Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress
Hypertension represents a major risk factor for stroke, myocardial infarction, and heart failure and affects 30% of the adult population. Mitochondrial dysfunction contributes to hypertension, but specific mechanisms are unclear. The mitochondrial deacetylase Sirt3 (Sirtuin 3) is critical in the reg...
Saved in:
Published in | Circulation research Vol. 126; no. 4; pp. 439 - 452 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Heart Association, Inc
14.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hypertension represents a major risk factor for stroke, myocardial infarction, and heart failure and affects 30% of the adult population. Mitochondrial dysfunction contributes to hypertension, but specific mechanisms are unclear. The mitochondrial deacetylase Sirt3 (Sirtuin 3) is critical in the regulation of metabolic and antioxidant functions which are associated with hypertension, and cardiovascular disease risk factors diminish Sirt3 level.
We hypothesized that reduced Sirt3 expression contributes to vascular dysfunction in hypertension, but increased Sirt3 protects vascular function and decreases hypertension.
To test the therapeutic potential of targeting Sirt3 expression, we developed new transgenic mice with global Sirt3OX (Sirt3 overexpression), which protects from endothelial dysfunction, vascular oxidative stress, and hypertrophy and attenuates Ang II (angiotensin II) and deoxycorticosterone acetate-salt induced hypertension. Global Sirt3 depletion in
mice results in oxidative stress due to hyperacetylation of mitochondrial superoxide dismutase (SOD2), increases HIF1α (hypoxia-inducible factor-1), reduces endothelial cadherin, stimulates vascular hypertrophy, increases vascular permeability and vascular inflammation (p65, caspase 1, VCAM [vascular cell adhesion molecule-1], ICAM [intercellular adhesion molecule-1], and MCP1 [monocyte chemoattractant protein 1]), increases inflammatory cell infiltration in the kidney, reduces telomerase expression, and accelerates vascular senescence and age-dependent hypertension; conversely, increased Sirt3 expression in Sirt3OX mice prevents these deleterious effects. The clinical relevance of Sirt3 depletion was confirmed in arterioles from human mediastinal fat in patients with essential hypertension showing a 40% decrease in vascular Sirt3, coupled with Sirt3-dependent 3-fold increases in SOD2 acetylation, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activity, VCAM, ICAM, and MCP1 levels in hypertensive subjects compared with normotensive subjects.
We suggest that Sirt3 depletion in hypertension promotes endothelial dysfunction, vascular hypertrophy, vascular inflammation, and end-organ damage. Our data support a therapeutic potential of targeting Sirt3 expression in vascular dysfunction and hypertension. |
---|---|
AbstractList | Hypertension represents a major risk factor for stroke, myocardial infarction, and heart failure and affects 30% of the adult population. Mitochondrial dysfunction contributes to hypertension, but specific mechanisms are unclear. The mitochondrial deacetylase Sirt3 (Sirtuin 3) is critical in the regulation of metabolic and antioxidant functions which are associated with hypertension, and cardiovascular disease risk factors diminish Sirt3 level.RATIONALEHypertension represents a major risk factor for stroke, myocardial infarction, and heart failure and affects 30% of the adult population. Mitochondrial dysfunction contributes to hypertension, but specific mechanisms are unclear. The mitochondrial deacetylase Sirt3 (Sirtuin 3) is critical in the regulation of metabolic and antioxidant functions which are associated with hypertension, and cardiovascular disease risk factors diminish Sirt3 level.We hypothesized that reduced Sirt3 expression contributes to vascular dysfunction in hypertension, but increased Sirt3 protects vascular function and decreases hypertension.OBJECTIVEWe hypothesized that reduced Sirt3 expression contributes to vascular dysfunction in hypertension, but increased Sirt3 protects vascular function and decreases hypertension.To test the therapeutic potential of targeting Sirt3 expression, we developed new transgenic mice with global Sirt3OX (Sirt3 overexpression), which protects from endothelial dysfunction, vascular oxidative stress, and hypertrophy and attenuates Ang II (angiotensin II) and deoxycorticosterone acetate-salt induced hypertension. Global Sirt3 depletion in Sirt3-/- mice results in oxidative stress due to hyperacetylation of mitochondrial superoxide dismutase (SOD2), increases HIF1α (hypoxia-inducible factor-1), reduces endothelial cadherin, stimulates vascular hypertrophy, increases vascular permeability and vascular inflammation (p65, caspase 1, VCAM [vascular cell adhesion molecule-1], ICAM [intercellular adhesion molecule-1], and MCP1 [monocyte chemoattractant protein 1]), increases inflammatory cell infiltration in the kidney, reduces telomerase expression, and accelerates vascular senescence and age-dependent hypertension; conversely, increased Sirt3 expression in Sirt3OX mice prevents these deleterious effects. The clinical relevance of Sirt3 depletion was confirmed in arterioles from human mediastinal fat in patients with essential hypertension showing a 40% decrease in vascular Sirt3, coupled with Sirt3-dependent 3-fold increases in SOD2 acetylation, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activity, VCAM, ICAM, and MCP1 levels in hypertensive subjects compared with normotensive subjects.METHODS AND RESULTSTo test the therapeutic potential of targeting Sirt3 expression, we developed new transgenic mice with global Sirt3OX (Sirt3 overexpression), which protects from endothelial dysfunction, vascular oxidative stress, and hypertrophy and attenuates Ang II (angiotensin II) and deoxycorticosterone acetate-salt induced hypertension. Global Sirt3 depletion in Sirt3-/- mice results in oxidative stress due to hyperacetylation of mitochondrial superoxide dismutase (SOD2), increases HIF1α (hypoxia-inducible factor-1), reduces endothelial cadherin, stimulates vascular hypertrophy, increases vascular permeability and vascular inflammation (p65, caspase 1, VCAM [vascular cell adhesion molecule-1], ICAM [intercellular adhesion molecule-1], and MCP1 [monocyte chemoattractant protein 1]), increases inflammatory cell infiltration in the kidney, reduces telomerase expression, and accelerates vascular senescence and age-dependent hypertension; conversely, increased Sirt3 expression in Sirt3OX mice prevents these deleterious effects. The clinical relevance of Sirt3 depletion was confirmed in arterioles from human mediastinal fat in patients with essential hypertension showing a 40% decrease in vascular Sirt3, coupled with Sirt3-dependent 3-fold increases in SOD2 acetylation, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activity, VCAM, ICAM, and MCP1 levels in hypertensive subjects compared with normotensive subjects.We suggest that Sirt3 depletion in hypertension promotes endothelial dysfunction, vascular hypertrophy, vascular inflammation, and end-organ damage. Our data support a therapeutic potential of targeting Sirt3 expression in vascular dysfunction and hypertension.CONCLUSIONSWe suggest that Sirt3 depletion in hypertension promotes endothelial dysfunction, vascular hypertrophy, vascular inflammation, and end-organ damage. Our data support a therapeutic potential of targeting Sirt3 expression in vascular dysfunction and hypertension. Hypertension represents a major risk factor for stroke, myocardial infarction, and heart failure and affects 30% of the adult population. Mitochondrial dysfunction contributes to hypertension, but specific mechanisms are unclear. The mitochondrial deacetylase Sirt3 (Sirtuin 3) is critical in the regulation of metabolic and antioxidant functions which are associated with hypertension, and cardiovascular disease risk factors diminish Sirt3 level. We hypothesized that reduced Sirt3 expression contributes to vascular dysfunction in hypertension, but increased Sirt3 protects vascular function and decreases hypertension. To test the therapeutic potential of targeting Sirt3 expression, we developed new transgenic mice with global Sirt3OX (Sirt3 overexpression), which protects from endothelial dysfunction, vascular oxidative stress, and hypertrophy and attenuates Ang II (angiotensin II) and deoxycorticosterone acetate-salt induced hypertension. Global Sirt3 depletion in mice results in oxidative stress due to hyperacetylation of mitochondrial superoxide dismutase (SOD2), increases HIF1α (hypoxia-inducible factor-1), reduces endothelial cadherin, stimulates vascular hypertrophy, increases vascular permeability and vascular inflammation (p65, caspase 1, VCAM [vascular cell adhesion molecule-1], ICAM [intercellular adhesion molecule-1], and MCP1 [monocyte chemoattractant protein 1]), increases inflammatory cell infiltration in the kidney, reduces telomerase expression, and accelerates vascular senescence and age-dependent hypertension; conversely, increased Sirt3 expression in Sirt3OX mice prevents these deleterious effects. The clinical relevance of Sirt3 depletion was confirmed in arterioles from human mediastinal fat in patients with essential hypertension showing a 40% decrease in vascular Sirt3, coupled with Sirt3-dependent 3-fold increases in SOD2 acetylation, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activity, VCAM, ICAM, and MCP1 levels in hypertensive subjects compared with normotensive subjects. We suggest that Sirt3 depletion in hypertension promotes endothelial dysfunction, vascular hypertrophy, vascular inflammation, and end-organ damage. Our data support a therapeutic potential of targeting Sirt3 expression in vascular dysfunction and hypertension. NAD + dependent mitochondrial deacetylase Sirt3 is a key regulator of antioxidant and metabolic functions. Sirt3 level declines with age paralleling the increased incidence of hypertension. In this work we described a novel therapeutic potential of targeting Sirt3 expression using new transgenic global Sirt3 overexpressing mice. Sirt3 overexpression inhibits vascular oxidative stress and hypertrophy, preserves endothelial-dependent relaxation and vascular permeability, attenuates angiotensin II- and DOCA-salt hypertension. Sirt3 depletion induces pathophysiological metabolic and phenotypic vascular alterations by increased HIF1α, reduced VE-cadherin, elevated endothelial permeability, activation of NFkB and inflammasome pathways, vascular cell-senescence and aging, infiltration of T cells and age-dependent hypertension while increased Sirt3 expression prevents these deleterious effects. The clinical relevance of Sirt3 depletion was confirmed in arterioles from human mediastinal fat in patients with essential hypertension showing 40% decrease in vascular Sirt3, coupled with SOD2 acetylation, vascular inflammation and cell-senescence markers in hypertensive subjects compared to vessels from normotensive subjects. Our data support a therapeutic potential for targeting Sirt3 expression in treatment of vascular dysfunction and hypertension. |
Author | Xiao, Liang Harrison, David G. Dikalov, Sergey I. Billings, Frederic T. Arslanbaeva, Liaisan Dikalova, Anna E. Lopez, Marcos G. Sidorova, Tatiana Verdin, Eric Pandey, Arvind Auwerx, Johan |
AuthorAffiliation | From the Vanderbilt University Medical Center, Nashville, TN (A.E.D., A.P., L.X., L.A., T.S., M.G.L., F.T.B., D.G.H., S.I.D.) Buck Institute for Research on Aging, Novato, CA (E.V.) Ecole Polytechnique Fédérale de Lausanne, Switzerland (J.A.) |
AuthorAffiliation_xml | – name: From the Vanderbilt University Medical Center, Nashville, TN (A.E.D., A.P., L.X., L.A., T.S., M.G.L., F.T.B., D.G.H., S.I.D.) Buck Institute for Research on Aging, Novato, CA (E.V.) Ecole Polytechnique Fédérale de Lausanne, Switzerland (J.A.) – name: 1 Vanderbilt University Medical Center, Nashville, TN 37022 – name: 3 Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland – name: 2 Buck Institute for Research on Aging, Novato, CA 94945 |
Author_xml | – sequence: 1 givenname: Anna surname: Dikalova middlename: E. fullname: Dikalova, Anna E. organization: From the Vanderbilt University Medical Center, Nashville, TN (A.E.D., A.P., L.X., L.A., T.S., M.G.L., F.T.B., D.G.H., S.I.D.) Buck Institute for Research on Aging, Novato, CA (E.V.) Ecole Polytechnique Fédérale de Lausanne, Switzerland (J.A.) – sequence: 2 givenname: Arvind surname: Pandey fullname: Pandey, Arvind – sequence: 3 givenname: Liang surname: Xiao fullname: Xiao, Liang – sequence: 4 givenname: Liaisan surname: Arslanbaeva fullname: Arslanbaeva, Liaisan – sequence: 5 givenname: Tatiana surname: Sidorova fullname: Sidorova, Tatiana – sequence: 6 givenname: Marcos surname: Lopez middlename: G. fullname: Lopez, Marcos G. – sequence: 7 givenname: Frederic surname: Billings middlename: T. fullname: Billings, Frederic T. – sequence: 8 givenname: Eric surname: Verdin fullname: Verdin, Eric – sequence: 9 givenname: Johan surname: Auwerx fullname: Auwerx, Johan – sequence: 10 givenname: David surname: Harrison middlename: G. fullname: Harrison, David G. – sequence: 11 givenname: Sergey surname: Dikalov middlename: I. fullname: Dikalov, Sergey I. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31852393$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1uEzEUhS1URNPAI4BmyWaKf8bxjJCQoiSQSEGV0gqWlsdzh5g6dmp7WvJgvB-TpmkpGza27vU595Ptc4ZOnHeA0FuCzwkZkQ-TxWqyml2O5-O-rs4Z4WIkXqAB4bTICy7ICRpgjKtcMIZP0VmMPzEmBaPVK3TKSMkpq9gA_f5qktdr75pglM2moDSknVURsksTEstW0HQaYvZNRd1ZFbLpLrad08l4lynXZPPdFkICF_eN72tjj84pbC3cy4zLZjGCS3vEM_0iZkvjrqHJkn9CLFxr1WajHhkXv0zTV7f96BQgxtfoZatshDcP-xBdfZ5dTeb58uLLYjJe5ppTynOgBeGN4KIs6QgXNW1KVajRqCW6AcV53SrRMNYKRXFVV6pqGa5LLWiLG14zNkSfDmO3Xb2BRvc3CMrKbTAbFXbSKyOfnzizlj_8rRSYcdIvQ_T-YUDwNx3EJDcmarBWOfBdlJTRUgiBBe2l7_5mPUKOX9ULPh4EOvgYA7RSm3T_RD3aWEmw3AdDPgWjryt5CEbv5v-4j4D_-YqD787bBCFe2-4OglyDsmkt-4BhhgnNKaYYU1LgfN_i7A-eG9H5 |
CitedBy_id | crossref_primary_10_1093_stmcls_sxac018 crossref_primary_10_31083_RCM25302 crossref_primary_10_2174_1566524023666230731095431 crossref_primary_10_1161_ATVBAHA_120_315779 crossref_primary_10_3390_biom13010050 crossref_primary_10_1016_j_biopha_2023_115475 crossref_primary_10_3390_antiox12010200 crossref_primary_10_1016_j_fitote_2023_105753 crossref_primary_10_1016_j_bbadis_2020_165836 crossref_primary_10_1360_SSV_2021_0366 crossref_primary_10_2147_JIR_S374318 crossref_primary_10_3390_jcm13195927 crossref_primary_10_1016_j_ejphar_2021_174186 crossref_primary_10_1016_j_freeradbiomed_2024_10_306 crossref_primary_10_1016_j_numecd_2022_06_019 crossref_primary_10_1152_ajpheart_00917_2020 crossref_primary_10_1186_s13020_023_00722_y crossref_primary_10_1007_s00424_023_02806_y crossref_primary_10_1111_bph_16070 crossref_primary_10_1038_s41419_024_07107_5 crossref_primary_10_1038_s41392_022_01257_8 crossref_primary_10_1007_s10753_021_01454_7 crossref_primary_10_1016_j_heliyon_2023_e21890 crossref_primary_10_1038_s41401_020_00563_7 crossref_primary_10_7555_JBR_38_20240387 crossref_primary_10_3389_fphar_2023_1329969 crossref_primary_10_1038_s41569_024_01062_6 crossref_primary_10_1161_CIRCRESAHA_124_325440 crossref_primary_10_3390_ijms23158672 crossref_primary_10_1161_CIRCRESAHA_121_318063 crossref_primary_10_1093_cvr_cvae252 crossref_primary_10_1111_jcmm_16661 crossref_primary_10_1111_bcpt_70001 crossref_primary_10_1016_j_phrs_2021_105802 crossref_primary_10_1080_14728222_2023_2187778 crossref_primary_10_1538_expanim_22_0175 crossref_primary_10_1007_s10456_024_09938_4 crossref_primary_10_1016_j_bcp_2021_114665 crossref_primary_10_1016_j_ecoenv_2024_116253 crossref_primary_10_1515_hsz_2021_0139 crossref_primary_10_1021_acs_est_2c00585 crossref_primary_10_1038_s41569_022_00685_x crossref_primary_10_1155_2022_8746530 crossref_primary_10_1016_j_phymed_2024_155464 crossref_primary_10_1016_j_bbrc_2022_12_035 crossref_primary_10_1161_HYPERTENSIONAHA_120_15236 crossref_primary_10_1016_j_lfs_2023_122318 crossref_primary_10_3390_jcm12041247 crossref_primary_10_1016_j_mad_2020_111267 crossref_primary_10_1016_j_intimp_2023_110408 crossref_primary_10_1016_j_bbamcr_2025_119906 crossref_primary_10_1186_s12872_023_03203_0 crossref_primary_10_1002_mco2_261 crossref_primary_10_31083_j_fbl2906205 crossref_primary_10_1016_j_yexcr_2022_113280 crossref_primary_10_1186_s12967_023_04286_1 crossref_primary_10_1016_j_biopha_2023_116004 crossref_primary_10_1007_s10528_022_10257_w crossref_primary_10_3389_fendo_2023_1131395 crossref_primary_10_2174_1574893618666230614093416 crossref_primary_10_1016_j_cellsig_2023_110790 crossref_primary_10_1016_j_jhazmat_2022_129381 crossref_primary_10_3389_fcvm_2021_806988 crossref_primary_10_3390_biomedicines9111574 crossref_primary_10_4103_NRR_NRR_D_23_01985 crossref_primary_10_1016_j_cbi_2022_110028 crossref_primary_10_3390_antiox11122432 crossref_primary_10_1161_CIRCRESAHA_123_323596 crossref_primary_10_1007_s11239_023_02862_2 crossref_primary_10_3389_fcvm_2023_1203130 crossref_primary_10_1080_13813455_2021_1981946 crossref_primary_10_1016_j_cjca_2023_10_012 crossref_primary_10_1111_jcmm_16813 crossref_primary_10_1186_s12967_022_03642_x crossref_primary_10_1089_jmf_2021_K_0155 crossref_primary_10_3390_ijms23063212 crossref_primary_10_2147_DDDT_S428024 crossref_primary_10_1039_D3FO02641H crossref_primary_10_1016_j_freeradbiomed_2024_11_033 crossref_primary_10_1152_ajpheart_00162_2024 crossref_primary_10_1097_MD_0000000000033403 crossref_primary_10_1016_j_freeradbiomed_2022_10_324 crossref_primary_10_3389_fphar_2024_1485831 crossref_primary_10_1161_CIRCRESAHA_120_316763 crossref_primary_10_1016_j_lfs_2021_119178 crossref_primary_10_3390_molecules28031369 crossref_primary_10_1016_j_biopha_2024_116989 crossref_primary_10_3389_fendo_2024_1431293 crossref_primary_10_1093_eurheartj_ehad381 crossref_primary_10_3389_fphar_2023_1209890 crossref_primary_10_1038_s41440_024_02023_9 crossref_primary_10_1002_advs_202307256 crossref_primary_10_1111_cpr_13362 crossref_primary_10_1016_j_phymed_2023_155127 crossref_primary_10_3389_fcvm_2023_1204483 crossref_primary_10_1016_j_gene_2024_148700 crossref_primary_10_3390_jcm12185796 crossref_primary_10_1016_j_apsb_2020_10_007 crossref_primary_10_1016_j_brainresbull_2024_111137 crossref_primary_10_1080_00365513_2021_1986857 crossref_primary_10_1093_toxres_tfac051 crossref_primary_10_1155_2022_3137329 crossref_primary_10_3390_biomedicines12061148 crossref_primary_10_1016_j_bbadis_2020_166037 crossref_primary_10_31083_j_fbl2902054 crossref_primary_10_3390_ijms22136748 crossref_primary_10_1016_j_jep_2023_117163 crossref_primary_10_1371_journal_pone_0291909 crossref_primary_10_3390_biom13050735 crossref_primary_10_1155_2020_7385458 crossref_primary_10_14336_AD_2021_1204 crossref_primary_10_1161_CIRCRESAHA_120_316755 crossref_primary_10_18632_aging_103644 crossref_primary_10_2174_0115701611297956240425115501 crossref_primary_10_1007_s11010_024_05002_3 crossref_primary_10_1016_j_arr_2024_102654 crossref_primary_10_1038_s41420_024_02233_7 crossref_primary_10_1161_CIRCULATIONAHA_121_057178 crossref_primary_10_2174_0109298673259299230921150030 crossref_primary_10_1016_j_metabol_2024_155787 crossref_primary_10_1016_j_jep_2024_118610 crossref_primary_10_1038_s41514_024_00165_1 crossref_primary_10_1016_j_tips_2024_02_001 crossref_primary_10_1007_s11426_021_1019_2 crossref_primary_10_1097_FJC_0000000000001495 crossref_primary_10_4103_ijnpnd_ijnpnd_54_21 crossref_primary_10_1016_j_biopha_2022_113620 crossref_primary_10_1016_j_phymed_2024_156054 crossref_primary_10_1097_FJC_0000000000001496 crossref_primary_10_1016_j_ejphar_2022_175048 crossref_primary_10_1016_j_intimp_2020_107206 crossref_primary_10_3892_br_2024_1899 crossref_primary_10_1039_D2BM00578F crossref_primary_10_1002_ptr_8138 crossref_primary_10_1007_s00109_022_02187_2 crossref_primary_10_1016_j_atherosclerosis_2024_119090 crossref_primary_10_1038_s41419_022_05183_z crossref_primary_10_1111_cpr_13057 crossref_primary_10_1152_ajpregu_00238_2021 crossref_primary_10_1007_s12265_022_10235_y crossref_primary_10_3390_cells11162568 crossref_primary_10_1016_j_biopha_2023_114761 crossref_primary_10_1161_CIRCRESAHA_120_316567 crossref_primary_10_1016_j_freeradbiomed_2022_01_005 crossref_primary_10_1038_s41440_024_01716_5 crossref_primary_10_14336_AD_2023_0203 crossref_primary_10_1007_s11064_021_03502_y crossref_primary_10_2174_1381612826666201005153848 crossref_primary_10_1007_s10753_024_01967_x crossref_primary_10_1007_s12017_022_08713_2 crossref_primary_10_1007_s10495_023_01878_6 crossref_primary_10_1186_s12964_023_01442_4 crossref_primary_10_1155_2022_9041914 crossref_primary_10_3390_antiox11040706 crossref_primary_10_1007_s10522_023_10031_4 crossref_primary_10_1177_1759091421991771 crossref_primary_10_1097_FJC_0000000000001154 crossref_primary_10_3390_nu13020690 crossref_primary_10_3390_ijms21186579 crossref_primary_10_3390_ijms21186699 crossref_primary_10_12997_jla_2022_11_2_111 crossref_primary_10_1016_j_ejphar_2024_176900 crossref_primary_10_1152_ajpheart_00632_2023 crossref_primary_10_1167_iovs_64_10_11 crossref_primary_10_1038_s41392_024_01816_1 crossref_primary_10_1093_function_zqac043 crossref_primary_10_1021_acs_jmedchem_4c00345 crossref_primary_10_1007_s12020_024_04106_6 crossref_primary_10_1042_CS20190559 crossref_primary_10_3389_fphar_2022_993569 crossref_primary_10_1186_s10020_024_00926_4 crossref_primary_10_3390_antiox12101849 crossref_primary_10_1016_j_cellsig_2022_110309 crossref_primary_10_7717_peerj_19111 crossref_primary_10_1111_cns_14567 crossref_primary_10_3168_jds_2022_22114 crossref_primary_10_1111_bph_15980 crossref_primary_10_1016_j_biopha_2024_116919 crossref_primary_10_1016_j_neuropharm_2024_109905 crossref_primary_10_3390_antiox11091713 crossref_primary_10_3390_antiox11071301 crossref_primary_10_3390_cells12121607 crossref_primary_10_1161_CIRCHEARTFAILURE_121_008547 crossref_primary_10_1097_MD_0000000000026721 crossref_primary_10_2147_JIR_S486984 crossref_primary_10_1161_CIRCRESAHA_121_318053 crossref_primary_10_1016_j_freeradbiomed_2021_05_026 crossref_primary_10_1186_s12906_023_04330_z crossref_primary_10_1111_jpi_12686 crossref_primary_10_1152_ajplung_00239_2023 crossref_primary_10_4103_1673_5374_385864 crossref_primary_10_1002_mco2_651 crossref_primary_10_1186_s13023_022_02331_8 crossref_primary_10_1016_j_phymed_2022_154387 crossref_primary_10_1016_j_mito_2021_12_006 crossref_primary_10_1155_2021_9912434 crossref_primary_10_1161_CIRCRESAHA_123_323897 crossref_primary_10_1016_j_biopha_2024_116587 crossref_primary_10_1161_HYPERTENSIONAHA_123_21365 crossref_primary_10_3897_pharmacia_68_e73140 crossref_primary_10_1016_j_fmre_2023_03_009 crossref_primary_10_1080_09603123_2024_2418010 crossref_primary_10_1038_s41569_022_00739_0 crossref_primary_10_1016_j_exger_2020_111147 crossref_primary_10_1007_s10557_023_07441_4 crossref_primary_10_14814_phy2_16094 crossref_primary_10_1111_cns_14913 crossref_primary_10_1016_j_biopha_2023_115880 crossref_primary_10_1016_j_freeradbiomed_2023_05_031 crossref_primary_10_1007_s12035_022_03137_2 crossref_primary_10_1016_j_lfs_2022_120834 crossref_primary_10_3168_jds_2021_20536 crossref_primary_10_1016_j_biopha_2022_113954 crossref_primary_10_1097_MNH_0000000000000771 crossref_primary_10_1016_j_phrs_2021_105432 crossref_primary_10_1007_s12265_022_10297_y crossref_primary_10_1016_j_trsl_2021_03_015 crossref_primary_10_31083_j_fbl2911398 |
Cites_doi | 10.1007/s11906-018-0889-4 10.1074/jbc.M117.791715 10.1016/j.ahj.2011.05.010 10.3949/ccjm.79a.12017 10.1152/ajpheart.00832.2015 10.1161/CIRCRESAHA.116.303697 10.1080/15384101.2015.1026517 10.1152/ajpheart.00472.2017 10.1089/ars.2013.5482 10.1152/japplphysiol.00513.2006 10.1016/j.cmet.2014.11.003 10.1161/CIRCRESAHA.118.312498 10.1093/abbs/gmv013 10.1161/01.cir.0000013836.85741.17 10.1089/ars.2018.7632 10.4049/jimmunol.1701723 10.1172/jci.insight.120722 10.1016/j.ceb.2010.07.006 10.1161/01.hyp.25.5.1111 10.1038/ncomms7656 10.1097/HJH.0000000000000157 10.1161/01.ATV.0000259298.11129.a2 10.1161/01.HYP.0000177474.06749.98 10.1161/hyp.70.suppl_1.p345 10.1152/ajpheart.00063.2013 10.1161/HYPERTENSIONAHA.117.07802 10.2174/138161212799436593 10.1016/j.jacc.2017.04.052 10.1016/j.tig.2014.04.007 10.1089/ars.2012.4918 10.1038/nature08778 10.1242/jcs.00755 10.1038/s41467-018-03421-7 10.1073/pnas.0803790105 10.1161/CIRCRESAHA.109.214601 10.1152/physiol.00031.2016 10.1016/j.immuni.2013.08.001 10.1038/embor.2011.65 10.1161/01.HYP.0000258594.87211.6b 10.1089/ars.2005.7.395 10.1016/j.celrep.2013.01.005 10.2337/db08-0349 10.1093/eurheartj/ehu436 10.1161/ATVBAHA.119.312613 10.18632/oncotarget.16133 10.1097/MNH.0000000000000198 10.1016/j.freeradbiomed.2011.06.033 10.1111/jsm.13035 10.1161/HYPERTENSIONAHA.115.07085 10.1161/CIRCRESAHA.115.308111 10.1161/HYPERTENSIONAHA.114.04598 10.1155/2013/876943 10.1016/j.ygeno.2004.11.003 10.14814/phy2.12780 10.2337/db14-1810 10.1161/01.str.28.7.1507 10.1016/j.molcel.2010.12.013 10.18632/oncotarget.12504 10.15252/embj.201797135 10.1093/eurheartj/ehv290 10.1128/MCB.00586-15 10.1016/S0076-6879(05)96052-7 10.1002/cyto.a.21068 10.3389/fphys.2012.00128 10.1161/CIRCRESAHA.117.310933 10.1161/HYPERTENSIONAHA.116.07237 10.1371/journal.pone.0134391 10.1089/ars.2018.7703 10.1152/ajpheart.00039.2019 10.3892/ijo_00000574 10.1161/CIRCULATIONAHA.105.538934 10.1016/j.redox.2016.09.003 10.1084/jem.20070657 10.1152/ajpheart.00595.2018 10.1038/cr.2011.55 10.1097/HJH.0b013e3282ef6196 10.1016/j.molcel.2018.01.010 10.1016/j.jash.2012.11.007 |
ContentType | Journal Article |
Copyright | American Heart Association, Inc. |
Copyright_xml | – notice: American Heart Association, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1161/CIRCRESAHA.119.315767 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4571 |
EndPage | 452 |
ExternalDocumentID | PMC7035170 31852393 10_1161_CIRCRESAHA_119_315767 00003012-202002140-00005 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL144943 – fundername: NIGMS NIH HHS grantid: K23 GM129662 – fundername: NHLBI NIH HHS grantid: P01 HL129941 – fundername: NHLBI NIH HHS grantid: R01 HL124116 – fundername: NIGMS NIH HHS grantid: R01 GM112871 – fundername: NHLBI NIH HHS grantid: R35 HL140016 |
GroupedDBID | --- -~X .-D .3C .Z2 01R 0R~ 18M 1J1 29B 2WC 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAMOA AAMTA AAQKA AARTV AASCR AASOK AAXQO ABASU ABBUW ABDIG ABJNI ABOCM ABPXF ABQRW ABVCZ ABXVJ ABZAD ABZZY ACDDN ACEWG ACGFO ACGFS ACILI ACLDA ACNWC ACPRK ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADGGA ADHPY AE3 AE6 AENEX AFBFQ AFDTB AFUWQ AGINI AHMBA AHOMT AHQNM AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC BAWUL BOYCO BQLVK C45 CS3 DIK DIWNM DU5 E.X E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FRP GNXGY GQDEL GX1 H0~ HLJTE HZ~ IKREB IKYAY IN~ IPNFZ JK3 JK8 K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B O9- OAG OAH OB2 OK1 OL1 OLG OLH OLU OLV OLY OLZ OPUJH OVD OVDNE OVIDH OVLEI OWW OWY OXXIT P2P PQQKQ RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW UPT V2I VVN W3M W8F WH7 WOQ WOW X3V X3W YFH YOC ZFV AAYXX ADGHP CITATION ACIJW CGR CUY CVF ECM EIF NPM 7X8 5PM ADSXY |
ID | FETCH-LOGICAL-c5225-e2415d757882604b2d8a4a66f1cdea55bfa7d33f7a209b9a9f30b8c72f0d5b33 |
ISSN | 0009-7330 1524-4571 |
IngestDate | Thu Aug 21 13:25:11 EDT 2025 Thu Jul 10 17:34:36 EDT 2025 Thu Apr 03 07:02:11 EDT 2025 Thu Jul 03 08:30:09 EDT 2025 Thu Apr 24 22:53:38 EDT 2025 Fri May 16 03:52:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | acetylation Sirtuin 3 hypertension mitochondria superoxide dismutase oxidative stress |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5225-e2415d757882604b2d8a4a66f1cdea55bfa7d33f7a209b9a9f30b8c72f0d5b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.119.315767 |
PMID | 31852393 |
PQID | 2328777072 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7035170 proquest_miscellaneous_2328777072 pubmed_primary_31852393 crossref_citationtrail_10_1161_CIRCRESAHA_119_315767 crossref_primary_10_1161_CIRCRESAHA_119_315767 wolterskluwer_health_00003012-202002140-00005 |
PublicationCentury | 2000 |
PublicationDate | 2020-February-14 |
PublicationDateYYYYMMDD | 2020-02-14 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-February-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Circulation research |
PublicationTitleAlternate | Circ Res |
PublicationYear | 2020 |
Publisher | American Heart Association, Inc |
Publisher_xml | – name: American Heart Association, Inc |
References | e_1_3_5_27_2 e_1_3_5_25_2 e_1_3_5_23_2 e_1_3_5_21_2 e_1_3_5_44_2 e_1_3_5_65_2 e_1_3_5_46_2 e_1_3_5_67_2 e_1_3_5_48_2 e_1_3_5_69_2 e_1_3_5_29_2 e_1_3_5_40_2 e_1_3_5_61_2 e_1_3_5_42_2 e_1_3_5_63_2 e_1_3_5_7_2 e_1_3_5_9_2 e_1_3_5_3_2 e_1_3_5_5_2 e_1_3_5_39_2 e_1_3_5_16_2 e_1_3_5_37_2 e_1_3_5_14_2 e_1_3_5_12_2 e_1_3_5_35_2 e_1_3_5_10_2 e_1_3_5_33_2 e_1_3_5_54_2 e_1_3_5_77_2 e_1_3_5_56_2 e_1_3_5_79_2 e_1_3_5_58_2 e_1_3_5_18_2 e_1_3_5_71_2 e_1_3_5_50_2 e_1_3_5_73_2 e_1_3_5_52_2 e_1_3_5_75_2 e_1_3_5_31_2 e_1_3_5_28_2 e_1_3_5_26_2 e_1_3_5_24_2 e_1_3_5_22_2 e_1_3_5_43_2 e_1_3_5_66_2 e_1_3_5_45_2 e_1_3_5_68_2 e_1_3_5_47_2 e_1_3_5_49_2 e_1_3_5_2_2 e_1_3_5_60_2 e_1_3_5_62_2 e_1_3_5_41_2 e_1_3_5_64_2 e_1_3_5_8_2 e_1_3_5_20_2 e_1_3_5_4_2 e_1_3_5_6_2 e_1_3_5_17_2 e_1_3_5_38_2 e_1_3_5_15_2 e_1_3_5_36_2 e_1_3_5_13_2 e_1_3_5_34_2 e_1_3_5_11_2 e_1_3_5_32_2 e_1_3_5_55_2 e_1_3_5_76_2 e_1_3_5_57_2 e_1_3_5_78_2 e_1_3_5_59_2 e_1_3_5_19_2 e_1_3_5_70_2 e_1_3_5_51_2 e_1_3_5_72_2 e_1_3_5_53_2 e_1_3_5_74_2 e_1_3_5_30_2 32213137 - Circ Res. 2020 Mar 27;126(7):e31-e32 32078456 - Circ Res. 2020 Feb 14;126(4):453-455 32213139 - Circ Res. 2020 Mar 27;126(7):e33-e34 |
References_xml | – ident: e_1_3_5_27_2 doi: 10.1007/s11906-018-0889-4 – ident: e_1_3_5_46_2 doi: 10.1074/jbc.M117.791715 – ident: e_1_3_5_5_2 doi: 10.1016/j.ahj.2011.05.010 – ident: e_1_3_5_10_2 doi: 10.3949/ccjm.79a.12017 – ident: e_1_3_5_21_2 doi: 10.1152/ajpheart.00832.2015 – ident: e_1_3_5_20_2 doi: 10.1161/CIRCRESAHA.116.303697 – ident: e_1_3_5_29_2 doi: 10.1080/15384101.2015.1026517 – ident: e_1_3_5_68_2 doi: 10.1152/ajpheart.00472.2017 – ident: e_1_3_5_8_2 doi: 10.1089/ars.2013.5482 – ident: e_1_3_5_70_2 doi: 10.1152/japplphysiol.00513.2006 – ident: e_1_3_5_22_2 doi: 10.1016/j.cmet.2014.11.003 – ident: e_1_3_5_73_2 doi: 10.1161/CIRCRESAHA.118.312498 – ident: e_1_3_5_56_2 doi: 10.1093/abbs/gmv013 – ident: e_1_3_5_53_2 doi: 10.1161/01.cir.0000013836.85741.17 – ident: e_1_3_5_26_2 doi: 10.1089/ars.2018.7632 – ident: e_1_3_5_65_2 doi: 10.4049/jimmunol.1701723 – ident: e_1_3_5_19_2 doi: 10.1172/jci.insight.120722 – ident: e_1_3_5_44_2 doi: 10.1016/j.ceb.2010.07.006 – ident: e_1_3_5_34_2 doi: 10.1161/01.hyp.25.5.1111 – ident: e_1_3_5_75_2 doi: 10.1038/ncomms7656 – ident: e_1_3_5_67_2 doi: 10.1097/HJH.0000000000000157 – ident: e_1_3_5_35_2 doi: 10.1161/01.ATV.0000259298.11129.a2 – ident: e_1_3_5_52_2 doi: 10.1161/01.HYP.0000177474.06749.98 – ident: e_1_3_5_40_2 doi: 10.1161/hyp.70.suppl_1.p345 – ident: e_1_3_5_60_2 doi: 10.1152/ajpheart.00063.2013 – ident: e_1_3_5_6_2 doi: 10.1161/HYPERTENSIONAHA.117.07802 – ident: e_1_3_5_16_2 doi: 10.2174/138161212799436593 – ident: e_1_3_5_3_2 doi: 10.1016/j.jacc.2017.04.052 – ident: e_1_3_5_49_2 doi: 10.1016/j.tig.2014.04.007 – ident: e_1_3_5_14_2 doi: 10.1089/ars.2012.4918 – ident: e_1_3_5_7_2 doi: 10.1038/nature08778 – ident: e_1_3_5_47_2 doi: 10.1242/jcs.00755 – ident: e_1_3_5_72_2 doi: 10.1038/s41467-018-03421-7 – ident: e_1_3_5_31_2 doi: 10.1073/pnas.0803790105 – ident: e_1_3_5_13_2 doi: 10.1161/CIRCRESAHA.109.214601 – ident: e_1_3_5_43_2 doi: 10.1152/physiol.00031.2016 – ident: e_1_3_5_64_2 doi: 10.1016/j.immuni.2013.08.001 – ident: e_1_3_5_30_2 doi: 10.1038/embor.2011.65 – ident: e_1_3_5_36_2 doi: 10.1161/01.HYP.0000258594.87211.6b – ident: e_1_3_5_45_2 doi: 10.1089/ars.2005.7.395 – ident: e_1_3_5_55_2 doi: 10.1016/j.celrep.2013.01.005 – ident: e_1_3_5_76_2 doi: 10.2337/db08-0349 – ident: e_1_3_5_24_2 doi: 10.1093/eurheartj/ehu436 – ident: e_1_3_5_61_2 doi: 10.1161/ATVBAHA.119.312613 – ident: e_1_3_5_63_2 doi: 10.18632/oncotarget.16133 – ident: e_1_3_5_77_2 doi: 10.1097/MNH.0000000000000198 – ident: e_1_3_5_59_2 doi: 10.1016/j.freeradbiomed.2011.06.033 – ident: e_1_3_5_9_2 doi: 10.1111/jsm.13035 – ident: e_1_3_5_15_2 doi: 10.1161/HYPERTENSIONAHA.115.07085 – ident: e_1_3_5_38_2 doi: 10.1161/CIRCRESAHA.115.308111 – ident: e_1_3_5_25_2 doi: 10.1161/HYPERTENSIONAHA.114.04598 – ident: e_1_3_5_17_2 doi: 10.1155/2013/876943 – ident: e_1_3_5_50_2 doi: 10.1016/j.ygeno.2004.11.003 – ident: e_1_3_5_39_2 doi: 10.14814/phy2.12780 – ident: e_1_3_5_32_2 doi: 10.2337/db14-1810 – ident: e_1_3_5_2_2 doi: 10.1161/01.str.28.7.1507 – ident: e_1_3_5_57_2 doi: 10.1016/j.molcel.2010.12.013 – ident: e_1_3_5_62_2 doi: 10.18632/oncotarget.12504 – ident: e_1_3_5_71_2 doi: 10.15252/embj.201797135 – ident: e_1_3_5_18_2 doi: 10.1093/eurheartj/ehv290 – ident: e_1_3_5_23_2 doi: 10.1128/MCB.00586-15 – ident: e_1_3_5_37_2 doi: 10.1016/S0076-6879(05)96052-7 – ident: e_1_3_5_48_2 doi: 10.1002/cyto.a.21068 – ident: e_1_3_5_4_2 doi: 10.3389/fphys.2012.00128 – ident: e_1_3_5_11_2 doi: 10.1161/CIRCRESAHA.117.310933 – ident: e_1_3_5_54_2 doi: 10.1161/HYPERTENSIONAHA.116.07237 – ident: e_1_3_5_28_2 doi: 10.1371/journal.pone.0134391 – ident: e_1_3_5_69_2 doi: 10.1089/ars.2018.7703 – ident: e_1_3_5_74_2 doi: 10.1152/ajpheart.00039.2019 – ident: e_1_3_5_78_2 doi: 10.3892/ijo_00000574 – ident: e_1_3_5_33_2 doi: 10.1161/CIRCULATIONAHA.105.538934 – ident: e_1_3_5_79_2 doi: 10.1016/j.redox.2016.09.003 – ident: e_1_3_5_41_2 doi: 10.1084/jem.20070657 – ident: e_1_3_5_12_2 doi: 10.1152/ajpheart.00595.2018 – ident: e_1_3_5_66_2 doi: 10.1038/cr.2011.55 – ident: e_1_3_5_51_2 doi: 10.1097/HJH.0b013e3282ef6196 – ident: e_1_3_5_42_2 doi: 10.1016/j.molcel.2018.01.010 – ident: e_1_3_5_58_2 doi: 10.1016/j.jash.2012.11.007 – reference: 32213139 - Circ Res. 2020 Mar 27;126(7):e33-e34 – reference: 32078456 - Circ Res. 2020 Feb 14;126(4):453-455 – reference: 32213137 - Circ Res. 2020 Mar 27;126(7):e31-e32 |
SSID | ssj0014329 |
Score | 2.67672 |
Snippet | Hypertension represents a major risk factor for stroke, myocardial infarction, and heart failure and affects 30% of the adult population. Mitochondrial... NAD + dependent mitochondrial deacetylase Sirt3 is a key regulator of antioxidant and metabolic functions. Sirt3 level declines with age paralleling the... |
SourceID | pubmedcentral proquest pubmed crossref wolterskluwer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 439 |
SubjectTerms | Angiotensin II Animals Desoxycorticosterone Acetate Endothelium, Vascular - metabolism Endothelium, Vascular - physiopathology Essential Hypertension - chemically induced Essential Hypertension - genetics Essential Hypertension - metabolism Female Heart - physiopathology Inflammation - genetics Inflammation - metabolism Male Mice, Inbred C57BL Mice, Knockout Mice, Transgenic Mitochondria, Heart - genetics Mitochondria, Heart - metabolism Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism Myocardium - metabolism Myocardium - pathology Oxidative Stress Sirtuin 3 - genetics Sirtuin 3 - metabolism |
Title | Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress |
URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003012-202002140-00005 https://www.ncbi.nlm.nih.gov/pubmed/31852393 https://www.proquest.com/docview/2328777072 https://pubmed.ncbi.nlm.nih.gov/PMC7035170 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEkhHgu5SUjcVul5OHEzbFqu2rRPhDbhd4iO3a0Uatk1abA8r848ecY20maqJVYuEStE9tR5_N4xv1mBqH3gXT7Ig65FXA3tojwhBVS6Vhe4HHKKQtEogKFT8-CySX5OPfnnc7vBmtpU_Be_HNvXMn_SBXaQK4qSvYfJFsPCg3wGeQLV5AwXG8l41NYjqC-MqFLb4xAu8niBsxheXSRrgoPfjuxUYyrLxXddHSzVhtZUXGQJ-CFrjSHHRq-XqXLqudIXqus3IYHOV6rCCU1Rev56Vp59AuwWMF-raeYZgmAzARE6jnOf6TCZBe_KGq-R5UbIV3FZf2wozLtUH08PUoXbJl_M-e-Wca2MROf1MG3BscAFF0mqvZ5ynJzzsDK_VgjGUCfcSbNSHAvrXhI5WEHeLaq9App6meXWMQ3VVt6ck9bpdRNHH6JXtJQ0cQkT9rdOgK1dQynn4cA_cFkAC1hz3PAH6PbvbLiB5ydR8eXJyfRbDyf3UF3XfBRdKT5vOYXgR2qS-TVb1eGj8E0H_ZO0jaMdrydXdLug--5IlSsFzqeomEVzR6hh6U7gwcGm49RR2ZP0L3TkrDxFP1qQRQ3IIo10HAJUVzhBzcgikHOuAk5rCFa9qwhitMM1xBtPz9dYwNRXOTbKZoQ1XPUEMUGos_Q7Hg8G06sslKIFYP_4FtS2aFClWYAb9km3BV9RlgQJE4sJPN9njAqPC-hzLVDHrIw8Wzej6mb2MLnnvccHWR5Jl8gTFwhwSmIqaSE9ENw-KXDZSiTUDgODfwuIpWUorjMoq-KuSwj7U0HTrQVLnwPIyPcLurV3a5NGpm_dXhXQSACha_-xWOZzDfrCFwglcPTpm4XHRpI1EPqVAhe6HURbYGlfkAlk2_fydIrnVSeKkoBtbvIasEqMuHYiqOiDk9cS61KlWdR56Ow_Ze3eM9X6P52Lb9GB8VqI9-AKV_wt3rJ_AFJdvuT |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+Deacetylase+Sirt3+Reduces+Vascular+Dysfunction+and+Hypertension+While+Sirt3+Depletion+in+Essential+Hypertension+Is+Linked+to+Vascular+Inflammation+and+Oxidative+Stress&rft.jtitle=Circulation+research&rft.au=Dikalova%2C+Anna+E&rft.au=Pandey%2C+Arvind&rft.au=Xiao%2C+Liang&rft.au=Arslanbaeva%2C+Liaisan&rft.date=2020-02-14&rft.issn=1524-4571&rft.eissn=1524-4571&rft.volume=126&rft.issue=4&rft.spage=439&rft_id=info:doi/10.1161%2FCIRCRESAHA.119.315767&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7330&client=summon |