E-cadherin expression in postnatal Schwann cells is regulated by the cAMP-dependent protein kinase a pathway

Expression of E‐cadherin in the peripheral nervous system is a highly regulated process that appears postnatally in concert with the development of myelinating Schwann cell lineage. As a major component of autotypic junctions, E‐cadherin plays an important role in maintaining the structural integrit...

Full description

Saved in:
Bibliographic Details
Published inGlia Vol. 56; no. 15; pp. 1637 - 1647
Main Authors Crawford, Audrita T., Desai, Darshan, Gokina, Pradeepa, Basak, Sayantani, Kim, Haesun A.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 15.11.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Expression of E‐cadherin in the peripheral nervous system is a highly regulated process that appears postnatally in concert with the development of myelinating Schwann cell lineage. As a major component of autotypic junctions, E‐cadherin plays an important role in maintaining the structural integrity of noncompact myelin regions. In vivo, the appearance of E‐cadherin in postnatal Schwann cell is accompanied by the disappearance of N‐cadherin, suggesting reciprocal regulation of the two cadherins during Schwann cell development. The molecular signal that regulates the cadherin switch in Schwann cell is unclear. Using a neuron‐Schwann cell co‐culture system, here we show that E‐cadherin expression is induced by components on the axonal membrane. We also show that the axonal effect is mediated through cAMP‐dependent protein kinase A (cAMP‐PKA) activation in the Schwann cell: (1) inhibition of cAMP‐PKA blocks axon‐induced E‐cadherin expression and (2) cAMP elevation in the Schwann cell is sufficient to induce E‐cadherin expression. In addition, cAMP‐dependent E‐cadherin expression is promoted by contact between adjacent Schwann cell membranes, suggesting its role in autotypic junction formation during myelination. Furthermore, cAMP‐induced E‐cadherin expression is accompanied by suppression of N‐cadherin expression. Therefore, we propose that axon‐dependent activation of cAMP‐PKA serves as a signal that promotes cadherin switch during postnatal development of Schwann cells. © 2008 Wiley‐Liss, Inc.
AbstractList Expression of E-cadherin in the peripheral nervous system is a highly regulated process that appears postnatally in concert with the development of myelinating Schwann cell lineage. As a major component of autotypic junctions, E-cadherin plays an important role in maintaining the structural integrity of noncompact myelin regions. In vivo, the appearance of E-cadherin in postnatal Schwann cell is accompanied by the disappearance of N-cadherin, suggesting reciprocal regulation of the two cadherins during Schwann cell development. The molecular signal that regulates the cadherin switch in Schwann cell is unclear. Using a neuron-Schwann cell co-culture system, here we show that E-cadherin expression is induced by components on the axonal membrane. We also show that the axonal effect is mediated through cAMP-dependent protein kinase A (cAMP-PKA) activation in the Schwann cell: (1) inhibition of cAMP-PKA blocks axon-induced E-cadherin expression and (2) cAMP elevation in the Schwann cell is sufficient to induce E-cadherin expression. In addition, cAMP-dependent E-cadherin expression is promoted by contact between adjacent Schwann cell membranes, suggesting its role in autotypic junction formation during myelination. Furthermore, cAMP-induced E-cadherin expression is accompanied by suppression of N-cadherin expression. Therefore, we propose that axon-dependent activation of cAMP-PKA serves as a signal that promotes cadherin switch during postnatal development of Schwann cells.
Abstract Expression of E‐cadherin in the peripheral nervous system is a highly regulated process that appears postnatally in concert with the development of myelinating Schwann cell lineage. As a major component of autotypic junctions, E‐cadherin plays an important role in maintaining the structural integrity of noncompact myelin regions. In vivo , the appearance of E‐cadherin in postnatal Schwann cell is accompanied by the disappearance of N‐cadherin, suggesting reciprocal regulation of the two cadherins during Schwann cell development. The molecular signal that regulates the cadherin switch in Schwann cell is unclear. Using a neuron‐Schwann cell co‐culture system, here we show that E‐cadherin expression is induced by components on the axonal membrane. We also show that the axonal effect is mediated through cAMP‐dependent protein kinase A (cAMP‐PKA) activation in the Schwann cell: (1) inhibition of cAMP‐PKA blocks axon‐induced E‐cadherin expression and (2) cAMP elevation in the Schwann cell is sufficient to induce E‐cadherin expression. In addition, cAMP‐dependent E‐cadherin expression is promoted by contact between adjacent Schwann cell membranes, suggesting its role in autotypic junction formation during myelination. Furthermore, cAMP‐induced E‐cadherin expression is accompanied by suppression of N‐cadherin expression. Therefore, we propose that axon‐dependent activation of cAMP‐PKA serves as a signal that promotes cadherin switch during postnatal development of Schwann cells. © 2008 Wiley‐Liss, Inc.
Expression of E‐cadherin in the peripheral nervous system is a highly regulated process that appears postnatally in concert with the development of myelinating Schwann cell lineage. As a major component of autotypic junctions, E‐cadherin plays an important role in maintaining the structural integrity of noncompact myelin regions. In vivo, the appearance of E‐cadherin in postnatal Schwann cell is accompanied by the disappearance of N‐cadherin, suggesting reciprocal regulation of the two cadherins during Schwann cell development. The molecular signal that regulates the cadherin switch in Schwann cell is unclear. Using a neuron‐Schwann cell co‐culture system, here we show that E‐cadherin expression is induced by components on the axonal membrane. We also show that the axonal effect is mediated through cAMP‐dependent protein kinase A (cAMP‐PKA) activation in the Schwann cell: (1) inhibition of cAMP‐PKA blocks axon‐induced E‐cadherin expression and (2) cAMP elevation in the Schwann cell is sufficient to induce E‐cadherin expression. In addition, cAMP‐dependent E‐cadherin expression is promoted by contact between adjacent Schwann cell membranes, suggesting its role in autotypic junction formation during myelination. Furthermore, cAMP‐induced E‐cadherin expression is accompanied by suppression of N‐cadherin expression. Therefore, we propose that axon‐dependent activation of cAMP‐PKA serves as a signal that promotes cadherin switch during postnatal development of Schwann cells. © 2008 Wiley‐Liss, Inc.
Expression of E-cadherin in the peripheral nervous system is a highly regulated process that appears postnatally in concert with the development of myelinating Schwann cell lineage. As a major component of autotypic junctions, E-cadherin plays an important role in maintaining the structural integrity of non-compact myelin regions. In vivo , the appearance of E-cadherin in postnatal Schwann cell is accompanied by the disappearance of N-cadherin, suggesting reciprocal regulation of the two cadherins during Schwann cell development. The molecular signal that regulates the cadherin switch in Schwann cell is unclear. Using a neuron-Schwann cell co-culture system, here we show that E-cadherin expression is induced by components on the axonal membrane. We also show that the axonal effect is mediated through cAMP-dependent protein kinase A (cAMP-PKA) activation in the Schwann cell: 1) inhibition of cAMP-PKA blocks axon-induced E-cadherin expression and 2) cAMP elevation in the Schwann cell is sufficient to induce E-cadherin expression. In addition, cAMP-dependent E-cadherin expression is promoted by contact between adjacent Schwann cell membranes, suggesting its role in autotypic junction formation during myelination. Furthermore, cAMP-induced E-cadherin expression is accompanied by suppression of N-cadherin expression. Therefore, we propose that axon-dependent activation of cAMP-PKA serves as a signal that promotes cadherin switch during postnatal development of Schwann cells.
Author Desai, Darshan
Crawford, Audrita T.
Kim, Haesun A.
Gokina, Pradeepa
Basak, Sayantani
Author_xml – sequence: 1
  givenname: Audrita T.
  surname: Crawford
  fullname: Crawford, Audrita T.
  organization: Department of Biological Sciences, Rutgers University, Newark, New Jersey
– sequence: 2
  givenname: Darshan
  surname: Desai
  fullname: Desai, Darshan
  organization: Department of Biological Sciences, Rutgers University, Newark, New Jersey
– sequence: 3
  givenname: Pradeepa
  surname: Gokina
  fullname: Gokina, Pradeepa
  organization: Department of Biological Sciences, Rutgers University, Newark, New Jersey
– sequence: 4
  givenname: Sayantani
  surname: Basak
  fullname: Basak, Sayantani
  organization: Department of Biological Sciences, Rutgers University, Newark, New Jersey
– sequence: 5
  givenname: Haesun A.
  surname: Kim
  fullname: Kim, Haesun A.
  email: haekim@andromeda.rutgers.edu
  organization: Department of Biological Sciences, Rutgers University, Newark, New Jersey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18551621$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFuEzEQhi3UiqaFCw-AfOKAtK3t9dq7F6QoKqFSgIq24mjNemcT0413sR3avD0bEgpcOFkjf_PNjP5TcuR7j4S84uycMyYulp2Dc8E0V8_IhLOqzDjP1RGZsLKSGZcVPyGnMX5jjI-Ffk5OeFkUXAk-Id1lZqFZYXCe4uMQMEbXezpWQx-ThwQdvbGrB_CeWuy6SF2kAZebDhI2tN7StEJqpx-vswYH9A36RIfQJxwV985DRAp0gDQqti_IcQtdxJeH94zcvb-8nX3IFp_nV7PpIrOFECqTKGql21JLEC2ULbOgWC65tUXJoKwrKQthayUr22AuUUndttrWIKBSkjf5GXm39w6beo2NHXcK0JkhuDWErenBmX9_vFuZZf_DiEIXTIlR8OYgCP33DcZk1i7uzgeP_SYaVSmtZC5H8O0etKGPMWD7NIQzswvH7MIxv8IZ4dd_r_UHPaQxAnwPPLgOt_9Rmfniavpbmu17XEz4-NQD4d4onevCfP00N5rdfrmeVXOj8p_PkK1V
CitedBy_id crossref_primary_10_1002_glia_21144
crossref_primary_10_1038_onc_2017_143
crossref_primary_10_1083_jcb_201606052
crossref_primary_10_1002_jnr_23272
crossref_primary_10_1002_dneu_22744
crossref_primary_10_1002_glia_22822
crossref_primary_10_4236_jbm_2019_78004
crossref_primary_10_1371_journal_pone_0168228
crossref_primary_10_1371_journal_pone_0082354
crossref_primary_10_1523_JNEUROSCI_1908_14_2014
crossref_primary_10_1002_jnr_22398
crossref_primary_10_1016_j_cell_2010_08_039
crossref_primary_10_1016_j_celrep_2017_08_064
crossref_primary_10_1242_dev_150656
crossref_primary_10_1007_s00018_017_2565_2
crossref_primary_10_1007_s13311_021_01125_3
crossref_primary_10_1007_s00401_011_0928_6
crossref_primary_10_1038_s41467_017_01488_2
crossref_primary_10_1111_apha_14006
crossref_primary_10_1186_s12964_016_0150_1
crossref_primary_10_1016_j_expneurol_2014_01_012
crossref_primary_10_1523_JNEUROSCI_2461_12_2012
Cites_doi 10.1002/jnr.490310206
10.1158/0008-5472.CAN-06-2890
10.1042/bj3510095
10.1016/0955-0674(93)90028-O
10.1016/S0896-6273(01)00526-8
10.1128/MCB.18.11.6245
10.1083/jcb.112.3.457
10.1007/s00018-004-4079-y
10.1007/BF01188399
10.1146/annurev.cellbio.13.1.119
10.1111/j.0021-8782.2005.00369.x
10.1083/jcb.129.1.189
10.1146/annurev.cellbio.19.011102.111135
10.1038/35000034
10.1523/JNEUROSCI.5168-04.2005
10.1038/35000025
10.1002/jnr.21221
10.1074/jbc.M410766200
10.1002/glia.20390
10.1074/jbc.273.15.9070
10.1002/1521-1878(200011)22:11<987::AID-BIES5>3.0.CO;2-5
10.1006/mcne.2002.1177
10.1016/j.mcn.2007.02.010
10.1006/dbio.1993.1044
10.1046/j.1471-4159.1995.65010149.x
10.1523/JNEUROSCI.22-10-04066.2002
10.1210/en.136.7.3113
10.1523/JNEUROSCI.22-21-09194.2002
10.1038/nrm1699
10.1016/0896-6273(88)90211-5
10.1016/0014-4827(92)90455-H
10.1006/mcne.2001.1041
10.1016/j.conb.2006.08.008
10.1016/S1534-5807(02)00410-0
10.1016/0006-8993(79)90048-9
10.1002/(SICI)1097-4547(19970715)49:2<236::AID-JNR12>3.0.CO;2-Z
10.1007/s004180050001
ContentType Journal Article
Copyright Copyright © 2008 Wiley‐Liss, Inc.
(c) 2008 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2008 Wiley‐Liss, Inc.
– notice: (c) 2008 Wiley-Liss, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1002/glia.20716
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1098-1136
EndPage 1647
ExternalDocumentID 10_1002_glia_20716
18551621
GLIA20716
ark_67375_WNG_70TRPC9G_6
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: RO1‐NS45939‐01
– fundername: New Jersey Commission on Spinal Cord Research
– fundername: New Jersey Commission on Brain Injury Research
– fundername: NINDS NIH HHS
  grantid: R01 NS045939
– fundername: NINDS NIH HHS
  grantid: R01 NS045939-01
– fundername: NINDS NIH HHS
  grantid: R01-NS45939-01
GroupedDBID ---
-~X
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABHUG
ABIJN
ABIVO
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEQTP
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWD
RWI
RX1
RYL
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
XV2
ZZTAW
~IA
~WT
AITYG
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c5226-4e2b67f874a2fa8f0ca60341cc580a8b94452cb649cde34e647ff7cba2a9641d3
IEDL.DBID DR2
ISSN 0894-1491
IngestDate Tue Sep 17 21:15:54 EDT 2024
Fri Aug 16 21:40:17 EDT 2024
Fri Aug 23 03:36:22 EDT 2024
Sat Sep 28 07:46:14 EDT 2024
Sat Aug 24 01:05:46 EDT 2024
Wed Jan 17 05:06:04 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License (c) 2008 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5226-4e2b67f874a2fa8f0ca60341cc580a8b94452cb649cde34e647ff7cba2a9641d3
Notes istex:04CDC768C84FCC0CCCDF134B783D0D5186631207
New Jersey Commission on Brain Injury Research
ark:/67375/WNG-70TRPC9G-6
ArticleID:GLIA20716
NIH - No. RO1-NS45939-01
New Jersey Commission on Spinal Cord Research
Audrita T. Crawford and Darshan Desai contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
A.T.C and D.D contributed equally to this work
Present address: Department of Neurological Surgery, Neurological Institute of New Jersey, The University of Medicine & Dentistry of New Jersey, Newark, NJ 07103
OpenAccessLink https://europepmc.org/articles/pmc2575062?pdf=render
PMID 18551621
PQID 69676434
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2575062
proquest_miscellaneous_69676434
crossref_primary_10_1002_glia_20716
pubmed_primary_18551621
wiley_primary_10_1002_glia_20716_GLIA20716
istex_primary_ark_67375_WNG_70TRPC9G_6
PublicationCentury 2000
PublicationDate 15 November 2008
PublicationDateYYYYMMDD 2008-11-15
PublicationDate_xml – month: 11
  year: 2008
  text: 15 November 2008
  day: 15
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Glia
PublicationTitleAlternate Glia
PublicationYear 2008
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Cano A,Perez-Moreno MA,Rodrigo I,Locascio A,Blanco MJ,del Barrio MG,Portillo F,Nieto MA. 2000. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2: 76-83.
Gumbiner BM. 2005. Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6: 622-634.
Wanner IB,Wood PM. 2002. N-cadherin mediates axon-aligned process growth and cell-cell interaction in rat Schwann cells. J Neurosci 22: 4066-4079.
Young P,Boussadia O,Berger P,Leone DP,Charnay P,Kemler R,Suter U. 2002. E-cadherin is required for the correct formation of autotypic adherens junctions of the outer mesaxon but not for the integrity of myelinated fibers of peripheral nerves. Mol Cell Neurosci 21: 341-351.
Davies SP,Reddy H,Caivano M,Cohen P. 2000. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351: 95-105.
Nave KA,Salzer JL. 2006. Axonal regulation of myelination by neuregulin 1. Curr Opin Neurobiol 16: 492-500.
Pon YL,Auersperg N,Wong AS. 2005. Gonadotropins regulate N-cadherin-mediated human ovarian surface epithelial cell survival at both post-translational and transcriptional levels through a cyclic AMP/protein kinase A pathway. J Biol Chem 280: 15438-15448.
Batlle E,Sancho E,Franci C,Dominguez D,Monfar M,Baulida J,Garcia De Herreros A. 2000. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2: 84-89.
Morgan L,Jessen KR,Mirsky R. 1991. The effects of cAMP on differentiation of cultured Schwann cells: Progression from an early phenotype (04+) to a myelin phenotype (P0+, GFAP-, N-CAM-, NGF-receptor-) depends on growth inhibition J Cell Biol 112: 457-467.
Eccleston PA,Funa K,Heldin CH. 1993. Expression of platelet-derived growth factor (PDGF) and PDGF alpha- and beta-receptors in the peripheral nervous system: An analysis of sciatic nerve and dorsal root ganglia. Dev Biol 155: 459-470.
Grunwald GB. 1993. The structural and functional analysis of cadherin calcium-dependent cell adhesion molecules. Curr Opin Cell Biol 5: 797-805.
Wheelock MJ,Johnson KR. 2003. Cadherins as modulators of cellular phenotype. Annu Rev Cell Dev Biol 19: 207-235.
Larsson F,Fagman H,Nilsson M. 2004. TSH receptor signaling via cyclic AMP inhibits cell surface degradation and internalization of E-cadherin in pig thyroid epithelium. Cell Mol Life Sci 61: 1834-1842.
Walikonis RS,Poduslo JF,Domec MC,Berg CT, Holtz-Heppelmann CJ. 1998. Activity of cyclic AMP phosphodiesterases and adenylyl cyclase in peripheral nerve after crush and permanent transection injuries. J Biol Chem 273: 9070-9077.
Brabant G,Hoang-Vu C,Behrends J,Cetin Y,Potter E,Dumont JE,Maenhaut C. 1995. Regulation of the cell-cell adhesion protein, E-cadherin, in dog and human thyrocytes in vitro. Endocrinology 136: 3113-3119.
Gould RM,Mattingly G. 1990. Regional localization of RNA, protein metabolism in Schwann cells in vivo. J Neurocytol 19: 285-301.
Poduslo JF,Walikonis RS,Domec MC,Berg CT,Holtz-Heppelmann CJ. 1995. The second messenger, cyclic AMP, is not sufficient for myelin gene induction in the peripheral nervous system. J Neurochem 65: 149-159.
Menichella DM,Arroyo EJ,Awatramani R,Xu T,Baron P,Vallat JM,Balsamo J,Lilien J,Scarlato G,Kamholz J,Scherer SS,Shy ME. 2001. Protein zero is necessary for E-cadherin-mediated adherens junction formation in Schwann cells. Mol Cell Neurosci 18: 606-618.
Lemke G,Lamar E,Patterson J. 1988. Isolation and analysis of the gene encoding peripheral myelin protein zero. Neuron 1: 73-83.
Tricaud N,Perrin-Tricaud C,Bruses JL,Rutishauser U. 2005. Adherens junctions in myelinating Schwann cells stabilize Schmidt-Lanterman incisures via recruitment of p120 catenin to E-cadherin. J Neurosci 25: 3259-3269.
Brockes JP,Fields KL,Raff MC. 1979. Studies on cultured Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res 165: 105-118.
Muja N,Nelson JK,DeVries GH. 2007. Schwann cells express IP prostanoid receptors coupled to an elevation in intracellular cyclic AMP. J Neurosci Res 85: 1159-1169.
Rahmatullah M,Schroering A,Rothblum K,Stahl RC,Urban B,Carey DJ. 1998. Synergistic regulation of Schwann cell proliferation by heregulin and forskolin. Mol Cell Biol 18: 6245-6252.
Affolter M,Bellusci S,Itoh N,Shilo B,Thiery JP,Werb Z. 2003. Tube or not tube: Remodeling epithelial tissues by branching morphogenesis. Dev Cell 4: 11-18.
Kim HA,DeClue JE,Ratner N. 1997. cAMP-dependent protein kinase A is required for Schwann cell growth: Interactions between the cAMP and neuregulin/tyrosine kinase pathways. J Neurosci Res 49: 236-247.
Garratt AN,Britsch S,Birchmeier C. 2000. Neuregulin, a factor with many functions in the life of a schwann cell. Bioessays 22: 987-996.
Wanner IB,Guerra NK,Mahoney J,Kumar A,Wood PM,Mirsky R,Jessen KR. 2006. Role of N-cadherin in Schwann cell precursors of growing nerves. Glia 54: 439-459.
Eccleston PA. 1992. Regulation of Schwann cell proliferation: Mechanisms involved in peripheral nerve development. Exp Cell Res 199: 1-9.
Howe CL,Valletta JS,Rusnak AS,Mobley WC. 2001. NGF signaling from clathrin-coated vesicles: Evidence that signaling endosomes serve as a platform for the Ras-MAPK pathway. Neuron 32: 801-814.
Thornton MR,Mantovani C,Birchall MA,Terenghi G. 2005. Quantification of N-CAM and N-cadherin expression in axotomized and crushed rat sciatic nerve. J Anat 206: 69-78.
Xu Y,Chiamvimonvat N,Vazquez AE,Akunuru S,Ratner N,Yamoah EN. 2002. Gene-targeted deletion of neurofibromin enhances the expression of a transient outward K+ current in Schwann cells: A protein kinase A-mediated mechanism. J Neurosci 22: 9194-9202.
Fannon AM,Sherman DL,Ilyina-Gragerova G,Brophy PJ,Friedrich VL,Jr.,Colman DR. 1995. Novel E-cadherin-mediated adhesion in peripheral nerve: Schwann cell architecture is stabilized by autotypic adherens junctions. J Cell Biol 129: 189-202.
Arroyo EJ,Scherer SS. 2000. On the molecular architecture of myelinated fibers. Histochem Cell Biol 113: 1-18.
Mauro L,Catalano S,Bossi G,Pellegrino M,Barone I,Morales S,Giordano C,Bartella V,Casaburi I,Ando S. 2007. Evidences that leptin up-regulates E-cadherin expression in breast cancer: Effects on tumor growth and progression. Cancer Res 67: 3412-3421.
Perrin-Tricaud C,Rutishauser U,Tricaud N. 2007. P120 catenin is required for thickening of Schwann cell myelin. Mol Cell Neurosci 35: 120-129.
Hardy M,Reddy UR,Pleasure D. 1992. Platelet-derived growth factor and regulation of Schwann cell proliferation in vivo. J Neurosci Res 31: 254-262.
Yap AS,Brieher WM,Gumbiner BM. 1997. Molecular and functional analysis of cadherin-based adherens junctions. Annu Rev Cell Dev Biol 13: 119-146.
1979; 165
2004; 61
1991; 112
2000; 113
2006; 54
1990; 19
2006; 16
2000; 22
1997; 49
2000; 2
2000; 351
1995; 136
2003; 19
1992; 31
2007; 35
1993; 5
2005; 25
1998; 273
1988; 1
2005; 280
1998; 18
2001
1992; 199
1997; 13
2002; 21
1995; 65
2002; 22
2005; 206
1995; 129
2003; 4
2005; 6
2001; 18
2007; 85
2007; 67
1993; 155
2001; 32
16025097 - Nat Rev Mol Cell Biol. 2005 Aug;6(8):622-34
9774641 - Mol Cell Biol. 1998 Nov;18(11):6245-52
15800180 - J Neurosci. 2005 Mar 30;25(13):3259-69
8240823 - Curr Opin Cell Biol. 1993 Oct;5(5):797-805
11738027 - Neuron. 2001 Dec 6;32(5):801-14
9442870 - Annu Rev Cell Dev Biol. 1997;13:119-46
17335081 - J Neurosci Res. 2007 May 1;85(6):1159-69
10998351 - Biochem J. 2000 Oct 1;351(Pt 1):95-105
1697335 - J Neurocytol. 1990 Jun;19(3):285-301
9272646 - J Neurosci Res. 1997 Jul 15;49(2):236-47
10664064 - Histochem Cell Biol. 2000 Jan;113(1):1-18
1704008 - J Cell Biol. 1991 Feb;112(3):457-67
11056475 - Bioessays. 2000 Nov;22(11):987-96
7789339 - Endocrinology. 1995 Jul;136(7):3113-9
7540661 - J Neurochem. 1995 Jul;65(1):149-59
10655587 - Nat Cell Biol. 2000 Feb;2(2):84-9
14570569 - Annu Rev Cell Dev Biol. 2003;19:207-35
15701645 - J Biol Chem. 2005 Apr 15;280(15):15438-48
17382558 - Mol Cell Neurosci. 2007 May;35(1):120-9
1374130 - J Neurosci Res. 1992 Feb;31(2):254-62
17409452 - Cancer Res. 2007 Apr 1;67(7):3412-21
12530959 - Dev Cell. 2003 Jan;4(1):11-8
15241559 - Cell Mol Life Sci. 2004 Jul;61(14):1834-42
12019326 - J Neurosci. 2002 May 15;22(10):4066-79
12401452 - Mol Cell Neurosci. 2002 Oct;21(2):341-51
16962312 - Curr Opin Neurobiol. 2006 Oct;16(5):492-500
10655586 - Nat Cell Biol. 2000 Feb;2(2):76-83
1735450 - Exp Cell Res. 1992 Mar;199(1):1-9
9535895 - J Biol Chem. 1998 Apr 10;273(15):9070-7
8432400 - Dev Biol. 1993 Feb;155(2):459-70
15679872 - J Anat. 2005 Jan;206(1):69-78
16886205 - Glia. 2006 Oct;54(5):439-59
2483091 - Neuron. 1988 Mar;1(1):73-83
7698985 - J Cell Biol. 1995 Apr;129(1):189-202
11749037 - Mol Cell Neurosci. 2001 Dec;18(6):606-18
12417644 - J Neurosci. 2002 Nov 1;22(21):9194-202
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Mirsky R (e_1_2_6_23_1) 2001
Xu Y (e_1_2_6_37_1) 2002; 22
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 22
  start-page: 9194
  year: 2002
  end-page: 9202
  article-title: Gene‐targeted deletion of neurofibromin enhances the expression of a transient outward K+ current in Schwann cells: A protein kinase A‐mediated mechanism
  publication-title: J Neurosci
– volume: 54
  start-page: 439
  year: 2006
  end-page: 459
  article-title: Role of N‐cadherin in Schwann cell precursors of growing nerves
  publication-title: Glia
– volume: 199
  start-page: 1
  year: 1992
  end-page: 9
  article-title: Regulation of Schwann cell proliferation: Mechanisms involved in peripheral nerve development
  publication-title: Exp Cell Res
– volume: 67
  start-page: 3412
  year: 2007
  end-page: 3421
  article-title: Evidences that leptin up‐regulates E‐cadherin expression in breast cancer: Effects on tumor growth and progression
  publication-title: Cancer Res
– volume: 31
  start-page: 254
  year: 1992
  end-page: 262
  article-title: Platelet‐derived growth factor and regulation of Schwann cell proliferation in vivo
  publication-title: J Neurosci Res
– volume: 2
  start-page: 84
  year: 2000
  end-page: 89
  article-title: The transcription factor snail is a repressor of E‐cadherin gene expression in epithelial tumour cells
  publication-title: Nat Cell Biol
– volume: 2
  start-page: 76
  year: 2000
  end-page: 83
  article-title: The transcription factor snail controls epithelial‐mesenchymal transitions by repressing E‐cadherin expression
  publication-title: Nat Cell Biol
– volume: 18
  start-page: 6245
  year: 1998
  end-page: 6252
  article-title: Synergistic regulation of Schwann cell proliferation by heregulin and forskolin
  publication-title: Mol Cell Biol
– volume: 1
  start-page: 73
  year: 1988
  end-page: 83
  article-title: Isolation and analysis of the gene encoding peripheral myelin protein zero
  publication-title: Neuron
– volume: 85
  start-page: 1159
  year: 2007
  end-page: 1169
  article-title: Schwann cells express IP prostanoid receptors coupled to an elevation in intracellular cyclic AMP
  publication-title: J Neurosci Res
– volume: 16
  start-page: 492
  year: 2006
  end-page: 500
  article-title: Axonal regulation of myelination by neuregulin 1
  publication-title: Curr Opin Neurobiol
– volume: 32
  start-page: 801
  year: 2001
  end-page: 814
  article-title: NGF signaling from clathrin‐coated vesicles: Evidence that signaling endosomes serve as a platform for the Ras‐MAPK pathway
  publication-title: Neuron
– volume: 21
  start-page: 341
  year: 2002
  end-page: 351
  article-title: E‐cadherin is required for the correct formation of autotypic adherens junctions of the outer mesaxon but not for the integrity of myelinated fibers of peripheral nerves
  publication-title: Mol Cell Neurosci
– volume: 4
  start-page: 11
  year: 2003
  end-page: 18
  article-title: Tube or not tube: Remodeling epithelial tissues by branching morphogenesis
  publication-title: Dev Cell
– volume: 136
  start-page: 3113
  year: 1995
  end-page: 3119
  article-title: Regulation of the cell‐cell adhesion protein, E‐cadherin, in dog and human thyrocytes in vitro
  publication-title: Endocrinology
– volume: 19
  start-page: 285
  year: 1990
  end-page: 301
  article-title: Regional localization of RNA, protein metabolism in Schwann cells in vivo
  publication-title: J Neurocytol
– volume: 35
  start-page: 120
  year: 2007
  end-page: 129
  article-title: P120 catenin is required for thickening of Schwann cell myelin
  publication-title: Mol Cell Neurosci
– volume: 6
  start-page: 622
  year: 2005
  end-page: 634
  article-title: Regulation of cadherin‐mediated adhesion in morphogenesis
  publication-title: Nat Rev Mol Cell Biol
– volume: 280
  start-page: 15438
  year: 2005
  end-page: 15448
  article-title: Gonadotropins regulate N‐cadherin‐mediated human ovarian surface epithelial cell survival at both post‐translational and transcriptional levels through a cyclic AMP/protein kinase A pathway
  publication-title: J Biol Chem
– volume: 25
  start-page: 3259
  year: 2005
  end-page: 3269
  article-title: Adherens junctions in myelinating Schwann cells stabilize Schmidt‐Lanterman incisures via recruitment of p120 catenin to E‐cadherin
  publication-title: J Neurosci
– volume: 112
  start-page: 457
  year: 1991
  end-page: 467
  article-title: The effects of cAMP on differentiation of cultured Schwann cells: Progression from an early phenotype (04+) to a myelin phenotype (P0+, GFAP‐, N‐CAM‐, NGF‐receptor‐) depends on growth inhibition
  publication-title: J Cell Biol
– volume: 65
  start-page: 149
  year: 1995
  end-page: 159
  article-title: The second messenger, cyclic AMP, is not sufficient for myelin gene induction in the peripheral nervous system
  publication-title: J Neurochem
– volume: 273
  start-page: 9070
  year: 1998
  end-page: 9077
  article-title: Activity of cyclic AMP phosphodiesterases and adenylyl cyclase in peripheral nerve after crush and permanent transection injuries
  publication-title: J Biol Chem
– volume: 113
  start-page: 1
  year: 2000
  end-page: 18
  article-title: On the molecular architecture of myelinated fibers
  publication-title: Histochem Cell Biol
– volume: 13
  start-page: 119
  year: 1997
  end-page: 146
  article-title: Molecular and functional analysis of cadherin‐based adherens junctions
  publication-title: Annu Rev Cell Dev Biol
– volume: 5
  start-page: 797
  year: 1993
  end-page: 805
  article-title: The structural and functional analysis of cadherin calcium‐dependent cell adhesion molecules
  publication-title: Curr Opin Cell Biol
– volume: 49
  start-page: 236
  year: 1997
  end-page: 247
  article-title: cAMP‐dependent protein kinase A is required for Schwann cell growth: Interactions between the cAMP and neuregulin/tyrosine kinase pathways
  publication-title: J Neurosci Res
– volume: 22
  start-page: 4066
  year: 2002
  end-page: 4079
  article-title: N‐cadherin mediates axon‐aligned process growth and cell‐cell interaction in rat Schwann cells
  publication-title: J Neurosci
– volume: 18
  start-page: 606
  year: 2001
  end-page: 618
  article-title: Protein zero is necessary for E‐cadherin‐mediated adherens junction formation in Schwann cells
  publication-title: Mol Cell Neurosci
– volume: 61
  start-page: 1834
  year: 2004
  end-page: 1842
  article-title: TSH receptor signaling via cyclic AMP inhibits cell surface degradation and internalization of E‐cadherin in pig thyroid epithelium
  publication-title: Cell Mol Life Sci
– start-page: 1
  year: 2001
  end-page: 20
– volume: 155
  start-page: 459
  year: 1993
  end-page: 470
  article-title: Expression of platelet‐derived growth factor (PDGF) and PDGF alpha‐ and beta‐receptors in the peripheral nervous system: An analysis of sciatic nerve and dorsal root ganglia
  publication-title: Dev Biol
– volume: 206
  start-page: 69
  year: 2005
  end-page: 78
  article-title: Quantification of N‐CAM and N‐cadherin expression in axotomized and crushed rat sciatic nerve
  publication-title: J Anat
– volume: 351
  start-page: 95
  year: 2000
  end-page: 105
  article-title: Specificity and mechanism of action of some commonly used protein kinase inhibitors
  publication-title: Biochem J
– volume: 19
  start-page: 207
  year: 2003
  end-page: 235
  article-title: Cadherins as modulators of cellular phenotype
  publication-title: Annu Rev Cell Dev Biol
– volume: 129
  start-page: 189
  year: 1995
  end-page: 202
  article-title: Novel E‐cadherin‐mediated adhesion in peripheral nerve: Schwann cell architecture is stabilized by autotypic adherens junctions
  publication-title: J Cell Biol
– volume: 22
  start-page: 987
  year: 2000
  end-page: 996
  article-title: Neuregulin, a factor with many functions in the life of a schwann cell
  publication-title: Bioessays
– volume: 165
  start-page: 105
  year: 1979
  end-page: 118
  article-title: Studies on cultured Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve
  publication-title: Brain Res
– ident: e_1_2_6_16_1
  doi: 10.1002/jnr.490310206
– ident: e_1_2_6_21_1
  doi: 10.1158/0008-5472.CAN-06-2890
– ident: e_1_2_6_8_1
  doi: 10.1042/bj3510095
– ident: e_1_2_6_14_1
  doi: 10.1016/0955-0674(93)90028-O
– ident: e_1_2_6_17_1
  doi: 10.1016/S0896-6273(01)00526-8
– ident: e_1_2_6_30_1
  doi: 10.1128/MCB.18.11.6245
– ident: e_1_2_6_24_1
  doi: 10.1083/jcb.112.3.457
– ident: e_1_2_6_19_1
  doi: 10.1007/s00018-004-4079-y
– ident: e_1_2_6_13_1
  doi: 10.1007/BF01188399
– ident: e_1_2_6_38_1
  doi: 10.1146/annurev.cellbio.13.1.119
– ident: e_1_2_6_31_1
  doi: 10.1111/j.0021-8782.2005.00369.x
– ident: e_1_2_6_11_1
  doi: 10.1083/jcb.129.1.189
– ident: e_1_2_6_36_1
  doi: 10.1146/annurev.cellbio.19.011102.111135
– ident: e_1_2_6_4_1
  doi: 10.1038/35000034
– ident: e_1_2_6_32_1
  doi: 10.1523/JNEUROSCI.5168-04.2005
– ident: e_1_2_6_7_1
  doi: 10.1038/35000025
– ident: e_1_2_6_25_1
  doi: 10.1002/jnr.21221
– ident: e_1_2_6_29_1
  doi: 10.1074/jbc.M410766200
– ident: e_1_2_6_34_1
  doi: 10.1002/glia.20390
– ident: e_1_2_6_33_1
  doi: 10.1074/jbc.273.15.9070
– ident: e_1_2_6_12_1
  doi: 10.1002/1521-1878(200011)22:11<987::AID-BIES5>3.0.CO;2-5
– ident: e_1_2_6_39_1
  doi: 10.1006/mcne.2002.1177
– ident: e_1_2_6_27_1
  doi: 10.1016/j.mcn.2007.02.010
– ident: e_1_2_6_10_1
  doi: 10.1006/dbio.1993.1044
– ident: e_1_2_6_28_1
  doi: 10.1046/j.1471-4159.1995.65010149.x
– ident: e_1_2_6_35_1
  doi: 10.1523/JNEUROSCI.22-10-04066.2002
– ident: e_1_2_6_5_1
  doi: 10.1210/en.136.7.3113
– volume: 22
  start-page: 9194
  year: 2002
  ident: e_1_2_6_37_1
  article-title: Gene‐targeted deletion of neurofibromin enhances the expression of a transient outward K+ current in Schwann cells: A protein kinase A‐mediated mechanism
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-21-09194.2002
  contributor:
    fullname: Xu Y
– ident: e_1_2_6_15_1
  doi: 10.1038/nrm1699
– ident: e_1_2_6_20_1
  doi: 10.1016/0896-6273(88)90211-5
– ident: e_1_2_6_9_1
  doi: 10.1016/0014-4827(92)90455-H
– ident: e_1_2_6_22_1
  doi: 10.1006/mcne.2001.1041
– ident: e_1_2_6_26_1
  doi: 10.1016/j.conb.2006.08.008
– ident: e_1_2_6_2_1
  doi: 10.1016/S1534-5807(02)00410-0
– ident: e_1_2_6_6_1
  doi: 10.1016/0006-8993(79)90048-9
– ident: e_1_2_6_18_1
  doi: 10.1002/(SICI)1097-4547(19970715)49:2<236::AID-JNR12>3.0.CO;2-Z
– ident: e_1_2_6_3_1
  doi: 10.1007/s004180050001
– start-page: 1
  volume-title: Glial cell development
  year: 2001
  ident: e_1_2_6_23_1
  contributor:
    fullname: Mirsky R
SSID ssj0011497
Score 2.1028078
Snippet Expression of E‐cadherin in the peripheral nervous system is a highly regulated process that appears postnatally in concert with the development of myelinating...
Expression of E-cadherin in the peripheral nervous system is a highly regulated process that appears postnatally in concert with the development of myelinating...
Abstract Expression of E‐cadherin in the peripheral nervous system is a highly regulated process that appears postnatally in concert with the development of...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1637
SubjectTerms Animals
Animals, Newborn
autotypic junction
Axons - metabolism
cadherin switch
Cadherins - genetics
Cadherins - metabolism
Cell Communication - physiology
Cell Differentiation - physiology
Cell Membrane - metabolism
Cells, Cultured
Coculture Techniques
Cyclic AMP-Dependent Protein Kinases - genetics
Cyclic AMP-Dependent Protein Kinases - metabolism
Enzyme Activation - physiology
Ganglia, Spinal - cytology
Ganglia, Spinal - growth & development
Ganglia, Spinal - metabolism
N-cadherin
Peripheral Nerves - cytology
Peripheral Nerves - growth & development
Peripheral Nerves - metabolism
Rats
Rats, Sprague-Dawley
Schwann Cells - cytology
Schwann Cells - metabolism
Sensory Receptor Cells - cytology
Sensory Receptor Cells - metabolism
Signal Transduction - physiology
Title E-cadherin expression in postnatal Schwann cells is regulated by the cAMP-dependent protein kinase a pathway
URI https://api.istex.fr/ark:/67375/WNG-70TRPC9G-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fglia.20716
https://www.ncbi.nlm.nih.gov/pubmed/18551621
https://search.proquest.com/docview/69676434
https://pubmed.ncbi.nlm.nih.gov/PMC2575062
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLam8cILt3HpuFkC7QEpW5M6dizxUk1bB2LTNDaxF2TZjrNVBbdqUm3liZ_Ab-SXcI7TpBQQErwliuPo2OfyxT7-DiEvNURty20ahU1C1mM2ymJro9zmiYwzneWB7PnwiB-csbfn6fkaed2chan5IdoFN7SM4K_RwLUpd5akoRefhsgbBHgfHDAy6SEiOmm5owDny5rmU7IIruOWmzTZWb66Eo1u4MBe_wlq_p4x-TOSDaFo_zb52AhRZ6CMtmeV2bZffuF3_F8p75BbC4xK-7VS3SVrzt8jG30P_-ef53SLhqzRsBy_QSZ7379-szoPxwipu17k1XoKd5NxWXlcHqLv7eWV9p7iNkFJhyWdugusG-ZyauYUMCi1_cNj6KmpyVvRQCABnYyGHgIt1RRrJ1_p-X1ytr93unsQLao4RBaxXcRcYrgoMsF0Uuis6FrNuxA7rU2zrs6MZCxNrOFM2tz1mONMFIWwRidachbnvQdk3Y-9e0SoM4JJUCqkrQPfY41wXBc9Y5jUDJBOh7xoZlNNarIOVdMyJwoHUoWB7JCtMNFtEz0dYXqbSNWHo4ES3dOT4105UNDweaMJCowOh0h7N56ViksuAMqxDnlY68XycxnuPCZxh4gVjWkbIJ336hM_vAy03uA80y4HIV4FhfiLBGrw7k0_XG3-S-PH5GbIdsEkxvQJWa-mM_cUIFVlngXT-QHc3yBQ
link.rule.ids 230,315,786,790,891,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZge4AXbuPScZkl0B6QsiWpY8eP1djaQVtNoxN7s2zH2aoyt2pSbeWJn8Bv5Jdw7LQpBYQEb4niOPLxOT5fjo-_g9AbCV5bU50EfpOQNIkO0kjrINNZzKNUppkne-71aeeMvD9Pzhe5Oe4sTMUPUQfcnGX49doZuAtI769YQy8-Dx1xEAD-22gT7D1xdvnutGaPAqTPK6JPTgK4jmp20nh_9e6aP9p0or35E9j8PWfyZyzrndHR_ariauE5DF0OymhvVqo9_eUXhsf_HucDdG8BU3Gr0quH6Jaxj9BWy8Iv-tUc72KfOOoj8ltocvj96zctM3-SEJubRWqtxXA3GReldREi_FFfXktrsdspKPCwwFNz4UqHmQyrOQYYinWrdwI9LcvylthzSEAno6EFX4slduWTr-X8MTo7OhwcdIJFIYdAO3gXEBMryvKUERnnMs1DLWkI7lPrJA1lqjghSawVJVxnpkkMJSzPmVYylpySKGs-QRt2bM0zhI1ihINeOeY6WH60YobKvKkU4ZIA2Gmg18vpFJOKr0NUzMyxcIIUXpANtOtnum4ipyOX4cYS8anfFiwcnJ4c8LaAhjtLVRBgd05E0prxrBCUUwZojjTQ00oxVp9L3eZjHDUQW1OZuoFj9F5_YoeXntkb1s8kpDCIt14j_jIC0e4et_zV9r803kF3OoNeV3SP-x-eo7s--cXlNCYv0EY5nZmXgLBK9crb0Q_G9SRw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKKyEuvMojvGoJ1APStvvw2muJS9Q2aaGNotKKXpBle71tlNaJko3acOIn8Bv5JYy92YQAQoKbVzvr1dgzns_2-DNCbyREbU11GvhNQpIQHWSR1kGu85hHmcxyT_Z81KH7p-T9WXq2gt7VZ2Eqfoj5gpvzDD9eOwcf5sX2gjT0_LLneIMA799Ca4QmsZt67R7PyaMA6POK55OTAMrRnJw03l58uxSO1lzL3vwJa_6eMvkzlPWxqHUPfa61qFJQ-luTUm3pL78QPP6vmvfR3RlIxc3Kqh6gFWMfovWmhQn61RRvYp826tfj19Fw7_vXb1rm_hwhNjezxFqL4Wk4GJfWrQ_hj_riWlqL3T7BGPfGeGTO3cVhJsdqigGEYt086kJN9aW8JfYMElBJv2ch0mKJ3eXJ13L6CJ229k529oPZNQ6BduAuICZWlBUZIzIuZFaEWtIQgqfWaRbKTHFC0lgrSrjOTUIMJawomFYylpySKE8eo1U7sOYpwkYxwsGqHG8dDD5aMUNlkShFuCQAdRrodd2bYlixdYiKlzkWriGFb8gG2vQdPReRo77Lb2Op-NRpCxaeHHd3eFuA4EZtCQK8zjWRtGYwGQvKKQMsRxroSWUXi99lbusxjhqILVnMXMDxeS-_sb0Lz-sNo2caUlDirTeIv2gg2ocHTV969i_CG-h2d7clDg86H56jOz7zxSU0pi_QajmamJcAr0r1ynvRD072Ix8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=E-cadherin+expression+in+postnatal+Schwann+cells+is+regulated+by+the+cAMP-dependent+protein+kinase+a+pathway&rft.jtitle=Glia&rft.au=Crawford%2C+Audrita+T.&rft.au=Desai%2C+Darshan&rft.au=Gokina%2C+Pradeepa&rft.au=Basak%2C+Sayantani&rft.date=2008-11-15&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0894-1491&rft.eissn=1098-1136&rft.volume=56&rft.issue=15&rft.spage=1637&rft.epage=1647&rft_id=info:doi/10.1002%2Fglia.20716&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_70TRPC9G_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1491&client=summon