref_primary_10_1155_2022_5547231 crossref_primary_10_1016_j_envexpbot_2024_105689 crossref_primary_10_1186_s12870_024_05506_6 crossref_primary_10_1016_j_biortech_2024_131466 crossref_primary_10_3390_plants11070876 crossref_primary_10_1016_j_envexpbot_2020_104230 crossref_primary_10_1111_nph_17211 crossref_primary_10_1007_s00122_021_03784_4 crossref_primary_10_1007_s13580_021_00418_y crossref_primary_10_1186_s12870_020_02726_4 crossref_primary_10_1186_s12284_021_00535_3 crossref_primary_10_3389_fpls_2019_00275 crossref_primary_10_3389_fpls_2021_702875 crossref_primary_10_1038_s41437_022_00516_2 crossref_primary_10_1093_hr_uhae040 crossref_primary_10_7554_eLife_99352_3 crossref_primary_10_1007_s00344_022_10875_z crossref_primary_10_1186_s12870_021_03170_8 crossref_primary_10_3389_fgene_2024_1397502 crossref_primary_10_1016_j_envexpbot_2023_105291 crossref_primary_10_1016_j_micres_2022_127225 crossref_primary_10_1038_s41477_023_01550_6 crossref_primary_10_3390_ijms241311080 crossref_primary_10_1111_ppl_13606 crossref_primary_10_3389_fpls_2022_999866 crossref_primary_10_3389_fpls_2022_834027 crossref_primary_10_1111_jac_12779 crossref_primary_10_3390_plants13020305 crossref_primary_10_3390_plants8060147 crossref_primary_10_1016_j_pbi_2022_102269 crossref_primary_10_1016_j_plaphy_2023_01_003 crossref_primary_10_1016_j_micres_2024_127906 crossref_primary_10_1016_j_xplc_2022_100458 crossref_primary_10_1016_j_desal_2024_117395 crossref_primary_10_3390_plants11111497 crossref_primary_10_1093_plphys_kiad370 crossref_primary_10_1080_15548627_2020_1847797 crossref_primary_10_1007_s00344_023_11146_1 crossref_primary_10_3390_agronomy13010174 crossref_primary_10_3390_genes14061151 crossref_primary_10_1186_s12870_025_06311_5 crossref_primary_10_1016_j_algal_2021_102542 crossref_primary_10_3390_agronomy12081849 crossref_primary_10_1016_j_stress_2025_100736 crossref_primary_10_3390_plants13030397 crossref_primary_10_1016_j_cropd_2024_100052 crossref_primary_10_1186_s12870_024_05528_0 crossref_primary_10_1093_hr_uhae157 crossref_primary_10_1186_s43897_021_00006_9 crossref_primary_10_15252_embj_2020105086 crossref_primary_10_1093_plcell_koad119 crossref_primary_10_1007_s10725_024_01132_2 crossref_primary_10_1093_plphys_kiad135 crossref_primary_10_1007_s00425_024_04348_8 crossref_primary_10_1080_17429145_2022_2102259 crossref_primary_10_3390_ijms242216123 crossref_primary_10_3390_ijpb15040076 crossref_primary_10_7717_peerj_15324 crossref_primary_10_1007_s12892_020_00072_3 crossref_primary_10_3389_fpls_2021_751965 crossref_primary_10_3390_ijms22020949 crossref_primary_10_3390_ijms21010138 crossref_primary_10_3390_life12060921 crossref_primary_10_1016_j_agrcom_2024_100050 crossref_primary_10_1038_s41467_022_29809_0 crossref_primary_10_1093_plcell_koac283 crossref_primary_10_1093_plcell_koad250 crossref_primary_10_3389_fpls_2022_857396 crossref_primary_10_3390_plants9030363 crossref_primary_10_3390_ijms252212349 crossref_primary_10_1038_s41477_023_01551_5 crossref_primary_10_1093_hr_uhae262 crossref_primary_10_1186_s42397_024_00188_9 crossref_primary_10_1016_j_plaphy_2019_08_013 crossref_primary_10_3390_cells11132039 crossref_primary_10_1007_s11738_024_03741_w crossref_primary_10_1007_s11240_022_02427_w crossref_primary_10_3389_fpls_2023_1283590 crossref_primary_10_3390_ijms22116125 crossref_primary_10_1371_journal_pone_0250926 crossref_primary_10_3389_fpls_2021_771746 crossref_primary_10_1590_1983_40632023v5375695 crossref_primary_10_3390_metabo11120820 crossref_primary_10_1007_s00425_023_04141_z crossref_primary_10_1073_pnas_2207275119 crossref_primary_10_3389_fpls_2023_1092616 crossref_primary_10_1007_s00299_023_03052_3 crossref_primary_10_3389_fpls_2024_1442286 crossref_primary_10_3389_fpls_2022_859224 crossref_primary_10_1007_s42535_023_00696_0 crossref_primary_10_1016_j_cj_2020_02_001 crossref_primary_10_1002_ece3_70940 crossref_primary_10_3390_plants12173130 crossref_primary_10_1111_gcbb_12910 crossref_primary_10_1038_s41477_019_0565_y crossref_primary_10_3390_ijms252010940 crossref_primary_10_1016_j_molp_2021_03_003 crossref_primary_10_3390_ijms23147645 crossref_primary_10_1111_jipb_13058 crossref_primary_10_1016_j_bcab_2023_102892 crossref_primary_10_1016_j_jenvman_2023_119488 crossref_primary_10_1002_fes3_384 crossref_primary_10_1016_j_plaphy_2020_11_033 crossref_primary_10_1073_pnas_2212950119 crossref_primary_10_3390_plants13020233 crossref_primary_10_3389_fpls_2023_1122347 crossref_primary_10_1016_j_bcab_2019_101027 crossref_primary_10_3390_soilsystems6030069 crossref_primary_10_1016_j_molp_2023_07_005 crossref_primary_10_1007_s00344_024_11429_1 crossref_primary_10_3389_fpls_2022_823547 crossref_primary_10_3390_ijms26010331 crossref_primary_10_3390_plants13192790 crossref_primary_10_1007_s00299_023_03087_6 crossref_primary_10_1111_nph_18340 crossref_primary_10_1111_tpj_15769 crossref_primary_10_3389_fpls_2021_760863 crossref_primary_10_1080_15592324_2021_2000808 crossref_primary_10_1007_s11104_023_06444_2 crossref_primary_10_1016_j_stress_2024_100482 crossref_primary_10_1007_s10142_023_01219_5 crossref_primary_10_1016_j_plaphy_2020_10_001 crossref_primary_10_3389_fpls_2022_974625 crossref_primary_10_1016_j_envexpbot_2022_105191 crossref_primary_10_3390_agriculture14050661 crossref_primary_10_1016_j_micres_2023_127568 crossref_primary_10_3390_f15081344 crossref_primary_10_47115_bsagriculture_1110338 crossref_primary_10_1016_j_cpb_2024_100380 crossref_primary_10_1016_j_micres_2024_127707 crossref_primary_10_3390_oxygen2030025 crossref_primary_10_1186_s12284_023_00637_0 crossref_primary_10_3390_antiox11091782 crossref_primary_10_1007_s11356_022_18745_7 crossref_primary_10_3390_ijms242216157 crossref_primary_10_3390_ijms23042085 crossref_primary_10_1016_j_scib_2023_04_034 crossref_primary_10_1007_s00203_020_02082_9 crossref_primary_10_1111_ppl_13805 crossref_primary_10_22207_JPAM_17_3_59 crossref_primary_10_1111_pbr_12937 crossref_primary_10_3390_ijms241612761 crossref_primary_10_1007_s13205_021_03050_w crossref_primary_10_3390_biom11060788 crossref_primary_10_3390_ijms22041543 crossref_primary_10_1016_j_devcel_2020_08_005 crossref_primary_10_1016_j_plantsci_2021_111052 crossref_primary_10_1016_j_plantsci_2021_111174 crossref_primary_10_1016_j_envexpbot_2024_105783 crossref_primary_10_1186_s12864_024_10000_2 crossref_primary_10_1016_j_envexpbot_2021_104698 crossref_primary_10_1038_s41596_024_01068_x crossref_primary_10_1016_j_stress_2023_100280 crossref_primary_10_3390_agronomy14051048 crossref_primary_10_32615_ps_2023_012 crossref_primary_10_1016_j_jece_2024_113758 crossref_primary_10_1016_j_stress_2025_100761 crossref_primary_10_3389_fpls_2022_949541 crossref_primary_10_1016_j_scienta_2023_112496 crossref_primary_10_3390_ijms241311141 crossref_primary_10_1186_s12864_022_08876_z crossref_primary_10_3390_plants11081009 crossref_primary_10_3390_ijms25147707 crossref_primary_10_1186_s12284_025_00764_w crossref_primary_10_1016_j_sajb_2020_12_003 crossref_primary_10_3389_fpls_2023_1258498 crossref_primary_10_1016_j_envexpbot_2022_105172 crossref_primary_10_32604_phyton_2025_060096 crossref_primary_10_3390_plants11091167 crossref_primary_10_1016_j_cj_2021_05_010 crossref_primary_10_1093_bib_bbz039 crossref_primary_10_1016_j_niox_2022_08_005 crossref_primary_10_1007_s12298_023_01333_5 crossref_primary_10_3390_horticulturae8040302 crossref_primary_10_1186_s12870_023_04335_3 crossref_primary_10_3389_fpls_2023_1095929 crossref_primary_10_24326_asphc_2023_4603 crossref_primary_10_3389_fpls_2022_953450 crossref_primary_10_3390_horticulturae10050466 crossref_primary_10_3389_fgene_2024_1394091 crossref_primary_10_3389_fpls_2023_1165687 crossref_primary_10_3390_genes15060695 crossref_primary_10_3389_fpls_2022_894710 crossref_primary_10_1007_s13258_021_01163_3 crossref_primary_10_3390_genes13101904 crossref_primary_10_3390_ijms23094781 crossref_primary_10_1111_tpj_16921 crossref_primary_10_3390_plants11060795 crossref_primary_10_1002_sae2_12083 crossref_primary_10_3390_agronomy13123034 crossref_primary_10_1111_pce_14703 crossref_primary_10_1111_jipb_13372 crossref_primary_10_3390_horticulturae7040088 crossref_primary_10_1021_acs_jafc_3c01383 crossref_primary_10_3390_horticulturae10030297 crossref_primary_10_1038_s44318_024_00357_1 crossref_primary_10_3390_plants14020262 crossref_primary_10_3390_horticulturae10020139 crossref_primary_10_1111_jipb_13256 crossref_primary_10_3389_fpls_2022_946922 crossref_primary_10_3390_ijms23094659 crossref_primary_10_3389_fpls_2022_955880 crossref_primary_10_1111_nph_20225 crossref_primary_10_1016_j_devcel_2019_02_010 crossref_primary_10_1016_j_envexpbot_2022_104856 crossref_primary_10_1016_j_jgg_2024_10_016 crossref_primary_10_3390_antiox11030598 crossref_primary_10_3390_ijms251810077 crossref_primary_10_1016_j_psep_2022_10_040 crossref_primary_10_1016_j_plaphy_2020_09_023 crossref_primary_10_1038_s41598_020_66604_7 crossref_primary_10_3389_fpls_2019_00549 crossref_primary_10_3389_fpls_2022_1083409 crossref_primary_10_3389_fpls_2023_1152485 crossref_primary_10_1016_j_plantsci_2024_112379 crossref_primary_10_1016_j_stress_2025_100789 crossref_primary_10_1021_acs_jafc_1c01096 crossref_primary_10_1007_s11104_022_05482_6 crossref_primary_10_1007_s10725_024_01127_z crossref_primary_10_3390_antiox11122362 crossref_primary_10_1007_s11427_020_1910_1 crossref_primary_10_1111_jac_70007 crossref_primary_10_3390_ijms23073960 crossref_primary_10_3390_ijms231810515 crossref_primary_10_1016_j_plantsci_2024_112130 crossref_primary_10_1016_j_jafr_2023_100947 crossref_primary_10_3390_molecules27248746 crossref_primary_10_1016_j_envexpbot_2022_104842 crossref_primary_10_1016_j_micres_2020_126439 crossref_primary_10_1186_s12870_020_02548_4 crossref_primary_10_3390_plants12112197 crossref_primary_10_1134_S1021443721020163 crossref_primary_10_1038_s41467_023_39167_0 crossref_primary_10_1134_S1062359024607171 crossref_primary_10_7554_eLife_99352 crossref_primary_10_1007_s44154_022_00040_7 crossref_primary_10_3389_fpls_2019_00319 crossref_primary_10_3390_ijms242417252 crossref_primary_10_1186_s12864_021_08286_7 crossref_primary_10_3389_fpls_2020_571864 crossref_primary_10_1016_j_plantsci_2024_112023 crossref_primary_10_1111_ppl_13330 crossref_primary_10_3389_fpls_2022_847863 crossref_primary_10_1016_j_plantsci_2024_112261 crossref_primary_10_3390_plants9111558 crossref_primary_10_1016_j_molp_2021_07_020 crossref_primary_10_1016_j_molp_2020_05_010 crossref_primary_10_3390_ijms252211891 crossref_primary_10_1093_jxb_eraf057 crossref_primary_10_1093_plcell_koaf034 crossref_primary_10_3390_horticulturae7100342 crossref_primary_10_1111_jipb_13382 crossref_primary_10_3390_ijms23158818 crossref_primary_10_1016_j_ncrops_2025_100067 crossref_primary_10_1186_s12870_024_04921_z crossref_primary_10_31857_S0015330324010088 crossref_primary_10_3389_fpls_2020_01185 crossref_primary_10_1007_s10725_024_01125_1 crossref_primary_10_3390_agronomy13020386 crossref_primary_10_1111_jipb_13022 crossref_primary_10_1093_pcp_pcae025 crossref_primary_10_1007_s11104_021_04918_9 crossref_primary_10_1016_j_cj_2024_02_007 crossref_primary_10_1111_pce_14908 crossref_primary_10_3389_fpls_2019_01431 crossref_primary_10_3389_fpls_2022_891361 crossref_primary_10_3390_plants12081666 crossref_primary_10_1111_pce_13810 crossref_primary_10_1134_S1021443724604166 crossref_primary_10_3390_f15010138 crossref_primary_10_3390_plants13010046 crossref_primary_10_1016_j_ijbiomac_2024_138943 crossref_primary_10_3390_plants13141990 crossref_primary_10_1111_jam_15095 crossref_primary_10_1016_j_ijbiomac_2022_05_004 crossref_primary_10_1186_s42397_021_00085_5 crossref_primary_10_3389_fpls_2024_1384246 crossref_primary_10_1111_jipb_13332 crossref_primary_10_1016_j_scienta_2024_112919 crossref_primary_10_3389_fpls_2024_1482739 crossref_primary_10_1007_s11627_020_10058_z crossref_primary_10_1007_s44279_024_00105_3 crossref_primary_10_1016_j_plantsci_2024_112181 crossref_primary_10_1016_j_sajb_2022_04_045 crossref_primary_10_1186_s12870_021_03274_1 crossref_primary_10_61186_jcb_15_45_205 crossref_primary_10_1186_s40538_023_00510_8 crossref_primary_10_3390_plants12223849 crossref_primary_10_1016_j_envexpbot_2022_104937 crossref_primary_10_1016_j_scienta_2022_111283 crossref_primary_10_1186_s12864_025_11368_5 crossref_primary_10_1186_s12864_020_07260_z crossref_primary_10_3389_fpls_2021_807739 crossref_primary_10_1007_s00344_020_10259_1 crossref_primary_10_1038_s41477_023_01552_4 crossref_primary_10_1186_s12870_022_03646_1 crossref_primary_10_1016_j_eti_2025_104101 crossref_primary_10_56093_aaz_v63i4_155494 crossref_primary_10_1002_pld3_564 crossref_primary_10_1021_acssynbio_3c00024 crossref_primary_10_15835_nbha49312063 crossref_primary_10_1111_jipb_13326 crossref_primary_10_1016_j_scienta_2023_112509 crossref_primary_10_3389_fpls_2022_881456 crossref_primary_10_1111_ppl_13642 crossref_primary_10_1111_jipb_13562 crossref_primary_10_1016_j_plaphy_2019_01_027 crossref_primary_10_1016_j_molp_2023_09_001 crossref_primary_10_1016_j_jgg_2023_04_010 crossref_primary_10_1071_CP19219 crossref_primary_10_3390_molecules26092576 crossref_primary_10_3389_fpls_2019_01453 crossref_primary_10_3390_ijms222111897 crossref_primary_10_1007_s00344_021_10441_z crossref_primary_10_1111_pbi_13927 crossref_primary_10_3390_f14020191 crossref_primary_10_1016_j_jia_2024_08_029 crossref_primary_10_3389_fpls_2023_1034393 crossref_primary_10_1007_s11295_019_1400_3 crossref_primary_10_1111_nph_19382 crossref_primary_10_46653_jhst23062025 crossref_primary_10_1093_pcp_pcae040 crossref_primary_10_3389_fpls_2023_1104070 crossref_primary_10_3390_biology11071022 crossref_primary_10_1021_acsfoodscitech_4c00832 crossref_primary_10_1007_s12275_021_0317_3 crossref_primary_10_1016_j_envpol_2022_120863 crossref_primary_10_7717_peerj_9742 crossref_primary_10_3390_f12050611 crossref_primary_10_3390_genes13081476 crossref_primary_10_1016_j_scienta_2024_113907 crossref_primary_10_1111_jipb_13599 crossref_primary_10_3390_antiox12020228 crossref_primary_10_7717_peerj_9749 crossref_primary_10_1007_s00344_024_11367_y crossref_primary_10_1016_j_envexpbot_2021_104513 crossref_primary_10_1016_j_rsci_2022_05_002 crossref_primary_10_1016_j_envexpbot_2020_104210 crossref_primary_10_3390_ijms20040894 crossref_primary_10_1016_j_plaphy_2021_03_019 crossref_primary_10_3390_plants14020145 crossref_primary_10_1016_j_plaphy_2024_109033 crossref_primary_10_1038_s41598_022_05700_2 crossref_primary_10_14302_issn_2576_6694_jbbs_20_3525 crossref_primary_10_1016_j_envexpbot_2022_104917 crossref_primary_10_1007_s11103_024_01470_9 crossref_primary_10_1007_s10811_021_02559_0 crossref_primary_10_1016_j_aac_2023_08_006 crossref_primary_10_3389_fpls_2023_1110622 crossref_primary_10_1186_s12870_023_04660_7 crossref_primary_10_1111_ppl_13425 crossref_primary_10_1080_15592324_2019_1573097 crossref_primary_10_1016_j_ijbiomac_2023_123255 crossref_primary_10_3389_fpls_2022_938262 crossref_primary_10_3389_fpls_2022_973471 crossref_primary_10_1007_s10681_022_03037_5 crossref_primary_10_1093_jxb_erz458 crossref_primary_10_1007_s11105_020_01226_x crossref_primary_10_3390_ijms23095231 crossref_primary_10_3390_plants8030064 crossref_primary_10_3389_fpls_2025_1527952 crossref_primary_10_1016_j_sajb_2023_06_029 crossref_primary_10_1007_s11816_022_00787_5 crossref_primary_10_1186_s13059_022_02718_7 crossref_primary_10_3390_genes14081586 crossref_primary_10_1016_j_jplph_2023_153916 crossref_primary_10_3389_fpls_2024_1497362 crossref_primary_10_32604_phyton_2024_053914 crossref_primary_10_17221_449_2024_PSE crossref_primary_10_2116_analsci_20P281 crossref_primary_10_3389_fpls_2021_797141 crossref_primary_10_1016_j_chemosphere_2022_136911 crossref_primary_10_1016_j_plantsci_2020_110465 crossref_primary_10_3390_antiox14030353 crossref_primary_10_3390_ijms22094609 crossref_primary_10_1186_s12870_021_03351_5 crossref_primary_10_1016_j_envexpbot_2023_105604 crossref_primary_10_1016_j_pld_2020_06_010 crossref_primary_10_1080_15226514_2021_1889963 crossref_primary_10_1007_s11033_022_07548_1 crossref_primary_10_3389_fpls_2022_1010654 crossref_primary_10_1007_s00709_020_01533_w crossref_primary_10_1111_plb_13360 crossref_primary_10_3390_ijpb14020030 crossref_primary_10_3390_plants12091897 crossref_primary_10_1007_s42729_024_02104_1 crossref_primary_10_3389_fpls_2022_992799 crossref_primary_10_3389_fpls_2023_1240164 crossref_primary_10_1186_s12870_023_04399_1 crossref_primary_10_3389_fpls_2019_00940 crossref_primary_10_1016_j_sjbs_2021_06_062 crossref_primary_10_1111_nph_16921 crossref_primary_10_1186_s42397_023_00162_x crossref_primary_10_3390_antiox9070603 crossref_primary_10_1016_j_ijbiomac_2023_125691 crossref_primary_10_1111_jipb_13640 crossref_primary_10_1186_s12864_024_10051_5 crossref_primary_10_1111_tpj_17032 crossref_primary_10_3390_plants13131840 crossref_primary_10_1016_j_fmre_2024_06_010 crossref_primary_10_1038_s41587_023_01950_1 crossref_primary_10_1016_j_plaphy_2023_108099 crossref_primary_10_1016_j_ijbiomac_2022_10_240 crossref_primary_10_1016_j_sajb_2021_09_011 crossref_primary_10_1007_s11104_023_05881_3 crossref_primary_10_1002_ldr_3717 crossref_primary_10_52547_jcb_13_39_108 crossref_primary_10_1016_j_plaphy_2021_10_014 crossref_primary_10_1007_s11032_020_1100_6 crossref_primary_10_1021_acs_jafc_3c08528 crossref_primary_10_1016_j_indcrop_2023_116900 crossref_primary_10_3390_ijms23137290 crossref_primary_10_1016_j_sajb_2023_07_051 crossref_primary_10_1016_j_niox_2024_01_002 crossref_primary_10_1016_j_jplph_2022_153616 crossref_primary_10_1016_j_jplph_2022_153737 crossref_primary_10_3390_hydrobiology2010011 crossref_primary_10_1038_s41467_022_33420_8 crossref_primary_10_1016_j_scitotenv_2024_170326 crossref_primary_10_3390_cimb45070374 crossref_primary_10_3389_fpls_2024_1361422 crossref_primary_10_1016_j_plaphy_2019_12_001 crossref_primary_10_1111_jipb_13793 crossref_primary_10_3390_agronomy14102368 crossref_primary_10_1016_j_flora_2021_151963 crossref_primary_10_1186_s13068_023_02286_3 crossref_primary_10_3390_horticulturae8070651 crossref_primary_10_1007_s10668_023_03199_9 crossref_primary_10_3389_fpls_2023_1277762 crossref_primary_10_1007_s00468_024_02577_8 crossref_primary_10_1038_s41598_024_82151_x crossref_primary_10_15252_embr_202152457 crossref_primary_10_1007_s00299_024_03272_1 crossref_primary_10_3390_agriculture14122321 crossref_primary_10_1016_j_scienta_2022_111581 crossref_primary_10_3389_fpls_2023_1185440 crossref_primary_10_3390_f12040454 crossref_primary_10_1016_j_cj_2022_03_006 crossref_primary_10_1016_j_jia_2023_09_018 crossref_primary_10_1080_07388551_2022_2129579 crossref_primary_10_3390_ijms26062588 crossref_primary_10_1016_j_jgg_2023_09_006 crossref_primary_10_1016_j_cj_2022_03_004 crossref_primary_10_3390_plants10102204 crossref_primary_10_3390_ijms19113298 crossref_primary_10_1111_tpj_17136 crossref_primary_10_1007_s00425_023_04224_x crossref_primary_10_3390_ijms22115957 crossref_primary_10_1007_s00425_022_03847_w crossref_primary_10_1038_s41598_020_62057_0 crossref_primary_10_1016_j_jclepro_2021_126453 crossref_primary_10_1186_s40529_022_00337_w crossref_primary_10_1007_s12633_024_02937_6 crossref_primary_10_1016_j_foodchem_2023_138151 crossref_primary_10_1007_s11738_019_2935_5 crossref_primary_10_3390_plants12203559 crossref_primary_10_1016_j_jenvman_2024_123122 crossref_primary_10_3390_plants11121565 crossref_primary_10_3390_plants12203558 crossref_primary_10_1038_s41477_025_01942_w crossref_primary_10_1111_jipb_13605 crossref_primary_10_1016_j_ijbiomac_2024_133885 crossref_primary_10_1016_j_jplph_2021_153544 crossref_primary_10_3390_plants12162927 crossref_primary_10_3390_ijms242316958 crossref_primary_10_1186_s12864_024_11101_8 crossref_primary_10_1007_s12374_021_09327_0 crossref_primary_10_1016_j_plaphy_2025_109518 crossref_primary_10_1111_jipb_12996 crossref_primary_10_3389_fpls_2023_1268750 crossref_primary_10_2174_1570164618666210413105907 crossref_primary_10_1080_09205063_2024_2399395 crossref_primary_10_1111_nph_17937 crossref_primary_10_1007_s44154_022_00036_3 crossref_primary_10_1080_01140671_2024_2347534 crossref_primary_10_1186_s12870_024_05708_y crossref_primary_10_1038_s41598_024_77161_8 crossref_primary_10_1016_j_algal_2025_104016 crossref_primary_10_3389_fpls_2023_1217193 crossref_primary_10_3389_fpls_2022_934877 crossref_primary_10_7717_peerj_10486 crossref_primary_10_1007_s11033_022_07179_6 crossref_primary_10_1007_s12042_020_09265_0 crossref_primary_10_1016_j_jhazmat_2024_135975 crossref_primary_10_3390_plants13121637 crossref_primary_10_1016_j_ijbiomac_2025_141772 crossref_primary_10_1111_ppl_13492 crossref_primary_10_1111_jipb_13632 crossref_primary_10_1186_s12284_023_00663_y crossref_primary_10_1111_ppl_13010 crossref_primary_10_1016_j_plaphy_2024_108337 crossref_primary_10_1038_s41576_021_00413_0 crossref_primary_10_1093_jxb_erz481 crossref_primary_10_1111_tpj_16395 crossref_primary_10_3390_molecules26040782 crossref_primary_10_1007_s00709_022_01789_4 crossref_primary_10_1016_j_plaphy_2021_01_029 crossref_primary_10_3390_su152115569 crossref_primary_10_1111_jipb_13745 crossref_primary_10_1111_ppl_13380 crossref_primary_10_1007_s11274_020_2804_9 crossref_primary_10_1016_j_asoc_2023_110153 crossref_primary_10_3390_ijms25126354 crossref_primary_10_1038_s41438_019_0172_0 crossref_primary_10_3390_plants12091834 crossref_primary_10_3390_plants10020367 crossref_primary_10_3390_cells11182806 crossref_primary_10_1016_j_desal_2020_114527 crossref_primary_10_1007_s00122_023_04461_4 crossref_primary_10_1007_s00468_023_02468_4 crossref_primary_10_3389_fpls_2022_976341 crossref_primary_10_1016_j_tplants_2023_04_003 crossref_primary_10_1111_nph_17860 crossref_primary_10_1186_s12870_023_04060_x crossref_primary_10_3390_agronomy14112478 crossref_primary_10_1007_s11356_023_29993_6 crossref_primary_10_1186_s12864_024_10114_7 crossref_primary_10_1111_tpj_16489 crossref_primary_10_3390_ijms21218385 crossref_primary_10_3389_fpls_2021_794020 crossref_primary_10_3390_genes14081621 crossref_primary_10_1016_j_hpj_2024_07_006 crossref_primary_10_3390_biology9090297 crossref_primary_10_3390_cells12162082 crossref_primary_10_3389_fpls_2021_705883 crossref_primary_10_1016_j_plantsci_2023_111794 crossref_primary_10_1111_pce_15246 crossref_primary_10_3390_ijpb13030031 crossref_primary_10_1016_j_apsoil_2021_104142 crossref_primary_10_1016_j_ijbiomac_2023_125162 crossref_primary_10_1016_j_ecoenv_2022_114451 crossref_primary_10_1016_j_scienta_2023_111905 crossref_primary_10_1016_j_ijbiomac_2023_127466 crossref_primary_10_1007_s12041_023_01456_4 crossref_primary_10_1016_j_jplph_2020_153361 crossref_primary_10_1007_s11103_024_01431_2 crossref_primary_10_1038_s41467_019_14027_y crossref_primary_10_1088_1755_1315_1226_1_012022 crossref_primary_10_1016_j_marenvres_2025_107000 crossref_primary_10_3389_fpls_2022_842726 crossref_primary_10_1016_j_plaphy_2020_06_041 crossref_primary_10_1007_s10265_022_01424_6 crossref_primary_10_1016_j_sajb_2023_08_043 crossref_primary_10_1093_plphys_kiae633 crossref_primary_10_3389_fpls_2020_584167 crossref_primary_10_1002_gch2_202200025 crossref_primary_10_1016_j_envexpbot_2023_105417 crossref_primary_10_3390_plants13152142 crossref_primary_10_1016_j_plaphy_2021_07_040 crossref_primary_10_3390_plants11081036 crossref_primary_10_3390_plants12061283 crossref_primary_10_1093_treephys_tpac053 crossref_primary_10_3390_agronomy13051249 crossref_primary_10_1016_j_algal_2022_102794 crossref_primary_10_1016_j_ijbiomac_2025_139542 crossref_primary_10_1371_journal_pone_0236129 crossref_primary_10_3390_plants12061285 crossref_primary_10_3389_fpls_2022_1053699 crossref_primary_10_1007_s11756_022_01068_w crossref_primary_10_3390_horticulturae10080780 crossref_primary_10_1016_j_stress_2022_100059 crossref_primary_10_1080_15592324_2023_2231202 crossref_primary_10_1093_plphys_kiad539 crossref_primary_10_1016_j_plantsci_2021_111099 crossref_primary_10_1016_j_scienta_2022_110998 crossref_primary_10_1111_jipb_12864 crossref_primary_10_1016_j_plaphy_2023_108137 crossref_primary_10_1016_j_envexpbot_2022_105144 crossref_primary_10_3389_fpls_2022_1040142 crossref_primary_10_1016_j_plantsci_2021_111096 crossref_primary_10_1016_j_plaphy_2024_108414 crossref_primary_10_1186_s12951_022_01370_4 crossref_primary_10_3390_ijms232113542 crossref_primary_10_3390_plants12132450 crossref_primary_10_1007_s10811_024_03236_8 crossref_primary_10_1016_j_celrep_2021_109384 crossref_primary_10_1016_j_plantsci_2020_110654 crossref_primary_10_1186_s12870_023_04659_0 crossref_primary_10_15252_embj_2022112401 crossref_primary_10_1016_j_eti_2024_103571 crossref_primary_10_1007_s42729_020_00275_1 crossref_primary_10_1093_hr_uhac244 crossref_primary_10_1016_j_plaphy_2024_108548 crossref_primary_10_1186_s12864_024_11069_5 crossref_primary_10_1007_s00344_024_11546_x crossref_primary_10_1111_pbi_70042 crossref_primary_10_1016_j_jgg_2022_05_007 crossref_primary_10_1080_00103624_2024_2383263 crossref_primary_10_3389_fpls_2023_1167145 crossref_primary_10_1007_s00344_024_11601_7 crossref_primary_10_1093_plcell_koad105 crossref_primary_10_1111_jipb_12800 crossref_primary_10_3390_ijms252413559 crossref_primary_10_1007_s00425_024_04373_7 crossref_primary_10_1111_pbi_14553 crossref_primary_10_1016_j_jgg_2023_08_007 crossref_primary_10_3390_ijms242216415 crossref_primary_10_1016_j_jplph_2022_153793 crossref_primary_10_3390_ijms23063279 crossref_primary_10_3390_agriengineering6040227 crossref_primary_10_1111_pce_15438 crossref_primary_10_1371_journal_pone_0286957 crossref_primary_10_3390_biology14030281 crossref_primary_10_3390_ijms24043638 crossref_primary_10_1016_j_micpath_2021_104909 crossref_primary_10_3390_ijms22158327 crossref_primary_10_5897_IJPPB2022_0317 crossref_primary_10_1007_s11033_022_07495_x crossref_primary_10_3390_ijms22147313 crossref_primary_10_1016_j_tplants_2020_06_008 crossref_primary_10_1111_nph_18635 crossref_primary_10_3389_fpls_2023_1226041 crossref_primary_10_3389_fpls_2021_646425 crossref_primary_10_3390_agriculture12050658 crossref_primary_10_7717_peerj_15668 crossref_primary_10_1016_j_cj_2021_02_010 crossref_primary_10_1111_nph_18501 crossref_primary_10_1111_tpj_16696 crossref_primary_10_1111_nph_16324 crossref_primary_10_1111_nph_16445 crossref_primary_10_1111_ppl_14170 crossref_primary_10_1093_plcell_koad117 crossref_primary_10_1016_j_ijbiomac_2024_137294 crossref_primary_10_3390_genes11070803 crossref_primary_10_1093_plcell_koab292 crossref_primary_10_3389_fpls_2021_741641 crossref_primary_10_48130_grares_0025_0010 crossref_primary_10_1093_hr_uhac067 crossref_primary_10_1111_pce_14002 crossref_primary_10_1016_j_stress_2024_100403 crossref_primary_10_3390_horticulturae9010089 crossref_primary_10_1007_s11103_022_01282_9 crossref_primary_10_1093_hr_uhae243 crossref_primary_10_3390_ijms25074111 crossref_primary_10_3390_agronomy10101559 crossref_primary_10_1111_pbi_14450 crossref_primary_10_1016_j_plaphy_2023_108306 crossref_primary_10_1016_j_plaphy_2024_108601 crossref_primary_10_1093_plphys_kiae559 crossref_primary_10_1093_jxb_erad368 crossref_primary_10_1111_jipb_12707 crossref_primary_10_1080_15592324_2025_2479513 crossref_primary_10_1016_j_indcrop_2024_118280 crossref_primary_10_3390_ijms25179355 crossref_primary_10_1007_s12355_024_01451_8 crossref_primary_10_1016_j_cj_2023_06_001 crossref_primary_10_1007_s00248_023_02190_1 crossref_primary_10_3390_jof8101092 crossref_primary_10_1007_s11103_022_01272_x crossref_primary_10_1016_j_plaphy_2019_05_013 crossref_primary_10_1021_acs_jafc_2c07493 crossref_primary_10_1093_nsr_nwaa149 crossref_primary_10_3389_fgene_2024_1464537 crossref_primary_10_1007_s00425_023_04232_x crossref_primary_10_1007_s10265_021_01284_6 crossref_primary_10_1186_s12302_023_00788_3 crossref_primary_10_1007_s10725_024_01176_4 crossref_primary_10_1007_s12298_024_01455_4 crossref_primary_10_1016_j_scienta_2024_113368 crossref_primary_10_3390_ijms22169009 crossref_primary_10_3390_metabo13091030 crossref_primary_10_3389_fchem_2022_967404 crossref_primary_10_3390_ijms24054426 crossref_primary_10_1007_s00344_022_10774_3 crossref_primary_10_3389_fpls_2022_982622 crossref_primary_10_3390_agronomy13051213 crossref_primary_10_3389_fpls_2024_1451469 crossref_primary_10_3390_plants13050586 crossref_primary_10_1186_s12870_021_03082_7 crossref_primary_10_3390_agronomy11020400 crossref_primary_10_1111_tpj_15109 crossref_primary_10_1016_j_plaphy_2019_11_011 crossref_primary_10_3390_ijms23169340 crossref_primary_10_1007_s42729_024_02125_w crossref_primary_10_29130_dubited_1171221 crossref_primary_10_3389_fpls_2023_1154088 crossref_primary_10_3390_f13101685 crossref_primary_10_1186_s12870_025_06359_3 crossref_primary_10_1016_j_jclepro_2021_130205 crossref_primary_10_3390_plants10122594 crossref_primary_10_3390_plants12122332 crossref_primary_10_1016_j_plaphy_2024_108504 crossref_primary_10_1007_s42535_022_00541_w crossref_primary_10_1016_j_plaphy_2020_12_015 crossref_primary_10_3389_fpls_2022_843994 crossref_primary_10_3389_fpls_2024_1408642 crossref_primary_10_1002_jsfa_12284 crossref_primary_10_1016_j_envexpbot_2024_105931 crossref_primary_10_3390_plants13040557 crossref_primary_10_3389_fpls_2023_1284480 crossref_primary_10_1007_s00344_022_10787_y crossref_primary_10_3389_fpls_2022_1063436 |
Cites_doi | 10.1007/s00299-011-1157-0 10.1111/tpj.12123 10.1111/j.1469-8137.2008.02531.x 10.1126/science.aac6014 10.1093/jxb/eru159 10.1146/annurev.arplant.53.091401.143329 10.1016/S1360-1385(01)01923-9 10.1016/j.plaphy.2015.06.014 10.1105/tpc.17.01000 10.1105/tpc.12.9.1667 10.1104/pp.124.3.941 10.1016/S0958-1669(02)00298-7 10.1093/mp/ssn079 10.1105/tpc.109.066217 10.1016/j.bbrc.2011.07.064 10.1016/j.molcel.2004.06.023 10.1105/tpc.111.095273 10.1093/molbev/msu152 10.1128/MCB.00430-07 10.1038/nature02353 10.1126/science.280.5371.1943 10.1111/nph.14920 10.1105/tpc.105.035626 10.1093/pcp/pcw111 10.1073/pnas.122224699 10.1105/TPC.010021 10.1007/s00299-010-0872-2 10.1105/tpc.114.135095 10.1104/pp.114.237891 10.1016/j.jmb.2012.09.015 10.1093/aob/mcl107 10.1146/annurev.arplant.59.032607.092911 10.1016/j.febslet.2007.04.032 10.1038/nplants.2016.204 10.3389/fphys.2017.00509 10.1105/tpc.112.097139 10.1105/tpc.106.044230 10.1007/s00299-013-1507-1 10.1074/jbc.M801392200 10.1104/pp.15.00729 10.1093/aob/mcu239 10.1038/ncomms2357 10.1073/pnas.2034853100 10.5402/2012/927436 10.1016/j.jgg.2017.03.009 10.1105/tpc.114.125187 10.1111/pce.12222 10.1104/pp.104.049213 10.1016/j.plantsci.2014.08.007 10.1073/pnas.97.7.3735 10.1016/j.cell.2016.08.029 10.1016/j.plaphy.2014.07.019 10.1105/tpc.16.00143 10.1105/tpc.111.089581 10.1073/pnas.97.6.2940 10.1016/j.cell.2006.06.011 10.1105/tpc.113.117069 10.1074/jbc.M307982200 10.1105/tpc.106.042291 10.1007/s11103-016-0520-5 10.1016/j.tplants.2005.05.009 10.1016/j.abb.2006.05.001 10.1038/nature13593 10.1046/j.0016-8025.2001.00808.x 10.1007/s00709-013-0496-9 10.1073/pnas.1519555113 10.1073/pnas.1018921108 10.1111/j.1469-8137.2010.03422.x 10.1073/pnas.1511238112 10.1105/tpc.109.071985 10.1074/jbc.M405259200 10.1111/tpj.13465 10.1105/tpc.109.069609 10.1104/pp.106.089151 10.1126/science.7112124 |
ContentType | Journal Article |
Copyright | 2018 Institute of Botany, Chinese Academy of Sciences This article is protected by copyright. All rights reserved. 2018 Institute of Botany, Chinese Academy of Sciences. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2018 Institute of Botany, Chinese Academy of Sciences – notice: This article is protected by copyright. All rights reserved. – notice: 2018 Institute of Botany, Chinese Academy of Sciences. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION NPM 7QO 7T7 8FD C1K FR3 P64 RC3 7X8 7S9 L.6 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1111/jipb.12689 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Genetics Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1744-7909 |
EndPage | 804 |
ExternalDocumentID | zwxb201809005 29905393 10_1111_jipb_12689 JIPB12689 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Genetically Modified Organisms Breeding Major Projects funderid: 2016ZX08009002 – fundername: National Natural Science Foundation of China funderid: 31430012; 31670260; U1706201 – fundername: National Basic Research Program of China funderid: 2015CB910202 – fundername: the National Genetically Modified Organisms Breeding Major Projects; National Natural Science Foundation of China; National Basic Research Program of China funderid: (2016ZX08009002); (31430012,31670260,U1706201); (2015CB910202) |
GroupedDBID | --- -SA -S~ .3N .GA .Y3 05W 0R~ 10A 1OC 29K 2B. 2C. 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VR 5VS 5XA 5XB 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 92E 92I 92Q 930 93N A03 A8Z AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXDM AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFUIB AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CAJEA CCEZO CCVFK CHBEP CHDYS COF CS3 CW9 D-E D-F D-I DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN ESX F00 F01 F04 F5P FA0 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q-- Q.N Q11 QB0 R.K ROL RX1 SJN SUPJJ SV3 TCJ TGP TUS U1G U5K UB1 W8V W99 WBKPD WFFXF WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QO 7T7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 RC3 7X8 7S9 L.6 4A8 PSX |
ID | FETCH-LOGICAL-c5229-4e1ef825bec32b4f82f0f7954fd9dbc5608c3e118ebf1c8d06ffa947acb5e5553 |
IEDL.DBID | DR2 |
ISSN | 1672-9072 1744-7909 |
IngestDate | Thu May 29 04:01:05 EDT 2025 Fri Jul 11 18:24:25 EDT 2025 Fri Jul 11 08:00:06 EDT 2025 Fri Jul 25 21:09:20 EDT 2025 Thu Apr 03 07:06:42 EDT 2025 Tue Jul 01 03:06:08 EDT 2025 Thu Apr 24 23:10:59 EDT 2025 Wed Jan 22 16:59:13 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | This article is protected by copyright. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5229-4e1ef825bec32b4f82f0f7954fd9dbc5608c3e118ebf1c8d06ffa947acb5e5553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jipb.12689 |
PMID | 29905393 |
PQID | 2099809999 |
PQPubID | 2045135 |
PageCount | 9 |
ParticipantIDs | wanfang_journals_zwxb201809005 proquest_miscellaneous_2153614792 proquest_miscellaneous_2056399797 proquest_journals_2099809999 pubmed_primary_29905393 crossref_citationtrail_10_1111_jipb_12689 crossref_primary_10_1111_jipb_12689 wiley_primary_10_1111_jipb_12689_JIPB12689 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2018 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: September 2018 |
PublicationDecade | 2010 |
PublicationPlace | China (Republic : 1949- ) |
PublicationPlace_xml | – name: China (Republic : 1949- ) – name: Hoboken |
PublicationTitle | Journal of integrative plant biology |
PublicationTitleAlternate | J Integr Plant Biol |
PublicationTitle_FL | Journal of Integrative Plant Biology |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China |
References | 1998; 280 2013; 4 2017; 3 2002; 53 2017; 44 2002; 13 2007; 144 2002; 99 2014; 26 2010; 188 2006; 452 2014; 65 2010; 22 2004; 136 2000; 124 2010; 29 2000; 12 1982; 217 2018; 217 2000; 97 2016; 113 2018; 30 2011; 23 2014; 165 2012; 24 2001; 13 2006; 125 2007; 27 2014; 514 2011; 412 2007; 19 2009; 21 2006; 98 2015; 169 2015; 96 2008; 59 2016; 167 2006; 18 2016; 92 2004; 427 2012; 424 2014; 83 2016; 57 2012; 31 2008; 283 2015; 350 2002; 25 2014; 227 2012; 3 2015; 27 2017; 90 2011; 108 2004; 279 2015; 115 2001; 6 2015; 112 2004; 15 2013; 74 2014; 37 2005; 10 2017; 18 2013; 250 2008; 179 2009; 2 2016; 28 2003; 100 2014; 33 2014; 31 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 Zhu JK (e_1_2_8_76_1) 2000; 124 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 Qi Z (e_1_2_8_49_1) 2004; 136 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 Kiegerl S (e_1_2_8_25_1) 2000; 12 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Del Río LA (e_1_2_8_13_1) 2016; 57 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 100 start-page: 11771 year: 2003 end-page: 11776 article-title: A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2 publication-title: Proc Natl Acad Sci USA – volume: 23 start-page: 3482 year: 2011 end-page: 3497 article-title: The Na /H antiporters NHX1 and NHX2 control vacuolar pH and K homeostasis to regulate growth, flower development, and reproduction publication-title: Plant Cell – volume: 24 start-page: 1894 year: 2012 end-page: 1906 article-title: A chloroplast light‐regulated oxidative sensor for moderate light intensity in publication-title: Plant Cell – volume: 18 start-page: 2749 year: 2006 end-page: 2766 article-title: An glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses publication-title: Plant Cell – volume: 19 start-page: 1415 year: 2007 end-page: 1431 article-title: SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect shoots from salt stress publication-title: Plant Cell – volume: 57 start-page: 1908 year: 2016 end-page: 1920 article-title: The role of phospholipase D and MAPK signaling cascades in the adaption of to desiccation: Changes in membrane lipids and phosphoproteome publication-title: Plant Cell Physiol – volume: 217 start-page: 523 year: 2018 end-page: 539 article-title: Elucidating the molecular mechanisms mediating plant salt‐stress responses publication-title: New Phytol – volume: 112 start-page: E6388 year: 2015 end-page: E6396 article-title: Plant Raf‐like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1‐related protein kinase2 publication-title: Proc Natl Acad Sci USA – volume: 30 start-page: 1100 year: 2018 end-page: 1118 article-title: The receptor‐like cytoplasmic kinase STRK1 phosphorylates and activates CatC, thereby regulating H O homeostasis and improving salt tolerance in Rice publication-title: Plant Cell – volume: 13 start-page: 1383 year: 2001 end-page: 1400 article-title: Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance publication-title: Plant Cell – volume: 514 start-page: 367 year: 2014 end-page: 371 article-title: OSCA1 mediates osmotic‐stress‐evoked Ca increases vital for osmosensing in publication-title: Nature – volume: 144 start-page: 1029 year: 2007 end-page: 1038 article-title: Differential regulation of sorbitol and sucrose loading into the phloem of Plantago major in response to salt stress publication-title: Plant Physiol – volume: 22 start-page: 403 year: 2010 end-page: 416 article-title: S‐sulfocysteine synthase activity is essential for chloroplast function and long‐day light‐dependent redox control publication-title: Plant Cell – volume: 12 start-page: 1667 year: 2000 end-page: 1677 article-title: SOS3 function in plant salt tolerance requires myristoylation and calcium‐binding publication-title: Plant Cell – volume: 92 start-page: 391 year: 2016 end-page: 400 article-title: Stability and localization of 14‐3‐3 proteins are involved in salt tolerance in publication-title: Plant Mol Biol – volume: 217 start-page: 1214 year: 1982 end-page: 1222 article-title: Living with water stress: Evolution of osmolyte systems publication-title: Science – volume: 57 start-page: 1364 year: 2016 end-page: 1376 article-title: ROS generation in peroxisomes and its role in cell signaling publication-title: Plant Cell Physiol – volume: 26 start-page: 2538 year: 2014 end-page: 2553 article-title: The receptor‐like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice publication-title: Plant Cell – volume: 37 start-page: 1130 year: 2014 end-page: 1143 article-title: Phosphorylation of a p38‐like MAPK is involved in sensing cellular redox state and drives atypical tubulin polymer assembly in angiosperms publication-title: Plant Cell Environ – volume: 31 start-page: 2094 year: 2014 end-page: 2107 article-title: Distinct roles for SOS1 in the convergent evolution of salt tolerance in and publication-title: Mol Biol Evol – volume: 279 start-page: 207 year: 2004 end-page: 215 article-title: Regulation of vacuolar Na /H exchange in by the salt‐overly‐sensitive (SOS) pathway publication-title: J Biol Chem – volume: 125 start-page: 1347 year: 2006 end-page: 1360 article-title: A protein kinase, interacting with two calcineurin B‐like proteins, regulates K transporter AKT1 in publication-title: Cell – volume: 26 start-page: 1166 year: 2014 end-page: 1182 article-title: Inhibition of the salt overly sensitive pathway by 14‐3‐3 proteins publication-title: Plant Cell – volume: 31 start-page: 217 year: 2012 end-page: 224 article-title: MKKK20 is involved in osmotic stress response via regulation of MPK6 activity publication-title: Plant Cell Rep – volume: 21 start-page: 1607 year: 2009 end-page: 1619 article-title: Phosphorylation of SOS3 LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in publication-title: Plant Cell – volume: 124 start-page: 941 year: 2000 end-page: 948 article-title: Genetic analysis of plant salt tolerance using publication-title: Plant Physiol – volume: 25 start-page: 239 year: 2002 end-page: 250 article-title: Comparative physiology of salt and water stress publication-title: Plant Cell Environ – volume: 113 start-page: E5242 year: 2016 end-page: E5249 article-title: Rapid hyperosmotic‐induced Ca responses in exhibit sensory potentiation and involvement of plastidial KEA transporters publication-title: Proc Natl Acad Sci USA – volume: 96 start-page: 217 year: 2015 end-page: 221 article-title: Suppressed expression of choline monooxygenase in sugar beet on the accumulation of glycine betaine publication-title: Plant Physiol Biochem – volume: 90 start-page: 48 year: 2017 end-page: 60 article-title: ZxAKT1 is essential for K uptake and K /Na homeostasis in the succulent xerophyte publication-title: Plant J – volume: 44 start-page: 395 year: 2017 end-page: 404 article-title: Activation of catalase activity by a peroxisome‐localized small heat shock protein Hsp17.6CII publication-title: J Genet Genomics – volume: 27 start-page: 908 year: 2015 end-page: 925 article-title: A chaperone function of NO CATALASE ACTIVITY1 is required to maintain catalase activity and for multiple stress responses in publication-title: Plant Cell – volume: 188 start-page: 762 year: 2010 end-page: 773 article-title: Phosphatidic acid mediates salt stress response by regulation of MPK6 in publication-title: New Phytol – volume: 18 start-page: 509 year: 2017 article-title: The role of Na and K transporters in salt stress adaptation in glycophytes publication-title: Front Physiol – volume: 227 start-page: 181 year: 2014 end-page: 189 article-title: The mitogen‐activated protein kinase cascade MKK1‐MPK4 mediates salt signaling in rice publication-title: Plant Sci – volume: 27 start-page: 7781 year: 2007 end-page: 7790 article-title: SOS2 promotes salt tolerance in part by interacting with the vaculoar H ‐ATPase and upregulating its transport activity publication-title: Mol Cell Biol – volume: 4 start-page: 1352 year: 2013 article-title: Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in publication-title: Nat Commun – volume: 98 start-page: 279 year: 2006 end-page: 288 article-title: Could heat shock transcription factors function as hydrogen peroxide sensors in plants publication-title: Ann Bot – volume: 279 start-page: 41758 year: 2004 end-page: 41766 article-title: Identification of nine sucrose nonfermenting 1‐related protein kinases 2 activated by hyperosmotic and saline stresses in publication-title: J Biol Chem – volume: 22 start-page: 1313 year: 2010 end-page: 1332 article-title: The chaperone J3 regulates the plasma membrane H ‐ATPase through interaction with the PKS5 kinase publication-title: Plant Cell – volume: 179 start-page: 945 year: 2008 end-page: 963 article-title: Salinity tolerance in halophytes publication-title: New Phytol – volume: 99 start-page: 8436 year: 2002 end-page: 8441 article-title: Regulation of SOS1, a plasma membrane Na /H exchanger in , by SOS2 and SOS3 publication-title: Proc Natl Acad Sci USA – volume: 97 start-page: 3735 year: 2000 end-page: 3740 article-title: The SOS2 protein kinase physically interacts with and is activated by the calcium‐binding protein SOS3 publication-title: Proc Natl Acad Sci USA – volume: 13 start-page: 146 year: 2002 end-page: 150 article-title: Engineering salt tolerance in plants publication-title: Curr Opin Biotechnol – volume: 65 start-page: 2963 year: 2014 end-page: 2979 article-title: Life and death under salt stress: Same players, different timing publication-title: J Exp Bot – volume: 427 start-page: 858 year: 2004 end-page: 861 article-title: OXI1 kinase is necessary for oxidative burst‐mediated signalling in publication-title: Nature – volume: 12 start-page: 2247 year: 2000 end-page: 2258 article-title: SIMKK, a mitogen‐activated protein kinase (MAPK) kinase, is a specific activator of the salt stress‐induced MAPK, SIMK publication-title: Plant Cell – volume: 108 start-page: 2611 year: 2011 end-page: 2616 article-title: Activation of the plasma membrane Na /H antiporter Salt‐Overly‐Sensitive 1 (SOS1) by phosphorylation of an auto‐inhibitory C‐terminal domain publication-title: Proc Natl Acad Sci USA – volume: 169 start-page: 1072 year: 2015 end-page: 1089 article-title: Differential role for trehalose metabolism in salt‐stressed maize publication-title: Plant Physiol – volume: 424 start-page: 283 year: 2012 end-page: 294 article-title: Structural insights on the plant salt‐overly‐sensitive 1 (SOS1) Na /H antiporter publication-title: J Mol Biol – volume: 6 start-page: 206 year: 2001 end-page: 211 article-title: Vacuolar H pyrophosphatases: From the evolutionary backwaters into the mainstream publication-title: Trends Plant Sci – volume: 412 start-page: 150 year: 2011 end-page: 154 article-title: MKK4 mediates osmotic‐stress response via its regulation of MPK3 activity publication-title: Biochem Biophys Res Commun – volume: 10 start-page: 339 year: 2005 end-page: 346 article-title: Emerging MAP kinase pathways in plant stress signaling publication-title: Trends Plant Sci – volume: 136 start-page: 2548 year: 2004 end-page: 2555 article-title: Protection of plasma membrane K transport by the salt overly sensitive Na ‐H antiporter during salinity stress publication-title: Plant Physiol – volume: 3 start-page: 16204 year: 2017 article-title: ABA‐unresponsive SnRK2 protein kinases regulate mRNA decay under osmotic stress in plants publication-title: Nat Plants – volume: 29 start-page: 865 year: 2010 end-page: 874 article-title: Expression of the AKT1‐type K channel gene from , PutAKT1, enhances salt tolerance in publication-title: Plant Cell Rep – volume: 2 start-page: 120 year: 2009 end-page: 137 article-title: A major role of the MEKK1‐MKK1/2‐MPK4 pathway in ROS signalling publication-title: Mol Plant – volume: 33 start-page: 203 year: 2014 end-page: 214 article-title: The CBL‐CIPK network mediates different signaling pathways in plants publication-title: Plant Cell Rep – volume: 167 start-page: 313 year: 2016 end-page: 324 article-title: Abiotic stress signaling and responses in plants publication-title: Cell – volume: 19 start-page: 1617 year: 2007 end-page: 1634 article-title: protein kinase PKS5 inhibits the plasma membrane H ‐ATPase by preventing interaction with 14‐3‐3 protein publication-title: Plant Cell – volume: 97 start-page: 6896 year: 2000 end-page: 6901 article-title: The thaliana salt tolerance gene encodes a putative Na /H antiporter publication-title: Proc Natl Acad Sci USA – volume: 97 start-page: 2940 year: 2000 end-page: 2945 article-title: Functional analysis of oxidative stress‐activated mitogen‐activated protein kinase cascade in plants publication-title: Proc Natl Acad Sci USA – volume: 280 start-page: 1943 year: 1998 end-page: 1945 article-title: A calcium sensor homolog required for plant salt tolerance publication-title: Science – volume: 15 start-page: 141 year: 2004 end-page: 152 article-title: The MKK2 pathway mediates cold and salt stress signaling in publication-title: Mol Cell – volume: 3 start-page: 1 year: 2012 end-page: 13 article-title: Ion transporters and abiotic stress tolerance in plants publication-title: ISRN Mol Biol – volume: 59 start-page: 651 year: 2008 end-page: 681 article-title: Mechanisms of salinity tolerance publication-title: Annu Rev Plant Biol – volume: 283 start-page: 26996 year: 2008 end-page: 27006 article-title: Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in publication-title: J Biol Chem – volume: 250 start-page: 1157 year: 2013 end-page: 1167 article-title: Regulation of some carbohydrate metabolism‐related genes, starch and soluble sugar contents, photosynthetic activities and yield attributes of two contrasting rice genotypes subjected to salt stress publication-title: Protoplasma – volume: 24 start-page: 1127 year: 2012 end-page: 1142 article-title: Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in publication-title: Plant Cell – volume: 115 start-page: 433 year: 2015 end-page: 447 article-title: Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress publication-title: Ann Bot – volume: 53 start-page: 247 year: 2002 end-page: 273 article-title: Salt and drought stress signal transduction in plants publication-title: Annu Rev Plant Biol – volume: 350 start-page: 438 year: 2015 end-page: 441 article-title: Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination publication-title: Science – volume: 452 start-page: 55 year: 2006 end-page: 68 article-title: Signaling through MAP kinase networks in plants publication-title: Arch Biochem Biophys – volume: 165 start-page: 319 year: 2014 end-page: 334 article-title: The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen‐activated protein kinases MPK3 and MPK6 publication-title: Plant Physiol – volume: 74 start-page: 258 year: 2013 end-page: 266 article-title: Calcineurin B‐like protein CBL10 directly interacts with AKT1 and modulates K homeostasis in publication-title: Plant J – volume: 28 start-page: 1860 year: 2016 end-page: 1878 article-title: Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants publication-title: Plant Cell – volume: 83 start-page: 126 year: 2014 end-page: 133 article-title: Salt stress mitigation by seed priming with UV‐C in lettuce plants: Growth, antioxidant activity and phenolic compounds publication-title: Plant Physiol Biochem – ident: e_1_2_8_26_1 doi: 10.1007/s00299-011-1157-0 – ident: e_1_2_8_55_1 doi: 10.1111/tpj.12123 – ident: e_1_2_8_15_1 doi: 10.1111/j.1469-8137.2008.02531.x – ident: e_1_2_8_20_1 doi: 10.1126/science.aac6014 – ident: e_1_2_8_23_1 doi: 10.1093/jxb/eru159 – ident: e_1_2_8_77_1 doi: 10.1146/annurev.arplant.53.091401.143329 – ident: e_1_2_8_14_1 doi: 10.1016/S1360-1385(01)01923-9 – ident: e_1_2_8_67_1 doi: 10.1016/j.plaphy.2015.06.014 – ident: e_1_2_8_75_1 doi: 10.1105/tpc.17.01000 – ident: e_1_2_8_22_1 doi: 10.1105/tpc.12.9.1667 – volume: 124 start-page: 941 year: 2000 ident: e_1_2_8_76_1 article-title: Genetic analysis of plant salt tolerance using Arabidopsis thaliana publication-title: Plant Physiol doi: 10.1104/pp.124.3.941 – ident: e_1_2_8_2_1 doi: 10.1016/S0958-1669(02)00298-7 – ident: e_1_2_8_47_1 doi: 10.1093/mp/ssn079 – ident: e_1_2_8_33_1 doi: 10.1105/tpc.109.066217 – ident: e_1_2_8_27_1 doi: 10.1016/j.bbrc.2011.07.064 – ident: e_1_2_8_62_1 doi: 10.1016/j.molcel.2004.06.023 – ident: e_1_2_8_5_1 doi: 10.1105/tpc.111.095273 – ident: e_1_2_8_24_1 doi: 10.1093/molbev/msu152 – ident: e_1_2_8_7_1 doi: 10.1128/MCB.00430-07 – ident: e_1_2_8_54_1 doi: 10.1038/nature02353 – ident: e_1_2_8_34_1 doi: 10.1126/science.280.5371.1943 – ident: e_1_2_8_70_1 doi: 10.1111/nph.14920 – ident: e_1_2_8_16_1 doi: 10.1105/tpc.105.035626 – ident: e_1_2_8_17_1 doi: 10.1093/pcp/pcw111 – ident: e_1_2_8_50_1 doi: 10.1073/pnas.122224699 – ident: e_1_2_8_18_1 doi: 10.1105/TPC.010021 – ident: e_1_2_8_3_1 doi: 10.1007/s00299-010-0872-2 – ident: e_1_2_8_32_1 doi: 10.1105/tpc.114.135095 – ident: e_1_2_8_46_1 doi: 10.1104/pp.114.237891 – volume: 12 start-page: 2247 year: 2000 ident: e_1_2_8_25_1 article-title: SIMKK, a mitogen‐activated protein kinase (MAPK) kinase, is a specific activator of the salt stress‐induced MAPK, SIMK publication-title: Plant Cell – ident: e_1_2_8_43_1 doi: 10.1016/j.jmb.2012.09.015 – ident: e_1_2_8_38_1 doi: 10.1093/aob/mcl107 – ident: e_1_2_8_41_1 doi: 10.1146/annurev.arplant.59.032607.092911 – ident: e_1_2_8_57_1 doi: 10.1016/j.febslet.2007.04.032 – ident: e_1_2_8_59_1 doi: 10.1038/nplants.2016.204 – ident: e_1_2_8_4_1 doi: 10.3389/fphys.2017.00509 – ident: e_1_2_8_12_1 doi: 10.1105/tpc.112.097139 – ident: e_1_2_8_37_1 doi: 10.1105/tpc.106.044230 – ident: e_1_2_8_72_1 doi: 10.1007/s00299-013-1507-1 – ident: e_1_2_8_66_1 doi: 10.1074/jbc.M801392200 – ident: e_1_2_8_21_1 doi: 10.1104/pp.15.00729 – ident: e_1_2_8_58_1 doi: 10.1093/aob/mcu239 – ident: e_1_2_8_28_1 doi: 10.1038/ncomms2357 – ident: e_1_2_8_44_1 doi: 10.1073/pnas.2034853100 – ident: e_1_2_8_11_1 doi: 10.5402/2012/927436 – ident: e_1_2_8_31_1 doi: 10.1016/j.jgg.2017.03.009 – ident: e_1_2_8_30_1 doi: 10.1105/tpc.114.125187 – ident: e_1_2_8_35_1 doi: 10.1111/pce.12222 – volume: 136 start-page: 2548 year: 2004 ident: e_1_2_8_49_1 article-title: Protection of plasma membrane K+ transport by the salt overly sensitive Na+‐H+ antiporter during salinity stress publication-title: Plant Physiol doi: 10.1104/pp.104.049213 – ident: e_1_2_8_64_1 doi: 10.1016/j.plantsci.2014.08.007 – ident: e_1_2_8_19_1 doi: 10.1073/pnas.97.7.3735 – ident: e_1_2_8_78_1 doi: 10.1016/j.cell.2016.08.029 – ident: e_1_2_8_45_1 doi: 10.1016/j.plaphy.2014.07.019 – ident: e_1_2_8_63_1 doi: 10.1105/tpc.16.00143 – volume: 57 start-page: 1364 year: 2016 ident: e_1_2_8_13_1 article-title: ROS generation in peroxisomes and its role in cell signaling publication-title: Plant Cell Physiol – ident: e_1_2_8_6_1 doi: 10.1105/tpc.111.089581 – ident: e_1_2_8_29_1 doi: 10.1073/pnas.97.6.2940 – ident: e_1_2_8_65_1 doi: 10.1016/j.cell.2006.06.011 – ident: e_1_2_8_74_1 doi: 10.1105/tpc.113.117069 – ident: e_1_2_8_51_1 doi: 10.1074/jbc.M307982200 – ident: e_1_2_8_52_1 doi: 10.1105/tpc.106.042291 – ident: e_1_2_8_61_1 doi: 10.1007/s11103-016-0520-5 – ident: e_1_2_8_42_1 doi: 10.1016/j.tplants.2005.05.009 – ident: e_1_2_8_39_1 doi: 10.1016/j.abb.2006.05.001 – ident: e_1_2_8_73_1 doi: 10.1038/nature13593 – ident: e_1_2_8_40_1 doi: 10.1046/j.0016-8025.2001.00808.x – ident: e_1_2_8_9_1 doi: 10.1007/s00709-013-0496-9 – ident: e_1_2_8_60_1 doi: 10.1073/pnas.1519555113 – ident: e_1_2_8_53_1 doi: 10.1073/pnas.1018921108 – ident: e_1_2_8_71_1 doi: 10.1111/j.1469-8137.2010.03422.x – ident: e_1_2_8_56_1 doi: 10.1073/pnas.1511238112 – ident: e_1_2_8_8_1 doi: 10.1105/tpc.109.071985 – ident: e_1_2_8_10_1 doi: 10.1074/jbc.M405259200 – ident: e_1_2_8_36_1 doi: 10.1111/tpj.13465 – ident: e_1_2_8_69_1 doi: 10.1105/tpc.109.069609 – ident: e_1_2_8_48_1 doi: 10.1104/pp.106.089151 – ident: e_1_2_8_68_1 doi: 10.1126/science.7112124 |
SSID | ssj0038062 |
Score | 2.6585 |
SecondaryResourceType | review_article |
Snippet | Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will... Salt stress is a major environmental factor limiting plant growth and productivity.A better understanding of the mechanisms mediating salt resistance will help... |
SourceID | wanfang proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 796 |
SubjectTerms | Abiotic stress Apoplast Cascades Environmental conditions Environmental factors Extrusion Genetic analysis Homeostasis ions Kinases Osmosis Osmotic stress Oxidative stress Plant growth Protein kinase Protein kinase C protein kinases Proteins Reactive oxygen species Regulatory mechanisms (biology) researchers Salt salt stress Salts Signal transduction Signaling Sodium Sucrose Sugar |
Title | Unraveling salt stress signaling in plants |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjipb.12689 https://www.ncbi.nlm.nih.gov/pubmed/29905393 https://www.proquest.com/docview/2099809999 https://www.proquest.com/docview/2056399797 https://www.proquest.com/docview/2153614792 https://d.wanfangdata.com.cn/periodical/zwxb201809005 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9Ku4e9dF9d564NHutLAw6xLNkW9CXZFrLCxhgL9GUYSZZKWHDCktCtf33vZMdbuxHY3oR1RjrrTveTfB8Ap7Z0Ns9NHAnLbMTTuIxUIpOIc5c6YZUuDd13fPiYjif84lJc7sD5Jhamzg_RXriRZvj9mhRc6eXvSj5d6F7M0pyi98hZixDR5zZ3VJL3fTXROM1YhCdA1uQm9W487at3rdEfENNH8lROVVd3sas3PqNH8HUz7drn5FtvvdI9c3Mvo-P_8vUY9htUGg5qMXoCO7Z6Cg-Gc0SOP59Bd1JRkSIKXA-XarYK6wCTkHw_lH86rcLFjDxqDmAyevflzThqaixEBpGXjLiNrcNTIi5lwjTHpuu7TAruSllqg3goN4nFU4jVLjZ52U-dU5JnymhhhRDJc9it5pV9ASHl2Umtwi0jQViWpFobnkmpGNNCx64M4GzzrQvTJCCnOhizoj2IIOuFZz2A1y3tok678Veq482SFY3qLQuKBc4J92L3q7YblYb-hKjKztdEIwiZZTLbQoO2ALFLJlkAh7U4tFMhGy5QpAPoNPLxa_yb6x-a-bRouMEF0PVrvYWJ4uL9p6FvHf0L8Ut4SKPU7m7HsLv6vrYniI9WugN7g-Hb4ajj9eEWFCoL5w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6xgjReBoMNMsaWCV42KVXj2En8uA2mbqwTQqu0t8h2bDRRpRVtNeiv352ThRXQJHiL4oscx3e-z87ddwDvbelsnps4EpbZiKdxGalEJhHnLnXCKl0aOu8YXKT9IT-7EldNbA7lwtT8EO2BG1mGX6_JwOlA-r6VX090N2ZpLlfgMZX0Jur8D19a9qgk7_l6onGasQj3gKxhJ_WBPO2zy_7oD5Dpc3kqp6qvy-jVu5-TZ3WN1alnLaSok2_d-Ux3zeI3Tsf_HtlzWGuAaXhYa9I6PLLVC3hyNEbw-PMlHAwrqlNEuevhVI1mYZ1jElL4h_J3r6twMqKgmg0Ynny8PO5HTZmFyCD4khG3sXW4UcTZTJjmeOl6LpOCu1KW2iAkyk1icSNitYtNXvZS55TkmTJaWCFEsgmdalzZ1xAS1U5qFa4aCSKzJNXa8ExKxZgWOnZlAPt3H7swDQc5lcIYFe1eBIde-KEH8K6VndTMG3-V2r6bs6KxvmlB6cA5QV9s3mub0W7oZ4iq7HhOMoLAWSazB2TQHSB8ySQL4FWtD-2rkBsXqNUB7DQK8qv_xc0PzTwzGq5xARz4yX5gEMXZ6ecjf7X1L8K7sNq_HJwX56cXn97AU-qxjn7bhs7s-9y-Rbg00zveKG4BWMUOkQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NgRAvfA8CY2SCFyalahzbiSVe2Ea1L6ZpotJeUGQ7Nqqo0oq1gu2v352TZhtDk-DNii-yL76zf-fcB8B7V3lXFDZNhGMu4TKtEp2pLOHcSy-cNpWl-44vh3JnyPdOxMkSfFzEwjT5IboLN9KMsF-Tgk8rf1XJR1PTS5ks1B24y2VfUeGG7eMueVRW9EM50VTmLEETkLXJSYMfT_fu9ePoBsYMoTy11_X36-A1nD6DR_BtMe_G6eRHbz4zPXv-R0rH_2XsMTxsYWn8qZGjJ7Dk6qdwb3OC0PHsGWwMa6pSRJHr8akez-ImwiQm5w8dno7qeDoml5rnMBx8_rq1k7RFFhKL0Esl3KXOo5mIa5kxw7Hp-z5XgvtKVcYiICps5tAMccantqj60nuteK6tEU4Ika3Acj2p3UuIKdGOdBr3jAxxWSaNsTxXSjNmhEl9FcGHxbcubZuBnAphjMvOEkHWy8B6BO862mmTd-OvVKuLJStb3TstKRi4IOCL3etdN2oN_QrRtZvMiUYQNMtVfgsNHgYIXnLFInjRiEM3FTrEBcp0BGutfFyOf_7rt2EhLxrucBFshLW-hYlyb_doM7Re_QvxW7h_tD0oD3YP91_DAxqwcX1bheXZz7l7g1hpZtaCSlwAI4kNQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+salt+stress+signaling+in+plants&rft.jtitle=Journal+of+integrative+plant+biology&rft.au=Yang%2C+Yongqing&rft.au=Guo%2C+Yan&rft.date=2018-09-01&rft.issn=1672-9072&rft.volume=60&rft.issue=9+p.796-804&rft.spage=796&rft.epage=804&rft_id=info:doi/10.1111%2Fjipb.12689&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzwxb%2Fzwxb.jpg |