Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress

Hypertension represents a major risk factor for stroke, myocardial infarction, and heart failure and affects 30% of the adult population. Mitochondrial dysfunction contributes to hypertension, but specific mechanisms are unclear. The mitochondrial deacetylase Sirt3 (Sirtuin 3) is critical in the reg...

Full description

Saved in:
Bibliographic Details
Published inCirculation research Vol. 126; no. 4; pp. 439 - 452
Main Authors Dikalova, Anna E., Pandey, Arvind, Xiao, Liang, Arslanbaeva, Liaisan, Sidorova, Tatiana, Lopez, Marcos G., Billings, Frederic T., Verdin, Eric, Auwerx, Johan, Harrison, David G., Dikalov, Sergey I.
Format Journal Article
LanguageEnglish
Published United States American Heart Association, Inc 14.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hypertension represents a major risk factor for stroke, myocardial infarction, and heart failure and affects 30% of the adult population. Mitochondrial dysfunction contributes to hypertension, but specific mechanisms are unclear. The mitochondrial deacetylase Sirt3 (Sirtuin 3) is critical in the regulation of metabolic and antioxidant functions which are associated with hypertension, and cardiovascular disease risk factors diminish Sirt3 level. We hypothesized that reduced Sirt3 expression contributes to vascular dysfunction in hypertension, but increased Sirt3 protects vascular function and decreases hypertension. To test the therapeutic potential of targeting Sirt3 expression, we developed new transgenic mice with global Sirt3OX (Sirt3 overexpression), which protects from endothelial dysfunction, vascular oxidative stress, and hypertrophy and attenuates Ang II (angiotensin II) and deoxycorticosterone acetate-salt induced hypertension. Global Sirt3 depletion in mice results in oxidative stress due to hyperacetylation of mitochondrial superoxide dismutase (SOD2), increases HIF1α (hypoxia-inducible factor-1), reduces endothelial cadherin, stimulates vascular hypertrophy, increases vascular permeability and vascular inflammation (p65, caspase 1, VCAM [vascular cell adhesion molecule-1], ICAM [intercellular adhesion molecule-1], and MCP1 [monocyte chemoattractant protein 1]), increases inflammatory cell infiltration in the kidney, reduces telomerase expression, and accelerates vascular senescence and age-dependent hypertension; conversely, increased Sirt3 expression in Sirt3OX mice prevents these deleterious effects. The clinical relevance of Sirt3 depletion was confirmed in arterioles from human mediastinal fat in patients with essential hypertension showing a 40% decrease in vascular Sirt3, coupled with Sirt3-dependent 3-fold increases in SOD2 acetylation, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activity, VCAM, ICAM, and MCP1 levels in hypertensive subjects compared with normotensive subjects. We suggest that Sirt3 depletion in hypertension promotes endothelial dysfunction, vascular hypertrophy, vascular inflammation, and end-organ damage. Our data support a therapeutic potential of targeting Sirt3 expression in vascular dysfunction and hypertension.
AbstractList Hypertension represents a major risk factor for stroke, myocardial infarction, and heart failure and affects 30% of the adult population. Mitochondrial dysfunction contributes to hypertension, but specific mechanisms are unclear. The mitochondrial deacetylase Sirt3 (Sirtuin 3) is critical in the regulation of metabolic and antioxidant functions which are associated with hypertension, and cardiovascular disease risk factors diminish Sirt3 level.RATIONALEHypertension represents a major risk factor for stroke, myocardial infarction, and heart failure and affects 30% of the adult population. Mitochondrial dysfunction contributes to hypertension, but specific mechanisms are unclear. The mitochondrial deacetylase Sirt3 (Sirtuin 3) is critical in the regulation of metabolic and antioxidant functions which are associated with hypertension, and cardiovascular disease risk factors diminish Sirt3 level.We hypothesized that reduced Sirt3 expression contributes to vascular dysfunction in hypertension, but increased Sirt3 protects vascular function and decreases hypertension.OBJECTIVEWe hypothesized that reduced Sirt3 expression contributes to vascular dysfunction in hypertension, but increased Sirt3 protects vascular function and decreases hypertension.To test the therapeutic potential of targeting Sirt3 expression, we developed new transgenic mice with global Sirt3OX (Sirt3 overexpression), which protects from endothelial dysfunction, vascular oxidative stress, and hypertrophy and attenuates Ang II (angiotensin II) and deoxycorticosterone acetate-salt induced hypertension. Global Sirt3 depletion in Sirt3-/- mice results in oxidative stress due to hyperacetylation of mitochondrial superoxide dismutase (SOD2), increases HIF1α (hypoxia-inducible factor-1), reduces endothelial cadherin, stimulates vascular hypertrophy, increases vascular permeability and vascular inflammation (p65, caspase 1, VCAM [vascular cell adhesion molecule-1], ICAM [intercellular adhesion molecule-1], and MCP1 [monocyte chemoattractant protein 1]), increases inflammatory cell infiltration in the kidney, reduces telomerase expression, and accelerates vascular senescence and age-dependent hypertension; conversely, increased Sirt3 expression in Sirt3OX mice prevents these deleterious effects. The clinical relevance of Sirt3 depletion was confirmed in arterioles from human mediastinal fat in patients with essential hypertension showing a 40% decrease in vascular Sirt3, coupled with Sirt3-dependent 3-fold increases in SOD2 acetylation, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activity, VCAM, ICAM, and MCP1 levels in hypertensive subjects compared with normotensive subjects.METHODS AND RESULTSTo test the therapeutic potential of targeting Sirt3 expression, we developed new transgenic mice with global Sirt3OX (Sirt3 overexpression), which protects from endothelial dysfunction, vascular oxidative stress, and hypertrophy and attenuates Ang II (angiotensin II) and deoxycorticosterone acetate-salt induced hypertension. Global Sirt3 depletion in Sirt3-/- mice results in oxidative stress due to hyperacetylation of mitochondrial superoxide dismutase (SOD2), increases HIF1α (hypoxia-inducible factor-1), reduces endothelial cadherin, stimulates vascular hypertrophy, increases vascular permeability and vascular inflammation (p65, caspase 1, VCAM [vascular cell adhesion molecule-1], ICAM [intercellular adhesion molecule-1], and MCP1 [monocyte chemoattractant protein 1]), increases inflammatory cell infiltration in the kidney, reduces telomerase expression, and accelerates vascular senescence and age-dependent hypertension; conversely, increased Sirt3 expression in Sirt3OX mice prevents these deleterious effects. The clinical relevance of Sirt3 depletion was confirmed in arterioles from human mediastinal fat in patients with essential hypertension showing a 40% decrease in vascular Sirt3, coupled with Sirt3-dependent 3-fold increases in SOD2 acetylation, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activity, VCAM, ICAM, and MCP1 levels in hypertensive subjects compared with normotensive subjects.We suggest that Sirt3 depletion in hypertension promotes endothelial dysfunction, vascular hypertrophy, vascular inflammation, and end-organ damage. Our data support a therapeutic potential of targeting Sirt3 expression in vascular dysfunction and hypertension.CONCLUSIONSWe suggest that Sirt3 depletion in hypertension promotes endothelial dysfunction, vascular hypertrophy, vascular inflammation, and end-organ damage. Our data support a therapeutic potential of targeting Sirt3 expression in vascular dysfunction and hypertension.
Hypertension represents a major risk factor for stroke, myocardial infarction, and heart failure and affects 30% of the adult population. Mitochondrial dysfunction contributes to hypertension, but specific mechanisms are unclear. The mitochondrial deacetylase Sirt3 (Sirtuin 3) is critical in the regulation of metabolic and antioxidant functions which are associated with hypertension, and cardiovascular disease risk factors diminish Sirt3 level. We hypothesized that reduced Sirt3 expression contributes to vascular dysfunction in hypertension, but increased Sirt3 protects vascular function and decreases hypertension. To test the therapeutic potential of targeting Sirt3 expression, we developed new transgenic mice with global Sirt3OX (Sirt3 overexpression), which protects from endothelial dysfunction, vascular oxidative stress, and hypertrophy and attenuates Ang II (angiotensin II) and deoxycorticosterone acetate-salt induced hypertension. Global Sirt3 depletion in mice results in oxidative stress due to hyperacetylation of mitochondrial superoxide dismutase (SOD2), increases HIF1α (hypoxia-inducible factor-1), reduces endothelial cadherin, stimulates vascular hypertrophy, increases vascular permeability and vascular inflammation (p65, caspase 1, VCAM [vascular cell adhesion molecule-1], ICAM [intercellular adhesion molecule-1], and MCP1 [monocyte chemoattractant protein 1]), increases inflammatory cell infiltration in the kidney, reduces telomerase expression, and accelerates vascular senescence and age-dependent hypertension; conversely, increased Sirt3 expression in Sirt3OX mice prevents these deleterious effects. The clinical relevance of Sirt3 depletion was confirmed in arterioles from human mediastinal fat in patients with essential hypertension showing a 40% decrease in vascular Sirt3, coupled with Sirt3-dependent 3-fold increases in SOD2 acetylation, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activity, VCAM, ICAM, and MCP1 levels in hypertensive subjects compared with normotensive subjects. We suggest that Sirt3 depletion in hypertension promotes endothelial dysfunction, vascular hypertrophy, vascular inflammation, and end-organ damage. Our data support a therapeutic potential of targeting Sirt3 expression in vascular dysfunction and hypertension.
NAD + dependent mitochondrial deacetylase Sirt3 is a key regulator of antioxidant and metabolic functions. Sirt3 level declines with age paralleling the increased incidence of hypertension. In this work we described a novel therapeutic potential of targeting Sirt3 expression using new transgenic global Sirt3 overexpressing mice. Sirt3 overexpression inhibits vascular oxidative stress and hypertrophy, preserves endothelial-dependent relaxation and vascular permeability, attenuates angiotensin II- and DOCA-salt hypertension. Sirt3 depletion induces pathophysiological metabolic and phenotypic vascular alterations by increased HIF1α, reduced VE-cadherin, elevated endothelial permeability, activation of NFkB and inflammasome pathways, vascular cell-senescence and aging, infiltration of T cells and age-dependent hypertension while increased Sirt3 expression prevents these deleterious effects. The clinical relevance of Sirt3 depletion was confirmed in arterioles from human mediastinal fat in patients with essential hypertension showing 40% decrease in vascular Sirt3, coupled with SOD2 acetylation, vascular inflammation and cell-senescence markers in hypertensive subjects compared to vessels from normotensive subjects. Our data support a therapeutic potential for targeting Sirt3 expression in treatment of vascular dysfunction and hypertension.
Author Xiao, Liang
Harrison, David G.
Dikalov, Sergey I.
Billings, Frederic T.
Arslanbaeva, Liaisan
Dikalova, Anna E.
Lopez, Marcos G.
Sidorova, Tatiana
Verdin, Eric
Pandey, Arvind
Auwerx, Johan
AuthorAffiliation From the Vanderbilt University Medical Center, Nashville, TN (A.E.D., A.P., L.X., L.A., T.S., M.G.L., F.T.B., D.G.H., S.I.D.) Buck Institute for Research on Aging, Novato, CA (E.V.) Ecole Polytechnique Fédérale de Lausanne, Switzerland (J.A.)
AuthorAffiliation_xml – name: From the Vanderbilt University Medical Center, Nashville, TN (A.E.D., A.P., L.X., L.A., T.S., M.G.L., F.T.B., D.G.H., S.I.D.) Buck Institute for Research on Aging, Novato, CA (E.V.) Ecole Polytechnique Fédérale de Lausanne, Switzerland (J.A.)
– name: 1 Vanderbilt University Medical Center, Nashville, TN 37022
– name: 3 Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
– name: 2 Buck Institute for Research on Aging, Novato, CA 94945
Author_xml – sequence: 1
  givenname: Anna
  surname: Dikalova
  middlename: E.
  fullname: Dikalova, Anna E.
  organization: From the Vanderbilt University Medical Center, Nashville, TN (A.E.D., A.P., L.X., L.A., T.S., M.G.L., F.T.B., D.G.H., S.I.D.) Buck Institute for Research on Aging, Novato, CA (E.V.) Ecole Polytechnique Fédérale de Lausanne, Switzerland (J.A.)
– sequence: 2
  givenname: Arvind
  surname: Pandey
  fullname: Pandey, Arvind
– sequence: 3
  givenname: Liang
  surname: Xiao
  fullname: Xiao, Liang
– sequence: 4
  givenname: Liaisan
  surname: Arslanbaeva
  fullname: Arslanbaeva, Liaisan
– sequence: 5
  givenname: Tatiana
  surname: Sidorova
  fullname: Sidorova, Tatiana
– sequence: 6
  givenname: Marcos
  surname: Lopez
  middlename: G.
  fullname: Lopez, Marcos G.
– sequence: 7
  givenname: Frederic
  surname: Billings
  middlename: T.
  fullname: Billings, Frederic T.
– sequence: 8
  givenname: Eric
  surname: Verdin
  fullname: Verdin, Eric
– sequence: 9
  givenname: Johan
  surname: Auwerx
  fullname: Auwerx, Johan
– sequence: 10
  givenname: David
  surname: Harrison
  middlename: G.
  fullname: Harrison, David G.
– sequence: 11
  givenname: Sergey
  surname: Dikalov
  middlename: I.
  fullname: Dikalov, Sergey I.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31852393$$D View this record in MEDLINE/PubMed
BookMark eNqFks1uEzEUhS1URNPAI4BmyWaKf8bxjJCQoiSQSEGV0gqWlsdzh5g6dmp7WvJgvB-TpmkpGza27vU595Ptc4ZOnHeA0FuCzwkZkQ-TxWqyml2O5-O-rs4Z4WIkXqAB4bTICy7ICRpgjKtcMIZP0VmMPzEmBaPVK3TKSMkpq9gA_f5qktdr75pglM2moDSknVURsksTEstW0HQaYvZNRd1ZFbLpLrad08l4lynXZPPdFkICF_eN72tjj84pbC3cy4zLZjGCS3vEM_0iZkvjrqHJkn9CLFxr1WajHhkXv0zTV7f96BQgxtfoZatshDcP-xBdfZ5dTeb58uLLYjJe5ppTynOgBeGN4KIs6QgXNW1KVajRqCW6AcV53SrRMNYKRXFVV6pqGa5LLWiLG14zNkSfDmO3Xb2BRvc3CMrKbTAbFXbSKyOfnzizlj_8rRSYcdIvQ_T-YUDwNx3EJDcmarBWOfBdlJTRUgiBBe2l7_5mPUKOX9ULPh4EOvgYA7RSm3T_RD3aWEmw3AdDPgWjryt5CEbv5v-4j4D_-YqD787bBCFe2-4OglyDsmkt-4BhhgnNKaYYU1LgfN_i7A-eG9H5
CitedBy_id crossref_primary_10_1093_stmcls_sxac018
crossref_primary_10_31083_RCM25302
crossref_primary_10_2174_1566524023666230731095431
crossref_primary_10_1161_ATVBAHA_120_315779
crossref_primary_10_3390_biom13010050
crossref_primary_10_1016_j_biopha_2023_115475
crossref_primary_10_3390_antiox12010200
crossref_primary_10_1016_j_fitote_2023_105753
crossref_primary_10_1016_j_bbadis_2020_165836
crossref_primary_10_1360_SSV_2021_0366
crossref_primary_10_2147_JIR_S374318
crossref_primary_10_3390_jcm13195927
crossref_primary_10_1016_j_ejphar_2021_174186
crossref_primary_10_1016_j_freeradbiomed_2024_10_306
crossref_primary_10_1016_j_numecd_2022_06_019
crossref_primary_10_1152_ajpheart_00917_2020
crossref_primary_10_1186_s13020_023_00722_y
crossref_primary_10_1007_s00424_023_02806_y
crossref_primary_10_1111_bph_16070
crossref_primary_10_1038_s41419_024_07107_5
crossref_primary_10_1038_s41392_022_01257_8
crossref_primary_10_1007_s10753_021_01454_7
crossref_primary_10_1016_j_heliyon_2023_e21890
crossref_primary_10_1038_s41401_020_00563_7
crossref_primary_10_7555_JBR_38_20240387
crossref_primary_10_3389_fphar_2023_1329969
crossref_primary_10_1038_s41569_024_01062_6
crossref_primary_10_1161_CIRCRESAHA_124_325440
crossref_primary_10_3390_ijms23158672
crossref_primary_10_1161_CIRCRESAHA_121_318063
crossref_primary_10_1093_cvr_cvae252
crossref_primary_10_1111_jcmm_16661
crossref_primary_10_1111_bcpt_70001
crossref_primary_10_1016_j_phrs_2021_105802
crossref_primary_10_1080_14728222_2023_2187778
crossref_primary_10_1538_expanim_22_0175
crossref_primary_10_1007_s10456_024_09938_4
crossref_primary_10_1016_j_bcp_2021_114665
crossref_primary_10_1016_j_ecoenv_2024_116253
crossref_primary_10_1515_hsz_2021_0139
crossref_primary_10_1021_acs_est_2c00585
crossref_primary_10_1038_s41569_022_00685_x
crossref_primary_10_1155_2022_8746530
crossref_primary_10_1016_j_phymed_2024_155464
crossref_primary_10_1016_j_bbrc_2022_12_035
crossref_primary_10_1161_HYPERTENSIONAHA_120_15236
crossref_primary_10_1016_j_lfs_2023_122318
crossref_primary_10_3390_jcm12041247
crossref_primary_10_1016_j_mad_2020_111267
crossref_primary_10_1016_j_intimp_2023_110408
crossref_primary_10_1016_j_bbamcr_2025_119906
crossref_primary_10_1186_s12872_023_03203_0
crossref_primary_10_1002_mco2_261
crossref_primary_10_31083_j_fbl2906205
crossref_primary_10_1016_j_yexcr_2022_113280
crossref_primary_10_1186_s12967_023_04286_1
crossref_primary_10_1016_j_biopha_2023_116004
crossref_primary_10_1007_s10528_022_10257_w
crossref_primary_10_3389_fendo_2023_1131395
crossref_primary_10_2174_1574893618666230614093416
crossref_primary_10_1016_j_cellsig_2023_110790
crossref_primary_10_1016_j_jhazmat_2022_129381
crossref_primary_10_3389_fcvm_2021_806988
crossref_primary_10_3390_biomedicines9111574
crossref_primary_10_4103_NRR_NRR_D_23_01985
crossref_primary_10_1016_j_cbi_2022_110028
crossref_primary_10_3390_antiox11122432
crossref_primary_10_1161_CIRCRESAHA_123_323596
crossref_primary_10_1007_s11239_023_02862_2
crossref_primary_10_3389_fcvm_2023_1203130
crossref_primary_10_1080_13813455_2021_1981946
crossref_primary_10_1016_j_cjca_2023_10_012
crossref_primary_10_1111_jcmm_16813
crossref_primary_10_1186_s12967_022_03642_x
crossref_primary_10_1089_jmf_2021_K_0155
crossref_primary_10_3390_ijms23063212
crossref_primary_10_2147_DDDT_S428024
crossref_primary_10_1039_D3FO02641H
crossref_primary_10_1016_j_freeradbiomed_2024_11_033
crossref_primary_10_1152_ajpheart_00162_2024
crossref_primary_10_1097_MD_0000000000033403
crossref_primary_10_1016_j_freeradbiomed_2022_10_324
crossref_primary_10_3389_fphar_2024_1485831
crossref_primary_10_1161_CIRCRESAHA_120_316763
crossref_primary_10_1016_j_lfs_2021_119178
crossref_primary_10_3390_molecules28031369
crossref_primary_10_1016_j_biopha_2024_116989
crossref_primary_10_3389_fendo_2024_1431293
crossref_primary_10_1093_eurheartj_ehad381
crossref_primary_10_3389_fphar_2023_1209890
crossref_primary_10_1038_s41440_024_02023_9
crossref_primary_10_1002_advs_202307256
crossref_primary_10_1111_cpr_13362
crossref_primary_10_1016_j_phymed_2023_155127
crossref_primary_10_3389_fcvm_2023_1204483
crossref_primary_10_1016_j_gene_2024_148700
crossref_primary_10_3390_jcm12185796
crossref_primary_10_1016_j_apsb_2020_10_007
crossref_primary_10_1016_j_brainresbull_2024_111137
crossref_primary_10_1080_00365513_2021_1986857
crossref_primary_10_1093_toxres_tfac051
crossref_primary_10_1155_2022_3137329
crossref_primary_10_3390_biomedicines12061148
crossref_primary_10_1016_j_bbadis_2020_166037
crossref_primary_10_31083_j_fbl2902054
crossref_primary_10_3390_ijms22136748
crossref_primary_10_1016_j_jep_2023_117163
crossref_primary_10_1371_journal_pone_0291909
crossref_primary_10_3390_biom13050735
crossref_primary_10_1155_2020_7385458
crossref_primary_10_14336_AD_2021_1204
crossref_primary_10_1161_CIRCRESAHA_120_316755
crossref_primary_10_18632_aging_103644
crossref_primary_10_2174_0115701611297956240425115501
crossref_primary_10_1007_s11010_024_05002_3
crossref_primary_10_1016_j_arr_2024_102654
crossref_primary_10_1038_s41420_024_02233_7
crossref_primary_10_1161_CIRCULATIONAHA_121_057178
crossref_primary_10_2174_0109298673259299230921150030
crossref_primary_10_1016_j_metabol_2024_155787
crossref_primary_10_1016_j_jep_2024_118610
crossref_primary_10_1038_s41514_024_00165_1
crossref_primary_10_1016_j_tips_2024_02_001
crossref_primary_10_1007_s11426_021_1019_2
crossref_primary_10_1097_FJC_0000000000001495
crossref_primary_10_4103_ijnpnd_ijnpnd_54_21
crossref_primary_10_1016_j_biopha_2022_113620
crossref_primary_10_1016_j_phymed_2024_156054
crossref_primary_10_1097_FJC_0000000000001496
crossref_primary_10_1016_j_ejphar_2022_175048
crossref_primary_10_1016_j_intimp_2020_107206
crossref_primary_10_3892_br_2024_1899
crossref_primary_10_1039_D2BM00578F
crossref_primary_10_1002_ptr_8138
crossref_primary_10_1007_s00109_022_02187_2
crossref_primary_10_1016_j_atherosclerosis_2024_119090
crossref_primary_10_1038_s41419_022_05183_z
crossref_primary_10_1111_cpr_13057
crossref_primary_10_1152_ajpregu_00238_2021
crossref_primary_10_1007_s12265_022_10235_y
crossref_primary_10_3390_cells11162568
crossref_primary_10_1016_j_biopha_2023_114761
crossref_primary_10_1161_CIRCRESAHA_120_316567
crossref_primary_10_1016_j_freeradbiomed_2022_01_005
crossref_primary_10_1038_s41440_024_01716_5
crossref_primary_10_14336_AD_2023_0203
crossref_primary_10_1007_s11064_021_03502_y
crossref_primary_10_2174_1381612826666201005153848
crossref_primary_10_1007_s10753_024_01967_x
crossref_primary_10_1007_s12017_022_08713_2
crossref_primary_10_1007_s10495_023_01878_6
crossref_primary_10_1186_s12964_023_01442_4
crossref_primary_10_1155_2022_9041914
crossref_primary_10_3390_antiox11040706
crossref_primary_10_1007_s10522_023_10031_4
crossref_primary_10_1177_1759091421991771
crossref_primary_10_1097_FJC_0000000000001154
crossref_primary_10_3390_nu13020690
crossref_primary_10_3390_ijms21186579
crossref_primary_10_3390_ijms21186699
crossref_primary_10_12997_jla_2022_11_2_111
crossref_primary_10_1016_j_ejphar_2024_176900
crossref_primary_10_1152_ajpheart_00632_2023
crossref_primary_10_1167_iovs_64_10_11
crossref_primary_10_1038_s41392_024_01816_1
crossref_primary_10_1093_function_zqac043
crossref_primary_10_1021_acs_jmedchem_4c00345
crossref_primary_10_1007_s12020_024_04106_6
crossref_primary_10_1042_CS20190559
crossref_primary_10_3389_fphar_2022_993569
crossref_primary_10_1186_s10020_024_00926_4
crossref_primary_10_3390_antiox12101849
crossref_primary_10_1016_j_cellsig_2022_110309
crossref_primary_10_7717_peerj_19111
crossref_primary_10_1111_cns_14567
crossref_primary_10_3168_jds_2022_22114
crossref_primary_10_1111_bph_15980
crossref_primary_10_1016_j_biopha_2024_116919
crossref_primary_10_1016_j_neuropharm_2024_109905
crossref_primary_10_3390_antiox11091713
crossref_primary_10_3390_antiox11071301
crossref_primary_10_3390_cells12121607
crossref_primary_10_1161_CIRCHEARTFAILURE_121_008547
crossref_primary_10_1097_MD_0000000000026721
crossref_primary_10_2147_JIR_S486984
crossref_primary_10_1161_CIRCRESAHA_121_318053
crossref_primary_10_1016_j_freeradbiomed_2021_05_026
crossref_primary_10_1186_s12906_023_04330_z
crossref_primary_10_1111_jpi_12686
crossref_primary_10_1152_ajplung_00239_2023
crossref_primary_10_4103_1673_5374_385864
crossref_primary_10_1002_mco2_651
crossref_primary_10_1186_s13023_022_02331_8
crossref_primary_10_1016_j_phymed_2022_154387
crossref_primary_10_1016_j_mito_2021_12_006
crossref_primary_10_1155_2021_9912434
crossref_primary_10_1161_CIRCRESAHA_123_323897
crossref_primary_10_1016_j_biopha_2024_116587
crossref_primary_10_1161_HYPERTENSIONAHA_123_21365
crossref_primary_10_3897_pharmacia_68_e73140
crossref_primary_10_1016_j_fmre_2023_03_009
crossref_primary_10_1080_09603123_2024_2418010
crossref_primary_10_1038_s41569_022_00739_0
crossref_primary_10_1016_j_exger_2020_111147
crossref_primary_10_1007_s10557_023_07441_4
crossref_primary_10_14814_phy2_16094
crossref_primary_10_1111_cns_14913
crossref_primary_10_1016_j_biopha_2023_115880
crossref_primary_10_1016_j_freeradbiomed_2023_05_031
crossref_primary_10_1007_s12035_022_03137_2
crossref_primary_10_1016_j_lfs_2022_120834
crossref_primary_10_3168_jds_2021_20536
crossref_primary_10_1016_j_biopha_2022_113954
crossref_primary_10_1097_MNH_0000000000000771
crossref_primary_10_1016_j_phrs_2021_105432
crossref_primary_10_1007_s12265_022_10297_y
crossref_primary_10_1016_j_trsl_2021_03_015
crossref_primary_10_31083_j_fbl2911398
Cites_doi 10.1007/s11906-018-0889-4
10.1074/jbc.M117.791715
10.1016/j.ahj.2011.05.010
10.3949/ccjm.79a.12017
10.1152/ajpheart.00832.2015
10.1161/CIRCRESAHA.116.303697
10.1080/15384101.2015.1026517
10.1152/ajpheart.00472.2017
10.1089/ars.2013.5482
10.1152/japplphysiol.00513.2006
10.1016/j.cmet.2014.11.003
10.1161/CIRCRESAHA.118.312498
10.1093/abbs/gmv013
10.1161/01.cir.0000013836.85741.17
10.1089/ars.2018.7632
10.4049/jimmunol.1701723
10.1172/jci.insight.120722
10.1016/j.ceb.2010.07.006
10.1161/01.hyp.25.5.1111
10.1038/ncomms7656
10.1097/HJH.0000000000000157
10.1161/01.ATV.0000259298.11129.a2
10.1161/01.HYP.0000177474.06749.98
10.1161/hyp.70.suppl_1.p345
10.1152/ajpheart.00063.2013
10.1161/HYPERTENSIONAHA.117.07802
10.2174/138161212799436593
10.1016/j.jacc.2017.04.052
10.1016/j.tig.2014.04.007
10.1089/ars.2012.4918
10.1038/nature08778
10.1242/jcs.00755
10.1038/s41467-018-03421-7
10.1073/pnas.0803790105
10.1161/CIRCRESAHA.109.214601
10.1152/physiol.00031.2016
10.1016/j.immuni.2013.08.001
10.1038/embor.2011.65
10.1161/01.HYP.0000258594.87211.6b
10.1089/ars.2005.7.395
10.1016/j.celrep.2013.01.005
10.2337/db08-0349
10.1093/eurheartj/ehu436
10.1161/ATVBAHA.119.312613
10.18632/oncotarget.16133
10.1097/MNH.0000000000000198
10.1016/j.freeradbiomed.2011.06.033
10.1111/jsm.13035
10.1161/HYPERTENSIONAHA.115.07085
10.1161/CIRCRESAHA.115.308111
10.1161/HYPERTENSIONAHA.114.04598
10.1155/2013/876943
10.1016/j.ygeno.2004.11.003
10.14814/phy2.12780
10.2337/db14-1810
10.1161/01.str.28.7.1507
10.1016/j.molcel.2010.12.013
10.18632/oncotarget.12504
10.15252/embj.201797135
10.1093/eurheartj/ehv290
10.1128/MCB.00586-15
10.1016/S0076-6879(05)96052-7
10.1002/cyto.a.21068
10.3389/fphys.2012.00128
10.1161/CIRCRESAHA.117.310933
10.1161/HYPERTENSIONAHA.116.07237
10.1371/journal.pone.0134391
10.1089/ars.2018.7703
10.1152/ajpheart.00039.2019
10.3892/ijo_00000574
10.1161/CIRCULATIONAHA.105.538934
10.1016/j.redox.2016.09.003
10.1084/jem.20070657
10.1152/ajpheart.00595.2018
10.1038/cr.2011.55
10.1097/HJH.0b013e3282ef6196
10.1016/j.molcel.2018.01.010
10.1016/j.jash.2012.11.007
ContentType Journal Article
Copyright American Heart Association, Inc.
Copyright_xml – notice: American Heart Association, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1161/CIRCRESAHA.119.315767
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4571
EndPage 452
ExternalDocumentID PMC7035170
31852393
10_1161_CIRCRESAHA_119_315767
00003012-202002140-00005
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL144943
– fundername: NIGMS NIH HHS
  grantid: K23 GM129662
– fundername: NHLBI NIH HHS
  grantid: P01 HL129941
– fundername: NHLBI NIH HHS
  grantid: R01 HL124116
– fundername: NIGMS NIH HHS
  grantid: R01 GM112871
– fundername: NHLBI NIH HHS
  grantid: R35 HL140016
GroupedDBID ---
-~X
.-D
.3C
.Z2
01R
0R~
18M
1J1
29B
2WC
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AAXQO
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABPXF
ABQRW
ABVCZ
ABXVJ
ABZAD
ABZZY
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACLDA
ACNWC
ACPRK
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADGGA
ADHPY
AE3
AE6
AENEX
AFBFQ
AFDTB
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BAWUL
BOYCO
BQLVK
C45
CS3
DIK
DIWNM
DU5
E.X
E3Z
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FRP
GNXGY
GQDEL
GX1
H0~
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
N~7
N~B
O9-
OAG
OAH
OB2
OK1
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OWW
OWY
OXXIT
P2P
PQQKQ
RAH
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
UPT
V2I
VVN
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
YFH
YOC
ZFV
AAYXX
ADGHP
CITATION
ACIJW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADSXY
ID FETCH-LOGICAL-c5225-e2415d757882604b2d8a4a66f1cdea55bfa7d33f7a209b9a9f30b8c72f0d5b33
ISSN 0009-7330
1524-4571
IngestDate Thu Aug 21 13:25:11 EDT 2025
Thu Jul 10 17:34:36 EDT 2025
Thu Apr 03 07:02:11 EDT 2025
Thu Jul 03 08:30:09 EDT 2025
Thu Apr 24 22:53:38 EDT 2025
Fri May 16 03:52:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords acetylation
Sirtuin 3
hypertension
mitochondria
superoxide dismutase
oxidative stress
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5225-e2415d757882604b2d8a4a66f1cdea55bfa7d33f7a209b9a9f30b8c72f0d5b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.119.315767
PMID 31852393
PQID 2328777072
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7035170
proquest_miscellaneous_2328777072
pubmed_primary_31852393
crossref_citationtrail_10_1161_CIRCRESAHA_119_315767
crossref_primary_10_1161_CIRCRESAHA_119_315767
wolterskluwer_health_00003012-202002140-00005
PublicationCentury 2000
PublicationDate 2020-February-14
PublicationDateYYYYMMDD 2020-02-14
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-February-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Circulation research
PublicationTitleAlternate Circ Res
PublicationYear 2020
Publisher American Heart Association, Inc
Publisher_xml – name: American Heart Association, Inc
References e_1_3_5_27_2
e_1_3_5_25_2
e_1_3_5_23_2
e_1_3_5_21_2
e_1_3_5_44_2
e_1_3_5_65_2
e_1_3_5_46_2
e_1_3_5_67_2
e_1_3_5_48_2
e_1_3_5_69_2
e_1_3_5_29_2
e_1_3_5_40_2
e_1_3_5_61_2
e_1_3_5_42_2
e_1_3_5_63_2
e_1_3_5_7_2
e_1_3_5_9_2
e_1_3_5_3_2
e_1_3_5_5_2
e_1_3_5_39_2
e_1_3_5_16_2
e_1_3_5_37_2
e_1_3_5_14_2
e_1_3_5_12_2
e_1_3_5_35_2
e_1_3_5_10_2
e_1_3_5_33_2
e_1_3_5_54_2
e_1_3_5_77_2
e_1_3_5_56_2
e_1_3_5_79_2
e_1_3_5_58_2
e_1_3_5_18_2
e_1_3_5_71_2
e_1_3_5_50_2
e_1_3_5_73_2
e_1_3_5_52_2
e_1_3_5_75_2
e_1_3_5_31_2
e_1_3_5_28_2
e_1_3_5_26_2
e_1_3_5_24_2
e_1_3_5_22_2
e_1_3_5_43_2
e_1_3_5_66_2
e_1_3_5_45_2
e_1_3_5_68_2
e_1_3_5_47_2
e_1_3_5_49_2
e_1_3_5_2_2
e_1_3_5_60_2
e_1_3_5_62_2
e_1_3_5_41_2
e_1_3_5_64_2
e_1_3_5_8_2
e_1_3_5_20_2
e_1_3_5_4_2
e_1_3_5_6_2
e_1_3_5_17_2
e_1_3_5_38_2
e_1_3_5_15_2
e_1_3_5_36_2
e_1_3_5_13_2
e_1_3_5_34_2
e_1_3_5_11_2
e_1_3_5_32_2
e_1_3_5_55_2
e_1_3_5_76_2
e_1_3_5_57_2
e_1_3_5_78_2
e_1_3_5_59_2
e_1_3_5_19_2
e_1_3_5_70_2
e_1_3_5_51_2
e_1_3_5_72_2
e_1_3_5_53_2
e_1_3_5_74_2
e_1_3_5_30_2
32213137 - Circ Res. 2020 Mar 27;126(7):e31-e32
32078456 - Circ Res. 2020 Feb 14;126(4):453-455
32213139 - Circ Res. 2020 Mar 27;126(7):e33-e34
References_xml – ident: e_1_3_5_27_2
  doi: 10.1007/s11906-018-0889-4
– ident: e_1_3_5_46_2
  doi: 10.1074/jbc.M117.791715
– ident: e_1_3_5_5_2
  doi: 10.1016/j.ahj.2011.05.010
– ident: e_1_3_5_10_2
  doi: 10.3949/ccjm.79a.12017
– ident: e_1_3_5_21_2
  doi: 10.1152/ajpheart.00832.2015
– ident: e_1_3_5_20_2
  doi: 10.1161/CIRCRESAHA.116.303697
– ident: e_1_3_5_29_2
  doi: 10.1080/15384101.2015.1026517
– ident: e_1_3_5_68_2
  doi: 10.1152/ajpheart.00472.2017
– ident: e_1_3_5_8_2
  doi: 10.1089/ars.2013.5482
– ident: e_1_3_5_70_2
  doi: 10.1152/japplphysiol.00513.2006
– ident: e_1_3_5_22_2
  doi: 10.1016/j.cmet.2014.11.003
– ident: e_1_3_5_73_2
  doi: 10.1161/CIRCRESAHA.118.312498
– ident: e_1_3_5_56_2
  doi: 10.1093/abbs/gmv013
– ident: e_1_3_5_53_2
  doi: 10.1161/01.cir.0000013836.85741.17
– ident: e_1_3_5_26_2
  doi: 10.1089/ars.2018.7632
– ident: e_1_3_5_65_2
  doi: 10.4049/jimmunol.1701723
– ident: e_1_3_5_19_2
  doi: 10.1172/jci.insight.120722
– ident: e_1_3_5_44_2
  doi: 10.1016/j.ceb.2010.07.006
– ident: e_1_3_5_34_2
  doi: 10.1161/01.hyp.25.5.1111
– ident: e_1_3_5_75_2
  doi: 10.1038/ncomms7656
– ident: e_1_3_5_67_2
  doi: 10.1097/HJH.0000000000000157
– ident: e_1_3_5_35_2
  doi: 10.1161/01.ATV.0000259298.11129.a2
– ident: e_1_3_5_52_2
  doi: 10.1161/01.HYP.0000177474.06749.98
– ident: e_1_3_5_40_2
  doi: 10.1161/hyp.70.suppl_1.p345
– ident: e_1_3_5_60_2
  doi: 10.1152/ajpheart.00063.2013
– ident: e_1_3_5_6_2
  doi: 10.1161/HYPERTENSIONAHA.117.07802
– ident: e_1_3_5_16_2
  doi: 10.2174/138161212799436593
– ident: e_1_3_5_3_2
  doi: 10.1016/j.jacc.2017.04.052
– ident: e_1_3_5_49_2
  doi: 10.1016/j.tig.2014.04.007
– ident: e_1_3_5_14_2
  doi: 10.1089/ars.2012.4918
– ident: e_1_3_5_7_2
  doi: 10.1038/nature08778
– ident: e_1_3_5_47_2
  doi: 10.1242/jcs.00755
– ident: e_1_3_5_72_2
  doi: 10.1038/s41467-018-03421-7
– ident: e_1_3_5_31_2
  doi: 10.1073/pnas.0803790105
– ident: e_1_3_5_13_2
  doi: 10.1161/CIRCRESAHA.109.214601
– ident: e_1_3_5_43_2
  doi: 10.1152/physiol.00031.2016
– ident: e_1_3_5_64_2
  doi: 10.1016/j.immuni.2013.08.001
– ident: e_1_3_5_30_2
  doi: 10.1038/embor.2011.65
– ident: e_1_3_5_36_2
  doi: 10.1161/01.HYP.0000258594.87211.6b
– ident: e_1_3_5_45_2
  doi: 10.1089/ars.2005.7.395
– ident: e_1_3_5_55_2
  doi: 10.1016/j.celrep.2013.01.005
– ident: e_1_3_5_76_2
  doi: 10.2337/db08-0349
– ident: e_1_3_5_24_2
  doi: 10.1093/eurheartj/ehu436
– ident: e_1_3_5_61_2
  doi: 10.1161/ATVBAHA.119.312613
– ident: e_1_3_5_63_2
  doi: 10.18632/oncotarget.16133
– ident: e_1_3_5_77_2
  doi: 10.1097/MNH.0000000000000198
– ident: e_1_3_5_59_2
  doi: 10.1016/j.freeradbiomed.2011.06.033
– ident: e_1_3_5_9_2
  doi: 10.1111/jsm.13035
– ident: e_1_3_5_15_2
  doi: 10.1161/HYPERTENSIONAHA.115.07085
– ident: e_1_3_5_38_2
  doi: 10.1161/CIRCRESAHA.115.308111
– ident: e_1_3_5_25_2
  doi: 10.1161/HYPERTENSIONAHA.114.04598
– ident: e_1_3_5_17_2
  doi: 10.1155/2013/876943
– ident: e_1_3_5_50_2
  doi: 10.1016/j.ygeno.2004.11.003
– ident: e_1_3_5_39_2
  doi: 10.14814/phy2.12780
– ident: e_1_3_5_32_2
  doi: 10.2337/db14-1810
– ident: e_1_3_5_2_2
  doi: 10.1161/01.str.28.7.1507
– ident: e_1_3_5_57_2
  doi: 10.1016/j.molcel.2010.12.013
– ident: e_1_3_5_62_2
  doi: 10.18632/oncotarget.12504
– ident: e_1_3_5_71_2
  doi: 10.15252/embj.201797135
– ident: e_1_3_5_18_2
  doi: 10.1093/eurheartj/ehv290
– ident: e_1_3_5_23_2
  doi: 10.1128/MCB.00586-15
– ident: e_1_3_5_37_2
  doi: 10.1016/S0076-6879(05)96052-7
– ident: e_1_3_5_48_2
  doi: 10.1002/cyto.a.21068
– ident: e_1_3_5_4_2
  doi: 10.3389/fphys.2012.00128
– ident: e_1_3_5_11_2
  doi: 10.1161/CIRCRESAHA.117.310933
– ident: e_1_3_5_54_2
  doi: 10.1161/HYPERTENSIONAHA.116.07237
– ident: e_1_3_5_28_2
  doi: 10.1371/journal.pone.0134391
– ident: e_1_3_5_69_2
  doi: 10.1089/ars.2018.7703
– ident: e_1_3_5_74_2
  doi: 10.1152/ajpheart.00039.2019
– ident: e_1_3_5_78_2
  doi: 10.3892/ijo_00000574
– ident: e_1_3_5_33_2
  doi: 10.1161/CIRCULATIONAHA.105.538934
– ident: e_1_3_5_79_2
  doi: 10.1016/j.redox.2016.09.003
– ident: e_1_3_5_41_2
  doi: 10.1084/jem.20070657
– ident: e_1_3_5_12_2
  doi: 10.1152/ajpheart.00595.2018
– ident: e_1_3_5_66_2
  doi: 10.1038/cr.2011.55
– ident: e_1_3_5_51_2
  doi: 10.1097/HJH.0b013e3282ef6196
– ident: e_1_3_5_42_2
  doi: 10.1016/j.molcel.2018.01.010
– ident: e_1_3_5_58_2
  doi: 10.1016/j.jash.2012.11.007
– reference: 32213139 - Circ Res. 2020 Mar 27;126(7):e33-e34
– reference: 32078456 - Circ Res. 2020 Feb 14;126(4):453-455
– reference: 32213137 - Circ Res. 2020 Mar 27;126(7):e31-e32
SSID ssj0014329
Score 2.67672
Snippet Hypertension represents a major risk factor for stroke, myocardial infarction, and heart failure and affects 30% of the adult population. Mitochondrial...
NAD + dependent mitochondrial deacetylase Sirt3 is a key regulator of antioxidant and metabolic functions. Sirt3 level declines with age paralleling the...
SourceID pubmedcentral
proquest
pubmed
crossref
wolterskluwer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 439
SubjectTerms Angiotensin II
Animals
Desoxycorticosterone Acetate
Endothelium, Vascular - metabolism
Endothelium, Vascular - physiopathology
Essential Hypertension - chemically induced
Essential Hypertension - genetics
Essential Hypertension - metabolism
Female
Heart - physiopathology
Inflammation - genetics
Inflammation - metabolism
Male
Mice, Inbred C57BL
Mice, Knockout
Mice, Transgenic
Mitochondria, Heart - genetics
Mitochondria, Heart - metabolism
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
Myocardium - metabolism
Myocardium - pathology
Oxidative Stress
Sirtuin 3 - genetics
Sirtuin 3 - metabolism
Title Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress
URI https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003012-202002140-00005
https://www.ncbi.nlm.nih.gov/pubmed/31852393
https://www.proquest.com/docview/2328777072
https://pubmed.ncbi.nlm.nih.gov/PMC7035170
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEkhHgu5SUjcVul5OHEzbFqu2rRPhDbhd4iO3a0Uatk1abA8r848ecY20maqJVYuEStE9tR5_N4xv1mBqH3gXT7Ig65FXA3tojwhBVS6Vhe4HHKKQtEogKFT8-CySX5OPfnnc7vBmtpU_Be_HNvXMn_SBXaQK4qSvYfJFsPCg3wGeQLV5AwXG8l41NYjqC-MqFLb4xAu8niBsxheXSRrgoPfjuxUYyrLxXddHSzVhtZUXGQJ-CFrjSHHRq-XqXLqudIXqus3IYHOV6rCCU1Rev56Vp59AuwWMF-raeYZgmAzARE6jnOf6TCZBe_KGq-R5UbIV3FZf2wozLtUH08PUoXbJl_M-e-Wca2MROf1MG3BscAFF0mqvZ5ynJzzsDK_VgjGUCfcSbNSHAvrXhI5WEHeLaq9App6meXWMQ3VVt6ck9bpdRNHH6JXtJQ0cQkT9rdOgK1dQynn4cA_cFkAC1hz3PAH6PbvbLiB5ydR8eXJyfRbDyf3UF3XfBRdKT5vOYXgR2qS-TVb1eGj8E0H_ZO0jaMdrydXdLug--5IlSsFzqeomEVzR6hh6U7gwcGm49RR2ZP0L3TkrDxFP1qQRQ3IIo10HAJUVzhBzcgikHOuAk5rCFa9qwhitMM1xBtPz9dYwNRXOTbKZoQ1XPUEMUGos_Q7Hg8G06sslKIFYP_4FtS2aFClWYAb9km3BV9RlgQJE4sJPN9njAqPC-hzLVDHrIw8Wzej6mb2MLnnvccHWR5Jl8gTFwhwSmIqaSE9ENw-KXDZSiTUDgODfwuIpWUorjMoq-KuSwj7U0HTrQVLnwPIyPcLurV3a5NGpm_dXhXQSACha_-xWOZzDfrCFwglcPTpm4XHRpI1EPqVAhe6HURbYGlfkAlk2_fydIrnVSeKkoBtbvIasEqMuHYiqOiDk9cS61KlWdR56Ow_Ze3eM9X6P52Lb9GB8VqI9-AKV_wt3rJ_AFJdvuT
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+Deacetylase+Sirt3+Reduces+Vascular+Dysfunction+and+Hypertension+While+Sirt3+Depletion+in+Essential+Hypertension+Is+Linked+to+Vascular+Inflammation+and+Oxidative+Stress&rft.jtitle=Circulation+research&rft.au=Dikalova%2C+Anna+E&rft.au=Pandey%2C+Arvind&rft.au=Xiao%2C+Liang&rft.au=Arslanbaeva%2C+Liaisan&rft.date=2020-02-14&rft.issn=1524-4571&rft.eissn=1524-4571&rft.volume=126&rft.issue=4&rft.spage=439&rft_id=info:doi/10.1161%2FCIRCRESAHA.119.315767&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7330&client=summon